
����������
�������

Citation: Gomez-Alanis, A.;

Gonzalez-Lopez , J.A.; Peinado, A.M.

GANBA: Generative Adversarial

Network for Biometric Anti-Spoofing.

Appl. Sci. 2022, 12, 1454. https://

doi.org/10.3390/app12031454

Academic Editor: Francesc Alías

Received: 5 January 2022

Accepted: 28 January 2022

Published: 29 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

GANBA: Generative Adversarial Network for
Biometric Anti-Spoofing
Alejandro Gomez-Alanis * , Jose A. Gonzalez-Lopez and Antonio M. Peinado

Department of Signal Theory, Telematics and Communications, University of Granada,
18010 Granada, Spain; joseangl@ugr.es (J.A.G.-L.); amp@ugr.es (A.M.P.)
* Correspondence: agomezalanis@ugr.es

Abstract: Automatic speaker verification (ASV) is a voice biometric technology whose security
might be compromised by spoofing attacks. To increase the robustness against spoofing attacks,
presentation attack detection (PAD) or anti-spoofing systems for detecting replay, text-to-speech and
voice conversion-based spoofing attacks are being developed. However, it was recently shown that
adversarial spoofing attacks may seriously fool anti-spoofing systems. Moreover, the robustness of the
whole biometric system (ASV + PAD) against this new type of attack is completely unexplored. In
this work, a new generative adversarial network for biometric anti-spoofing (GANBA) is proposed.
GANBA has a twofold basis: (1) it jointly employs the anti-spoofing and ASV losses to yield very
damaging adversarial spoofing attacks, and (2) it trains the PAD as a discriminator in order to make
them more robust against these types of adversarial attacks. The proposed system is able to generate
adversarial spoofing attacks which can fool the complete voice biometric system. Then, the resulting
PAD discriminators of the proposed GANBA can be used as a defense technique for detecting both
original and adversarial spoofing attacks. The physical access (PA) and logical access (LA) scenarios of
the ASVspoof 2019 database were employed to carry out the experiments. The experimental results
show that the GANBA attacks are quite effective, outperforming other adversarial techniques when
applied in white-box and black-box attack setups. In addition, the resulting PAD discriminators are
more robust against both original and adversarial spoofing attacks.

Keywords: adversarial attacks; automatic speaker verification (ASV); anti-spoofing; presentation
attack detection (PAD); voice biometrics

1. Introduction

Biometric authentication [1] aims to authenticate the identity claimed by a given
individual based on the samples measured from biological characteristics (e.g., voice,
face, and fingerprints). In recent years, however, automatic speaker verification (ASV)
technology has shown vulnerability to security attacks where impostors try to fraudulently
access the system by inputting speech similar to the voice of a genuine user [2,3]. These
security threats for voice biometric systems are known as spoofing attacks.

Four types of spoofing attacks were identified by the scientific community [4]: (i) replay
(i.e., using a pre-recorded voice of the target user), (ii) impersonation (i.e., mimicking the
voice of the target voice), or either using (iii) text-to-speech synthesis (TTS) or (iv) voice
conversion (VC) systems to generate artificial speech resembling the voice of a genuine
user. Moreover, these attacks can be presented to the ASV system using either logical access
(LA) or physical access (PA) scenarios. In the LA scenario, the sensor is by-passed and TTS-
or VC-based attacks are directly injected into the ASV system. In the PA attack scenario,
the replayed spoofing signal is presented to or captured by the sensor, i.e., the microphone.

Anti-spoofing or presentation attack detection (PAD in ISO/IEC 30107 nomencla-
ture [5]) for voice biometrics has gained increased attention in recent years as shown by the
organization of multiple evaluation challenges: (i) ASVspoof 2015 [6], which focused on
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detecting TTS- and VC-based spoofing attacks; (ii) BTAS 2016 [7], which addressed both the
detection of PA and LA-based attacks; (iii) ASVspoof 2017 [8], which focused on detecting
real replay spoofing attacks under noisy environments; (iv) ASVspoof 2019 [9], which ad-
dressed both the detection of simulated replay attacks and LA-based attacks generated with
the latest TTS and VC technologies; and (v) ASVspoof 2021 [10] which addressed the same
LA-based attacks as the ASVspoof 2019 Challenge but communicated across telephony and
VoIP networks with various coding and transmission effects. It also addressed PA-based
attacks in real and physical spaces.

The need to strengthen voice biometric systems [11] against spoofing attacks, has
boosted the development of anti-spoofing or PAD systems capable of detecting spoofing
speech [12–14]. In the last ASVspoof challenges [8–10], the complete voice biometric
system which was evaluated is a cascaded integration of ASV and PAD systems based on
score-level decisions, as depicted in Figure 1.

Test utterance PAD

Reject

ASV
Reject

Accept

Claimed ID

Figure 1. Block diagram of a cascade PAD + ASV voice biometric system based on score-level
decisions. τASV , sASV and τPAD, sPAD are the ASV/PAD thresholds and scores.

More recently, different investigations [15–17] showed that anti-spoofing systems
are also vulnerable to adversarial attacks [18]. This type of attack perturbs benign sam-
ples, normally in a way imperceptible to humans, which are able to fool deep neural
network (DNN)-based models [19]. There are two main categories of adversarial attacks:
(i) white-box adversarial attacks, and (ii) black-box adversarial attacks. In this paper, those
adversarial attacks where the attacker has all the information about the victim model
(i.e., its artifacts, weights, and model architecture) will be referred to as white-box attacks.
Similarly, the term black-box is used to indicate those attacks where the attacker does not
have knowledge about the victim model but the attacker can repeatedly query it to obtain
a student model (surrogate) of the teacher (victim). In order to do this, the attacker uses the
binary outputs provided by the victim model (acceptance/rejection) as ground-truth labels.

The main contributions proposed in this work are summarized in the following:

• We study the robustness of the complete voice biometric system against adversarial
spoofing attacks.

• We also propose a novel generative adversarial network for biometric anti-spoofing
(GANBA) which generates adversarial spoofing attacks capable of fooling the PAD system
without being detected by the ASV system, i.e., without changing the speaker information
of the utterance. Moreover, while our previous work [15] was focused on adversarial
attack generation, here we also train the PAD discriminator so that it provides us with a
reinforced defense against adversarial and even original spoofing attacks.

• To the best of our knowledge, adversarial spoofing attacks have only been studied on
TTS and VC spoofing attacks (LA scenarios). In this paper, replay spoofing attacks (PA
scenarios) are also considered.
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The rest of this paper is organized as follows. Section 2 outlines the PAD, ASV,
and complete voice integration systems, as well as the metrics to evaluate them. In addition,
adversarial spoofing attacks as well as some well-known adversarial attacks, employed
as baselines in this work, are discussed. The GANBA framework for both white-box
and black-box scenarios are proposed in Section 3. Then, Section 4 describes the systems
details, speech corpora, and the metrics evaluated in the experiments. Section 5 discusses
the experimental results. Finally, Section 6 summarizes the conclusions derived from
this research.

2. Background

This section is devoted to briefly describe the existing standalone PAD and ASV
approaches, as well as the complete voice integration systems including the metrics to
evaluate all of them. Moreover, Section 2.4 provides a detailed description of adversarial
spoofing attacks.

2.1. Automatic Speaker Verification (ASV)

An ASV system is able to determine whether an utterance is uttered by the claimed
speaker or not. In order to do it, it typically obtains the speaker information of the utterance
by extracting either i-vector [20] or x-vector features [21]. In the verification phase, the ASV
system extracts the feature vectors of the enrollment and test utterances, and they are
usually mapped into a more discriminative subspace using, for example, linear discriminant
analysis (LDA). Then, the ASV score of the test utterance is typically obtained using one of
the following techniques:

• Probabilistic Linear Discriminant Analysis (PLDA) [22,23]: it is a probabilistic frame-
work which is able to model the inter- and intra-speaker variability. There are three
types of PLDA models [24]: simplified [25], standard [22], and two-covariance [26].
In all variants, the expectation-maximization (EM) algorithm [27] is used to train the
PLDA model.

• B-vector [28]: it is a DNN-based model which considers ASV as a binary classification
problem. Specifically, from the x-vectors xenroll and xtest computed for each pair of
utterances (enrollment and test utterances), a b-vector representing the relationship
between xenroll and xtest is computed as follows,

b =
[
xenroll ⊕ xtest, |xenroll 	 xtest|, xenroll ⊗ xtest

]
, (1)

where ⊕, 	 and ⊗ are the element-wise addition, subtraction and multiplication
operations, respectively. Then, the b-vector features are fed to a binary DNN which
determines whether the enrollment and test utterances are uttered by the same or
different speaker.

An ASV system is typically evaluated on a test dataset which contains utterances
uttered by either bonafide target speakers or zero-effort impostors [29]. The equal error rate
(EER) is the most common metric to evaluate it, which is the operating point at which the
false rejection rate (FRR) equals the false acceptance rate (FAR). However, the EER metric
does not account for either the costs of falsely accepting impostors or missing target users,
nor the prior probabilities of each. In order to take these costs and priors into account,
the detection cost function (DCF) metric [30] has been proposed and evaluated in the most
popular speaker recognition challenges [31].

2.2. Anti-Spoofing or Presentation Attack Detection (PAD)

The goal of anti-spoofing is to differentiate between bonafide and spoofing speech. Two
hypotheses are computed for each test utterance: (i) it is bonafide speech, or (ii) it is a
spoofing attack.

In the last ASVspoof challenges [8–10], DNN-based models have been the most ef-
fective approach to differentiate between bonafide and spoofing speech. A wide range of
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features have been proposed for training these models, such as linear frequency cepstral
coefficients (LFCC) [32], spectrograms [33], constant Q cepstral coefficients (CQCC) [34],
and raw speech samples [35].

Anti-spoofing systems are typically evaluated using the ERRPAD metric, where false
acceptance happens when a spoofing utterance is detected as a bonafide utterance while false
rejection occurs when a bonafide utterance is detected as a spoofing attack. Moreover, in order
to take costs and priors of the different hypotheses into account, the ASV-constrained mini-
mum tandem detection cost function (min-tDCF) metric [36] has been recently proposed to
evaluate anti-spoofing systems. This has been the primary metric of the ASVspoof 2019
and 2021 challenges [9,10].

2.3. Voice Integration Systems: Joint ASV and PAD

In the integration approach, each utterance has two attributes: (i) an indicator of the
target speaker (S), and (ii) an indicator of the bonafide speech (N ). Therefore, the null
hypothesisH(S ,N ) is that the test utterance is bonafide speech uttered by the target speaker.
On the other hand, the complementary hypotheses is a union of the other three hypotheses:

H
(S ,N )

= H(S ,N ) ∪H(S ,N ) ∪H(S ,N ), (2)

where (S ,N ) denotes a spoofing attack, (S ,N ) represents bonafide speech uttered from a
non-target speaker (i.e., it is zero-effort impostor), and (S ,N ) represents spoofing speech
from a non-target speaker. The latter case, commonly referred to as naive attack, does not
make much sense in an authentication context and it is usually discarded. Then, there are
three types of utterances that PAD and ASV systems may encounter: (i) bonafide or genuine
target, (ii) zero-effort impostor or genuine non-target, and (iii) spoofing target attacks.

The integration of PAD and ASV systems can be achieved at the score level [37] or at
the feature level [11,38]. Most existing integration methods perform the integration at the
score level, where dedicated classifiers are developed for both PAD and ASV separately,
and the scores computed by each separate system are combined. In this work, we focus at
the score-level integration. Specifically, we use the cascaded integration system depicted in
Figure 1 which has been used in the last three ASVspoof challenges [8–10].

The integration systems are typically evaluated using the EERjoint which can be mea-
sured, for example, on a test dataset that contains a combination of bonafide utterances,
zero-effort attacks and spoofing attacks. However, the EERjoint does not account for the costs
of falsely accepting spoofing attacks and zero-effort impostors or missing target genuine
users, nor the prior probabilities of each. In order to take these costs and priors into ac-
count, the min-tDCF metric [36,39] was recently proposed for evaluating complete voice
integration systems based on score-level decisions.

2.4. Adversarial Spoofing Attacks

Adversarial spoofing attacks can be generated by adding a minimally perceptible perturba-
tion to the input spoofing utterance. The core idea of this type of adversarial attack is to refine
the original spoofing attack so that it is more difficult to be detected by the PAD system. In other
words, the goal of adversarial spoofing attacks is to fool the anti-spoofing or PAD system by
maximizing the bonafide class likelihood with respect to that of the spoofing class.

Adversarial spoofing attacks can be generated by freezing the parameters θ of the
DNN-based anti-spoofing model and performing a gradient descent algorithm which is
able to update the input spectrum features X of the spoofing utterance so that the PDA
misclassifies it as bonafide. Mathematically, it is an optimization problem which tries to find
a sufficiently small perturbation δ which satisfies:

X̃ = X + δ,

fθ(X̃) = ỹ,

fθ(X) = y,

(3)



Appl. Sci. 2022, 12, 1454 5 of 18

where X̃ denotes the perturbed input spectrum features, f denotes a well-trained DNN-
based anti-spoofing model parameterized by θ, δ is the additive spectrum perturbation, y
is the ground-truth label corresponding to the original input spectrum features X, and ỹ
denotes the label of the targeted class of the adversarial spoofing attack, i.e., the label of the
bonafide class. Normally, the subspace of allowed perturbations is denoted by ∆, so that the
perturbation δ ∈ ∆. In other words, the manipulative capability of the adversarial attack is
formalized by the subspace ∆. Typically, ∆ is a small l∞-norm sphere (∆ = {δ | ‖δ‖∞ ≤ ε},
ε ≥ 0 ∈ R).

Two of the most popular adversarial attack techniques are: (i) gradient sign method
(FGSM) [40], and (ii) projected gradient descent (PGD) [41]. The FGSM attack generates
the perturbation δ by taking a single step toward the direction pointed by the gradient
as follows,

δ = ε · sign(∇XLoss(θ, X, y)), (4)

where sign is an operation which takes the sign of its argument, and Loss is the loss
function of the well-trained PAD neural network whose parameters are denoted by θ.
Unlike FGSM, implemented as a single-step procedure, PGD is iterative. Thus, initializing
with the original input spoofing spectrum features X0 = X, the spectra of the spoofing attack
is iteratively updated as follows,

Xn+1 = clip(Xn + α · sign(∇X Loss(θ, X, y)), ∀ n = 0, ..., N − 1, (5)

where n = 0, ..., N − 1 denotes the iteration index (up to N iterations), and clip denotes a
function which applies element-wise clipping such that ‖Xn − X‖∞ ≤ ε, ε ≥ 0 ∈ R.

3. Proposed Method

In this work, we propose a generative adversarial network for biometric anti-spoofing
(GANBA) in order to generate adversarial spoofing attacks and, at the same time, train the
PAD discriminator in order to make it more robust against this type of attack. The generator
of the proposed GANBA is a neural network which is in charge of transforming the original
input spoofing spectrum features into adversarial spoofing spectrum features against a target
voice biometric system. Thus, the discriminator of the GANBA is a complete voice biometric
system (ASV + PAD) which tries to differentiate between bonafide and spoofing speech (PAD
system), and verify the identity of the enrolled speakers (ASV system).

The PAD and ASV models of the proposed GANBA provides either a probability
distribution across the bonafide and spoofing class labels (white-box scenario) or just a binary
decision indicating whether the test utterance is accepted or rejected by the biometric
system (black-box scenario). In both scenarios, the goal of the proposed GANBA generator
is to provide high quality adversarial spoofing attacks from spoofing speech able to fool
the anti-spoofing system while undetected by the ASV subsystem (that is, the speaker
information contained in the utterance is not modified). In contrast, the objective of the
GANBA discriminator (complete voice biometric system) is to detect both the original (We
refer to the original spoofing attacks as those unseen spoofing attacks of the test dataset which
are not modified by any adversarial perturbation) and adversarial spoofing attacks.

3.1. White-Box GANBA

Figure 2 depicts the proposed GANBA architecture for the white-box scenario. The in-
puts to the GANBA generator are the short-time Fourier transform (STFT) features of a
spoofing utterance, so that it modifies its spectra in order to refine the spoofing attack. The out-
put of the GANBA generator is fed to the PAD and ASV subsystems of the target biometric
system. The ASV system only consists of a time-delay neural network (TDNN) [21] for x-
vector extraction (the only component of the ASV system needed in the white-box scenario).
This feature extractor is fed with the Mel-frequency cepstral coefficients (MFCCs) of the cor-
responding utterance obtained through the log-power magnitude spectrum features (STFT)
extracted previously, as shown in the diagram of Figure 2. On the other hand, the PAD
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system based on DNNs is also fed with the STFT features of the corresponding utterance
and it provides the softmax output vector of the utterance, whose first component indicates
the probability of the utterance being bonafide. The goal of the proposed framework is to
train a GANBA generator capable of generating adversarial spoofing attacks which can fool
the anti-spoofing system while not causing any changes to the ASV x-vector output, i.e.,
the adversarial attacks should not change the feature x-vector since it contains the speaker
information of the utterance.

Figure 2. Generative adversarial network for biometric anti-spoofing (GANBA) framework for
white-box scenarios. Step 1: generator-only training (ASV and PAD parameters frozen, with encircled
outputs corresponding to Equations (7) and (8), respectively). Step 2: discriminator (ASV + PAD)
training (encircled outputs corresponding to classical cross-entropy loss function).

As is shown in Figure 2, there are two different steps for training the whole architecture.
Step 1 denotes the training of the GANBA generator, where the PAD and ASV parameters
are not modified but gradients are computed and back-propagated to the GANBA generator.
At this stage, the spoofing speech dataset is used only to train the GANBA generator. On the
other hand, Step 2 denotes the training of the biometric system, PAD and ASV components,
which makes up the discriminator of the GANBA framework. While the TDNN of the ASV
system is trained using only the bonafide speech dataset, the PAD system is trained using
both the bonafide and spoofing speech datasets.

Step 1 is in charge of optimizing the GANBA generator parameters in the white-box
(w-box) scenario. In particular, the following loss function is minimized:

LGANBA_w-box = LPAD_GANBA_w-box
(
sspoof

PAD , s̃spoof
PAD

)
+ β · LASV_GANBA_w-box

(
xspoof

vector, x̃spoof
vector

)
,

(6)

where
LASV_GANBA_w-box

(
xspoof

vector, x̃spoof
vector

)
=
∥∥∥xspoof

vector − x̃spoof
vector

∥∥∥
2
, (7)

LPAD_GANBA_w-box
(
sspoof

PAD , s̃spoof
PAD

)
=
∥∥∥rα

(
sspoof

PAD
)
− s̃spoof

PAD

∥∥∥
2
. (8)

LASV_GANBA_w-box and LPAD_GANBA_w-box are the loss functions associated with the ASV
and PAD systems, respectively, and β is a hyper-parameter which weights the relative
importance of these two losses. xspoof

vector and x̃spoof
vector denote the x-vectors of the original and

adversarial spoofing utterances, respectively. Likewise, vectors sspoof
PAD and s̃spoof

PAD represent
the output probability sets provided by the PAD system for the original and adversarial
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spoofing utterances, respectively. Moreover, rα is a re-ranking function which is formulated
as follows,

rα

(
sspoof

PAD
)
= norm

({
α ·max

(
sspoof

PAD
)

k = 0

sspoof
PAD

(
k
)

k 6= 0

)
, (9)

where k is the index class variable of the sspoof
PAD probability vector, with k = 0 representing

the class of bonafide speech, α > 1 is an additional hyper-parameter which defines how
large sspoof

PAD
(
k = 0

)
(i.e., the bonafide class probability) is with respect to the current maxi-

mum probability class, and norm denotes a normalizing function which provides a valid
probability distribution.

On the other hand, Step 2 indicates the training of the voice biometric system (ASV + PAD)
which acts as the GAN discriminator. The ASV system based on a TDNN is trained as a classifier
using only the bonafide speech dataset. Likewise, the PAD system is also trained as a classifier
using both the spoofing and bonafide speech datasets. Finally, Step 1 and Step 2 follow each other
to train the proposed GANBA as a generative adversarial network (GAN), where the GANBA
generator is in charge of producing the adversarial spoofing attacks and is trained during Step 1,
while the PAD and ASV discriminators are in charge of detecting the voice biometric attacks
and are trained during Step 2 as normal ASV and PAD systems using their corresponding loss
functions [2,21].

3.2. Black-Box GANBA

Figure 3 depicts the proposed GANBA architecture for the black-box scenario. Similar
to the white-box case, the goal of the proposed system is the generation of adversarial
spoofing attacks capable of fooling the target PAD system (teacher PAD) and bypassing
the target ASV system (teacher ASV) by not modifying the x-vector representation which
encodes the speaker information of the utterance. However, the main limitation of the
black-box scenario is that the attacker does not have access to the target system (teacher)
parameters.

Figure 3. Generative adversarial network for biometric anti-spoofing (GANBA) framework for
black-box scenarios. Step 1: generator-only training (ASV and PAD parameters frozen, with encircled
outputs corresponding to Equations (11) and (12), respectively). Step 2: discriminator (ASV + PAD)
training (encircled outputs corresponding to classical cross-entropy loss function).

In the proposed GANBA framework, the attacker makes requests to the black-box
target (teacher) biometric system but only obtains a binary decision response of accep-
tance/rejection. The binary response is considered to be the ground-truth label for training
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the student PAD and b-vector [28] systems of the GANBA discriminator. It is worth noticing
that we assume that a rejection of the teacher system is made by the teacher PAD system
since we make sure that the x-vector representation of the utterance is minimally perturbed
by the adversarial spoofing attack. Thus, the student b-vector and PAD systems are trained
as binary classifiers able to imitate the behavior of the teacher ASV and PAD systems,
respectively. In particular, the student b-vector system computes the probability that the
two input x-vectors represent the same speaker, i.e., that P(b(xvector, x̃vector) = 1), with b
denoting the b-vector model.

As shown in Figure 3, there are again two different steps for training the whole
architecture. Step 1 denotes again the training of the GANBA generator, where the ASV
and PAD network parameters are not modified but the gradients are back-propagated
to the GANBA generator. Thus, Step 1 is in charge of optimizing the parameters of the
GANBA generator in the black-box (b-box) case by minimizing the following loss function:

LGANBA_b-box = LPAD_GANBA_b-box(s̃
spoof
PAD )

+ β · LASV_GANBA_b-box(xspoof
vector, x̃spoof

vector),
(10)

where
LASV_GANBA_b-box(xspoof

vector, x̃spoof
vector) = 1− P(b(xspoof

vector, x̃spoof
vector) = 1), (11)

LPAD_GANBA_b-box(s̃
spoof
PAD ) =

∥∥∥onehot(k = 0)− s̃spoof
PAD

∥∥∥
2
. (12)

LASV_GANBA_b-box and LPAD_GANBA_b-box are the loss components associated with the ASV
and PAD systems, respectively. Furthermore, onehot is the one-hot function [42] and k = 0
is the bonafide class index. Using this function, the input spoofing utterance is presented as
bonafide and the PAD is fooled.

On the other hand, Step 2 denotes the training of the student biometric system (ASV
b-vector + PAD) which acts as the discriminator of the GAN. The TDNN employed for
x-vector extraction is pretrained and its parameters are also frozen in this step. However,
the b-vector system is trained as a binary classifier [28] employing the test and enrollment
utterances from the bonafide speech dataset. Likewise, the PAD system is also trained as
a binary classifier using both bonafide and spoofing utterances. In both cases, the ground
truth labels are taken from the binary responses of the black-box target/teacher biometric
system. Similar to the white-box scenario, Step 1 and Step 2 follow each other in order to
train the proposed GANBA as a typical GAN.

4. Experimental Setup

In this section, we describe the databases, spectral analysis, implementation details,
and evaluation metrics employed in the experiments.

4.1. Speech Datasets

We used the ASVspoof 2019 corpus [43] to train and evaluate all the systems. This
database is split into two subsets to allow PA and LA evaluation. Moreover, it does not only
include protocols for evaluating PAD systems, but also for evaluating ASV and ASV+PAD
integration systems. First, we employed this database for training the standalone anti-
spoofing systems in the PA and LA scenarios, respectively. Then, we only used the spoofing
utterances for generating adversarial spoofing attacks in order to bypass the complete voice
biometric system. It is worth noticing that the adversarial examples were not generated
from bonafide utterances because we consider that doing so they would lose their bonafide
character.

To train the TDNN [21] of the ASV system as an x-vector features extractor, we also
employed the Voxceleb1 database [44] which contains more than 1000 speakers. Moreover,
in order to train the b-vector [28] ASV scoring system in the black-box scenario, the bonafide
utterances (from the ASVspoof 2019 and Voxceleb1 development datasets) were used, thus
following the training protocol described in [11].
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4.2. Spectral Analysis

The PAD systems were fed with log-power short-time Fourier transform (STFT) fea-
tures with 256 frequency bins and 600 acoustic frames. In order to obtain the STFT features,
a Hanning analysis window with a 10 ms frame shift and 25 ms of window length was
employed. On top of these STFT features, 24 MFCCs (including the C0 cepstral coefficient),
obtained with the Kaldi recipe [45], were extracted to feed the TDNN-based ASV system.

4.3. Implementation Details

Three state-of-the-art anti-spoofing systems were adapted from other works: a light
convolutional neural network (LCNN) [2], a residual neural network (ResNet34) [46] and a
Squeeze-Excitation network (SENet50) [46]. The softmax layer output of the DNN-based
models was directly used to obtain the PAD scores. For ASV, a TDNN model for x-vector
feature extraction [21] was trained. Then, two ASV scoring systems were trained: (i) a
standard PLDA [22]; and (ii) a b-vector system [28].

The generator of the proposed GANBA framework is a convolutional neural network
(CNN) with five convolutional layers (16, 32, 48, 48, and 3 channels). Furthermore, it uses
a kernel size of 3× 3 as well as leaky ReLU activations. The Adam optimizer [47] (with
learning rate 3× 10−4) was used to train the GANBA generator. Moreover, a grid search
across the development dataset of the ASVspoof 2019 database was used in order to find
the best empirical values of the hyper-parameters α = 10 and β = 0.001. All the deep
learning frameworks were trained using the Pytorch toolkit [48].

The PGD method uses N = 30 training iterations for generating the adversarial spoofing
attack, and for evaluation the number of iterations is set to N = 100 [49]. The magnitude of
the perturbation is configured with the ε parameter. In the experiments, we do a grid search
between ε = 0.1 and ε = 5.0 in order to find the optimal perturbation of the FSGM and
PGD techniques. However, the magnitude of the GANBA perturbation is not restricted to
any specific value. This is one of the main advantages of the proposed GANBA technique
since it is in charge of finding the optimal perturbation value by itself in order to fool the
PAD system without being detected by the ASV system, i.e., without changing the speaker
information of the utterance.

4.4. Evaluation Metrics

A specific EER (EERASV) was used for ASV. We evaluated this metric either includ-
ing only bonafide utterances or including both bonafide and spoofing utterances. Likewise,
the PAD systems were also evaluated using the EERPAD across all spoofing attacks. To com-
pute the performance of the complete voice integration system, any utterance rejected by
either the ASV or PAD systems was arbitrarily assigned a −∞ score. Finally, the integration
systems were evaluated using the min-tDCF [39] metric and the joint EER (EERjoint) with
the same configuration as that of the ASVspoof 2019 challenge [9]. The ASVspoof 2019 test
datasets were used to evaluate all the ASV, PAD and complete voice integration systems.

5. Results

This section presents the experimental results from the evaluation of the described
techniques on the ASVspoof 2019 corpus. First, Section 5.1 presents the results of differ-
ent biometric systems without being exposed to any adversarial spoofing attacks. Then,
Section 5.2 evaluates the vulnerability of a biometric system to white-box adversarial spoof-
ing attacks. Likewise, Section 5.2 is devoted to the evaluation of the black-box adversarial
spoofing attacks, where the details of the target biometric system remain unknown to the
attacker. In both Sections 5.2 and 5.3, the proposed white-box and black-box GANBA
attacks will be compared to other classical adversarial spoofing attacks, respectively. Fi-
nally, Section 5.4 presents the results of the biometric system after applying two defense
techniques: (i) adversarial training of the PAD discriminator using the generated adver-
sarial spoofing attacks, and (ii) using the PAD discriminator trained within the proposed
GANBA framework.
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5.1. Voice Biometric Systems Results

Table 1 presents the baseline results of six biometric systems which consist of the
combination of three PAD (LCNN, SENet50 and ResNet34) and two ASV (TDNN + PLDA
and TDNN + b-vector) systems. These biometric systems are not still exposed to any
adversarial spoofing attacks. These PA and LA anti-spoofing systems have been shown
to provide some of the best single PAD performance in the ASVspoof 2019 challenge [9].
The best biometric system is the combination of LCNN and TDNN + PLDA as the PAD
and ASV systems, respectively. Although the ASV system provides EER of 6.87% and
4.71% over the PA and LA datasets, respectively, when evaluating exclusively with bonafide
utterances (target and non-target), its performance meaningfully degrades when spoofing
utterances are also evaluated (in particular, 18.43% and 30.58% in the PA and LA evaluation
datasets, respectively). This TDNN + PLDA / LCNN biometric system will be used as the
teacher system for the black-box scenario in Section 5.3.

5.2. White-Box Attacks Results

Figure 4 shows the EERjoint of the best TDNN + PLDA/LCNN based biometric system
evaluated in the previous section when being exposed to white-box adversarial attacks.
The PGD technique as expected achieves slightly better results than the FGSM technique
since PGD uses an iterative procedure for generating adversarial spoofing attacks. However,
the proposed GANBA attacks outperform the other adversarial attacks, obtaining 20.94%
and 27.63% higher absolute EERjoint with respect to the best PGD configuration (i.e., ε = 1.0)
in the PA and LA evaluation datasets, respectively. Another remarkable result is that using
a hyper-parameter ε higher than 2.0 in PGD and FGSM, the perturbation is effectively
detected by the biometric system. In such cases, the adversarial spoofing attacks may
perform even worse than when only using the original spoofing attacks, i.e., when not
generating adversarial attacks from spoofing speech (denoted by ’No Processing’).

Figure 4. EERjoint(%) of the white-box adversarial spoofing attacks evaluated on the ASVspoof 2019
logical and physical access test datasets. The ASV and PAD systems are the state-of-the-art TDNN +
PLDA and LCNN systems, respectively.

5.3. Black-box Attacks Results

Figures 5 and 6 show the EERjoint of the state-of-the-art TDNN + PLDA / LCNN
biometric system for the black-box scenario when it is attacked with three different student
biometric systems in the PA and LA scenarios, respectively. As shown in Figure 2, the ASV
system of the attacker is a TDNN + b-vector system. On the other hand, each student
biometric system uses a different PAD system: ResNet34, SENet50, and LCNN. Moreover,
three types of adversarial spoofing attacks are employed by each student biometric system:
FGSM (ε = 1.0), PGD (ε = 1.0) and the proposed GANBA attack.
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Table 1. Results of different complete voice biometric systems evaluated on the ASVspoof 2019 logical access (LA) and physical access (PA) test datasets in terms of
EERPAD(%), EERASV(%), EERjoint(%) and min-tDCF. (*) The EERASV metric is evaluated considering both bonafide and spoofing utterances.

Biometric Systems Logical Access Attacks Physical Access Attacks

PAD ASV EERPAD (%) EERASV (%) EERjoint (%) min-tDCF EERPAD (%) EERASV (%) EERjoint (%) min-tDCF

LCNN TDNN + PLDA 5.85 4.71/30.58 * 19.87 0.1237 4.62 6.87/18.43 * 13.12 0.1221
LCNN TDNN + b-vector 5.85 4.89/30.77 * 20.12 0.1256 4.62 7.13/19.21 * 13.89 0.1274

SENet50 TDNN + PLDA 6.29 4.71/30.58 * 21.15 0.1307 5.17 6.87/18.43 * 14.48 0.1328
SENet50 TDNN + b-vector 6.29 4.89/30.77 * 21.74 0.1332 5.17 7.13/19.21 * 14.81 0.1356
ResNet34 TDNN + PLDA 6.75 4.71/30.58 * 22.68 0.1412 5.62 6.87/18.43 * 15.75 0.1415
ResNet34 TDNN + b-vector 6.75 4.89/30.77 * 23.09 0.1456 5.62 7.13/19.21 * 15.97 0.1439
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The proposed GANBA attack outperforms the best FGSM and PGD configurations
(ε = 1.0) by 27.67% and 27.08% in the LA scenario when using the LCNN PAD system.
In the PA scenario, the proposed GANBA attack also outperforms them by 17.09% and
16.32% with the LCNN PAD system, respectively. It is worth noticing that the LCNN PAD
system is always better than the ResNet34 and SENet50 since this system has the same
architecture as the PAD system of the target (teacher) system. However, the SENet50 PAD
system achieves only 3.44% and 3.09% of slower absolute EERjoint when using the proposed
GANBA attack compared to the LCNN PAD architecture, being able to effectively attack
the teacher system achieving an EERjoint of 50.12% and 40.12% in the LA and PA scenarios,
respectively. This result shows how vulnerable a black-box complete voice biometric system
can be to adversarial spoofing attacks.

Figure 7 shows some examples of the spectrogram of bonafide speech, spoofing speech
generated with a replay attack of the physical access ASVspoof 2019 database, adversarial
spoofing speech refined by the PGD method, and that refined by the proposed GANBA
technique. As can be seen, it is difficult to visually differentiate between the original
spoofing spectrogram and the generated adversarial spectrogram with the proposed method.
However, our technique is able to correct some of the spoofing artifacts so that the replay
attack is introduced in the spectrogram so that the PAD system misclassifies the generated
adversarial spoofing utterance as a bonafide utterance. In contrast, the PGD method is not
able to compensate for those artifacts, and the PAD system still classifies it as spoofing speech.

Figure 5. EERjoint(%) of the black-box adversarial spoofing attacks evaluated on the ASVspoof 2019
logical access (LA) test dataset with the state-of-the-art TDNN + PLDA / LCNN biometric system.
There are three attackers (student systems) which use the ResNet34, SENet50 and LCNN as PAD sys-
tem, respectively. The ASV system of the attacker is a TDNN + b-vector system. Every student system
generates three types of attacks: FGSM (ε = 1.0), PGD (ε = 1.0) and the proposed GANBA attack.

5.4. Defenses against Adversarial Spoofing Attacks

Table 2 shows the performance metrics of the state-of-the-art TDNN + PLDA / LCNN
biometric system when it applies two separate defense techniques: (i) adversarial training
of the PAD discriminator using the generated adversarial spoofing attacks, and (ii) using
the PAD discriminator trained within the proposed GANBA framework. Both defense
techniques employ the black-box adversarial attacks generated with the SENet50 PAD
system employed in Section 5.3 as discriminator. Thus, we can evaluate a realistic scenario
where the target PAD system (LCNN) does not match the same architecture as that of the
attacker PAD system (SENet50).
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Figure 6. EERjoint(%) of the black-box adversarial spoofing attacks evaluated on the ASVspoof 2019
physical access (PA) test dataset with the state-of-the-art TDNN + PLDA/LCNN biometric system.
There are three attackers (student systems) which use the ResNet34, SENet50 and LCNN as PAD sys-
tem, respectively. The ASV system of the attacker is a TDNN + b-vector system. Every student system
generates three types of attacks: FGSM (ε = 1.0), PGD (ε = 1.0) and the proposed GANBA attack.
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Figure 7. Spectrograms of the same utterance corresponding to: (left upper) bonafide speech, (right
upper) spoofing speech generated with a replay attack, (left bottom) adversarial spoofing speech
generated with the black-box PGD (ε = 1.0) method, (right bottom) adversarial spoofing speech
generated with the proposed black-box GANBA method.

Table 2 is divided into three sections separated by horizontal lines. The first row shows
the performance metrics of the biometric system without being exposed to any adversarial
spoofing attacks for the sake of comparison with the rest of attack-defense combinations.
The next nine rows show the performance metrics of the biometric system evaluated after
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applying a different attack-defense combination: (i) the attack technique is one of the three
types of adversarial spoofing attacks (FGSM, PGD or GANBA) evaluated in this work; and
(ii) the defense technique consists of applying adversarial training using the generated
adversarial spoofing attacks of one of the three black-box methods (FGSM, PGD or GANBA)
evaluated in Section 5.3 and generated with the system which employs the SENet50 PAD
discriminator. On the other hand, the three last rows of Table 2 shows the performance
metrics of the biometric system when it is attacked by one type of adversarial spoofing attack
(FGSM, PGD or GANBA) and, at the same time, it is defended using the PAD discriminator
trained with the proposed GANBA framework described in Section 3.2.

As shown in Table 2, the adversarial training defense technique, which uses the
generated GANBA attacks, significantly outperforms the adversarial training defense
technique, which uses either FGSM or PGD attacks, by more than 2% of absolute EERjoint
in both the PA and LA scenarios. However, the proposed GANBA adversarial spoofing
attacks are not effectively detected when using adversarial training with either the FGSM
or PGD attacks, since the EERjoint is more than 34% in both the PA and LA scenarios.
This result highlights the effectiveness of the proposed GANBA attacks. It is also very
noticeable that adversarial training with the generated GANBA attacks is able to slightly
improve the results of the baseline complete biometric system which is not exposed to
any adversarial spoofing attacks. This can be due to the effect of data augmentation on the
generated GANBA attacks which helps to detect even more original spoofing attacks of the
ASVspoof 2019 evaluation dataset.

Nevertheless, the best defense technique is that of using the PAD discriminator trained
with the proposed GANBA framework which outperforms the adversarial training defense
technique in all cases. The usage of the resulting PAD system of the proposed GANBA
framework is the best solution for defending the target biometric system. It is even able to
significantly improve the results of the baseline biometric system which is not exposed to
any adversarial spoofing attacks by 1.96% and 2.13% of absolute EERjoint in the PA and LA
scenarios, respectively. This means that the trained PAD discriminator with the proposed
GANBA framework is not only helpful for detecting adversarial spoofing attacks but also
for detecting the original spoofing attacks of the ASVspoof 2019 test dataset.
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Table 2. Results of the TDNN + PLDA/LCNN biometric system evaluated on the ASVspoof 2019 logical access (LA) and physical access (PA) test datasets in terms
of EERPAD(%), EERASV(%), EERjoint(%) and min-tDCF. The FGSM and PGD attacks employs their best attack configuration (ε = 1.0). (*) The EERASV metric is
evaluated considering both bonafide and spoofing utterances.

Adv. Attacks / Defenses Logical Access Attacks Physical Access Attacks

Adv. Attack Adv. Defense EERPAD (%) EERASV (%) EERjoint (%) min-tDCF EERPAD (%) EERASV (%) EERjoint (%) min-tDCF

No Processing No Processing 5.85 30.58 * 19.87 0.1237 4.62 18.43 * 13.12 0.1221

PGD Adv. Train FGSM 8.42 30.78 * 24.68 0.1532 7.50 19.87 * 16.42 0.1434
GANBA Adv. Train FGSM 20.34 29.18* 40.12 0.3304 16.23 17.56 * 35.43 0.3012
FGSM Adv. Train PGD 7.34 31.03 * 23.75 0.1476 6.73 19.02 * 15.78 0.1389
PGD Adv. Train PGD 8.07 30.89 * 23.12 0.1502 7.82 18.07 * 16.19 0.1476

GANBA Adv. Train PGD 17.65 29.87 * 38.39 0.3009 15.03 17.10 * 34.32 0.2893
FGSM Adv. Train GANBA 5.14 30.51 * 18.95 0.1102 3.96 18.56 * 12.16 0.1084
PGD Adv. Train GANBA 5.33 30.44 * 19.22 0.1204 4.22 18.31 * 12.34 0.1121

GANBA Adv. Train GANBA 5.45 30.66 * 19.66 0.1222 4.37 18.72 * 12.48 0.1145

FGSM PAD from GANBA 4.12 30.33 * 17.74 0.1011 3.21 18.22 * 11.16 0.0976
PGD PAD from GANBA 4.46 30.74 * 18.15 0.1056 3.53 18.31 * 11.24 0.0996

GANBA PAD from GANBA 4.75 30.62 * 18.53 0.1079 3.68 18.56 * 11.36 0.1015
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6. Conclusions

In this paper, the robustness of state-of-the-art complete (ASV+PAD) voice biometric
systems against adversarial spoofing attacks was studied. Furthermore, we proposed a novel
generative adversarial network for biometric anti-spoofing (GANBA) capable of fooling
the anti-spoofing system without being detected by the ASV system, i.e., without changing
the speaker information of the utterance. Furthermore, we employed the generated attacks
for defending the system by either applying adversarial training or using the resulting PAD
discriminator of the proposed GANBA framework.

Experimental results showed that voice biometric systems are highly vulnerable to
adversarial spoofing attacks in both physical and logical access scenarios. However, we
showed that the biometric system can be effectively defended using the PAD discriminator
of the proposed GANBA system. In fact, the proposed defense technique resulted in being
more robust against both adversarial and original spoofing attacks. It is worth noting that
the results presented here with the GANBA attacks can be directly compared with those of
the adversarial biometric transformation network (ABTN) attacks in [15]. This comparison
shows that although ABTN and GANBA follow the same strategy for attack generation,
GANBA goes a step further in being trained as a generative adversarial network (GAN),
and shows a higher capability for fooling the voice biometric system.

In the future, we would like to explore a cross-database evaluation of the proposed
defense technique for voice biometric systems against adversarial spoofing attacks in order
to study their generalization between different datasets [50].
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