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A B S T R A C T   

Stain variation between images is a main issue in the analysis of histological images. These color variations, 
produced by different staining protocols and scanners in each laboratory, hamper the performance of computer- 
aided diagnosis (CAD) systems that are usually unable to generalize to unseen color distributions. Blind color 
deconvolution techniques separate multi-stained images into single stained bands that can then be used to reduce 
the generalization error of CAD systems through stain color normalization and/or stain color augmentation. In 
this work, we present a Bayesian modeling and inference blind color deconvolution framework based on the K- 
Singular Value Decomposition algorithm. Two possible inference procedures, variational and empirical Bayes are 
presented. Both provide the automatic estimation of the stain color matrix, stain concentrations and all model 
parameters. The proposed framework is tested on stain separation, image normalization, stain color augmen
tation, and classification problems.   

1. Introduction 

The analysis of Whole-Slide Images (WSI), i.e., digitalized histolog
ical slides of tissue sections, is a crucial step towards the development of 
Computer Aided Diagnosis (CAD) systems. The tissues in a WSI are 
stained with different dyes to make their structure visible under the 
microscope. Hematoxylin-Eosin (H&E) is the most common combina
tion, highlighting cell nuclei in blue color and cytoplasm and connective 
tissue in pink, respectively (Fischer et al., 2008). However, the color 
distribution of H&E WSI is affected by the staining and scanning pro
cedures (Tosta et al., 2019b), resulting in inter- and intra- laboratory 
color variations. These variations hamper the performance of CAD sys
tems, which are usually unable to generalize to unseen color distribu
tions. The different approaches proposed to minimize the influence of 
color variation on CAD systems can be categorized into three groups: 
Blind Color Deconvolution (BCD), Color Normalization (CN) and Stain 
Color Augmentation (SCA). Let us review the most important contri
butions in each of these groups. 

1.1. Blind color deconvolution 

BCD techniques deal with color variation by estimating the image 
specific stain color-vectors and stain concentrations. The pioneer 
approach by Ruifrok and Johnston (2001) experimentally obtained a 
standard color vector matrix that is still used today. More recent 
methods tackle inter-slide variations by using different techniques. The 
use of Non-Negative Matrix Factorization (NMF) was proposed by 
Rabinovich et al. (2004), Vahadane et al. (2016); Xu et al. (2015) added 
regularization and sparsity terms which encapsulate the assumption that 
a type of stain is only bound to certain structures. In Tosta et al. (2019a) 
the sparsity parameter was estimated using a fuzzy set method. Inde
pendent Component Analysis (ICA) was utilized in Trahearn et al. 
(2015) and extended in Alsubaie et al. (2016, 2017) by applying ICA in 
the wavelet domain where the independence condition among sources is 
relaxed. The use of Singular Value Decomposition (SVD) was proposed 
in Macenko and Niethammer (2009) to separate H&E channels. In 
McCann and Majumdar (2014), the authors take into account the 
interaction between dyes. The method in Macenko and Niethammer 
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(2009) was revised in Astola (2016), where the author states that better 
results are obtained by applying it in the linearly inverted RGB-space 
instead of the (logarithmically inverted) absorbency space. Clustering 
was utilized in Gavrilovic et al. (2013) using the Maxwellian chromacity 
plane to obtain the stain vectors. Vicory et al. (2015) used K-means and a 
prior on the stain vectors to prevent misclustering when the amount of 
each stain is not balanced. In Khan et al. (2014), images are segmented 
into background and pixels belonging to each stain using supervised 
relevant vector machines. The color-vector for each stain is then defined 
as the mean of the pixels in each class. The work in Zheng et al. (2019) 
includes the deconvolution by Ruifrok as starting point and optimizes 
the color-vector and concentration values using a prior knowledge based 
objective function. Recently, a three-step method using Gabor kernels, 
structure segmentation and a final deconvolution step has been pre
sented in Salvi et al. (2020). 

Several Bayesian approaches have already been presented. In 
Hidalgo-Gavira et al. (2018), a similarity prior on the color-vectors as 
well as a smoothness Simultaneous Autoregressive (SAR) prior model on 
each stain concentration were used. This work was extended with the 
use of a TV prior in Pérez-Bueno et al. (2020) and with the use of sparse 
general Super Gaussian priors on the high-pass filtered concentrations in 
Pérez-Bueno et al. (2021). 

Despite the Deep Learning popularity, few works have used it for 
BCD. Based on Macenko and Niethammer (2009), the work in Duggal 
et al. (2017) implements a stain deconvolution layer for CNNs to provide 
a stain separated input to CNN-classifiers. Similarly, Zheng et al. (2021) 
use a Capsule Network that produces multiple stain separation candi
dates using 1 by 1 convolution operators and finally assembles the 
output based on a sparse constraint. 

All BCD techniques have in common that they separate color from 
structural information, offering a strong control on the information 
preprocessing. They can preserve the tissue structure and lead to high 
fidelity to the original images. Often, BCD methods are presented as CN 
methods since the obtained results can be used for CN (by normalizing 
each stain separately), but this is only one of the possible solutions BCD 
offers to deal with color variation. 

1.2. Color normalization 

CN aims to reduce the stain variation by matching the color in the 
images to a selected template or reference. Direct CN methods do not 
necessary estimate the concentrations and color vector matrix as BCD 
methods do. In Tosta et al. (2019b), they are classified into histogram 
matching, color transfer, and spectral matching. The first one adjusts 
image colors using histogram information (Reinhard et al., 2001), a 
common solution for general images. However, this is not appropriate 
for histological images as it ignores the local information and the un
equally distribution of the stains. This work was further developed with 
three fuzzy normalization steps and adapted to histopathological images 
in Vijh et al. (2021). Color transfer methods assume that stain concen
tration is closely related to tissue structure and usually include region or 
dye segmentation. The latest color transfer methods, based on deep 
generative models (Janowczyk et al., 2017; Zanjani et al., 2018; Ben
taieb and Hamarneh, 2018), perform CN without a previous color 
deconvolution by formulating the problem as a style transfer task where 
the style is the color distribution of a selected laboratory. Recently, other 
popular CNN architectures have been adapted to CN problems, such as 
Pix2pix (Salehi and Chalechale, 2020), disentangled representations 
(Xiang et al., 2020), CycleGAN (Runz et al., 2021) or Invertible Neural 
Networks (Lan et al., 2021). Since they require large datasets to train the 
networks that transform to an specific stain distribution, usually, they 
cannot handle intra-laboratory variations. Spectral matching methods 
typically perform BCD as a first step to CN. In Tosta et al. (2019b)), most 
of the BCD methods mentioned in the previous section are reviewed as 
CN methods. The normalization is usually performed by replacing the 
stain color vectors obtained using BCD by the reference color vectors, 

often obtained from a template image (Vahadane et al., 2016; Vicory 
et al., 2015; Zheng et al., 2019). Different approaches are used to adjust 
the concentration intensity of both source and target images. In 
Macenko and Niethammer (2009) each concentration intensity is scaled 
by using the 99th percentile to compute a robust estimation of the 
maximum. In Vicory et al. (2015) the median of the concentrations is 
used while in Zheng et al. (2019) the parameters normalizing the in
tensities are estimated jointly with the stain color vectors. Recently, 
Hoque et al. (2021) presented a multiscale Retinex model, that estimates 
and corrects the reflectance and illumination map for pixels of both 
stains separately. 

1.3. Stain color augmentation 

Data augmentation is a popular solution to reduce generalization 
error on CNN-based classifiers (Zheng et al., 2021). In contrast to BCD 
and CN, which aim to avoid the unseen stain distribution by eliminating 
the color variation, the augmentation approach aims to simulate unseen 
data by producing realistic variations of the available data. Although for 
histological images, morphological, generative (Wei et al., 2020; Zhu 
et al., 2017), and color augmentation techniques can be used (Tellez 
et al., 2019; Mpinda et al., 2020), in this study, we will focus on the 
latter to study the effect of color augmentation on classification in 
comparison to BCD and CN techniques. Color augmentation techniques 
do not modify the image morphological features and only generate color 
variations. In Liu et al. (2017) common computer vision perturbations of 
brightness, contrast and hue are used. Furthermore, an specific histo
logical stain color augmentation (SCA) technique was recently proposed 
in Tellez et al. (2018) where the method in Ruifrok and Johnston (2001) 
is applied to obtain the H&E concentration and variations of the 
observed data are created. In Tellez et al. (2019), several SCA and CN 
methods were evaluated on classification tasks with CNN. Additionally, 
a new CNN based CN method is proposed which is trained on SCA data. 

1.4. Contributions 

In the recent years, the field of BCD has received few contributions as 
CN approaches using Deep Learning usually avoid this step. However, 
BCD has some advantages for histological image analysis that should not 
be ignored. Its structure preserving properties, interpretability by doc
tors, and potential for classification purposes make this a field of interest 
for new works. The use of Bayesian models for BCD has been hardly 
explored and previous contributions are dependant on a similarity prior 
on the color-vectors. The choice of a reference color-vector matrix used 
for that prior, becomes a problem when working with images from 
different laboratories. Finally, BCD is required for the recently proposed 
SCA, which has been only compared to CN in Tellez et al. (2019). SCA 
and BCD have never been directly compared. For those reasons, in this 
work we propose a novel Bayesian K-SVD approach to perform BCD of 
histological images. K-SVD (Aharon et al., 2006) is a popular greedy 
algorithm for dictionary learning and sparse representation of signals. In 
BCD of histological images, the dictionary and the sparse representation 
will be the stain color vectors and the stain concentrations, respectively 
(Vahadane et al., 2016). However, K-SVD has two mayor drawbacks that 
need to be addressed for its use in BCD, the lack of uncertainty in the 
estimation procedure and the need to know in advance the number of 
non-zero components in the signal. The Bayesian K-SVD model (Serra 
et al., 2017) we adapt in this paper to BCD tackles these problems 
allowing its use for BCD of histological images. Using the obtained stain 
concentrations and color-vectors, our method can be utilized for CN and 
SCA. Our contributions are summarized as follows: 

• Proposal of a new BCD framework that is able to preserve histolog
ical structures, with two possible inference approaches: variational 
and empirical Bayes. 
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• Unsupervised estimation of the stain concentrations and color 
properties.  

• Automatic estimation of all model parameters.  
• Stain specific data augmentation using the stain concentrations and 

color-vector matrix.  
• Performance evaluation on large histological datasets with intra- an 

inter-laboratory variations. 
• Analysis of classification performance when using normalized im

ages or stain concentrations. 

The proposed method is tested on a set of experiments designed to 
cover the main tasks of digital histopathology. 

The paper is organized as follows. In Section 2 we present the 
mathematical formulation of the BCD problem. In Section 3, this prob
lem is cast into the hierarchical Bayesian paradigm and inference is 
carried out to estimate the stain concentrations and color-vectors as well 
as all model parameters. Using Empirical Bayes, in Section 4 we modify 
the inference already presented in Section 3 to increase the sparsity of 
the obtained solution. Section 5 adapts the proposed methods to its 
application in massive WSI. Section 6 describes the utilized images and 
methods. The effectiveness of the proposed framework is experimentally 
assessed in Section 6, where the proposed methods are compared to 
classical and state-of-the-art alternatives. Finally, Section 8 concludes 
the paper. 

2. Problem formulation 

Each WSI is stored as an M × N × 3 RGB intensity image which is 
rearranged into the matrix I ∈ R3×Q, Q = MN, where each value icq ∈ I 
represents the transmitted light across the slide for pixel q and channel c. 
Diagnosis protocols use the contribution of each stain to this value, that 
is, its absorbency or optical density (OD). The OD corresponding to in
tensity icq, ycq ∈ Y, is defined as ycq = − log10(icq∕i0cq), where i0cq denotes 
the incident light. The monochromatic Beer-Lambert law establishes 
that a slide Y stained with Ns stains follows the equation 

Y = MC + N, (1)  

where M = [m1,⋯ ,mNs ] ∈ R3×Ns is the normalized stains’ specific color- 
vector matrix; C ∈ RNs×Q is the stain concentration matrix, its qth col
umn, cq = [c1,q,…, cns ,q]

T, represents the contribution of each stain to the 
qth pixel value in Y; and, finally, N ∈ R3×Q is a random matrix with i.i.d. 
zero-mean Gaussian components with unknown variance β− 1. Each 
column, ms, in matrix M is assumed to be a unit ℓ2-norm stain color- 
vector containing the relative RGB color composition of the corre
sponding stain in the OD space. 

Notice that each column yq can be represented as a linear combi
nation of the color vectors weighted by the corresponding concentra
tions, that is, yq =

∑Ns
s=1csqms + nq. Hematoxylin is a basic stain that dyes 

basophilic structures, namely nuclei, while eosin is an acidic stain that 
fixes to cytoplasm and other structures, usually referred to as eosino
philic. Although the actual color of biological structures will be influ
enced by both stains, they will present structure-specific color properties 
(Vahadane et al., 2016 (effective stains) that are the basis of differential 
staining. Therefore, we can assume that most pixels in the image are 
stained by a single effective stain (Vahadane et al., 2016), making our 
stain concentration matrix sparse, in other words, most of the weights, 
csq ∈ cq, in this linear combination are expected to be zero (or very 
small). We would like to find not only the sparse coefficients of these 
linear combinations, but at the same time, also estimate the color vectors 
ms which result in the best, most sparse, solution. This dual estimation 
can clearly be understood as a dictionary learning problem. Notice that 
we estimate the effective stains that allow to sparsely separate biological 
structures. 

The original problem of finding an exactly sparse solution mini

mizing the number of non-zero elements in each cq (i.e., minimizing 
‖cq‖0, ∀ q),1 is known to be NP-hard, see (Babacan et al., 2010), for 
example. The true solution can be approximated with greedy methods 
(e.g, the popular K-SVD Aharon et al., 2006 method). Alternatively, the 
sparsity constraint on the concentration vectors can be relaxed by using 
the ℓ1-norm instead. Formally, we can formulate this problem as 

min
M,C

‖ Y − MC‖
2
F

s.t. ‖ cq‖1 ≤ T, ∀q,
(2)  

where ‖ ⋅ ‖F and ‖ ⋅ ‖1 denote the Frobenius and ℓ1-norms respectively, 
and T is nonnegative real parameter that determines the degree of reg
ularization. The main advantage of this relaxation is that convex opti
mization techniques can be used to solve this problem (e.g., Aharon 
et al., 2006; Mairal et al., 2009; Zhou et al., 2009). 

The novel Bayesian framework we propose solves the histological 
color deconvolution as an ℓ1 dictionary learning problem, following the 
method introduced in Serra et al. (2017), automatically estimating the 
optimal color-vector matrix M, the posterior distribution of C consid
ering the uncertainty of the coefficients, along with all model parame
ters. The next section gives detailed intuition on the modeling and 
inference of the proposed method, albeit not a full derivation. We 
encourage the interested reader to consult A for further explanation. 

3. Bayesian Model and Inference 

Our Bayesian model for solving the dictionary learning problem in 
(2) relies on defining suitable probability distributions on the observa
tions Y and on the set of unknowns {β, M, C}. The observation model in 
(1) described above corresponds to the isometric Gaussian distribution 
on Y given by 

p(Y|β,M,C)∝β
3Q
2 exp

(

−
β
2
‖ Y − MC ‖

2
F

)

. (3)  

The obvious choice for the noise precision, β, since it is a positive-valued 
variable, is a gamma distribution, thus, p(β) = Γ(β∣aβ, bβ) with aβ, bβ > 0. 
Our modeling for the stain vector matrix M focuses on imposing unit 
norm for each column ms; for this purpose we use a flat prior on the 
columns of M such that p(ms) = const., if ‖ms‖ = 1, 0 otherwise, and 
assume independent column vectors. Finally, notice that the sparsity 
constraint on the coefficient vectors cq in (2) is equivalent to imposing a 
zero-mean Laplace distribution with scale parameter λq > 0, p(cq)∝ 
exp() −

̅̅̅̅̅
λq

√
‖ cq‖1). The Laplace prior is more peaked than the normal 

distribution with longer tails, which is also interesting for structure 
preserving (Babacan et al., 2012). Unfortunately, the non-conjugacy of 
this distribution with the likelihood in 3 makes inference intractable. We 
circumvent this problem by using a two-tiered hierarchical prior on cq 
instead. First, we impose a zero-mean normal distribution with diagonal 
covariance matrix Γq = diag(γq), i.e., cq ∼ N (cq

⃒
⃒0Ns ,Γq). And secondly, 

we use the Gamma hyperpriors on the positive-valued γsq given by γsq ~ 
Γ(1, λq∕2) and assume independence yet again, so that p(γq) =

∏
sp(γsq). 

This two-tier prior can be further expanded with a third prior on the 
scale parameters λq, however, although it gives more flexibility to the 
model, in practice does not turn into noticeable estimation improve
ment. The idea behind this hierarchical prior is to sample the covariance 
matrix of the normal distribution p(cq∣γq) from a Gamma distribution 
with shape 1 and variable scale (an exponential distribution). The 
samples produced using this scheme follow a Laplace distribution, 
which can be shown by marginalization of γq, i.e., 

∫
p(cq∣γq)p(γq∣λq)dγq ~ 

Laplace(cq∣λq). 
In order to estimate the whole set of unknowns, Θ, that includes the 

1 ‖ ⋅ ‖0 denotes the ℓ0-(pseudo)norm, which counts the number of non-zero 
elements in a vector. 
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noise precision, the color-vector matrix and the coefficient matrix along 
with the corresponding hyperparameters, Θ = {β, M, C, Γ, λ} with Γ =

{γq}
Q
q=1 and λ = {λq}

Q
q=1, we make use of Bayesian inference. The exact 

calculation of the true posterior p(Θ∣Y) = p(Y, Θ)∕p(Y), with joint 
distribution 

p(Y,Θ) = p(Y|β,M,C)p(β)p(M)p(C|Γ)p(Γ|λ), (4)  

cannot be done analytically since it requires the marginal p(Y) =
∫

p(Y, 
Θ)dΘ which is intractable. We use variational inference to approximate 
the true posterior, which requires the assumption of simplifications on 
the form of the posterior. These simplifications should render the 
inference tractable, while at the same time ensure that the model is 
flexible enough to closely approximate the true posterior distribution. 
Concretely, we will assume that our approximate posterior q(Θ) fac
torizes as q(Θ) = q(β)q(Γ)q(λ)q(C)

∏
sq(ms), which is referred to as 

mean-field factorization in the literature, see (Bishop, 2006). Notice, 
however, that we do not make any assumption on the individual dis
tributions of each random variable; this will be determined by the 
inference procedure. The optimal solution is found by minimizing the 
Kullback-Leibler divergence between the approximate q(Θ) and true 
posterior p(Θ∣Y). This optimization has a well-known optimum given by 

logq(θi) = 〈log p(Y,Θ) 〉Θ⧹θi
+ const., (5)  

where 〈⋅〉Θ⧹θi 
denotes the expectation taken w.r.t. all approximating 

variables θj ∈ Θ, with j ‡ i. In the case of degenerate distributions q(θi), 
this calculation simplifies to finding the maximum w.r.t. θi of the same 
expectation as in 5. Notice that this implies that we will not find a proper 
distribution for θi, but only its mean with zero variance. We will assume 
degenerate posterior distributions on M, Γ and λ, which will simplify the 
calculation of the expectations w.r.t. these random variables since 
〈f(θi)〉θi

= f(θ̂i), where θ̂i := 〈θi〉θi
. In contrast, we will obtain full dis

tributions for the noise precision and the stain concentration sparse 
vectors. 

After careful derivation using (5) on C, (Serra et al., 2017) for the 
details, we find that each cq follows a Gaussian distribution with mean 
and covariance matrix given by 

ĉq = β̂Σcq M̂
T
yq, (6)  

Σcq =
(

β̂M̂
T

M̂ + Γ̂
− 1
q

)− 1
. (7)  

We can now find the optimal estimations for the associated hyper
parameters of the hierarchical prior γq and λq by maximization of the 
right-hand side of (5) as described above, obtaining 

γ̂ sq = −
1

2λ̂q
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

4λ̂
2
q

+
ĉ2

sq + Σcq (s, s)

λ̂q

√
√
√
√ , (8)  

λ̂q =
2Ns

∑Ns
s=1 γ̂ sq

. (9)  

It is interesting to study the effect of the uncertainty on the estimates of 
csq given by Σcq (s, s) in 8. As our uncertainty in the estimation grows, so 
will γsq, which models the variance of csq, and, therefore, it will increase 
the uncertainty on this parameter. 

The optimal ms ∈ M can be found assuming column independence 
and degenerate approximate posteriors q(ms) on a point on the unit 
sphere, ‖ms‖ = 1. Following the inference procedure described above, 
we have 

m̂s∝

[

Y −
∑

i∕=s

m̂ i ĉi,:

]

ĉT
s,: −

∑

i∕=s

∑

q
σisq m̂i, (10)  

where σisq denotes Σcq (i, s) and defines the influence of the uncertainty of 
the estimation of the coefficient vectors. The actual estimate of ms is 
obtained by normalizing (10). 

Finally, applying (5) for β results in a gamma-distributed posterior 
with mean given by 

β̂ =
3Q + 2aβ

‖ Y − M̂Ĉ‖
2
F +

∑Q
q=1tr(M̂

T
M̂Σcq ) + 2bβ

. (11)  

Once more, note here how the uncertainty in the estimation of the co
efficient vectors cq given by Σcq impacts the estimation of the noise 
precision, resulting in lower precision (higher variance) when this un
certainties grow. 

The procedure to obtain the estimated M̂ and Ĉ using the above 
presented modeling and inference is summarized in Algorithm 1. 

Algorithm 1. Pseudocode for BKSVD BCD algorithm.  

INPUT: Observed image I, initial normalized M , no. stains Ns.  
OUTPUT: Estimated stain color-vector matrix, M̂, and concentrations, Ĉ,  
1: Obtain the OD image Y from I and set m̂s = ms , Σcs = 0, Ĉ = M +Y, with M + the 

Moore-Penrose pseudo-inverse of M and Γ = 1  
2: while Ĉ has not converged do  
3: for q in 1, …, Q do 
4: Update λ̂q using (9)  
5: Update γ̂sq using (8), for all s in 1, …, Ns  

6: Update Σcq and ĉq using (7) and (6), respectively 7: end for  
8: for s in 1, …, Ns do 
9: Update m̂s using (10)  
10: end do 
11: Update β̂ using (11)  
12: end while 
13: return M̂ and Ĉ    

4. Sequential inference for sparse Bayesian models 

The previous section introduced a mathematically sound inference 
procedure. However, the sparse values in the columns cq are not guar
anteed to be zero. Since most of the pixels in the image should be stained 
only by one stain, higher sparsity is desired. To increase the sparsity of 
the obtained solution we use Empirical Bayes (Tipping and Faul, 2003; 
Babacan et al., 2010; Serra et al., 2017) to obtain a new inference pro
cedure. This approach was first presented in (Tipping and Faul, 2003) 
for Sparse Bayesian Learning (SBL) and later in (Babacan et al., 2010) 
and (Serra et al., 2017) for recovery of sparse signals. In this paper, we 
introduce the necessary adaptation for the application to histological 
blind color deconvolution. 

In particular, for each cq, we use a constructive approach for iden
tifying the locations where it takes non-zero values, i.e., its support. At 
these non-zero locations, we use Maximum A Posteriori (MAP) estima
tion to obtain the values of the hyperparameters. Therefore, sparsity 
makes the effective problem dimensions to be drastically reduced. The 
estimated values of the columns cq in its support are obtained using 6. 

The main idea behind this inference scheme consists on replacing the 
variational inference of hyperparameters γq with direct maximization of 
the (log) marginal likelihood 

L (γq) = log
[

p(γq

⃒
⃒
⃒λ̂q)

∫

p(yq

⃒
⃒
⃒cq, β̂)p(cq

⃒
⃒γq)dcq

]

, (12)  

where p(yq

⃒
⃒
⃒cq, β̂) = N (yq

⃒
⃒
⃒M̂cq, β̂

− 1
I), following the observation model, 

and M̂, β̂ and λ̂q are estimated as shown in Sec. 3. The marginal likeli
hood L (γq) has interesting properties that allow for a highly efficient 
maximization thereof. Concretely, its functional form allows us to 
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separate the contribution of a single γsq so that L (γq) = L ({γiq}i∕=s)+

l(γsq). A closed form solution of the maximization of L (γq), when only 
its s-th component is changed, can be found by holding the other 
hyperparameters fixed, taking its derivative with respect to γsq and 
setting it equal to zero. Note that this derivative will be different from 
zero only for l(γsq). Analysis of l(γsq) (see A) shows that the marginal 
likelihood has a unique maximum w.r.t. γsq and allows us to efficiently 
estimate the increase in log-likelihood that changing this parameter will 
introduce. 

The Empirical Bayesian K-SVD (EBKSVD) in Algorithm 2 is initial
ized by including only one color vector, the one that produces the 
highest increase in log-likelihood, and the corresponding γsq; the 
remaining {γiq}i∕=s are set to 0. At each iteration of the algorithm we will 
be able to add a new color vector, and its corresponding γsq, to our 
current model if the previous value of the γsq that produces the greatest 
increase of L (γq) was zero; we will remove the element from the model 
if the optimal value of γsq is 0; or, finally, reestimate (update) γsq if ms 
was already part of the model. In all three cases we are able to make 
incremental changes to the model structure while guaranteeing an in
crease of log-likelihood. Finally, the updates for cq and Σq will be done 
using only the γsq included in the model, which will guarantee the 
sparsity of this inference method. See details in A. 

Algorithm 2. Pseudocode for Empirical BKSVD BCD algorithm.  

INPUT: Observed image I, initial normalized M , no. stains Ns.  
OUTPUT: Estimated stain color-vector matrix, M̂, and concentrations, Ĉ,  
1: Obtain the OD image Y from I and set m̂s = ms , Σcs = 0, Ĉ = M +Y, with M + the 

Moore-Penrose pseudo-inverse of M , Γ = 0, and λ = 0  
2: while Ĉ has not converged do  
3: for q in 1, …, Q do 
4: Choose a s ∈ {1, …, ns} (or equivalently choose a γsq) 
5: Find the optimal value of γ̂sq using (A.9)  
6: Update Σcq and ĉq using (7) and (6), respectively  
7: Update gsq and hsq using (A.12) and (A.14), respectively, for all s in 1, …, Ns 

8: Update λ̂q using (9)  
9: end for 
10: for s in 1, …, Ns do 
11: Update m̂S using (10)  
12: end for 
13: Update β̂ using (11)  
14: end while 
15 return M̂ and Ĉ   

To conclude this section, let us briefly compare the variational and 
empirical approaches. As previously discussed, the variational inference 
in Section 3 achieves a softer sparsity, where the concentrations will 
include residual non-zero values. The combination of residual and non- 
sparse values might influence the final estimation of M̂. The empirical 
approach reduces this effect by calculating only the values where cq 
takes non-zero values. Empirical Bayes is usually used to reduce the 
computational burden of Bayesian methods, as the calculation of the 
covariance matrix in (7) require to calculate the inverse matrix at each 
step and might be expensive for big matrices. Note that this is not the 
case for BCD of histological images, where the number of stains is usu
ally Ns = 2 and the inversion of 2 × 2 matrices is not costly. Although 
the computational saving is reduced, the additional sparsity induced by 
the empirical method is useful in the estimation of M, as we will make 
clear in the following sections. 

5. Application of Bayesian K-SVD for WSI analysis 

Bayesian methods are usually computationally expensive as they 
require to take into account the uncertainties of the coefficients at each 
element in the image. While previous applications as denoising or 
inpainting (Serra et al., 2017) were carried out on small 256 × 256 
grayscale images (64Kpixels), its application to blind color 

deconvolution problem is hindered by the massive size of WSI images. 
WSIs are RGB images in the Gigapixels order which makes their pro
cessing challenging. Therefore, it is extremely necessary to introduce 
additional adaptations that make the BKSVD and EBKSVD more suitable 
for WSI images. 

First, during training and reconstruction of the histological images, 
the highest computational cost is the computation of the sparse repre
sentation of the concentrations for each pixel. However, the reduced 
amount of stains suggests that it is not required to use all WSI pixels to 
learn M̂. We here reformulate (1) as 

YB = MCB + NB, (13)  

where YB is a representative subset of the pixels in Y and CB its associated 
concentration matrix. To find the representative set of pixels, we first 
look at those that can be discarded. Large background areas are typically 
removed upon patching for most applications. However background 
pixels can also appear on lumens or tissue borders. Since those low 
stained pixels do not provide information on the stain’s color, following 
Vahadane et al. (2016), we can remove them for the estimation of M. 
The optical density of those pixels is close to zero making it easy to filter 
them. The removal of low stained pixels accelerates the procedure of 
estimating M̂ and eliminates the influence of background pixels. 

Despite considering only tissue pixels, usually there are still too 
many pixels for practical application of the algorithms. WSI images often 
include several resolutions. While using the smaller images obtained at 
lower magnifications could be tempting, we should avoid them in the 
estimation of M. Pixels values at lower resolutions, when interpolated 
linearly, are a weighted average of a set of pixels at a higher resolution. 
Note, however, that this average takes place in the RGB space. Then, 
obtaining the OD image requires the use of the non-linear logarithmic 
transformation. As the logarithm is a concave function, for a single pixel 
at a lower resolution, we have for non-negative weights {τq} in a 
neighborhood that add up to one 

y = − log

(
∑

q
τq

iq

i0

)

≤ −
∑

q
τqlog

(
iq

i0

)

= −
∑

q
τq(Mcq) (14)  

where iq = [i1, . . . , iN] are the high resolution pixels contributing to the 
averaged pixel. Although the linearity in the RGB space is not preserved 
in OD, we can expect the assumption that most pixels are stained by a 
single stain to be less satisfied as resolution decreases. Therefore, as the 
proposed methods are based on the sparsity assumption, it is preferred to 
extract a subset of pixels from the WSI at the higher magnification 
available, typically 40 × . 

Therefore we need find another method to reduce the amount of 
pixels to be considered. Patching is the most common way of dealing 
with the massive size of WSIs during preprocessing or classification. This 
approach allows to take into account local tissue structures, which are 
important for WSI interpretation. However, it is not a suitable solution 
for obtaining M̂ as local tissue structures may not correctly represent 
both stains. Note that the proposed framework assumes that each pixel 
stain’s concentrations are independent, thus eliminating spatial con
strains. This modeling allows us to select individual pixels in the image, 
independently of their neighbors. Therefore, we can obtain a represen
tative subset YB within the image using an uniform random sampling of 
the stained pixels. This allows, on the one side, to accurately sample the 
whole WSI the image and, on the other, dramatically to reduce the 
number of pixels used to estimate the stain-color matrix M. 

For a given subset YB, the color vector matrix M̂ can be estimated 
using BKSVD or EBKSVD in Alg. 1 and Alg. 2, respectively. To avoid 
overfitting to a given subset YB, once the chosen method converges, a 
new batch of pixels YB is selected and the estimation procedure is 
repeated until the matrix M̂ converges. Notice that we do not use 
complete epochs as our objective is to ensure that the obtained M̂ 
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faithfully represents the colors in the WSI without using all pixels in the 
image. 

Once the color vectors of the image are estimated using YB, we still 
need to obtain the stain concentrations C for the whole image. We could 
consider to execute Alg. 1 or Alg. 2 for the whole image keeping ̂M fixed. 
However, this still requires to iterate in order to estimate the model 
parameters and concentrations at each pixel, which is time prohibitive 
for the whole image. Then, assuming that M̂ is an accurate estimation of 
M, the final values of the concentrations, Ĉ, for the whole image will be 

computed as Ĉ = M̂
+

Y (Ruifrok and Johnston, 2001; Alsubaie et al., 

2017), with ̂M
+

the Moore-Penrose pseudo-inverse of ̂M. Note that, for a 
fixed M̂, this is also the minimum squared error estimator of C from (1). 

Finally, the described multibatch procedure is summarized in Algo
rithm 3. 

Algorithm 3. Multibatch Bayesian KSVD.  

INPUT: Observed image I, initial normalized M , no. stains Ns, batch size B.  
OUTPUT Estimated stain color-vector matrix, M̂, and concentrations, Ĉ,  
1: Obtain the OD image Y from I 
2: Remove low stained pixels from Y 
3: while M̂ has not converged do  
4: Sample a batch YB of B stained pixels from Y. 
5: Estimate M̂ using BKSVD or EBKSVD  
6: end while 

7: return M̂ and Ĉ = M̂
+

Y    

6. Materials and methods 

To assess its quality, the proposed BKSVD and EBKSVD were 
compared to the following methods frequently used in the literature: the 
classical non-blind CD method by Ruifrok and Johnston (2001) and the 
BCD methods by Macenko and Niethammer (2009), Vahadane et al. 
(2016), Alsubaie et al. (2017), Hidalgo-Gavira et al. (2020), 
Pérez-Bueno et al. (2020), and Zheng et al. (2019). They will be denoted 
by RUI, MAC, VAH, ALS, HID, PER, and ZHE, respectively. All experi
ments in the following sections were conducted using the multibatch 
Bayesian K-SVD2 in Alg. 3 with Ns = 2. As initial color-vector matrix, we 
used the standard H&E vectors proposed by Ruifrok and Johnston 
(2001). The proposed method was run until the criterion ‖ M(n) −

M(n− 1)‖
2
F < 5 × 10− 3 was met. Algorithms 1 and 2 were run until the 

criterion ‖ 〈cs〉(n) − 〈cs〉(n− 1)‖2∕ ‖ 〈cs〉(n)‖2 < 10− 4 was met by both 
stains. All model parameters are automatically estimated. Using the 
obtained M̂ and Ĉ it is possible to perform CN and SCA. Further details 
are provided in the following experimental section. 

To test the performance and robustness of our algorithm in different 
scenarios related to digital histopathology (i.e., stain separation quality, 
color normalization, and stain color augmentation for cancer classifi
cation), we have selected data containing a variety of histopathological 
images from several types of tissue and laboratories. In this section we 
describe the details of the databases used in this paper. 

6.1. Warwick stain separation benchmark (WSSB) 

WSSB dataset (Alsubaie et al., 2017) contains 24 H&E stained images 
of different tissues (breast, colon, and lung) from different laboratories 
which have been captured with different microscopes. For each image, 
its ground truth stain color-vector matrix, MGT, was manually obtained 
by expert pathologists as follows. The experts selected a set of pixels for 

each stain, based on biological structures: nuclei for hematoxylin and 
cytoplasm for eosin. Then, the median value of each set of pixels with a 
single stain was used as a measure of the corresponding stain 
color-vector. Ground truth concentrations were obtained in Alsubaie 
et al. (2017) from the ground-truth color-vector matrix as 

CGT = M+
GT Y. (15)  

From those ground-truth concentrations and color-vectors, a separate 
RGB image for each stain is obtained. This database will be used for BCD 
evaluation. 

6.2. CAMELYON17 

This database is part of the CAMELYON17 challenge (Bándi et al. 
(2019) for breast cancer metastasis detection in the lymph node sec
tions. We will use it in CN and classification experiments including the 
use of SCA. 

CAMELYON17 contains a total of 1000 WSIs from 5 medical centers. 
Only the training set, which contains 500 WSIs, was used since the an
notations for the test WSIs are not available yet. The dataset comprises 
20 patients per center and 5 slides per patient. Cancer regions were 
annotated by pathologists only on 50 WSIs, but the stage label: negative, 
isolated tumor cells (ITC), micrometastasis (Micro), macrometastasis 
(Macro), is available for all the slides in the training set. See Table 1 for 
details. 

Following Zheng et al. (2019) the experiments on this dataset were 
performed using non-overlapping 224 × 224 pixel patches, with at least 
a 70% of tissue, sampled from each WSI. 

6. Experimental results 

We have carried out a set of experiments to evaluate the performance 
of the proposed framework on the most common histological color 
deconvolution related tasks: stain separation, image normalization, and 
CNN-based classification, where we include the use of SCA. 

First, we evaluate the influence of the pixel batch size on the pro
posed methods. Then we assess the quality of the concentration and 
color-vector matrices obtained by the BCD algorithms. In a third 
experiment, we analyze the quality of the CN obtained by the algorithms 
when the color-vectors are substituted by those of a reference-image, 
keeping the concentration values. Finally, the deconvolved, normal
ized, and SCA images are evaluated on a histological classification 
scenario. 

6.1. Influence of the batch size in the color vector estimation 

The use of pixel sampling introduced in Section 5 requires to assess 
the influence of the pixel batch size on the similarity of the obtained 
color vector matrix M̂P (obtained using P pixels) to the M̂all obtained 
using all non-white pixels and the execution time required for the esti
mation. Unfortunately, it is not possible to use complete WSIs in this 
experiment due to the computational burden, therefore we use three 
different images of typical sizes 500 × 500, 2000 × 2000 and 
4000 × 4000 pixels and batch sizes from 50 to 1.6 ⋅ 107 pixels. Algo
rithm 3, using both BKSVD and EBKSVD, was run 5 times for each 
different batch size up to 2 ⋅ 104 pixels and only once for bigger ones. 

Table 1 
CAMELYON17 dataset labeling structure.    

Stage label 

Subset WSI total Negative ITC Micro Macro 

Whole training set  500  318  36  59  87 
Annotated  50  0  16  17  17 
Not annotated  450  318  20  42  70  

2 The code used in the experiments will be made available at https://github. 
com/vipgugr upon acceptance of the paper. 
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. Table 2 summarizes the mean number of batches, iterations, time 
per iteration and total time required by Alg. 3 on the three images tested 
when a different batch sizes are used. Analogous figures for Alg. 1 and 
Alg. 2 using the whole image are also reported. For both BKSVD and 
EBKSVD, the number of batches and the total number of iterations 
required to estimate M̂P decrease with the size of the batch P. The time 
per iteration grows with P reaching unaffordable values for higher 
values of P, which supports the idea of working with smaller batches. 
EBKSVD consumes more time, both with a larger number of iterations 
required to converge and a higher time per iteration. The times required 
by Alg. 1 and Alg. 2 are usually higher than those needed by Alg. 3, even 
when a large batch size is used. Although the tested images are far from 
the Gigapixel size of a WSI, the total time required to estimate the color 
vector matrix using the full images shows the importance of the adap
tation introduced in Section 5 for the use of Bayesian methods on the 
BCD problem for histological images. 

Furthermore, the comparison plotted in Fig. 1, depicting the time 
and convergence ratio for the different images and batch size, shows that 
the execution time grows linearly with P while the difference between 
M̂P and M̂all quickly converges to zero. Note that using only a batch size 
of 50 pixels we achieve a difference in norm of less than 0.05 in most 
cases. The EBKSVD method, plotted in dashed lines, requires a lower 
amount of pixels to converge but also requires more time since it needs 
to find the location of non-zero elements in each step. Using a batch size 
of 1000 pixels ensures an accurate estimation, with low variance and an 
affordable computational burden. Note that the time needed by EBKSVD 
grows significantly faster for batch sizes above 1000 pixels. The BKSVD 
method is significantly faster but requires more pixels to reach the same 
output as using the whole image. According to the three images tested 
and the above mentioned criteria, a batch size of 4000 pixels is the best 
choice for this method. 

Note that both EBKSVD and BKSVD provide an accurate estimation 
with a batch size of 1000 and 4000 pixels, respectively, for all the image 
sizes tested. The results plotted in Fig. 1 suggest that these batch sizes 
will also provide an accurate estimation of M for larger images in a 
similar time, making Alg. 3 an scalable solution for obtaining ̂M in WSIs. 
As a consequence, for the rest of the experiments in this paper, the batch 
size was fixed to 1000 pixels for EBKSVD and 4000 pixels for BKSVD. 

6.2. BCD stain separation 

To evaluate the fidelity of the H&E separation obtained by the 
different BCD methods, we use the WSSB database (introduced in Sec
tion 6). A ground truth separation from WSSB is shown in Fig. 2(a). 
Figs. 2(b)–2(j) contain the separated images obtained by different BCD 
methods. RUI obtains highly contrasted images, but the fixed color 
vectors are far from those of the ground truth in Fig. 2(a). Some nuclei 
are moved from the H to the E channel. MAC results are closer to the 
ground truth but the eosin channel still presents residual information 
from the nuclei. ALS creates artifacts in the flat zones of the H channel 

and over-saturates the colors. HID obtains colors slightly more saturated 
than the ground truth and smooths some details. ZHE colors seem unreal 
and it tends to mix the information of both channels with nuclei clearly 
appearing in the E channel and cytoplasm in the H channel. The pro
posed EBKSVD and BKSVD, VAH, as well as PER produce colors very 
similar to the ground truth separation in Fig. 2(a). VAH obtains very 
similar colors with high differentiation between bands but some infor
mation is lost in the H channel, apparently moved to the E channel (see, 
for instance, the right side of the H channel and the center-left side of the 
E channel in Fig. 2(d)). PER obtains a very good stain separation, 
although the E color is slightly more reddish than the ground truth. This 
is due to the prior on the color matrix. It imposes similarity to a reference 
color vector matrix manually selected for each tissue type. The proposed 
EBKSVD and BKSVD produce sharp edges, and automatically estimate 
the color vector matrix without manually selecting a reference. EBKSVD 
obtains a better mean estimation for the eosin and hematoxylin chan
nels, while BKSVD obtains a slightly darker eosin and a bluish hema
toxylin color. Both methods obtain richer details, and a stain separation 
closer to the ground truth than the competing methods. 

The quantitative comparison, based on the Peak Signal to Noise Ratio 
(PSNR) and Structural Similarity (SSIM), is presented in Table 3. The 
proposed BKSVD outperforms the rest of methods obtaining a higher 
mean PSNR (+2.69 dB in H and +2.66 dB in E) and a higher SSIM than 
the closest competitor (PER). The proposed EBKSVD obtains the second 
best mean performance just behind BKSVD, and is able to obtain better 
values for some tissue types (i.e., lung tissue). For SSIM, both BKSVD and 
EBKSVD methods are close and the best choice depends on the tissue 
type. 

The obtained results indicate that the proposed EBKSVD and BKSVD 
correctly separate the structural information in the image for all tested 
tissue types. BKSVD obtains the best estimation in mean, mainly due to 
its higher performance in the colon images. Since colon images are ob
tained at a lower magnification (20 ×), this suggests that BKSVD per
forms better than EBKSVD when a lower magnification is used, that is 
when a lower sparsity is expected. This is consistent with the results 
obtained in Serra et al. (2017) where the performance of the EBKSVD is 
affected by a lower sparsity. 

In both cases, the high quality stain separation obtained by the 
proposed methods guarantees the fidelity to the tissue in CN and SCA 
transformations detailed in the following sections. 

6.2.1. Time comparison 
One important issue with BCD methods is that the required time to 

perform deconvolution needs to be low enough for practical use. Fig. 3 
shows the time needed by each BCD method vs. PSNR for the WSSB 
dataset. The RUI method is the fastest since no color estimation is per
formed. The computational time increases with the complexity of the 
method. The proposed BKSVD method outperforms the rest obtaining a 
significantly higher PSNR while requiring a similar time to HID and VAH 
methods. EBKSVD obtains the second highest mean PSNR but requires a 
higher computational time to obtain the sparser solution. Note that the 

Table 2 
Mean values required to estimate M̂P and M̂all using Alg. 3.  

BKSVD batch size in pixels full images  

50 100 300 500 1000 2000 4000 104 2 ⋅ 104 105 2 ⋅ 105 4 ⋅ 106 16 ⋅ 106 

no. batches 9.8  10  7.3  7.2  5.3  4.7  4.2  4.1 4.3  4.3 1 1 1 
no. total iter. 97.34  80.07  43.87  41.53  31.20  29.07  27.87  27.34 27.6  27.67 18 13 17 
time/iter. (s) 0.09  0.11  0.14  0.15  0.17  0.20  0.24  0.34 0.52  1.88 2.78 34.08 268.80 
total time 8.68  8.86  6.00  6.05  5.37  5.86  6.8  9.31 14.47  52.09 50.06 443.06 4569.60 
EBKSVD batch size in pixels full images  

50  100  300  500  1000  2000  4000  104 2 ⋅ 104  105 2 ⋅ 105 4 ⋅ 106 16 ⋅ 106 

no. batches 9.3  8.7  7.8  8  5.3  5.5  5.4  5.2 4.8  3.7 1 1 1 
no. total iter. 154.47  135.27  109.33  98.73  85.00  79.13  76.2  67.8 49.4  43.00 34 8 15 
time/iter. (s) 0.10  0.13  0.17  0.21  0.27  0.43  0.77  2.02 3.99  19.75 38.23 431.01 2338.30 
total time 15.95  18.03  18.65  20.33  22.83  33.91  58.78  136.99 197.27  849.37 1300.15 3448.11 35,074.50  
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proposed EBKSVD and BKSVD methods are scalable, requiring a similar 
time for larger images (see Section 6.1). 

6.3. Color normalization 

This section compares the color distribution in the original data and 
the CN obtained by the competing methods. CN is the most extended 
procedure to deal with stain color variations because CNN based CAD 
systems usually work with the observed RGB image. CN aims to reduce 
the impact of color variations on those systems. With the use of BCD, CN 
can be easily achieved as an additional step, as the stain color infor
mation and stain concentrations are separated and can be modified 
independently. CN based on BCD ensures fidelity to the image struc
tures, while reducing color variations. Following Vahadane et al. (2016) 
we normalize an input image to a reference image using 

Ŷ
norm

=
∑ns

s=1
m̂s

ref ĉnorm
s,: , (16)  

where 

ĉnorm
s,: = ĉs,:

P99(ĉs,:
ref
)

P99(ĉs,:)
, (17)  

and m̂s
ref and ĉs

ref are the color vectors and concentrations obtained 
from the reference image. P99(⋅) represents the pseudo-maximum at 
99%. Note that the color vectors m̂s are replaced by m̂ref

s corresponding 
to the reference image, and the dynamic range of ̂cs is corrected to be the 
same as that of ĉs

ref . Therefore, Ŷ
norm 

is the normalized OD image and 
the normalized RGB image is obtained as Î

norm
= exp( − Ŷ

norm
). 

Fig. 1. Top: Mean time required to obtain the dictionary for the proposed methods. Bottom: Difference between the obtained dictionary M̂P with a batch size P and 
the dictionary M̂all obtained using all pixels for the BKSVD (left) and EBKSVD (right) methods. 

Fig. 2. a) Ground truth separated E-only (left) and H-only (right) images from a Breast image of the WSSB dataset in Alsubaie et al. (2017) and results for the b)-h) 
competing and i-j) proposed methods. 
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To measure the quality of the CN, we used the normalized median 
intensity (NMI) (Basavanhally and Madabhushi, 2013), defined as 

NMI(I) = median(u)∕P95(u), (18)  

where I denotes a WSI and u is a vector where each component ui is the 
mean value of the R, G, and B channels at the ith pixel, (Bejnordi et al., 
2016). The NMI value was obtained for each image in a given dataset, 
and the standard deviation (NMI SD) and coefficient of the variation 
(NMI CV), i.e., NMI SD divided by the mean, were used as metrics. Lower 
values of NMI SD and NMI CV indicate a more consistent normalization. 

CN tests are carried out on the CAMELYON17 dataset, introduced in 
Sect. 6, which includes images from 5 different centers. Following Zheng 
et al. (2019), 500 patches of size 224 × 224 pixels were sampled from 
each WSI in the dataset for CN and classification purposes. To avoid the 
influence of large background regions, only patches with at least 70% 
tissue were considered. The patch size is motivated for its use in the 
classification experiments in Section 6.4 and does not affect the mea
surement of the normalization quality. 

The results of the proposed and competing CN algorithms for each 
center and the whole dataset are reported numerically in Table 4 and 
graphically in Fig. 4 where the NMI information for each center and 
method is plotted as a violin plot. MAC, VAH and ALS transform the 
images in each center to a similar distribution, but with a larger inter 
and intra-center variance than the original images’ distribution. 
Bayesian methods HID and PER strongly reduce the intra-center 

differences, but are not able to completely reduce inter-center differ
ences. They have a similar behavior as they share the same similarity 
prior on the color vector matrix. ZHE significantly reduces intra-center 
differences but does not completely eliminate inter-center variance. 
The proposed methods outperform all competitors. Fig. 4 and Table 4 
show that BKSVD obtains the most consistent normalization, with the 
lowest intra-center variance and the most similar median values for all 
the centers in the dataset. EBKSVD closely follows, obtaining the best 
values for two out of five centers, but with slightly more variation than 
BKSVD, as can be seen in Fig. 4(h) and 4(i). 

The CN results were also compared in terms of fidelity to the original 
observed image using PSNR and SSIM. Although it is important to keep 
the structure of the original image, notice that fidelity and CN could be 
conflicting goals as the best fidelity is obtained by not modifying the 
image. PSNR and SSIM values are shown in Table 5. ZHE obtains the 
highest fidelity, followed by the proposed BKSVD and EBKSVD. Except 
for ZHE, that was optimized for its use in CN, the results obtained by the 
other methods are consistent with those presented in Section 6.2. The 
better the fidelity to the H&E GT, the better the fidelity after CN. As 
previously discussed, our methods guarantee fidelity to the H&E bands 
separately. Since the CN in (16) modifies the concentration dynamic 
range, it will reduce the similarity to the original image (e.g. by 
increasing the contrast between stains) but will not have a negative 
impact on the stain structure and, hence, the PSNR and SSIM values are 
not heavily affected. 

Table 3 
PSNR and SSIM for the different methods on the WSSB dataset (Alsubaie et al., 2017).  

PSNR  RUI MAC VAH ALS HID PER ZHE EBKSVD BKSVD 
Image Stain          

Colon H 22.27 23.91 25.83 21.11 28.57 28.62 17.89 32.12 34.08  
E 20.70 21.55 26.29 21.94 27.58 27.60 14.76 31.11 33.32 

Breast H 15.27 26.24 25.46 24.60 28.81 29.14 15.31 31.69 32.20  
E 17.66 23.62 27.68 25.92 26.60 26.76 14.99 28.81 29.43 

Lung H 22.47 19.52 25.87 20.62 32.91 33.10 19.51 33.06 32.67  
E 22.05 18.09 25.53 23.95 30.77 31.02 16.23 31.87 30.61 

Mean H 20.00 23.22 25.72 22.11 30.10 30.29 17.57 32.29 32.98  
E 20.14 21.08 26.50 23.94 28.32 28.46 15.33 30.60 31.12 

SSIM  RUI MAC VAH ALS HID PER ZHE EBKSVD BKSVD 
Image Stain          
Colon H 0.8141 0.8095 0.8851 0.7241 0.9542 0.9544 0.7894 0.9733 0.9826  

E 0.7456 0.6365 0.8904 0.8540 0.9139 0.9161 0.4625 0.9422 0.9646 
Breast H 0.6215 0.9552 0.9239 0.8068 0.9528 0.9560 0.6488 0.9845 0.9801  

E 0.7644 0.9336 0.9550 0.9380 0.9464 0.9492 0.7150 0.9717 0.9632 
Lung H 0.7987 0.7389 0.8912 0.5551 0.9763 0.9757 0.8116 0.9759 0.9764  

E 0.7734 0.5088 0.8195 0.8939 0.9306 0.9353 0.5390 0.9670 0.9461 
Mean H 0.7448 0.8345 0.9100 0.6953 0.9611 0.9621 0.7500 0.9779 0.9797  

E 0.7611 0.6930 0.8883 0.8953 0.9303 0.9336 0.5722 0.9603 0.9580  

Fig. 3. Mean PSNR in dB vs running time in seconds for deconvolving a 2000 × 2000 image.  
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For a visual qualitative analysis, we depict in Fig. 5 a sample patch 
for each center and the corresponding CN by the different methods. The 
first row shows the reference image and some 224 × 224 patches 
extracted from it showing the variance within the reference image at the 
same scale as the other patches. The remaining rows show, in the first 
column, the patch to be normalized and the rest of the columns the CN 
result with different methods. We notice that MAC and VAH normalize 
the images but do not obtain colors similar to the reference. ALS in
troduces color artifacts in most of the patches. ZHE, which is trained to 
reduce NMI, obtains good figures, but tends to over-brighten the images 
to reduce NMI variation. The Bayesian methods HID and PER also obtain 
a consistent normalization, but in some cases, they tend to over-estimate 
the presence of hematoxylin. The proposed BKSVD and EBKSVD obtain 
the images most similar to the reference image for all centers, producing 
high quality results and minimizing the inter-center color variations 
while maintaining clear differences between both stains. The difference 
between both methods is difficult to appreciate in this figure. Only in the 

image of the second center (third row), where hematoxylin and eosin are 
difficult to differentiate, EBKSVD clearly separates them although it 
introduces some artifacts, while BKSVD and the other methods do not 
correctly identify the eosin. 

6.4. Data augmentation and cancer classification 

The main objective of BCD and CN is to improve the performance of 
CAD systems, usually based on patch classification systems (Esteban 
et al., 2019; Tellez et al., 2019). In this section we quantitatively assess 
the effect of BCD, CN and SCA on a breast cancer detection task 
(CAMELYON17). For that, we train a VGG19 (Simonyan and Zisserman, 
2015) classifier, commonly used in cancer detection (Esteban et al., 
2019), on the original, color normalized, and color augmented patches, 
both from RGB images and OD concentrations. 

As previously discussed, using the original WSIs implies dealing with 
inter-center staining variations that produce generalization errors to 

Table 4 
NMI values for the centers in CAMELYON17.   

Center 0 Center 1 Center 2 Center 3 Center 4 All centers 

Method SD CV SD CV SD CV SD CV SD CV SD CV 

Original  0.0403  0.0527  0.0464  0.0667  0.0574  0.0792  0.0601  0.0867  0.0377  0.0441  0.0774  0.1036 
MAC  0.0474  0.0734  0.0585  0.1035  0.0855  0.1559  0.0812  0.1489  0.0577  0.0771  0.1032  0.1689 
VAH  0.0535  0.0868  0.0658  0.1236  0.0929  0.1787  0.0818  0.1582  0.0638  0.0892  0.1058  0.1823 
ALS  0.0512  0.0855  0.0632  0.1303  0.0641  0.1267  0.0841  0.1740  0.0554  0.0821  0.0993  0.1806 
HID  0.0413  0.0637  0.0363  0.0576  0.0587  0.0868  0.0463  0.0718  0.0478  0.0636  0.0635  0.0948 
PER  0.0405  0.0626  0.0359  0.0570  0.0561  0.0832  0.0454  0.0706  0.0471  0.0628  0.0629  0.0941 
ZHE  0.0345  0.0434  0.0277  0.0365  0.0449  0.0608  0.0428  0.0566  0.0311  0.0375  0.0489  0.0632 
EBKSVD  0.0243  0.0313  0.0331  0.0440  0.0292  0.0379  0.0327  0.0436  0.0252  0.0323  0.0320  0.0418 
BKSVD  0.0202  0.0258  0.0239  0.0317  0.0304  0.0398  0.0280  0.0372  0.0258  0.0329  0.0290  0.0378  

Fig. 4. Violin plots of NMI values for each center in CAMELYON17. The blue shadow represents the histogram of NMIs for each plot, the maximum, median and 
minimum values for each plot are marked with bars. The x-axis indicates the center corresponding to a set of images. 

Table 5 
PSNR and SSIM for the normalized CAMELYON17 dataset.   

MAC VAH ALS HID PER ZHE EBKSVD BKSVD 

PSNR  13.80  12.74  11.16  17.77  17.73  22.20  19.29  19.54 
SSIM  0.7265  0.6490  0.3132  0.8617  0.8644  0.9603  0.8594  0.8735  
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unseen stain color variations. BCD and CN aim to reduce the general
ization error by reducing color-variation in the input data. However, it is 
also possible to reduce the generalization error by simulating realistic 
variations of the training data. The SCA approach is a specific technique 
of data augmentation for histopathological images that produces real
istic variations of the stain colors of the available data. As CN, SCA can 
also be obtained as an additional step after BCD. While Tellez et al. 
(2018) applies SCA on the concentrations obtained from Ruifrok and 
Johnston (2001), we propose to use a combination of both CN and SCA 
as to obtain an augmented OD image Ŷ

aug 
as follows: 

Ŷ
aug

=
∑ns

s=1
m̂s

ref ĉaug
s,: , (19)  

where the augmented concentrations ĉaug
s,: are synthesized as 

ĉaug
s,: = αs ĉnorm

s,: + βs⋅1, (20)  

being ̂cnorm
s,: the normalized concentrations obtained using (17) and αs, βs 

random values following uniform distributions U(1 − σ, 1 + σ) and U 
(− σ, σ), respectively. This procedure leads to augmentation on the 
objective reference domain, allowing us to combine the advantages of 
both CN and SCA approaches. CN will reduce the variation between 
centers and SCA will cover the variations that were not completely 
captured by the CN. 

We train the network with the RGB normalized images, OD con
centrations obtained by the BCD methods, the SCA in Tellez et al. 
(2018), denoted by TEL, and the SCA using (19), denoted by BKSVDaug 
and EBKSVDaug depending on whether we use the BKSVD or EBKSVD 
concentrations. Following Tellez et al. (2018), σ = 0.05 and σ = 0.2 
were used for light and strong augmentation, respectively. From CAM
ELYON17, four centers were used for training and the 5th center, which 
showed a bigger color difference in the previous section, was used as test 
set. From the 50 tumor annotated WSIs in CAMELYON17, approxi
mately 55.000 positive patches were sampled for training and 12.500 for 
testing. Negative patches were sampled from negative WSIs only, 
obtaining 55.000 for training and 12.500 for testing. 

VGG19 was trained from scratch for 100 epochs in each case using 64 
sample batches with batch normalization. The learning rate was initially 
set to 0.01, which is halved every 30 epochs. When using OD concen
trations, the architecture was modified to use 2 input channels (H&E) 
instead of the RGB image. The area under the ROC curve (AUC), shown 
in Tables 6 and 7, was calculated on the test set for the best performing 
epoch during training for each method. 

The results show that, when using RGB images, CN increased the 
AUC in most cases, increasing it from the original images (0.9491) up to 
0.9817 with the proposed EBKSVD. The less sparse BKSVD approach, 
slightly increases the AUC without reaching the outperforming result of 
the EBKSVD. CN obtained by ZHE and ALS also increased the classifi
cation performance considerably despite the over-brightened images 

Fig. 5. Example 224 × 224 patches from different centers in CAMELYON17. The first row shows the reference image and some 224 × 224 patches extracted from the 
reference. Rows 2–6 correspond to the different centers in CAMELYON17. The original patch is shown in the first column and the other columns show the CN results 
with different methods. 
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produced by ZHE and the artifacts produced by ALS. Results using OD 
concentrations show that most methods increase AUC in comparison to 
the baseline RUI method. Also, the performance of HID, PER, ZHE and 
the proposed EBKSVD is better in OD than in normalized RGB space, 
showing that BCD is able to provide more useful information for the 
CNN. Separating the structures in the image from the color information, 
usually produces better results than using the RGB image since the 
network does not need to extract the structural information from colors. 
SCA improves the performance with respect to the original images, both 
using RGB and OD concentrations, obtaining the best performance with 
the latter. The highest AUC value was obtained using EBKSVD and light 
SCA in the OD space. Our results show that SCA benefits from the use of 
EBKSVD instead of the RUI method used by TEL. The difference between 
light and strong augmentation is minor both in TEL and the proposed 
augmentation. Our results show that CN and BCD have a bigger impact 
on classification than SCA when RGB images are used. However, the 
proposed combination of CN and SCA improves the results on the OD 
space. 

8. Conclusions 

In this paper, we have proposed a novel Bayesian approach for blind 
color deconvolution of histopathological images, based on K-SVD with 
two possible inference approaches: variational and empirical Bayes. We 
utilize a hierarchical prior on the concentrations that enforces sparsity in 
the same way as a Laplacian prior while allowing for a tractable 
Bayesian inference. The framework presented automatically estimates 
the stain concentrations, the color-vector matrix, and all model pa
rameters. The proposed BKSVD and EBKSVD methods guarantee fidelity 
to the tissue structure on different relevant histopathological tasks such 
as color normalization, stain color augmentation, and classification of 
histological images. 

The proposed method is designed to work at the highest magnifica
tion available. Although the proposed approach has shown a good per
formance at 20 × and 40 × , it is unclear how magnification affects the 
estimation of the color-vector matrix and has never been explored in the 
literature. This is an interesting topic to be addressed in future research, 
specially if hierarchical model are to be used. 

The proposed approach solves the dependency on the reference 
color-vector matrix of previous Bayesian approaches. However, this also 
exposes a limitation that affects to many other BCD and CN methods: the 
common assumption that colors on the image come exclusively from 
H&E stains might not hold in some scenarios Although the proposed 
Bayesian approach and the pixel sampling provide a certain robustness 
to variations, large areas of blood, cauterized tissue (e.g. bladder sam
ples) or other anomalies in the WSIs can affect the BCD results and 
therefore the CN or SCA performance. This issue, that also affects CNN- 
based CN methods, has never been explored in the BCD or CN fields and 

needs to be addressed in future research. 
The proposed BKSVD and EBKSVD methods outperform classical and 

state-of-the-art methods on all the performed experiments obtaining 
higher fidelity to the tissue structure, a more consistent normalization, 
and a stain specific color augmentation that improves classification on 
VGG19. The optimal approach, BKSVD or EBKSVD, varies depending on 
the task. 

We have analyzed the effect of using color normalized images or OD 
concentrations to feed a CNN classifier. The carried out experiments 
indicate that using OD concentrations for H&E achieves higher classi
fication performance than feeding the network with RGB images. The 
dependency on a reference image is a well-known issue for BCD-based 
CN. The choice of a proper reference image also have an impact on 
the classification performance. The relevance of this choice needs to be 
quantified in future research. However, it can be avoided with the use of 
OD concentrations directly for classification. 

Finally, we have shown that stain color augmentation techniques are 
more beneficial when using high-quality stain concentrations that better 
represent the real structure of the stains in the image. The use of the OD 
concentrations as input for the network is also useful when working with 
augmentation techniques. 
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Table 6 
AUC performance of the VGG19 classifier for the proposed and competing methods using CN both on the RGB and OD spaces. Bold values indicate the highest 
performance for each space.  

Input Original RUI MAC ALS HID VAH PER ZHE EBKSVD BKSVD 

RBG 0.9491 NA  0.9499  0.9738  0.9479  0.7985  0.9305  0.9755  0.9817  0.9711 
OD NA 0.9417  0.9468  0.9725  0.9642  0.6614  0.9508  0.9864  0.9834  0.9672  

Table 7 
AUC performance of the VGG19 classifier for the proposed and competing methods using SCA both on the RGB and OD spaces. Bold values indicate the highest 
performance for each space.  

Input TELstrong
aug  TELlight

aug  EBKSVDstrong
aug  EBKSVDlight

aug  BKSVDstrong
aug  BKSVDlight

aug  

RGB  0.9673  0.9601  0.9716  0.9647  0.9679  0.9650 
OD  0.9654  0.9639  0.9865  0.9879  0.9728  0.9790  
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Appendix A. Derivation of the sequential inference for sparse Bayesian models 

We detail now the maximization of the marginal likelihood in (12), which we introduce here for the sake of completeness 

L (γq) = log
[

p(γq

⃒
⃒
⃒λ̂q)

∫

p(yq

⃒
⃒
⃒cq, β̂)p(cq

⃒
⃒γq)dcq

]

, (A.1)  

where p(yq

⃒
⃒
⃒cq, β̂) ∼ N (M̂cq, β̂

− 1
I), which is clear from the observation model in (1); p(cq

⃒
⃒
⃒γq) ∼ N (cq

⃒
⃒0,Γq) as defined in Sec. 3; and, the remaining 

variables, M, β and λq, are fixed to the values estimated with variational inference. The marginal integral in (A.1) is a well-known result: 

p(yq

⃒
⃒
⃒β̂, M̂, γq) :=

∫

p(yq

⃒
⃒
⃒cq, β̂)p(cq

⃒
⃒γq)dcq = N (yq

⃒
⃒0,Xq), (A.2)  

with covariance matrix 

Xq = β̂
− 1

I3 + M̂Γq M̂
T
. (A.3) 

Now we can rewrite the marginal likelihood as 

L (γq) = logp(γq

⃒
⃒
⃒λ̂q)p(yq

⃒
⃒
⃒β̂, M̂, γq)

= −
1
2

[

log|Xq

⃒
⃒
⃒
⃒
⃒
+ yT

q Xq
− 1yq + λ̂q

∑

s
γsq

]

+ const.,
(A.4)  

where the constant includes all terms not depending on γq. 
Notice that we can easily find the posterior distribution of cq, using (6) and (7), once γ̂q has been calculated. In addition, if γsq = 0, then the 

posterior distribution of csq will be degenerate at zero. 
The marginal likelihood L (γq) has interesting properties that result in a sequential maximization strategy which will allow us to add, update or 

remove a single γsq in order to increase L (γq). Concretely, see how we can isolate the contribution of a single γsq in the covariance matrix Xq writing 

Xq =

[

β̂
− 1

I3 +
∑

i∕=s

γiq m̂i m̂
T
i

]

+ γsq m̂s m̂T
s =: X̃q + γsq m̂s m̂T

s , (A.5)  

where, clearly, X̃q has no dependence on γsq. Using the determinant identity and the matrix inversion lemma on Xq we can write 

Xq
− 1 = X̃

− 1
q −

X̃
− 1
q m̂s m̂T

s X̃
− 1
q

γsq
− 1 + m̂T

s X̃
− 1
q m̂s

, (A.6)  

⃒
⃒
⃒Xq

⃒
⃒
⃒ =

⃒
⃒
⃒X̃q

⃒
⃒
⃒⋅
⃒
⃒
⃒1 + γsq m̂T

s X̃
− 1
q m̂s

⃒
⃒
⃒ . (A.7) 

The previous equations allow us to rewrite (A.4) as 

L (γq) = −
1
2

[

log|X̃q

⃒
⃒
⃒
⃒
⃒
+ yq

TX̃
− 1
q yq + λ̂q

∑

n∕=s

γnq

]

+
1
2

[

log
1

1 + γsqgsq
+

h2
sqγsq

1 + γsqgsq
− λ̂qγsq

]

=: L ({γiq}i∕=s) + l(γsq),

(A.8)  

where gsq = m̂T
s X̃

− 1
q m̂s and hsq = d̂

T
s X̃

− 1
q yq▒ and the constant has been omitted as it plays no role in the optimization. Notice that the quantities gsq and 

hsq do not depend on γsq. Therefore, the terms related to a single hyperparameter γsq are now separated from the rest. A closed form solution of the 
maximization of L (γq), when only its sth component is changed, can be found by holding the other hyperparameters fixed, taking its derivative with 
respect to γsq and setting it equal to zero, obtaining a unique maximum at 

γ̂ sq =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− (gsq + 2λ̂q) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

g2
sq − 4λ̂qh2

sq

√

2λ̂qgsq
, h2

sq − gsq ≥ λ̂q

0, otherwise .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(A.9) 

In order to effectively reduce the computational burden, this calculation must be performed efficiently. To explain how to carry them out, let us 
overload slightly the notation. The current (c) covariance matrix of the marginal of the observations is rewritten as 

Xc
q = β̂

− 1
I3 +

∑

i∈A

γc
iq m̂ i m̂T

i +
∑

i∈A

γc
iq m̂ i m̂T

i , (A.10)  

where A = {i
⃒
⃒
⃒γc

iq > 0} and A = {i
⃒
⃒
⃒γc

iq = 0}. Notice that, the last term on the right hand side of (A.10) is equal to zero and has been included for clarity. 
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Then, applying the Woodbury identity, we obtain 

m̂T
s Xc

q
− 1 m̂s = β̂m̂T

s m̂s − β̂
2
m̂T

s M̂
c
Σc

cq
(M̂

c
)

T m̂s =: Gsq (A.11)  

where Σc
cq 

is obtained from Σcq by keeping only the columns and rows associated to the indices in A . We apply the same restriction to the columns of 

M̂
c
, that is, we keep in M̂

c 
the columns associated to γc

iq > 0. From (A.6), for s ∈ A ∪ A , we have 

gsq =
Gsq

1 − γc
sq Gsq

. (A.12) 

Furthermore 

m̂T
s Xc

q
− 1yq = β̂m̂T

s yq − β̂
2
m̂T

s M̂
c
Σc

cq
(M̂

c
)

Tyq =: Hsq (A.13)  

Using an analogous procedure we can write 

hsq =
Hsq

1 − γc
sq Gsq

. (A.14) 

Given Σc
cq 

we can now efficiently check whether we should add γsq,s ∈ A , or update, or remove γsq,s ∈ A . Moreover, the amount the marginal log 
likelihood is improved by each single addition, update, or removal is easily calculated from (A.8). Finally,we notice that Σc

q and ̂cc
q can be updated very 

efficiently considering only a single coefficient γsq, see Tipping and Faul (2003). 
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Laak, J.A.v.d., 2016. Stain specific standardization of whole-slide histopathological 
images. IEEE Trans. Med. Imaging 35, 404–415. 

Bentaieb, A., Hamarneh, G., 2018. Adversarial stain transfer for histopathology image 
analysis. IEEE Trans. Med. Imaging 37, 792–802. 

Bishop, C., 2006. Pattern Recognition and Machine Learning. Springer, pp. 454–455. 
Duggal, R., Gupta, A., Gupta, R., Mallick, P., 2017. SD-Layer: stain deconvolutional layer 

for CNNs in medical microscopic imaging. In: Descoteaux, M., Maier-Hein, L., 
Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (Eds.), Medical Image Computing 
and Computer Assisted Intervention - MICCAI 2017. Lecture Notes in Computer 
Science. Springer, Cham, pp. 435–443. 

Esteban, A.E., Lopez-Perez, M., Colomer, A., Sales, M.A., Molina, R., Naranjo, V., 2019. 
A new optical density granulometry-based descriptor for the classification of prostate 
histological images using shallow and deep Gaussian processes. Comput. Methods 
Prog. Biomed. 178, 303–317. 

Fischer, A.H., Jacobson, K.A., Rose, J., Zeller, R., 2008. Hematoxylin and eosin staining 
of tissue and cell sections. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb. 
prot4986. 
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