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Abstract: ANNs succeed in several tasks for real scenarios due to their high learning abilities.
This paper focuses on theoretical aspects of ANNs to enhance the capacity of implementing those
modifications that make ANNs absorb the defining features of each scenario. This work may be also
encompassed within the trend devoted to providing mathematical explanations of ANN performance,
with special attention to activation functions. The base algorithm has been mathematically decoded
to analyse the required features of activation functions regarding their impact on the training process
and on the applicability of the Universal Approximation Theorem. Particularly, significant new
results to identify those activation functions which undergo some usual failings (gradient preserving)
are presented here. This is the first paper—to the best of the author’s knowledge—that stresses the
role of injectivity for activation functions, which has received scant attention in literature but has great
incidence on the ANN performance. In this line, a characterization of injective activation functions
has been provided related to monotonic functions which satisfy the classical contractive condition
as a particular case of Lipschitz functions. A summary table on these is also provided, targeted at
documenting how to select the best activation function for each situation.

Keywords: artificial neural network; universal approximation; activation function; injectivity

1. Introduction

Forecasting is one of the greatest successes of human beings. This is the engine that
provides solid support in decision making (DM) by simulating a future range of possibilities
in order to anticipate potential problems and/or by designing tools that increase reliability
of predictions. Forecasting provides knowledge which grants an advantageous position
over competitors in many branches of science.

Some of the most widely used tools in Machine Learning (ML) are artificial neural
networks, or ANNs, whose mathematical origin is Hilbert’s 13th problem, where the
question of whether a continuous function of two variables could be decomposed into
continuous functions of one variable was asked. ANNs are successful in a large range of
problem areas whose baselines are classification/pattern recognition (i.e., to categorize
datasets) and regression (i.e., to find the expression of a function which generates a given
set of data), with important derivations to forecasting due to ANNs’ good learning abilities.
However, despite the fact that ANNs successfully solve the aforementioned tasks, there
is not much research devoted to supporting the reasons for this good behaviour with
mathematical arguments. This paper may be firstly encompassed within the trend devoted
to providing mathematical explanations to ANN performance. An example of this trend
is work regarding the Universal Approximation Theorem (UAT), which shows that any
continuous function on a compact set can be approximated by a fully connected neural
network with one hidden layer by using a nonpolynomial activation function. The originals
have evolved from these classic results (e.g., [1–3]) to more general extensions of authors
such as [4,5] or [6]. This attribute of ANNs being universal approximators of continuous
functions is precisely the quality that enables them to successfully solve forecasting tasks.

One of the objectives in the design of ANNs is to implement suitable modifications that
make ANNs absorb the defining features of each scenario as much as possible: we cannot
expect that the same ANN makes accurate predictions on electricity prices—electricity

Axioms 2022, 11, 80. https://doi.org/10.3390/axioms11020080 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11020080
https://doi.org/10.3390/axioms11020080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-0682-0678
https://doi.org/10.3390/axioms11020080
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11020080?type=check_update&version=2


Axioms 2022, 11, 80 2 of 18

cannot be stored—and on stocks of nonperishable products. In this line, this work joins the
significant proportion of ongoing ANN research devoted to enabling the design of new
types (e.g., flexible or “liquid”) and new fields of application (e.g., autonomous driving or
medical diagnosis) under the philosophy that greater knowledge of underlying structures
will result in higher capacity to modify ANNs to best fit the changing features of each
context. Indeed, several practical questions encountered benefit from altering the theoretical
structures of the model.

This work focuses on theoretical aspects of ANNs (known as “black boxes”). On one
hand, the mathematical foundations and the base algorithms have been deeply analysed
in order to make visible every stage of their internal components. The focal point is that,
although the efficiency of ANN models is subject to the quantity and quality of training
data, such visibility should allow us to influence their performance by modifying their inner
structures. On the other hand, a comprehensive analysis of features of some of the ANN
components has been undertaken to enable ANN users to better select them according
to needs.

The three parts that determine the behaviour of ANNs are: architecture (the number
and positioning of neurons/layers and the connection pattern between them), learning
algorithm (the iterative methodology for minimizing the error) and activation functions
(the element that provides the ANN nonlinear operation).

This paper is intended to unravel the last two components by providing mathematical
explanations for all those recommendations derived from practice that are widely accepted
as true without supporting reasons [7]. Specifically, the base algorithm that underlies most
of the ANN learning algorithms (Cauchy Descent [8–10], or Gradient Descendent Mini-
mum) has been mathematically decoded, and the implications of which are the required
features and the impact of activation functions in the training process. Moreover, a further
study of advantages and disadvantages of activation functions is performed. These are
decisive pieces in the success or failure of the ANNs, as we shall see when we explore their
determinant features regarding the applicability of the Universal Approximation Theorem.
Another reason to carry out this analysis is the enormous specific weight that the choice of
the activation function has on the training process. Particularly, significant new results to
identify those activation functions which undergo some usual failings are presented in this
paper (which are called gradient preserving activation functions, Definition 4, Proposition 3
and, overall, Theorem 4). Special mention should also be made to injectivity, a property
of activation functions with scant attention in the ANN literature and great incidence on
the ANN performance. In this line, a characterization of injective activation functions has
been provided in Theorem 7 related to monotonic functions which satisfy the classical
contractive condition as a particular case of Lipschitz functions.

A table which collects the key characteristics of mainly used activation functions is
also given. These contributions are targeted at documenting decisions in view of the lack
of consensus in literature on how to select the best activation function for each situation
(see [11]).

Even though there is extensive literature on works which deal with a specific facet
of neural networks from a mathematical standpoint (those related to the Universal Ap-
proximation Theorem, UAT, for instance), there are very few studies carried out under
a similar philosophy to that of this paper (i.e., mathematical analysis of neural network
foundations). With influences from the papers [12], where a mathematical formalization of
neural networks is provided aimed at “assisting the field of neural networks in maturing”
(sic), and [13], which provides mathematical explanations for basic algorithms on ANNs,
to the work [14], this work contributes to a recent trend of analysis which looks towards
the mathematical roots of ANNs.

The remainder of the paper is structured as follows: In Section 2, the mathematical
foundations of artificial neural networks are provided. Section 3 is devoted to the study of
each step that is taken in the most used learning algorithm (GDM), deriving some required
features for activation functions. A complete analysis of them is performed in Section 4,
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including their influence on the training process and the required features for the UAT to
hold. Section 5 studies the mathematics which underlie some ANN codes in accordance
with the results achieved in Section 3. Finally, the conclusions are stated in Section 6.

2. Mathematical Foundations

Artificial neural networks (ANN) are nonlinear mathematical tools intended for sim-
ulating human brain processing through simple units called artificial neurons arranged
in structures known as layers. They are widely used in many branches of science with
high potential in classification/pattern recognition or regression tasks. Similarly to the
human cognitive processes, their abilities include forecasting and learning operations. In
ANN contexts, learning is often referred to as training. Although there are several kind of
ANNs (recurrent, convolutional, etc.), this study focuses on feed-forward networks. The
most commonly used are multilayer neural networks, which mathematically are (acyclic)
directed graphs of layers, considering a “layer” as a parametrised function (whose parame-
ters often must be determined empirically) that applies to the inputs of the network (for the
first layer) or the outputs of a previous layer (otherwise) (see Definition 1). When viewed as
a graph (see Definition 2), each node of the ANN consists of an affine linear function such
that the combination of all layers gives back a new affine linear function. The nonlinearity
quality of ANNs arises from the activation function.

Specifically, for ANNs with just one layer (neuron), the input xt (that may be detailed
as a vector of features xt = (x1, . . . , xn)) is processed in the neuron through weights denoted
by wi, i = 1, . . . , n producing a z which finally results in the final output y through some
function ϕ, y = ϕ(z). The whole procedure is as follows:

• On one hand, z is the result of processing the n-inputs xi throughout the weights
(w1, . . . , wn):

z = (w1, . . . , wn) ·

 x1
...
xn

+ b = ∑n
i=1 wixi + b = wt · x + b (1)

or z = w · x + b by avoiding the notation for transpose, where b is called bias (the
bias b is an attempt to imitate the human filter which helps to fit the given data
to the real needs). This description shows this processing as an affine function
z = ∑n

i=1 wixi + b = w · x + b. The bias may be regarded as well as a weight b = w0
for an initial input x0 = 1, so the processing of inputs in a neuron may be seen also as
a linear function:

z = (b = w0, w1, . . . , wn) ·


x0 = 1

x1
...

xn

 = wt · x =
n

∑
i=0

wixi. (2)

We shall freely use both perspectives—affine (1) and linear (2)—depending on needs.
The processing of the n-inputs xi with result z is named the transfer function:

transfer function
∑n

i=0 or ∑n
i=1

x1
x2
...
xn

z = ∑n
i=0 wixi = w · x + b

Despite that the weighted sum operator ∑n
i is the most popular, many other alterna-

tives may be considered as transfer functions, depending on needs.
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• On the other hand, the function y = ϕ(z), which is responsible for the nonlinearity of
the whole process, is known as the activation function. This may be “freely” selected as
long as it meets certain requirements that we will see later.

Hence, each artificial neuron may be regarded as a mathematical function that results
in an output y by chaining both the transfer function (linear) and the activation function
(nonlinear) on the inputs xi, i = 1, . . . , n, y = ϕ(z = ∑n

i=0 wixi) = ϕ(z = w · x + b), see
Figure 1.

transfer function
z = ∑n

i=0 wixi

x1
x2
...
xn

z = w · x + b
activation
function ϕ

y = ϕ(z)

Figure 1. Single artificial neuron functioning.

For ANNs with more than one layer (MLP multilayer perceptron), let us consider
the previous process as a mathematical function on the inputs: y = F1(x1, . . . , xn)︸ ︷︷ ︸

x

=

ϕ(w1x + b1). The generalization for multilayers is simple: inputs entering a neuron become
outputs after adequate processing inside (mostly, a linear combination of inputs as seen),
which are sent as inputs to other neurons (the propagation of information from one layer to
the next is known as feed-forward). Mathematically,

Definition 1. A multilayer perceptron is a function F : Rn → Rm . It is an n–L–m-perceptron (n
inputs, L hidden layers and m outputs) if it is a function of the form

F(x) = ϕ( fL( fL−1(. . . f1(x)))), for xt = (x1, . . . , xn).

Particularly, for affine functions fi(x) = wix + bi, one has the linear multilayer perceptron:

F(x) = ϕ(wL . . . (w2(w1x + b1) + b2) . . . + bL)

for xt = (x1, . . . , xn), which applies a nonlinear function ϕ to the composition of n affine functions
wix + bi, i = 1, . . . , L.

The bias has a clear geometrical meaning derived from its role in affine transforma-
tions: it measures the distance between the origin and the boundary which separates the
input features.

From the viewpoint of Discrete Mathematics, an equivalent definition to Definition 1
of a multilayer perceptron is as follows:

Definition 2. A multilayer perceptron is a directed graph with the following properties: Each node
(neuron) i is associated with a state variable xi. Each connection between nodes i and j is associated
with a weight wj

i ∈ R. The value of the initial weight wj
0 is known as bias. Finally, for each node i

there exists a function (named the activation function) ϕ(1, x1, . . . , xn, wj
0, wj

1, . . . , wj
n). The value

of this function provides the new input for the node j.

3. Theoretical Learning Algorithm

This section is aimed at unravelling the gradient descent minimum method (GDM). It
is the most used methodological basis for ANN training since it significantly reduces the
number of required computational calculations [15]. In addition to knowing the detail of
the methodology by which the committed error is minimized to strengthen the capacity for
fine-tunings, the objective of this study is to derive the necessary requirements for ANN
key components, such as the activation functions.
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3.1. GDM: Gradient Descent Minimum or Cauchy Descendent

The gradient descent minimum algorithm (GDM) is a first-order procedure for com-
puting iteratively a local minimum of a differentiable function. To properly refer to this
result, it must be mentioned that it was simultaneously suggested by Cauchy [10] in 1847
(hence the name “Cauchy Descendent”) and developed in a similar manner by Hadamard
in 1907 [9]. A deeper analysis is attributed to Curry in 1944 [8]. In ANN literature, it is also
referred to as the “Taylor expansion approach” [15]. Let us first recall the main properties
of the gradient of a function of n-variables:

Theorem 1 (Gradient of a function). Let E : Rn → R be a differentiable function in the
neighbourhood of some point w = (w1, . . . , wn). Then, the gradient of E at w = (w1, . . . , wn),
denoted ∇E(w1, . . . , wn),

1. represents the slope of the tangent line to the function E at the point w;
2. points in the direction in which the function E most rapidly increases; thus, −∇E indicates

the direction of fastest decreasing;
3. is orthogonal to the level surfaces (generalization of the concept of a level curve for a function

of two variables) of E, i.e., those of the form E(w1, . . . , wn) = k for a constant k.

Then, the GDM algorithm (the most commonly used optimization algorithm for the
ANNs) is as follows:

Theorem 2 (GDM algorithm). Let E : Rn → R be a differentiable function. Thus, there exists a
local minimum which can be reached by iteratively updating according to the dynamical system{

w0 = w
wi+1 = wi − εi∇E(wi).

Proof. The aim is to update the minimum values of a given function E(w1, . . . , wn) in
order to reach a local minimum. For this, let us solve the equation E(w) = 0. An iterative
procedure should be to let the function E(w) indefinitely decrease until either it vanishes
or E(w) coincides with a minimum. GDM relies upon such methodology of iteratively
decreasing the function E(w) in the direction stated by −∇E(w) of fastest decreasing (see
Theorem 1).

Recall that, by definition of the first derivative of a single variable function,∇E(w) can
be approximated component-wise by approximating each of its partials as a single-variable
function wi:

∇E(w) = (
∂E(w)

∂w1
, . . . ,

∂E(w)

∂wn
) = (E′(w1), . . . , E′(wn)) ≈

≈ (limh→0
E(w1 + h)− E(w1)

h
, . . . , limh→0

E(wn + h)− E(wn)

h
).

By forgetting the coordinate-wise description, thus

∇E(w) = limh→0
E(w + h)− E(w)

h
⇒

∇E(w) ≈ E(w + h)− E(w)

h
⇒

E(w + h) ≈ E(w) + h∇E(w).
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Let us now consider a scale factor h in the direction of fastest decreasing, h = −ε∇E(w)
for ε non-negative and small enough (h→ 0). Thus, since both ε, (∇E(w))2 ≥ 0, by apply-
ing the general rule E(w + h) ≈ E(w) + h∇E(w) to the particular case of h = −ε∇E(w),
one has that

E(w− ε∇E(w)) ≈ E(w)− ε∇E(w)∇E(w) = E(w)− ε(∇E(w))2 ≤ E(w),

where the last inequality stems from the fact that ε(∇E(w))2 is strictly positive because
both factors are. That is, the function E takes smaller values E(w − ε∇E(w)) ≤ E(w)
for those inputs of the form w− ε∇E(w) as long as ε remains non-negative. Recall that
as before, these expressions have to be considered coordinate-wise. In the expression
E(w− ε∇E(w)) ≤ E(w), let us rename it as

E(w− ε∇E(w)︸ ︷︷ ︸
w1

) ≤ E( w︸︷︷︸
w0

),

In consequence, the sequence that updates the minimum values for a function E(w)
with initial value w0 is

wi+1 = wi − εi∇E(wi) (3)

for non-negative scale factors εi. Specifically, it is

w0 = w
w1 = w0 − ε0∇E(w0)
...

...
wi+1 = wi − εi∇E(wi).

Other variants of the gradient descent algorithm are the stochastic gradient descent,
AdaGrad and Adam, with the same structural storyline to minimize the error [16].

3.2. Training the ANN: Updating the Weights with GDM

The process of updating the weights and biases in order to minimize the error is
known as the back propagation (BP) algorithm [17]. In ML, the error function E(w) is also
called the cost or loss function and the scale factor ε is also known as the learning rate. In
overall terms, the error function measures the difference between the ANN outputs (y)
and the desired values (ŷ) according to several choices. One of them is Mean Square Error

MSE =
1
n ∑n

i=1(yi − ŷi)
2. In ANN literature, the Square Error is often used following the

formula SE =
1

2n ∑n
i=1(yi − ŷi)

2 for cancelling the constant when computing the gradient.

Other choices are Root Mean Square Error, RMSE=

√
1
n ∑n

i=1(yi − ŷi)2, Mean Bias Error, MBE

=
1
n ∑n

i=1(yi − ŷi) and Mean Absolute Error, MAE=
1
n ∑n

i=1 |yi − ŷi| (MAE ≤ RMSE.)
Let us detail now how to make use of the GDM algorithm in order to train the ANN

for minimizing the error function. To this end, let us consider as an error function E(w) the

Mean Square Error, MSE =
1
n ∑n

i=1(yi − ŷi)
2, which is a function of the weight coordinates

wi: since y(wi) = ϕ(∑n
i=0 wi · xi), thus

MSE =
1
n ∑n

i=1(y(wi)− ŷi)
2 =

1
n ∑n

i=1(ϕ(∑n
i=0 wi · xi)− ŷi)

2. (4)
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Let us apply the chain rule for any activation function ϕ. Thus, the partial derivative is:

∂

∂wi
MSE =

2
n
(y(wi)− ŷi)ϕ′(

n

∑
i=0

wi · xi︸ ︷︷ ︸z

) · xi =
2
n
(y(wi)− ŷi)ϕ′(z) · xi. (5)

That is,
∂

∂wi
MSE =

2
n
(y(wi)− ŷi)ϕ′(z) · xi, with resulting partial derivative

∂

∂wi
MSE

=
2
n
(y(wi)− ŷi) · xi for the particular case of the activation function ϕ being the identity

function I . As for the Square Error SE =
1
2 ∑n

i=1(yi − ŷi)
2, the resulting partial derivative

is equal to
∂

∂wi
SE = (y(wi)− ŷi)ϕ′(z) · xi, (6)

with expression
∂

∂wi
SE = (y(wi)− ŷi) · xi, for the particular case of activation function ϕ

equalling the identity function I . As we shall see in Section 5, the learning algorithms for
perceptrons result in particular cases of the above development for specific error functions.

The convergence of the method is ensured under suitable conditions on the error
function. For this, let us review the following definition:

Definition 3. A map f : R → R is called a Lipschitz function if there exists k ∈ R, k > 0
such that

| f (x)− f (y)| ≤ k|x− y|, ∀x, y ∈ R.

Particularly, when 0 ≤ k < 1, f is called a contraction.

The class of Lipschitz functions and, particularly, contractions are absolutely continu-
ous and, hence, differentiable almost everywhere. Recall also that a differentiable function
f is said to be k-smooth if its gradient ∇ f is Lipschitz continuous, that is, if there exists
k ∈ R, k > 0 such that

|∇ f (x)−∇ f (y)| ≤ k|x− y|, ∀x, y ∈ R.

Thus, the following theorem states conditions under the error function to assure
convergence:

Theorem 3 (Convergence of gradient [18]). Suppose the function E : Rn → R is convex,
differentiable and k-smooth. Then, if we run gradient descent for r iterations with a fixed step size

t ≤ 1
k

, it will yield a solution E(r) which satisfies

E(w(r))− E(w∗) ≤ |w
(0) − w∗|

2tr

where E(w∗) is the minimum value. That is, the gradient descent is guaranteed to converge.

4. The Role of the Activation Function: Required Features

The best known role of activation functions is to decide whether an input should be
activated or not by limiting the value of the output according to some threshold. They are
mainly used to introduce nonlinearity. It should be remembered that some of the main tasks
of ANNs are classification and pattern recognition. The nonlinearity of activation functions
responds thus to reality, where the majority of problems have nonlinear boundaries or
patterns. Another not-so-well-known role is their decision power in the success or failure
of the ANN, as we shall see when exploring their determinant features regarding the
applicability of the UAT. Additionally, the choice of the activation function has an important
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specific weight on the training process because it has a direct influence on the gradient
of the error function. This section is thus devoted to exploring these contingencies as
well as showing significant results that characterize/identify the best candidates for the
activation function.

4.1. Derived from the Theoretical Foundations of the Training Process: First Required Properties

From the previous developments (Theorem 2 and Equations (4)–(6)), the following
properties for activation functions may be derived:

Proposition 1 (Differentiability). Activation functions should be differentiable.

Proof. As seen in Theorem 2, the ANNs’ learning method involves computations with the
gradient of the error function which, in turn, requires the existence of the first derivative of
the activation function ϕ according to expressions (4)–(6):

MSE =
1
n ∑n

i=1(y(wi)− ŷi)
2 =

1
n ∑n

i=1(ϕ(∑n
i=0 wi · xi)− ŷi)

2.

Hence, the partial derivative involves ϕ′(z):

∂

∂wi
MSE =

2
n
(y(wi)− ŷi)ϕ′(

n

∑
i=0

wi · xi︸ ︷︷ ︸z

) · xi =
2
n
(y(wi)− ŷi)ϕ′(z) · xi

Figures 2 and 3 below show instances of activation functions ϕ (characteristic/step
and hyperbolic) in both contexts. The graph of the hyperbolic tangent y = ϕ(z) = tanh z =
ez − e−z

ez + e−z in Figure 3 shows the characteristic S-shape of differentiable activation functions.

The previous Theorem 2 makes known that back propagation is based on minimizing
the error by updating the weights at each iteration according to the Sequence (3). Hence, its
efficacy strongly relies upon the stability of the direction of ∇E(wi).

−1 1 2

−1

1

2

x

y

Figure 2. Step function (not differentiable).
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−2 −1 1 2 3

−2

−1

1

2

3

y = tanh x

x

y

Figure 3. Hyperbolic function (differentiable).

From Equation (5), it is clear that ϕ′(z) is a factor of ∇E(wi), and the same occurs
with other choices of error according to the chain rule. Thus, the stability of ∇E(wi) is
conditioned by the behaviour of the first derivative of the activation function ϕ. Functions
with such a good behaviour are called as follows:

Definition 4 (Gradient preserving functions). Activation functions which preserve the direction
of the gradient vector according to Theorem 2, Equations (3) and (5) are called gradient preserving
functions (GP).

Increasing monotonicity is highly recommended in practical guides on programming
ANNs as a desired property of activation functions. Apart from ANNs’ impact on the UAT
(see Section 4.3), the next proposition provides the first mathematical explanation.

Proposition 2 (Monotonically increasing/decreasing). Monotonic functions are gradient pre-
serving.

Proof. From Equation (5) of the BP algorithm for the MSE Error, ϕ′(z) is a factor of∇E(wi).

Component-wise, that is
∂

∂wi
MSE =

2
n
(y(wi)− ŷi)ϕ′(z) · xi. Monotonicity of ϕ(z) assures

that ϕ′(z) is either positive or negative ∀z. Hence, they are gradient preserving.

Remark 1. Differentiability almost everywhere. Differentiability of the activation function is not
compulsory in the whole domain but only partially—as long as activation is gradient preserving.
Thus, differentiability almost everywhere (i.e., to be differentiable at every point outside a set of
Lebesgue measure zero) can replace differentiability as a weaker condition onto activation functions.
As we shall see later (see Theorem 4), Lipschitz functions—used in designing ANN with applications
in inverse problems—enjoy such a property.

Moreover, every monotonic function (increasing or decreasing) defined on an open interval
(a, b) is differentiable almost everywhere on (a, b) by the Vitali covering theorem. This is (yet)
another quality of monotonic activation functions that explains why they are highly used as a
guarantee of ANN success.
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Remark 2. Tips from practical use. Convergence of the GDM method (Theorem 3) at a low
computational cost (activation functions have to be computed millions of times in deep neural
networks) highly recommends that activation functions satisfy other properties such as boundedness.
While a great deal of research aimed at ensuring the stability of learning processes proposes to bound
the variables (input normalization or standardization, procedures which scale the data to a range
more appropriate to be processed by the ANN), some authors [11] claim the significance of using
bounded activation functions in order to avoid instability. These authors proposed abounded family
of well-known activation functions with results of Bounded ReLU and Bounded Leaky ReLU. Odd
symmetries (called in ML zero-centred)—such as sigmoids—are also preferred in the ANN practical
guides (see [19], for instance) since “they are more likely to produce outputs which are inputs to the
next layer that are on average close to zero” [19].

4.2. Influence of Activation Functions on the Training Process

As mentioned, for the nature of the Sequence (3) in Theorem 2, it is clear that the
effectiveness of updating the weights will depend on whether the direction of ∇E remains
stable. Otherwise, the convergence of the GDM could be compromised or it could even
be achieved at a high computational cost if the process slows down. In ANN literature,
this is known as the vanishing gradient problem, or VGP. Instability in the convergence of the
learning method would appear if, after r iterations in the BP algorithm, the gradient vector
tended to the zero vector, denoted by

lim
r→∞
∇rE(wi) =

−→
0 .

Additionally, by interpreting the first derivative as a rate of change,
∂E(w)

∂wi
→ 0 after

r iterations implies that the velocity of error tends to diminish and may end.
The following developments are intended to identify gradient preserving activation

functions. The following proposition includes in its proof detailed information on the back
propagation procedure in order to obtain conditions on the activation functions. It is also
intended to introduce the next main theorems (and shorten proofs):

Proposition 3. Let ϕ : R → R be a differentiable function such that 0 < ϕ′(z) ≤ 1, ∀z ∈
Dom (ϕ) ⊆ R. Then, ϕ is a contraction that satisfies 0 < ϕ(z) < z, ∀z ∈ Dom (ϕ) ⊆ R.

Proof. First, note that the first statement is equivalent to either 0 < ϕ′(z) < 1 ∀z ∈
Dom (ϕ) ⊆ R or ϕ = I . First, we prove that

0 < ϕ′(z) < 1 ∀z ∈ Dom (ϕ) ⊆ R]⇒ 0 < ϕ(z) < z, ∀z ∈ Dom (ϕ) ⊆ R.

By Equation (5),

∇E(w) =
(∂E(w)

∂w1
, . . . ,

∂E(w)

∂wn

)
=

=

(
2
n
(y(w1)− ŷ1)ϕ′(∑n

i=0 wixi) · x1, . . . ,
2
n
(y(wn)− ŷn)ϕ′(∑n

i=0 wixi) · xn

)

=

(
2
n
(y(w1)− ŷ1)ϕ′(z) · x1, . . . ,

2
n
(y(wn)− ŷn)ϕ′(z) · xn

)
=

=
2
n

ϕ′(z)((y(w1)− ŷ1) · x1, . . . , (y(wn)− ŷn) · xn).
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Hence, after r iterations of the BP algorithm (corresponding to an ANN with r layers),

∇rE(w) =

(
2
n

)r
(ϕ′(z))r

(
(y(w1)− ŷ1) · x1, . . . , (y(wn)− ŷn) · xn

)r
=

=

(
2
n

)r
(ϕ′(∑n

i=0 wixi))
r
(
(y(w1)− ŷ1) · x1, . . . , (y(wn)− ŷn) · xn

)r
,

where (−, . . . ,−)r denotes the resulting vector after r iterations. According to the property
limr→∞ ar = 0 for potential functions ar such that 0 < a < 1, the factor (ϕ′(z))r in
∇rE(w) verifies (

ϕ′(z)
)r → 0 if 0 < ϕ′(z) < 1.

The Riemann integral preserves inequalities; hence, the inequality holds with respect
to z: ∫

0dz <
∫

ϕ′(z)dz <
∫

1dz⇒ 0 < ϕ(z) < z, ∀z ∈ Dom (ϕ).

Let us remember that, however, differentiation does not preserve inequalities. In
order to prove that ϕ is a contraction (see Definition 3) we refer to the Lagrange mean
value theorem. Thus, as ϕ is continuous over [a, b] and differentiable over (a, b) (since it is
differentiable on R),

ϕ(b)− ϕ(a) = ϕ′(c)(b− a), c ∈ (a, b).

Then, |ϕ(b)− ϕ(a)| = |ϕ′(c)(b− a)| = |ϕ′(c)︸ ︷︷ ︸
k

| · |b− a| ≤ k · |b− a|, where k = ϕ′(c) < 1.

Hence, ϕ is a contraction.

This in-depth study of ANN structures and properties of the activation functions
shall lead us to useful characterizations of those with better behaviour regarding GDM
(gradient preserving functions according to Definition 4). The next theorems thus gather
this information.

Theorem 4. For any nonconstant monotonically increasing function ϕ : R → R, the following
statements are equivalent:

1. ϕ′(z) ≤ 1, ∀z ∈ Dom (ϕ) ⊆ R.
2. ϕ is a contraction.

Proof. First, let us note that, according to Remark 1, both monotonically increasing and
contraction mappings are differentiable almost everywhere. In addition, note that to be
a nonconstant monotonically increasing function on ϕ is equivalent to ϕ′(z) > 0, since
ϕ′(z) = 0 implies ϕ(z) is constant.

The implication 1.⇒ 2. has been shown in the previous Proposition 3.
Let us prove the converse 2.⇒ 1. For this, we use the definition of the first derivative:

ϕ′(z) = lim
z→a

ϕ(z)− ϕ(a)
z− a

≤ lim
z→a

|ϕ(z)− ϕ(a)|
z− a

≤= lim
z→a

k|z− a|
z− a

≤= k lim
z→a

|z− a|
z− a

where

lim
z→a

|z− a|
z− a

=

{
1 for right-handed lateral limit z→ a+

−1 for left-handed lateral limit z→ a−

Hence, ϕ′(z) ≤ k(±1) < k < 1 since ϕ is a contraction. Thus ϕ′(z) ≤ 1⇒

⇒
{

ϕ′(z) < 1 or
ϕ′(z) = 1⇔ ϕ = I
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Theorem 4 is used in its contrapositive form: while contractions and related mappings
which satisfy the classical contractive condition are not gradient preserving, Lipschitz func-
tions are. Specifically, the next theorem provides a characterization of gradient preserving
activation functions (as Lipschitz but not contractive):

Theorem 5 (Characterization of gradient preserving activation functions). For any differen-
tiable nonconstant function ϕ : R→ R, the following are equivalent:

(i) ϕ is gradient preserving.
(ii) ∃ k ∈ R, k > 1 such that ϕ′(z) ≤ k.
(iii) ϕ is a Lipschitz function of constant k.

Proof. (ii) ⇒ (iii) Let us suppose that ∃ k ∈ R, k > 0 such that ϕ′(z) ≤ k and consider
|ϕ(z)− ϕ(a)|. According to the Lagrange mean value theorem,

|ϕ(z)− ϕ(a)| = |ϕ′(c)(b− a)| = |ϕ′(c)||b− a| ≤ k|b− a| ⇒

ϕ is a Lipschitz function of constant k. Conversely, for z 6= a, consider

ϕ′(z) ≤ |ϕ′(z)| = |ϕ(z)− ϕ(a)|
|z− a| ≤ k|z− a|

|z− a| = k⇒ ii)

4.3. Influence of Activation Functions on Applicability of Universal Approximation Theorem:
Injectivity

In this section, we explore the properties of activation functions with regard to ANNs
as universal approximators of continuous functions. Amongst the different formulations of
the classical Universal Approximation Theorem (e.g., [1–3]), we select the one from [20],
where the activation function has been identified with the whole neural network, thereby
stressing its importance:

Theorem 6 (UAT, [20]). For any ε > 0 and continuous function f on a compact subset K ⊂ Rn,
there is a neural network with activation function ϕ with a single hidden layer containing a finite
number n of neurons that, under mild assumptions on the activation function, can approximate
f, i.e.,

|| f − ϕ||∞ = supx∈K| f (x)− ϕ(x)| < ε.

Since then, several approaches have been provided by addressing extensions for larger
ANN architecture (e.g., multiple layers or multiple neurons).

We shall focus on injectivity as the desired property for activation functions because it
plays a key role regarding the following issues: Firstly, injectivity is determinant for those
ANNs which require inversion on their range. That means that, given a neural network
(from Definition 1, this is of the form F : Rn → Rm), the map

F−1 : F(Rn) ⊆ Rm → Rn

is well-defined only when F is injective. In such contexts, such as reconstruction problems—
image retrieval, for instance—it is compulsory that multiple outputs (F(x) = F(y)) come
from a unique input, x = y. Secondly, injectivity has key implications on the universal
approximator capabilities of ANNs. Thirdly, injectivity (and more) over an activation
function may imply stability in the GDM learning algorithm through the strict monotonicity
which may be derived from injectivity (see Theorem 7).

Regarding the first issue, the following proposition shows that the ANN inherits
injectivity if the activation function is injective:
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Proposition 4. Let F : Rn → Rm be a multilayer perceptron as given in Definition 1. The
activation function ϕ is injective⇒ F is injective .

Proof. According to Definition 1, the multilayer perceptron F : Rn → Rm is

F(x) = ϕ(wL . . . (w2(w1x + b1) + b2) . . . + bL).

Hence, F is a composition of injective maps, since affine functions are. By consequence, F
is injective.

Let us address the second issue (UAT). To ensure that the Universal Approximation
Theorem holds for some architecture of ANNs, there are some specifications on the activa-
tion function to be met: to be a nonconstant function, nonpolynomial, bounded within a
range of values (see also Remark 2) continuous on their domain, continuously differentiable
at least one point and monotonically increasing. Importantly, while monotonicity of acti-
vation functions, either increasing or decreasing, reinforces the convergence of the GDM
algorithm, only increasing monotonicity is required for activation functions regarding
the UAT.

As for injectivity regarding the UAT, we refer to work [21], where a particular case of
continuous activation functions ϕ are introduced, those which satisfy any of the following
equivalent conditions: ϕ is injective and has no fixed points⇔ either ϕ(z) > z or ϕ(z) < z
holds for every z ∈ Dom(ϕ). In that paper, it is shown that activation functions which
satisfy one of the previous equivalent conditions allow us to ensure that a kind of neural
network (with a particular architecture) meets the UAT.

As for the third issue, the following theorem is a characterization of injectivity (and
more) in terms of strict monotonicity, thereby providing a further mathematical explanation
of the level of importance given in the practical use of ANNs to increasing/decreasing
activation functions (apart from being gradient preserving; see Section 4.1, Theorem 2 and
Section 4.2):

Theorem 7 (Characterization of injectivity with no fixed points). Let ϕ : R → R be any
real-valued function. Thus, the following statements are equivalent:

(i) ϕ is strictly monotonic.
(ii) ϕ is injective with no fixed points.

Proof. (i) ⇒ (ii) Let ϕ be a strictly monotonic function, either increasing or decreasing.
Let us show that it is injective. For this, let us suppose that ϕ(x) = ϕ(y) and x 6= y. Thus,
there are two options: x > y or y > x. In the first case, the monotonicity of the function
implies that ϕ(x) > ϕ(y) if increasing or ϕ(x) < ϕ(y) if decreasing. Similarly, for the
second case, we also reach a contradiction. Thus, x = y. Note that strictness does not allow
the existence of fixed points. Conversely, let ϕ be injective with no fixed points and suppose
that x < y. Thus, regarding ϕ(x) and ϕ(y), they cannot be equal (ϕ(x) = ϕ(y) ⇒ x = y).
In consequence, either ϕ(x) < ϕ(y) or ϕ(x) > ϕ(y). That concludes the proof.

Remark 3. By combining the previous Theorem 7 with the stated result of [21] and the well-known
characterization of monotonicity in terms of the sign of the first derivative, strictly monotonic
activation functions (easily identifiable by checking the sign of their first derivatives) characterize
the UAT for a particular type of ANNs.

4.4. Mainly Used Activation Functions

There are several categorizations of activation functions. Instead of stressing the
criteria of classification, we shall display the most commonly used together with their main
properties (see Table 1). Following [22], we shall focus on “fixed-shape activation functions”
which are activation functions with no hyperparameters to be altered during the training.
These are divided into classic activation functions (step, sigmoidal and hyperbolic tangent)
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and those which belong to the family of ReLU functions (the function ReLU was firstly
introduced by [23]; see also [24] for an empirical proof that the ReLu function improves the
learning process).

Table 1. Mainly used activation functions and their properties.

Name Mathematical Expression Properties
D

is
cr

et
e

Step function
(or threshold)

binaryϕ(z) =
{

1, z ≥ 0
0, z < 0

bipolarϕ(z) =
{

1, z ≥ 0
−1, z < 0

• Not differentiable
at the joint point
• Bounded: range Step = {0, 1}
• Bounded: range Bipolar = {−1, 1}

ReLU
(Rectified
Linear Unit)

ϕ(z) = max{0, z} =

=

{
z, z > 0
0, z ≤ 0

• Not differentiable
at the joint point z = 0

• ϕ′(z) =
{

1 z > 0
0 z ≤ 0

• Not bounded
• Not zero-centred
• GP

Leaky ReLU ϕ(z) =
{

z, z > 0
0, 01z, z ≤ 0

• Not differentiable
at the joint point z = 0

• ϕ′(z) =
{

1 z > 0
0, 01 z ≤ 0

• Not bounded
• Zero-centred
• GP (positive part)
• No GP (negative part)

C
on

ti
nu

ou
s

Sigmoidal ϕ(z) =
ez

1 + ez

• Differentiable

• ϕ′(z) =
ez

(ez + 1)2 > 0

• Monotonically increasing
• Bounded: range= (0,1)
• Not zero-centered
• No GP

Hyperbolic
tangent ϕ(z) = tanh z =

ez − e−z

ez + e−z

• Differentiable

• ϕ′(z) =
1

cosh2z
> 0

• Monotonically increasing
• Bounded: range= (-1,1)
• Zero-centred
• No GP

5. Practical Learning Algorithm

As is known, perceptrons are artificial neural networks consisting of one single neu-
ron and two layers, input and output. This also refers to simple computational models
consisting solely of a neuron. They are fruitful in contexts where there are only two dif-
ferent features to be disassociated. That is, as linear classification models, they are able to
accurately classify as long as the classes are linearly separable (i.e., the set of features may
be divided by a line, plane or hyperplane). In this section, we shall see how the practical
algorithm of the perceptron works in complete concordance with the theoretical results
exposed throughout the paper.
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The practical training ANN code is:

• n represents the time step (days, weeks, etc.)
• In the 0th step, consider the input vector x(0) (and its classification, so d(0)) and the

weights vector w(0).
• Compute z(0) = w(0)tx(0).
• Compute y(0) = sgn[w(0)tx(0)].
• Compare y(0) with d(0). Update in consequence the weight w(1) (if necessary) for

the next step.
• With the same input in the next time step x(1), repeat all.
• Stop when there are no x(n) wrongly classified.

Let us suppose that there are the two classes, 1 and 2, that are are linearly separable.
Then, there exists a vector of weights w such that it meets the following expressions:
wt(n)x(n) ≥ 0 for each input vector x that belongs to class 1 and wt(n)x(n) < 0 for
each input vector x that belongs to class 2. Given the training subsets X1 and X2 (with
vectors x1(n), x2(n), n = 0, 1, . . . which belong to the two different classes, respectively), the
training problem of the elementary (two-layer) perceptron is then to find a vector of weights
w(n) that satisfies the previous two inequalities. Note that the line, plane or hyperplane
wt(n)x(n) linearly separates the inputs when it is ≥ 0 or < 0.

The functioning of this practical algorithm is:

• If the nth element of the training vector x(n) (we knew in advance what class x(n)
belonged to) is accurately classified by the vector of weights w(n) calculated in the
nth iteration of the algorithm, no rectification of the perceptron weight vector is
performed, i.e.,

when x(n) belongs to class 1 and the output wt(n)x(n) ≥ 0 ⇒ w(n + 1) = w(n)
when x(n) belongs to class 2 and the output wt(n)x(n) < 0 ⇒ w(n + 1) = w(n)

• Otherwise (when the training vector x(n) is wrongly classified), the weight vector of
the perceptron is updated according to the following rule:

w(n + 1) = w(n)− η(n)[y(n)− d(n)]x(n)

for [y(n)− d(n)] equal to a sign: positive if the outcome y(n) and the desired result are
equal (and, hence, the classification has been well performed) and negative otherwise:

w(n + 1) = w(n)− η(n)x(n) if wt(n)x(n) ≥ 0 when x(n) belongs to class 2 and
w(n + 1) = w(n) + η(n)x(n) if wt(n)x(n) < 0 when x(n) belongs to class 1.

The learning algorithm is as follows:

• Variables and parameters:

x(n) = [−1, x1(n), x2(n), ..., xp(n)] is the vector of inputs
w(n) = [b(n), w1(n), w2(n), ..., wp(n)] is the vector of weights
b(n) = bias (threshold)
y(n) = current answer
d(n) = desired answer
η(n) = learning rate, 0 < η(n) < 1

The stages of the learning algorithm are:

1. Step 1: initialization
We make w(0) = 0, and the following calculations are carried out in the instants of
time n = 1, 2, . . .

2. Step 2: activation
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The perceptron is activated throughout x(n) and d(n) as follows:

d(n) =

{
+1, if x(n) is in class 1
−1, if x(n) is in class 2

i.e., the desired response d(n) expresses whether the classification of x(n) is well
performed.

3. Step 3: calculation of the current answer (output)
The current response of the perceptron is computed:

y(n) = sgn[wt(n)x(n)] =

{
+1, if wt(n)x(n) ≥ 0 (i.e., x(n) belongs to class 1)
−1, if wt(n)x(n) < 0 (i.e., x(n) belongs to class 2)

4. Step 4: adaptation of the weight vector

w(n + 1) = w(n) + η(n)[d(n)− y(n)]x(n)

Let us remember that d(n) and y(n) are equal when the classification is well performed.
In the affirmative case, d(n)− y(n) = 0 and w(n + 1) = w(n), as stated before.

5. Step 5: Increase n by one and go back to step 2.

Note that the expression

w(n + 1) = w(n)− η(n)[y(n)− d(n)]x(n)

(wi+1 = wi − εi(y(wi)− ŷi) · xi)

corrresponds to the general sequence (3) wi+1 = wi − εi∇E(wi) in Theorem 2 for the SSE
error (6)

∇iE(wi) =
∂

∂wi
SE(wi) = (y(wi)− ŷi) · xi,

and the particular activation function ϕ is I .

6. Conclusions

Artificial Neural Networks are very successful tools in a wide range of problems in-
volving classification/pattern recognition, regression or forecasting. The core of this success
is the quality of ANNs being universal approximators of continuous functions (UAT), a line
of research that began in 1989 and that reappears today to provide mathematical arguments
in response to the good performance of the ANNs.

This paper is intended for supporting with mathematical arguments all those recom-
mendations derived from ANN practical usage that are widely accepted. This is the case,
for instance, with those useful tips that are usually exchanged in the context of network-
ing software, which is mainly based on the exhibited behaviour in practice of the ANN
components (e.g., zero-centred, differentiable, computationally inexpensive and “good
performance as for the GDM”, which are the most commonly recommended properties
for activation functions). In this work, through an in-depth study of ANN structures and
properties of activation functions, useful characterizations of those with better behaviour
are provided. Alongside such analysis, a list of required properties of activation functions
has been built: to be a nonconstant function, to be a nonpolynomial, to be bounded within
a range of values, to be odd symmetrical, to be differentiable, to be continuously differen-
tiable at at least one point, to be differentiable almost everywhere, to be monotonic either
increasing or decreasing and to be Lipschitz.
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In addition, injectivity is a quality less known than those stated previously but with
strong implications regarding the potential performance of ANNs. Moreover, to be injective
with no fixed points has significant effects. For the enhancement of the stability of the
training method, it has been also proved that while Lipschitz functions are good choices,
contractions must be avoided to guarantee good behaviour in preserving the direction of
the gradient vector.

In the future, this list of specifications will be supplemented by the requirements on
the activation functions in the field of real-life application.
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