

ASTREA Framework: Development of
Adaptive Monitoring Systems for

Dynamic and Mobile Environments

Sara Balderas-Díaz

Supervisors: Dr José Luis Garrido

Dr Gabriel Guerrero-Contreras

Department of Software Engineering

University of Granada

PhD Program in Information and Communication Technologies

January 2022

Editor: Universidad de Granada. Tesis Doctorales
Autor: Sara Balderas Díaz
ISBN: 978-84-1117-245-5
URI: http://hdl.handle.net/10481/73158

http://hdl.handle.net/10481/73158
http://hdl.handle.net/10481/73158

«Science and everyday life cannot and should not be separated. Science, for me, gives a partial

explanation of life. In so far as it goes, it is based on fact, experience and experiment.»

Rosalind Franklin

Resumen

Avances en las tecnologías ofrecen nuevas oportunidades en múltiples ámbitos. La aceptación
y predisposición por el uso de las mismas, por parte de los stakeholders, también es un factor
clave. Estas circunstancias han impulsado la evolución y desarrollo de soluciones o alternativas
complementarias en los ámbitos de la salud (eSalud), vida cotidiana asistida por el entorno
(Ambient Assisted Living, AAL) e internet de las cosas (Internet of Things, IoT), en los que
el uso de sensores no intrusivos y wearables (como dispositivos ergonómicos con sensores
incorporados) se ha convertido en la piedra angular de la recopilación de datos.

En los últimos años, se ha desarrollado una plétora de sistemas de monitorización de
propósito específico para el control de enfermedades o situaciones concretas. Cabe mencionar
que existe una ausencia de estándares o frameworks que faciliten su diseño y desarrollo.
Sin embargo, si bien es cierto que tales sistemas comparten características, funcionalidades,
objetivos, así como tecnologías específicas. Tampoco existen soluciones concretas y validadas
que soporten el despliegue automatizado de un sistema de monitorización en una infraestructura
de red móvil y dinámica. En relación con esto, cabe destacar que los cambios en los sistemas de
monitorización son frecuentes por varias razones, tales como que las necesidades de los usuarios
que están siendo monitorizados cambian, o que se requiera incorporar sensores/wearables así
como funcionalidad al sistema del mismo modo que podría ser modificada o sustituida. Queda
implícito, que estos cambios suponen el tener que volver a desplegar el sistema, a ser posible,
en tiempo de ejecución para que las adaptaciones o actualizaciones se implanten de la forma
más inmediata.

Algunas de estas circunstancias, pueden ser paliadas pues ciertos cambios se pueden prever
y se pueden introducir mecanismos de adaptación y autoadaptación para ofrecer soluciones, en
principio ad-hoc, pero que podrían favorecer la extensibilidad de los sistemas de monitorización.
No obstante, es habitual, el tener que posponer estos cambios a versiones posteriores de los
sistemas.

En lo que respecta a la recopilación de datos, a pesar de ser objeto de estudio durante
años, aún existen desafíos principalmente derivados por la inestabilidad de las conexiones en
entornos móviles, la congestión de la red, y las limitaciones en la capacidad de almacenamiento

viii

y de energía de los dispositivos móviles. En este trabajo, con entornos móviles, nos referimos a
redes móviles y dinámicas. Por una parte, con móvil nos referimos a elementos (o dispositivos)
móviles que forman parte de la infraestructura de la red y que también pueden tener la capacidad
de desplazarse por un área. Por otra parte, el término dinámico comprende, que se puedan
incorporar nuevos elementos (o dispositivos) y que estos formen parte de la infraestructura de
la red pero también el que las conexiones entre ellos puedan cambiar, incluso el que puedan
ocurrir desconexiones. Ambas circunstancias provocan cambios en la infraestructura de red.

En esta tesis se propone ASTREA, un framework como solución integral de tres pilares
ya introducidos y que pueden resumirse como sigue: 1) el diseño y desarrollo de sistemas de
monitorización que incluyen sensores y wearables; 2) el despliegue automatizado del sistema
en una red móvil y dinámica en tiempo de ejecución, así como su reconfiguración posterior
al despliegue, lo que implica adaptaciones o actualizaciones en los sistemas, enfatizando la
importancia de mantener la escalabilidad localizada; y 3) la recolección de datos incluyendo
elementos móviles como portadores y sin incluirlos.

ASTREA ha sido creado como resultado del estudio previo de varios dominios de aplicación,
del diseño y desarrollo de sistemas de monitorización en colaboración con expertos (psicólogos,
médicos, enfermeros, matronas, educadores y terapeutas) y que han sido aplicados en entornos
concretos. Esta investigación y desarrollos previos han favorecido la identificación de aspectos
y características comunes a nivel funcional, de dispositivos, y de requisitos de calidad que se
deben garantizar para el correcto funcionamiento de tales sistemas. Concretamente, se han
desarrollado sistemas de monitorización aplicados directamente en entornos reales de pacientes
que sufren Lupus Eritematoso Sistémico (LES) y Fibromialgia (F), y mujeres embarazadas (y
sus parejas) con fetos Pequeños para la Edad Gestacional (PEG) o bebés nacidos con bajo peso.

Los sistemas de monitorización nos han permitido la recopilación de datos fisiológicos y
datos del contexto (factores ambientales) mediante sensores y wearables. Estos datos obtenidos
de forma objetiva han sido analizados de forma conjunta con otra información obtenida de
forma subjetiva, mediante cuestionarios estandarizados o definidos por expertos (médicos,
psicólogos/as, enfermeros/as, y matronas). Los sistemas desarrollados tienen un diseño y
arquitectura que favorece el que puedan extenderse con el objetivo de que se puedan reutilizar
en otros dominios de aplicación específicos.

La arquitectura de ASTREA es distribuida, se basa en servicios y microservicios, y so-
porta dos mecanismos implementados: (1) despliegue, y la propagación de adaptaciones y
actualizaciones para extender los sistemas de monitorización de forma autónoma y en tiempo
de ejecución; y (2) la recopilación de datos. Ambos mecanismos están operativos en una
infraestructura de red inalámbrica y móvil. También incluye un repositorio de servicios que

ix

almacena los microservicios que pueden ser desplegados en los dispositivos que forman parte
de la red, de acuerdo a sus características. En ASTREA se pueden utilizar sensores o wearables,
para la recogida de datos, pero también existen nodos, siendo estos últimos una agrupación de
los dispositivos previos, que además dispone de un dispositivo con unas capacidades computa-
cionales mínimas.

ASTREA gestiona los sistemas de monitorización como casos e incluye un editor visual
para que determinados usuarios conocedores del dominio, puedan diseñar y desarrollar los
casos de forma más rápida y sencilla, abstrayéndolos de cuestiones técnicas de más bajo nivel.
El editor visual cuenta con una paleta en la que pueden seleccionar, arrastrar y soltar en un
lienzo central diferentes elementos tales como los dispositivos (sensores/wearables) que va
a incorporar el sistema u operaciones a partir de las cuales se define la funcionalidad que
integrará, en base a los microservicios alojados en el repositorio y que, junto a lo anterior,
favorece el reúso. Además, para ilustrar las capacidades y viabilidad del framework ASTREA,
se implementa y se despliega en un entorno de pruebas real.

Finalmente, en la evaluación de ASTREA se ha utilizado el simulador ns-3 y tecnologías
BonnMotion. Se analizan diferentes aspectos de la transmisión de datos y tiempos de propa-
gación que supondría el envío de la especificación de un caso y los microservicios asociados
para la composición del sistema de monitorización, en una red con dispositivos heterogéneos,
dinámica, inalámbrica y móvil. En la misma red, se han evaluado las tasas de éxito en la
recopilación de datos considerando la transmisión de datos en crudo versus la transmisión de
información útil (datos procesados), la priorización de los datos frente a la no priorización, así
como el impacto en el consumo de energía de los dispositivos.

Abstract

Advances in technology offer new opportunities in multiple fields. The acceptance and pre-
disposition to use them by stakeholders is also a key factor. These circumstances have driven
the evolution and development of complementary solutions or alternatives in the fields of
eHealth, Ambient Assisted Living (AAL) and the Internet of Things (IoT), where the use of
non-intrusive sensors or wearables (as ergonomic devices with built-in sensors) has become the
cornerstone of data gathering.

In recent years, a plethora of specific purpose monitoring systems has been developed
for the control of certain diseases or situations. It is worth mentioning that there is a lack of
standards or frameworks to facilitate their design and development. There are also no concrete
and validated solutions that support the automated deployment of a monitoring system in a
mobile and dynamic network infrastructure. Concerning this, it is worth noting that changes
in monitoring systems are frequent for various reasons, such as the needs of the users being
monitored change, or sensors/wearables as well as functionality needs to be added to the system
in a way that could be modified or replaced. Implicit in these changes is that the system
will have to be redeployed, if possible at runtime so that the adaptations or upgrades can be
implemented as quickly as possible.

Some of these circumstances can be mitigated because certain changes can be envisaged
and adaptation and self-adaptation mechanisms can be introduced to offer solutions, in principle
ad-hoc, which could favour the extensibility of monitoring systems. However, it is common to
have to postpone these changes to later versions of the systems.

As far as data gathering is concerned, despite being the subject of years of study, challenges
still exist mainly due to the instability of connections in mobile environments, network con-
gestion, and limitations in the storage and power capacity of mobile devices. In this work,
with mobile environments, we refer to mobile and dynamic networks. On the one hand, by
mobile, we mean mobile elements (or devices) that are part of the network infrastructure and
that may also have the ability to move around an area. On the other hand, the term dynamic
comprises the fact that new elements (or devices) can be added and become part of the network

xii

infrastructure, but also that the connections between them can change and disconnections can
occur at any time. Both circumstances lead to changes in the network infrastructure.

This thesis proposes ASTREA, a framework as an integral solution of three pillars already
introduced and which can be summarised as follows: 1) the design and development of
monitoring systems which include sensors and wearables; 2) the automated deployment of
the system in a mobile and dynamic network at runtime, as well as its post-deployment
reconfiguration, which implies adaptations or upgrades to systems, emphasising the importance
of maintaining localised scalability; and 3) the data gathering which comprises mobile elements
as carriers and without including them.

ASTREA has been created as a result of the prior study of various application domains, the
design and development of monitoring systems in collaboration with experts (psychologists,
doctors, nurses, midwives, educators and therapists) and which have been applied in specific
environments. This research and previous developments have favoured the identification of
common aspects and characteristics at the functional level, device and quality requirements
that must be guaranteed for the correct functioning of such systems. Specifically, monitoring
systems have been developed for direct application in real-life scenarios of patients suffering
from Systemic Lupus Erythematosus (SLE) and Fibromyalgia (F), and pregnant women (and
their partners) with Small-for-Gestational-Age (SGA) foetuses or low birth weight babies.

Monitoring systems have enabled us to collect physiological data and contextual data
(environmental factors) through sensors and wearables. These objectively obtained data have
been analysed together with other subjectively obtained information through standardised or
expert-defined questionnaires (doctors, psychologists, nurses and midwives). The systems
developed have a design and architecture that favours extensibility with the objective of
reusability in other specific application domains.

ASTREA’s architecture is distributed, based on services and microservices, and supports
two mechanisms implemented: (1) deployment, and propagation of adaptations and upgrades to
extend the monitoring systems autonomously and at runtime. Both mechanisms are operational
in a wireless and mobile network infrastructure. It also includes a service repository that stores
the microservices that can be deployed within the devices part of the network, according to its
capabilities. In ASTREA, sensors or wearables can be used to collect data, but there are also
nodes, the latter being a group of the previous devices, that also have a device with minimum
computational capabilities.

ASTREA manages the monitoring systems as cases and includes a visual editor so that
certain users who are familiar with the domain can design and develop the cases in a faster and
easier way, abstracting them from lower-level technical issues. The visual editor has a palette

xiii

from which different elements can be selected, dragged and dropped onto a central canvas, such
as the devices (sensors/wearables) that the system will incorporate or operations from which
the functionality to be integrated is defined, based on the microservices hosted in the repository
and which, together with the above, favours reuse. Furthermore, to animate the capabilities of
ASTREA framework, it is implemented and deployed in a real test environment.

Finally, in the evaluation of ASTREA, the ns-3 simulator and BonnMotion technologies.
Different aspects of data transmission and propagation times required for sending a case
specification and the associated microservices for the composition of the monitoring system,
in a network with heterogeneous, dynamic, wireless and mobile devices, are analysed. In the
same network, data gathering success rates have been evaluated considering the transmission
of raw data versus the transmission of useful information (processed data), data prioritisation
versus non-prioritisation, as well as the impact on the energy consumption of the devices.

Table of contents

List of figures xix

List of tables xxv

I Introduction, Foundations and Related Work 1

1 Introduction 3
1.1 Introduction . 4
1.2 Motivation . 5
1.3 Objectives . 8
1.4 Methodology . 9
1.5 Manuscript Structure . 10
1.6 Publications . 12

2 Foundations and Technologies 15
2.1 Adaptation and Self-Adaptation . 17

2.1.1 Context . 18
2.1.2 Adaptation Dimensions . 20

2.2 Software and Modular Entities . 26
2.2.1 Services . 26
2.2.2 Microservices . 28
2.2.3 MultiAgents . 29
2.2.4 Capabilities Comparison of the Software and Modular Entities 32

2.3 Software Architectures . 33
2.3.1 Service-Oriented Architecture (SOA), SOA 2.0, and Event-Driven

Architecture (EDA) . 33
2.3.2 Resources Oriented Architecture (ROA) 37

xvi Table of contents

2.3.3 Agent Architecture . 37
2.3.4 Domain-Specific Software Architecture (DSSA) 40
2.3.5 Reference Architectures for Adaptation and Self-Adaptation 40

2.4 Frameworks . 47
2.5 Middlewares . 54
2.6 Development and Operations (DevOps) . 57
2.7 Cloud Computing . 58
2.8 Devices and Networks . 60

2.8.1 Sensor Networks and Wearables . 60
2.8.2 Nodes Categorisation . 66
2.8.3 Communication/Propagation Techniques 68

2.9 Network Simulators . 71
2.10 Summary . 73

3 Related Work 75
3.1 Introduction . 76
3.2 Framework for Monitoring Systems Design and Development 76
3.3 System Adaptation and Configuration Upgrade at Runtime in WSN 79
3.4 Data Gathering with Mobile Elements . 81
3.5 Discussion . 85
3.6 Summary . 86

II Monitoring Systems Developed and Studies Conducted 87

4 Monitoring Systems 89
4.1 Introduction . 90
4.2 Application Domains . 91

4.2.1 Sleep Apnea Hypopnea Syndrome (SAHS) 91
4.2.2 Systemic Lupus Erythematosus (SLE) 92
4.2.3 Pregnant Women with Small for Gestational Age (SGA) Foetuses . . 92
4.2.4 Environmental Monitoring . 93

4.3 Systems Developed . 93
4.3.1 Service-Oriented Monitoring Systems Assisting Diagnosis and Treat-

ment of the Patients with SAHS Symptomatology (SMODIAT) . . . 94
4.3.2 Mobile System for Monitoring the Environment (CEnMO App) . . . 97

Table of contents xvii

4.3.3 mHealth system to assist pregnant women through a psycho-educational
programme (mPOP) . 100

4.3.4 Context&Health App . 111
4.4 Systems Functionalities and Technologies 114

III ASTREA Framework: Design and Modelling 117

5 ASTREA Framework 119
5.1 Introduction . 121
5.2 Motivating Scenario . 122
5.3 Specific Objectives . 124
5.4 System Model . 124
5.5 Adaptation Plans . 128
5.6 Case Concept Formalisation . 128
5.7 Architectural Design . 132

5.7.1 Characterisation of ASTREA Nodes 132
5.7.2 ASTREAMS Architecture . 133

5.8 Case Subversion Service . 136
5.9 System Operation . 137

5.9.1 Deployment, and Propagation of Adaptations and Upgrades Mechanism137
5.9.2 Data Gathering Mechanism . 141

5.10 ASTREACE Tool . 142
5.10.1 ASTREACE Elements . 144
5.10.2 ASTREACE Constraints . 148

5.11 Service Repository . 148
5.12 Case Study . 149

5.12.1 Case Design . 149
5.12.2 Deployment Case Subversions . 154
5.12.3 In-network Preprocessing and Data Gathering 157

5.13 Implementation and Feasibility of Deployment 159
5.14 Summary . 171

IV Evaluation 173

6 Evaluation 175

xviii Table of contents

6.1 Introduction . 177
6.2 Materials and Methods . 178

6.2.1 First Study . 178
6.2.2 Second Study . 180
6.2.3 Considerations of the First Study versus Second Study 183

6.3 Evaluation Results . 184
6.3.1 Propagation Time . 184
6.3.2 Data Gathering Success Rate . 188

6.4 Energy Consumption . 202
6.5 Summary . 202

V Conclusions and Future Work 207

7 Conclusions and Future Work 209
7.1 Conclusions . 209
7.2 Future Work . 213

8 Conclusiones y Trabajo Futuro 215
8.1 Conclusiones . 215
8.2 Trabajo Futuro . 220

References 223

Appendix A Simulation Results 243

List of figures

2.1 Hierarchy of the self-* properties proposed by Salehie et al. [202] 18
2.2 Classification of context information proposed by Wrona et al. [263] 19
2.3 Taxonomy dimensions of self-adaptation proposed by Krupitzer et al. [135] . 20
2.4 Service communication mechanisms (own elaboration). 28
2.5 Microservice architecture model advantages proposed by Nadareishvili et al.

[164] . 30
2.6 Software architecture connects requirements and code proposed by Garlan [87] 33
2.7 Request/reply mechanism in SOA proposed by Maréchaux [147] 34
2.8 The layers of SOA proposed by Arsanjani [14] 36
2.9 Publish/subscribe mechanism in EDA proposed by Maréchaux [147] 36
2.10 Gateway interaction with Internet (included Web) proposed by Guinard et al. [98] 38
2.11 Practical reasoning component of an agent proposed by Bratman et al. [42] . 39
2.12 MAPE-K reference self-adaptive control loop proposed by Kephart et al. [127] 41
2.13 Rainbow architecture based self-adaptation with reusable infrastructure pro-

posed by Garlan et al.[88] . 42
2.14 Reference architecture for decentralised self-adaptation proposed by Weyns et

al. [260] . 44
2.15 DYNAMICO reference model for self-adaptative systems proposed by Villegas

et al. [247] . 46
2.16 Reusability technologies characterisation proposed by Biggerstaff et al. [33] . 49
2.17 Inverted Pyramid proposed by d’Agapeyeff [225]. 54
2.18 Middleware Layer in Context proposed by Bakken [19]. 55
2.19 Life cycle of DevOps proposed by Bass et al. [30]. 57
2.20 Wireless Body Area Network proposed by Latré et al. [138]. 61
2.21 Wearable devices classification proposed by Seneviratne et al. [212]. 62

xx List of figures

2.22 E4 wristband for real-time physiological data streaming and visualisation
proposed by empatica [73]. 63

2.23 Sample of devices studied for physiological measurements. 65
2.24 Mobile device that stands out because it integrates environmental temperature

and humidity sensors in addition to the conventional ones [171]. 66
2.25 Sample of devices studied for environmental measurements. 66

3.1 Information of the most relevant proposals selected within the review. 77

4.1 SMODIAT architecture. 96
4.2 mHealth architecture. 98
4.3 CEnMo app. 99
4.4 Component model of physiological and environmental measurements manager

service for mHealth systems. 100
4.5 mPOP architecture. 102
4.6 mPOP system model. 104
4.7 App VIVEmbarazo. 105
4.8 Preliminary results of mPOP system. 106
4.9 Activity diagram for creating a psycho-educational programme. 108
4.10 Activity diagram for associating a psycho-educational programme to a parent. 109
4.11 Activity diagram for loading an app on the associated mobile device. 110
4.12 Context&Health App interfaces. 113

5.1 (1) Indoor cases (on the left), arrows reflect the data transmission for cases
deployment, propagation of adaptations and upgrades. (2) Outdoor cases (on
the right), arrows reflect the data transmission for data gathering. 123

5.2 ASTREA framework block diagram in SysML. 126
5.3 Case block diagram in SysML. 130
5.4 Example of cases scheme. 131
5.5 ASTREA architecture. 132
5.6 Node block diagram in SysML. 134
5.7 ASTREAMS software architecture block diagram in SysML. 134
5.8 Activity diagram for generating the case subversion files for a dynamic network

in SysML. 138
5.9 Activity diagram for deployment, and propagation of adaptations and upgrades

mechanism in SysML. 140

List of figures xxi

5.10 Activity diagram for data gathering mechanism in SysML. 143
5.11 General nodes of the element palette of the ASTREACE visual editor. 144
5.12 Sensors and wearables to monitor environmental and physiological variables. 145
5.13 Preprocessing actions of the element palette of the ASTREACE visual editor. 147
5.14 Storage action of the element palette of the ASTREACE visual editor. 147
5.15 Device (internal properties) of the element palette of the ASTREACE visual

editor. 147
5.16 Case specification with ASTREACE tool. 151
5.17 Sources selected with ASTREACE and visual allocation within a scenario. . . 152
5.18 Node subversions generated by case subversion service from a case version

specification. 153
5.19 Deployment, and propagation of adaptations and upgrades mechanism. 155
5.20 Data gathering mechanism. 157
5.21 Deployment diagram of the devices that are part of the network infrastructure,

before deploying the case. 159
5.22 Case specification for proof of concept with ASTREACE visual editing tool. . 161
5.23 Deployment diagram of the devices that are part of the network infrastructure,

after deploying the designed case. 164
5.24 Component diagram of the source node. 170
5.25 Component diagram of the intermediary and destination nodes. 170

6.1 Position of the destination nodes within the scenarios according to the number
of available destinations (indicated at the top left corner) for both mobility
models. 183

6.2 System deployment, adaptations and upgrades propagation times for networks
consisting of 50 sensor nodes, 1 destination node, and from 4 to 10 intermediary
nodes. Random Walk mobility model. Data in Table A.1. 187

6.3 Propagation results for networks composed of 5 fixed source nodes, 10 mobile
source nodes, 1 destination node, and from 1 to 6 intermediary nodes. 187

6.4 Data gathering with and without prioritisation (percentage gathered vs. gen-
erated). No in-network preprocessing operations are performed on the data.
Networks composed of 50 sensor nodes, 1 destination node, and from 1 to 10
intermediary nodes. Random Walk mobility model. Data in Table A.4. 189

xxii List of figures

6.5 Data gathered percentage in relation to the data generated when in-network
preprocessing is applied vs. when it is not applied. Random Walk mobility
model. Data in Table A.5. 190

6.6 Data gathering results under the RPGM model. Networks composed of 5 fixed
source nodes, 10 mobile source nodes, from 0 to 6 intermediary nodes, and
from 1 to 6 destination nodes. No in-network processing applied. 192

6.7 Data gathering results under the Manhattan Grid mobility model. Networks
composed of 5 fixed source nodes, 10 mobile source nodes, from 0 to 6 inter-
mediary nodes, and from 1 to 6 destination nodes. No in-network processing
applied. 193

6.8 Data gathering results for networks composed of 5 fixed source nodes, 10
mobile source nodes, no intermediary nodes, and from 1 to 6 destination nodes.
No in-network processing applied. 194

6.9 Data gathering results for networks composed of 5 fixed source nodes, 10
mobile source nodes, 1 destination node, and from 0 to 6 intermediary nodes.
No in-network processing applied. 195

6.10 Data gathering results under RPGM model considering 1-hop and multi-hop
connections. Networks composed of 10 mobile source nodes, 5 fixed source
nodes, from 0 to 6 intermediary nodes, and from 1 to 6 destination nodes.
Without in-network preprocessing operations. 197

6.11 Data gathering results under Manhattan Grid mobility model considering 1-hop
and multi-hop connections. Networks composed of 10 mobile source nodes, 5
fixed source nodes, from 0 to 6 intermediary nodes, and from 1 to 6 destination
nodes. Without in-network preprocessing operations. 198

6.12 Data gathering results under RPGM model. Networks composed of 5 fixed
source nodes, 10 mobile source nodes, 0 to 6 intermediary nodes and 1 to 6
destination nodes. With in-network preprocessing operations. 199

6.13 Data gathering results under Manhattan Grid mobility model. Networks com-
posed of 5 fixed source nodes, 10 mobile source nodes, 0 to 6 intermediary
nodes and 1 to 6 destination nodes. With in-network preprocessing operations. 200

6.14 Data gathering results with and without in-network processing for networks
composed of 5 fixed source nodes, 10 mobile source nodes, 1 destination node,
and from 0 to 6 intermediary nodes. 201

List of figures xxiii

6.15 Data gathering results under RPGM model considering 1-hop and multi-hop
connections. Networks composed of 10 mobile source nodes, 5 fixed source
nodes, from 0 to 6 intermediary nodes, and from 1 to 6 destination nodes. With
in-network preprocessing operations. 203

6.16 Data gathering results under Manhattan Grid mobility model considering 1-hop
and multi-hop connections. Networks composed of 10 mobile source nodes, 5
fixed source nodes, from 0 to 6 intermediary nodes, and from 1 to 6 destination
nodes. With in-network preprocessing operations. 204

6.17 Average battery level of network nodes over time when in-network preprocess-
ing is applied vs. when it is not applied. Data in Table A.30. 205

List of tables

2.1 Capabilities Comparison of the MultiAgent Systems (MAS), Service-Oriented
Computing (SOC), and Self-Adaptive Services (own elaboration). 32

4.1 System requirements for each case. 115
4.2 System design proposals for each case. 116
4.3 Studies conducted. 116

5.1 Features and responsibilities of the nodes grouped by role. 133

6.1 Configuration of the role of nodes that compose the network simulated. . . . 180
6.2 Random Walk mobility model configuration for intermediary nodes. 180
6.3 Configuration of the nodes role that compose the network simulated. 181
6.4 RPGM model configuration for source nodes (BSNs) and Manhattan Grid

mobility model for intermediary nodes. 184
6.5 Considerations of the first study VS those of the second study. 185
6.6 System deployment, adaptations and upgrades propagation times and maximum

percentage completed for networks consisting of 50 sensor nodes, 1 destination
node, and from 1 to 10 intermediary nodes. Random Walk mobility model. . 186

6.7 Statistical results for data gathering (percentage gathered vs. generated) with
and without prioritisation. No in-network preprocessing operations are per-
formed on the data. Networks composed of 50 sensor nodes, 1 destination
node, and from 1 to 10 intermediary nodes. Random Walk mobility model. . 188

6.8 Statistical results for data gathering when in-network preprocessing is applied
vs. when it is not applied. Networks composed of 50 sensor nodes, 1 destination
node, and from 1 to 10 intermediary nodes. Random Walk mobility model. . 190

xxvi List of tables

A.1 System configuration upgrade propagation times for networks consisting of
50 sensor nodes, 1 destination node, and from 4 to 10 intermediary (interm.)
nodes. Random Walk mobility model. 244

A.2 Propagation results for networks composed of 5 fixed source nodes, 10 mobile
source nodes, 1 destination node, and from 1 to 6 intermediary nodes. RPGM
model. 245

A.3 Propagation results for networks composed of 5 fixed source nodes, 10 mo-
bile source nodes, 1 destination node, and from 1 to 6 intermediary nodes.
Manhattan Grid mobility model. 246

A.4 Results for data gathering with and without prioritisation. No in-network
preprocessing operations are performed on the data. Networks composed of
50 sensor nodes, 1 destination node, and from 1 to 10 intermediary nodes.
Random Walk mobility model. 246

A.5 Data gathered when in-network preprocessing is applied vs. when it is not
applied. Networks composed of 50 sensor nodes, 1 destination node, and from
1 to 10 intermediary nodes. Random Walk mobility model. 247

A.6 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 1 destination node, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations. 247

A.7 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 2 destination nodes, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations. 247

A.8 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 3 destination nodes, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations. 248

A.9 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 4 destination nodes, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations. 248

A.10 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 5 destination nodes, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations. 248

A.11 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 6 destination nodes, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations. 248

List of tables xxvii

A.12 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 1 destination node, and from 0
to 6 intermediary nodes. Without in-network preprocessing operations. 249

A.13 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 2 destination nodes, and from 0
to 6 intermediary nodes. Without in-network preprocessing operations. 249

A.14 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 3 destination nodes, and from 0
to 6 intermediary nodes. Without in-network preprocessing operations. 249

A.15 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 4 destination nodes, and from 0
to 6 intermediary nodes. Without in-network preprocessing operations. 249

A.16 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 5 destination nodes, and from 0
to 6 intermediary nodes. Without in-network preprocessing operations. 250

A.17 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 6 destination nodes, and from 0
to 6 intermediary nodes. Without in-network preprocessing operations. 250

A.18 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 1 destination node, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations. 250

A.19 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 2 destination nodes, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations. 250

A.20 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 3 destination nodes, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations. 251

A.21 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 4 destination nodes, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations. 251

A.22 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 5 destination nodes, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations. 251

xxviii List of tables

A.23 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 6 destination nodes, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations. 251

A.24 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 1 destination node, and from 0
to 6 intermediary nodes. With in-network preprocessing operations. 252

A.25 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 2 destination nodes, and from 0
to 6 intermediary nodes. With in-network preprocessing operations. 252

A.26 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 3 destination nodes, and from 0
to 6 intermediary nodes. With in-network preprocessing operations. 252

A.27 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 4 destination nodes, and from 0
to 6 intermediary nodes. With in-network preprocessing operations. 252

A.28 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 5 destination nodes, and from 0
to 6 intermediary nodes. With in-network preprocessing operations. 253

A.29 Data gathering under Manhattan Grid mobility model. Networks composed of
10 mobile source nodes, 5 fixed source nodes, 6 destination nodes, and from 0
to 6 intermediary nodes. With in-network preprocessing operations. 253

A.30 Average battery level of network nodes over time when in-network preprocess-
ing is applied vs. when it is not applied. 254

Part I

Introduction, Foundations and Related
Work

Chapter 1

Introduction

Chapter Abstract

Monitoring systems have become a common tool in many application domains (e.g., health, home,

military, climate action, environment and resource efficiency). Most of them share requirements,

objectives and technology, but they also have specific particularities. Advances in sensors and wearable

devices collect data "everywhere" and "anytime". The Wireless Sensor Networks (WSNs) have driven

the development of more complex networks that include mobile elements (i.e., portable devices, sensors

or wearables). Cloud paradigms (e.g., edge computing, mobile cloud computing) have gained traction in

recent years but it is important to stress the importance of localised scalability. Maintaining localised

scalability is a reference point for the main objective of this thesis which is to provide an integral solution

to common problems (i.e., speed up prototyping, post-deployment modifications and data gathering) of

generic monitoring systems.

This chapter comprises an overview of the ideas, trends, concepts and considerations that have been

studied in more depth during the development of the thesis. It also describes the motivation, objectives

proposed and methodology followed to achieve them as well as the structure of the manuscript.

Chapter Contents
1.1 Introduction . 4

1.2 Motivation . 5

1.3 Objectives . 8

1.4 Methodology . 9

1.5 Manuscript Structure . 10

1.6 Publications . 12

4 Introduction

1.1 Introduction

The socio-economic changes and advances in technology are opening new opportunities in
the field of health (eHealth) [3], Ambient Assisting Living (AAL) [58] and Internet of Things
(IoT) [100]. A large number of devices support the access to the information “everywhere” and
“anytime” which promote the development of alternatives based on software systems alleviating
deficiencies and providing satisfactory solutions [181].

Modern eHealth, AAL and IoT systems are increasing in complexity due to internal and
external factors, such as contextual conditions, user needs, modifications required in the system
post-deployment, and services and resources availability. Therefore, this plethora of issues
causes difficult-to-predict situations at design time before system deployment but these kind
of systems also have similarities in common [258, 114]. Concerning to these factors, it is
worth noting that the emphasis on building intelligent environments is driving the monitoring
of context-specific information [70]; that the rise of the adaptation concept highlights the
importance of making modifications at run-time and that it is feasible to [218, 211]; and that to
gather the data, it is required a software infrastructure supporting the data management, sensors
and actuators, and also the heterogeneity of the devices [83].

From a software point of view, the Service Oriented Architecture (SOA) has been claimed as
the most suitable architectural approach for IoT, and more recently Microservices Architecture
(MSA) is exhibiting a great potential [52, 50]. Both SOA and MSA support the decomposition
of a system into services, although several concerns such as deployment, user interface,
flexibility, management, scalability and service size present certain differences [51]. SOA was
initially designed to operate in static environments but not straightforwardly in dynamic ones
like IoT, in part because SOA relies on costly resource-consuming protocols [41]. On this basis,
the combination of SOA with specific characteristics of the field of Autonomous Computing
[259], resulting in adaptive or selfadaptive architectures, has been gaining importance in the
research community because of the need to support autonomy in all phases of the service life
cycle [1]. In addition, MSA is exhibiting a great potential in IoT [52, 50].

Addressing this plethora of issues can be complex and there are many challenges but
also numerous approaches in research that addressed them individually [270]. It is also well
known that End-User Development (EUD) helps to provide abstraction and tools to adapt the
complexity in the development of domain-specific systems to end-users or domain-specific
developers, who know best the needs and the specific requirements of applications in their
domain [27]. It is worthy to mention that visual editing approaches increase the abstraction
level and thereby, users can focus only on the functional requirements of their systems in

1.2 Motivation 5

an intuitive way, rather than on the specifics of the underlying technology (communication
protocols, programming languages or development APIs) [119].

From a network perspective, Mobile Wireless Sensor Networks (MWSNs) include mobile
nodes (or elements) that can help to increase coverage range, storage capacity, connectivity,
network reliability, lifetime, data collection, data gathering, and to reduce power consumption
[269]. The term mobile will henceforth be considered to refer to a portable device, sensor or
wearable (i.e., an element with built-in sensors) that may or may not being moved, while the
term node will encompass the possibility of being an element or a grouping of them. In addition,
these mobile elements (MEs) could help to perform in-network preprocessing operations in
order to optimise the Wireless Sensor Network (WSN) performance mainly to get meaningful
information leveraging localised scalability and edge computing paradigm [206, 219]. The
MEs could be the intermediaries between data sources and cloud data centers [219].

In conclusion, the ensemble of all the pieces (i.e., components, services, microservices,
tools, mechanisms, techniques, methodologies, etc.) could be framed in a framework that
would promote reusability, facilitate the solution to related problems and development tasks,
and where a set of components would be offered to be utilised by the users who would not
need to know how they are implemented [121, 122]. Therefore, experts can encapsulate their
knowledge in a framework and even standardise approaches with methodological frameworks
which provide a guide, a guideline, or a series of steps to carry out a process [152, 94].

1.2 Motivation

The motivation for this research is to respond to the needs that arise in modern computing
environments. The following describes the details that have inspired and encouraged us to
combine relevant technologies and approaches to provide a comprehensive solution.

In health and AAL domains, associations, institutions and medical staff agree that Infor-
mation and Communication Technologies (ICTs) help to provide a more efficient, effective,
reliable and faster service, health care, diagnosis, treatment and follow-up, reduce waiting
times, saves costs, and citizens obtain useful information and alternative diagnoses [89, 107].
The World Health Organization (WHO) Global Observatory for eHealth (GOe) defines that
mobile devices in combination with wireless technologies had great potential to support health
practices, and this is what is known as mobile health (mHealth) [199]. Currently, more than 2.5
billion people own their a mobile device and Bring your Own Device (BYOD) trend are being
well accepted by the population [195, 136].

6 Introduction

In recent years, the use of sensors and wearables is growing fast, and their low-cost
combination with communication technologies is making easier the deployment of pervasive
monitoring systems, the development of smart homes and environments that make remote
patient monitoring feasible. These systems are especially useful for patients with limited
access to hospitals or who require routine check-ups, or elderly people [24, 192]. The AAL
comprises many ideas but one of the most important is Ambient Intelligence (AmI) [49]. AmI
promotes unconscious human interaction with the environment (or with its surroundings) which
is related with to ubiquitous computing paradigm [257]. AAL involves a wide variety of sensors
technologies, services and systems to improve the quality of life of people and their relatives
[49].

In the meantime, IoT has become one of the most powerful technologies for interconnecting
numerous heterogeneous smart objects (e.g., devices, sensors, actuators, smartphones, cameras,
smart wheelchairs or robots) creating large and dynamic networks. The number of devices
connected to the Internet increases every year and is expected to reach 75.44 billion by 2025
[5, 205]. In fact, IoT is considered a driving force for the development of smart cities and the
support of specific application domains (e.g., healthcare, environmental monitoring, vehicles,
transportation, smart homes, tourism, market, smart retail, agriculture, industry or energy)
[5, 205]. IoT also give rise to Internet of Medical Things (IoMT) [222, 193].

Wireless Sensor Networks (WSNs) are perceived as a feasible solution to large-scale
tracking and monitoring in many areas of the domains already introduced [144, 253, 269].
Traditional WSNs were composed of a set of static devices, with pre-determined positions,
which can connect by single-hop to cover partial areas, or multi-hop paths to cover large areas
[265]. As a step forward, MWSNs emerged [269]. WSNs also comprise Body Sensor Networks
(BSNs) that monitor corporal human conditions (i.e., ageing population, dependent people,
chronic patients and vulnerable groups) [93]. As a result, wireless connections have become a
backbone of application and systems, and they have been ranked among the top 10 technologies
that are changing the world [140, 105].

Related to individual issues, context and quality information can be gathered by devices,
sensors and wearables, and even processed by themselves [46]. It is even easier to modify the
requirements or behaviour of the monitoring systems at run-time, and address the dynamic
modifications that can occur as result of considering the context information [114].

Several architectural solutions have been proposed to improve the availability of the services
deployed and minimising battery consumption in systems through service replication and
selfconfiguration techniques [96, 97]; supporting a large number of users and heterogeneous
devices, collaborating and sharing information (from smart cars to sensors or wearables) [249];

1.2 Motivation 7

enhancing interoperability, flexibility, extensibility, maintenance and low coupling through
services and microservices [230]; modelling the opportunistic properties of the IoT systems,
which remains evolving [47]. Data gathering approaches have also been proposed. A distinction
must be made between data collection and data gathering. The term data collection is more
commonly used when referring to the taking of measurements through a device while data
gathering term is closer to data gathered from sensors that can be transported by MEs or send
directly to a centralised unit for intensive processing. When data is being gathered and the
volume of data is large, transmission may be impractical, bottlenecks can be caused, and
certain systems may have latency requirements that can not be guaranteed due to changes in
the network [55, 253]. In these circumstances, applying an edge computing approach could
help to alleviate these problems. In this way, data fusion combines data from multiple sensors,
speeds up the transmission process, and favours the collection of meaningful, reliable, accurate,
complete information thus maintaining the relevance of the concept of localised scalability,
allowing customisation of applications [253, 24]. It should be noted that the energy required
to do computation is 1000 times less than that needed to transmit [253]. Therefore, edge
devices are sometimes used to alleviate both issues due to one of their main purposes is bring
data computation closer to source nodes [219]. Therefore, source nodes perform first-order
operations (e.g., sensing, filtering, aggregation, etc.) on raw data and can be connected to a
fog node which frequently performs more complex operations [219, 55]. WSNs can include a
large number of sensors and even various base stations, and monitoring systems generally share
similar operations, features, and several tasks can be reused within different applications [137].

However, it should be noted that systems must be able to operate in highly dynamic networks
with unpredictable network topology changes and unreliable communication channels, but there
are numerous challenges to be solved and static environments (or networks) are still common
[47]. Solutions for representation, architecture, self-* methods to discover, operate, manage,
compose, coordinate and deploy the services, microservices or smart objects at runtime are still
needed [1, 50] and quality of attributes (i.e., inter alia, availability, reliability, performance and
scalability) must be taken into account for efficient service provision [72]. Furthermore, society
demands that distributed systems are available 24/7, require no human supervision and minimal
maintenance effort [201]. These make it essential to look for versatile, flexible, resilient and
robust design and implementation solutions [201].

8 Introduction

1.3 Objectives

The main objective of this PhD thesis is to provide solutions that facilitate the development
of monitoring systems, their deployment, adaptations and upgrades in dynamic and mobile
environments, and performance improvements in data centralisation and indirectly in energy
consumption. To achieve this, the following goals are proposed:

• Goal 1: To analyse the characteristics, hardware elements, infrastructure and software
architectures that are incorporated in monitoring and control systems for specific applica-
tion domains.

Several application domains will be studied more in deep to check whether they truly
share commonalities or characteristics.

• Goal 2: To study software approaches and architectures that are suited to dynamic
environments (SOA, SOA 2.0, EDA, ROA, agent architecture, etc.), frameworks and
methodologies that favour software reuse and development, as well as cloud model
paradigms.

From this objective we hope to gain knowledge that will help us in the development of
our proposal.

• Goal 3: Literature review. The search should be focused on proposals for both ad-
hoc and generic monitoring systems designs. In addition, proposals for solutions to
specific challenges in mobile and dynamic networks, and mechanisms to support system
modifications or adaptations should be explored.

• Goal 4: To design and implement an architecture that supports the deployment of a
monitoring system, with minimum human intervention (i.e. autonomously) in a dynamic
network with and without mobile elements. It also supports upgrading the system
once deployed, at runtime. The upgrading of the system would allow to introduce
modifications or adaptations by adding, modifying or removing functionality and/or
sensors/wearables, offering continuous and personalised monitoring to users according
to their current conditions and state. Furthermore, the architecture should support in-
network preprocessing and centralisation of data. In addition, note that systems developed
using this architecture should support the inclusion of self-adaptation mechanisms.

• Goal 5: To study the supporting infrastructures (sensors and wearables), communication
and integration technologies, simulators for deployment.

1.4 Methodology 9

Communications and technologies evolve, just as simulator versions change. With this
goal in mind, the aim is to study the different options and acquire the skills to select the
most appropriate ones to incorporate in our research.

• Goal 6: To determine and provide solutions to manage monitoring systems. Consider-
ation should be given to the gathering of context information (i.e., physiological and
environmental context information) to meet the objectives of user monitoring. Moreover,
it could be of interest to consider devices state in order to satisfy the quality of service
(QoS).

• Goal 7: To propose a framework, taking into account which has been studied in the
goals described previously, that maximises and abstracts reuse issues in order to facilitate
the design and favour the rapid development of monitoring systems. Furthermore,
it should support both modifications within monitoring systems and data gathering
actions. For the data gathering, among others, it should be considered the inclusion of
in-network preprocessing actions in order to optimise WSN performance in terms of
increasing success rate of meaningful information, and minimising bandwidth and energy
consumption.

• Goal 8: To show the behaviour of the proposal which will be illustrated by a case study.
In addition, to test the validity of the proposal in dynamic and mobile environments.

1.4 Methodology

First of all, we will perform a study of different areas that frames each of the proposed objectives.
This will encourage the development of new approaches that complement existing researches.

Experts from the health sector will be involved. They will help to define the needs and
constraints of each specific case study. We will analyse the problem, define the requirements,
propose a design and develop the proposal. Subsequently, we will proceed with the evaluation
of the proposal in real-life scenarios, including standardised evaluation metrics. In order to
achieve this, we will consider four of the six common phases of software technologies [216]:

• "Basic research" consists on create the structure of the problem from research concepts
and ideas.

• "Concept formulation" through informal communication of ideas between the researchers
involved and proposing solutions to concrete sub-problems.

10 Introduction

• "Development and extension" generalising the problem.

• "Internal enhancement and exploration" extending the approach to other domains, using
in real situations, developing materials, and showing results.

Dooley [69] shows that a case study can hold multiple cases, while considering both
quantitative and qualitative data and various research paradigms. He also argues that they help
developers in understanding more complex issues and allow different methodologies to be
combined in data collection, data comparison and validation. Therefore, we will take such
reflections into consideration in addition to those of Tichy’s reflections [238]. From Tichy’s
reflections it is worth highlight his concern about the speed of change in technology. We will
therefore try to follow his recommendation, anticipating changes that may be required, in
order to provide solutions that are sustainable or that can accommodate the implementation of
modifications.

We will follow the Software or Systems Development Life-Cycles (SDLC) [198] which "is

a conceptual framework or process" that considers the different stages of the development of an
application that can be summarised as initial study, deployment and maintenance. Specifically,
we will select the waterfall model but if necessary, we will combine, substitute or adapt it
with other existing models in the literature. The waterfall model comprises the "evaluation,

requirements, analysis, design, development, validation, and development" stage, and it is
bi-directional, i.e. it allows moving from one stage to the next but also back to the previous one
or even to its predecessor.

The framework proposal will follow the same methodology but with the experience and
knowledge gained from the previous cases.

The proposals and results obtained from the research will be submitted for review, through
participation in different scientific dissemination media, such as forums, national and interna-
tional conferences, and journals of recognised prestige. Shaw has already advanced that an
effort is required to validate the work, both at the individual level of research and in the long
term (e.g., in projects) [216].

1.5 Manuscript Structure

Next, the structure of the PhD thesis is described.

• In Chapter 1, some ideas and relevant concepts are introduced, and the motivation points,
the main objective and the goals set to achieve it are exposed. It also describes the
methodology, the structure of the document.

1.5 Manuscript Structure 11

• Chapter 2 includes a review of the foundations and technologies considered as a reference
and/or relevant to achieve the proposed goals.

• Chapter 3 presents a selection of relevant proposals related to the main objective to
achieved during the development of this thesis.

• In Chapter 4, we introduce the application domains addressed, as well as the systems
developed and used by psychologies and the medical teams of Hospital Universitario
Virgen de las Nieves (de Granada), Hospital Universitario Virgen del Rocío (de Sevilla),
and researchers from University of Granada. It also summarises some of the results
obtained from the derived studies in which we have been directly involved. The study of
these domains, and the system proposals provided, have served as a basis for identifying
common functionalities shared by the plethora of monitoring systems designed ad-hoc.
As result of the study of several application domains, as well as the development of
several monitoring systems for some of them, the foundations of the ASTREA framework
(described in Chapter 5) are laid.

• In Chapter 5, we present ASTREA framework as main contribution. ASTREA aims to
be an integral solution to speed up prototyping of monitoring systems, and supporting
post-deployment adaptations and upgrades of these monitoring systems at runtime as
well as data gathering. These monitoring systems will be deployed in mobile and
dynamic environments. Useful aspects of design processes, hardware devices and
functionalities have been embedded within ASTREA framework. ASTREA includes a
visual editing tool for designing the monitoring systems by domain-specific software
developers who can focus on system design. It also comprises a mechanism for the
autonomous deployment, and propagation of adaptations and upgrades with minimal
human intervention of the systems which are already monitoring. Furthermore, ASTREA
addresses how to increment data gathering success rate based on in-network preprocessing
by data gathering mechanism. Moreover, it also includes the option to prioritise the data
that prevails under adverse conditions (e.g., no storage available). This chapter provides
detailed information about ASTREA, presents a case study, and includes implementation
and deployment in a real test environment.

• Chapter 6 presents the material and methods of the ASTREA evaluation for data trans-
mission and propagation time. To achieve it, two studies are described, results obtained
are shown and discussed.

12 Introduction

• Chapter 7 highlights the contributions of the thesis, summarises the objectives achieved
and outlines the future work.

1.6 Publications

The publications obtained as result of this research work are shown below.

Journals

• Using Actigraphy and mHealth Systems for an Objective Analysis of Sleep Quality
on Systemic Lupus Erythematosus Patients. S. Balderas-Díaz, M. P. Martínez, G.
Guerrero-Contreras, E. Miró, K. Benghazi, A. I. Sánchez, J. L. Garrido, G. Prados.
Methods of Information in Medicine 2017 vol: 56 (2) pp: 171-179. [JCR Q3; IF 1.531]
10.3414/ME16-02-0011

• A Context-Aware Architecture Supporting Service Availability in Mobile Cloud
Computing. G. Guerrero-Contreras, J. L. Garrido, S. Balderas-Díaz, C. Rodríguez-
Domínguez. IEEE Transactions on Services Computing 2017 vol: 10 (6) pp: 956 - 968.
[JCR Q1; IF 4.418] 10.1109/TSC.2016.2540629

• Self-adaptive deployment of services in mobile environments: a study of the com-
munication reliability on the host election algorithm. G. Guerrero-Contreras, S.
Balderas-Díaz, C. Rodríguez-Domínguez, J. L. Garrido, A. Valenzuela. Journal of

Reliable Intelligent Environments 2016 vol: 2 (4) pp: 197-207. 10.1007/s40860-016-
0029-3

Book Chapters

• Designing New Low-Cost Home-Oriented Systems for Monitoring and Diagnosis
of Patients with Sleep Apnea-Hypopnea. S. Balderas-Díaz, K. Benghazi, J. L. Garrido,
G. Guerrero-Contreras, E. Miró. ICTs for Improving Patients Rehabilitation Research

Techniques 2015. pp 210-221. 10.1007/978-3-662-48645-0_18

International Conferences

• Design of an Adaptable mHealth System Supporting a Psycho-educational Pro-
gram for Pregnant Women with SGA Foetuses. S. Balderas-Díaz, M. J. Rodríguez-

1.6 Publications 13

Fórtiz, J. L. Garrido, M. Bellido-González, G. Guerrero-Contreras. International Confer-

ence on Conceptual Modeling 2021 pp: 125-135. 10.1007/978-3-030-88358-4_11

• Integrating a Dual Method on a General Architecture to Self-Adaptive Monitoring
Systems. S. Balderas-Díaz, K. Benghazi, J. L. Garrido, G. P. M. O’Hare, G. Guerrero-
Contreras. Advances in Intelligent Systems and Computing 2017 vol: 1 pp: 528-538.
10.1007/978-3-319-56535-4_54

• Impact of Transmission Communication Protocol on a Self-adaptive Architecture
for Dynamic Network Environments. G. Guerrero-Contreras, J. L. Garrido, M. J.
Rodríguez-Fórtiz, G. P. M. O’Hare, S. Balderas-Díaz. Advances in Intelligent Systems

and Computing 2017 vol: 206 pp: 115-124. 10.1007/978-3-319-56538-5_12

• Designing Configurable and Adaptive Systems in eHealth. S. Balderas-Díaz, K.
Benghazi, G. Prados, E. Miró Proceedings of the 3rd 2015 Workshop on ICTs for

improving Patients Rehabilitation Research Techniques 2015 pp: 118-121. 10.1145/283-
8-944-28389-7_3

• An Approach Addressing Service Availability in Mobile Environments. G. Guerrero-
Contreras, S. Balderas-Díaz, C. Rodríguez-Domínguez, A. Valenzuela, J. L. Garrido.
Workshop Proceedings of the 11th International Conference on Intelligent Environments,
Prague, Czech Republic, July 15-17, 2015. vol: 19 pp: 46-57. 10.3233/978-1-61499-
530-2-46

• Dynamic Replication and Deployment of Services in Mobile Environments. G.
Guerrero-Contreras, C. Rodríguez-Domínguez, S. Balderas-Díaz, J. L. Garrido. New

Contributions in Information Systems and Technologies 2015 vol: 353 pp: 855-864.
10.1007/978-3-319-16486-1_85

• Self-adaptive Service Deployment in Context-Aware Systems. G. Guerrero-Contreras,
J. L. Garrido, C. Rodríguez-Domínguez, S. Balderas-Díaz. Ubiquitous Computing and

Ambient Intelligence. Personalisation and User Adapted Services. UCAmI 2014. vol
8867, pp. 259–262. 10.1007/978-3-319-13102-3_42

• Consistent Management of Context Information in Ubiquitous Systems. G. Guerrero-
Contreras, J.L., Garrido, S. Balderas-Díaz, C. Rodríguez-Domínguez. Internet and

Distributed Computing Systems - 7th International Conference, (IDCS) 2014, Calabria,
Italy, September 22-24, 2014. 10.1007/978-3-319-11692-1_16

14 Introduction

• Towards a Self-Adaptive Deployable Service Architecture for the Consistent Re-
source Management in Ubiquitous Environments. G. Guerrero-Contreras, J. L. Gar-
rido, K. Benghazi, S. Balderas-Díaz, C. Rodríguez-Domínguez. Workshop Proceedings

of the 10th International Conference on Intelligent Environments, Shanghai, China, June
30 - July 1, 2014. vol: 18 pp: 206-217. 10.3233/978-1-61499-411-4-206

• A service-based platform for monitoring and diagnosis of patients with SAHS symp-
toms. S. Balderas-Díaz, K. Benghazi, J.L. Garrido, G. Guerrero-Contreras, E. Miró.
Proceedings of the 8th International Conference on Pervasive Computing Technologies

for Healthcare, PervasiveHealth 2014, Oldenburg, Germany, May 20-23, 2014. pp:
290-293. 10.4108/icst.pervasivehealth.2014.255365

Chapter 2

Foundations and Technologies

Chapter Abstract

Proposing a comprehensive solution to speed up the development of monitoring systems, supporting the

ability to be modified in a dynamic network and mobile environment, and improving data gathering rates

require to study the fundamentals related to each of the objectives of this thesis. This chapter provides a

review of the most relevant aspects of these fundamentals. Adaptation and self-adaptation, autonomic

computing and context-awareness have been key concepts for the development of user-centric systems

and from which quality properties can be improved. Modularity, encapsulation and low coupling are

software-level properties that must be preserved in order to enhance reuse, minimise dependencies

between entities and facilitate modifications to monitoring systems. At this regard, services and

microservices are highly recommended technologies in distributed environments and eHealth, AAL and

IoT domains. Agent systems and multi-agent systems have also been reviewed. Software infrastructures

(i.e., architectures, frameworks, agile practices, etc.) to host the functionality as well as networks

infrastructures (i.e., sensors, wearables, mobile nodes, etc.) have been considered. Finally, we have

review the evaluation tools (i.e., simulators) that allow us to assess the impact of monitoring systems

configurations deployment and data gathering in dynamic and mobile networks.

Chapter Contents
2.1 Adaptation and Self-Adaptation . 17

2.2 Software and Modular Entities . 26

2.3 Software Architectures . 33

2.4 Frameworks . 47

2.5 Middlewares . 54

2.6 Development and Operations (DevOps) 57

2.7 Cloud Computing . 58

16 Foundations and Technologies

2.8 Devices and Networks . 60

2.9 Network Simulators . 71

2.10 Summary . 73

2.1 Adaptation and Self-Adaptation 17

2.1 Adaptation and Self-Adaptation

A priori, the design and development of software systems is dependent on the application
domain and specific purpose. However, systems can be adaptive and/or self-adaptive [64]:

• Adaptation is defined as "the ability of the application/system to modify and reconfigure

as a result of (i.e. in reaction to) context changes [...] to deliver the same service in

different ways when requested in different contexts and at different points in time"; and

• Self-adaptation occurs when the application/system is autonomous or, in other words, it
is able to act on its own carrying out the adaptation process without human intervention
in response to changes in its context or operating environment. This approach has been
proposed to address the increasing complexity management of systems after their initial
deployment, adapting themselves in consideration of changes in their environment and
user requirements leading to Self-Adaptive Systems (SAS) [260].

Here, it is worth mentioning the concept of autonomic computing [127] for system self-
management achieving 24/7 system performance and maintenance according to the goals of an
administrators but relieving it of the workload. Autonomic systems must continuously monitor
themselves and update their components. To achieve it, this concept defines self-* to group
four properties that will be carried out autonomously by the systems themselves:

• Self-configuration includes installation according to high-level policies, configuration,
integration of complex, even error-prone systems, and monitoring of time consumed. It
also includes automatic learning, taking into account the composition and configuration
of the system when new components are included so that other components can use them
or modify their own behaviour.

• Self-optimisation involves setting parameters improving system operations, efficiency or
cost, active search for updates, and performance improvement.

• Self-healing focuses on detecting, diagnosing, and repairing localised problems resulting
from bugs or failures, identified from log files analyses and supplementary data, and then
installing patches and retest.

• Self-protecting defending from correlated problems and malicious attacks or cascading
failures not corrected by self-healing as well as early detection of problems.

Salehie et al. [202] classify them as major level properties and group the following into a
primitive level (Figure 2.1):

18 Foundations and Technologies

• Self-awareness refers to the fact that, since the system is continuously monitoring itself,
it is aware of its internal state and its functioning [108].

• Context-awareness means that the system knows the environment in which it operates
[208].

Fig. 2.1 Hierarchy of the self-* properties proposed by Salehie et al. [202]

2.1.1 Context

Anind K. Dey [65] proposed in 2001 the context definition as “. . . any information that can be

used to characterize the situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an application, including the user

and applications themselves. By taking into consideration this definition, Dey proposed the
definition of context-aware software as A system is context-aware if it uses context to provide

relevant information and/or services to the user, where relevancy depends on the user’s task. In
turn, the context information can be classified into different categories [263] as can be seen in
Figure 2.2.

• System context is the information related with the system itself (e.g., CPU, network,
status, etc.). This category collect information from the Open System Interconnections

(OSI) model: application[263].

• User context is the information related with the user (e.g.,gender, age, weight, height,
body mass index, medical history, personal state, etc.). It also can be considered the
type of activity that the user is performing, the users involved in the activity and how
to influence each other, the location of users, the place in which the user is, and the
characteristics of their environment [139].

2.1 Adaptation and Self-Adaptation 19

• Environmental context is the information related with the environment (e.g., temperature,
luminosity, noise, weather, etc.) not included within the two previous (i.e., system context

and user context).

• Temporal context is the information related with time (i.e., time, day, etc.).

Fig. 2.2 Classification of context information proposed by Wrona et al. [263]

Adaptive systems are focused on specifying the full domain from early stages, which is
more complex than the usual process but it provides clear advantages [64]. These systems must
include monitoring information on their characteristics as well as the management of it, or
in other words, the extraction and use of this information from the context or self-awareness
to provide services to users [64], or to detect changes which could be relevant to improve
the support provided at a point in time, and to improve quality properties [65, 178]. Several
researchers even point out that from the early stages of design it is necessary to consider the
infrastructure of devices (wearables, sensors, mobile devices, etc.) needed to collect information
and satisfy system requirements [83, 252]. Depending on the origin of the information the
system should manage and interpret it differently [139].

In recent years, a large number of works address self-adaptation considering context
information, from different points of view, e.g. taxonomies, architectures implementing control

20 Foundations and Technologies

loops, adaptive requirements, etc. with the long-term goal of laying the foundations for the
systematic development of future generations of self-adaptive systems [201].

2.1.2 Adaptation Dimensions

There are different perspectives and aspects to consider and which must be implemented to
perform self-adaptation in SAS and adaption in general [135]. In Figure 2.3, Krupitze et
al. present a taxonomy whose dimensions are related to questions to be asked during the
implementation of the adaptation process. Specifically, the association of each of the questions
and their dimension is as follows: When? related with Time dimension; Why? related with
Reason; Where? related with Level; What? related with Technique; Who? related with aimed at

a type of automatic adaptation; and How? related with adaptation control.

Fig. 2.3 Taxonomy dimensions of self-adaptation proposed by Krupitzer et al. [135]

The granular decomposition of perspectives included in each dimension of the proposal by
Krupitzer et al. [135], combined and complemented with other proposals by other authors, is
detailed below.

• Time dimension:

– Predictive detects the need for adaptation before performance declines.

– Proactive, an adaptation is carried out in order to improve performance without
anticipating a drop in performance. This option is preferable by users.

2.1 Adaptation and Self-Adaptation 21

• Reason dimension where an adaptation is a reaction to one or more changes. This also
involve knowledge to consider information about the system, context and users, and
several mechanisms (e.g., ontologies) are used according to the implementation that has
been carried out.

– Context such as changing a variable.

– Technical resources such as changing a hardware component or hardware resources
(e.g., a software fault, an alternative network connection or battery level of a device).

– User or users information to know their short-term and long-term interests and
preferences [102].

• Level at which to implement change, it could be any of the following:

– Application correspond to a current instance that may be running on one device or
distributed and running on multiple devices. It can also refer to the system. The
adaptation could be to mute the phone if the person has a meeting that is detected
by his or her calendar.

– System software controllers the hardware. Applications are at the top of software
systems. The adaptation could be to exchange software components at runtime.

– Communication involves physical network infrastructures (e.g., routers) and com-

munication patterns (e.g., events, publish/subscribe messages). Adaptation could
consist of switching from WLAN to 5G.

– Technical resources may cause, for example, a backup to be made.

– Context may cause, for example, mute the microphones of the attendees at a meeting
except for the speaker’s microphone.

• Technique to specify "What kind of change is needed?" or "What kind of action is

needed?" to perform the adaptation:

– Parameter to adjusts specific parameters which may be simple but can be complex
if the parameters are dependent on other parameters. Parameters can change at
runtime and it could be defined policies to decide how and when the values change
[145]. An example could be loading an image to a mobile device with lower quality
due to bandwidth limitation. Kakousis et al. [125] indicate that this technique is
also used to modify extra-functional properties (i.e., performance, reliability and
other QoS properties), and Ketfi et al. [128] propose the following classification for
QoS adaptation:

22 Foundations and Technologies

* Corrective adaptation identifies the erroneous component and replaces it with
a new version that provides the same functionality.

* Adaptive adaptation to change the application to changes affecting its environ-
ment.

* Extending adaptation with new components in response to new user function-
alities not considered during development or at deployment.

* Perfective adaptation is about improving and optimising the application com-
ponents even when there are no errors.

– Structure to exchange, reorganising, modify, add or remove components (or services,
modules, etc.). McKinley et al. [151] call it compositional adaptation to refer to
algorithms or system components that can be dynamically exchanged at runtime.
In addition, executable and compilable units could be used to adapt or personalised
the system, adding, removing or replacing units of code at deployment, load or
runtime, such as modules (e.g., jars) [7]. Code mobility [125] consists of migrating
or moving instances of programs, code or objects from one host to another at
runtime. Mobility can be categorised as strong when code and execution state move
and weak whether it only move code and some kind on initialisation is performed.
Based on two models, code pushing (one unit sends code to another) or code pulling

(retrieve and deploy a code), there are four paradigms supporting code mobility:

* Client/Server: clients request the execution of a specific code to the server.

* Code On Demand (COD): clients can download code, an executable or an
application, and then may even transmit it to other nodes. It is useful for
upgrades and when it is not possible to pre-load full functionality due to
limited device resources or unpredictable context changes.

* Remote evaluation is used by nodes that push code to other nodes with higher
computational capacity and delegate evaluation tasks (i.e., resource demanding

computations) to them.

* Mobile agent is an autonomous unit that is incorporated into a network to
perform specific tasks. Its use is especially useful in networks where high
availability is not guaranteed (i.e., disconnections).

– Context refers to making changes to the context, e.g. modifying the context using
actuators.

• Adaptation control to answer "How to adapt?" which involves monitoring systems and
environment, analysis, planning and executing.

2.1 Adaptation and Self-Adaptation 23

– Approach that distinguishes between internal and external approaches. With in-

ternal approach, the adaptation and system resources are linked whereas with the
external approach they are not, which favours modulation and maintenance.

– Adaptation decision criteria includes methodologies and techniques mentioned in
the previous dimension. The adaptation involves the implementation of changes that
may affect system properties or variables without changing the structure or parts of
the system, but adaptation may also affect the structure, interface, or components.
Krupitzer et al. [135] distinguish between models, rules and policies, goals, and
utility functions, and Kakousis et al. [125] granulate it on more levels such as
action-based adaptation, goal-based adaptation, and utility functions, case-based

reasoning, and reinforcement learning. Each of them can be described as follow:

* Models describe the architecture of the running systems, and depending on
the level of abstraction, adaptation or customisation can be generalised [10].
Here, at the highest level, Sabatucci et al. [201] introduces a metamodel that
classifies smart systems into a specific category according to their properties.
The metamodel reflects passive entities (e.g., software applications, physical
devices, etc.) and environmental objects (e.g., physical or digital). Smart
systems are known because "owns a kind of smart entity" to know their envi-
ronment and act accordingly, and they may also posses an Awareness Engine to
detect the system model at runtime and change the strategy built at design time
supported by Solution Builder which works with a repository of predefined
functionalities.

* Action-based (or rule-based) adaptation is the most popular approach used for
self-managing. Systems are defined as being in a state S at an instant t and if
P (policy) is satisfied by an action a, it will occur a transition (probabilistic
or deterministic) to another state S2. In addition, the concept of event-action
rules [255] is used for dynamic reconfiguration of component-based architec-
tures. Rule-based approaches has a binary decision (IF-THEN rules) limitation
because the rule is evaluated as true or false which will be routinely checked
considering the specification, and triggered autonomously when they are sat-
isfied (i.e., the parameters are within the condition thresholds) in order to
self-adapt the configuration of the architecture. However, Fuzzy Logic and
fuzzy rules introduces multi-values, it means IF-THEN rules with simulta-
neously valid possibilities. This must be specified by developers at design
time with the aim of trigger a particular adaptation mechanisms at runtime

24 Foundations and Technologies

as response to a context change. It is noteworthy that any possible context
change that should trigger an adaptation must be associated with at least one
adaptation rule. The more elements of the context we are considering, the more
rules we need to specify. To conclude, dynamic modification and evolution of
rules increases complexity and usually requires recompilation.

* Goal-based adaptation does not specify a transition from an state S to S2. It is
up to the system to decide which adaptation causes the transition to the target
state. This approach works with high-level goals closer to the human reasoning
but requires the use of sophisticated planning and modelling algorithms to
include this rational behaviour. Moreover, often is frequent the use of modules
to monitor parameters and predictions. However, conflicting rules is not
supported, nor is the comparison of mechanisms where more than one state
can achieve the same goal. Finally, the inclusion of goals often requires
recompilation.

* Utility functions are mathematical utilities that evaluate the system state from
measurement preferences and/or their alternatives and return a value as result
which is used to enable adaptive reasoning. This approach is considered
an improvement on the goal-based adaptation approach because it does not
classify the system of states as desired or undesired but assigns a numerical
value to each option, and therefore more precision in terms of applicability of
the optimal option considering the current context. Utility functions enable
conflict management when adaptation goals contradict each other, allow user
preferences to be considered, are frequently used in QoS-based with changing
environments, fit well in ubiquitous environments, are a good mechanism for
systems where several self-adaptive applications are running simultaneously.

* Case-based reasoning is based on the assumption that similar problems have
similar solutions and problems tend to recur. Chaining generalised rules CBR
are used to generate adaptation decisions from prior knowledge acquired from
stored cases (a large number of samples) and training, which will generate
meaningful adaptation decisions. This process requires an important effort
because the complexity of knowledge tasks. The simplest adaptation involves
the application of rules introduced by experts or learned from the application
of algorithms, on top of a previous solution. However, it is a costly process
because of the knowledge required of the rules, the updates to be made and the

2.1 Adaptation and Self-Adaptation 25

changes in the context. CBR can evolve because it can learn for itself from
previous successful and unsuccessful decisions.

* Reinforcement learning (RL) is an unsupervised mechanism that selects con-
crete actions on a trial-and-error basis in uncertain environments to achieve
a long-term goal. The immediate reward is likely to be poor. There are ap-
proaches that learn from experience and others that are somewhat slower and
require more storage because they use models to explore future options before
they actually occur. This approach works well in environments with uncertainty
and unexpected changes, better decisions can be achieved by applying rewards
to learning, and processing feedback.

– Degree of decentralization includes decentralised, hybrid, and centralised.

In addition, other classifications can be found in the literature. Kakousis et al. [125] empha-
sises that adaptation can be either static or dynamic. In static adaptation, elements/components
are selected or customised pre-runtime (i.e., design, compilation, loading) but executed after
compilation while in dynamic adaptation methods can be applied and elements/components
can be modified while the system is running (i.e., at runtime) without recompiling or restarting
the system. Kakousis et al. [125] comprises three categories of adaptation:

• Requirements adaptation includes both functional and non-functional requirements.
These requirements may change because user needs change or because the functionality
of the system needs to be extended. Kakousis et al. [125] categorise this as occurring
pre-runtime.

• Design time adaptation solves mismatch between components. Kakousis et al. categorise
this as occurring both pre-runtime and during system architecture analysis.

• Dynamic adaptation addresses the adaptation over software components to fit better the
execution environment. However, the steps to be taken until the adaptation has to start are
unknown. Kakousis et al. categorise this as occurring after deployment, relates it to the
concept of context-aware system and indicates that it is often limited to non-functional
aspects.

Customisation and personalisation of systems also affects different target systems. Several
classifications can be found in the literature in this respect, which together include the following
categorisations:

26 Foundations and Technologies

• Component-based systems: systems are composed of components that are reusable and
can be interchanged or replaced by other components. There are component managers
in charge of the reconfiguration of tasks (distributed or centralised) depending on the
requirements and decisions of experts. This approach also enables the generation of
executable code [190].

• Service-based systems: systems can be composed of services. These can be orches-
trated by an orchestrator. Different mechanisms or circumstances could trigger the
reconfiguration of services, e.g. a violation of a constraint.

• Application-based systems: executable units or applications that can be installed in
heterogeneous devices.

2.2 Software and Modular Entities

Modular and computational entities encapsulate the functionality of the systems. However,
while it is true that there are several alternatives that could be valid for this purpose. This
section introduces each of them, presents their main characteristics, ways of operation and
finally, a comparison between them.

2.2.1 Services

Service-Oriented Computing (SOC) is the computing paradigm based on services as a key
element for applications development and systems [182]. The services are computational
elements that can encapsulate multiple functionalities (functions can be simple or complex).

In addition, the services should be technology neutral which implies that protocols, de-
scriptions and discovery mechanisms should conform accepted standards; related to loosely
coupled, the specific knowledge or internal structure should not be required by the client or the
server side; and services definitions and location information should be stored in an accessible
repository in order to clients can invoke the services regardless of their locations [182].

The services can be simple and composite services. Services must implicitly maintain
the quality of reuse to achieve the quality level required. Moreover, from existing services,
composite services can be assembled. Thus, it is possible, to combine information and functions,
or even integrate applications with other distributed applications to facilitate the development
of systems that offer new functionalities or a more complete set of functionalities. Services
can be a part of an aggregation or even be a part of the other composition of services. Usually,

2.2 Software and Modular Entities 27

the services are business-aligned or with the goals and they support low-cost composition
of distributed applications but inter-service infrastructure (e.g., a single device, local area
network, distributed or more wide area networks) is required to support service interactions
and communication.

Services composition depends of service orchestration and service choreography [184]:

• Service orchestration employs a centralized approach where an orchestrator invokes
(synchronous or asynchronous) and combines the services for service composition.
Within orchestration process the transactions between entities must be managed.

• Service choreography employs a decentralized approach which involves messages ex-
change between two entities. Therefore, there is no central entity to control the interac-
tion.

A web service is a kind of service identified by a URI which expose its description, i.e.,
ports, operations definition, message exchange and binding (packaging and transportation
protocols are used, such as SOAP, for the interconnection) using Web Service Description
Language (WSDL) as the common XML-based standard. The Universal Description, Discovery
and Integration (UDDI) standard is a directory which contains the publication of the service
and enables the client the location and discovering of the service [182].

Services provide uniform and ubiquitous information to a wide range of devices and
software and within their specifications it is determined the granularity of replaceability to
design [182]. However, they must be monitored and managed to control Quality of Service
(QoS) which is related to functional, and non-functional service quality attributes such as cost,
performance (e.g., response time), integrity, reliability, scalability, and availability [132]. At
this regards, it is should be noted Simple Object Access Protocol (SOAP) and Representational
State Transfer (REST) as key elements in the development of services [250, 146]:

• SOAP protocol is designed to support the exchange of information from programs
developed on different platforms or in different programming languages. It uses WSDL
(based on XML format) to expose to the client the operations that can be performed by
the service.

• REST is an architectural style [98] designed mainly to operate with components and
objects. It uses URI to invoke create, read, update and delete (CRUD) or GET, POST,
PUT, and DELETE operations, supporting several formats (text plain, XML, HTML and
JSON).

28 Foundations and Technologies

REST emerged after SOAP. REST can make use of SOAP but not vice versa. SOAP is
better suited for situations where the state of information should be maintained and SOAP 1.2
provides additional features to improve security and reliability. However, SOAP messages
contain a significant amount of information and more bandwidth is needed than with REST.
Therefore, REST needs less bandwidth than SOAP, which it is relevant in instances where
there are constraint on network bandwidth [250, 146]. An illustrative interaction with both
communication mechanisms, SOA and REST can be seen in Figure 2.4.

(a) Interaction via SOAP protocol.

(b) Interaction via REST protocol.

Fig. 2.4 Service communication mechanisms (own elaboration).

2.2.2 Microservices

Thönes defines a microservice as "small application that can be deployed independently, scaled

independently, and tested independently and that has a single responsibility", considering as a
single responsibility as that there is "a single reason to change and/or a single reason to be

replaced" and that it does "one thing alone" (i.e., functional requirements or non-funcional,
even cross-functional) and "can be easily understood" [237].

Nadareishvili et al. [170] defines a microservice as "small, autonomous services that work

together" that must do one thing well. It also notes that they are characterised by being a
separate entity that maintains a low coupling and communication between them must be through
network calls, that they are deployed independently and possibly autonomously, that consumers
are not necessary, that they allow and encourage the use of different technologies (e.g., to
improve performance) for the benefit of the system, that they are highly scalable, scalable
even on demand, and that they enable and encourage parts of the system to be run on devices
with low computational capabilities. In addition, they support the development of solutions
decentralised and with speed, their replacement or elimination is optimised as they are smaller

2.2 Software and Modular Entities 29

pieces, their cost is lower and it is a way to ensure resilience (i.e., if one component fails, no
further cascading failures occur) [170, 164].

The microservice architecture model can be seen in Figure 2.5. Here are highlights of some
of the benefits it provides [164]:

• Agility by providing quick and guided solutions.

• Composability favouring reuse and minimising development times.

• Comprehensibility with a focus on simplicity and accuracy.

• Independent deployability encourages flexibility and the acquisition of new features by
certain components.

• Organizational alignment of the working group favours the provision of more complex
solutions.

• Polyglotism on options and technologies.

• Efficiency increases by reducing the cost of infrastructure which is related with indepen-

dent manageability and makes stakeholders have less need to intervene.

• Resilience because it increases availability and the user experience is better.

• Tests carry fewer risks.

Microservices are a solution for legacy architectures because they provide a "more granular

and modular level" of systems and applications simplifying the complexity of the problem and
providing on-demand services, both of which improve performance [71].

2.2.3 MultiAgents

Wooldridge defines the MultiAgent Systems (MAS) [262] as those "composed of multiple

interacting computing elements known as agents" being the agents "computer systems with two

capabilities":

• Agents can take action autonomously by deciding what to do to achieve their objectives.

• Agents can cooperate, coordinate and negotiate with other agents, i.e. conduct interaction
beyond a simple exchange of data.

30 Foundations and Technologies

Fig. 2.5 Microservice architecture model advantages proposed by Nadareishvili et al. [164]

An agent can be constructed from the composition and interaction of modules, which
provide responses from the inputs (from sensors) and state of the agent itself [143].

Intelligent agents [143] are:

• Reactive because they are able to perceive their environment react accordingly.

• Proactive because they exhibit "goal-directed behaviour".

• Socially skilled because they are able to interact with other agents to achieve the designed
goals.

• Autonomous, i.e. each agent has control over its state and behaviour and they can act in a
dynamic and unstructured environment.

• Selfish because there is no guarantee that an agent i will execute an action α of another
agent j that is not in his or her (i) best interest.

Agents have the ability to coordinate their actions with each other through a blackboard,
without explicit communication, but explicit communication simplifies interaction. They should
use a common language in communication [80]. Speech between agents are based on the five
types identified by Searle et al. [210] that are "representatives", "directives", "commissives",
"expressives" and "declarations". The ARPA consortium developed the first support for agent
communication called Knowledge Sharing Effort (KSE), which facilitated the sharing and
reuse of both, knowledge bases and systems. The KSE contemplates two languages:

2.2 Software and Modular Entities 31

• The Knowledge Interchange Format (KIF) designed as a language to express message
content. With KIF, agents [262] can express:

– "Properties of things in a domain" such as "Michael is a vegetarian".

– "Relationships between things in a domain" such as "Michael and Janine are

married".

– "General properties of a domain" such as "everybody has a mother".

– "Relation between two objects".

– "Definition of new concept".

– "Relationship between individuals in the domain".

KIF assumes a basic, fixed logical apparatus, which contains the usual connectives that
one finds in first-order logic [262].

• The Knowledge Query and Manipulation Language (KQML) [262, 80] which is a
message format and a protocol to share knowledge at runtime. It defines a set of acts of
communication or performatives that can express:

– Achieve such as "S wants R to do make something true of their environment".

– Advertise such as "S is particularly suited to processing a performative".

– Ask-about such as "S wants all relevant sentences in R s VKB".

– Ask-all such as "S wants all of R s answers to a question".

– Broadcast such as "S wants R to send a performative over all connections".

– Error such as "S considers R s earlier message to be malformed".

There are more performative ones, this is just a sample. Also noteworthy is the entity of
communication facilitators who coordinate the interaction between agents (i.e., they acts
as "agent-servers") [80].

• FIPA ACL (Agent Communication Language) is similar to KQML [262]. The main
difference is that the knowledge can be expressed in different languages (e.g, KIF, Prolog,
etc.). Some examples of performatives are:

– Query such as "Is the door open?".

– Agree such as "OK! I’ll open the door".

32 Foundations and Technologies

– Inform such as "The door is open".

– Failure such as "I am unable to open the door".

– Subscribe such as "Say when the door becomes open".

2.2.4 Capabilities Comparison of the Software and Modular Entities

Here, a comparison (Table 2.1) of the capabilities of the software and modular entities studied
has been drawn up.

Table 2.1 Capabilities Comparison of the MultiAgent Systems (MAS), Service-Oriented Com-
puting (SOC), and Self-Adaptive Services (own elaboration).

MultiAgent Systems (MAS) Service-Oriented Computing (SOC) Self-Adaptive Services
Approaches to build complex software systems

Autonomy
Agents act individually fulfilling

their individual goals No inter-service dependencies
Adaptive + Adaptability

in response to changing requirements, services and exceptions
Sociability Interoperability

Intelligent society Interface level
Communicating agreed-upon protocols

Distributed Distributed/Centralised
There is no a central control entity Choreography/Orchestration

Rationality Encapsulation
Reactivity + Reactivity
Proactivity Availability/Discovery

Highly formal specification Public registries

It can be observed that MAS and SOC are different approaches that share multiple similari-
ties. Therefore, agents and services could be interchangeable entities but there are two points
of view that underline their differences [179]:

• Agents could be deployed as a service and any service could be conceived as an agent.

• Services are simpler things that agents. The first ones could be used by the second
ones (as customers) because agents can support services. Note that "while, in principle,

autonomic functionalities can thus be implemented by using agents to create high-level

behaviours coordinating the system’s functional layer, it is important to provide the latter

with proper interface and reflective functionalities" [179].

It should also be noted that self-adaptive services complements SOC adding reactivity and
adaptability capabilities.

2.3 Software Architectures 33

2.3 Software Architectures

Bass et al. point out that architectures as a "crucial part of the design process" and define
software architecture as "the structure or structures of the system, which comprise software

elements, the externally visible properties of those elements, and the relationships among them"

[29]. Architectures can favour the construction of systems by adjusting the goals, in terms of
efficiency, providing more reliable systems, in less time, and more economically [29].

Fig. 2.6 Software architecture connects requirements and code proposed by Garlan [87]

Software architectures serve as connector between requirements and implementation (Figure
2.6) and encompass six key aspects related to system development [87]:

• Understanding refers to that the architectural descriptions present the systems from a
higher level of abstraction, facilitating their understanding and capturing their representa-
tion.

• Reuse at different levels, e.g., components included into architectures or frameworks.

• Construction in terms of components and the relationships between them.

• Evolution of the systems encompasses addresses, branches, edges, and cost estimations.
Usually the functionality of the components is separated from the interaction mechanisms
between these components, the latter referring to the way in which the components are
connected. Such a separation provides flexibility so that the mechanisms can be replaced.

• Analysis refers to consistency, style, quality attributes or dependencies inter alia.

• Management during the development process.

2.3.1 Service-Oriented Architecture (SOA), SOA 2.0, and Event-Driven
Architecture (EDA)

Service-Oriented Architecture (SOA) can be defined as "an enterprise-scale IT architecture

for linking resources on demand" which comprises a set of "business-aligned" services that

34 Foundations and Technologies

can be choreographed into composite applications and collectively fulfill the business process
and goals of the organization [14]. IBM defines SOA as "a way to make software components

reusable via service interfaces. These interfaces utilize common communication standards

in such a way that they can be rapidly incorporated into new applications without having to

perform deep integration each time." [111]. Its features [147] include:

• Low coupling because services must be "invoked independently of their technology and

location".

• "One-to-one communications" because a service is "invoked by one consumer at a time".

• "Consumer-based trigger" because "the flow of control is initiated by the customer (the

service consumer)".

Fig. 2.7 Request/reply mechanism in SOA proposed by Maréchaux [147]

Each service design of SOA should comply the eight following principles [132, 75]:

• Loose coupling thereby minimising the dependence on one another. Therefore, if the
service changes internally, the client would not be affected.

• Abstraction meaning that the client can know what the service does but not how, i.e. the
details of the execution of the service’s functionality are not exposed.

• Reusability, the service should able to be used in different applications, therefore it is
recommended to have a modular design.

• Autonomy may refer to runtime or design-time autonomy. Runtime autonomy refers
to “the level of control a service has over its processing logic at the time the service

is invoked and executing” while design autonomy is defined as "the level of freedom

[service owners] [. . .] have to make changes to a service over its lifetime" [75].

• Statelessness, services should not maintain information on their previous status.

2.3 Software Architectures 35

• Discoverability, services should be registered and service information is kept in this
register.

• Composability, services must be modular and independent and provide answers to simple
problems, and all this favours their combinability to provide solutions to more complex
problems.

• Interoperability through the use of standards to support communication and interaction
between suppliers and clients.

Moreover, ideally, services should support a dynamic reconfigurable style [14] and their
infrastructure supports restructuring and upgrading services on demand [185].

SOA also defines the interaction between agents that can be both, clients/consumers and
providers, that involve the publish, find and bind operations. Providers publish a description of
the service(s) that they provide, and clients must to be able to find the description(s) to request
the execution of the service (Figure 2.7). The procedure is similar to client-server architecture
but it is also one of the primary SOA goals, specifically to allow the access to remote interface
of components through request-response (e.g., Remote Procedure Call (RPC)) methods because
new Information Technology (IT) systems required to be not only reactive but also proactive
[45].

Services are flexible because the separation of the interface (service usage interface is
the interface exposed to the clients), implementation, and binding, and because they make it
possible to defer the choice of service provider to a given point in time on the basis of new
functional and non-functional (i.e., scalability, performance) requirements [14].

The SOA architecture (Figure 2.8) comprises the following layers: within the Operational
System (layer 1), the applications can be packaged and custom, and system integration using
service-oriented integration is possible; Components (layer 2) comprise domains, goals, pro-
cesses and criteria of the component election by clients, functionality and QoS; in Services
(layer 3), services description is exposured, then they can be discovered and invoked; in Com-
position and Choreography (layer 4), the services exposed in layer 3 can be orchestrated and
choreographed, and be bundled into a single application (for a specific use case) or system;
the Presentation (layer 5) involves several standards and technologies such as Web Services
for Remote Portlets (WSRP) that allow plug-n-play visual, user-facing web services with web
applications; Integration of services comprises a reliable set of capabilities, WSDL for binding
that include information on where the service is located and mechanism for integration; and
QoS there are sense-and-respond mechanisms, tools, standards implementations and protocols
to monitor the health of SOA applications and control their quality.

36 Foundations and Technologies

Fig. 2.8 The layers of SOA proposed by Arsanjani [14]

SOA 2.0 arises as a combination of SOA and Event-Driven Architecture (EDA). SOA and
EDA are complementary and specifically, it consists of the interaction between events and
services [155].

An event can be considered as an occurrence of a thing or fact that can be detected at a given
point in time [85]. It could represent, for example, a problem, a condition, a threshold inter alia
[155]. There are several events-types (e.g, time events, transaction events, atomic events, etc.)
[85]. Events are also characterised because can occur independently of each other but some can
cause other events [141]. Each event has a header which contains the event specification that
describe its occurrence (i.e., ID, type, name, timestamp, number of occurrence, and creator)
and a body which comprises a description about about the occurrence [155].

Fig. 2.9 Publish/subscribe mechanism in EDA proposed by Maréchaux [147]

EDA publish events without relying on the availability of a publisher, its interaction can be
seen in Figure 2.9 and its features [147] include:

2.3 Software Architectures 37

• Decoupled interactions because publishers "are not aware of the existence" of sub-
scribers.

• Many-to-many communications because each event can have many subscribers.

• Event-based trigger refers to the flow going to the subscriber.

• Asynchronous operations are supported.

In SOA and EDA two interactions [155] can be distinguished:

• Event-Driven SOA refers to when an event may deploy one or more services.

• Service as Event Generator refers to when an event is evaluated which could be carried
out within a service, and then an action is performed. In other words, a service can
generate an event.

2.3.2 Resources Oriented Architecture (ROA)

Resources Oriented Architecture (ROA) [98] is the structural design of specific resources or
technologies applied mainly within the Web of Things. Resources refer from physical objects
(e.g., sensors or wearables) but it is not only an IT infrastructure but also objects, states, or even
transactions. ROA is considered as a set of guidelines to implement a RESTful architecture.
Each resource is accessed by an Uniform resource Identifier (URI) via Hypertext Transfer
Protocol (HTTP) interface which contains GET, PUT, POST and DELETE operations. Figure
2.10 shows an example of interaction between gateway and Internet.

ROA is less general than SOA because it depends on the technical architecture of the
services where HTTP protocol is used.

2.3.3 Agent Architecture

"An agent architecture is a software architecture intended to support [...]" an "action selection"

within a "decision-making process" [262]. Usually also referred to as Belief/Desire/Intention
(BDI) Architecture. Beliefs being the knowledge that the agent has about the world based on
his or her perception; desires being the goals he or she intends to achieve; and intentions being
the choices to be made and make up the plan [42].

Bratman et al. [42] proposes an architecture to represent Beliefs, Desires and Intentions
(BDI) of the agents considering that:

38 Foundations and Technologies

Fig. 2.10 Gateway interaction with Internet (included Web) proposed by Guinard et al. [98]

• the construction of an action plan requires a time-consuming;

• that the construction of this plan is based on known conditions but that these may change
in the future;

• it analyses alternatives and interactions;

• it must address the problem of resource constraints.

A specification of the reasoning component of an agent is presented in Figure 2.11 [42].
The intentions are part of a larger plan being a plan the behaviour to be followed by the agent
in order for it to achieve its own desires. From perception beliefs or desired can be updated in
each iteration.

The plan library represents beliefs about the actions to be taken in the current plan to
achieve what is expected. The reasoning part is carried out by means-end reasoner, opportunity

analyzer, filtering process and the deliberation process. Specifically, filter override mechanism

sensitivities the environment to suspend part of certain plans and consider other options. The
compability filter operates in parallel with filter override mechanism but even if an option does
not pass the filter it can still be chosen. The deliberation process decides which option to
choose, between incompatible or a previously considered action satisfying a prior intention.

2.3 Software Architectures 39

Fig. 2.11 Practical reasoning component of an agent proposed by Bratman et al. [42]

40 Foundations and Technologies

2.3.4 Domain-Specific Software Architecture (DSSA)

Tracz et al. note that a domain refers to a common applications or problem to solve, while a
domain model is the representation of it (e.g., concepts, taxonomies, ontologies, etc.) through
terms, objects and the relations between them [241, 103]. A software architecture can ac-
commodate components, connections and constraints, with components being elements or
modules that have an interface. Therefore, a domain-specific software architecture (DSSA)
[241, 103] comprises requirements, domain model, supporting infrastructure and processes.
The diagram of an architecture also is made up of components, alternative components, data,
connectors, and constraints. Its representation can be graphical and textual. A template can
be followed as a guide and variability is supported by parameterisation or through interfaces
[241]. In DSSA, each domain can have several architectures of different styles being the
client-server architecture style only one of the possibilities of DSSA. Tracz et al. [241] denote
object-oriented design as a technique related to Domain Model.

The evaluation of an DSSA architecture [241, 103] is based on the constituent components,
ease of use, coverage of the application domain, productivity and cost, and then on the ability
to extend or adapt the architecture. Moreover, applications can be compared to validate the
architecture.

2.3.5 Reference Architectures for Adaptation and Self-Adaptation

Several researchers endorse the use of architectures as mechanisms for adaptation and self-
adaptation to handle a wide variety of systems. In general, such mechanisms include an iterative
operational process, as a part of a more complex whole, which distinguishes mainly three
phases: context detection, reasoning based on that context considering the different options,
and acting [125]; or MAPE-K control loop composed mainly of four activities: Monitor,
Analysis, Plan and Execute that share knowledge among them [127]. However, there is a need
to reduce the cost added for including external control to the systems. Proposals may include
architectural models in order to provide an overall view of the system, component composition,
interconnections, properties, integrity constraints, control loops, and computational reflection
[88]. In this regards, four of the most outstanding architectures that have served as a reference
in research and industry are presented here.

2.3 Software Architectures 41

MAPE-K

Autonomous systems possess collections of autonomous elements. Those elements and their
external environment are controlled which makes it possible their management by an autonomic
manager. This is the basis followed by most self-adaptive systems approaches, which usually
base their designs on control cycles [44]. Figure 2.12 shows the reference feedback control loop
known as MAPE-K [127] proposed by IBM. At the different phases, the autonomic manager
monitors (M) by sensors, to subsequently analyse (A) the data, to then compose a plan (P)
based on a set of actions and execute (E) them via actuators. In addition, there is a knowledge
(K) component to share constraints, encode rules and to consider the knowledge acquired in
the other four phases [127].

Fig. 2.12 MAPE-K reference self-adaptive control loop proposed by Kephart et al. [127]

However, there are three main limitations that should be mentioned: 1) the interaction
between autonomic managers is not modelled and then the proposal is limited to centralised
applications; 2) the modelling of the knowledge component is not granular, and the possibility
of applying reasoning about adaptation across multiple dimensions is not considered; and 3)
the knowledge encoded is limited, and therefore the system can not evolve.

Rainbow

Garlan et al. present Rainbow [88] framework to support self-adaptation of systems using
software architectures and a reusable infrastructure. Figure 2.13 shows Rainbow control loop
that models the detection of constraint violation (i.e., a composition of the elements not allowed)
based on monitoring and evaluation, and the possibility of global or modular adaptation. The
infrastructure is divided in the three following layers: 1) System layer includes the access
interface, a measurement mechanism (called Probes), a Resource discovery mechanism and
the Effectors mechanism to performs the modifications; 2) in Architecture layer, Gauges adds

42 Foundations and Technologies

information to Probes and update properties. The model manager manages the access to the
architectural model that is evaluated by the Constraint evaluator which checks the model and
triggers the adaptation to be carried out by the Adaptation engine; and 3) translation layer maps
the information as intermediary (e.g., an architectural change into a system change).

The components (i.e., computational elements, data stores, clients, servers, databases,
interfaces, etc.) are represented graphically as nodes and connectors reflect the interaction
between them. Moreover, computational elements must provide for expected throughputs,
latencies, and protocols [88].

Rainbow is a generic proposal to address requirements of a variety of applications from
different domains. The layered layout allows independent changes to be made. However, it
has limitations in terms of: 1) remaining a centralised approach which impacts on scalability
and localised failures; 2) to be extended, e.g. by injecting human-defined strategies; 3) it is not
proactive, as it does not anticipate adaptation, but implements it after detecting this need; and
4) response time architecture is not assessed.

Fig. 2.13 Rainbow architecture based self-adaptation with reusable infrastructure proposed by
Garlan et al.[88]

2.3 Software Architectures 43

Reference Architecture for Decentralised Self-Adaptation

Weyns et al. [260] present a decentralised architecture where there is not a central point of
control, for distributed self-adaptive software systems. Any of the phases (i.e., monitoring,
analysis, planning, and execution) may lack a control point, which implies the unavailability of
global knowledge at any host.

It is necessary to establish a mechanism to coordinate the different entities of the self-
adaptive units:

• Coordinated monitoring collects data of its underlying system and optionally of its
environment. These data must be shared and synchronised locally.

• Coordinated analysis to obtain a more complete knowledge of the system, and thus
identify violations and predictions. It should be noted that in centralised systems, each
unit has all the data to do the analysis (its own data), but in decentralised systems, each
unit has only a part of the data (its own data).

• Coordinated planning coordinates the goals of the different systems units. In centralised
systems, each unit may have its own goals, may behave selfishly, and there may be
conflicts between goals. Therefore, a plan is required to coordinate adaptation and cover
different goals.

• Coordinated execution executes the orders to carried out the changes of the adaptation.
In centralised systems, each unit has control over the order and timing in which the
adaptation is executed. However, in decentralised systems, the adaptation has an impact
on the whole system and changes have to be synchronised.

Figure 2.14 shows the proposed model that brings together the concepts and methodology
of MAPE, feedback-control loop, computational reflection, and several components for de-
centralisation such as Local Managed System, Self-Adaptive Units, Meta-Level Computations

for adapting the local managed system from a set of Meta-Level Models. The latter is the
generalisation of four entities. 1) System Model represents the system or parts of the system
that can be local managed or self-adaptive unit; 2) Concern Model are the goals that can be
represented as rules (e.g., event, condition, action); 3) Working Model is the data structure of the
specific domain, such as the temporary representation of possible redeployment architectures
proposed by an analyser and their instructions all produced by an analyser; and 4) Coordination

Model represents the data required by a meta-level computation to coordinate with others
meta-level computations of other units.

44 Foundations and Technologies

Fig. 2.14 Reference architecture for decentralised self-adaptation proposed by Weyns et al.
[260]

2.3 Software Architectures 45

The proposal is based on the development of two case studies in which the authors monitor
traffic by deploying a set of cameras. There is a collaboration between cameras to detect certain
patterns in traffic and it also discusses how to detect when a camera fails and how to perform
its recovery based on the rules mechanism.

This architecture for decentralised self-adaptation includes Meta-Level Model and Meta-

Level Model to facilitate the adaptation and coordination between different self-adaptive units.
Here, system scalability is possible. However, it has limitations in terms of: 1) No specific
mechanisms for resolving conflicts between concerns are included; and 2) it has not been
evaluated either theoretically or practically with simulations or in a real environment and then
response time architecture is not assessed.

Dynamic Adaptive, Monitoring and Control Objectives model (DYNAMICO)

Villegas et al. present DYNAMIC [247] as a reference model for context-based self-adaptive
software which includes three adaptation levels. Its definition includes the elements and their
functionalities, the control and data interactions, one independent loop for each level and inter-
actions between loops. Functional and non-functional requirements, and adaptation properties
are defined as variables that can be controlled (called control objectives and adaptation goals).
All of them must be satisfied by the target system.

• Control Objectives Feedback Loop (CO-FL) manages changes in adaptation goals and
user requirements. This operates with the Service Level Agreements (SLAs) that usually
represents QoS and Service Level Objective (SLO) that represent performance conditions.
The control objectives can be modified by user at runtime, therefore consistency and
synchronisation must be managed during adaptation and those changes derive within
Adaptation Feedback Loop and Monitoring Feedback Loop.

• Adaptation Feedback Loop (A-FL) performs the adaptation in accordance with the control
objectives. It measures the variable errors (e.g., a control objective is not met) and their
inputs and to report signs of adaptation to the A-FL analyser. The A-FL analyser decides
whether adaptation is necessary.

• Monitoring Feedback Loop (M-FL) analyses context signs and facts to support the
adaptation and the control of objectives. The context inputs are derived from CO-
FL control objectives. It generates an adaptation plan runtime, from a semantic Web
inference rules part of a Smarter-Context ontology, by modifying existing sensors and
monitoring conditions and deploying a new strategy of monitoring.

46 Foundations and Technologies

Fig. 2.15 DYNAMICO reference model for self-adaptative systems proposed by Villegas et al.
[247]

2.4 Frameworks 47

Figure 2.15 shows the proposed model that brings together the three levels described above
with their corresponding loops, and controllers. However, DYNAMIC has limitations in terms
of: 1) dynamic discovery; 2) decentralised adaptation controlled by distributed feedback loops;
and 3) it has not been evaluated either theoretically or practically with simulations or in a real
environment and then response time architecture is not assessed.

2.4 Frameworks

McIlroy introduced the concept of reuse in 1968 by presenting a library of components that
could be reused and customised, achieving different levels of precision and robustness [150].
Software reuse has become a "standard practice for software construction" where existing
software artefacts are used to create new software systems [134]. The term artefact encompasses
design and implementation of structures, specifications, transformations, code fragments inter
alia [134]. In this regards, techniques of reuse come in the form of component libraries,
application generators, code compilers or even templates based on the abstraction, selection,
specialisation (on the basis of parameterised specialisation, transformations or constraints) and
integration (exporting functions from where they are implemented and importing them into
modules where they are to be used).

Frameworks share multiple characteristics with reuse techniques in general and in particular.
Johnson et al., in 1988, defined a framework as "a set of classes that embodies an abstract

design for solutions to a family of related problems, and supports reuses at a larger granularity

than classes" [122]. Later, in 1992, he defined them as "a reusable design of a program or a part

of a program expressed as a set of classes" and how these classes collaborate, and alternatively,
as "a reusable design for solutions to problems in some particular problem domain" [120]. A
framework comprises code, blocks for build a software systems or subsystems but also abstract
designs [120, 215]. "Frameworks are designed by experts in a particular domain and then used

by non-experts"[120].
Johnson et al. also highlight that "one of the most important kinds of reuse is reuse of

designs [...] The design of a program is usually described in terms of the program’s components

and the way they interact" [122]. In fact, frameworks "are an object-oriented reuse technique"

[121]. In particular, their definitions [121] refer to:

• its structure, when a "framework is a reusable design of all or part of a system that is

represented by a set of abstract classes and the way their instances interact"; and

48 Foundations and Technologies

• its purpose, when "a framework is the skeleton of an application that can be customized

by an application developer."

Initially, the reuse techniques were based on components, in order to connect these compo-
nents to build new systems. Frameworks make development tasks easier for developers who do
not have to know how these components are implemented, only how to use them to customise
systems. In addition, frameworks make the resulting systems more efficient, easier to maintain
and reliable [121]. The frameworks [121]:

• "are more like techniques that reuse both design and code";

• they are "easier to extend and combine than special purpose languages"; and

• frameworks also are "a kind of domain-specific architecture". "The main difference

between them is that a framework is ultimately an object-oriented design, while a

domain-specific architecture might not be" [121].

Frameworks encompass different approaches and technologies for reusability being reusabil-

ity "a key to improving software development productivity and quality" [33]. Biggerstaff et
al. proposes a characterisation that can be seen in Figure 2.16 and mainly differentiate be-
tween compounding and generation technologies [33]. Composition is based on the idea that
components are atomic and that composition principles can be applied (message passing for
function calls or static bindings, and inheritance allowing dynamic method invocations). Within
generation technologies are code patterns and transformation rules. Reusability implies finding
a component, understanding it, modifying it and composing it. Modules also become a part of
reuse by encoding specific information [33].

A pattern "describes a problem to be solved, a solution, and the technique in which that

solution works". Patterns help to solve permanent recurring problems over time, being the
design patterns "the micro-architectural elements of frameworks" [121]. The purpose of the
framework can be described with patterns, where a pattern is a description of a problem that
occurs repeatedly in the domain of the framework together with a description of its solution
[120]. Patterns serve as a guide for the assembly of the framework components [94] (e.g.,
Model View Controller, MVC).

Frameworks "are firmly in the middle of reuse techniques. They are more abstract and

flexible than components, but more concrete and easier to reuse than a pure design (but less

flexible and less likely to be applicable). Although they can be thought of as a more concrete

form of a pattern, frameworks are more like techniques that reuse both design and code,

2.4 Frameworks 49

Fig. 2.16 Reusability technologies characterisation proposed by Biggerstaff et al. [33]

such as application generators and templates" [121]. A framework can reuse code ensuring
requirement consistency [122]. They can be used by application developers with no knowledge
of how it works internally but it can also show them several design details that are embodied
within it [120].

The frameworks can be built on top of another framework, it can be interlocked with other
frameworks (e.g., sharing abstract classes and specializations) [122]. Even the development of
applications often requires the integration of different frameworks such as GUIs, communication
systems, databases, etc, in conjunction with existing libraries, legacy and components [77].

Fayad et al. defines the object-oriented application frameworks as a technology used for
"reifying proven software designs and implementations in order to reduce the cost and improve

the quality of software" [77]. A framework is characterised by its modularity, reusability,
extensibility, inversion of control and for favouring the reuse of components. In particular, a
framework can also act as a coordinator of a sequence of activities by inversion of control,
resulting in an extensible skeleton [122]. From hook methods, the frameworks introduce the
required variations in a particular instantiation [77]. A framework can involve several basic
abstractions, such as components representing the elements in a domain and encapsulating the
behaviour of the objects; tools for the manipulation of the components through visual effects;
commands defining the operations of the components, in a similar way to the exchange of
messages with the difference that they are also treated as objects; and external representations

transmit information outside the application [248].

50 Foundations and Technologies

Software frameworks [215, 149] follow the "Hollywood Principle: Don’t call us, we’ll

call you.". These software frameworks contain frozen and host spots [215, 149]. On the one
hand, frozen spots are fragments of code already implemented within the framework that
refers to common aspects of the domain-specific application architectures (i.e., components
and relationships). These do not change when an instantiation takes place. On the other hand,
hot spots have a generic design and are specialised to suit the needs of the application under
development.

Fayad et al. [77] propose the following classification of frameworks based on their objec-
tives:

• System infrastructure frameworks simplify the development of system infrastructure (e.g.,
operating system), communication, interfaces, and language processing tools.

• Middleware integration frameworks integrate distributed applications, components,
favouring reuse, modularisation and how to extend the software infrastructure in a
distributed environment.

• Enterprise application frameworks support "the development of end-user product appli-

cations and products directly."

There are compiler frameworks which include both table classes used for the instantiation
of objects and classes to generate code, or framework for construction of user interfaces [122].

For their side, Rubensteint et al. [196] outline the following classification of frameworks:

• Conceptual framework considers problem solving in its entirety, with a need to determine
which parts are part of the system and which parts are part of its environment. Rudestam
et al. note that a conceptual framework ”is simply a less developed form of a theory,

consists of statements that link abstract concepts to empirical data” [197]. More recently,
Weible et al. [256] identify within a conceptual framework "a set of variables and the

relationships among them that presumably account for a set of phenomena"

• Theoretical framework adopts system thinking which is a conceptual framework. A
theoretical framework involves the concepts, definitions, theory used in a given study,
as well as references to the literature. It helps to determine the key variables that differ
under certain circumstances [2, 231]. Sinclair [221] note that a theoretical framework

can be understood as a planning of what it wants to do and what it wants to achieve.
She adapted six questions initially proposed by [28] whose answers are conducive to
outlining the plan. The questions are "what do I know about the phenomenon that I want

2.4 Frameworks 51

to study?", "what types of knowledge are available to me (empirical,non-empirical, tacit,

intuitive, moral or ethical)?", "what theory will best guide my midwifery practice?", "is

this theory proven through theory-linked research?", "what other theories are relevant to

this practice?", and "how can I apply these theories and findings in practice".

• Knowledge management framework include knowledge management activities comprised
within the life cycle. KM frameworks can in turn be classified as:

– Prescriptive frameworks provide guidelines for the types of procedures in knowl-
edge management without providing details of how to achieve those procedures.
These are the most widespread in the literature.

– Descriptive framework identify attributes of knowledge management used within
its description initiatives.

– "A combination of both, prescriptive and descriptive frameworks"

Argent et al. [12] also mention the modelling framework which encompasses modelling,
reusable libraries, tools for data manipulation, analysis, and development tasks, specifically
those related to transformations, model coding, and visualisation. The modelling frameworks

include features, architecture-related requirements, protocols, operating methods [12].
Greenfield et al. note that when very little code is required to be generated to complete

the variability points in a domain-specific framework, we would be talking about a completion

framework [94]. A software framework can address a "well-defined, narrow problem domain,

and using the abstractions in a model to define how the variability points in the framework

must be filled" [94]. The authors also emphasise that application developers will not cre-
ate general-purpose code but will build customised variants of existing products that meet
unique requirements, from small pieces of code in specific languages, all in order to complete
frameworks [94]. Thereby, domain experts could encapsulate their knowledge and reuse it [94].

Moreover, frameworks also differentiate between white-box and black-box frameworks
[122, 77]:

• In white-box frameworks, its implementation has to be understood in order to add the
methods to the subclasses according to the superclass. "White box" frameworks inherit
base classes from the framework and override predefined methods using patterns (e.g.,
templates). Here, the instances state is available for all methods.

• A black-box framework provides a set of components and users need only understand the
external interface. "Black box" frameworks define interfaces including components (i.e.,

52 Foundations and Technologies

plugging them) via object composition. Here, information must be transmitted explicitly.
They use less inheritance than white-boxes, and are based more on composition and
delegation. In addition, they help the system to be better understood and they are also
recommended when the system needs to evolve. A framework ideally tends to be a black-

box of components that can be reused, providing the largest granularity, without knowing
how they are implemented. These type of frameworks are more reusable, maintainable
and they are easier to use but more difficult to extend because it is necessary to implement
the interfaces and hooks in advance for a wide range of cases.

Shan et al. [215] differentiate between seven types of frameworks the information system:

• The conceptual framework referring to the overall architectural model.

• Application framework referring to the "skeletal structure for an application solution".

• Domain framework referring to business sectors.

• Platform framework includes "programming model and execution environment".

• Component framework referring to "building blocks".

• Service framework referring to "technical services model".

• Development framework referring to the development of a tool.

Within the framework of the platforms, it is worth mentioning web application frameworks.
A Web Application Framework (WAF) tends to be a modular a reusable platform. It can be
specialised through services or components, and which usually operates with Http in the browser.
The frameworks often accept standards and technologies that speed up the development without
a steep learning curve. WAFs can be further subdivided into request-based (e.g., WebWork,
Struts, Beehive, etc.), component-based (e.g., JSF, Tapestry, Wicket, etc.), hybrid (e.g., RIFE),
meta (e.g., Keel, Spring), RIA-based (e.g., DWR, Echo2, JSON-RPC-Java) [215]. Frameworks
could be differentiated by whether they operate on the front-end side or on the back-end side
[126]. Some examples of the most popular WAF in 2021 are Django, Angular, or Laravel, inter
alia.

The Mobile Applications Development Framework (MADF) [242] supports the develop-
ment of mobile applications that need to operate efficiently, enabling collaboration between
users, improving their responsiveness and competitiveness, and offering context-aware and
personalised responses to users. Added to this, there are numerous challenges in mobile appli-
cation development due to the fact that platforms tend to fragment rather than join [123]. It

2.4 Frameworks 53

is therefore common for applications to have to be developed on each platform [123]. Some
examples of the most popular MADF in 2021 are Swiftic, React Native, Xamarin, or Ionic,
inter alia.

Frameworks are also related with Knowledge Management (KM) [224]. KM software tools
are integrated within processes [224]. KM frameworks should be prescriptive, descriptive,
and consistent. Moreover, their goals and strategies must be linked to the KM [224]. A KM
framework can involve mainly five phases: 1) "strategy" includes organisation of the strategy
itself and objectives; 2) "evaluation" of the current state of knowledge, scoping, prioritisation
and technology solution; 3) "development" of block for the prioritisation of KM initiatives,
and outline a plan; 4) "validation" includes pilot launch, review and update, and maintenance
of knowledge processes; and 5) "implementation" covers the publication of the KM base and
communication processes, as well as change management, maintenance and support processes
for the creation of the KM, and continuous improvement [224].

A methodology "is defined as a set of procedures that can be followed for achieving an

objective and is more specific than a framework" [224]. A framework "provides guidelines

as to how to carry out the procedure in such a way that it is consistent with a particular

framework" [224]. McMeekin et al. defines a methodological framework, as a "structured

guide to completing a process or procedure" in a little more detail, they define it as a "structured

practical guidance or a tool to guide the user through a process, using stages or a step-by-step

approach" [152]. The IGI Global also defines it as "an approach for making explicit and

structuring how a given task is performed" [90]. It should be noted that a methodology "is

defined as the group of methods used in a specified field" [152].
The methodological frameworks can involve several aspects: "a body of methods, rules

and postulates employed by a particular procedure or set of procedures", "a set of structured

principles", "an approach for structuring how a given task is performed", and "a sequence of

methods" [152]. A methodological framework can also help standardise approaches, increase
the robustness and confidence of particular findings, group common themes and metrics [152].
McMeekin et al. divide their development, mainly into five phases: 1) "identifying the research

question"; 2) "identifying relevant studies"; 3) "study selection"; 4) "charting the data"; and 5)
"collating, summarising and reporting the results".

Patterns, frameworks, models, tools applied in a systematic way facilitate development,
minimise cost and improve software quality [94].

54 Foundations and Technologies

2.5 Middlewares

It was in the NATO Software Engineering Conference in 1968 where the term middleware was
first introduced within the Inverted Pyramid proposed by d’Agapeyeff (Figure 2.17) [225].

Fig. 2.17 Inverted Pyramid proposed by d’Agapeyeff [225].

The Oxford dictionary defines a middleware as "a layer of software in a computer between

the operating system and applications that provides additional facilities not provided by the

operating system" [68]. There are different definitions in the literature and generally, most
authors agree on the same aspects. Ibrahim et al. [113] defines a middleware as an "enabling

technology for the deployment, execution and integration of applications" providing software
layers "between the operating systems and applications". Bishop et al. defines a middleware,
essentially as a software that connects two or more software or an interconnecting application
for interaction/communication with others (e.g., "applications, networks, hardware or oper-

ating systems") [35]. Bakken [19] points out that middlewares help to manage complexity
and heterogeneity. Middleware frameworks provide solutions to heterogeneity to software
programmers, "location, concurrency, replication, failures and mobility". Bandyopadhyay et al.
[26] summarises that middlewares are useful when it is difficult to establish a common standard
because of the heterogeneity of devices, that they act as a link between components, or as an
abstraction layer between applications of different domains, and that they provide APIs which
abstract multiple details for the physical and service layers. A mobile middleware "handles

the dispersed services in a mobile environment and also provides the glue to varying types of

devices" [242]. It also bring together parts of a mobile software application [242]. Finally, in
Figure 2.18, it can be seen visually where the middleware layer is located.

Bishop et al. propose a taxonomy for middleware which is subdivided into:

2.5 Middlewares 55

Fig. 2.18 Middleware Layer in Context proposed by Bakken [19].

• Integration referring to those middlewares that can be integrated in different ways in
a heterogeneous environment, that can have different communication protocols and
operating modes. This subcategory contains:

– Procedure-oriented middleware where clients transform the parameters of a pro-
cedure into a message and server reverse it, and finally, it is processed in the
application.

– Object Oriented Middleware supports the communication between objects grouping
several similar requests within a transaction. It may include a broker that acts as an
intermediary between the sources and the servers.

– Message Oriented Middleware (MOM) is further divided into Passing/Queuing and
Message Publish/Subscribe. For the Passing/Queuing, the MON server acts as an
intermediary by picking up the message from the queue (in a pre-determined order).
For the Message Publish/Subscribe, the MON is a "event-driven process" which
integrates a bus where listeners can be registered to received the notices sent by
publishers. Subscribers also can request data through the bus.

– Component Based or Reflective Middleware where components are selected "either

at build-time or at run-time". This middleware has a library of components to
fulfil the needs of users, covering QoS requirements, and where changes and
reconfigurations can be performed at runtime.

56 Foundations and Technologies

– Agents can be considered as a middleware based on the definition itself of agents
and their autonomy. This is because agents are entities that can communicate with
each other. There are rules for this communication.

• Applications referring to those that fit into an application type such as Data Access Mid-

dleware (DAM), Desktop Middleware, Web-based Middleware, Real Time Middleware

and Specialty Middleware.

Middlewares (used in IoT environments) include several functional components such as
[26]:

• Interoperation for sharing information by different communication networks (i.e., proto-
cols). It also includes rules definition for the understanding of the information and the
creation of models.

• Context detection allows identify an entity (e.g., person, object, interaction, etc.) status.
In particular, a distinction is made here between three related types of context:

– Context detection is referred to as relevant aspect from data collection.

– Context processing is referred to as context data extraction, its processing and
decision making.

– Context awareness is based on both, context detection and context awareness.

• Device discovery and management for detecting neighbours in the network, semantic
mapping of physical devices with semantics ones, and retrieving information.

• Security and privacy are responsible for confidentiality, authenticity and non-repudiation.

• Managing data volume of the network devices. Data can be of different nature (e.g.,
positional, environmental, historical, etc.).

Some examples of middlewares can be the following. On the one hand, HYDRA, UBIROAD,
SOCRADES, and SYRENA include device management, interoperation, platform portability,
security and privacy and HYDRA and UBIROAD incorporate context-awareness [26]. On the
other hand, MYSIM, PERSE, SeGSeC, SeSCo, Broker, and WebDG are middlewares based on
service composition that like the previous ones try to satisfy some or all of the properties of
interoperability, discovery, adaptability, context awareness and QoS management [113].

The functional components of the core of the middleware are interface protocols, device

abstraction ,central control, context detection and management and application abstarction

2.6 Development and Operations (DevOps) 57

[25]. Blair et al. [36] already argued that traditional platforms such as Common Object Request
Broker Architecture (CORBA) [95] and Distributed Component Object Model (DCOM) [236]
are not flexible.

A middleware can be programmed to provide a library of functions, or as an external inter-
face to a component that fits an Interface Definition Language and is used by the programmer to
do code, or another form of middleware can support a native distribution (e.g., Remote Method
Invocation) [19].

2.6 Development and Operations (DevOps)

From the combination of terms, development and operations comes DevOps. DevOps "is a

set of practices intended to reduce the time between committing a change to a system and the

change being placed into normal production, while ensuring high quality." [30]. It also means
"end-to-end automation in software development and delivery" [71]. Specifically refers to
"automated development, deployment and infrastructure monitoring" [71]. Figure 2.19 shows
the life cycle of DevOps processes.

Fig. 2.19 Life cycle of DevOps proposed by Bass et al. [30].

Build phase comprises a set of tools to "software development and service life cycle"

which include "compiling code, managing dependencies, generating documentation, running

tests, or deploying an application to different environments" [71]. Some examples of tools for
building applications can be Apache Ant, Maven; for continuous-integration tools it can be
mention Jenkins, TeamCity, Bamboo, Puppet or Chef; Loggy or Graylog for debugging; and
as monitoring system (i.e., CPU, RAM, network traffic, etc.) tools, New relic or Cacti [71].
DevOps provides a framework "for developing, deploying, and managing the microservices

container ecosystem" [71].

58 Foundations and Technologies

2.7 Cloud Computing

Services are also related to cloud computing but also to "the hardware and software systems

that provides those services" [13]. "Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction." [154]. Cloud
computing can be also defined as an style of computing paradigm which is based on the concept
of resource virtualization, so that when a system needs more resources, these can be provided
on demand and they can also be unassigned whether does not need them [217]. This alleviates
the overload, favours QoS guarantees, and provides scalability and flexibility but some of
the inconvenient remains (e.g., a continuous internet connection is required, data security, its
viability depends entirely on the transport of data, etc.) [217].

Cloud computing is composed by "five essential characteristics" that are "on-demand

self-service", "broad network access", "resource pooling", "rapid elasticity", and "measured

service" [154]. Furthermore, Cloud computing presents three models [154, 182, 118]:

• Software as a service (SaaS) model provides software on-demand through a user interface,
specifically, Applications Service Provider (ASP) introduces the SaaS to deliver complex

business processes and transactions as a service, while permitting applications be

constructed on the fly and services to be reused everywhere and by anybody [182].

• Platform as a service (PaaS) model supplies technologies such as virtual serves, operating
systems, developer tools, storage, inter-alia but the hardware and software resources are
managed by the provider.

• Infrastructure as a service (IaaS) model provide software and hardware resources that
are managed by the clients, i.e., developers can install, for example, operating systems,
manage the database, etc.

Data processing tasks in the cloud have been shown to be efficient because of the computing
capacity that can be provided. However, the volume of data generated and its transmission
causes bottlenecks which has an impact when real-time processing is needed to make decisions
[219], or for "latency-sensitive applications, which require nodes in the vicinity to meet their

delay requirements" [39].
Three paradigms closely related to cloud computing should be highlighted [267]:

2.7 Cloud Computing 59

• Edge computing arises to collect and process data in a device is to bring data computation
(e.g., initial filtering of data, elimination of redundant data, removal of noise, etc.) closer
to the source nodes, at the edge of the network (gateway), in order to minimising the
amount of data to be transmitted and providing solutions to concerns about response
time in the requirements and quality properties in terms of remaining battery, bandwidth,
data security, etc. Edge devices are the path between data sources and data centers in
the cloud where services and data can also be requested from the cloud and task can be
performed in the cloud [219].

• Fog computing "is a highly virtualized platform that provides compute, storage, and

networking services betweenend devices and traditional Cloud Computing Data Centers,

typically, but not exclusively located at the edge of network." [39]. Among its features
are "low latency and location awareness, widespread geographical distribution, mobility,

very large number of nodes, predominant role of wireless access, strong presence of

streaming and real time applications, heterogeneity" [39].

Some authors refer to fog computing and edge computing as similar paradigms with the
differentiating nuance that edge computing is about things and fog computing is about
infrastructure [219].

• Mobile cloud computing follows "the trend to extend the cloud to the edge of networks"

alleviating problems arising from resource constraints, frequent disconnections and
mobility [110]. In this regards, "portable devices sense and learn the status of devices

and the context related to their mobility and networking in order to better support mobile

applications in an ad hoc communication environment". Providers external to the mobile
device act as a host to run applications, store data or perform processing [79]. However,
there are several points of view to define this concept which can be summarised as
follows [79]:

– Running applications on a more powerful resource provider external to the mobile
device, e.g., view Gmail mail from the device that is remotely connected to an
external server.

– To consider other mobile devices, which are neighbours, providers of the service
for which a peer-to-peer connection is established.

– Mobile devices relegate their work to other devices connected to each other (local
cloud) and in turn connected to remote servers (cloud).

60 Foundations and Technologies

This is also where mobicloud applications come in. Mobicloud computing serves as a
connector between the information sources of the cloud and mobile computing service,
and acts as a knowledge hub [110].

2.8 Devices and Networks

This section includes information about wearables to collect physiological data and sensors to
collect context data. It also covers the evolution of sensor networks, nodes categorisation, and
communication and propagation techniques used in such networks.

2.8.1 Sensor Networks and Wearables

Sensors and wearables are key pieces to monitor context and to provide context-aware ap-
plications [66, 194]. Monitoring is, among others, a field of telemedicine (also known as
connected health) where more emphasis is placed on the connection between the medical team
and patients. Users carrying their mobile device in their pocket or nearby allows the device
itself to act as a storage service or as a gateway to access data [37]. Wireless technologies,
microcontrollers, together with other microtechnologies (e.g. individual chips) have enabled
wireless connectivity between individual sensors. Sensors are used for collect data from the
environment [66, 194] but whether devices are in or around the body itself, and whether there
is an interconnection between them give rise to wireless Body Area Network (BAN) networks,
Wireless Body Area Networks (WBANs) or which is also known as Body Sensor Network
(BSN) [235]. Wireless Body Area Network (WBAN) was first coined by Van Dam et al. in 2001
in order to exploit resources (wireless technologies) within the field of telemedicine. WBAN
involves small intelligent devices attached to the body that provide continuous monitoring and
wireless communicacion connections [246]. Figure 2.20 shows an example of what a WBAN
could look like [138].

Moreover, Hybrid BAN concept (h-BAN) arises from the possibility of interconnection of
several sensors and additional communication with the outside world [235]. These microcon-
trollers and sensors open up new opportunities for applications using wireless networks (e.g.,
Wireless Intelligent SEnsor (WISE) prototype for data collection and filtering) [124].

Related to sensors, it is worth mentioning the wearables. The development of wearables
was prompted by the possibility of continuous monitoring at home or community settings and
the benefits this brings [37]. Wearable concept was born at MIT Media Lab’s via the Wearable
Computing Project. Steven Mann created his first wearable in 1970, and then transferred his

2.8 Devices and Networks 61

Fig. 2.20 Wireless Body Area Network proposed by Latré et al. [138].

invention to MIT in 1991. Another prominent researcher, a colleague of Mann’s, has been Tahd
Starner. The two share an interest in research into these devices, and have developed vision
systems based on wearable glasses [254] Wearables tend to be hands-free use, and they should
be proactive and collect data without the explicit intervention of the user [66, 194]. Wearables
are characterised by their small size and their ability to collect various types of physiological
data in a continuous (i.e., 24x7) and non-intrusive manner. This is intended to improve the
user’s quality of life. Over the years, efforts have been made to improve communications,
security, and to reduce the power consumption of these devices, the latter being one of the
main handicaps. They come in various forms. Since its origin, different variants with different
formats have emerged. In recent years, designs for watches, bracelets, wristbands, glasses,
jewellery, wearables, skin patches, among others, have become predominant. [212]. MediWatch
[172] was the first wristband designed with miniature sensors for blood pressure monitoring.

Seneviratne et al. [212] group wearable devices into three categories (Figure 2.21):

• Accessories comprise devices that are worn by users but that are not considered to be a
main part of the garment (e.g., smart watches, smart belts, smart glasses, etc.).

• E-Textiles refers to the group of devices that use conductive fabrics and embedding
sensors as materials (e.g., foot or hand worn devices, smart garments, etc.).

• E-Patches are those that can be attached or tattooed onto the skin, which are actually tiny
embedded sensors.

62 Foundations and Technologies

Fig. 2.21 Wearable devices classification proposed by Seneviratne et al. [212].

Research has also focused on provide hybrid solutions that combine wireless and e-textile
(also known as smart textile) technology [37]. Smart textile use materials and nanotechnology,
as proposed by researchers of Georgia Institute of Technology who patented the Smartshirt
which collects analogue signals by means of conductive fibre sensors and transfers them
through conductive fibres [235]. These technologies drove an increase in the number of sensors,
biosensors implanted in the body and other devices placed in different parts of the user’s body
for long-term and continuous data collection [235].

WSNs are present in situations or scenarios where requirements cannot be fully predicted
or where systems have to adapt to changing conditions. Therefore, "the ability to reconfigure

portions of the software running on WSN nodes become imperative" [159]. It is also common
to deploy heterogeneous sensors (i.e., with different characteristics), and therefore, the need to
deploy codes adapted to such characteristics [159]. WSN systems require to be configured on-

the-fly and on-demand by mobile elements [159]. In addition, it is crucial to be very precise on
exactly what functionality needs to be upgraded (fine-grained) to minimise energy consumption
[159].

Devices Sample

During the first period of the thesis, different devices and their characteristics were studied.
Here, we summarise some of the available alternatives that were assessed for incorporation in
the application domains subject of study.

One of the most interesting wearables found was the E4 wristband for real-time physiologi-
cal data streaming and visualisation proposed by empatica [73] (Figure 2.22). This wristband
incorporates four devices: a photoplethysmography for continuous heart rate, a 3-axis ac-

2.8 Devices and Networks 63

celerometer, a body thermometer, and an electrodermal activity to measure skin conductance.
This device incorporate a flash memory to store the data series for each session.

Fig. 2.22 E4 wristband for real-time physiological data streaming and visualisation proposed
by empatica [73].

The following should also be mentioned for the measurement of physiological measure-
ments (Figure 2.23):

• Embrace [74] was designed to monitor epilepsy. It has an advanced electrodermal
activity sensor with electrodes, gyroscope, 3-axis accelerometer and motion detection,
thermometer, built-in DSP. In addition, it has a small vibration motor and tactile alarm
for personal notifications, and an event-dial button (with tactile feedback).

• Neüma [169] was designed to monitor stress. It includes sensors for measuring conduc-
tance, ambient temperature and movement (3-axis accelerometer).

• OxiPatch Oxirate [177] is a wearable to monitor heart rate, heart rate variability, blood
oxygen saturation, respiration rate, and physical activity (actigraphy).

• iWatch [11] includes accelerometer, gyroscope, heart rate sensor, nanometric altimeter
and blood oxygen sensor.

64 Foundations and Technologies

• Microsoft Band [156] designed to detect calories burned, number of steps or distance
covered, and sleep monitoring, as well as height/stair detection sensor and pedometer. It
has bluetooth 4.0 LE connection.

• Pip [162] is a biosensor device held between the thumb and forefinger. It measures sweat
and electrodermal activity associated with stress levels. The device, which connects via
Bluetooth with smart devices.

• Gear 2 Neo [203] integrates pulse, accelerometer and gyroscope sensors.

• Muse [163] is a stress detector headband, which measures brain activity from electrical
signals monitored by seven sensors.

• Q-sensor [115] wristband that records physiological signals of stress and arousal through
slight electrical changes of the skin. It is a wristband that allows people’s stress to be
tracked during daily activities. It is being used in children with autism.

• Polar H7-9 Heart Rate Sensor [187] is a chest strap to monitor heart rate. Connection
via Bluetooth.

One of the most interesting devices found to monitor environmental conditions was the
Samsung Galaxy S4 (Figure 2.24) because it incorporates nine sensors in a single device,
including temperature and humidity sensors [171].

The following should also be mentioned for the measurement of environmental conditions
(Figure 2.25):

• Sensor Tag [116] includes temperature, humidity, light sensor, accelerometer, magne-
tometer, gyroscope and pressure sensors. It uses Bluetooth low energy and connects to
iOS and Android devices.

• Sensordrone [213] includes ambient temperature, humidity and pressure, non-contact
infrared temperature, oxidising and reducing gases. Moreover, it also integrates for
measuring carbon monoxide levels and hydrogen sulphide levels. The device connects to
iOS and Android devices via Bluetooth Low Energy.

• Spotter-Uniq [261] includes temperature, humidity, and sound sensors. The device
connects to iOS and Android devices, and the data transmission is via JSON.

• Spotter-Quirky [261] includes temperature, humidity, and sound sensors, similar to the
previous one and from the same company. Displays notifications.

2.8 Devices and Networks 65

(a) Embrace pro-
posed by empatica
[74].

(b) Neüma proposed
by Neumitra [169].

(c) OxiPatch Oxi-
rate proposed by Ox-
iPatch [177]. (d) iWatch proposed

by Apple [11]

(e) Microsoft
Band proposed by
Microsoft [156].

(f) Pip proposed by
Niall Murray [162].

(g) Gear 2 Neo pro-
posed by Samsung
[203].

(h) Muse proposed
by Muse [163].

(i) Q-sensor pro-
posed by the
Massachusetts Insti-
tute of Technology
(MIT) [115].

(j) Polar H7-10
proposed by Polar
[187].

Fig. 2.23 Sample of devices studied for physiological measurements.

• Sensor Cube [61] include sensors for light, pressure, air quality, temperature, humidity,
and noise. The data transmission is via JSON.

• Blue Radios [191] includes temperature and light sensors, and accelerometer. Connection
is via Bluetooth.

66 Foundations and Technologies

Fig. 2.24 Mobile device that stands out because it integrates environmental temperature and
humidity sensors in addition to the conventional ones [171].

(a) Sensor Tag pro-
posed by Texas In-
struments [116].

(b) Sensordrone pro-
posed by Sensorcon
[213].

(c) Spotter-Uniq
proposed by Wink
[261].

(d) Spotter-Quirky
proposed by Wink
[261].

(e) Cube Sensors
proposed by Cube-
Sensors [61].

(f) Blue Radios pro-
posed by Blue Ra-
dios [191].

Fig. 2.25 Sample of devices studied for environmental measurements.

2.8.2 Nodes Categorisation

Sensor networks are a significant improvement over traditional sensors. Sensor networks
involve the deployment of a large number of sensors and their topology is frequently subject to

2.8 Devices and Networks 67

changes. These sensors can sense data (also known as sources), process data and send data to
base stations (BS) (also known as sinks) [223].

Sensors capabilities are limited (i.e., power, computation, storage) but sufficient to transmit
raw data to central nodes or even to perform computational operations on them to send processed
data [4].

Regarding sensors deployment, it can be predetermined or random but the latter implies
that nodes possess self-organising capabilities. The density of nodes in the deployment favours
the use of multihop communications rather than single hop communications. Multihop com-
munications can be expected to consume less than single hop communications but signal
propagation effects may occur [4]. In general, there are several factors that influence the design
of sensor networks mainly referred as "fault tolerance, scalability, production costs, operating

environment, sensor network topology, hardware constraints, transmission media, and power

consumption" [4].
The inclusion of Mobile Entities or Elements (MEs) which are also called Mobile Ubiq-

uitous LAN Extensions (MULEs) within a wireless sensor network allows these elements to
collect sensor data, store it temporarily (buffer it) and deliver it to wired access points [214].
Shah et al. [214] point out several benefits that a mobile infrastructure could provide, e.g.,
minimising network infrastructure (a fixed base station), increasing robustness in the network,
and prevent sensor nodes from supporting multihop connections. MEs can be used to improve
the performance of the network (e.g., energy efficiency, connectivity, reliability, end-to-end
delays, etc.) [223]. In particular, it could alleviate the hotspot problems that occurs when
multihop connections exist and affects the energy consumption of nodes close to the BSs which
is higher because they have more traffic [223]. If one part of the network is affected by a power
problem, this has repercussions for the rest of the network [223]. MEs are also data carriers
and a tool for extending network lifetime. The MEs [223] follow a trajectory classified as:

• random with movements in any direction;

• controlled because the movement is controlled by the users; and

• uncontrolled because the trajectory is fixed and predefined.

Finally, the network components and data collection can be classified into three groups
[223]:

• Mobile base station (MBS) is the combination of mobility and traditional base stations. It
can be more than one MBS deployed.

68 Foundations and Technologies

• Mobile data carrier refers when the BS is static and there are one or more transmission
nodes.

• Normal sensor nodes are regular nodes to sense variables.

2.8.3 Communication/Propagation Techniques

In WSN "of small nodes with sensing, computation, and wireless communications capabilities"

several issues have been subject of study, such as routing and data dissemination protocols,
energy consumption, flexibility, low cost, fault tolerance, speed deployment, scalability, or
topology changes [86].

Communications is the most energy-intensive part of a network, and there are different
approaches to mitigate this problem [86]:

• Node-centric communications is the paradigm used in Internet.

• Data-centric is based in top-to-bottom solutions and it is supported by hierarchical and
peer-to-peer topologies.

• Position-centric uses any node for forwarding.

In parallel, WSN network topology is usually unknown or change over time, because
several reasons such as the existence of mobile nodes or because nodes are added or removed.
However, despite this limitation, it is often necessary to transmit an update in the code or in the
configuration of the nodes of the network.

Flooding Technique

The simplest way to approach this problem is through the flooding technique [148], where,
when a node receives a message, it retransmits it to all its neighbouring nodes, which reproduce
this behaviour. In this way, the information will reach all nodes in the network at least once.
However, this technique produces what is known as a broadcast storm: the same message
will reach the same node several times through different routes, overloading the network with
unnecessary communications. In addition, for the correct functioning of this technique, it is
necessary that nodes know how to identify redundant messages, thereby avoiding a circular
retransmission of the message. There are some modifications based on this basic technique,
such as the one proposed in [272], where the diffusion of the message is limited according to
the distance in hops from the sink node.

2.8 Devices and Networks 69

Flooded broadcasting is common in WSN, but power is expensive and redundancy, con-
tention and collision are also frequent. Data gathering process must be efficient to guarantee the
lifetime of the network. One message is required to build the topology of the network. In the
topology generation process, when a node is deployed, it will be broadcast (i.e., sent by flood)
a discovery message, and receivers will rebroadcast. These messages contain node information
(e.g., node ID, level, etc.). Each node can receive several messages which is useful for it to
know who its neighbours are. The information contained within the received message is used
by each node to select its parent. There are several strategies to perform the election [273]:

• Earliest-first, the parent will be the sender of the first message received.

• Randomized, the parent will be chosen randomly from neighbouring nodes, without any
priority.

• Nearest-first, the nearest neighbour will be chosen as a parent.

• Weighted-randomized, the nodes assign a score to their possible parents based on the
number of neighbours of the latter.

Spanning Tree Communication

More advanced techniques involve the construction of a Spanning Tree, as a hierarchical
structure of communication from the network nodes to the sink or Gateway node. Thus,
redundant communications and message implosion can be avoided. In this approach, each node
selects a single parent node, through which it will send and receive information. However, the
construction of this type of structure is costly, as it is usually done using flooding or similar
techniques. Because of this, it is not a suitable technique for networks where there is mobility
or high dynamicity, as it would be necessary to continuously build or adapt the tree. Further,
the selection of the parent node is crucial for the optimisation of future communications, and
it is desirable that the spanning tree is kept to a minimum to reduce the cost of transmission.
There are several distributed techniques for the construction of Spanning Trees. For example,
in [67] an approach based on the Gallager-Humblet-Spira algorithm [84] is proposed. Each
node starts the construction of the tree with its neighbours, in a concurrent and distributed way.
When two tree fragments meet, they are joined into a single fragment through the edge with
the lowest weight that connect the two fragments. In the case of the proposal, for WSNs, the
lowest weight is represented as the edge with best bandwidth.

70 Foundations and Technologies

Gossip-based Protocols

Gossip-based protocols can also be found [34]. These emerge as a probabilistic propagation
technique based on epidemic replication, aiming at decentralised operation and high scalability.
Unlike flooding techniques, a node does not transmit the message to all its neighbours, but to
one (or several) selected randomly. This node, in turn, will select another (or others) to which
it will retransmit the information. In this way, duplicity in message transmission is eliminated
or considerably reduced, achieving high scalability and avoiding the problem of broadcast
storm. One of the main problems of this protocol is the intervention of malicious nodes, which
can modify the content of the message. In [9] a modification to the basic gossip approach
is proposed. Instead of electing randomly a neighbour node to send the message, it elects a
neighbour node based on the distance to it and the distance from it to the sink node. It proposes
two approaches, one using the euclidean distance and another using the city block distance.

Clustering-based Techniques

Finally, clustering-based techniques can be found, where nodes are grouped together and elect a
leader or cluster head. In this way, communication between groups only takes place through the
cluster heads, reducing inter-group communication and providing a hierarchical communication
structure. In this type of technique, there are two fundamental steps: the creation of the cluster
and the election of the cluster head. A correct formation of clusters leads to a reduction
of communication between distant nodes. Moreover, the cluster head can easily become a
bottleneck, as it will be the gateway of its cluster. As a result, the resources of the cluster head
(e.g., battery) will be consumed at a higher rate than for the other nodes. Among this type of
techniques, we can find the Low-Energy Adaptive Clustering Hierarchy ("LEACH") [101],
which is a self-adaptive and self-organised protocol. The LEACH configuration is divided
into rounds, in each round a new cluster head in each cluster is elected based on a probability.
The elected node cannot be elected again in the next rounds until all the nodes in the cluster
have played this role. In this way, the workload is distributed among the nodes in the network.
One of the main problems with this approach is that it is not designed for mobile networks.
This is because disconnecting nodes from their cluster head would require reconfiguring the
clusters to maintain a hierarchical communication, thus, high mobility would require constant
reconfiguration.

2.9 Network Simulators 71

2.9 Network Simulators

Simulators are tools that allow the emulation of real situations in controlled environments.
Simulators offer us the possibility of establishing configurations with a high level of specifica-
tion and precision, which allows us to create scenarios with characteristics very similar to real
scenarios. In turn, this means that the results obtained during the tests performed should be
close to those that would be obtained in a real scenario.

In this section, it can be found a selection and summary of each of the simulators that would
be most suitable for the context of use in this proposal.

TOSSIM

TOSSIM [239] is an application simulator for TinyOS. It provides an interface to be used
by C++ or Python clients. It bases its simulation on the occurrence of discrete events and
allows different levels of simulation, such as hardware interruptions or the reception of network
packets. It can simulate mobility but does not simulate power consumption. It is a simple to
use simulator, however the code developed in the simulator may not be compatible with real
TinyOS motes, as the simulator makes different simplifying assumptions.

J-Sim

J-Sim [117] is a simulation environment based on the Autonomous Component Architecture
(ACA) and written in Java. Although it was not initially designed to simulate networks or
sensor networks, it was extended to include different functionalities to represent sensor and
sink nodes, as well as wireless propagation models [226]. One of its main advantages is that,
by using Java, it is platform independent. Moreover, it is scalable and can simulate a large
number of nodes compared to other simulators. However, the design of the framework makes it
difficult for users to add new protocols, making its functionality outdated over time [57].

NetSim

NetSim [168] is a network simulator for Cisco Systems, programmed in C and based on
an object-oriented approach. It is frequently used as a training and testing tool for network
technicians in corporate networks. Although it provides an intuitive and user-friendly interface,
it is proprietary software.

72 Foundations and Technologies

OPNET

OPNET (Optimized Network Engineering Tool) [175] is a commercial simulator written in C
and C++, which allows simulate several heterogeneous networks. It was initially developed
to simulate fixed networks, but it has been extended to simulate wireless networks as well,
although there is a lack of recent wireless protocols.

OPNET++

OMNeT++ (Objective Modular Network Testbed in C++) [174] is a non-commercial discrete
simulator. It provides a powerful Graphical Interface and the INET framework allows to
simulate mobile networks. Although it provides a large catalogue of protocols, it can be
considered limited compared to other simulators such as ns-3. It has a commercial version
entitled OMNEST.

GloMoSim

GloMoSim (Global Mobile Information System Simulator) [17] is a simulator devised to use the
parallel capability offered by Parsec, a C-based simulation language. Although it was devised
to support wireless networks, currently, the project is no longer under active development.

QualNet

QualNet [234] is the commercial version of GloMoSim. It is designed to perform high-
speed and large-scale simulations of a wide variety of networks (commercial, military and
governmental). It also offers a catalogue of simulation models of commercial devices.

Simulink

Simulink is a MATLAB extension that provides visual programming for model simulation.
It can be used to simulate sensor networks and mobile networks, however, it is based on
mathematical models and although it can simulate different communication models, it does not
simulate the full protocol stack, as other simulators do.

Avrora

Avrora [16] allows the simulation of AVR microcontrollers and network sensors. It was
developed under a research project of the UCLA compiler group. Among its most notable

2.10 Summary 73

features is that it can simulate microcontroller programs at instruction level, instead using
software models.

Ns-3

Ns-3 [173] is a network simulator implemented in C++. It is licensed under GNU GPL and
is widely used in research and education. It is not compatible with its previous versions, ns-2
and ns-1, in order to overcome the problems they presented. Currently, ns-3 is being actively
developed and maintained. Among its most notable features is that it incorporates APIs that
allow the integration of real code, such as Berkeley sockets or POSIX threads. It incorporates
numerous protocols, both for wired and wireless networks, and models, for example, to simulate
battery consumption.

2.10 Summary

This chapter comprises a study of the different paradigms, approaches and technologies related
to the predefined objectives of this thesis.

Current monitoring systems should incorporate adaptation and self-adaptation mechanisms
from which adapted systems can be provided that can also adapt autonomously to changes in
context. The context information can be classified into computing system context, user context,
physical context and temporal context which allows to provide general and global information
on the system. There are also several dimensions that bring together the different perspectives
and aspects to consider when adapting SAS systems.

Application building is feasible based on the integration of several applications or composi-
tion of services. Services can be part of an aggregation or a composition, which also depends
on orchestration and choreography. SOA and MSA support the decomposition of a system
into services, although concerns, such as deployment, user interface, flexibility, management,
scalability and service size present certain differences [51]. SOA was initially designed to
operate in static environments but not straightforwardly in dynamic ones (e.g., IoT) [41].

Over the years, a number of architectural approaches have emerged. SOA, SOA 2.0, EDA,
ROA, agent-based, DSSA and other specific proposals that have been taken as a reference by
including mechanisms that support adaptation and self-adaptation. From the latter, it can be
concluded that they include cyclical mechanisms in which several phases can be distinguished.

The frameworks include reuse techniques from different perspectives, libraries, design,
code, parts of the system, etc. They provide a layer of abstraction that allow users to access their

74 Foundations and Technologies

functionality in a transparent way. The middlewares also provide an abstraction layer. However,
these are at a lower level than the frameworks, specifically between the operating system and
the application, albeit there are proposals that bring the two approaches closer together. Another
emerging practice is DEvOps, which focuses on reducing the time for possible changes and
deployment.

The cloud computing is a key concept in ubiquitous environments. The edge computing
and mobile cloud computing paradigms aim to bring data collection and processing closer
to the source nodes and to alleviate resource congestion problems respectively. With respect
to devices, sensors and wearables collect physiological and context data, and depending
on their capabilities support raw data transmission and optionally on-node processing (in-
network processing). Communication and propagation techniques are necessary for this and
for propagating possible modifications, code or other data through the network infrastructure.

Finally, simulators are used to emulate scenarios very close to real environments. This
favours testing with different network configurations (e.g., with varying number of devices,
range, categorisation, mobility types, etc.).

Chapter 3

Related Work

Chapter Abstract

This chapter presents a selection of relevant proposals related to the work developed in this thesis. These

can be divided into three main pillars: (1) design and development of monitoring systems in order to

increase reuse for different application domains; (2) autonomous deployment in the WSNs minimising

human intervention, and supporting reconfiguration at runtime; and (3) data gathering in WSNs with

mobile elements. A total of 30 papers have been summarised, 63.3% of which belong to scientific

journals. Among the main conclusions that can be drawn from the review are that, generally, the proposals

are ad-hoc for specific scenarios, making it difficult to adapt them to other monitoring scenarios different

from those for which they were designed; they are designed for reliable communication networks or for

networks in which the sensor nodes have a direct connection to the Internet; or they assume that the

trajectory and behaviour of the mobile elements (i.e., data collectors) can be controlled.

Chapter Contents
3.1 Introduction . 76

3.2 Framework for Monitoring Systems Design and Development 76

3.3 System Adaptation and Configuration Upgrade at Runtime in WSN 79

3.4 Data Gathering with Mobile Elements . 81

3.5 Discussion . 85

3.6 Summary . 86

76 Related Work

3.1 Introduction

The proposals found in the literature aim to contribute with new design approaches that allow
developers to focus on the specific elements of the application domain, abstracting from low-
level details of the lower layers of the frameworks. In this way, two software programmer
roles can be distinguished, the domain-specific programmer who uses the framework and its
tools to design and configure specific applications for WSNs, and the system programmer, who
is in charge of developing the functionality of the framework in a modular way and with a
generic approach independent of the application domain (i.e., services, microservices, libraries,
etc.) addressing and abstracting the heterogeneity of WSNs (e.g., communication protocols,
platforms and languages). This thesis work presents a framework to address three basic pillars:
(1) design and development of monitoring systems in order to increase reuse for different
application domains (Subsection 3.2); (2) autonomous deployment in the WSNs minimising
human intervention, and supporting reconfiguration at runtime (Subsection 3.3); and (3) data
gathering in WSNs with mobile elements (Subsection 3.4).

A total of 30 proposals, published between 2012 and 2021 (Figure 3.1a), have been selected
and analysed in this chapter as research works most directly related to the thesis work. Of these,
63.3% are journal articles (Figure 3.1b) and the most frequently used keywords include IoT,
WSN, Sensor Nodes, Energy Efficiency, Mobile Elements or Data Fusion (Figure 3.1c).

3.2 Framework for Monitoring Systems Design and Devel-
opment

In [119], a visual editor is proposed to define virtual sensors using a JSON notation. The
editor allows the design of basic operations, combining inputs from different sensors but
more complex operations must be script-programmed. It supports the detection of complex
events (e.g., detecting whether a person is seated) by combining different information and it
incorporates a visual debugging mechanism.

In [240], applications are modelled as Directed Acyclic Graphs where each node includes
tasks represented by a colour. Monitoring tasks correspond to green circles, single data
aggregation tasks correspond to red circles, and sink tasks correspond to yellow circles. Edges
between circles define dependencies between tasks. The authors represent the application
requirements as 2-tuple (T,D) where T corresponding with the set of tasks and D with the time
of the application. Tasks are also represented as 4-tuple (s, x, y, r) where s is a service (e.g.,

3.2 Framework for Monitoring Systems Design and Development 77

Year

N
um

be
r

of
 d

oc
um

en
ts

0

2

4

6

20212020201920182017201520132012

(a) Year of publication of the documents.

Conference
36.7%

Journal article
63.3%

(b) Types of documents.

(c) Word cloud of the key words of the documents.

Fig. 3.1 Information of the most relevant proposals selected within the review.

78 Related Work

kind of sensor), x and y are coordinates of location, and r is communication rate to represent
how often the aggregated data is sent to the parent nodes.

In [245], the Node-RED programming tool is extended with two new building blocks to
interact with the IoT-Directory [38] and uniformly access the registered sensors and actuators in
a smart city. The main objective is to facilitate city operators to develop smart city applications
through a flow-based visual programming paradigm. The IoT-Directory [38] is an ontology-
based approach to homogenise access to different devices (sensors/actuators) and abstract their
physical particularities, in an effort to facilitate the interoperability of applications across IoT
platforms.

In [204], the authors present a framework in the context of the Internet of Services (IoS).
The proposal makes a division between adaptation logic and application logic. Its main
objective is to allow the design of applications based on the composition of services, enabling
the self-adaptation at runtime of the application through the substitution of services or their
composition. In addition, it allows activities to be defined in an abstract way and to be set up at
runtime according to the specific execution context.

In [82], it is proposed a framework to support the development and deployment of applica-
tions in Collaborative Body Sensor Networks (CBSNs), namely C-SPINE. Among the main
features, there are components for In-Node Processing, which allow defining functions such
as filters or aggregation operations in the sensor nodes. To demonstrate the usefulness of the
framework, an application is developed to detect handshakes and the emotions of the users
using them automatically, through different body sensors.

In [129], authors provide a SOA-based middleware to support WSN virtualisation. For this
purpose, it deploys at source and sink nodes level a set of services that aggregate the data from
the physical sensors to fix the behaviour of virtual sensors.

In [99], the authors present a framework to support the representation of a system from a
statechart diagram, it provides libraries associated with the state diagram and the actions to be
carried out in the system. It also includes a visual editor for the domain-specific programmer
to design the system using a state diagram. The editor suggests actions to be included within
the system and when the system programmer adds new actions the editor is automatically
upgraded. The state diagram is represented as a JSON file and it is sent to the sensor nodes
which will execute the specified actions. The actions considered are categorised as network,
data processing, sensor service, and system actions. This framework is designed to operate on
different platforms but is currently only available for StateOS.

Research in [186] presents a platform, namely REACT, designed to allow users to define
adaptive behaviours at runtime. It is based in the definition of two models, the adaptation

3.3 System Adaptation and Configuration Upgrade at Runtime in WSN 79

options specification and the target system specification in order to provide structural and
parametric adaptation. These models are defined by the domain-specific programmer using
Clafer language [18] (adaptation options specification) and UML (target system specification).
Through REACT, users can modify at runtime adaptation behaviour for overlay, P2P or underlay
networks.

3.3 System Adaptation and Configuration Upgrade at Run-
time in WSN

To facilitate the development and maintenance of monitoring applications in this context,
some proposals are beginning to emerge that seek to establish a common platform, capable of
adapting the specific needs of a particular monitoring scenario, yet providing all the common
elements necessary to carry out the monitoring.

In [265], the authors propose a method for reconfiguring WSNs using mobile agents, called
MAAR. These agents send code to nodes to modify the application requirements and adapt it to
dynamic environments. The approach injects mobile agents to facilitate collaboration between
sensors, controlling sensor state, context, environmental data, operations, sharing sample and
code, and improves performance in terms of communication time and energy cost. In MAAR,
the mobile agent can be equipped with a rules engine and also includes four components to
perform conversion, sampling, a trigger for reconfiguration and code base. The reconfiguration
process is divided into three phases: recognition, decision-making, and detection of new codes
for the application (automatic detection if the rule engineering finds a match or manual if
the administrator has to upload for the agent), and sending codes (i.e., the application codes
to the sensor nodes). The evaluation has been performed on MicaZ motes that comprise
light, temperature and smoke. Data flows through mobile agents to the sink responsible for
integration. The reconfiguration request arises at the sensors due to environmental changes and
is transmitted to the sink. The reconfiguration is processed by the mobile agents, not by the
sensors. The communication time and energy cost are both measured.

Research in [192] presents an architecture based on fog computing to provide an intermedi-
ary layer between sensor nodes and cloud where to execute task and to improve connectivity.
It also presents a prototype of a Smart e-Health Gateway called UT-GATE and an IoT-based
case study, called Early Warning Score. It addresses issues of mobility, efficiency, scalability,
reliability and explores where the gateway is best placed to provide high-level services (i.e.,
storage, data processing, data mining, etc.).

80 Related Work

In [114], ActivFORMS is presented from which designers model and verify a feedback loop
that is connected to external elements. ActivFORMS can be deployed in a runtime environment
to perform the adaptation for the different quality goals. Usually, those are stochastic models to
represent uncertainty by means of parameters. An example is illustrated using the DeltaIoT IoT
application to address how to minimise the energy consumption of the motes while guaranteeing
performance despite interference in communications or changes in the network. A simulation
is carried out and the average time required for adaptation is measured.

Research in [55] addresses the problem of when, where, and which services to host on
sensor nodes considering the computational, and storage limitations of the fog nodes. The
authors propose a distributed algorithm, called adaptive for configuration (AFC), and a system
model that can represent the energy consumption, service delay, and performance in terms of
long term service delay and long term energy consumption. Performance evaluation is also
carried out by simulations.

Research in [99] includes an Over The Air (OTA) module integrated for downloading
software applications and upgrades. The downloaded application starts its propagation in the
WSN sink (gateway).

In [264], the authors present an architecture, called BSIS, composed of three layers (edge,
network, and cloud) that supports hybrid edge-cloud IoT base station system. Edge nodes
collect data from sensors and devices, and there is a flexible layer in which the nodes are
manually or automatically reconfigured in the cloud and tasks are also executed in real time.

Research in [142] proposes a Continuous Data-Flow (CDF) formal model to minimise the
energy consumption considering latency constraints, including a fog approach and nano-servers
at the access point nodes (i.e., Multi-access Edge Computing).

In [176], a variability model for Dynamic Software Product Lines in Wireless Sensor and
Actuator Networks is presented. In the model, a set of variation points are defined, which can
be modified by human intervention at runtime. For example, in the proposed solution, a user
could change the limits for a temperature alarm at runtime.

In [233], a component-based system, namely REMORA, is presented with the aim of
providing system reconfiguration in sensor networks. The components in REMORA are based
on event-driven communication. The operations provided by the components are described in
XML, as are the events generated in the component. The adaptation of the components is done
through parameters and, while the components and the framework in general are written in C,
the part responsible for the dynamic deployment is developed in Java. The components are
hosted in a repository and the system is configured according to the described model. However,

3.4 Data Gathering with Mobile Elements 81

the proposal does not consider node mobility, replication/distribution of its components or
network partitions.

In [15] a system for providing a WSN as a service, i.e., Network as a Service, is presented.
For this purpose, the infrastructure is divided into three distinct parts: sensor network, gateway
node and back-end, which is located outside the WSN. In this back-end or external server,
an orchestration engine is deployed, which is responsible for deploying and configuring the
services running in the WSN, communicating with them through the Gateway. The engine is
model-driven. In this way, the services to be executed and the logic of the system are described
in a XML model, which is interpreted by the engine to offer users the required services using
the WSN as an IaaS. The system is implemented in Java web services and java scripts. However,
the sensor network is static, both in the mobility of the nodes and in the specific nodes of which
it is composed.

In [158], ODCWSN (on-demand customisable WSN) is introduced. The aim of this
proposal is to allow defining the behaviour of WSN nodes by means of roles. The role is
defined as a C program that specifies which sensors the node should use and how it should
handle the data collected. The roles are generated by describing a scenario and downloaded to
the corresponding nodes via their wireless connection at runtime. Specific data collection and
aggregation operations are implemented as libraries that can be invoked by the roles.

The authors in [78] presents an architecture for customising the behaviour of intelligent
devices at runtime. The architecture is composed of four layers. In the first one, FrontEnd,
the user is provided with the necessary tools to interact with the architecture; in the Code
Composition Layer, there are the components that define the behaviour of the device based on
the composition of services and components; in the Artifact Contextualisation Layer, it is worth
highlighting the use of plugins to standardise access to heterogeneous devices and sensors;
finally, in the Smart Device Layer, the Runtime Environment component stands out, which is
responsible for deploying the new applications created and launching them on the device at
runtime.

3.4 Data Gathering with Mobile Elements

In modern monitoring systems, data collection and data gathering are inherent. However, it
is still important to incorporate mechanisms or devices (e.g. mobile elements or nodes) that
support the achievement of an adequate collection and/or gathering rate, or even decide where
to send the data for processing.

82 Related Work

Proposal in [165] tries to leverage the benefits that the cloud can bring by using mobile
devices as thin clients to access remotely run applications, for data storage and processing.
Certain eHealth applications require a computational effort for processing or data analysis. The
authors propose a framework to identify whether to send or not data to the cloud in order to
recognise what kind of activity (i.e., standing, walking, or running) the user is doing, and if
so runs a composition of loosely coupled services in the cloud. The mobile device collects
data from the accelerometer and hots a component (mobileCloudAdapter) to make the decision
about configuration deployment. The cloud host a ServiceAdaptationModule to manage the
runtime deployment of components and act as entry point of the mobile device. The evaluation
measures performance by taking the CPU activity of the mobile device and of the server that
act as cloud, and accuracy trade-offs.

Crowd-sensing is an IoT approach related with opportunistic MEs as gateway and whose
movement cannot be controlled. In this context, research in [271] presents a cooperative
framework to create sensing maps using human-carried or vehicle-mounted sensors. The area
to be monitored is divided into different grid cells and a period is established in which they must
be monitored. Each mobile device manages and maintains a table with the cells it has monitored
and the time in which is performed. To reduce network over-head, a data fusion approach is
applied. When two devices exchange information corresponding to the same grid cell and the
same period of time, instead of maintaining and propagating both measures separately, these
are merged in a single measure applying a fusion operator (average, maximum/minimum, sum
or voting, inter alia) which avoids the propagation of redundant information. This cooperative
monitoring framework has been used to construct noise, temperature or CO2 level maps in a
given urban area.

In [130, 131], the authors propose a rendezvous point approach for data gathering. The
main objective is to define a set of sensor nodes that act as cluster heads, in this way the other
sensor nodes send the data to them and the mobile elements only visit these nodes for data
gathering. This will reduce the number of hops in the communication between the sensor nodes
and the mobile elements. To define the cluster heads and the path of the mobile nodes, the
problem is reduced to the Team Orienteering Problem. The cluster protocol is partitioned in
four phases (control tree creation, clustering, ME trajectory estimation, and planning of routing
paths). The evaluation is performed by simulations using Castalia and network lifetime is
measured. No data aggregation operations are provided but the data sent are raw data.

In [76] a framework to improve data collection in a sensor network using mobile sinks
(e.g., vehicles) is presented. The movement of these sinks is controlled and their only purpose
is to collect data from the different sensor nodes. The sinks move along predefined paths,

3.4 Data Gathering with Mobile Elements 83

although they can dynamically adjust their speed and pause to improve data collection in areas
where events occur more frequently. Additionally, the sensor nodes adjust their transmission
power to the path of the sink, in order to increase the lifetime of the WSN. The mobile sinks
form a software network, managed by a centralized controller, which has a global view of the
network and allows upgrading of the services running in the WSN according to the application
requirements.

Research in [253] presents a data gathering scheme based on data fusion through a neural
network called IDGS-DF. The field is partitioned in virtual grids where a cluster heads is
selected to which data is transmitted by the cluster members. The election of cluster heads is
based on the score of the nodes (the score is calculated based on residual energy and energy
consumption, and it is proportional to the transmission distance) and these cluster heads include
a pretrained neural network for data fusion to filter redundant data and to achieve energy
efficiency. Mobile agents are used to send information through the predefined path. An
evaluation has been carried out with a focus on energy conservation and increasing the lifetime
of the network. It also evaluated the cost of the training process which decreases the more
iterations occur.

In [48] a toolkit, entitled InCense, is presented which facilitates the creation and deployment
of monitoring applications on Android mobile devices within eHealth scenarios. InCense
supports mainly the monitoring of users automatically, through the sensors on the device,
and/or through the participation of the user through surveys. InCense delivers: Dynamic
reconfiguration which allows researchers to change the behaviour of the applications at run
time; User-defined filters which enable the creation of custom components for data processing
and monitoring; Data condensation permits the management representation and grouping of
data; Automatically triggered and Event-triggered actions launch monitoring sessions when
particular events occur.

The authors in [153] present a Reference Architecture for mobile crowd-sensing monitoring
systems, focused on eHealth. This architecture is designed for those systems that demand
the monitoring of environmental variables as well as the movement/position of the user. The
architecture is composed of three main layers: (1) sensors, (2) data, and (3) microservices.
The sensors layer is responsible for managing the sensors, activating and deactivating their
corresponding listeners. In addition, it supports dynamic management of sensor sampling
frequency, allowing them to be configured adaptively, fixed, timed or on-demand. Moreover, it
supports data acquisition from the sensors either automatically, and voluntarily (i.e., information
provided by the users themselves). The data layer is responsible for processing the data acquired
by the sensors, carrying out operations of aggregation, filtering, compression and even a first

84 Related Work

analysis. Finally, the microservices layer provides an application, which can be configured, to
enable the reception of notifications and activity personalised feedback.

The authors, in [24], introduce a context-aware data fusion approach for health IoT applica-
tions as a generic vision for context-aware health systems.

Research in [129] proposes an application prioritisation system in order to reduce the
delay, thus improving the data gathering waiting time of the highest priority applications at the
expense of the waiting time of lower priority applications.

In [62], a data gathering system using drones (quadcopters) as mobile elements is proposed.
The approach introduces an algorithm that calculates the route to be followed by the drone,
taking into account the maximum distance it can travel according to its battery and considering
the time required for the complete transmission of data to each node sensor.

In [53], the sensor data gathering problem is approached as the Team Orienteering Problem
(TOP), in which a set of agents must visit a set of clients, and each client must be visited at least
once by one of the agents. Note that, the translation of this problem to that of data gathering in
sensor networks using mobile elements is straightforward. This is an NP-Hard optimisation
problem, for which an optimal solution cannot be found in polynomial time. Therefore, the
authors of this paper present a Lagrangian approach to solve the problem sub-optimally in
reasonable time. For networks of 100 nodes and 5 mobile elements, they determine a route in
approximately 115 seconds on average.

In [274], TCBDGA (Tree-Cluster Based Data Gathering Algorithm) is presented. In this
proposal, a mobile sink periodically, starting from a station base, collects data from the source
nodes. The mobile sink knows the location of all the source nodes deployed in the scenario.
To carry out the data collection, the source nodes form a tree, based on their residual energy.
Subsequently, the mobile sink will visit the root nodes.

The proposal in [200] presents a data gathering approach for in large-scale sensor networks
using mobile elements. The nodes are organised into clusters and the mobile element collects
data periodically from the cluster heads of each cluster. The location of each cluster head is
transmitted to the base station and the shortest path through the locations is determined by a
swarm optimisation algorithm.

In [8] is presented a clustering algorithm for data gathering by means of mobile elements,
also called ferries by the authors. The proposal stands out because the cluster heads are defined
on the basis of the tour defined by the mobile element. In this way, the existing mobile elements
of the scenario can be used to gather data whilst slightly influencing their movement pattern,
since the mobile element must make a stop at each of the cluster heads defined according to the
proposed system.

3.5 Discussion 85

3.5 Discussion

Although the proposals reviewed approach a common scenario, i.e., monitoring systems, they
address different yet related issues. To the best of our knowledge, there is no proposal that
offers a comprehensive solution for the set of issues that this thesis addresses.

With respect to frameworks for the design and development of monitoring systems, although
the benefits of visual paradigms to facilitate and bring system design and development closer to
domain programmers, or even to the end user, are well-known [59], there are few proposals that
offer visual development systems in sensor network or IoT scenarios. Those that address the
problem usually consider that the sensors are connected to Internet, or only allow the behaviour
of the sink node (gateway) to be modified. However, this excludes configurations based on
mobile elements, ad-hoc connections, or dynamic network topologies, reducing the flexibility
of the proposals.

In parallel, there are several proposals that address monitoring system configuration upgrade
at runtime in WSN nodes. This issue is of relevant importance due to monitoring systems
complexity and their dynamic environments. However, no proposals have been found that
use mobile elements, not only for data gathering, but also to propagate from minor system
modifications to major upgrades to those nodes. This is of particular relevance in large area
sensor networks, thus avoiding the need to deploy a fixed communication infrastructure and
therefore reducing the cost of the solution.

Mobile elements are a common resource in sensor networks for data gathering. Two types
can be distinguished, (1) those that are naturally part of the scenario (e.g. a hiker in a natural
park, or a migratory animal), and (2) those that are introduced as an additional element for the
sole purpose of data gathering (e.g. a drone). The main difference between these two types
is that, in the former, the trajectory can not be modified or controlled. This affects the data
gathering, making it an opportunistic data gathering in which some delay may occur from the
time the information is generated to the time it is received by the sink node. However, as these
elements are already naturally present in the scenario, they do not represent an additional cost
for the system. In the second type, when the trajectory of the mobile element can be established,
the main challenge is to optimise data gathering while reducing the distance travelled. In this
context, remote vehicles such as drones (terrestrial or aerial) are often used. While they may
offer better results for data gathering, in terms of amount of data gathered and delay, the main
disadvantage of this approach is found in the physical limitations that these elements encounter
in moving over complex terrains, in the case of terrestrial drones, and in the weather conditions
(wind or rain) in the case of aerial drones.

86 Related Work

Finally, and from a general point of view, it should be noted that most of these proposals
provide an ad-hoc solution for a specific monitoring scenario, making it difficult to transfer or
adapt it to other monitoring scenarios other than those for which they were initially designed.
Furthermore, the inclusion of preprocessing operations in the network should be highlighted,
as only a few of the proposals reviewed include this functionality. Nonetheless, this can be
considered as a key option to reduce the consumption of network resources, improve data
gathering by reducing transmission time, and, ultimately, to fulfil the property of localised
scalability in the system.

The solutions proposed to address these problems must be flexible, modular, versatile,
elastic, extensible, customisable and configurable. To this end, the proposal must have the
ability to adapt and self-adapt to specific situations in dynamic environments accordingly.

3.6 Summary

This chapter has reviewed the existing proposals in relation to the main objective and the goals
thesis. These are divided into three different areas: (1) design and development of monitoring
systems in order to increase reuse for different application domains; (2) facilitating autonomous
deployment in the WSNs minimising human intervention, and supporting reconfiguration at
runtime; and (3) data gathering in WSNs with mobile elements.

A total of 30 proposals published between 2012 and 2021 have been reviewed. Of these, 19
belong to scientific journals, while the remaining (11) belong to communications at international
conferences.

Although the proposals reviewed together address, in general, the different problems
addressed by this thesis, it has not been found a proposal that offers a comprehensive solution.

Features such as run-time adaptation and self-adaptation; abstraction in the development of
the system through visual paradigms; in-network preprocessing to achieve localised scalability;
and taking advantage of the mobile elements that can be found in the scenario, both for data
gathering and for the propagation of modifications and upgrades in the system, are desirable
features that a solution that aims to fulfil the objectives proposed in this thesis should integrate.

Part II

Monitoring Systems Developed and
Studies Conducted

Chapter 4

Monitoring Systems

Chapter Abstract

This chapter describes detailed information about the application domains under study and for which

we initially contributed to the development of monitoring software systems and selection of hardware

devices.

During this initial stage of the thesis development, numerous meetings and collaborations with experts

(psychologists, doctors, nurses, midwives, educators and therapists) were held. These experts helped us

to identify the requirements for providing adequate functionality considering both patient monitoring

and care in general.

The development of monitoring systems includes data collection from non-intrusive sensors and wear-

ables, the combination of subjective and objective information, data preprocessing actions and post-

processing analysis according to the needs. It has been identified that all these systems share several

similarities.

Chapter Contents
4.1 Introduction . 90

4.2 Application Domains . 91

4.3 Systems Developed . 93

4.4 Systems Functionalities and Technologies 114

90 Monitoring Systems

4.1 Introduction

Initially, a monitoring system for the Sleep Apnea Hypopnea Syndrome (SAHS) was developed.
Its design already followed guidelines and decisions were taken into account that distinguished
it from traditional ad hoc monitoring systems. This system served as a preliminary basis for
further developments related to other cases.

Starting from the basis of Sleep Apnea Hypopnea Syndrome (SAHS) monitoring system, we
then addressed the Systemic Lupus Erythematosus (SLE) case, and subsequently we continued
with Pregnant Women with Small for Gestational Age (SGA) Foetuses case. Therefore, three
have been the mainly study cases addressed in greater depth during this stage. At the same
time, it has helped us to realise that particular case studies even application domains share
numerous similarities mainly related to functionality. In particular, and also in relation to the
functionality of the system, the collaboration with the domain experts was key to determining
the requirements and viability of the systems.

In addition, monitoring of the environment has been included following the study of certain
proposals that began to take into account environmental factors (e.g., temperature). There were
no preliminary studies in these specific application domains, however, the expert contributors
agreed that certain factors could be relevant, even conditioning factors for the health and
emotional state of patients. Furthermore, it should be noted that this is one of the ways to
ensure the ecological validity of data collection.

The architectural design of the monitoring systems developed supports the specialisation
of services. This approach makes the systems more flexible because adding new devices is
easy and immediate, as there is no need to develop new software modules but to specialise the
existing services. With regard to the conduct of studies both objective (i.e., physiological and
context information) and subjective data are collected with non-intrusive sensors or wearables,
and standardised questionnaires, respectively.

The chapter is organised as follows. Relevant aspects of the diseases on which the thesis
focuses at this initial development stage, as well as the most affected patients, motivation,
and context-specific information, are available in Section 4.2. Details of each of the systems
proposed and the studies conducted can be found in Section 4.3. Finally, some relevant
considerations about functionality, common aspects identified from the development, and
technologies are explained in Section 4.4.

4.2 Application Domains 91

4.2 Application Domains

Several application domains have been considered during this thesis. This section briefly
describes their characteristics, symptoms, risks and consequences on patients’ lives, variables
that can be monitored and common practices. The help of experts in each of these specific
domains (doctors, nurses, psychologists, midwives, educators and therapists) has been a key
element in the development of these systems.

Environment monitoring can be considered as a complementary domain of application in
multiple situations, including those mentioned above.

4.2.1 Sleep Apnea Hypopnea Syndrome (SAHS)

The Sleep Apnea-Hypopnea Syndrome (SAHS) [92] is classified in the dyssomnias group
and is characterized by drowsiness, cardiorespiratory and neuropsychiatric disorders, that lead
to repeated episodes of obstruction in the upper airway during sleep. It implies high blood
pressure, a serious decrease in quality of life, traffic and workplace accidents or even die asleep.
Nowadays, between the 2-5 % of the world’s population suffer from this syndrome and from
which close to 90-95 % have not been diagnosed [268]. This disorder affects people of all ages,
children and adults, but the symptoms and treatments are different for both. In general, the
probability of developing this disease in adulthood is higher in the case of men. When men
reach the age of 40 and woman reaches menopause, tends to equalize the probability. Other
factors that increase the probability of developing this disease are overweight, hypertension,
abnormalities or defects that can affect the upper airway, among others. Some of the most
common symptoms of SAHS are asphyctic episodes, observed apnea, abnormal movements
and frequent awakenings.

Usually, the diagnosis of SAHS requires to perform a test in a specific room called Sleep
Room (nocturnal polysomnography). One of the great disadvantages is that such installations
are scarce for the high demand that exists, therefore, it leads to a long waiting list of patients.
The sleep test requires that the patient remains asleep for several hours. Likewise, the patient is
in a strange environment so in many cases makes it more difficult for sleeping, which leads
to repeat the test with the repercussions that this have on the own patient and on the waiting
list. Furthermore, the sleep room has a sophisticated, static, heavy and expensive medical
equipment which allows detailed studies of patients. In addition, a specialized medical staff
is required to place the sensors in the body of the patient. This medical staff also monitor the
patient while he or she sleeps, and in the case that there are any problem with the equipment or

92 Monitoring Systems

the patient needs an urgent medical attention, because he/she is in a critical state, the medical
staff can intervene. At present the nocturnal polysomnography is the most reliable study used
to detect whether a person suffers from this disease [56].

4.2.2 Systemic Lupus Erythematosus (SLE)

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease mainly affecting young
women which is associated with several clinical symptoms such as pain, fatigue and emotional
distress that impair the quality of life [167, 251]. However, SLE does not present specific
factors to consider for monitoring and diagnosis its unknown and uncertain etiology. Therefore,
the appropriate medical tests for its study and the configuration of the devices require changes
in short periods of time. Nowadays, the affected population in the world is between 0.02-0.07%
and there is a prevalence in woman compared to men on a scale 9-1 [189]. Also, it is important
to emphasize that the SLE is not an isolated disease, commonly there is a high prevalence of
Fibromyalgia (FM) [157] and sleep disorders [54].

The very few studies that have examined sleep in this clinical population have observed
sleep alterations related to insomnia [180, 112]. The two unique studies carried out by using
objective measures (polysomnography referred to by its acronym PSG) revealed alterations
in sleep architecture, microstructure and continuity in SLE patients (e.g., a decrease in total
sleep time, delayed sleep onset, sleep fragmentation, and reduced delta sleep) [244]. To date
there are no studies using actigraphy. Actigraphy is a modern technique that is less intrusive
than PSG. This allows experts to assess the wake/sleep cycle from physical activity and patient
movement.

4.2.3 Pregnant Women with Small for Gestational Age (SGA) Foetuses

Small for Gestational Age (SGA) is a term used when a foetus is small considering the number
of weeks of pregnancy. The diagnosis requires to know the gestational age and measurements
of height, weight and head circumference of the foetus. In developed countries these cases
reach between 5-10% [91, 31]. These babies have a birth weight below the 10th percentile are
considered SGA, in other words, most babies weigh 2.6 kg at birth, therefore those weighing
less than 2.5 kg are SGA [106, 243]. It should be noted that these babies have higher morbidity
and risk of suffering from certain diseases during childhood and even as adults and mortality
during neonatal period is higher with respect to appropriate-for-gestational-age babies [91, 31].

Emotional management problems of the parents increase the risk of having a SGA or
premature baby [104]. Moreover, stress during pregnancy causes alterations in the vascular,

4.3 Systems Developed 93

neuroendocrine and immune systems of the foetus and increases the likelihood of foetal growth
retardation and preterm birth [166, 229]. In addition, when mothers experience stress during
pregnancy, there is also a prevalence of neurobehavioural underachievement in children from
an early age to adolescence, and there is also evidence of emotional and cognitive problems
[6, 32].

4.2.4 Environmental Monitoring

An adequate management of context information is a challenge due to its complexity and most
proposals are limited to establishing empirical relationships between a few certain aspects.
However, certain environmental factors such as luminosity, noise, temperature, inter alia can
affect or negatively influence the state of health of people. In addition, environmental factors
are framed as contextual information, and context in turn encompasses everything around us
(i.e., home, work, recreation area, or activity performed at a given moment, he/she is watching
the TV while also filling a form, etc.).

Therefore, the relation between physiological variables and environmental factors at a
given moment can help to determine causes, alterations, the occurrence of specifics symptoms
(frequency of arousal, time intervals, sleep quality, corporal indisposition, insomnia, etc.). Also,
this information allows experts to determinate if there are guarantees on the ecological validity

of the research [209, 63]. Schmuckler [209] points out that the concept of ecological validity

"has typically been taken to refer to whether or not one can generalize from observed behavior

in the laboratory to natural behavior in the world.". Previously, Bronfenbrenner [43] defines
ecological validity concept as the measure representing whether the environment perceived by
the users is the environment to be perceived and assumed by the experimenter. This concept is
highly related with multimodal integration, where there may be disruptive effects between data
sources or conflict situations due to the receipt of inconsistent data, both in the laboratory or
natural environment [63].

4.3 Systems Developed

Starting from the basis of system for the Sleep Apnea Hypopnea Syndrome (SAHS), the first
system developed, a posteriori, two more systems have been developed and an additional one
designed. In this section, it can be found the main functional requirements of each of them
which helps us to define what the system should accomplish [227].

94 Monitoring Systems

It also includes a summary of the most relevant details related with its design, architecture,
data base and management mechanisms as well as specific aspects of the sensors that are part
of the network infrastructure, and technologies used considering their suitability to the case.

In addition, some of the results and conclusions on the evaluations carried out are described.

4.3.1 Service-Oriented Monitoring Systems Assisting Diagnosis and Treat-
ment of the Patients with SAHS Symptomatology (SMODIAT)

A system for remote monitoring and diagnosis of patients who could suffer the sleep apnea-
hypopnea syndrome trying to emulate the sleep room of a medical center with low-cost sensors
was developed [20]. One of the main objectives of the system was to reach a major number of
people at the same time and reducing the long waiting-lists for the test of polysomnography.

The medical team could perform the monitoring at the patient’s home even the patient
himself could place the sensors. The test can be repeated as many times as necessary due to the
availability and low cost of the equipment, and the patients would be in a familiar environment
which favours their sleep to be closer to what they regularly have.

The functional requirements specification of the software system are summarised as follow:

• FR.1 Three types of users (medical specialist, family member, patient) should operate in
the system.

• FR.2 The system should support the addition of sensors and/or ergonomic devices to
monitor patients’ physiological measurements (e.g. heart rate, blood oxygen satura-
tion, patient movements, body temperature, sweating, electrical activity of the heart,
inspiratory flow, etc.). Note that these devices possess heterogeneous characteristics.

• FR.3 Sensors should be individually assigned to each patient.

• FR.4 The medical specialist should be able to monitor the patient in real time.

• FR.5 Patient information (name, date of birth, gender, weight and height) must be stored
and must be accessible at any time. The patients should be able to be registered within
the system by the medical team which should be able to modify its information.

• FR.6 Patient information gathered with the sensors should be accessible to specialist at
any time. It should be shown graphically in order to observe variations over time. More-
over, maximum and minimum values reached, arithmetic average and standard deviation
(i.e., data processing) should be registered and should be available for consultation. The
medical team should be able to make notes at sessions.

4.3 Systems Developed 95

• FR.7 The information gathered should be stored separately by sessions and each session
should be available for consultation (e.g., report format) at any time. Sessions should
include start and end date and time.

• FR.8 It should be possible to consult the information about all the patients.

• FR.9 Specialists should be able to configure alarms by setting thresholds (maximum
and minimum). When a thresholds is reached, a notification must be sent to the medical
specialist.

• FR.10 The specialist should be able to configure how he/she receives notifications (i.e.,
type of sound, sound volume, with message or both, and with the option to activate
or deactivate them). The notifications should be sent regularly as long as the situation
remains unchanged and conditions no longer trigger it.

• FR.11 The family members should receive a simplified notification of the patient’s
condition.

• FR.12 The functionality should be available via mobile device.

Design

The system proposed and developed follows a SOA approach, structuring the functionalities
of the system in a hierarchy of layers. In the main layer, the service platform is framed,
in which the following services are mainly included: 1) connection and communication
management services between each sensor and/or device with the corresponding application; 2)
data monitoring management services; 3) data and information storage services; 4) data and
information processing services; and 5) data/information processing and analysis services.

The system offers specific functionality through a specific and adapted user interface for
each of the stakeholders involved. The architecture (Figure 4.1) of the proposed system is
divided into three subsystems:

• Patient monitoring subsystem monitors the physiological measurements of the patient
using a WBANs, in real time and it sends the gathered data to a central unit, called
monitoring application. The monitoring application has the computational capacity to
receive, store and process the data gathered locally and/or externally.

• Specialist supervisor subsystem provides information of a patient to the specialist or
specialists team, preprocessing, processing information, reports of sessions and notes. It

96 Monitoring Systems

allows to set up separate alerts for each patient or group. It also notifies if a sensor has
been disconnected.

• Family monitoring subsystem provides information to a patient’s family member through
their own mobile device. It also notifies if a sensor has been disconnected. This user can
customise how he/she want to receive notifications.

Two main services are to be highlighted, namely Database Management and Patient

Information Management services which follows the standards of web services such as SOAP
and WSDL. These standards were used to provide an uniform access and independence from
platform. In this way, different devices with different properties, at hardware and software level,
can access the Database Management service and this service supports interoperability with
other systems, services, and applications. The Patient Information Management requests data
to Database Management service to carry out data processing with the objective to provide
more complex information (i.e., processing data) that may require an intensive computing.
These services can be run on a local server or in the cloud.

If a disconnection occurs during the monitoring session, and it has no connection available
with the service, it stores the information collected locally, to subsequently send it, when the
connection is reestablished, applying synchronization.

Fig. 4.1 SMODIAT architecture.

4.3 Systems Developed 97

The design and development of the proposal follows a generic and distributed approach. The
reason is that the core functionality is framed within the general platform of services with the
aim of acquiring the principles of autonomy, composition, abstraction, low coupling, platform
independence and reusability, and facilitating scalability. Each service can be specialised to
provide an adaptable system, enabling the creation of dynamic applications to solve a multitude
of problems of varying complexity.

Three simple problems, that could be directly solved, are shown below as example:

• Heart rate component can detect an abnormal heart rate. The range varies depending on
the age of the person, his/her gender, whether he/she is an athlete or a sedentary person.
A regular range is L1 < 45− 100 < L2 Beast Per Minute (BPM) where L1 or L2 are
measurement outside the range limits, either lower or upper.

• Blood oxygen saturation component can detect low oxygen saturation values which are
common in patients suffering from apnea or lung problems. An abnormal blob oxygen
saturation is L < 92% where L is a value bellow the recommended value.

• Awakenings component can detect an unusual number of awakenings.

Technologies such us Arduino and NexGen Ergonomics sensors were used. The applications
were developed with Android Studio and tested on tablets and smartphones with Android
Operating System.

4.3.2 Mobile System for Monitoring the Environment (CEnMO App)

A mobile Health (mHealth) system for objective monitoring of the environmental context has
been developed. Environmental factors (luminosity, environmental temperature, noise, etc.)
could influence or alter the physiological variables (hear rate, temperature, blood pressure,
sweating, etc.), and therefore the patient health state (exhaustion, depression, sleep disturbance,
etc.) [266, 81].

The functional requirements specification of the software system are summarised as follow:

• FR.1 Monitoring environmental luminosity, temperature, humidity, pressure and noise
adding a timestamp to identify when each measure is taken.

• FR.2 It should be possible to configure which measurement to collect.

• FR.3 Sample rate should be configurable (as a software functionality).

98 Monitoring Systems

• FR.4 Data should be able to be stored locally or sent to an external server.

• FR.5 Data should be preprocessed. Cleaning of invalid data from the synchronisation
period and aggregation operations (maximum, minimum, and arithmetic average) on a
specific dataset must be provided.

Design

The developed mHealth system follows a services and microservices approach, and it includes
a mobile application namely Context Environmental Monitoring (CEnMO). Its architecture is
shown in Figure 4.2 and a sample of CEnMO App can be seen in Figure 4.3. CEnMO must be
installed on mobile devices with built-in luminosity (Lx), temperature (◦C), humidity (%) and
pressure (mbar or hPa) sensors, and microphone. Afterwards, simply place the user can place
the mobile device in a specific location (a room, bedroom, hallway, living room, etc.) and start
the application to begin collecting data.

Fig. 4.2 mHealth architecture.

The system covers the needs of the requirements, specifically it addresses the management
of the configuration of the sensors integrated in the device (activating or deactivating them in
a specific device and setting a sampling frequency). Input data is also preprocessed, and in
particular, the microphone data is transformed into a quantifiable unit of measurement or noise
level in decibels (dB). The system works with noise level, not with sound recordings in order to
preserve the privacy of the users.

The proposal of the mHealth is flexible, configuration parameters can be reset or modified
during monitoring and allows adaptation for the management of different types of information.
This provides a valid system not only for monitoring the environment, but also supports the
monitoring of other types of context.

CEnMO App was developed with Android Studio and tested on tablets and smartphones
with Android Operating System.

4.3 Systems Developed 99

(a) List of users. (b) Start monitoring.
(c) CEnMo users, monitor-
ing, data management and
dashboard.

Fig. 4.3 CEnMo app.

Study Conducted

Based on CEnMO (Section 4.3.2) and SMODIAT (Section 4.3.1), the design of a generic model
which includes monitoring of physiological variables of patients and environmental factors is
proposed. These systems consider both kinds of measurements in order to assess objectively
the state and evolution of the patients ensuring the ecological validity of data. To accomplish
this goal, the proposal makes use of services and microservices, whose design is based on
components in order to be able to adapt a same solution to several diseases with some common
disorders, specific equipment, and environmental situations of the patient.

Figure 4.4 shows a specific component diagram that has been used in the objective analysis
of Sleep Quality on SLE patients using actigraphy and mHealth systems [22]. The motivation
for the work was looked at sleep quality of SLE patients based on more objective information
provided by actigraphy and mobile systems, check the ecological validity of the data and
how environmental conditions and factors can affect sleep quality. In traditional methods,
the information for assessing sleep quality is obtained through questionnaires but this study
introduces a novel method that combines subjective (standardised questionnaires) and objective
information using actigraphy wristband and environmental conditions through the easy to use
and non-intrusive mHealth system. The method provides some mechanisms to detect how sleep

100 Monitoring Systems

hygiene could be associated directly with the sleep quality of the subjects, in order to provide a
custom intervention to SLE patients.

Fig. 4.4 Component model of physiological and environmental measurements manager service
for mHealth systems.

The system was evaluated and a comparative analysis between SLE patients (n = 9) and
healthy controls (n = 11) for psychological variables, actigraphy, and variables related to
environmental conditions was performed. The results show that luminosity has a significant
correlation with time in bed (rs = 0.80, p < 0.01) and temperature correlated significantly with
actual waking time (rs = 0.85, p < 0.01), sleep efficiency (rs = −0.81, p < 0.01) and sleep
latency (rs = 0.92, p < 0.01).

4.3.3 mHealth system to assist pregnant women through a psycho-educational
programme (mPOP)

A mobile Health (mHealth) system, namely mPOP, to provide a psycho-educational programme
in order to assist pregnant women with SGA foetuses and their partner was proposed [23].
In the case of pregnancy, the mHealth systems facilitates self-report of emotional health
(e.g., depression, anxiety, stress, wellbeing, motivating changes or supporting therapeutic
interventions). There are also concerns related to the care of the baby, and even more worrisome
ones when they are small for gestational age or if there are malformations.

The functional requirements specification of the software system are summarised as follow:

4.3 Systems Developed 101

• FR.1 To provide a tool for designing multiple contents integrated psycho-educational
programme to assist pregnant women and their partner.

• FR.2 Different types of content should be able to be added and organised.

• FR.3 It should be possible to create different programmes with different contents, modify
them or reorganise, delete them and each programme must be able to be used by different
users.

• FR.4 It is necessary to be able to adapt/modify at any time the contents or the whole
programme associated with a specific user because their needs may change due to their
state of health and intervention may be required. These actions would be carried out by
medical specialists such as midwives, doctors and psychologists.

• FR.5 There should be no restrictions to follow the programme, all content should be
open. The user will be able to choose which tasks to perform and/or content to display.

• FR.6 Each task could have one or several contents.

• FR.7 The content should support different formats of resources such texts, videos, music
and links to internal or external resources.

• FR.8 It is necessary to store information of system users.

– Mother: identifier, name, age, gender, cohabitation, relationship time, education
level, job, gestation week, first contact data, number of previous pregnancies, num-
ber of previous abortions, number of children alive, natural pregnancy, obstetrics
risk, induced labour at on set, characteristic of labour.

– Partner: identifier, name, age, gender, cohabitation, relationship time, education
level, job.

– Psychologist/Doctor: identifier, username, specialty.

• FR.9 Physiological data that help to detect stress or other types of alteration (e.g.,
nervousness, fatigue, inter alia) should be collected automatically in a non-intrusive way.
The physiological data to be considered are acceleration, blood pressure, heart rate, heart
rate variability, electrodermal activity, and body temperature. An event marker and a
time marker should be included to record specific points in time.

102 Monitoring Systems

• FR.10 Pregnant women and their partners should have access to the programme via a
mobile device.

• FR.11 The psycho-educational programme must exist in order to be associated with a
user.

• FR.12 Data collected from questionnaires should be send to an external server.

• FR.13 Data should be preprocessed. Cleaning of invalid data from the synchronisation
period and aggregation operations (maximum, minimum, and arithmetic average) on a
specific data set must be provided.

Design

The requirements of the system were defined in collaboration with medical specialists such as
psychologists, doctors and midwives. The mPOP architecture can be seen in Figure 4.5 and its
main aspects are detailed below.

Fig. 4.5 mPOP architecture.

• A mobile application has been developed with a very flexible structure that organises
tasks in turn include optional explanations or recommendations, activities, questionnaires

4.3 Systems Developed 103

and links to supplement the recommended basic information. These tasks are designed to
be carried out by pregnant women or their partners. The contents are grouped thematically
and planned to be carried out as simple day-to-day tasks.

mPOP’s design allows it to housed different intervention programmes. As example, in
Figure 4.5, three different programmes (i.e., 1 - Psycho-Educational Programme, 2 -
Psycho-Educational Programme, and 3 - Psycho-Educational Programme) have been
included. In this way, different aspects can be specifically addressed, and others can be
emphasised according to the needs of the users while medical supervision specialists is
continuous.

• New psycho-educational programmes can be added. It is also possible modify them
in runtime based on the user’s needs and health state. The contents are designed and
organised by the specialists, but the uploading or modification is automated as it is
managed by the AdaptEn module (Subsection 4.3.3). AdaptEn module in turn connects
to an external database (called MoSysDB) which stores the information.

• A generic interface was designed to accommodate different programmes irrespective of
their content, type and number (Figure 4.7). The views are dynamic and only the part
that has been modified is reload.

• An author tool has been developed to manage users’ pregnancy information and to
manage the association with intervention programmes.

• Personalised psycho-educational programmes will be available on users’ devices immedi-
ately after loading or modification. Therefore, different couples, even different partners,
may have different programmes.

• Mothers and their partners can access to the psycho-educational intervention programme
through their mobile devices, and complete it at any time and from anywhere.

• During the development of the programme, questionnaires will be displayed with one or
more questions related to specific tasks. The completion of tasks and questionnaires are
monitored in order to analyse user progress and programme satisfaction. The programme
can also be adapted considering the results of completion and the mother’s health state.

The mPOP system proposed and developed follows a microservices based approach. The
MoSysDB database scheme is generic with the aim of being able to host different intervention

104 Monitoring Systems

programmes for several health domains, not only related to small-for-gestational-age preg-
nancies or babies. MoSysDB structure allows the development of monitoring systems and
database-driven mobile applications making it possible to change the internal content of an
already installed application, without having to reinstall or update it. MoSysDB also covers the
representation of various types of content and formats required in this area in order to be able
to anticipate the needs to store a type of content not known a priori in the early stages of the
design and development of a specific system and/or application.

The mPOP system model (Figure 4.6) comprises mainly eight entities:

• Baby, parent, mother and healthcare professionals entities (blue background).

• Applications and author tools entities for parents to access to the psycho-educational pro-
gramme and for healthcare professional to manage the programme (green background).

• Adaptation Engine (AdaptEn) entity represents the module that carries the load of the
intervention programme the first time, and then making changes to adapt it once deployed
(yellow background).

Fig. 4.6 mPOP system model.

Currently, the mPOP system is supporting three psycho-educational programmes as in-
dependent applications (i.e., VIVEmbarazo (Figure 4.7), VIVECrianza Hospitalización and

4.3 Systems Developed 105

VIVECrianza No Hospitalización) were deployed. These applications are easy to install on the
user’s own device.

Fig. 4.7 App VIVEmbarazo.

Along with the mPop system, the E4 wristband (Empatica bracelet) [73] to monitor the
physiological measurements required within the specification has been included. The E4
wristband collect electrodermal activity (EDA) expressed as microsiemens (µ S), blood volume
pulse (BVP), heart rate (HR), inter beat interval (IBI), acceleration (range -2g, 2g), body
temperature expressed on ◦ C.

The applications and author tools were developed with Angular.js framework and Ionic
framework. The applications were tested on tablets and smartphones with Android Operating
System. The author tools were tested on smartphones and computers.

Study Conducted

A proof of concept with the VIVEmbarazo App was carried out in order to help pregnant women
and their partners through a psycho-educational programme. VIVEmbarazo includes more than
20 tasks organised in four pregnancy areas: medical advises, health care, communication with
the foetus (stimulation), and emotional management.

Preliminary results from 24 users who have participated in the program provide data on the
degree of follow-up of the program and the areas of greatest interest (Figure 4.8).

106 Monitoring Systems

The left graph shows a parental engagement (Figure 4.8a) in the intervention programme.
Of the total number of users, 63.5% have completed more than 65% of the programme. Some
mothers abandoned the programme before completed it because the birth of their premature
babies.

The right graph show the percentage of engagement (Figure 4.8b) in the tasks grouped by
the four main areas. Communication with the baby (stimulation) area followed by medical
advice area were the ones that the parents completed the most.

All the users provided positive feedback about VIVEmbarazo usefulness.

(a) Parental engagement. (b) Pregnancy areas.

Fig. 4.8 Preliminary results of mPOP system.

Adaptive Engine to Manage Structural and Dynamic Content in Apps and Systems
(AdaptEn)

AdaptEn module is hosted in a cross-cutting services layer. Clients connect to the server,
make a request (HttpRequest) and the response message is encapsulated in an HTTP-response.
Security aspects are covered by the checkToken service which establishes a secure connection
and encrypts the information transmitted over the network.

The AdaptEn provides support for 1) creation of intervention programmes; 2) associating
the most appropriate intervention programme to parents, taking into account their specific
needs; 3) uploading a programme into an application; and 4) monitoring the completeness of
each parent’s tasks and download the answers of the completed questionnaires. We have made
three activity diagrams to describe the behaviour of AdaptEn using control flow:

• The creation of psycho-educational programmes (Figure 4.9) requires that healthcare
users uploading a programme (which already includes tasks, general resources and
specific information, activities, questionnaires and possible response options, and other

4.3 Systems Developed 107

additional resources). The AdaptEn module creates the programme and the app that host
it. It is possible to create as many programmes as necessary, as well as to generate a
mobile application for each of them with minimal human intervention. Moreover, the
reassignment of new programmes without the parents having to reinstall the application
is feasible.

• Associating a programme to a parent (Figure 4.10) requires that healthcare users to
designate through the authoring tool which programme is assigned to which mother or
couple. In this authoring tool, it is necessary to search for the parents in order to make
the assignment. If parents do not yet exist, they must be created for the allocation of the
intervention programme.

• Loading an app on the associated parent’s mobile device (Figure 4.11). The application
requires to AdaptEn the data to be loaded into each fragment right when the user accesses.
Once the data is obtained, the view is created and displayed to the user. This makes it
possible to change intervention programmes at runtime and the change is imperceptible
to parents as it does not require any action on their part, but they would already directly
visualise the adapted programme.

Navigating the application requires that AdaptEn consults MoSysDB. In addition, when
it is a questionnaire, and parents answer it, such answers are stored in MoSysDB.

108 Monitoring Systems

Fig. 4.9 Activity diagram for creating a psycho-educational programme.

4.3 Systems Developed 109

Fig. 4.10 Activity diagram for associating a psycho-educational programme to a parent.

110 Monitoring Systems

Fig. 4.11 Activity diagram for loading an app on the associated mobile device.

4.3 Systems Developed 111

4.3.4 Context&Health App

The overall objective of the system focuses on monitoring the emotional state of the children
with special needs and their behaviours in response to certain stimulus.

The functional requirements specification of the software system are summarised as follow:

• FR.1 Provide a tool for designing multi-element integrated programmes. An those
elements can be a type of image, music, video or a package. All of them must be labelled.
The first three are individual and independent elements but the package is a combined set
of the above in order to make it possible to create a special link, relationship, or grouping
(e.g., a thematic grouping of a set of nature elements, or images with a blue background
that will commonly used in a given program).

• FR.2 Within a programme, the elements can be displayed sequentially or in parallel, i.e.,
several at the same time (e.g., picture with music in the background). However, it should
be configurable the order and period of execution of each element of the programme
(e.g., the time an image must be projected).

• FR.3 The stimulus may be associated with a previously defined program or may be
incorporated by the educator during the development of a work session with the child.

• FR.4 Programmes must exist to monitor a child. Each child can have associated several
programmes.

• FR.5 Before starting each monitoring session, it is necessary to select the child to work
with and the appropriate programme.

• FR.6 A stimulus board should be provided that includes noise, colour, brightness, move-
ment, vibration, touch, and the possibility to include the whole set. During a monitoring
session, the educator should be able to instantly record on the stimulus board the impact
that the specific stimulus is having on the child according to his/her perception on a posi-
tive, neutral or negative scale. Subsequently, a temporal correlation would be established,
in order to make a concrete association between the specific stimulus/s and the impact on
the child according to the scale item.

• FR.7 It is necessary to have stored the profile information of the child. Together with the
profile information, personal information (i.e., name, surname, date of birth, and photo)
must be stored.

112 Monitoring Systems

• FR.8 An initial sensory profile may include hypersensitivity, degree of blindness, motor
impairment in lower extremities, etc. This profile can be completed on the basis of
information gathered in the following sessions.

• FR.9 With the system should be possible to manage users (i.e., children), the programmes
and their elements, and the stimulus board to monitoring and record the impact produced
to the child and perceived by the educator during each session. In parallel, physiological
data in a non-intrusive way and environmental data should be collected automatically.

• FR.10 The physiological data to be considered are acceleration, blood pressure, heart
rate, heart rate variability, electrodermal activity, and body temperature.

• FR.11 The environmental data to be considered are luminosity, noise, temperature,
humidity, and atmospheric pressure. An event marker and a time marker should be
included to record specific points in time.

• FR.12 Child profiles, child information, programmes and elements should be added,
consulted, edited and deleted.

• FR.13 Search options must be provided (i.e., user search, program search and program
search).

These requirements of the system were defined in collaboration with educators, psycholo-
gists and therapists from the centre of integral human, educational and rehabilitative care for
children with special needs, who supervised and reviewed the proposed interfaces.

The system proposed to be implemented includes a set of sensors to monitor the phys-
iological variables among which is the E4 wristband (Empatica bracelet) [73]. To monitor
environmental variables it was proposed the use of CEnMO App (Section 4.3.2). Moreover, an
application with three distinct parts (users, programmes and monitoring) was designed. Figures
included in 4.12 show a sample of some of the functionality that this system would include. Its
design leads to facilitate the creation of programmes to study and obtain the sensory profile
of children with special needs or other specifications whose functionality requires a similar
structure.

4.3 Systems Developed 113

(a) Personal user and profile information. (b) Elements that compose a program and their fea-
tures.

(c) Configuration board for defining the sequential
or parallel order of the elements.

(d) Stimulus board to record at runtime the impact
of the elements shown to a user with special needs.

Fig. 4.12 Context&Health App interfaces.

114 Monitoring Systems

4.4 Systems Functionalities and Technologies

To conclude the chapter, we have drawn up three tables summarising the requirements, charac-
teristics, technological aspects, proposed solutions and studies carried out.

System requirements for each of the cases addressed are included in Table 4.1. Here, it is
shown that the requirements of the cases demanded by the domain experts (doctors, psycholo-
gists, nurses, midwives and educators) include the collection of information (physiological and
environmental) but do not necessarily require the integration of sensors/wearables in the system.
It is also relevant that within the system itself it would be possible to store information or create
profiles of the patients or users to be monitored. Regarding the variables to be monitored, it is
necessary to provide the option for selecting the factors to monitor for each situation, including
the possibility of adjusting the sample rate. It is also frequently requested that data can be
viewed per session, processed, and stored, as well as that the events or marks can be recorded
to review an event a posteriori and that it can be traced. Several applications with specific
functionality for different stakesholders are also frequent among the usual requirements.

Table 4.2 comprises the solutions provided on the basis of previous requirements. Most of
our system proposals use service oriented architectures with the possibility of specialisation
or microservices. The services and microservices have been organised by layers and mainly
comprises connection and communication management, storage and processing. Regarding
data, we have applied data buffering techniques and storage has been both local and external
depending on the case. With regard to technological devices, it is worth mentioning the use
of low-cost technologies (Arduino), others from specialised companies, and the system itself
integrated with the CEnMo application that we have developed ourselves. The development
tasks have been carried out mainly with Android Studio, Angular.sj and Ionic.

The main aspects of the two studies conducted are summarised in Table 4.3. The objectives
have been the non-subjective analysis of sleep quality in patients with SLE and the assistance to
pregnant women through psycho-educational programmes, respectively. The developed systems
have been used in combination with other measuring devices. The second study integrates
within the system the questionnaires completed by expert collaborators in the application
domain.

Requirements are atomic and can be used repeatedly. In fact, there are strong similarities
between the domains studied, which are reflected in the requirements and proposed solutions.
These similarities and differences are particularly pronounced when it comes to monitoring
systems for data collection with sensors and wearables, and when what is intended to be

4.4 Systems Functionalities and Technologies 115

implemented is a system to host intervention programmes. However, as shown in the following
tables, a combination of the two is in demand, resulting in more complete solutions.

Table 4.1 System requirements for each case.

SMODIAT
Mobile System for

Monitoring the
Environmental Context

Psycho-educational
programme via Mobile
Health system (mPOP)

Context&Health App

Devices
Sensors aggregation Ë é é é
Wearables aggregation Ë é é é
Specific assignment of
devices to users Ë Ë é é

Sensors already integrated é Ë é é
Psycho-educational programme

Programme content
management é é Ë Ë

Support for the organisation
of content é é Ë Ë

Audiovisual content
management é é Ë Ë

Textual content
management é é Ë Ë

Links management é é Ë Ë
Questionnaire management é é Ë Ë

Data
Physiological variables Ë é é Ë
Environmental variables é Ë é Ë
User personal information Ë é Ë Ë
Search options Ë Ë Ë Ë
Data per session Ë Ë Ë Ë
Data preprocessing Ë Ë é é
Data storage Ë Ë Ë Ë
Access to data monitored Ë Ë é é
Access to personal
information Ë Ë Ë Ë

Monitoring
Selection of measures to be
recorded Ë Ë é é

Sample rate settings Ë Ë é é
Real time visualisation data
monitored Ë é é é

Alarm setting Ë é é é
Event marker é é é é
Notifications Ë é é é

Stakeholders
Member of the specialist
team Ë Ë Ë Ë

Family member Ë é Ë é
Patient/User to be monitored Ë Ë Ë é

116 Monitoring Systems

Table 4.2 System design proposals for each case.

SMODIAT
Mobile System for

Monitoring the
Environmental Context

Psycho-educational
programme via Mobile
Health system (mPOP)

Context&Health App

Services Ë é Ë Ë∗
Microservices é Ë Ë Ë∗
Specialisation Ë Ë Ë Ë∗
Architecture layers

Connection and communication
management between devices Ë é Ë Ë∗

Data storage Ë Ë Ë Ë∗
Data processing Ë Ë Ë Ë∗
Analysis Ë é é é∗

Applications
Member of the
specialist team Ë Ë Ë Ë∗

Family member Ë é Ë Ë∗
Patient/User to be monitored Ë Ë Ë Ë∗

Data
Data buffering Ë é Ë Ë∗
Local storage Ë Ë é é∗
Remote storage Ë é Ë Ë∗

Technologies
Arduino Ë Ë Ë Ë∗
NexGen Ergonomics Ë é é é∗
MotionWatch 8 (Actigraphy wristband) é Ë é é∗
Empatica e4 (physiological signals) é é Ë Ë∗
CEnMo é é é Ë∗

Development frameworks used
Android Studio Ë Ë é é∗
Angular.js + Ionic é é Ë é∗

(∗) means that the system was designed but not implemented.

Table 4.3 Studies conducted.

Study
Objective analysis
of Sleep Quality
on SLE patients

Assisting pregnant
women through a

psycho-educational
programme

Systems used
Mobile System for Monitoring
the Environmental Context (CEnMo) Ë -

mPOP - Ë
Devices

Own device é é
Device with built-in sensors (CEnMo) Ë Ë
MotionWatch 8 (Actigraphy wristband) Ë é
Empatica (E4 wristband) é Ë

Questionnaires designed by our experts é Ë
Standardised questionnaires Ë é

Part III

ASTREA Framework: Design and
Modelling

Chapter 5

ASTREA Framework

Chapter Abstract

Nowadays, modern monitoring systems are on the rise in our society because technological advances

are supporting monitoring, remote control, and data gathering everywhere and at any time. However,

their complexity is also increasing due to internal and external factors such as contextual conditions,

user needs, changes in the functionality, services availability, heterogeneity of devices (sensors and

wearables), and resources availability. All of these generate uncertainty and situations that are difficult

to predict at design time prior to system deployment. To our knowledge, there is no end-to-end solution

that supports making changes to system functionality and deploying them at runtime in a dynamic

environment using mobile elements and, crucially, maintaining localised scalability as the property of a

system not to send information beyond where it makes sense to send it by avoiding interaction between

distant entities [207].

ASTREA framework has been created with the aim of providing solutions on three basic pillars: 1)

to enhance the reuse of software, in particular, design and development of monitoring systems; 2) to

support autonomous deployment, and propagation of adaptations and upgrades to system functionality

at runtime; and 3) data gathering. The latter two have been designed to operate in dynamic networks

and with mobile elements. ASTREA also includes a visual editing tool for domain-specific software

developers to speed up the prototyping of systems by abstracting them from low-level technical issues

and providing them with a set of sensors, wearables, and functionalities that they can reuse by freeing

them from programming. In this way, developers of domain-specific software can be focused on system

design. With the aim of illustrate and animate the capabilities of ASTREA framework, this chapter also

includes a case of study and an implementation to demonstrate the feasibility of the proposal deployment

in a test environment.

120 ASTREA Framework

Chapter Contents
5.1 Introduction . 121

5.2 Motivating Scenario . 122

5.3 Specific Objectives . 124

5.4 System Model . 124

5.5 Adaptation Plans . 128

5.6 Case Concept Formalisation . 128

5.7 Architectural Design . 132

5.8 Case Subversion Service . 136

5.9 System Operation . 137

5.10 ASTREACE Tool . 142

5.11 Service Repository . 148

5.12 Case Study . 149

5.13 Implementation and Feasibility of Deployment 159

5.14 Summary . 171

5.1 Introduction 121

5.1 Introduction

This chapter presents ASTREA framework as an integral solution for common but still chal-
lenging issues of monitoring systems. On the one hand, monitoring systems frequently require
adaptations and upgrades after deployment. On the other hand, monitoring system requirements
must be fulfilled for the collection of measurements (physiological and environmental data),
maintaining or improving the performance of the system.

There are many scenarios in which monitoring systems can be deployed, where changes
are frequent due to context information (i.e., user context, computing system context, physical
context and temporal context) and for which customised or adaptive services must be provided
[263, 64]. WSNs or BSNs should be attached in a non-intrusive manner to users (patients).
These users and others (e.g., caregivers) could move acting as mobile data carriers and node
routers supporting multi-hop connections. Within ASTREA, we take advantage of these mobile
elements in order to promote the transmission of data (e.g., specification of a monitoring system,
parameter specification, code mobility, corrective adaptation, adaptive adaptation, extending

adaptation, perfective adaptation, compositional adaptation, at different levels and dimensions,
etc.) [135]. This provides a way for systems to be modified and adapted as many times as
necessary, easily and quickly, with minimal human intervention, and at runtime, without the
need to reinstall applications. In addition, we also address another common goal of data
gathering by analysing the advantages of incorporating in-network preprocessing and mobile
elements (or devices) that act as carriers.

In this chapter, firstly, the usefulness of the proposal is illustrated in a motivating scenario.
Next, it can be found the specific objectives of ASTREA framework, and subsequently the
system model that frames ASTREA. The idea of the case concept, one of the main foundations
of the proposal, is introduced. Subsequently, ASTREA architecture is presented, its main com-
ponents are detailed, as well as the developed mechanisms to support autonomous deployment,
and propagation of adaptations and upgrades of system at runtime, and data gathering.

The deployment, and propagation of adaptations and upgrades mechanism allows these
systems to be put in place with virtually no human intervention to install or configure the
devices, they just need to be located within the scenario and switched on. Furthermore, systems
need to be reconfigurable in order to cover the needs of monitored users and for better system
performance or optimisation from the introduction of in-network preprocessing operations
(increasing success rate of meaningful information, minimising bandwidth and saving en-
ergy). This reconfiguration must be carried out autonomously (i.e., self-configuration and
self-optimisation) on the part of the system. In addition, ASTREA Case Editor (ASTREACE)

122 ASTREA Framework

tool is shown, from which the specification of the cases is created or modified by a case designer
(i.e., domain-specific software developers or domain-specific users). With ASTREACE tool,
the case designer can select, drag and drop the devices to be used (sensors and wearables) and
actions as well as to set certain configuration parameters to provide functionality to the moni-
toring system (i.e., case). Actions involve in-network processing, storing, and self-adaptive
specifications.

Once cases are created, they must be deployed, which is handled by the deployment

mechanism. The case subversion service generates a version of the case specification for
each of the nodes involved in the system which are sensors and wearables (sources), mobile
elements that are data carriers (intermediaries), and data sinks (destinations). In this way, each
node receives only what it needs and network infrastructure can be shared as environmental
sensors can collect information that can be useful for different cases. Notwithstanding, data
transmission must be valid regardless of the purpose of the system (requirements or actions).
The following is a detailed case study comprising the complete process for creating a case,
deploying it, and gathering the data with ASTREA. It also briefly outlines the adaptation
plans incorporated within the framework, as well as the most relevant information about the
service repository. Finally, a sample of the implementation is included which is used in a test
deployment to show the dynamic composition of the services and microservices in a distributed
environment.

The most relevant parts of ASTREA will be modelled according to the 4+1 View Model
using Systems Modeling Language (SysML) that supports the modeling of specification,
analysis, design, verification and validation phases [232]. The 4+1 View Model organises the
description of the architecture in five concurrent views: 1) Logical View; 2) Process View; 3)
Physical View; 4) Development View; and 5) Use Case View. In this way, the organisation of
the architecture represents the structural elements, the behaviour and composition of both to
form subsystems and to meet stakeholder needs [160]. Here, structural diagrams define the
static architecture and behavioral diagrams represent the dynamic part [160].

5.2 Motivating Scenario

In this section, to animate the capabilities of the system and interplay between the primary
components, we will now consider a nursing home scenario.

Within the nursing home, we assume there are several residents which require to be
monitored. The monitoring process primarily addresses what to measure, where, how and when.
With regard to what to measure, the proposal for data gathering involves:

5.2 Motivating Scenario 123

1. physiological variables useful in determining the condition of the residents;

2. environmental variables useful in determining their surrounding conditions; and

3. residents location, useful in determining automatically where she or he is, and the possible
implications of being there.

Furthermore, the area where the residents are moving can be relevant and it could encompass
a wide area, taking into account different spaces included those which are visited only for
short periods of time, either (1) indoor, and (2) outdoor. In addition, with respect to how, it is
also worth noting, that it is possible to find different degrees of residents’ mobility within a
space. Finally, when, it should be managed directly by the monitoring system itself considering
that monitoring should be continuous as long as necessary to meet system requirements. All
measures should be gathered objectively and without human intervention from an infrastructure
of heterogeneous sensors, wearables and other devices (e.g., nodes with higher computational
capabilities) that compose the dynamic distributed wireless networks.

In the nursing home, changes are frequent. Residents are not always the same, as there
are new residents join but also leaving. In this regard, residents’ needs are not equal and it is
important that systems can be adapted or customised to serve them optimally.

Fig. 5.1 (1) Indoor cases (on the left), arrows reflect the data transmission for cases deployment,
propagation of adaptations and upgrades. (2) Outdoor cases (on the right), arrows reflect the
data transmission for data gathering.

As example, in Figure 5.1 can be seen that there are five residents (S1, S2, S3, S4 and S5)
with BSNs, two caregivers (I1 and I2), and one destination (i.e., sink node). Each resident is

124 ASTREA Framework

monitored by a custom-designed monitoring system (i.e., case). Furthermore, there are five hub
of environmental sensors (S6, S7, S8, S9 and S10) which share the same instance of a case being
an instance a replica of a same case. Residents and caregivers can walk, which is represented
by R and C points respectively. In particular, resident S2 is initially in his/her room but then
walks to the chairs in the hall while the caregiver I1 who is initially in the living room (C) goes
to visit resident S1.

ASTREA makes possible to specify and manage the case for each resident in a transparent
manner. It is shown, in the Figure 5.1 (on the left) that I1, who is moving, has in its reach
range S1, S6, and S2. I1 carries the case specification for each of these nodes and will send
them to them. In parallel, sensors, wearables, and WSNs are already collecting data but their
configuration, in-network operations and how to gather the data will be set once they receive its
case specification.

The image on the right (Figure 5.1) represents that I2 has within its reach range to S2 (this
resident has gone outside for a walk), S4 and S10. However, I1 is a better host of the data than
I2 because its computational capabilities at that time are better (e.g., more remaining storage or
battery). Therefore, S2, S4 and S10 will send the data to I1 via multi-hop connection. Finally, I1

will retransmit the data it has collected to a destination when the latter is in range.

5.3 Specific Objectives

We present the ASTREA framework as a generic solution to:

1. speeding up the prototyping of monitoring systems;

2. autonomous deployment of monitoring systems in mobile WSNs with dynamic network
topologies;

3. modifying the behaviour of already deployed monitoring systems at runtime;

4. introducing in-network preprocessing operations in order to optimise WSN performance
in terms of increasing success rate of meaningful information, and minimising bandwidth
and energy consumption.

5.4 System Model

This section provides an overview of ASTREA framework using a block diagram in SysML
(Figure 5.2) as well as the most relevant assumptions.

5.4 System Model 125

ASTREA framework comprises three main entities:

• Case Editor (ASTREACE) tool is an editing tool that supports the creation and later mod-
ification of cases (detailed in Section 5.10). A case is the specification of a monitoring
system in ASTREA.

• Monitoring System (ASTREAMS) is the core of ASTREA framework which supports the
first case deployments and subsequent case modifications (i.e., adaptations and upgrades)
as well as data gathering. This transmission of data is conducted by autonomous de-

ployment and reconfiguration at runtime (detailed in Section 5.9.1), and data gathering

(detailed in Section 5.9.2) mechanisms. Both mechanisms are managed independently.

• Repository contains reusable software entities, in particular, services and microservices
to compose the systems developed with ASTREA framework.

ASTREA framework can involve several stakeholders (i.e., doctors, nurses, psychologists,
midwives, etc.) which can collaborate with the software engineers and case designers. The
software engineers are the ones who enrich the service repository and integrate the hardware
devices (i.e., nodes to collect measurements and carry out actions) within ASTREA, while the
case designers are the ones who create the cases (i.e., monitoring systems) from the elements
available at ASTREACE, and microservices provided in ASTREA and previously created by
the software engineers. Case designers usually have extensive knowledge of the application
domain.

Data collection in ASTREA is envisaged as the monitoring of physiological variables (i.e.,
measurements) of users, and contextual variables (environment or location). These data are
collected with sensors or wearables objectively without human intervention. What variables
should the monitoring system include, must be specified within the case specification. This
case specification should also include what actions must be applied over these variables. The
measurements monitoring and actions integrate the system’s operations encapsulated within
ASTREA’s services and microservices. The case specification, and services and microservices
associated will be deployed within the nodes of a dynamic network. Further details on the types
of nodes that compose the network infrastructure in ASTREA can be found at Subsection 5.7.1.

In addition, the following underlying considerations have been taken into account in
ASTREA design and development:

• Each case specification defines an independent monitoring system but in a scenario can
coexist multiple cases.

126 ASTREA Framework

Fig. 5.2 ASTREA framework block diagram in SysML.

5.4 System Model 127

• Devices (i.e., mainly sensors and wearables) can be added and removed from the cases

at runtime.

• In ASTREA network infrastructure one device or a set of them are considered as nodes.

• The network infrastructure can be shared. This means that a node can be used at the
same time for several cases.

• Devices that compose the monitoring systems are heterogeneous.

• Actions are what each system does in a granular level.

• Actions can be reused by several cases.

• Devices and actions are selected by a case designer.

• Adaptation mechanisms can be introduced by a case designer.

• Self-adaptation mechanisms can be defined by a case designer and executed autonomously.

• The adaptation and self-adaptation mechanisms can be executed in parallel in multiple
cases.

• Communications in dynamic networks are unreliable.

• Distance between nodes can cause channel fading.

• Buffer size is limited and congestion within the network is possible.

• Links between nodes could not be bidirectional. Nodes can have different range for
connection and consequently for data transmission. Therefore, a node could send data
but the receiver could not have the sender within its achievable range.

• Multi-hop communication is managed by the routing protocol.

• ASTREA framework follows an opportunistic approach where there are no restrictions
about delay-tolerant.

• Nodes (network devices) are not aware of the existence of other nodes (with the same or
different role) in the scenario.

128 ASTREA Framework

5.5 Adaptation Plans

ASTREA supports three types of adaptation:

• Adaptation in already deployed monitoring systems. Adaptations are made on the
basis of the modifications that can be introduced to the systems and applied via the
mechanism for autonomous deployment, and propagation of adaptations and upgrades.
These adaptations are linked to upgrades or the addition of new functionality at runtime
and without recompiling the already deployed system. A case designer can make
modifications to his/her initial specification through the ASTREACE visual editing tool
and it can also incorporate new devices whether it want to take more measurements
and/or incorporate additional actions. It also can remove both, devices and actions.

• In the data gathering mechanism, adaptation can be found at the level of data prioritisa-
tion, data buffering, or election of the target node by data forwarding policy.

• The case editor can also include in the case specification itself, self-adaptation mecha-
nisms in order to improve system performance in terms of energy savings. The monitoring
system, once deployed, will be performing checks to identify when the conditions defined
are satisfied to perform adaptation autonomously.

• Microservices that make up the monitoring systems can be downloaded and transmitted
over the network because code mobility is feasible in ASTREA.

5.6 Case Concept Formalisation

A specific monitoring system will be design on the basis of the domain knowledge. Furthermore
to the domain knowledge, the design and infrastructure (devices or nodes) used for other
previous systems could be an useful source of knowledge or even could be reused. At the
end, this information is part of a case specification and can be understand as a dual approach
combining top-down and bottom-up approaches [21]. The top-down is about approaching the
problem from a general perspective until the lowest level is reached and the bottom-up refers
to the process that goes from the simplest level to the global problem [161]. In particular,
the top-down divides more complex cases into simplified cases, and bottom-up combines the
simplest cases to compose more complex cases. Complementary, Crespi et al. [60] consider
that top-down assumes that each component has a global knowledge of the system, while

5.6 Case Concept Formalisation 129

bottom-up design starts with the specification of the individual requirements and capabilities of
each component.

Pearce et al. [183] notices that the design of "complex artifacts" involves: "abstract design

concepts", "skeletal design plans", "selecting specific systems and components", or "accepting

design solutions" inter alia. Dooley [69], for his part, considers a case to be an event-driven
description of a real-life activity or problem.

ASTREA is based on the case [183, 21] concept to cover monitoring system specification,
which includes the use of (1) hardware devices (e.g., smartphones, sensors, wearables, micro-
controllers, motes, among others); (2) actions such as data gathering (both physiological and
environmental measurements), data preprocessing, data storage; and (3) devices state checking
to improve performance in terms of network overhead and power savings. The case structure
results from the study and development of several monitoring systems (as described in the
previous chapter, Chapter 4) focused on sleep disorders, women at risk during pregnancy,
monitoring people’s daily routine, assessing the environmental quality, inter alia. Despite
of being systems with a priori different functional requirements, they all share key actions,
functional flows, and hardware devices to monitor the health state of patients.

In ASTREA framework, the case specification is a description of the monitoring system to
be deployed in a mobile and dynamic WSN. The requirements of a case are defined by one
or more actions specified by the case designer. Figure 5.3 shows the case diagram block in
SysML which is part of the Logical View. The Logical View comprises the structural part
of the specification of the functional system requirements at different levels [160, 133]. The
specification includes which actions a case specifically includes and how they are interrelated.
In particular, the type of actions can be:

• Device actions to monitor environmental (i.e., environmental sensors) and physiological
variables (i.e., sensors or wearables). Device actions include configuration setting
parameters. If the device does not allow to be configured, it will be set at software level.

• Preprocessing actions to perform in-network operations related with a measurement or
the device which takes the measurement.

• Storage actions to store information (raw data or preprocessed data) persistently.

All these options are selected and configured by a case designer.
Figure 5.4 shows an example of cases scheme with three cases. Case1 includes three actions

(Action1, Action2 and Action3) that are included in two requirements (which would define
an objective from a more general perspective). Case2 and Case3 include two requirements,

130 ASTREA Framework

Fig. 5.3 Case block diagram in SysML.

5.6 Case Concept Formalisation 131

with five associated actions (Action2, Action4, Action5, Action6 and Action7) and two actions
(Action1 and Action2) respectively. At ASTREA, reuse is possible at different levels. On the
one hand, Case2 reuses Action2 and Preprocessing3 already defined within Case1. On the other
hand, within Case3 specification, the requirements (Requirement1 and Requirement3) already
defined within Case1 and Case2 are included.

Fig. 5.4 Example of cases scheme.

Once the case designer finalises the specification, ASTREA transforms the case specification
to a JSON file and with the deployment mechanism (Section 5.9.1), the monitoring system
will be deployed within the mobile and dynamic WSN. Latter, the case designer can make
adaptations and modifications to the case (i.e., the monitoring system) already deployed.

Finally, it should be noted that these monitoring systems (i.e., cases) are not intended to
control critical patients situations but monitor patients in their daily lives.

132 ASTREA Framework

5.7 Architectural Design

ASTREA framework architecture (Figure 5.5) comprises:

1. a distributed microservice architecture, called ASTREA Monitoring System (ASTREAMS),
intended to provide support for the two following mechanisms:

(a) cases (i.e., monitoring systems) deployment, and adaptations and upgrades at
runtime, and

(b) data gathering in mobile wireless network infrastructures;

2. a service repository which includes all the microservices that can be deployed on a node
according to the particular case specification; and

3. a visual editing tool, namely ASTREA Case Editor (ASTREACE), to create the specifi-
cation of the cases by a case designer as well as to adapt and upgrade them at runtime. In
particular, when the case editor injects adaptations and upgrades via ASTREACE, this
produces changes into the case specification of the monitoring system.

Fig. 5.5 ASTREA architecture.

5.7.1 Characterisation of ASTREA Nodes

The nodes that can be found within the ASTREA framework are characterised by roles: source,
intermediary and destination. Each role possesses the specific capabilities and properties

5.7 Architectural Design 133

summarised in Table 5.1. Moreover, in Figure 5.6, it is shown the specialisation of nodes in
terms of mobility.

Source nodes can be or not mobile, with regard to computational capabilities, it should be
noted that they may be limited in comparison with destination and intermediary nodes. Interme-

diary nodes mobile, and they act as a link from destination nodes to sources, both to propagate
the cases specification, adaptations and upgrades introduced by the case designers at runtime
and to carry the data gathered. Storage capacity, power consumption, and communication range
of intermediary nodes are limited and lower than the destination nodes but greater than the
source nodes. Finally, destination nodes, which are fixed, have high computational capabilities
and a continuous power supply, and act as gateways to the WSNs for the data gathering process.

It should be mention that intermediary nodes could posses similar capabilities to destination

nodes. However, in ASTREA, this characterisation has been made because mobile devices
generally tend to possess less computing capabilities than fixed devices, as for example, the
latter may be connected to a power supply and have a wired network connection.

Table 5.1 Features and responsibilities of the nodes grouped by role.

Data monitoring Processes Microservices

Ph
ys

io
lo

gi
ca

l

E
nv

ir
on

m
en

ta
l

D
ev

ic
e

re
so

ur
ce

s

M
ob

ili
ty

ca
pa

bi
lit

ie
s

D
ep

lo
ym

en
t,

an
d

ad
ap

ta
tio

ns
an

d
up

gr
ad

es

D
at

a
ga

th
er

in
g

C
as

e
m

an
ag

er

D
at

a
m

an
ag

er

D
at

a
pr

ep
ro

ce
ss

in
g

St
or

ag
e

D
ev

ic
e

M
ea

su
re

m
en

t

D
at

a
fo

rw
ar

di
ng

po
lic

y

R
ou

tin
g

pr
ot

oc
ol

Source ○ ○ ○ è ○ ○ ○ è è è ○ ○ ○ ○

Intermediary ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ è ○ ○

Destination ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ è ○ ○ ○

○ Not supported

è Optional

○ Supported

5.7.2 ASTREAMS Architecture

ASTREAMS architecture supports the autonomous deployment, and propagation of adaptations

and upgrades mechanism and data gathering mechanism. It involves a set of microservices
grouped into four layers: (1) coordination layer; (2) data management layer; (3) device

middleware layer; and (4) mobile WSNs communication layer. These microservices are deployed
and distributed in the nodes that compose the system, according to their role, capabilities and
requirements of the monitoring system (Table 5.1).

134 ASTREA Framework

Fig. 5.6 Node block diagram in SysML.

Fig. 5.7 ASTREAMS software architecture block diagram in SysML.

5.7 Architectural Design 135

• The coordination layer includes the case manager microservice which is deployed within
each node that is part of the network. If a node does not have sufficient computational
capabilities to host it (e.g., source nodes computational capabilities could be highly
limited), then the node must be associated to another unit with sufficient computational
capabilities that includes a case manager. The case manager microservice is responsible
for coordinating the rest of the microservices to comply with the case specifications, both
in the deployment as well as in propagation of adaptations and upgrades of the system.

• The data management layer involves data manager, data preprocessing and storage

microservices.

– Data manager microservice determines what data should be maintained when the
remaining storage capacity is insufficient. Therefore, if the storage capacity of a
node reaches its limit, the data manager checks data priority and retains those with
the highest priority. Whether all data have the same priority, the data manager

checks the timestamp and prioritises the most recent. Destination nodes do not
require a data manager since they are assumed to have a large storage capacity,
which can be treated as unlimited. The data manager is also responsible for
formatting the data for transmission to other nodes.

– The data preprocessing microservices of ASTREA encapsulate relational, logi-
cal, mathematical and aggregation operations on the data gathered. A modular
approach is followed which allows to the case designer the reuse and combination
of operations (i.e., type of action) enabling complex data processing.

– The storage microservice manages local data storage on the device. It provides
operations to store (i.e., type of action), extract and remove the data gathered and
implicitly could support data management for data preprocessing. However, source
nodes may not have sufficient computational capacity to deploy it but it could be
deployed within an associated unit or intermediary or destination nodes.

Several data preprocessing microservices can be deployed within the same node, from
among those available in ASTREA, if multiple preprocessing operations are required to
conform the case specification, but only one storage instance of storage microservice can
be deployed within a node in order to maintain integrity and data consistency.

• The device middleware layer homogenises and provides a common interface for the
hardware devices included in ASTREA which supports the gathering of measurements.
This layer includes the following microservices:

136 ASTREA Framework

– device microservice focuses on hardware device management (i.e., hibernate or
activate the devices), state monitoring (remaining battery and available storage
capacity), and optionally, set reporting frequency; and

– measurement microservices gather and homogenise data from the hardware devices
and transmit it to data preprocessing or storage microservices of the data manage-

ment layer, unless the storage capacity limit has been reached, then the data will be
sent to the data manager microservice.

The relationship between these microservices which support the ASTREAMS functional-
ity is shown in Figure 5.7.

A hardware device can monitor single or multiple measurement. ASTREA requires to
deploy in source nodes one instance of measurement microservice per measurement to
be monitored. Intermediary nodes could also host measurement microservices, whether
in a particular case it is of interest for the case designer that these nodes gather data.
Moreover, a same node can be composed of different hardware devices to monitor several
measurements. To monitor remaining battery and available storage capacity that are
hardware dependent, a single instance of a device microservice is required in source and
intermediary nodes. This is not required on destination nodes.

• Mobile WSNs communication layer involves data forwarding policies that supports the
data transmission flow within the data gathering mechanism. It also includes routing

protocol and device discovery which are necessary in both autonomous deployment,

and propagation of adaptations and upgrades of system at runtime and data gathering

mechanisms.

5.8 Case Subversion Service

Case subversion service handles the case specifications. It receives a JSON file from which
it generates several JSON files, one for each of the source nodes involved within the case,
and another for all the intermediaries if any and destinations. Figure 5.8 shows an activity
diagram (which corresponds to Process View within 4+1 View Model) for generating the case
subversion files for a dynamic network in SysML. The case subversion service checks inter
alia whether the specified actions require the combination of several measurements, whether
such measurements are collected by the same source node, and whether the source node has
sufficient capabilities to perform each of the specified actions, otherwise that action must be

5.9 System Operation 137

performed at a higher level node in the hierarchy (intermediary or destination) and therefore this
part of the specification is added to the subversion of the latter nodes. However, intermediary
nodes that are not known a priori can be incorporated into the system dynamically at some
point in time.

When there is a change in a case, what takes place is an adaptation or upgrade of the case

and another version of the case is generated. Figure 5.8 also includes adaptation and upgrade
considerations. The case subversion service compares the current version of the running
system with the newest modified version. Subsequently, the case subversion generates as many
subversions as source nodes have been excluded in the most recent specification, in particular,
one JSON file for each node. These JSON files also contain the actions that must be disabled.

In ASTREA, the case version is generated by the case designer with the visual editor
(ASTREACE) (Section 5.10). However, it is worth mentioning that both, the case subversion
service and ASTREACE are fully functional independent by themselves.

5.9 System Operation

The operation of the system comprises the mechanisms developed at ASTREA that support
dynamic adaptations and upgrades. The dynamic behaviours of the systems are represented as
activity diagrams in SysML and these correspond to the Process View within 4+1 View Model.

5.9.1 Deployment, and Propagation of Adaptations and Upgrades Mech-
anism

The deployment, and propagation of adaptations and upgrades mechanism consists of deploy-
ing the monitoring system in mobile WSNs previously defined by the case designer. This
specification is the case (Section 5.6) itself and is in a JSON-formatted file.

Whether a system is modified once it has been deployed, a new subversion of the case is
created and must also be deployed, which will adapt or upgrade the currently running system.
Therefore, the mechanism involves the transmission of the original case version (the set of
subversions) and associated microservices that make up the functionality of the monitoring
system. The following assumptions and considerations are made:

• Data transmission flow originates at the destination nodes. All destination nodes receive
a notification from the case subversion to start the deployment, and propagation of

adaptations and upgrades mechanism.

138 ASTREA Framework

Fig. 5.8 Activity diagram for generating the case subversion files for a dynamic network in
SysML.

5.9 System Operation 139

• Destination nodes can receive several subversions that correspond to a case specification.
Each subversion includes only the part of the case specification that affects to each
specific source node, and to any intermediary or destination nodes.

• Destination nodes request the microservices to cover the specification of each subversion
to the service repository and store them when they receive them.

• Destination nodes first send each subversion together with the microservices associated to
each reachable source node in order not to propagate unnecessary data to the intermediary
nodes. Subsequently, they send the subversions of the source nodes that are not directly
reachable and their microservices associated to the intermediary nodes which should be
reachable at some point. They also send the subversions that must be deployed within
intermediary nodes and their associated microservices.

• Source nodes are not transmitters. They can not act as routers in multihop connections.

• Node mobility is non-deterministic, and intermediary nodes and mobile sources could
eventually reach a destination node for an indeterminate time. Intermediary nodes and
mobile sources may eventually reach into a common range.

• After each transmission, the receiver sends back an acknowledgment message (ACK)
confirming when it has received data. The initial sender registers that the receiver node
already has its case specification updated together with the microservices associated with
it. Therefore, the same data will not be retransmitted again.

• The IDs of the nodes already upgraded are registered in the log file together with the
specific subversion of the case. If the node has not been completely upgraded, but only
partially upgraded, its ID is not registered in order to synchronise the log files to check
what the node is missing to be complete.

• When intermediary and destination nodes have registered the ACK of all nodes to which
they can propagate the subversions and associated microservices, they delete these
subversions and not needed microservices associated to free up space.

The entities that participate when executing this mechanism, how they interact with each
other and the execution flow, is detailed in Figure 5.9.

140 ASTREA Framework

Fig. 5.9 Activity diagram for deployment, and propagation of adaptations and upgrades
mechanism in SysML.

5.9 System Operation 141

5.9.2 Data Gathering Mechanism

ASTREA framework supports the transmission of the data gathered from the source nodes
to destination nodes through the data gathering mechanism. In this mechanism, ASTREA is
concerning about the WSN structure and it addresses two goals (1) maximising the success rate
in data gathering mechanism, and (2) maximising source nodes lifetime.

Therefore, the data gathering mechanism provides by ASTREA take into account the
following considerations:

• Source nodes storage is limited and the time at which they will have contact with the
intermediary nodes is indeterminate, since the mobility of the intermediary nodes is
non-deterministic, nor is the mobility of the sources, which could also be mobile.

• Source nodes cannot send data to another source nodes. They cannot act as routers in
multihop connections but if there is a destination node within reach, the sources must
send data to it. Otherwise, they will connect to a reachable intermediary node to transmit
the gathered data to it, and for the intermediary to send them to the destination node, via
a multihop connection.

• If a source node has no connection with an intermediary or destination node, it will per-
form data buffering, temporarily storing the gathered data to transmit it once reconnected.

• It is assumed that intermediary nodes will eventually reach a destination node for an
indeterminate time.

• If the remaining storage of the nodes is reaching a threshold, and in the case specification
there is defined a prioritisation of data to be kept, their timestamp will be checked to
remove those with the same priority but older.

• If there is no destination node in range (via multihop) but there are more than two
intermediary nodes, an election will have to be carried out to determine which of the
intermediary nodes is the most suitable to receive the data from the sources. ASTREA
harnesses the use the election algorithm presented in [96] and the parameterised evalu-
ation function defined below will be used which considers direct connections to other
nodes (dc) tracked from the routing table, remaining battery (rb), remaining storage (rs)

capacity, and number (n) of direct connections to other devices obtained from the routing
table:

142 ASTREA Framework

Ev(dc,rb,rs) =

0 rs=0

0.25× dc
n +0.25× rb+0.5× rs rs>0

(5.1)

However, different election algorithms could be used within ASTREA framework.

• When source and intermediary nodes transmit the data that they temporarily store and
receivers (i.e., intermediaries or destinations) receive the data, the latter sends back
an acknowledgment message (ACK). The senders remove the data sent (i.e., to free
up space) from their temporary storage, once they have received the corresponding
acknowledgement (ACK).

• Preprocessing actions are performed as early as possible to reduce the volume of non-
useful information to be transferred over the WSN, i.e. prioritising within the nodes where
the data is generated and, then on the intermediary nodes or finally on the destinations. If
the intermediary nodes do not have the computational capacity to do so, the operations
would finally be performed at the destination nodes.

• Several datasets can be preprocessed together coming from different sources or interme-
diary nodes.

The entities that participate when executing this mechanism, how they interact with each
other and the execution flow, is detailed in Figure 5.10.

5.10 ASTREACE Tool

A case can be represented as a set of actions in which the data follows a flow. For example,
monitoring a person’s heart rate with a reporting frequency of one minute and get the maximum

of each hour, can be represented by a flow composed of three actions: (1) collecting the
heart rate measurement from the sensor each minute; (2) preprocessing these data, getting the
maximum of each hour; and (3) storing the results.

In this context, the ASTREACE visual editing tool incorporates a palette with all possible
elements (i.e., general nodes, environmental sensors, body sensors or wearables, preprocessing
actions, storage actions, and device state) that can be utilised and from which the specification
of a case can be designed. The elements can be selected, dragged and dropped onto a canvas
by the case designer to build complex monitoring systems in an intuitive and high-level way,
avoiding the need of low-level programming.

5.10 ASTREACE Tool 143

Fig. 5.10 Activity diagram for data gathering mechanism in SysML.

144 ASTREA Framework

Once the case designer completes the specification, a JSON file is generated, which is what
the case subversion (Section 5.8) works with.

All the elements included within the case specification (which are available through AS-
TREACE) have been previously implemented as microservices by a software developer and
they will be available through the service repository (Section 5.11).

This not only facilitates the design of monitoring systems, but strengthens the reuse of
already implemented components. Moreover, ASTREA’s design allows for new elements to be
incorporated in the future.

5.10.1 ASTREACE Elements

Some of the main ASTREACE elements can be found in the following subsections.

General Nodes

General nodes (Figure 5.11) includes two types of nodes:

• Value represents a string or number and optionally, its unit (i.e., 60 bpm meaning beats
per minute) that will be the input for the next connected element. The value element has
no input, it does have an output.

• Print allows a measurement to be labelled with a custom string (e.g., asleep). The print

element has an input and an output.

Fig. 5.11 General nodes of the element palette of the ASTREACE visual editor.

Device - Sensors and Wearables

ASTREA provides the possibility of incorporating environmental sensors and body sen-

sors/wearables. Environmental sensors includes all the hardware devices grouped by mea-
surement that can be used within a case. ASTREA, currently, allows the use of sensors

(Figure 5.12a) to monitor humidity, luminosity, noise, presence, rain, atmospheric pressure,
temperature and wind, and sensors or wearables (Figure 5.12b) to monitor air flow, acceleration,

5.10 ASTREACE Tool 145

(a) Device (environmental sensors) of the element
palette of the ASTREACE visual editor.

(b) Device (body sensors/wearables) of the element
palette of the ASTREACE visual editor.

Fig. 5.12 Sensors and wearables to monitor environmental and physiological variables.

body position, body temperature, electrical activity of the heart, electrical activity produced by
muscles, blood oxygen saturation, and sweating.

Each hardware device generates at least one output but it has no input. The case designer
must select within each element the identifier of the specific hardware device to be used in
the monitoring systems. He/she also can specify a value to set the reporting frequency (RF),
although it may possible that the hardware device does not support to set a custom RF in a
native way, this can be achieved by an implicit preprocessing action. When the device allows
the RF to be set, this does not have to be done manually, but there are devices that allow the
reporting frequency to be set by a function built into their API. If the device does not allow RF
setting, it will be done by means of the preprocessing actions included within ASTREA.

In addition, the case designer should set a priority within the range [1-5] for each measure-
ment, with 1 being the highest priority and 5 the lowest. This priority value represents the
prevalence of the data relative to others when the temporal storage of a source or intermediary
node becomes full.

Preprocessing actions

Preprocessing actions (Figure 5.13) group nine types of elements:

• Average refers to the arithmetic mean of a set of data within a period T.

• Maximum (Max.) refers to the maximum value of a set of data within a period T.

146 ASTREA Framework

• Minimum (Min.) refers to the minimum value of a set of data within a period T.

These three elements (average, maximum, and minimum) have an input through which
they receive a data stream.

• Filter generates the same output value as the input value for each input value that satisfies
the condition specified by the case designer in the drop-down list that includes the
element.

• Unchanged for is a timer that returns true when a value has not changed by a defined
time. The unchanged for element has an input and an output.

• Arithmetic operator returns a value as a result of two input values after operating with an
operator (+ , -, ∗, and ÷).

• Relational operator returns true if the condition (==, !=, <, >, ≤ and ≥) applied to two
input values is satisfied.

• Logical operator returns true if the operator (AND, OR, and NOT) applied to two input
expressions is satisfied.

The case designer can select one of the operators available in ASTREACE (i.e., arithmetic

operator, relational operator or logical operator) which work with two inputs and
generate one output.

• Count returns the number of times that one input value or a set of them within a time
period, compared to another value satisfies the condition (==, !=, <, >, ≤ and ≥).

The conditions, comparison values, and periods must be set by the case designer.

Storage actions

Storage action (Figure 5.14) includes storage element to represent the input values that will be
stored in a database. It has an input connector but no output connector.

Device

Device (Figure 5.15) includes:

• get state that returns sensor or wearable remaining battery and available storage capacity;
and

5.10 ASTREACE Tool 147

Fig. 5.13 Preprocessing actions of the element palette of the ASTREACE visual editor.

Fig. 5.14 Storage action of the element palette of the ASTREACE visual editor.

Fig. 5.15 Device (internal properties) of the element palette of the ASTREACE visual editor.

148 ASTREA Framework

• set state that specifies the state to which the device has to change to.

Finally, ASTREACE includes the options to export an already designed case as well as to
import a previously designed case. The case design is stored in JSON format.

5.10.2 ASTREACE Constraints

There is no limitation on the number of elements that compose a case and ASTREACE includes
the option to set multiple configuration values within the different elements to ensure flexibility
in case design. However, ASTREACE also integrates a handler to check if the connections
between elements and the generated flows are valid, thus minimising errors in the design of the
case and ensuring that the design of the monitoring system is feasible. The constraints included
are the following:

• It is not allowed to connect an input element to a sensor or wearable.

• It is not allowed to use more than one device with the same identifier in the same case.

• It does not allow an arithmetic operator to be applied to a print element.

• It does not allow to perform an average, max. or min. operation on a string.

• It does not allow to apply some relational operator (i.e., <, >, ≤ or ≥) on a string.

• It does not allow to connect something other than an expression to a logical operator.

• It does not allow to connect something that does not return a boolean to a set state

element.

5.11 Service Repository

ASTREA provides a repository of microservices designed to cover the requirements of the
monitoring systems (cases) that can be built with ASTREA. From the case specification, the
functionality is associated with the microservices to be deployed, also autonomously, on the
hardware devices (nodes).

Developed microservices encapsulate the functionality of each particular ASTREA action,
these are hosted within the service repository to be reused with different measurements. Some of
them are also available for multiple platforms. It should be noted that ASTREAMS framework
can be extended with new elements and configuration options derived from new requirements
or application scenarios.

5.12 Case Study 149

5.12 Case Study

Here, we aim to animate the capabilities of the ASTREA framework and the interaction between
the primary components from an example based on the design of a case study, its deployment in
a mobile and dynamic network and its subsequent adaptations and upgrades. It also describes
the data gathering mechanism. In relation to modelling, the case study is related to the Use
Case View within the 4 + 1 View Model.

5.12.1 Case Design

First of all, it is necessary to think about the requirements of the monitoring system. The
designed system is intended to cover the following requirements:

• FR.1 monitor environmental temperature every 10 minutes;

• FR.2 identify where (e.g., in which room) it is the hottest every hour (average and
maximum per hour);

• FR.3 monitor noise and luminosity continuously;

• FR.4 count how many times a noise of 40 dB (equivalent to the noise of a conversation)
per hour is exceeded;

• FR.5 detect the average luminosity of the rooms;

• FR.6 monitor body temperature every 10 minutes;

• FR.7 identify the maximum and minimum body temperature per hour;

• FR.8 monitor heart rate to measure beats per minute (bpm);

• FR.9 count how many times the rate of beats per minute (bpm) is equal to or greater than
120 bpm in an hour;

• FR.10 monitor air flow to measure the number of breaths per minute; and

• FR.11 detect the average hourly air flow.

Second, the case designer has to select each of the sources (sensors or wearables) that he or
she wishes to incorporate and the actions that the system should satisfy based on the system

150 ASTREA Framework

requirements. In this case study, we will use ASTREACE visual editing tool for the design,
although it is not mandatory.

Sensors or wearables are required to collect the physiological and environmental data.
Therefore, the case designer must select them from the palette, drag and drop them on the
canvas, which of the elements available in ASTREA he/she wishes to include in the system.
The case specification that a case designer has initially designed is shown in Figure 5.16.
The device elements (green boxes) are the selected measurements. Each measurement has a
set of associated devices available within ASTREA that allow for the collection. The case
designer must select from the drop-down menu the sensor identifier he/she wishes to use. The
reporting frequency (RF) of each sensor can be configured at software level. For this case, it
has been set to 10 minutes for the temperature sensors and to 0 minutes for the rest, following
the requirements of the case. Zero corresponds to the default data collection of the sensors
(continuous monitoring). On the basis of these adjustments, the requirements RF.1, RF.3, RF.6,
RF.8, and RF.10 would already be satisfied. Nevertheless, the case designer also sets the data
priority because he/she considers that ambient temperature is more relevant than noise and
luminosity, and likewise, heart rate and air flow is more relevant than body temperature.

The selected devices by the case designer and a possible visual allocation within a scenario
can be seen in the Figure 5.17). Sources A, C, D and E include temperature, luminosity, and
noise environmental sensors. Moreover, source A includes a presence sensor. The case designer
has selected temperature, luminosity, and noise sensors, devices with the same computational
capabilities for pair D and E but different from those for pair A and C. Source B will monitor
a patient’s body temperature, heart rate and air flow. The case designer does not have to
worry about which intermediaries or destination nodes will be included in the scenario, or
how many of them will be involved in the monitoring system, neither include them in the case
specification.

The case specification includes preprocessing elements to get independently the maximum,
minimum, and average (yellow boxes) of each measurement they receive as input. The
dependent elements (sources and actions) should be connected by arrows. Within these
elements, the design must establish the period or time window for selecting the data on which
the operation is carried out. In this case, the interval is 1 hour. These adjustments would satisfy
the requirements RF.5, RF.7, and RF.11. It also should be noticed that there is one maximum
action and one store action (i.e., global actions) which have as inputs the outputs of other four
actions of maximum in order to fulfill the requirement RF.2.

Within the preprocessing elements also the counting operations are included. The counting
operations, for this case, have as inputs the noise device and another one the heart rate to satisfy

5.12 Case Study 151

Fig. 5.16 Case specification with ASTREACE tool.

152 ASTREA Framework

Fig. 5.17 Sources selected with ASTREACE and visual allocation within a scenario.

the FR.4 and FR.9 requirements respectively. Storage actions have been added to save the data
after it has been processed, and consequently to be transmitted to the destination nodes.

This part corresponds to the functionality of the system related to monitoring. Changes, after
deployment can be incorporated through ASTREACE, and is what is considered an adaptation
or an upgrade. With automated deployment, these changes can be framed as adaptive system
changes.

Up to this point, the functionality of the system would be defined, which focuses on
monitoring the state of the users and their environment, in order to find out how it might affect
them. However, ASTREA includes the option to monitor the environment and the state of the
system to improve its performance in terms of bandwidth and energy saving. For the latter, the
designer of the case, in one of the rooms, has included a presence device in order to hibernate
noise (ID26/01), luminosity (ID15/01) and temperature (ID22/01) devices when no one is in
the room for 10 minutes. The presence device has a reporting frequency set to 0 (i.e., default
reporting frequency of this device). Its output is combined with the value element set to false
using the relational == operator to check that there is no one in the room (which is empty).
Presence device output is the input of the unchanged for action from which it is intended to
detect that the value collected by the sensor does not change for 10 minutes. The two operators
are combined through the logical AND operator to finally hibernate the devices. Such changes,
which the system performs autonomously, can be framed as self-adaptive system changes.

Once the case is designed with ASTREACE visual editor, the specification is managed
by the case subversion which generates a particular JSON file for each source, another JSON
file that would be deployed on intermediary nodes if any, and a JSON file to be deployed in

5.12 Case Study 153

destination of which there has to be at least one to start the deployment mechanism. All those
files are managed as subversions of the case specification generated by ASTREACE visual
editing.

In this scenario, the sources D and E have the computational capabilities to perform max.,
average, count and persistent store actions but sources A and C do not. Therefore, the case

subversion service generates the following subversions (JSON specification files) for the sources
accordingly which are illustrated in Figure 5.18.

Fig. 5.18 Node subversions generated by case subversion service from a case version specifica-
tion.

• An equal subversion for sources D and E because source nodes D and E are equipped
with the same sensors, and therefore, the same case specification is valid for both sources.
These two source nodes have sufficient capabilities to perform in-network preprocessing.

• A subversion for source A which is different from the one subversion for source C

because the nodes are equipped with different sensors. These two source nodes do not

154 ASTREA Framework

have sufficient capabilities to perform in-network preprocessing but they can send raw
data.

• A subversion for source B which has capabilities to perform in-network preprocessing.

In this particular scenario, intermediary nodes have sufficient capabilities to perform in-
network preprocessing, and the subversion for intermediary and destination nodes are shared.
Actions should be carried out as soon as possible, in order to minimise the volume of data
transmitted. Max., average and count actions are not supported at sources A and C, and
therefore these source nodes will gather the data to the intermediary nodes where they will be
performed. With regard to the two global actions (i.e., max. and store) to be carried out on the
basis of environmental measurements, they will be carried out as a first option on the basis of
the intermediaries and as a second option at the destination nodes. The following situations
may occur:

• If an intermediary collects data from two or more sources but not from all four envi-
ronmental sources of the scenario, it is already taking actions on the basis of the data it
has available. The resulting volume of data will be smaller than the volume of raw data
generated, and will be transmitted to the destination nodes.

• The same actions may be taking place in other intermediary nodes with other data.

• Results of actions (i.e., max. and store) performed within different intermediaries will
be gather to the destination nodes where the global action will take place again for the
whole set of data. This occurs because intermediaries do not have all the data required to
complete the actions.

5.12.2 Deployment Case Subversions

Here, we aim to illustrate the deployment, and propagation of adaptations and upgrades

mechanism supported by ASTREA framework. Figure 5.19 shows the position of the source
devices, an example of how the interaction with two intermediaries and a destination could
look like.

Firstly, destination A receives a notification to star the deployment and the subversions
of the case. Secondly, the destination A requests the download of the microservices that are
included within each subversion to the service repository. These microservices will perform
the monitoring actions, preprocessing, storage, and management of the device defined within
each subversion.

5.12 Case Study 155

Fig. 5.19 Deployment, and propagation of adaptations and upgrades mechanism.

Destination A acts as the gateway of the WSN and initiates the transmission of subversions
and microservices to the other nodes. As a third step, destination A checks which source nodes
are within its reach. Here, only the source E is within its reach and therefore destination A

checks if it has the source ID along with the subversion that needs to be deployed within its log
file which means that the adaptation or the upgrade has already been performed. It is the initial
deployment for this case, and therefore, the destination A does not have the source E ID within
its log. However, destination A requests source E log file to check what has the source node
deployed because the deployment could have been started previously but the connection may
have failed or been interrupted, and the update process may not have been completed.

After destination A synchronise the log files, it sends the specification (case subversion) to
the source E. Source E sends back an ACK to confirm receipt of the data (i.e., subversion and
microservices), and destination A does not retransmit this data to other intermediary nodes.

Destination A also has to send the specification (subversions) and microservices associated
to sources A, B, C, and D but such nodes are not within its reach. Nevertheless, there is an
intermediary on the move in the scenario (intermediary B) that has entered within the range of
the destination A, and at that time, destination A establishes a communication to send it the
subversions and microservices of sources A, B, C and D. Before sending, the destination A

checks that intermediary B, is not up to date. To do this, the destination A checks that there is
no an entry in its log file for the ID of the intermediary B and the subversions it has to send to

156 ASTREA Framework

it. As there is none, it also requests for its log file, because the intermediary B might already
has some of the information (subversions and microservices) from a previous adaptation or
upgrade attempt. Destination A sends subversions, associated microservices and source E ID

(because the latter is already upgraded).
Intermediary B sends back an ACK to confirm receipt of the data and destination A updates

its log file with an entry of the information sent in order not to send the same information
repeatedly. Whether destination A does not receive ACK for all transmitted data, the next time
intermediary B reaches it, destination A will resend the corresponding data to it.

Intermediary B continues its round of work by getting source D into its range. Therefore,
intermediary B checks if the source D ID is within its log because the data transmission might
have been initiated previously by itself but not yet completed because a disconnection or
because this intermediary does not know if there are other intermediaries in the scenario that
might have already upgraded source D case information. After checking it, intermediary B

sends the subversion that corresponds to source D and associated microservices. Intermediary

B expects to receive an ACK to confirm receipt of the data. In this scenario, source D sends the
confirmation ACK and intermediary B updates its log file with an entry of the information sent
to source D. Subsequently, intermediary B removes the specification corresponding to source

D and the associated microservices. Whether intermediary B did not receive the ACK, e.g.,
because of a disconnection, intermediary B would not remove the subversion and microservices
for source D but the intermediary B would redo the checks again, staring with whether the
source D is still in its scope range.

The mobility of intermediaries is not deterministic but opportunistic. The intermediary B

continues to move and the source C enters its range. The deployment mechanism outlined for
source D is repeated for this source C. There is another intermediary (A) within the scenario
but Intermediary B does not have it within its reachable range, but as soon as it does, it will
check if it has the ID of this intermediary A within its log along with the ID subversions for
this case. If it did, the intermediary A already has its corresponding subversions and associated
microservices, then its case information is already upgraded. However, once the are reachable,
both check but intermediary B is the one with the case information. This time intermediary

B does not have an entry within its log file confirming that the intermediary A is up to date.
Intermediary B requests the log file to the intermediary A to check what the node currently has
and synchronise the logs (i.e., if intermediary A had to send the information to source C it is no
longer necessary because it has already been upgraded). In this scenario, intermediary A has
not yet interacted with any other node. Therefore, intermediary B sends to intermediary A all

5.12 Case Study 157

case subversions, associated microservices, and node IDs (i.e., IDs of sources C and D) already
upgraded.

Source A will be upgraded by intermediary A when it comes within range of the intermediary

A. Similarly, source B will be upgraded, but to do so, it must come within range of one of the
intermediaries. If the intermediary nodes were to meet again, they would synchronise their log
files and delete the information already delivered to the source nodes with which they have
already interacted (e.g., source A, C, and D) at some previous point in time.

5.12.3 In-network Preprocessing and Data Gathering

Here, we aim to illustrate the data gathering mechanism supported by ASTREA framework.
Figure 5.20 shows the position of the source devices, an example of how the interaction with
two intermediaries and a destination could look like.

Fig. 5.20 Data gathering mechanism.

The actions defined within the subversion generated for each node are performed. The
sources A and C do not have sufficient computational capacity, and therefore data are transmitted
in raw form to intermediaries (or destinations) whether they are in range. To perform these
actions that cannot be performed at the source nodes (i.e., sources A and C) themselves, the
actions are added to the case subversions generated for intermediaries (if any) and destinations,
so that the actions could be performed as quickly as possible and the volume of data to be

158 ASTREA Framework

transmitted could also be reduced as soon as possible in the transmission flow. In this scenario,
source A transmits the raw data to intermediary A and it is the latter that carries out the actions
(i.e., max, average, count and storage) defined by the case designer for the measurements of the
sensorsID22/01 (temperature), ID26/01 (noise), ID15/01 (luminosity) and ID06/01 (presence).
Subsequently, when intermediary A will be within range of destination A, intermediary A will
transmit to it only the useful information corresponding to the data already processed. The
same will be applied for sensor data collected in the source C although such data will be sent to
intermediary B, because the data forwarding policy so establishes it since intermediary B is
more suitable at this time than intermediary A.

In this scenario, sources D and E do have sufficient computational capacity to perform the
actions defined by the case designer. Therefore, the case subversion service maintains their
specifications (JSON file subversions) performing the preprocessing actions within the nodes
themselves prior to sending the data to the intermediary or destination nodes.

Intermediary B therefore receives the raw data from source C and the already preprocessed
data from source D. Intermediary B has within its subversion, the specification of the actions
that must apply on the data from source C to complete these that cannot be done by itself. The
intermediary B also includes its own specification as an intermediary node, so subsequently it
must perform the actions that correspond to it (i.e., global actions), in this case, calculating the
global maximum temperature, as the preprocessing in the network must be done as soon as
possible. The preprocessed data by intermediary B are sent to destination A who must perform
the actions defined within its specification. Source B has no intermediary and no destination
within its range, so it must store the data it generates in its temporary storage.

Source E has in its range both intermediary B and destination A, in this case, the data for-

warding policy states that data are sent directly to destination A. In this scenario the destination

A must calculate the global maximum (of the four temperature sensors) in overlapping time
windows (same 1 hour period).

Each time a sender sends data, it expects to receive from the receiver an ACK message
confirming receipt. Once the ACK is received, the sender removes the data to free up space. It
may occur that the temporary storage of one of the nodes (sources or intermediaries) becomes
full, in this situation, the data with lower priority will be removed (i.e., first the data with
priority 3 and then those with priority 2), and whether the priority matches, the oldest data will
be removed.

5.13 Implementation and Feasibility of Deployment 159

5.13 Implementation and Feasibility of Deployment

An implementation and deployment in a test environment has been carried out to animate the
capabilities of ASTREA framework. This implementation corresponds to the Implementation
View within 4+1 View Model while the deployment corresponds to the Deployment View.

Firstly, a case has been designed with ASTREACE visual editing tool which will be
deployed within the network infrastructure. In Figure 5.21 can be seen a deployment diagram of
the five devices (nodes) that are part of this network infrastructure, prior to the deployment of the
case. Two of these nodes are part of the Internet or could be deployed in a cloud infrastructure,
thus are out of the WSN. In particular, they are two independent servers containing the service

repository and the case subversion service. The deployment has been done in this way to
demonstrate the decoupling of the services and that the operation is correct, similarly both
could be on the same server. The servers run the Ubuntu Server 20.04 operating system.

Fig. 5.21 Deployment diagram of the devices that are part of the network infrastructure, before
deploying the case.

Additionally, there are three nodes that compose the WSN. Each of them has been assigned
one of the roles defined in ASTREA. There is a destination node, which acts as a Gateway
between the WSN and the Internet/Cloud; an intermediary node and a source node. The source

node is connected via Bluetooth to a Polar H7 heart rate sensor [188]. The WSN nodes run the

160 ASTREA Framework

Ubuntu Core 20 operating system1, a lightweight operating system designed for IoT devices.
The WSN nodes communicate with each other via TCP/IP connections. The destination

node communicates with external services (hosted on the servers) via HTTPS and SFTP for
downloading the services needed to compose the case. For this particular implementation and
deployment, the services and components included within ASTREA framework have been
implemented in Python 3.8.

Initially, all network nodes have deployed the case manager microservice, which acts
as orchestrator and will make possible the autonomous deployment of the designed case.
According to framework terminology, the case manager microservice can be considered a
frozen spot.

Additionally, the source node has a measurement microservice, which makes it possible the
communication via Bluetooth with the Polar H7 sensor. However, the node associated to Polar
H7 sensor, which together make up the source node, does not have enough computational capa-
bilities to carry out preprocessing operations, so these must be performed in the intermediary

node. Therefore, source node will send the raw data to the intermediary node.
The most relevant parts of the microservice code can be found in the Code 5.1. In this

code, it can be seen how using the Python Gatt library2, a connection is established with the
Bluetooth device (i.e., Polar H7 heart rate sensor) by means of its MAC address, stored in the
configuration of the node. In addition, it can be seen how heart rate readings are received from
the sensor.

Code 5.1 Measurement microservice for Polar H7 heart rate sensor in Python
manager = gatt.DeviceManager(adapter_name=’hci0’)

class AnyDevice(gatt.Device):
_UUID_SERVICE_DEV_INFO = ’0000180a−0000−1000−8000−00805f9b34fb’
_UUID_SERVICE_BATT = ’0000180f−0000−1000−8000−00805f9b34fb’
_UUID_SERVICE_HR = ’0000180d−0000−1000−8000−00805f9b34fb’

_UUID_CHARACTER_FIRMWARE_VER = ’00002a26−0000−1000−8000−00805f9b34fb’
_UUID_CHARACTER_BAT_LVL = ’00002a19−0000−1000−8000−00805f9b34fb’
_UUID_CHARACTER_HR_MEASURE = ’00002a37−0000−1000−8000−00805f9b34fb’

def services_resolved(self):
super().services_resolved()

1https://ubuntu.com/core
2https://github.com/getsenic/gatt-python

5.13 Implementation and Feasibility of Deployment 161

for s in self.services:
if s.uuid == self._UUID_SERVICE_HR:

for c in s.characteristics:
if c.uuid == self._UUID_CHARACTER_HR_MEASURE:

c.enable_notifications()

def characteristic_value_updated(self, characteristic, value):
if characteristic.uuid == self._UUID_CHARACTER_HR_MEASURE:

data_manager.register(value[1])

device = AnyDevice(configuration.sensor_mac, manager=manager)
device.connect()

manager.run()

The case to be deployed is shown in Figure 5.22 and Code 5.2. It describes how the source

node should record data from the heart rate sensor at a frequency of 1 minute. Subsequently, the
preprocessing microservices will perform the average and maximum operation on these data
in 15-minute time windows. It should be noted that the case specification shown in Code 5.2
includes both aesthetic and functional information. That is, the "position" key has the sole
purpose of positioning the element on the canvas of the visual editing tool (ASTREACE) to
show a human-readable version and maintain the visual aspect of the composition of the case.
This information is not transmitted to the nodes of the network in the case deployment.

Fig. 5.22 Case specification for proof of concept with ASTREACE visual editing tool.

When the case is introduced in the system, the case subversion service sends the different
specifications (source subversion, intermediary and destination subversions) to the destination

162 ASTREA Framework

node. This will download the required microservices via SFTP from the service repository.
Subsequently, the destination node will transmit the subversions and microservices to the
intermediary node because in this implementation and deployment, we assume that the source

node is not within reachable range of the destination node. The services are streamed in
gzip-compressed form. Likewise, intermediary node will transmit the particular specification
(subversion) of the case and microservices associated to the source node. The final case

deployment is shown in Figure 5.23.

Code 5.2 Case specification in JSON generated from ASTREACE visual editing tool from
specification in Figure 5.22.
{

"actions":[
{

"id":"node_0",
"type":"measure",
"position":{"x":90,"y":46},
"data":{

"sensorName":"Heart rate",
"sensorId":"ID12/01",
"MAC":"00:22:D0:DA:7D:25",
"rf":"1 min"

}
},
{

"id":"node_1",
"type":"preprocessing",
"position":{"x":993,"y":193},
"data":{

"preprocessingOperation":"Average",
"T":"15 min"

}
},
{

"id":"node_2",
"type":"preprocessing",
"position":{"x":183,"y":192},
"data":{

"preprocessingOperation":"Max.",
"T":"15 min"

}
},

5.13 Implementation and Feasibility of Deployment 163

{
"id":"node_3",
"type":"storage",
"position":{"x":992,"y":297}

},
{

"id":"node_4",
"type":"storage",
"position":{"x":184,"y":297}

},
],
"links":[

{
"source":"node_0",
"target":"node_1"

},
{

"source":"node_0",
"target":"node_2"

},
{

"source":"node_1",
"target":"node_3"

},
{

"source":"node_2",
"target":"node_4"

},
]

}

It is worth noting that in this particular scenario, the Polar H7 sensor does not allow
configuring a custom reporting frequency (RF). Therefore, to comply with the case specification,
the data manager microservice ("data_manager" of Code 5.2) will collect, format (e.g., as
Code 5.4 or Code 5.6) and retransmit the data generated by the sensor at the RF specified in the
case specification, ignoring the rest.

The orchestrator entity (i.e., case manager microservice) obtains the parameters to pass to
the preprocessing microservices from the case specification itself. To facilitate service orches-
tration at runtime, preprocessing microservices provide a standardised interface. The interface
receives two parameters, both in JSON format ("execute(parameters, data)" of
code examples 5.5 and 5.7). The first parameter contains the parameters required by the

164 ASTREA Framework

Fig. 5.23 Deployment diagram of the devices that are part of the network infrastructure, after
deploying the designed case.

specific preprocessing microservice. The preprocessing microservice itself is responsible for
checking that the required parameters are contained in the JSON passed as a parameter and
that these parameters are in the required format. The second parameter contains the data to
be preprocessed, as well as metadata (e.g., "sensorId" and "rf") about these data. The
preprocessing microservices are part of the hot spot and it allows to the developers to extend
and customise ASTREA functionality following the standardised interface.

In the scenario deployed, the average preprocessing microservice will be invoked with the
parameter described in Code 5.3. In this case, the microservice only requires the period (T)
with which the data must be grouped in order to apply the required operation.

Code 5.3 Required parameters for the average preprocessing microservice.
{

"T": "15 min"
}

Regarding the data, the average preprocessing microservice will receive the data gathered
by the source node. These data will be in a standardised format for ASTREA, as can be seen in
Code 5.4. The JSON contains the metadata of the data and within the data key is the data
array, where for each measurement taken a POSIX timestamp in seconds is associated.

Code 5.4 Data gathered by the source node from the Polar H7 heart rate sensor.

5.13 Implementation and Feasibility of Deployment 165

{
"dataType": "raw",
"sensorName": "Heart rate",
"sensorId": "ID12/01",
"rf": "1 min",
"data": [

{"timestamp": 1614071934,
"value": 74

},
{"timestamp": 1614071994,
"value": 73

},
{"timestamp": 1614072054,
"value": 74

},
[...]

]
}

Code 5.5 shows the most relevant parts of the average preprocessing microservice. In the
first part of the code, the checking of the received configuration parameters is carried out. In
this scenario, it is checked that the period parameter (T) is in the JSON, is not empty and is in
the correct format.

Subsequently, by means of the split_data auxiliary function, the partitioning of the
data into the indicated period is carried out. The function splits the data starting at 00:00 hours.
If a time window is not complete, this data cannot be preprocessed. As discussed in previous
sections, due to the dynamicity of the network, a set of data can be gathered by different nodes.
For this reason, data belonging to the same time window may be distributed among different
nodes. Performing preprocessing operations on incomplete data sets may lead to erroneous
preprocessed values. For this reason, when the data set of a time window is not complete,
it is not preprocessed, waiting to be completed in this node or in a higher role node in the
hierarchy of data forwarding. Whereas complete data sets are returned in an array in the variable
data_bundles, incomplete data sets are returned in the variable remaining_data.

Finally, when the preprocessing operation is carried out on the data, each of the resulting
measurements is associated with the average of the timestamp of the grouped measurements.

Code 5.5 Average preprocessing microservice in Python
def execute(parameters, data):

parameters = json.loads(parameters)

166 ASTREA Framework

Checking that the parameters required for the service
are received, not empty and in the correct format.
if ’T’ not in parameters:

raise ValueError("Parameter ’T’ not found.")
if parameters[’T’] is empty:

raise ValueError("Parameter ’T’ empty.")
if not check_format(parameters[’T’]):

raise ValueError("Parameter ’T’ has an unrecognisable format.")

Data is divided according to the period indicated.
data = json.loads(data)
data_bundles, remaining_data = split_data(data, parameters[’T’])

The metadata of the new data to be obtained is added.
procesed_data = {}
procesed_data[’preprocessingOperation’] = "Average"
procesed_data[’T’] = parameters[’T’]
if ’sensorId’ in parameters:

procesed_data[’historical’] = [parameters[’sensorId’]]
else:

procesed_data[’historical’] = [parameters[’historical’]]
procesed_data[’historical’].append(procesed_data[’preprocessingOperation’])
procesed_data[’data’] = []

Data is processed according to the type of operation
implemented by the microservice.
for bundle in data_bundles:

avg_data = 0
avg_timestamp = 0
for datum in bundle[’data’]:

avg_data = avg_data + datum[’value’]
avg_timestamp = avg_timestamp + datum[’timestamp’]

size = len(bundle[’data’])
processed_data = avg_data/size
processed_timestamp = avg_timestamp/size
procesed_data[’data’] = {"value": processed_timestamp, "data": processed_data}

return procesed_data, remaining_data

The data returned by this microservice is shown in Code 5.6. It is important to highlight
that new metadata has been added, including the history of operations performed on the data.

5.13 Implementation and Feasibility of Deployment 167

Code 5.6 Data preprocessed by the average microservice.
{

"dataType": "processed",
"preprocessingOperation": "Average",
"T": "15 min",
"historical": ["ID12/01", "Average"],
"data": [

{"timestamp": 1614072354,
"value": 74.5

},
{"timestamp": 1614073254,
"value": 76.1

},
[...]

]
}

The maximum preprocessing microservice performs the operation of obtaining the maximum
recorded value of the data gathered in a given period. The most relevant parts of the code
are shown in Code 5.7. As can be seen, like the average microservice it complies with the
standardised interface to enable the orchestration of services at runtime.

Code 5.7 Max preprocessing microservice in Python
def execute(parameters, data):

[...]

Data is divided according to the period indicated.
data = json.loads(data)
data_bundles, remaining_data = split_data(data, parameters[’T’])

The metadata of the new data to be obtained is added.
procesed_data = {}
procesed_data[’preprocessingOperation’] = "Max"
[...]

Data is processed according to the type of operation
implemented by the microservice.
for bundle in data_bundles:

max_data = −sys.maxint−1
avg_timestamp = 0
for datum in bundle[’data’]:

if max_data < datum[’value’]:

168 ASTREA Framework

max_data = datum[’value’]
avg_timestamp = avg_timestamp + datum[’timestamp’]

size = len(bundle[’data’])
processed_timestamp = avg_timestamp/size
procesed_data[’data’] = {"value": processed_timestamp, "data": max_data}

return procesed_data, remaining_data

A sample of the data returned by the microservice can be seen in Code 5.8.

Code 5.8 Data preprocessed by the max microservice.
{

"dataType": "processed",
"preprocessingOperation": "Max",
"T": "15 min",
"historical": ["ID12/01", "Max"],
"data": [

{"timestamp": 1614072354,
"value": 76

},
{"timestamp": 1614073254,
"value": 78

},
[...]

]
}

Code 5.9 shows the most relevant part of the preprocessing service provider. It offers a
single REST endpoint, implemented for this specific case with the Django framework3. This
endpoint receives a request via JSON, where the name of the microservice to be executed, the
parameters with which to execute the microservice and the data to be preprocessed are indicated.
As the microservice to be executed is not known at development time, the service provider

loads at runtime the module that implements the required microservice functionality (in this
particular scenario Average or Max). This standardised implementation allows requesting
any microservice without knowing a priori its functionality, making runtime composition
possible. By this means, the case manager microservice (frozen spot) will invoke the different
preprocessing services (hot spot) as many times as necessary according to the case description.

Code 5.9 Preprocessing service provider in Python

3https://www.djangoproject.com/

5.13 Implementation and Feasibility of Deployment 169

def post(self, request):
data = json.loads(request.body.decode("utf−8"))

p_name = data.get(’service_name’)
p_parameters = data.get(’parameters’)
p_data = data.get(’data’)

try:
module = __import__(p_name)
procesed_data, remaining_data = module.execute(p_parameters, p_data)
data = {

"procesed_data": procesed_data,
"remaining_data": remaining_data,

}
return JsonResponse(data, status=201)

except:
return JsonResponse({’status’:’false’,’message’:’Service invocation error’}, status=500)

Finally, Figure 5.24 shows the main components of the source node. These include the
data manager (frozen spot), which records the data received by the measurement microservice

of the Polar H7 heart rate sensor according to the reporting frequency specified within the
configuration. Measurement microservice can be considered a hot spot as it allows to extend
ASTREA functionality by adding new sensors. Additionally, another relevant information such
as the MAC of the sensor, necessary to connect to it via Bluetooth as well as sensor name
or sensor ID, is as well specified within the configuration of the node. This information is
provided and can be modified by the case manager according to the case specification (e.g.,
if there is a change in the case and the propagation of adaptations and upgrades mechanism
is triggered). The data manager will properly format the gathered data and send it to the
corresponding node according to the information provided by the data forwarding policy, if
such a node is available. If not, it will store the data temporarily (data buffering).

With respect to the intermediary and destination nodes, they both share the same main
components Figure 5.25. In both, the preprocessing microservices are deployed, since in
situations where there is more than one intermediary node that gathers the data in a distributed
way or that the source node has a direct connection with the destination node, the preprocessing
operations will be carried out on the destination node. The latter is particularly relevant when
the data to be preprocessed are not complete.

The communication unit is installed within all nodes to manage the sockets and connections
between devices. The case manager will act as the orchestrator of the preprocessing microser-

170 ASTREA Framework

Fig. 5.24 Component diagram of the source node.

Fig. 5.25 Component diagram of the intermediary and destination nodes.

5.14 Summary 171

vices. It will request to the data manager the data to be preprocessed, and subsequently, it
will request the preprocessing service provider for the appropriate microservices according to
the case specification. This is possible by the standardised API with which the microservices
offered are implemented.

5.14 Summary

This chapter describes ASTREA framework, as a novel solution to assist in the design and
development of monitoring systems which can include sensors or wearables to collect context
information. ASTREA supports the autonomous deployment and composition of monitoring
systems to collect and gather user information (e.g., patient, residents, healthy control, etc.),
environmental information from taking measurements of environmental factors, even the
collection of data to determine the state of the system in order to improve its performance in
terms of success rate, bandwidth and energy usage.

ASTREA includes the use of these devices (i.e., sensors, wearables, smartphones, etc.)
which are envisaged, individually or as a grouping (i.e., node), which may be portable elements,
and which may or may not be mobile. Within ASTREA, nodes are categorised by role based
on their features. On these devices which are part of the network infrastructure, the first of the
two mechanisms implemented in ASTREA, in particular, the deployment, and propagation

of adaptations and upgrades mechanism deploys the system without human intervention.
Adaptation or modification of systems once deployed to cover changes in the patient’s condition,
to mitigate problems arising from uncertainty or difficulty in predicting certain situations at
the design phase, is feasible through the same mechanism that also provides for adapting and
upgrading. In addition, the second mechanism, called data gathering mechanism transmits the
collected data from the nodes where it originates to the nodes at the edge of the network where
the information is centralised.

Solutions related to these three pillars bring together ASTREA framework. This includes
ASTREA scope and what is involved. Specifically, it presents, as example, a motivation
scenario in which it is feasible and of interest to deploy the proposal, lists the specific objectives
to which ASTREA provides solutions, presents the system model in which the main entities are
specified and explained, identifies the adaptation plans supported by ASTREA, details the case

concept formalisation as one of the main foundations for specification of monitoring systems,
presents ASTREA architecture design as well as the main services and microservices of the
architecture and the dynamicity of certain components, the ASTREACE as visual editing tool
developed for the creation of the monitoring systems (i.e., cases), the service repository which

172 ASTREA Framework

stores the software pieces that can be reused to compose the systems, a case study describing
the design, deployment and data gathering, and finally, an implementation and deployment to
demonstrate the feasibility of ASTREA framework is described.

Part IV

Evaluation

Chapter 6

Evaluation

Chapter Abstract

This chapter includes materials and methods for the evaluation of ASTREA as well as the results

obtained from two different studies. The first study includes the analysis of the time required in data

propagation (simulating data transmission of a case specification and its microservices), and the success

rate in data gathering, as well as the energy consumption of the nodes considering the sending of raw

and already preprocessed data (i.e., in-network preprocessing). The second study also involves the

evaluation of the time required for the data propagation (simulating case and microservices propagation)

through the dynamic network, and the percentage of the success rate in data gathering. For the two

studies, the inclusion of only monitoring actions versus monitoring actions together with preprocessing

actions has been considered.

ASTREA has been evaluated using the ns-3 simulator and BonnMotion technologies [40]. In particular,

each study applies different mobility models. The first study uses the Random Walk mobility model

while the second uses the Reference Point Group Mobility (RPGM) and Manhattan Grid mobility

models, approaching mobility patterns that could be found in a nursing home scenario. Heterogeneous

nodes make up the network, belonging to different roles and with different capabilities.

The results reveal the importance of the network infrastructure but even more, the preprocessing

actions to obtain useful information from raw data gathered. Furthermore, reducing the amount of data

transmitted implies a reduction in transmission time and also reduces the energy consumption of the

nodes, and thereby increasing the lifetime of the network.

Chapter Contents
6.1 Introduction . 177

6.2 Materials and Methods . 178

6.3 Evaluation Results . 184

176 Evaluation

6.4 Energy Consumption . 202

6.5 Summary . 202

6.1 Introduction 177

6.1 Introduction

Evaluation of the ASTREA framework has primarily focused on data transmission and prop-
agation time in a highly dynamic network under severe conditions because microservices
dynamic deployment can not be achieved in the simulation environment. Nevertheless, the
two mechanisms developed have been tested, deployment, and propagation of adaptations and

upgrades and data gathering mechanisms. Destination nodes introduce modifications over a
dynamic network topology, and in-network preprocessing is performed in the intermediary
nodes. Therefore, propagation time, data gathering success rate and a comparison of the energy
consumption of the node of transmitting raw data versus preprocessed data (useful information)
have been studied.

To achieve this, two studies have been carried out. The propagation time indicates how
much time is needed for the case subversions to reach all network nodes involved within it and
data volume gathered reflects how much of the data generated at the source nodes reaches the
destinations. Regarding the latter, the success rate of the gathered data is compared. Moreover,
the first study considers data priority policies (established by the case designer during the
case creation) and this also includes an analysis of the power consumption based on the data
transmitted (raw data versus preprocessed data).

To this end, ns-3 simulator, version 3.21 and BonnMotion technologies have been used.
Heterogeneous sensors have been simulated and different network configurations have been
applied. In particular, varies the node role, number of each of them, and number of data gener-
ated per second. For the first study, 50 WSN (fixed nodes), a variable number of intermediaries,
and 1 destination node compose the dynamic network infrastructure, while in the second study,
5 WSNs and 10 BSNs (mobile nodes) are additionally added, together with a variable number
of intermediary and destination nodes.

The chapter is organised as follows. The objectives of each of the two studies and their
respective network configuration details are described in Section 6.2. Moreover, in the Sub-
section 6.2.3 can be found a comparative summary of the two studies (objectives and network
configuration details). Within each subsection information relating to study one and two can be
found separately. In addition, evaluation results (Section 6.3) of propagation time (Subsection
6.3.1), data gathering success rate (Subsection 6.3.2) and energy consumption (Subsection 6.4)
also comprise a discussion. Finally, Subsection 6.5 comprises a summary of the most relevant
key points of the evaluation.

178 Evaluation

6.2 Materials and Methods

ASTREA framework is evaluated through the simulation of several scenarios and different
network configurations using the ns-3 simulator, version 3.21, on Ubuntu 16.04 LTS 64-bit OS
and the BonnMotion mobility scenario generation tool.

This section includes the details about the two studies which mainly have been designed
with the objective of analysing data transmission and propagation time for deployment, and

propagation of adaptations and upgrades mechanism, and volume of data gathered using
data gathering mechanism considering data generated. The main differences between the two
studies reside in the dynamic network topology configurations and the case specification.

The cases and network infrastructures which have been simulated seek to emulate real
nursing homes similar to those described in Section 5.12. Furthermore, the simulation process
has been designed to prevent the possible influence of any random factors and every possible
configuration has been simulated 100 times with different seeds. A simulation time of 3 hours
was established for each configuration.

6.2.1 First Study

In this first study, we analyse mainly three issues:

• How much time is required for data transmission, which simulates the propagation of a
case and its respective associated microservices through a dynamic network topology.
The propagation of the subversions of a case and associated microservices originates at
the destinations and ends at the source nodes. Therefore, the transmission in the data
flow to measure the propagation time is in this direction.

• How much data arrives at the destination nodes based on how much data is generated
at the source nodes, considering the dynamicity of the network, i.e., the success rate
percentage of data gathering. Here, the data transmission flow originates at the source
nodes and ends at the destination nodes.

• What is the energy consumption or energy cost when transmitting raw data compared
to the energy consumption when reducing the volume of data to be transmitted from
the intermediaries to destinations. The latter, it would be useful information because
in-network preprocessing has been performed within the network at intermediary nodes.

6.2 Materials and Methods 179

In the evaluation, the success rate percentage in data gathering considering the role and
number of nodes used with respect their abilities to act as servers from two points of view is
also examined:

• Only monitoring actions have been included, simulating their inclusion within the case

specification (subversions). Then, raw data gathered are transmitted through the network.
However, in this evaluation, a higher volume of data is generated in the sources compared
to that generated with real sensors, in order to perform the evaluation under extreme
conditions (i.e., not in the best situation of the scenario). In [220], the authors estimate
the volume of data generated by sensors in a smart city. Specifically, they estimate that a
temperature sensor sends 2112 bytes of data per day, a noise sensor sends 31680 bytes of
data per day, and an air quality sensor sends 13824 bytes per day. We generate between 0
and 150 bytes per second, so the equivalent data volume generated daily by their noise
sensor can be achieved in approximately 211 seconds in any of our scenarios.

• Monitoring and preprocessing (average, maximum and minimum in 15-minute periods)
actions have been included, simulating their occurrence within case subversions. Here,
we partition the raw data set to perform the preprocessing actions within the interme-
diary nodes in order to obtain useful information and minimise the data volume to be
transmitted.

In the simulated scenario three data priorities have been considered, being priority 1 the
maximum priority and priority 3 the minimum. For a better comparable evaluation, an equal
amount of data is generated for each priority.

Regarding energy consumption, the nodes are equipped in the simulation with a ns3::LiIon-
EnergySource. Initially, the battery charge of the intermediary nodes and sources is set to
a random value between 60% and 100% of their maximum battery capacity (2.45 mAh). It
should be noted that although ns-3 offers energy consumption models for data transmission,
it does not have a consumption model for CPU operations available. Therefore, to simulate
the execution of preprocessing operations on the intermediary nodes, a battery consumption
penalty has been introduced on these nodes.

Dynamic Network Configuration Details

A simulated scenario composed of 50 source nodes, 1 fixed destination node and a variable
number of intermediary nodes, which vary from 1 to 10 has been created. Each node role
possesses particular features (i.e., computational capabilities) regarding the storage, mobility,

180 Evaluation

measures to gather, data volume generated and connection range. Configuration details of the
heterogeneous nodes that comprise the simulated dynamic network can be seen in Table 6.1.

Table 6.1 Configuration of the role of nodes that compose the network simulated.

Sources Intermediaries Destinations

Storage 1 GB 4 GB Unlimitied

Data
generation [0-150] B/s None None

Approx.
connection range 3 m 10 m 35 m

Multi-hop
connection No Yes -

A simulation area/arena of 4800m2 (60m x 80m) was created within which the nodes were
deployed. The nodes require an initial position that has been determined by considering the
node role:

• The source nodes within WSNs have been positioned in fixed random positions in each
simulation, with an Euclidean distance greater than 25 m between them.

• The intermediary nodes have been positioned randomly and follow a Random Walk
mobility model with a variable speed from 0.5 m/s to 2 m/s and random pauses of a
maximum of 30 seconds (Table 6.2).

• The destination node has been placed in a fixed position in the centre of the area.

Table 6.2 Random Walk mobility model configuration for intermediary nodes.

Random Walk mobility model
Node min. speed 0.5 m/s
Node max. speed 2 m/s
Node max. pause 30 s

6.2.2 Second Study

The second study analyses the propagation time required by the deployment, and propagation

of adaptations and upgrades mechanism, and data gathering success rate reached with data

6.2 Materials and Methods 181

gathering mechanism. In particular, the percentage in data gathering considering the role and
number of nodes used with respect their abilities to act as servers from two points of view:

• Only monitoring actions have been included, simulating their occurrence within the case

subversions. Then, raw data are generated at the source nodes and transmitted through
the network to the destination nodes.

• Monitoring and preprocessing (average, maximum and minimum in 15-minute periods)
actions have been included, simulating their occurrence within the case subversions.
Here, we partition the raw data set to perform the preprocessing actions within the
intermediary nodes in order to obtain useful information and minimise the data volume
to be transmitted.

However, this study differs from the previous one (first study of Subsection 6.2.1) with
respect to the network configurations used. In particular, the evaluation has been carried out by
varying the number of nodes of each role, mainly intermediaries or destinations, in order to
analyse how this factor influences the propagation times and data gathering success rates. As
for the volume of data generated, as in the previous study, it is also greater than that generated
under normal conditions so that the conditions are extreme.

Dynamic Network Configuration Details

Configuration details of the heterogeneous nodes that comprise the simulated dynamic network
can be seen in Table 6.3.

Table 6.3 Configuration of the nodes role that compose the network simulated.

Sources Intermediaries Destinations

WSNs BSNs

Storage 1 GB 1 GB 4 GB Unlimitied

Mobility Fixed
Manhattan

RPGM
Manhattan

RPGM Fixed

Number of
sensors [1-5] [1-7] None None

Data
generation [0-150] B/s [0-210] B/s None None

Approx.
connection range 3 m 3 m 10 m 35 m

182 Evaluation

In this study, we differentiate between WSNs and BSNs. Specifically, source nodes to
monitor physiological (10 nodes) and environmental (5 nodes) conditions have been created
respectively. It has been assumed that BSNs include a set from 1 to 7 sensors clustered which
could be also wearables, and the WSNs include a set from 1 to 5 sensors clustered to facilitate
the measurement of those conditions required by each case. Furthermore, a variable number
of both intermediary nodes which vary from 0 to 6 where 0 indicates that there are no data
carriers, and destination nodes which vary from 1 to 6 have been created. However, it is worth
mention that at least 1 source and 1 destination node are required to perform the evaluation of
the propagation time and success rate percentage in data gathering. In addition, each node role
possesses particular computational capabilities (also detailed in Table 6.1) in terms of storage,
mobility, measures to gather, data volume generated and connection range.

In this second study, two different mobility models have been applied:

• Reference Point Group Mobility (RPGM) model [109] intends to simulate an open space
(e.g., a garden) where it is more common for users to walk in a group, and

• Manhattan Grid mobility model [228], in order to simulate horizontal and vertical indoor
corridors within a building that users usually walk through individually.

A simulation area/arena of 4800 m2 (60 m x 80 m) was created within which nodes were
deployed. The nodes require an initial position that has been determined by considering the
node role:

• The source nodes within BSNs and intermediary nodes have been positioned randomly
according to the mobility model used. A mobility model has available and restricted
positions determined by the trace within the area, therefore the nodes have been placed
randomly but in unrestricted locations. Moreover, as is the case in real world scenarios
mobility speed can vary.

A variable speed from 0.5 m/s to 2 m/s for RPGM model, and a mean mobility speed of
1.5 m/s was established for Manhattan Grid mobility model with pauses of a maximum
of 350 s for each scenario.

• The source nodes within WSNs have been positioned in fixed random positions in each
simulation, with an Euclidean distance greater than 25 m between them.

• Destination nodes have been positioned at strategic locations in order to promoting both
processes, propagation and data gathering. The strategic locations are determined by
prioritising:

6.2 Materials and Methods 183

1. those locations where the influx of users is greatest; and

2. maximising the area covered.

Here, covering the area near the center of the scenarios is considered also as a priority
for both mobility models as well as the crossings in the corridors for Manhattan Grid
mobility model because the possibilities of the source and intermediary nodes entering
into the scope range are greater. In Figure 6.1, note that the destinations have been
positioned in the simulation according to the number of available destinations (indicated
at the top left corner) for both mobility models.

Fig. 6.1 Position of the destination nodes within the scenarios according to the number of
available destinations (indicated at the top left corner) for both mobility models.

Details regarding those configuration parameters used to generate the mobility traces in
BonnMotion are presented in Table 6.4.

6.2.3 Considerations of the First Study versus Second Study

In the Table 6.5, the main considerations of the two studies carried out have been listed. In the
first study, energy consumption is analysed but not in the second study. In the first study also
data priority has been taken into account but do not in the second study.

In the first study only fixed sensors are included, not mobile BSNs (source nodes). In
the second study, BSNs are included, the number of which varies, as does the number of
destinations nodes. The number of intermediary nodes varies in both studies. The node
capabilities are the same for both studies although different mobility models are used. In
the first one, the Random Walk mobility model has been used, while for the second one, the
Reference Point Group Mobility and the Manhattan Grid mobility models were used. The three
models can represent common movement behaviours in a nursing home.

184 Evaluation

Table 6.4 RPGM model configuration for source nodes (BSNs) and Manhattan Grid mobility
model for intermediary nodes.

RPGM model
Manhattan Grid
mobility model

Node min. speed 0.5 m/s 0.5 m/s
Node mean speed - 1.5 m/s
Node max. speed 2.0 m/s -
Node max. pause 350 s 350 s
Group change probability 0.1 -
Group size standard deviation 2 -
Max. distance to group center 8 m -
No. of blocks along x-axis - 5
No. of blocks along y-axis - 3
No. of groups 4 -
Pause probability - 0.2
Scenario max. x 80 m 80 m
Scenario max. y 60 m 60 m
Speed change probability - 0.4
Speed standard deviation - 0.5
Turn probability - 0.5
Update distance - 10 m

6.3 Evaluation Results

This section shows the results obtained from the evaluation of ASTREA, considering the issues
under study and the details in the configuration of the dynamic networks.

6.3.1 Propagation Time

Here, it can be found the results obtained from the two studies designed concerning the
propagation time required by the deployment, and propagation of adaptations and upgrades

mechanism.

First Study

Details of the configuration scenario can be found in Subsection 6.2.1. Here, it measures how
long it takes for an adaptation or upgrade originating at the destination node (gateway) to reach
100% of the nodes in the network. Thereby, this provides an estimate of how long it would take
to update the configuration (at the functional level) of the monitoring systems (cases).

6.3 Evaluation Results 185

Table 6.5 Considerations of the first study VS those of the second study.

First study Second study
Evaluation
Propagation time Ë Ë
Success rate (%) in data gathering Ë Ë
Energy consumption Ë é
Monitoring actions Ë Ë
Preprocessing actions (in-network preprocessing) Ë Ë
Data priority Ë é
Network configuration
WSNs (fixed source nodes) Ë[50 nodes] Ë[5 nodes]
BSNs (mobile source nodes) é Ë[10 nodes]
Intermediary (mobile source nodes) Ë[1-10 nodes] Ë[0-6 nodes]
Destination (fixed nodes) Ë[1 node] Ë[1-6 nodes]
Node capabilities
Storage í í
Data generation í(WSN)/- (BSN) í(WSN)/ [0-210] B/s
Connection range í í
Simulation area í í
Simulation time/scenario í í
Mobility models
Random Walk mobility model Ë é
Reference Point Group Mobility (RPGM) model é Ë
Manhattan Grid model é Ë
Ë means issue considered in the study.
é means issue does not considered in the study.
í means that the question is treated in both studies in an equivalent way (which is the same).

186 Evaluation

A time limit of 10 minutes has been set for the propagation of adaptations and upgrades. As
can be seen in Table 6.6, in scenarios where there are only 1 or 2 intermediaries, the upgrades
are not propagated to 100% of the nodes within the established time limit. However, we
consider that more than 10 minutes may be an excessive delay because the system must be
adapted or upgraded avoiding inconsistencies, so if this limit is exceeded, it would be advisable
to incorporate more intermediaries. From networks with 5 intermediary nodes (Figure 6.2),
the total propagation time drops below 18 seconds. From 8 intermediary nodes, the results
obtained are similar. When 10 intermediary nodes are reached, the maximum time required for
adaptations or upgrades is 13.33 seconds.

Table 6.6 System deployment, adaptations and upgrades propagation times and maximum
percentage completed for networks consisting of 50 sensor nodes, 1 destination node, and from
1 to 10 intermediary nodes. Random Walk mobility model.

Number of
intermediary nodes

1 2 3 4 5 6 7 8 9 10

% of network
upgraded

25% 4.66s 5.09s 3.44 s 3.26 s 3.62 s 3.17s 2.75 s 3.09 s 3.18 s 2.78 s
50% 278.51 s 8.81 s 4.76 s 5.15 s 4.66 s 4.88 s 4.02 s 4.29 s 4.27 s 4.18 s
75% - - 8.86 s 11.44 s 6.40 s 6.18 s 5.24 s 5.39 s 5.12 s 5.31 s
100% - - 253.95 s 73.03 s 17.51 s 16.69 s 17.96 s 14.58 s 14.04 s 13.33 s

% max. network
reached, and
system adapted
or upgraded 69% 71% 100% 100% 100% 100% 100% 100% 100% 100%

The results obtained highlight the possibility of performing adaptations in the configuration
of a runtime monitoring system on a dynamic and mobile-based WSN in a reasonable propa-
gation time. Similarly, it may be feasible to transmit a specification to make upgrades to the
monitoring system, which would lead to more noticeable changes in the system.

Second Study

Details of the configuration scenario can be found in Subsection 6.2.2. The results (Figure 6.3)
show that the average propagation time decreases the greater the number of nodes because
the probability in the number of interconnections is simultaneously increasing. As expected,
propagation takes slightly less time to reach all nodes in the network when intermediary nodes
move under the Manhattan Grid mobility model (Figure 6.3b). This is because under the
RPGM model (Figure 6.3a), more than 1 intermediary node can move together, reducing
the opportunities of propagation to other fixed nodes in the network. In contrast, with the
Manhattan Grid model, the area available to move is reduced, making it relatively easy for
nodes to meet each other.

6.3 Evaluation Results 187

Network upgraded (%)

Se
co

nd
s

0

5

10

15

20

20% 40% 60% 80%

10 interm. 9 interm. 8 interm. 7 interm. 6 interm. 5 interm.

4 interm.

Fig. 6.2 System deployment, adaptations and upgrades propagation times for networks consist-
ing of 50 sensor nodes, 1 destination node, and from 4 to 10 intermediary nodes. Random Walk
mobility model. Data in Table A.1.

Network upgraded (%)

Se
co

nd
s

0

5

10

15

20

20% 40% 60% 80%

1 interm. 2 interm. 3 interm. 4 interm. 5 interm. 6 interm.

(a) RPGM model. Data in Table A.2.

Network upgraded (%)

Se
co

nd
s

0

5

10

15

20

20% 40% 60% 80%

1 interm. 2 interm. 3 interm. 4 interm. 5 interm. 6 interm.

(b) Manhattan Grid mobility model. Data in Ta-
ble A.3.

Fig. 6.3 Propagation results for networks composed of 5 fixed source nodes, 10 mobile source
nodes, 1 destination node, and from 1 to 6 intermediary nodes.

188 Evaluation

6.3.2 Data Gathering Success Rate

Here, it can be found the results obtained from the success rate of the data gathering analysed
from the two studies designed.

First Study

As shown in Table 6.7, on average 11.64% more data is gathered of priority 1 than of priority 2,
and 4.37% more of priority 2 than of priority 3.

Table 6.7 Statistical results for data gathering (percentage gathered vs. generated) with and
without prioritisation. No in-network preprocessing operations are performed on the data.
Networks composed of 50 sensor nodes, 1 destination node, and from 1 to 10 intermediary
nodes. Random Walk mobility model.

With priority Without priority

Priority 1 Priority 2 Priority 3 Type 1 Type 2 Type 3

Max. 98.02% 80.20% 77.42% 89.22% 83.22% 82.72%
Min. 54.93% 40.79% 29.31% 36.68% 40.68% 39.68%
Avg. 78.48% 66.84% 62.47% 70.76% 67.96% 69.06%
Std. Dev. 0.12800 0.13155 0.15052 0.15528 0.14049 0.13040

Generally, this difference is observed for all the scenarios evaluated (Figure 6.4), highlight-
ing how ASTREA manages to prioritise data delivery in accordance with what is specified
in the case, gathering on average 78.48% of priority 1, 66.84% of priority 2, and 62.47% of
priority 3. It should also be mentioned, that the maximum achieved gathering rates are 98.02%
for priority 1, 80.20% for priority 2, and 77.42% for priority 3.

Data priority is of particular relevance in scenarios where the available hardware resources
(bandwidth or storage) are low or where the contact of the source nodes with the intermediary
nodes (data carriers) is spaced in time. Comparing these results with those of a case in which
the data are not prioritised, as can be seen also in Figure 6.4 and Table 6.7, the data gathering of
each type (without priority) is more balanced. Specifically, the difference in percentage of data
gathered (without priority), on average, is fewer than 2.80% (Table 6.7), and these differences
are mainly caused by random factors (e.g., positioning of the source node in the scenario).

In order to compare priority and non-priority data gathering, two identical tests (with
the same scenario and nodes configuration) have been conducted. Nevertheless, it should be

6.3 Evaluation Results 189

Intermediary nodes

Su
cc

es
s

ra
te

0%

25%

50%

75%

100%

2 4 6 8 10

Priority 1 Priority 2 Priority 3 Type 1 Type 2 Type 3

Fig. 6.4 Data gathering with and without prioritisation (percentage gathered vs. generated).
No in-network preprocessing operations are performed on the data. Networks composed of 50
sensor nodes, 1 destination node, and from 1 to 10 intermediary nodes. Random Walk mobility
model. Data in Table A.4.

clarified that for this comparison the generated data has been labelled with the priority although
the prioritisation mechanisms for data transmission and storage have been disabled in the
ASTREA framework.

The in-network preprocessing operations introduced in the simulation (average, maximum
and minimum in 15-minute periods) reduce the total size of the final data (target information)
by 80% (Table A.5). The target information is the information that should be obtained after
applying the preprocessing operations. Therefore, when in-network preprocessing is applied,
these operations are performed in the network itself, otherwise, they should be carried out in the
gateway, cloud or data destination server. In the scenarios evaluated, in-network preprocessing
is carried out at the intermediary nodes, therefore the proposed operations do not imply a direct
reduction in the data transmission. There will be source nodes that transmit data directly to
destination nodes, if they are within their range. Intermediary nodes that do not have the data
corresponding to complete a time window (i.e., 15 minutes) to carry out the preprocessing
operations will send the data to the destinations without preprocessing, after having transmitted
the data they have already preprocessed.

Reducing the amount of data transmitted implies that the transmission time is reduced
directly. Results in data gathering show that on average, 13.25% more data of the target
information is gathered when preprocessing is applied in intermediary nodes (Table 6.8). The

190 Evaluation

Table 6.8 Statistical results for data gathering when in-network preprocessing is applied vs.
when it is not applied. Networks composed of 50 sensor nodes, 1 destination node, and from 1
to 10 intermediary nodes. Random Walk mobility model.

Without in-network
preprocessing

With in-network
preprocessing

Max. 80.72% 95.58%
Min. 41.68% 52.40%
Avg. 67.49% 80.74%
Std. Dev. 0.13101 0.15080

Intermediary nodes

Su
ce

ss
 r

at
e

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10

Without in-network preprocessing With in-network preprocessing

Fig. 6.5 Data gathered percentage in relation to the data generated when in-network pre-
processing is applied vs. when it is not applied. Random Walk mobility model. Data in
Table A.5.

6.3 Evaluation Results 191

difference between the two approaches becomes greater as the number of intermediary nodes
in the network increases (Figure 6.5).

Second Study

We analyse the success rate in data gathering from data received at destinations considering the
volume of data produced at the sources. A comparison has been undertaken of the success rate
obtained when the data gathered is raw data compared to when the preprocessing actions have
been applied.

The network infrastructure deployed is one of the main factors influencing data receipt
success rate together with the application of in-network preprocessing actions. As expected, the
highest percentage of raw data was gathered when the maximum number of intermediary and
destination nodes were deployed. In these circumstances, it was obtained an average success
rate on the raw data gathering of the 88.24% for the RPGM model (Figure 6.6f), and of the
93.16% for the Manhattan Grid mobility model (Figure 6.7f). There are mainly two causes for
not gathering data:

1. the simulation ends but some data generated in the sources did not reach the destinations;

2. an isolated source node is generating data, which are stored locally; or the connection
time of a source node is insufficient to transmit a certain data volume, then when storage
becomes saturated, the data is overwritten and cannot be retrieved. This does not happen
in intermediary nodes because they cannot be elected as a server if they do not have free
storage capacity so that the data they are transporting is not overwritten.

Next, we discuss the differences that arise in the success rate with respect to the number of
available nodes of each role during the raw data gathering. When there are no intermediary
nodes but the number of destination nodes increases from 1 to 6, the cumulative net increase in
the success rate was 44.5% for the RPGM model, and 52.47% for the Manhattan Grid mobility
model. This reveals that each time that a destination node is added to the scenario, there is an
average increase in the success rate of 7.42% and 8.75% for each mobility model respectively.

In both cases the increase of destination nodes follows a logarithmic growth. For the RPGM
model the trend is determined by f (x) = 0.356+0.25lnx, where x is the number of destination
nodes, with a coefficient of determination of R2 = 0.981 (Figure 6.8a). For the Manhattan
Grid mobility model the trend is determined by 0.275+ 0.294lnx, where x is the number
of destination nodes, with a coefficient of determination of R2 = 0.999 (Figure 6.8b). The
logarithmic trend reflects that the success rate percentage once a certain number of nodes have
been deployed tends to stabilise.

192 Evaluation

36.36%

37.42%

39.29%

42.91%

46.62%

46.81%

47.04%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(a) Networks composed of 1 destination node.
Data in Table A.6.

51.69%

52.63%

56.56%

60.50%

62.90%

63.45%

63.92%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(b) Networks composed of 2 destination nodes.
Data in Table A.7.

64.75%

65.98%

69.65%

69.75%

73.47%

75.91%

76.00%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(c) Networks composed of 3 destination nodes.
Data in Table A.8.

66.12%

67.45%

71.88%

72.88%

75.33%

77.47%

78.39%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(d) Networks composed of 4 destination nodes.
Data in Table A.9.

78.04%

78.06%

79.94%

82.13%

84.15%

85.54%

85.65%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(e) Networks composed of 5 destination nodes.
Data in Table A.10.

80.86%

81.48%

83.20%

85.15%

86.90%

88.00%

88.24%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(f) Networks composed of 6 destination nodes.
Data in Table A.11.

Fig. 6.6 Data gathering results under the RPGM model. Networks composed of 5 fixed source
nodes, 10 mobile source nodes, from 0 to 6 intermediary nodes, and from 1 to 6 destination
nodes. No in-network processing applied.

6.3 Evaluation Results 193

27.31%

27.75%

27.95%

28.44%

29.02%

30.66%

32.01%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(a) Networks composed of 1 destination node.
Data in Table A.12.

47.57%

48.37%

49.33%

50.84%

53.72%

56.45%

59.03%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(b) Networks composed of 2 destination nodes.
Data in Table A.13.

60.73%

62.82%

64.56%

67.44%

70.25%

73.16%

75.30%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(c) Networks composed of 3 destination nodes.
Data in Table A.14.

67.96%

70.83%

73.85%

76.92%

80.00%

82.46%

84.64%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(d) Networks composed of 4 destination nodes.
Data in Table A.15.

75.02%

79.28%

82.87%

85.41%

87.54%

89.33%

90.57%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(e) Networks composed of 5 destination nodes.
Data in Table A.16.

79.78%

84.07%

87.14%

89.27%

90.91%

92.14%

93.16%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(f) Networks composed of 6 destination nodes.
Data in Table A.17.

Fig. 6.7 Data gathering results under the Manhattan Grid mobility model. Networks composed
of 5 fixed source nodes, 10 mobile source nodes, from 0 to 6 intermediary nodes, and from 1 to
6 destination nodes. No in-network processing applied.

194 Evaluation

Destination nodes

Su
ce

ss
 r

at
e

0%

25%

50%

75%

100%

1 2 3 4 5 6

Sucess rate 0.356 + 0.25 ln x R² = 0.981

(a) RPGM model.

Destination nodes

Su
ce

ss
 r

at
e

0%

25%

50%

75%

100%

1 2 3 4 5 6

Sucess rate 0.275 + 0.294 ln x R² = 0.999

(b) Manhattan Grid mobility model.

Fig. 6.8 Data gathering results for networks composed of 5 fixed source nodes, 10 mobile source
nodes, no intermediary nodes, and from 1 to 6 destination nodes. No in-network processing
applied.

It should be noted that the increase in the number of destination nodes does not always
imply an increment in the percentage of data gathered because the fixed positions where the
destination nodes are deployed have a great influence in the success rate result. Thus, a strategic
deployment of destination nodes, in order, to cover the area, is decisive for a high success
rate. In this regard, with configurations in which the number of destinations is maintained
and the number of intermediaries varies, it can be noted that the increase in data gathered
at the destination increases only slightly. In particular, a 10.71% increase for RPGM model
(Figure 6.6a), and 4.7% for Manhattan Grid model (Figure 6.7a).

In contrast, it can be observed that the remaining data at the intermediary nodes is high. The
remaining data in the intermediary nodes are those data collected from the source nodes which
the intermediaries have not been able to retransmit to the destination node, either because they
have not reached a destination node or because the time or bandwidth has not been enough to
download all the data. For the RPGM model, intermediary nodes collect between 38.51% and
45.63% of the information generated (Figure 6.9a), while in the Manhattan Grid model it is
between 23.60% and 59.32% (Figure 6.9b). As shown in Figure 6.9, the trend line is more
pronounced for the Manhattan Grid mobility model than for the RPGM model. Therefore,
adding a new intermediary node in the RPGM model has a lower impact than adding it in the
Manhattan Grid mobility model. The reason is that in the Manhattan Grid mobility model, the
nodes only move along a predefined path, i.e. the area of movement is much more restricted.
In contrast, in the RPGM model, nodes move in groups, therefore, if in a group there are two
intermediary nodes with the same movement pattern, they will visit the same source nodes,
which will reduce their impact on data gathering. It is positive that the data remains within

6.3 Evaluation Results 195

the intermediaries rather than sources because the first ones will eventually have a destination
within range to transfer the data.

Intermediary nodes

Re
m

ai
ni

ng
 d

at
a

at
 in

te
rm

ed
ia

rie
s

0%

25%

50%

75%

100%

0 2 4 6

Remaining data at intermediaries 0.376 + 0.0414 ln x R² = 0.861

(a) RPGM model.

Intermediary nodes

Re
m

ai
ni

ng
 d

at
a

at
 in

te
rm

ed
ia

rie
s

0%

25%

50%

75%

100%

0 2 4 6

Remaining data at intermediaries 0.248 + 0.207 ln x R² = 0.984

(b) Manhattan Grid mobility model.

Fig. 6.9 Data gathering results for networks composed of 5 fixed source nodes, 10 mobile
source nodes, 1 destination node, and from 0 to 6 intermediary nodes. No in-network processing
applied.

In this context, i.e. where no preprocessing operations are performed in the network, the
fraction of data received by destination nodes through the intermediaries, either through multi-
hop connections to source nodes or by carrying it, is small compared to that received through
direct connections to source nodes within the scope of the destination itself. The maximum
percentage (22.69%) delivered to the destination nodes via intermediary nodes occurs when
there is only 1 destination and 6 intermediaries under the RPGM model (Figure 6.10a). For these
configurations, when there is only 1 destination, the percentage of data reaching destinations
via intermediary nodes, as would be expected, is higher than when there are more destinations
because the 1-hop connections established between sources and destinations provide a direct
data transmission. However, it was not expected that the results would be so similar with
configurations of 3 and 4 destination nodes, and more specifically, when 5 intermediary nodes
are operating (Figures 6.10c and 6.10d). The results obtained with 5 and 6 destination nodes
are also very similar (Figures 6.10e and 6.10f). This is because the position of the nodes is
similar when there are 3 or 4 destination nodes, and when there are 5 and 6 destination nodes.
The coincidence, when there are 3 or 4 destination nodes and when there are 5 and 6 destination
nodes respectively, also occurs with the data received at the destination nodes (Figure 6.6).

The data received at the destinations via the intermediary nodes with the Manhattan Grid
mobility model (Figure 6.11), reached its maximum percentage (19.71%) for scenarios with 6
intermediary nodes and 4 destination nodes. The percentages achieved are similar when the
scenarios include 2, 3 and 4 destination nodes (Figures 6.11b, 6.11c and 6.11d). The results

196 Evaluation

reveal that if a scenario includes 1 destination node in a central position, even if 6 intermediaries
are incorporated, such intermediaries deliver a lower percentage of data at the destination node
than when there are 2, 3, and 4 destinations, and significantly less than when using the RPGM
mobility model. Surprisingly, the results obtained with 6 intermediary nodes, both with 1 and 6
destination nodes (Figures 6.11a and 6.11f), are very similar. Therefore, a strategic positioning
of the destination nodes is essential. This also explains that from 5 destinations, the bottleneck
becomes smaller, and therefore, including more destinations produces a greater benefit to direct
connections to source nodes than to intermediary nodes.

Finally, it should be mentioned that the more destination nodes there are in the scenario,
the less impact the intervention of the intermediary nodes has. However, intermediary nodes
inclusion is not unimportant because the data gathering of 8.89% percent of the data for RPGM
depends on them for scenarios with 5 destination nodes, and 17.18% percent of the data for the
Manhattan Grid mobility model.

In the results obtained, it can be observed that there is a bottleneck in the offloading of
data from the intermediaries to the destinations, in general, when the number of destination
nodes is reduced. One way to address this problem, as proposed in this work, is to perform
the preprocessing operations at the network nodes themselves, thus reducing the amount
of data to be transmitted. Therefore, for the following scenarios, average, maximum and
minimum preprocessing operations have been introduced at the intermediary nodes. It consists
of arithmetic operations of the data in 15-minute periods, reducing the amount of data to be
gathered by the destination nodes by approximately 80%. It should be noted that if the data
does not pass through the intermediary nodes explicitly, i.e. it goes directly from the source
nodes to the destination nodes, either through a direct connection or a multi-hop connection
acting the intermediary nodes as routers in the connections, this data will not benefit from the
preprocessing operations.

When there is in-network preprocessing as opposed to when there is not, in networks with
6 intermediary nodes and 6 destinations, it was obtained an improvement of 2.7% and 0.79%
in data gathering with the RPGM (Figure 6.12f) and Manhattan Grid mobility (Figure 6.13f)
models, respectively.

Furthermore, it can be seen that the remaining data at the intermediary nodes is particularly
high and that for single-destination configurations, the remainder increases as the number of
intermediaries increases for both mobility models (Figures 6.6, 6.7, 6.12 and 6.13). This is
because the bottleneck occurs at each intermediary independently of the others and because the
probability of a connection being established between each intermediary and the destination
is lower than when there are more destinations. As the number of destinations increases,

6.3 Evaluation Results 197

0.00%

2.84%

7.44%

15.25%

22.00%

22.32%

22.69%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(a) Networks composed of 1 destination node.
Data from Table A.6.

0.00%

1.79%

8.59%

14.56%

17.82%

18.53%

19.16%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(b) Networks composed of 2 destination nodes.
Data from Table A.7.

0.00%

1.84%

7.02%

7.16%

11.85%

14.69%

14.79%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(c) Networks composed of 3 destination nodes.
Data from Table A.8.

0.00%

1.95%

8.01%

9.26%

12.23%

14.63%

15.64%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(d) Networks composed of 4 destination nodes.
Data from Table A.9.

0.00%

0.01%

2.40%

4.97%

7.27%

8.78%

8.89%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(e) Networks composed of 5 destination nodes.
Data from Table A.10.

0.00%

0.72%

2.80%

5.01%

6.93%

8.09%

8.35%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(f) Networks composed of 6 destination nodes.
Data from Table A.11.

Fig. 6.10 Data gathering results under RPGM model considering 1-hop and multi-hop con-
nections. Networks composed of 10 mobile source nodes, 5 fixed source nodes, from 0 to 6
intermediary nodes, and from 1 to 6 destination nodes. Without in-network preprocessing
operations.

198 Evaluation

0.00%

1.59%

2.28%

3.97%

5.91%

10.92%

14.70%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(a) Networks composed of 1 destination node.
Data from Table A.12.

0.00%

1.62%

3.55%

6.42%

11.45%

15.71%

19.42%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(b) Networks composed of 2 destination nodes.
Data from Table A.13.

0.00%

3.34%

5.93%

9.96%

13.55%

17.00%

19.35%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through 1-hop connection

(c) Networks composed of 3 destination nodes.
Data from Table A.14.

0.00%

4.07%

7.97%

11.65%

15.06%

17.59%

19.71%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(d) Networks composed of 4 destination nodes.
Data from Table A.15.

0.00%

5.37%

9.48%

12.16%

14.30%

16.03%

17.18%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(e) Networks composed of 5 destination nodes.
Data from Table A.16.

0.00%

5.11%

8.45%

10.63%

12.24%

13.41%

14.39%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(f) Networks composed of 6 destination nodes.
Data from Table A.17.

Fig. 6.11 Data gathering results under Manhattan Grid mobility model considering 1-hop
and multi-hop connections. Networks composed of 10 mobile source nodes, 5 fixed source
nodes, from 0 to 6 intermediary nodes, and from 1 to 6 destination nodes. Without in-network
preprocessing operations.

6.3 Evaluation Results 199

36.36%

54.71%

57.61%

61.19%

65.97%

65.80%

66.20%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(a) Networks composed of 1 destination node.
Data in Table A.18.

51.69%

63.51%

67.59%

72.47%

76.38%

77.49%

77.01%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(b) Networks composed of 2 destination nodes.
Data in Table A.19.

64.75%

71.80%

75.22%

76.59%

80.67%

82.96%

83.98%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(c) Networks composed of 3 destination nodes.
Data in Table A.20.

66.12%

72.02%

76.85%

79.38%

81.99%

85.42%

87.54%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(d) Networks composed of 4 destination nodes.
Data in Table A.21.

78.04%

79.80%

82.11%

84.66%

87.06%

88.45%

88.90%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(e) Networks composed of 5 destination nodes.
Data in Table A.22.

80.86%

82.86%

84.77%

86.89%

89.07%

90.50%

90.94%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(f) Networks composed of 6 destination nodes.
Data in Table A.23.

Fig. 6.12 Data gathering results under RPGM model. Networks composed of 5 fixed source
nodes, 10 mobile source nodes, 0 to 6 intermediary nodes and 1 to 6 destination nodes. With
in-network preprocessing operations.

200 Evaluation

27.31%

39.08%

47.59%

52.68%

55.35%

56.55%

58.08%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(a) Networks composed of 1 destination node.
Data in Table A.24.

47.57%

56.49%

62.72%

66.10%

70.02%

71.92%

73.46%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(b) Networks composed of 2 destination nodes.
Data in Table A.25.

60.73%

67.02%

72.12%

77.33%

79.69%

81.27%

82.36%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(c) Networks composed of 3 destination nodes.
Data in Table A.26.

67.96%

74.10%

78.93%

82.46%

85.15%

86.91%

88.00%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(d) Networks composed of 4 destination nodes.
Data in Table A.27.

75.02%

80.74%

85.08%

87.99%

89.82%

91.20%

91.92%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(e) Networks composed of 5 destination nodes.
Data in Table A.28.

79.78%

84.77%

88.05%

90.41%

92.07%

93.28%

93.95%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received in destinations Remaining data in intermediaries

Remaining data in fixed sources Remaining data in mobile sources

(f) Networks composed of 6 destination nodes.
Data in Table A.29.

Fig. 6.13 Data gathering results under Manhattan Grid mobility model. Networks composed of
5 fixed source nodes, 10 mobile source nodes, 0 to 6 intermediary nodes and 1 to 6 destination
nodes. With in-network preprocessing operations.

6.3 Evaluation Results 201

the volume of data remaining at the intermediary nodes decreases because the probability of
establishing direct connections between the source and destination nodes also increases, which
reflects that the bottleneck is being alleviated. The bottleneck is also clearly alleviated by
performing in-network operations.

In addition, when there is only a single destination node and 6 intermediaries, and in-
network preprocessing is applied, the destinations received 66.20% of the data with the RPGM,
and 58.08% of the data with the Manhattan Grid mobility models while destinations received
47.04% and 32.01% respectively when no preprocessing operations are performed. Therefore,
the results show that by performing in-network preprocessing a larger volume of data is
gathered, which in turn is useful information. In parallel, it should be noted that in these
configurations mobile source nodes have been included, and that when these mobile source
nodes establish connection with a destination node, they directly download the data via direct
connection, for this reason, also the volume of data received at the destination nodes via a
one-hop connection, is higher.

Focusing now on when network preprocessing is applied. In this evaluation, in-network
operations are performed within the intermediary nodes, therefore, when there are no interme-
diary nodes but the number of destination nodes increases from 1 to 6, the results obtained are
identical to those obtained when no preprocessing operations are applied within the network.

Intermediary nodes

Su
cc

es
s

ra
te

0%

25%

50%

75%

100%

0 2 4 6

No in-network preprocessing In-network preprocessing

(a) RPGM model.

Intermediary nodes

Su
cc

es
s

ra
te

0%

25%

50%

75%

100%

0 2 4 6

No in-network preprocessing In-network preprocessing

(b) Manhattan Grid mobility model.

Fig. 6.14 Data gathering results with and without in-network processing for networks composed
of 5 fixed source nodes, 10 mobile source nodes, 1 destination node, and from 0 to 6 intermediary
nodes.

It should be noted that when there is only 1 destination node and the number of intermediary
nodes varies, it can be observed that the increase in data gathered at the destination increases
considerably. In particular for these configurations, when in-network preprocessing is applied
and intermediary nodes increase from 1 to 6, the success rate is increased by 29.84% for

202 Evaluation

the RPGM model (Figure 6.14a) and by 30.77% for the Manhattan Grid mobility model
(Figure 6.14b). In contrast, when no preprocessing is applied, the increase in data gathering
success rate is 4.7% for the RPGM model and 10.71% for the Manhattan Grid mobility model.

The results also reveal how the preprocessing of the data considerably increases the effec-
tiveness of the intermediary nodes, increasing the amount of data gathered in the destination
nodes through them. In particular, 45.07% (Figure 6.15a) and 52.98% (Figure 6.16a) of the
data are delivered to the destinations for networks composed of a single-destination node and 6
intermediary nodes with the RPGM and Manhattan Grid mobility models, respectively. It can
also be seen in Figures 6.15 and 6.16 that the data received through intermediary nodes always
decreases as the number of destination nodes increases, and that no peaks and troughs occur
because network preprocessing avoids bottlenecks.

Finally, the following reflections can be summarised. Adding new destination nodes when
doing in-network preprocessing benefits direct connections more than intermediary nodes,
because the preprocessed data minimises the occurrence of bottlenecks. When no in-network
preprocessing is performed, the inclusion of destination nodes benefits both direct connections
and indirect connections via intermediary nodes.

6.4 Energy Consumption

The results shown in the Figure 6.17 concerning to energy consumption reflect that raw data
transmission has a high cost in the energy consumption of the nodes. In particular, here, the
network lifetime is 2.92 hours but introducing preprocessing operations, the lifetime of the
network increases by 2.5 hours, i.e., up to 5.42 hours in total.

Therefore, reducing the amount of data transmitted implies a reduction in the power
consumption of the nodes, and thereby an increase in the lifetime of the network.

6.5 Summary

In this chapter, the ASTREA framework has been evaluated using the ns-3 simulator. The
scenarios evaluated are intended to be similar to those in which ASTREA can be useful,
such as a nursing home. ASTREA has been evaluated under three different mobility models,
Random Walk mobility model, RPGM model, and Manhattan Grid mobility model, as well
as with a set of roles of heterogeneous nodes. The main issues to be evaluated have been data
transmission and propagation time simulating the distribution of the case specification and
associated microservices, and quantification of the data gathered at the destinations as well as

6.5 Summary 203

0.00%

33.54%

36.87%

40.57%

44.88%

44.74%

45.07%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(a) Networks composed of 1 destination node.
Data in Table A.18.

0.00%

18.62%

23.52%

28.67%

32.33%

33.30%

32.90%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(b) Networks composed of 2 destination nodes.
Data in Table A.19.

0.00%

9.79%

13.91%

15.45%

19.72%

21.94%

22.89%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(c) Networks composed of 3 destination nodes.
Data in Table A.20.

0.00%

8.17%

13.97%

16.69%

19.35%

22.58%

24.46%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(d) Networks composed of 4 destination nodes.
Data in Table A.21.

0.00%

2.19%

4.97%

7.80%

10.37%

11.77%

12.22%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(e) Networks composed of 5 destination nodes.
Data in Table A.22.

0.00%

2.39%

4.60%

6.91%

9.19%

10.63%

11.07%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(f) Networks composed of 6 destination nodes.
Data in Table A.23.

Fig. 6.15 Data gathering results under RPGM model considering 1-hop and multi-hop con-
nections. Networks composed of 10 mobile source nodes, 5 fixed source nodes, from 0 to
6 intermediary nodes, and from 1 to 6 destination nodes. With in-network preprocessing
operations.

204 Evaluation

0.00%

30.12%

42.62%

48.16%

50.66%

51.71%

52.98%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(a) Networks composed of 1 destination node.
Data in Table A.24.

0.00%

15.77%

24.14%

28.02%

32.05%

33.84%

35.25%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(b) Networks composed of 2 destination nodes.
Data in Table A.25.

0.00%

9.40%

15.80%

21.47%

23.79%

25.29%

26.27%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(c) Networks composed of 3 destination nodes.
Data in Table A.26.

0.00%

8.30%

13.90%

17.58%

20.21%

21.80%

22.78%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(d) Networks composed of 4 destination nodes.
Data in Table A.27.

0.00%

7.09%

11.83%

14.73%

16.48%

17.75%

18.39%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(e) Networks composed of 5 destination nodes.
Data in Table A.28.

0.00%

5.88%

9.39%

11.76%

13.35%

14.48%

15.11%

Total data generated

In
te

rm
ed

ia
ry

 n
od

es

0

1

2

3

4

5

6

0% 25% 50% 75%

Data received through intermediary nodes/multi-hop

Data received through a 1-hop connection

(f) Networks composed of 6 destination nodes.
Data in Table A.29.

Fig. 6.16 Data gathering results under Manhattan Grid mobility model considering 1-hop
and multi-hop connections. Networks composed of 10 mobile source nodes, 5 fixed source
nodes, from 0 to 6 intermediary nodes, and from 1 to 6 destination nodes. With in-network
preprocessing operations.

6.5 Summary 205

Seconds

Av
er

ag
e

ba
tt

er
y

(m
Ah

)

0.0

0.5

1.0

1.5

2.0

0 5000 10000 15000 20000

Without in-network preprocessing With in-network preprocessing

Fig. 6.17 Average battery level of network nodes over time when in-network preprocessing is
applied vs. when it is not applied. Data in Table A.30.

the remnants within intermediary nodes. Moreover, energy consumption with respect to data
transmission has been measured.

In data gathering, it has been considered that the gathering of certain measures may take
priority over the gathering of others. Therefore, this issue has been compared with another
specification where the gathering of measurements has the same priority. It has also been
assessed how important it is to include in-network operations at intermediary nodes in order
to obtain useful information as soon as possible and thus minimise the volume of data to be
transmitted.

Regarding the propagation of adaptations or upgrades for the monitoring system configu-
ration at runtime, it has been verified that when the number of intermediary nodes reaches a
minimum of 5, for the scenarios studied, the monitoring system adaptation or upgrade intro-
duced from a destination reaches all the nodes in the network in less than 18 seconds, regardless
of the mobility model. This is an acceptable time to propagate a change in the configuration
of a monitoring system in an ad-hoc WSN. However, it should be noted that the number of
intermediary nodes required to provide an assumable propagation time will depend on the
specific scenario, particularly, in its size and whether the movement pattern of the intermediary
nodes can be targeted for this purpose.

Regarding data gathering, the inclusion of more intermediary nodes, per se, to carry out
the data gathered from source nodes, if the data volume is large, does not imply a significant

206 Evaluation

increase in the data gathered at the destination nodes. This is mainly because there is a
bottleneck between the intermediary nodes and the destination nodes at the time of offloading
the data. For this reason, a large amount of data remains at the intermediary nodes and, although
in a finite time this data will be transmitted to the destination node, the delay in its collection
may invalidate the monitoring system. As a solution to this, the inclusion of priorities in the
data to be gathered and transmitted helps to increase the success rate on priority data when the
network is overloaded. However, the most influential improvement is found when preprocessing
operations are introduced at the intermediary nodes themselves, which considerably reduces the
data to be transmitted to the destination node and increases the gathering of relevant or useful
data for the monitoring system. Moreover, the reduction of the data to be transmitted leads
to a direct improvement in the network’s functional lifetime, as the nodes have their energy
consumption reduced considerably.

Part V

Conclusions and Future Work

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis work, the ASTREA framework is proposed as a comprehensive solution to develop
adaptive and extensible monitoring systems from composition and reuse of software. These
monitoring systems must support adaptation and upgrades post-deployment at runtime, and data
gathering. In addition, these systems have to be operational and must be deployed on a dynamic
and mobile network infrastructure. To achieve this, a study of fundamentals, technologies,
and research work related to our main objective and the goals defined has been carried out.
Furthermore, technical issues of software development, hardware devices, and networks have
also been also analysed.

The SLE, fibromyalgia, and SGA foetuses and low birth weight babies application domains
have been studied during the development of this thesis. In addition, environmental monitoring
has been considered as part of context information. Two monitoring systems have been
developed for such domains, in particular they have been applied to SGA and to a study of
sleep quality assessment in people suffering from SLE. The systems requirements have been
defined with the collaboration of experts (psychologists, doctors, nurses, midwives, educators
and therapists). To monitor environmental context, we developed a mHealth system that
integrate CEnMO application to take luminosity, environmental temperature, noise, humidity
and pressure measurements from a mobile device with built-in sensors. Data collected with
CEnMO and physiological data collected with an actigraph are objective information because
the collection of these measurements does not require human intervention. This objective
information was combined with information from standardised questionnaires (subjective
information) to conduct the sleep quality study. In this case, environmental monitoring helped

210 Conclusions and Future Work

to check the ecological validity of the data and to study how environmental factors affect sleep
quality.

Subsequently, we developed mPOP, another mHealth system to provide a psycho-educational
programme for pregnant women, and their partners, with low weight-for-gestational-age foe-
tuses. These programmes are offered through three mobile applications (VIVEmbarazo,
VIVECrianza Hospitalización and VIVECrianza No Hospitalización). The psychoeducational
programmes have been developed by experts in the field, and can be customised according
to the evolution of foetuses, babies and their parents. Parent information is also managed by
a domain expert through an authoring tool. All this is supported by AdaptEn module which
mainly comprises the set of services that are orchestrated to load and to allow easy modification
of programmes, as well as to ensure information security.

The application domains addressed have been useful to identify common characteristics,
similarities, requirements, software solutions and hardware devices. All of them have helped us
to acquire the knowledge and basis for proposing and evaluating new ideas, which have been the
starting point for the core of the proposal, the ASTREA framework. ASTREA has been created
to assist domain-specific software developers in the design and development of monitoring
systems that include sensors and wearables to monitor context information (physiological
variables and environmental factors). ASTREA provides solutions to a number of common
problems, requirements and goals of modern monitoring systems, encouraging the reuse of
software and automating certain tasks that in most of the systems need to be carried out such as
the deployment, adaptation and upgrades of the systems, and data gathering.

Within ASTREA, the monitoring systems definition are specified as individual cases and
they can be designed by a designer that could be a domain-specific software developer but who
does not need to have technical or programming skills. From the case concept, it is possible
to define the functionality of the monitoring systems, the devices (sensors and wearables) to
be used, to establish links between functionality and devices, and set certain configuration
parameters. These are elements that are available in the ASTREACE visual editing tool,
developed to facilitate the design process. The case designer can select an element, and
drag and drop it on a canvas to be set. The final result will be a flowchart defining the case

specification in JSON format.
Monitoring systems developed with ASTREA can operate in non-mobile and non-changing

environments, but the challenge is just the opposite. With ASTREA, we intent to provide solu-
tions to propagation of adaptations and upgrades at runtime for distributed monitoring systems
already operational which are deployed within dynamic and mobile networks. Therefore, the
case subversion service generates different subversions from the case specification, and accord-

7.1 Conclusions 211

ing to the capabilities of each device (or node) that can be part of the network infrastructure.
In ASTREA, nodes are categorised within three different roles (sources, intermediaries and
destinations). In particular, sources collect data; intermediaries, usually with higher capabilities
than source nodes, are data carriers and can perform in-network operations; and destinations

are the nodes with the highest capabilities of the infrastructure, that they act as a gateway
between the Internet or the Cloud, being the entry point for the deployment of the case.

Once the system has been designed, it must be deployed on the devices, i.e., the microser-
vices must be installed and the configuration must be set up. These tasks become more tedious,
the greater the number of devices are involved and the greater the number of monitoring systems
to be deployed. Furthermore, adaptations and upgrades are necessary because user needs can
change, or because system needs to be extended, or even context changes. Context changes may
imply self-adaptation in the monitoring system which is managed by plans defined within the
case specification. In addition, ASTREA includes the deployment, and propagation of adapta-

tions and upgrades mechanism which supports the autonomous deployment of the system, so
domain-specific software developers must specify what they consider that need to be changed,
and case specification is propagated through the dynamic network infrastructure, together with
the associated microservices that will compose the monitoring system autonomously and at
runtime, without the need to recompile any of its components. These microservices must have
been previously developed by a software developer, and are stored in a repository for code
mobility. The propagation of adaptations and upgrades starts at the destination nodes and ends
at the source nodes. Here, we use MEs to propagate the adaptations and upgrades to nodes in
the network that are not directly in range of the destination nodes.

The data gathering still presents performance challenges in terms of data gathering success
rate, bandwidth and energy consumption. ASTREA implements the data gathering mechanism
to perform in-network preprocessing operations to obtain useful information from raw data in
order to minimise the volume of data to be transmitted as early as possible. Furthermore, we
take advantage of the MEs to act as data carriers and to perform in-network preprocessing on the
data available to them. In addition, the data gathering mechanism includes data prioritisation,
data buffering, and data forwarding policy, thus adaptation here is also present.

Monitoring System (ASTREAMS) is the core of the developed mechanisms. ASTREAMS
integrates several key microservices among which stand out an orchestrator (the case manager),
and data and preprocessing managers. These microservices are responsible for coordination,
case composition, data management and for performing in-network operations, if the node
capabilities allows it. Also noteworthy is the data forwarding policy that is responsible for

212 Conclusions and Future Work

electing the more suitable higher role node to which the data are sent, when there are several
alternatives.

A motivating scenario has been described to illustrate the behaviour of users and caregivers
in a nursing home where ASTREA can be useful. Users have BSNs to collect physiological
information, there are also wireless sensors at specific points to collect measurements of the
environmental factors, and caregivers carry mobile devices that act as carriers of data from
the source nodes to the nodes where the information is centralised (destination nodes) with
higher computational capabilities, located at the edge of the network (gateway). Each resident
may require a specific monitoring system, which may even vary significantly depending on
their health status. ASTREA framework covers both autonomous deployment of the case
(monitoring system) and the ability to redeploy it if adaptations or upgrades are required, and
data gathering. In other words, adaptations, upgrades and deployment of monitoring systems,
in ASTREA, can occur as many times as required, independently of the number of nodes
involved.

Microservices dynamic deployment at runtime can not be achieved in a simulation environ-
ment (e.g., using ns-3 simulator). Therefore, prior to the evaluation, ASTREA implementation
is deployed in a test environment to demonstrate its feasibility. A heart rate monitoring system
(the case specification), with two actions (average and maximum with time windows of 15
minutes), has been designed with the ASTREACE tool. Subsequently, the monitoring system
has been deployed by using the deployment, and propagation of adaptations and upgrades

mechanism. The network infrastructure consists of one source node without enough computa-
tional capabilities to perform in-network operations, an intermediary node, a destination node,
and two external nodes in which the case subversion service and the system service repository
are deployed. Each node receives the specification and microservices it requires to compose
and get the monitoring system up and running. Data are collected by the sensor Polar H7 and
gathered to the destination node through the data gathering mechanism. The components of
each node are also shown, as well the microservices for getting the average and maximum
values from the measurements, and the standardised interfaces that allow composition with-
out recompilation. In relation to the implementation and in accordance with the framework
conceptualisation, some spots in ASTREA have been identified as hot, and others as frozen.

The evaluation is focused on data transmission and propagation time in a highly dynamic
network under severe conditions. To this end, the ns-3 simulator has been used, and in order
to prevent possible influences of any random factors, different network configurations in
terms of number of nodes of each role, volume of data generated, and three different mobility
models (Random Walk mobility, RPGM, and Manhattan Grid mobility models) introduced

7.2 Future Work 213

with BonnMotion technologies have been considered. Two studies have been designed to test
(1) the time required for data that would correspond to a case specification and associated
microservices to be transmitted (in a simulated form) and reach all network nodes involved in
the monitoring system. This is carried out by deployment, and propagation of adaptations and

upgrades mechanism; (2) success rate percentage of data gathered which is performed thought
data gathering mechanism; and (3) energy cost of data transmission. In-network preprocessing
actions have been introduced within the evaluation to compare how data gathering is affected by
minimising the volume of data to be transmitted as long as the resulting information is useful
information, and equal to that which would be obtained as a result of preprocessing at the
destination nodes, but with the disadvantage of having to transmit the total raw data thought the
networks. In other words, the transmission of raw data has been compared to the transmission
of useful, already processed information. In addition, the success rates of data gathering with
three different priorities and without priority have been contrasted, and the results show that in
extreme circumstances where it is necessary to prioritise which data is retained, the data with
the highest priority will prevail.

Finally, based on the evaluation results, it can be noted that in an area/arena of 4800m2 a
monitoring system could be adapted and upgraded in less than 18 seconds when there are 5 or
more intermediary nodes in network infrastructure. It is also confirmed that the prioritisation
of data is important, as the percentage of data gathered decreases as the priority of the data
decreases. Concerning the relevance of performing in-network preprocessing, when it is
not applied, an average success rate of 67.49% is achieved, and when it is applied, 80.74%
is reached. Mobility models affect data transmission, and finally, the incorporation of an
intermediary node or destination into the network has a different impact.

7.2 Future Work

We plan to develop the following points as possible lines of future work for this thesis:

• According to the proposals reviewed in Chapter 3, an improvement in data gathering
with MEs can be achieved by applying sensor clustering. In this way, a ME does not
have to visit each sensor to collect its data, but only the cluster heads, thus reducing the
number of nodes to be visited.

• Also for data gathering, directed MEs could be included, whose unique purpose would
be to gather data. Therefore, ASTREA could be extended with a set of services which
would support the computation of routes for these MEs. This is an interesting line of

214 Conclusions and Future Work

research, given that hardware improvements in these types of devices are increasing
(better autonomy, control and reliability).

• The ASTREA framework could be applied in other application domains, such as large
areas of crop fields, agriculture, livestock and renewable energy fields, among others.
In these scenarios, the inclusion of other types of MEs, such as aerial drones, could be
of interest. However, aerial drones present differences in mobility models because the
movements do not have to be in the same plane, but can be three-dimensional. Their
speed could also be higher than that of the mobility models used in this thesis.

• In terms of evaluation, the next step would be to deploy a monitoring application in a
controlled environment. For this purpose, different testbeds can be explored. This test
can be an option to work in a real, medium-sized deployment environment, while it
could also provide feedback on the performance of the framework. In addition, other
scenarios to those already evaluated can be implemented in the simulator. For example,
it could be interesting to evaluate the performance in the same terms of those included
in Chapter 6 when there is no multi-hop connection or when there is also a multi-hop
connection between the source nodes. Moreover, larger scale scenarios both in terms of
area and number of nodes could also be evaluated. It should be noted that this would not
affect the implementation of the framework either monitoring systems, it would only be
a modification at network infrastructure level that could affect the performance results.

• As for the framework and its extension, additional preprocessing and measurement
microservices can be included, adding new sensors in ASTREA and making it available
on various platforms. For this purpose, a methodology should be designed and made
available to third party developers, allowing them to extend the framework independently.

Chapter 8

Conclusiones y Trabajo Futuro

8.1 Conclusiones

En este trabajo de tesis, se propone el framework ASTREA como una solución integral para
desarrollar sistemas de monitorización adaptables y extensibles a partir de la composición y
reutilización de software. Estos sistemas de monitorización deben soportar adaptaciones y
actualizaciones posteriores al despliegue en tiempo de ejecución, así como la recopilación de
datos. Además, tales sistemas tienen que ser funcionales y deben poder desplegarse en una
infraestructura de red dinámica y móvil. Para lograr esto, se ha llevado a cabo un estudio
de fundamentos, tecnologías, trabajos de investigación que abordan puntos relacionados con
nuestro objetivo principal y las metas definidas. Además, también se han analizado cuestiones
técnicas de desarrollo de software, dispositivos hardware y redes.

Durante el desarrollo de esta tesis, se han estudiado los dominios de aplicación de LES,
fibromialgia y fetos PEG y bebés con bajo peso. Además, se ha considerado la monitorización
del entorno como parte de la información de contexto. Se han desarrollado dos sistemas de
monitorización para tales dominios, que en concreto se han aplicado en bebés PEG y en un
estudio para evaluar la calidad del sueño de personas sufrían LES. Los requisitos de los sistemas
se han definido con la colaboración de expertos (psicólogos, médicos, enfermeras, matronas,
educadores y terapeutas).

Para monitorizar el contexto ambiental, hemos desarrollado un sistema de salud móvil
(mSalud) que integra la aplicación CEnMO para tomar medidas de luminosidad, temperatura
ambiental, ruido, humedad y presión desde un dispositivo móvil con sensores incorporados.
Los datos recogidos con CEnMO y los datos fisiológicos recogidos con un actígrafo son
información objetiva porque la recogida de estas mediciones no requiere de intervención
humana. Esta información objetiva, se combinó con información recogida en cuestionarios

216 Conclusiones y Trabajo Futuro

estandarizados (información subjetiva) para realizar el estudio de la calidad del sueño. En este
caso, la monitorización ambiental ayudó a comprobar la validez ecológica de los datos y a
estudiar cómo los factores ambientales afectan a la calidad del sueño.

Posteriormente, desarrollamos mPOP, otro sistema de mSalud para ofrecer un programa
psicoeducativo a mujeres embarazadas, y a sus parejas, con fetos de bajo peso para la edad gesta-
cional o bebés nacidos con bajo peso. Estos programas se ofrecen a través de tres aplicaciones
móviles (VIVEmbarazo, VIVECrianza Hospitalización y VIVECrianza No Hospitalización).
Los programas psicoeducativos han sido desarrollados por expertos en la materia, y pueden
personalizarse en función de la evolución de los fetos, los bebés y sus padres. La información
de los padres también es gestionada por un experto en la materia a través de una herramienta de
autoría. Todo ello se apoya en el módulo AdaptEn, que comprende principalmente el conjunto
de servicios que se orquestan para cargar y permitir la fácil modificación de los programas, así
como garantizar la seguridad de la información.

Los ámbitos de aplicación abordados han servido para identificar características comunes,
similitudes, requisitos, soluciones de software y dispositivos de hardware. Todos ellos nos han
ayudado a adquirir los conocimientos y la base para proponer y evaluar nuevas ideas, las cuales
han sido el punto de partida para el núcleo de la propuesta, el framework ASTREA. ASTREA
ha sido creado para ayudar a los desarrolladores de software de un dominio específico en el
diseño y desarrollo de sistemas de monitorización que incluyan sensores y wearables para
monitorizar información de contexto (variables fisiológicas y factores ambientales). ASTREA
proporciona soluciones a una serie de problemas, requisitos y objetivos comunes de los sistemas
de monitorización modernos, fomentando la reutilización de software y automatizando ciertas
tareas que en la mayoría de los sistemas deben llevarse a cabo, tales como el despliegue, la
adaptación y las actualizaciones de los sistemas, y la recopilación de datos.

Dentro de ASTREA, en la definición de los sistemas de monitorización se especifican como
casos individuales que pueden ser diseñados por un diseñador que podría ser un desarrollador
de software de dominio específico, pero quien no tiene que tener conocimientos técnicos
o de programación. A partir del concepto de caso, es posible definir la funcionalidad de
los sistemas de monitorización, los dispositivos (sensores y wearables) que se van a utilizar,
establecer relaciones entre la funcionalidad y los dispositivos, y establecer ciertos parámetros
de configuración. Estos son elementos que están disponibles en la herramienta de edición visual
ASTREACE, desarrollada para facilitar el proceso de diseño. El diseñador de casos puede
seleccionar un elemento, y arrastrarlo y soltarlo en un lienzo para configurarlo. El resultado
final será un diagrama de flujo que define la especificación de caso en formato JSON.

8.1 Conclusiones 217

Los sistemas de monitorización desarrollados con ASTREA pueden operar en entornos no
móviles y no cambiantes, pero el reto es justo el contrario. Con ASTREA pretendemos aportar
soluciones a la propagación de adaptaciones y actualizaciones en tiempo de ejecución para los
sistemas de monitorización distribuidos, ya operativos, que se despliegan en redes dinámicas y
móviles. Por tanto, el servicio de subversión de casos genera diferentes subversiones a partir
de la especificación de caso y de acuerdo a las capacidades de cada dispositivo (o nodo) que
puede formar parte de la infraestructura de red. En ASTREA, los nodos se categorizan en tres
roles diferentes (fuentes, intermediarios y destinos). En concreto, los fuentes recogen datos; los
intermediarios, normalmente con mayores capacidades que los nodos fuente, son portadores
de datos y pueden realizar operaciones en la red; y los destinos son los nodos con mayores
capacidades de la infraestructura, que actúan como puerta de entrada entre Internet o la Nube,
siendo el punto de entrada para el despliegue del caso.

Una vez diseñado el sistema, hay que desplegarlo en los dispositivos, es decir, instalar
los microservicios y establecer la configuración. Estas tareas se vuelven más tediosas cuanto
mayor es el número de dispositivos implicados y el número de sistemas de monitorización
que hay que desplegar. Además, las adaptaciones y actualizaciones son necesarias porque
las necesidades de los usuarios pueden cambiar, o porque el sistema necesita ser ampliado, o
incluso porque el contexto cambia. Los cambios de contexto pueden implicar una adaptación
autónoma en el sistema de monitorización que se gestiona mediante planes definidos dentro
de la especificación del caso. Además, ASTREA incluye el mecanismo de despliegue, y

propagación de adaptaciones y actualizaciones que soporta el despliegue autónomo del sistema,
por lo que los desarrolladores de software de dominio específico deben especificar lo que
consideren que debe ser cambiado, y la especificación de casos se propaga a través de la
infraestructura de red dinámica, junto con los microservicios asociados que compondrán el
sistema de monitorización de forma autónoma y en tiempo de ejecución, sin necesidad de
recompilar ninguno de sus componentes. Estos microservicios deben haber sido desarrollados
previamente por un desarrollador de software, y se almacenan en un repositorio para realizar la
movilidad del código. La propagación de las adaptaciones y actualizaciones comienza en los
nodos de destino y termina en los nodos de origen. Aquí, utilizamos elementos móviles para
propagar las adaptaciones y actualizaciones a los nodos de la red que no están directamente en
el rango de los nodos de destino.

La recogida de datos sigue presentando problemas de rendimiento en cuanto a la tasa de
éxito de la recogida de datos, el ancho de banda y el consumo de energía. ASTREA implementa
el mecanismo recopilación de datos para realizar operaciones de preprocesamiento en la red
con el fin de obtener información útil a partir de los datos sin procesar, y así minimizar el

218 Conclusiones y Trabajo Futuro

volumen de datos a transmitir lo antes posible. También, aprovechamos los elementos móviles
para que actúen como portadores de datos y realicen el preprocesamiento en red de los datos
de los que disponen. Además, el mecanismo recopilación de datos incluye la priorización
de datos, el almacenamiento en búfer de datos y la política de reenvío de datos, por lo que la
adaptación aquí también está presente.

El sistema de monitorización (ASTREAMS) es el núcleo de los mecanismos desarrollados.
ASTREAMS integra varios microservicios clave entre los que destaca un orquestador (el gestor
de casos), y gestores de datos y preprocesamiento. Estos microservicios son responsables de
la coordinación, la composición de casos, la gestión de datos y la realización de operaciones
dentro de la red, si las capacidades del nodo lo permiten. También cabe destacar la política de
reenvío de datos, que se encarga de elegir el nodo más adecuado de rol superior al que se le
envían los datos, cuando hay varias alternativas.

Se ha descrito un escenario de motivación para mostrar el comportamiento de usuarios
y cuidadores en una residencia de ancianos en la que ASTREA puede ser útil. Los usuarios
disponen de BSN para recoger información fisiológica, también hay sensores inalámbricos
en puntos específicos para recoger medidas de factores ambientales, y los cuidadores llevan
dispositivos móviles que actúan como portadores de datos desde los nodos origen hasta los
nodos donde se centraliza la información (los nodos de destino) con mayor capacidad de
cálculo, situados en el borde de la red (la pasarela). Cada residente puede requerir un sistema de
monitorización específico, que incluso puede variar significativamente en función de su estado
de salud. El framework ASTREA abarca tanto el despliegue autónomo del caso (el sistema
de monitorización) como la capacidad de volver a desplegarla si se requieren adaptaciones o
actualizaciones, y la recopilación de datos. En otras palabras, las adaptaciones, actualizaciones
y despliegue de los sistemas de monitorización, en ASTREA, puede ocurrir tantas veces como
sea necesario, independientemente del número de nodos implicados.

El despliegue dinámico de los microservicios en tiempo de ejecución no puede realizarse
en un entorno de simulación (por ejemplo, utilizando el simulador ns-3). Por lo tanto, antes
de la evaluación, la implementación de ASTREA es desplegada en un entorno de prueba para
demostrar su viabilidad. Se ha diseñado con la herramienta ASTREACE un sistema de monitor-
ización de la frecuencia cardíaca (la especificación del caso), con dos acciones (media y máxima
con ventanas de tiempo de 15 minutos). Posteriormente, el sistema de monitorización se ha
desplegado con el mecanismo de despliegue, y propagación de adaptaciones y actualizaciones.
La infraestructura de la red consiste en un nodo fuente sin capacidad de cálculo suficiente para
realizar operaciones en la red, un nodo intermediario, un nodo destino y dos nodos externos
en los cuales se despliega el servicio de subversión de casos y el servicio de repositorio del

8.1 Conclusiones 219

sistema. Cada nodo recibe la especificación y los microservicios que necesita para componer y
poner en marcha el sistema de monitorización. Los datos son recogidos por el sensor Polar
H7 y reunidos en el nodo destino a través del mecanismo recopilación de datos. También se
muestran los componentes de cada nodo, así como los microservicios para obtener la media y
máximo de los datos recogidos, y las interfaces estandarizadas que permiten la composición
sin recompilación. En relación con la implementación y de acuerdo con la conceptualización
de , se han identificado algunos puntos de ASTREA como calientes, y otros como fríos.

La evaluación se centra en la transmisión de datos y el tiempo de propagación en una red
altamente dinámica bajo condiciones severas. Para ello, se ha utilizado el simulador ns-3 y,
para evitar la posible influencia de cualquier factor aleatorio, se han considerado diferentes
configuraciones de red en cuanto a número de nodos de cada rol, volumen de datos generados
y tres modelos de movilidad diferentes (los modelos de movilidad Random Walk, RPGM y
Manhattan Grid) introducidos con tecnologías BonnMotion. Se han diseñado dos estudios para
comprobar (1) el tiempo necesario para que se transmitan los datos que corresponderían a una
especificación de caso y microservicios asociados (de forma simulada), y estos lleguen a todos
los nodos de la red involucrados en el sistema de monitorización. Esto se realiza mediante el
mecanismo de despliegue, y propagación de adaptaciones y actualizaciones; (2) el porcentaje
de éxito de los datos recogidos que se realiza mediante el mecanismo de recopilación de datos;
y (3) el coste energético de la transmisión de datos.

En la evaluación se han introducido acciones de preprocesamiento en la red para comparar
cómo afecta a la recogida de datos el minimizar el volumen de datos a transmitir siempre que
la información resultante sea información útil, e igual a la que se obtendría como resultado del
preprocesamiento en los nodos destino, pero con el inconveniente de tener que transmitir el total
de los datos en bruto a través de la red. En otras palabras, se ha comparado la transmisión de
datos en bruto con la transmisión de información útil ya procesada. Además, se han contrastado
los porcentajes de éxito en la recogida de datos con tres prioridades diferentes y sin prioridad,
y los resultados muestran que en circunstancias extremas en las que sea necesario priorizar qué
datos se conservan, prevalecerán los de mayor prioridad.

Por último, en base a los resultados de la evaluación, se puede observar que en un área/esce-
nario de 4800m2 un sistema de monitorización podría adaptarse y actualizarse en menos de 18
segundos cuando hay 5 o más nodos intermedios en la infraestructura de la red. También se
confirma que la priorización de los datos es importante, ya que el porcentaje de datos recopila-
dos disminuye a medida que disminuye la prioridad de los mismos. En cuanto a la relevancia de
realizar un preprocesamiento en la red, cuando no se aplica se consigue un porcentaje medio de
éxito del 67,49%, y cuando se aplica se alcanza el 80,74%. Los modelos de movilidad afectan

220 Conclusiones y Trabajo Futuro

a la transmisión de datos, y por último, la incorporación en la red de un nodo intermediario o
destino tienen un impacto diferente.

8.2 Trabajo Futuro

Tenemos previsto desarrollar los siguientes puntos como posibles líneas de trabajo futuro para
esta tesis:

• De acuerdo con las propuestas revisadas en el Capítulo 3, se puede conseguir una mejora
en la recogida de datos con los elementos móviles aplicando el clustering de sensores.
De esta forma, un elementos móviles no tiene que visitar cada sensor para recoger sus
datos, sino sólo los líderes del cluster, reduciendo así el número de nodos a visitar.

• Además, para la recogida de datos, podrían incluirse elementos móviles dirigidos, cuyo
único propósito sería recoger datos. Por lo tanto, ASTREA podría ampliarse con un
conjunto de servicios que apoyen el cálculo de rutas para estos elementos móviles. Esta
es una línea de investigación interesante, dado que las mejoras de hardware en este tipo
de dispositivos son cada vez mayores (mayor autonomía, control y fiabilidad).

• El framework ASTREA podría aplicarse en otros dominios de aplicación, tales como
grandes áreas de campos de cultivo, agricultura, ganadería y campos de energía renovable,
entre otros. En estos escenarios, la inclusión de otros tipos de elementos móviles, como
drones aéreos, podría ser de interés. Sin embargo, los drones aéreos presentan diferencias
en los modelos de movilidad debido a que los movimientos no tienen que ser en el mismo
plano, sino que pueden ser tridimensionales. Su velocidad también podría ser mayor que
la de los modelos de movilidad utilizados en esta tesis.

• En términos de evaluación, el siguiente paso sería desplegar una aplicación de monitor-
ización en un entorno controlado. Para ello, se pueden explorar diferentes bancos de
pruebas. Esta prueba puede ser una opción para trabajar en un entorno real de despliegue
de tamaño medio, a la vez que podría proporcionar información sobre el rendimiento
del framework. Además, se pueden implementar en el simulador otros escenarios a los
ya evaluados. Por ejemplo, podría ser interesante evaluar el rendimiento en los mismos
términos incluídos en el capítulo 6 cuando no hay conexión multisalto o cuando también
hay una conexión multisalto entre los nodos de origen. Además, podrían evaluarse
escenarios de mayor escala, tanto en términos de área como de número de nodos. Cabe
señalar que esto no afectaría a la implementación del framework ni a los sistemas de

8.2 Trabajo Futuro 221

monitorización, sólo sería una modificación a nivel de infraestructura de red que podría
afectar a los resultados de rendimiento.

• En cuanto al framework y su extensión, se pueden incluir microservicios adicionales de
preprocesamiento y medición, añadiendo nuevos sensores en ASTREA y habilitándolo
en varias plataformas. Para ello, debería diseñarse una metodología y ponerla a disposi-
ción de los desarrolladores de terceros, permitiéndoles ampliar el framework de forma
independiente.

References

[1] Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10
(7):1497 – 1516, 2012. ISSN 1570-8705.

[2] Abend, G. The meaning of ‘theory’. Sociological theory, 26(2):173–199, 2008.

[3] Ahern, D. K., Kreslake, J. M., and Phalen, J. M. What is ehealth (6): perspectives on the
evolution of ehealth research. Journal of medical Internet research, 8(1):e4, 2006.

[4] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. Wireless sensor
networks: a survey. Computer networks, 38(4):393–422, 2002.

[5] Alavi, A. H., Jiao, P., Buttlar, W. G., and Lajnef, N. Internet of things-enabled smart
cities: State-of-the-art and future trends. Measurement, 129:589–606, 2018.

[6] Alderdice, F., Lynn, F., and Lobel, M. A review and psychometric evaluation of
pregnancy-specific stress measures. Journal of Psychosomatic Obstetrics & Gynecology,
33(2):62–77, 2012.

[7] Alférez, G. H., Pelechano, V., Mazo, R., Salinesi, C., and Diaz, D. Dynamic adaptation
of service compositions with variability models. Journal of Systems and Software, 91:
24–47, 2014.

[8] Alnuaimi, M., Shuaib, K., Alnuaimi, K., and Abdel-Hafez, M. Ferry-based data gathering
in wireless sensor networks with path selection. Procedia Computer Science, 52:286–
293, 2015.

[9] Altoaimy, L., Kurdi, H., Alromih, A., Alomari, A., Alrogi, E., and Ahmed, S. H.
Enhanced distance-based gossip protocols for wireless sensor networks. In 2019 16th
IEEE Annual Consumer Communications & Networking Conference (CCNC), pages
1–4. IEEE, 2019.

[10] Amoui, M., Derakhshanmanesh, M., Ebert, J., and Tahvildari, L. Achieving dynamic
adaptation via management and interpretation of runtime models. Journal of Systems
and Software, 85(12):2720–2737, 2012.

[11] Apple. Sector sanitario - apple watch - apple (es). URL https://www.apple.com/es/
healthcare/apple-watch/.

[12] Argent, R. M., Voinov, A., Maxwell, T., Cuddy, S. M., Rahman, J. M., Seaton, S.,
Vertessy, R., and Braddock, R. D. Comparing modelling frameworks–a workshop
approach. Environmental Modelling & Software, 21(7):895–910, 2006.

224 References

[13] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al. A view of cloud computing. Communications
of the ACM, 53(4):50–58, 2010.

[14] Arsanjani, A. Service-oriented modeling and architecture. IBM developer works, 1:15,
2004.

[15] Aslam, M. S., Rea, S., and Pesch, D. Service provisioning for the WSN cloud. In 2012
IEEE Fifth International Conference on Cloud Computing, pages 962–969. IEEE, 2012.

[16] Avrora. The AVR simulation and analysis framework. URL http://compilers.cs.ucla.edu/
avrora/.

[17] Bajaj, L., Takai, M., Ahuja, R., Tang, K., Bagrodia, R., and Gerla, M. Glomosim: A
scalable network simulation environment. UCLA computer science department technical
report, 990027(1999):213, 1999.

[18] Bąk, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., and Wąsowski, A. Clafer: unifying
class and feature modeling. Software & Systems Modeling, 15(3):811–845, 2016.

[19] Bakken, D. Middleware. Encyclopedia of Distributed Computing, 11, 2001.

[20] Balderas-Díaz, S., Benghazi, K., Garrido, J. L., Guerrero-Contreras, G., and Miró, E.
Designing new low-cost home-oriented systems for monitoring and diagnosis of patients
with sleep apnea-hypopnea. In ICTs for Improving Patients Rehabilitation Research
Techniques, pages 210–221. Springer, 2014.

[21] Balderas-Díaz, S., Benghazi, K., Garrido, J. L., O’Hare, G. M., and Guerrero-Contreras,
G. Integrating a dual method on a general architecture to self-adaptive monitoring
systems. In World Conference on Information Systems and Technologies, pages 528–538.
Springer, 2017.

[22] Balderas-Díaz, S., Martínez, M. P., Guerrero-Contreras, G., Miró, E., Benghazi, K.,
Sánchez, A. I., Garrido, J. L., and Prados, G. Using actigraphy and mHealth systems for
an objective analysis of sleep quality on systemic lupus erythematosus patients. Methods
of information in medicine, 56(02):171–179, 2017.

[23] Balderas-Díaz, S., Rodríguez-Fórtiz, M. J., Garrido, J. L., Bellido-González, M., and
Guerrero-Contreras, G. Design of an adaptable mHealth system supporting a psycho-
educational program for pregnant women with SGA foetuses. In International Confer-
ence on Conceptual Modeling, pages 125–135. Springer, 2021.

[24] Baloch, Z., Shaikh, F. K., and Unar, M. A. A context-aware data fusion approach for
health-IoT. International Journal of Information Technology, 10(3):241–245, 2018.

[25] Bandyopadhyay, S., Sengupta, M., Maiti, S., and Dutta, S. Role of middleware for
internet of things: A study. International Journal of Computer Science and Engineering
Survey, 2(3):94–105, 2011.

[26] Bandyopadhyay, S., Sengupta, M., Maiti, S., and Dutta, S. A survey of middleware for
internet of things. In Recent trends in wireless and mobile networks, pages 288–296.
Springer, 2011.

References 225

[27] Barricelli, B. R., Cassano, F., Fogli, D., and Piccinno, A. End-user development, end-
user programming and end-user software engineering: A systematic mapping study.
Journal of Systems and Software, 149:101–137, 2019.

[28] Basford, L. and Slevin, O. Theory and practice of nursing: An integrated approach to
caring practice. Nelson Thornes, 2003.

[29] Bass, L., Clements, P., and Kazman, R. Software architecture in practice. Addison-
Wesley Professional, 2003.

[30] Bass, L., Weber, I., and Zhu, L. DevOps: A software architect’s perspective. Addison-
Wesley Professional, 2015.

[31] Bellido-González, M., Díaz-López, M. Á., López-Criado, S., and Maldonado-Lozano,
J. Cognitive functioning and academic achievement in children aged 6–8 years, born
at term after intrauterine growth restriction and fetal cerebral redistribution. Journal of
pediatric psychology, 42(3):345–354, 2017.

[32] Bellido-González, M., Robles-Ortega, H., Castelar-Ríos, M. J., Díaz-López, M. Á.,
Gallo-Vallejo, J. L., Moreno-Galdó, M. F., and de Los Santos-Roig, M. Psychological
distress and resilience of mothers and fathers with respect to the neurobehavioral perfor-
mance of small-for-gestational-age newborns. Health and quality of life outcomes, 17
(1):1–13, 2019.

[33] Biggerstaff, T. and Richter, C. Reusability framework, assessment, and directions. IEEE
software, 4(2):41, 1987.

[34] Birman, K. The promise, and limitations, of gossip protocols. ACM SIGOPS Operating
Systems Review, 41(5):8–13, 2007.

[35] Bishop, T. A. and Karne, R. K. A survey of middleware. In Computers and Their
Applications, pages 254–258, 2003.

[36] Blair, G. S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon,
H., Fitzpatrick, T., Johnston, L., Moreira, R., et al. The design and implementation of
open ORB 2. IEEE Distributed Systems Online, 2(6):1–40, 2001.

[37] Bonato, P. Wearable sensors and systems. IEEE Engineering in Medicine and Biology
Magazine, 29(3):25–36, 2010.

[38] Bonfitto, S., Hachem, F., Belay, E. G., Valtolina, S., and Mesiti, M.

[39] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. Fog computing and its role in the
internet of things. In Proceedings of the first edition of the MCC workshop on Mobile
cloud computing, pages 13–16, 2012.

[40] BoonMotion. A mobility scenario generation and analysis tool. URL http://sys.cs.uos.
de/bonnmotion/.

[41] Borgia, E. The internet of things vision: Key features, applications and open issues.
Computer Communications, 54:1 – 31, 2014. ISSN 0140-3664.

226 References

[42] Bratman, M. E., Israel, D. J., and Pollack, M. E. Plans and resource-bounded practical
reasoning. Computational intelligence, 4(3):349–355, 1988.

[43] Bronfenbrenner, U. Toward an experimental ecology of human development. American
psychologist, 32(7):513, 1977.

[44] Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller, H.,
Pezzè, M., and Shaw, M. Engineering self-adaptive systems through feedback loops. In
Software engineering for self-adaptive systems, pages 48–70. Springer, 2009.

[45] Bukhsh, Z. A., van Sinderen, M., and Singh, P. M. SOA and EDA: A comparative
study: Similarities, differences and conceptual guidelines on their usage. In 2015
12th International Joint Conference on e-Business and Telecommunications (ICETE),
volume 2, pages 213–220. IEEE, 2015.

[46] Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., and Hinchey, M. An overview of
dynamic software product line architectures and techniques: Observations from research
and industry. Journal of Systems and Software, 91:3–23, 2014.

[47] Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., and Viroli, M. Mod-
elling and simulation of opportunistic IoT services with aggregate computing. Future
Generation Computer Systems, 91:252–262, 2019.

[48] Castro, L. A., Favela, J., Quintana, E., and Perez, M. Behavioral data gathering for
assessing functional status and health in older adults using mobile phones. Personal and
Ubiquitous Computing, 19(2):379–391, 2015.

[49] Cedillo, P., Sanchez, C., Campos, K., and Bermeo, A. A systematic literature review
on devices and systems for ambient assisted living: solutions and trends from different
user perspectives. In 2018 International Conference on eDemocracy & eGovernment
(ICEDEG), pages 59–66. IEEE, 2018.

[50] Cerny, T. Aspect-oriented challenges in system integration with microservices, SOA and
IoT. Enterprise Information Systems, 13(4):467–489, 2019.

[51] Cerny, T., Donahoo, M. J., and Trnka, M. Contextual understanding of microservice
architecture: current and future directions. ACM SIGAPP Applied Computing Review,
17(4):29–45, 2018.

[52] Chahal, R. K., Kumar, N., and Batra, S. Trust management in social internet of things: A
taxonomy, open issues, and challenges. Computer Communications, 150:13–46, 2020.

[53] Chakraborty, S. and Agarwal, Y. K. Solving the team orienteering problem with non-
identical agents: A Lagrangian approach. Networks, 2021.

[54] Chandrasekhara, P. K. S., Jayachandran, N. V., Rajasekhar, L., Thomas, J., and Nar-
simulu, G. The prevalence and associations of sleep disturbances in patients with
systemic lupus erythematosus. Modern rheumatology, 19(4):407–415, 2009.

[55] Chen, L., Zhou, P., Gao, L., and Xu, J. Adaptive fog configuration for the industrial
Internet of Things. IEEE Transactions on Industrial Informatics, 14(10):4656–4664,
2018.

References 227

[56] Chesson Jr, A. L., Ferber, R. A., Fry, J. M., Grigg-Damberger, M., Hartse, K. M.,
Hurwitz, T. D., Johnson, S., Kader, G. A., Littner, M., Rosen, G., et al. The indications
for polysomnography and related procedures. Sleep, 20(6):423–487, 1997.

[57] Chopra, N., Kalia, A., and Thakur, J. Performance analysis of network simulation tools:
NS-2 and J-SIM. Journal of Open Source Developments, 2(3):5–11, 2015.

[58] Cook, D. J., Augusto, J. C., and Jakkula, V. R. Ambient intelligence: Technologies,
applications, and opportunities. Pervasive and Mobile Computing, 5(4):277–298, 2009.

[59] Corral, J. M. R., Ruiz-Rube, I., Balcells, A. C., Mota-Macías, J. M., Morgado-Estévez,
A., and Dodero, J. M. A study on the suitability of visual languages for non-expert robot
programmers. IEEE access, 7:17535–17550, 2019.

[60] Crespi, V., Galstyan, A., and Lerman, K. Top-down vs bottom-up methodologies in
multi-agent system design. Autonomous Robots, 24(3):303–313, 2008.

[61] CubeSensors. CubeSensors - feel better. URL https://cubesensors.com/.

[62] da Costa Vieira Rezende, J., da Silva, R. I., and Souza, M. J. F.

[63] De Gelder, B. and Bertelson, P. Multisensory integration, perception and ecological
validity. Trends in cognitive sciences, 7(10):460–467, 2003.

[64] De Lemos, R., Giese, H., Müller, H. A., Shaw, M., Andersson, J., Litoiu, M., Schmerl,
B., Tamura, G., Villegas, N. M., Vogel, T., et al. Software engineering for self-adaptive
systems: A second research roadmap. In Software Engineering for Self-Adaptive Systems
II, pages 1–32. Springer, 2013.

[65] Dey, A. K. Understanding and using context. Personal and ubiquitous computing, 5(1):
4–7, 2001.

[66] Dey, A. K., Salber, D., Abowd, G. D., and Futakawa, M. The conference assistant:
Combining context-awareness with wearable computing. In Digest of Papers. Third
International Symposium on Wearable Computers, pages 21–28. IEEE, 1999.

[67] Diaz, S. and Mendez, D. Dynamic minimum spanning tree construction and maintenance
for wireless sensor networks. Revista Facultad de Ingeniería Universidad de Antioquia,
(93):57–69, 2019.

[68] Dictionary, O. A. L. Middleware noun - definition, pictures, pronunciation and usage
notes | oxford advanced learner’s dictionary at oxfordlearnersdictionaries.com. URL
https://www.oxfordlearnersdictionaries.com/definition/english/middleware.

[69] Dooley, L. M. Case study research and theory building. Advances in developing human
resources, 4(3):335–354, 2002.

[70] Dragone, M., Amato, G., Bacciu, D., Chessa, S., Coleman, S., Di Rocco, M., Gallicchio,
C., Gennaro, C., Lozano, H., Maguire, L., et al. A cognitive robotic ecology approach
to self-configuring and evolving aal systems. Engineering Applications of Artificial
Intelligence, 45:269–280, 2015.

228 References

[71] Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N. Devops. Ieee Software, 33(3):
94–100, 2016.

[72] Elazhary, H. Internet of things (iot), mobile cloud, cloudlet, mobile iot, iot cloud, fog,
mobile edge, and edge emerging computing paradigms: Disambiguation and research
directions. Journal of Network and Computer Applications, 128:105–140, 2019.

[73] Empatica. E4 wristband | Real-time physiological signals | Wearable PPG, EDA, Tem-
perature, Motion sensors, . URL https://www.empatica.com/research/e4.

[74] Empatica. Embrace2 Seizure Monitoring | Smarter Epilepsy Management | Embrace
Watch | Empatica, . URL https://www.empatica.com/en-eu/embrace2/.

[75] Erl, T. SOA principles of service design (the Prentice Hall service-oriented computing
series from Thomas Erl). Prentice Hall PTR, 2007.

[76] Faheem, M., Butt, R. A., Raza, B., Ashraf, M. W., Ngadi, M. A., and Gungor, V. C.

[77] Fayad, M. and Schmidt, D. C. Object-oriented application frameworks. Communications
of the ACM, 40(10):32–38, 1997.

[78] Fazio, M., Merlino, G., Bruneo, D., and Puliafito, A. An architecture for runtime
customization of smart devices. In 2013 IEEE 12th International Symposium on Network
Computing and Applications, pages 157–164. IEEE, 2013.

[79] Fernando, N., Loke, S. W., and Rahayu, W. Mobile cloud computing: A survey. Future
generation computer systems, 29(1):84–106, 2013.

[80] Finin, T., Fritzson, R., McKay, D., and McEntire, R. Kqml as an agent communication
language. In Proceedings of the third international conference on Information and
knowledge management, pages 456–463, 1994.

[81] Fonken, L. K. and Nelson, R. J. The effects of light at night on circadian clocks and
metabolism. Endocrine reviews, 35(4):648–670, 2014.

[82] Fortino, G., Galzarano, S., Gravina, R., and Li, W.

[83] Fortino, G., Guerrieri, A., O’Hare, G. M., and Ruzzelli, A. A flexible building manage-
ment framework based on wireless sensor and actuator networks. Journal of Network
and Computer Applications, 35(6):1934–1952, 2012.

[84] Gallager, R. G., Humblet, P. A., and Spira, P. M. A distributed algorithm for minimum-
weight spanning trees. ACM Transactions on Programming Languages and systems
(TOPLAS), 5(1):66–77, 1983.

[85] Galton, A. and Augusto, J. C. Two approaches to event definition. In International
Conference on Database and Expert Systems Applications, pages 547–556. Springer,
2002.

[86] García-Hernández, C. F., Ibarguengoytia-Gonzalez, P. H., García-Hernández, J., and
Pérez-Díaz, J. A. Wireless sensor networks and applications: a survey. IJCSNS Interna-
tional Journal of Computer Science and Network Security, 7(3):264–273, 2007.

References 229

[87] Garlan, D. Software architecture: a roadmap. In Proceedings of the Conference on the
Future of Software Engineering, pages 91–101, 2000.

[88] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer, 37(10):
46–54, 2004.

[89] Gimeno, M. Informe anual sobre el desarrollo de la sociedad de la información en
españa. Fundación Orange. Madrid: Fundación Orange, 2014.

[90] Global, I. What is Methodological Framework | IGI Global. URL https://www.igi-global.
com/dictionary/methodological-framework/18485.

[91] González, I. F., Maeso-Méndez, S., Miranda, A. S., del Hoyo Moracho, M., Blázquez,
I. L., and López, I. D. Diferencias en la función tiroidea de los pequeños para la edad
gestacional y los de peso adecuado.¿ Es normal la función tiroidea de los recién nacidos
pequeños para la edad gestacional? In Anales de Pediatría. Elsevier, 2020.

[92] Gould, G., Whyte, K., Rhind, G., Airlie, M., Catterall, J., Shapiro, C., and Douglas, N.
The sleep hypopnea syndrome. American Review of Respiratory Disease, 2012.

[93] Gravina, R., Alinia, P., Ghasemzadeh, H., and Fortino, G. Multi-sensor fusion in body
sensor networks: State-of-the-art and research challenges. Information Fusion, 35:68 –
80, 2017.

[94] Greenfield, J. and Short, K. Software factories: assembling applications with patterns,
models, frameworks and tools. In Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pages 16–27, 2003.

[95] Group, O. M. About the common object request broker architecture specification version
3.4. URL https://www.omg.org/spec/CORBA/3.4/About-CORBA/.

[96] Guerrero-Contreras, G., Garrido, J. L., Balderas-Diaz, S., and Rodríguez-Domínguez, C.
A context-aware architecture supporting service availability in mobile cloud computing.
IEEE Transactions on Services Computing, 10(6):956–968, 2017.

[97] Guerrero-Contreras, G., Garrido, J. L., Fórtiz, M. J. R., O’Hare, G. M. P., and Balderas-
Díaz, S. Impact of Transmission Communication Protocol on a Self-adaptive Architec-
ture for Dynamic Network Environments. In Recent Advances in Information Systems
and Technologies, pages 115–124. Springer International Publishing, 2017.

[98] Guinard, D., Trifa, V., and Wilde, E. A resource oriented architecture for the web of
things. In 2010 Internet of Things (IOT), pages 1–8. IEEE, 2010.

[99] Hakala, I. and Tan, X. A Statecharts-Based Approach for WSN Application Development.
Journal of Sensor and Actuator Networks, 9(4):45, 2020.

[100] Haller, S., Karnouskos, S., and Schroth, C. The internet of things in an enterprise context.
In Future internet symposium, pages 14–28. Springer, 2008.

230 References

[101] Handy, M., Haase, M., and Timmermann, D. Low energy adaptive clustering hierarchy
with deterministic cluster-head selection. In 4th international workshop on mobile and
wireless communications network, pages 368–372. IEEE, 2002.

[102] Hawalah, A. and Fasli, M. Dynamic user profiles for web personalisation. Expert
Systems with Applications, 42(5):2547–2569, 2015.

[103] Hayes-Roth, F. Architecture-based acquisition and development of software: Guide-
lines and recommendations from the arpa domain-specific software architecture (dssa)
program. Teknowledge Federal Systems. Version, 1, 1994.

[104] He, H., Miao, H., Liang, Z., Zhang, Y., Jiang, W., Deng, Z., Tang, J., Liu, G., and Luo,
X. Prevalence of small for gestational age infants in 21 cities in china, 2014–2019.
Scientific reports, 11(1):1–10, 2021.

[105] He, X., Liu, S., Yang, G., and Xiong, N. Achieving efficient data collection in heteroge-
neous sensing wsns. IEEE Access, 6:63187–63199, 2018.

[106] Health, S. C. Small for gestational age. URL https://www.stanfordchildrens.org/es/topic/
default?id=smallforgestationalage-90-P05520.

[107] Hill, J. W. and Powell, P. The national healthcare crisis: Is ehealth a key solution?
Business Horizons, 52(3):265–277, 2009.

[108] Hinchey, M. G. and Sterritt, R. Self-managing software. Computer, 39(2):107–109,
2006.

[109] Hong, X., Gerla, M., Pei, G., and Chiang, C.-C. A group mobility model for ad hoc
wireless networks. In Proceedings of the 2nd ACM international workshop on Modeling,
analysis and simulation of wireless and mobile systems - MSWiM ’99, pages 53–60.
ACM Press, 1999.

[110] Huang, D. et al. Mobile cloud computing. IEEE COMSOC Multimedia Communications
Technical Committee (MMTC) E-Letter, 6(10):27–31, 2011.

[111] Hub, I. C. L. What is SOA (Service-Oriented Architecture)? - India | IBM. URL
https://www.ibm.com/in-en/cloud/learn/soa.

[112] Iaboni, A., Ibanez, D., Gladman, D. D., Urowitz, M. B., and Moldofsky, H. Fatigue
in systemic lupus erythematosus: contributions of disordered sleep, sleepiness, and
depression. The Journal of rheumatology, 33(12):2453–2457, 2006.

[113] Ibrahim, N. and Mouel, F. L. A survey on service composition middleware in pervasive
environments. arXiv preprint arXiv:0909.2183, 2009.

[114] Iftikhar, M. U. and Weyns, D. ActivFORMS: A runtime environment for architecture-
based adaptation with guarantees. In 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), pages 278–281. IEEE, 2017.

[115] Institute, T. M. From iCalm to q sensor to physiio to empatica. URL https://affect.media.
mit.edu/projectpages/iCalm/iCalm-2-Q.html.

References 231

[116] Instruments, T. CC2541SENSORTAG-RD reference design. URL https://www.ti.com/
tool/CC2541SENSORTAG-RD.

[117] J-sim. J-sim. URL https://www.j-sim.org/.

[118] Jamsa, K. Cloud computing: SaaS, PaaS, IaaS, virtualization, business models, mobile,
security and more. Jones & Bartlett Publishers, 2012.

[119] Jeong, Y., Joo, H., Hong, G., Shin, D., and Lee, S. AVIoT: Web-based interactive
authoring and visualization of indoor internet of things. IEEE Transactions on Consumer
Electronics, 61(3):295–301, 2015.

[120] Johnson, R. E. Documenting frameworks using patterns. In conference proceedings on
Object-oriented programming systems, languages, and applications, pages 63–76, 1992.

[121] Johnson, R. E. Frameworks= (components+patterns). Communications of the ACM, 40
(10):39–42, 1997.

[122] Johnson, R. E. and Foote, B. Designing reusable classes. Journal of object-oriented
programming, 1(2):22–35, 1988.

[123] Joorabchi, M. E., Mesbah, A., and Kruchten, P. Real challenges in mobile app develop-
ment. In 2013 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, pages 15–24. IEEE, 2013.

[124] Jovanov, E., Price, J., Raskovic, D., Kavi, K., Martin, T., and Adhami, R. Wireless
personal area networks in telemedical environment. In Proceedings 2000 IEEE EMBS
International Conference on Information Technology Applications in Biomedicine. ITAB-
ITIS 2000. Joint Meeting Third IEEE EMBS International Conference on Information
Technol, pages 22–27. IEEE, 2000.

[125] Kakousis, K., Paspallis, N., and Papadopoulos, G. A. A survey of software adaptation in
mobile and ubiquitous computing. Enterprise Information Systems, 4(4):355–389, 2010.

[126] Kaluža, M., Troskot, K., and Vukelić, B. Comparison of front-end frameworks for web
applications development. Zbornik Veleučilišta u Rijeci, 6(1):261–282, 2018.

[127] Kephart, J. O. and Chess, D. M. The vision of autonomic computing. Computer, 36(1):
41–50, 2003.

[128] Ketfi, A., Belkhatir, N., and Cunin, P.-Y. Automatic adaptation of component-based
software. In Second Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, pages 1365–1371. Citeseer, 2002.

[129] Khalid, Z., Khalid, U., Sarijari, M. A., Safdar, H., Ullah, R., Qureshi, M., and Rehman,
S. U.

[130] Konstantopoulos, C., Vathis, N., Pantziou, G., and Gavalas, D.

[131] Konstantopoulos, C., Vathis, N., Pantziou, G., and Gavalas, D. Employing mobile
elements for delay-constrained data gathering in WSNs. Computer Networks, 135:
108–131, 2018.

232 References

[132] Krafzig, D., Banke, K., and Slama, D. Enterprise SOA: service-oriented architecture
best practices. Prentice Hall Professional, 2005.

[133] Kruchten, P. B. The 4+ 1 view model of architecture. IEEE software, 12(6):42–50, 1995.

[134] Krueger, C. W. Software reuse. ACM Computing Surveys (CSUR), 24(2):131–183, 1992.

[135] Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G., and Becker, C. A survey on
engineering approaches for self-adaptive systems. Pervasive and Mobile Computing, 17:
184–206, 2015.

[136] Kulkarni, G., Shelke, R., Palwe, R., Solanke, V., Belsare, S., and Mohite, S. Mobile
cloud computing-bring your own device. In 2014 Fourth International Conference on
Communication Systems and Network Technologies, pages 565–568. IEEE, 2014.

[137] Kumar, N. and Dash, D. Flow based efficient data gathering in wireless sensor network
using path-constrained mobile sink. Journal of Ambient Intelligence and Humanized
Computing, 11(3):1163–1175, 2020.

[138] Latré, B., Braem, B., Moerman, I., Blondia, C., and Demeester, P. A survey on wireless
body area networks. Wireless networks, 17(1):1–18, 2011.

[139] Lima, J. C. D., da Rocha, C. C., Augustin, I., and Dantas, M. A. R. CARS-AD Project:
Context-aware recommender system for authentication decision in pervasive and mobile
environments. Advances and Applications in Mobile Computing, page 201, 2012.

[140] Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., and Zhao, W. A survey on internet
of things: Architecture, enabling technologies, security and privacy, and applications.
IEEE Internet of Things Journal, 4(5):1125–1142, 2017.

[141] Luckham, D. C. and Vera, J. An event-based architecture definition language. IEEE
transactions on Software Engineering, 21(9):717–734, 1995.

[142] Luo, Y., Li, W., and Qiu, S. Anomaly detection based latency-aware energy consumption
optimization for IoT data-flow services. Sensors, 20(1):122, 2020.

[143] Maes, P. The agent network architecture (ANA). Acm sigart bulletin, 2(4):115–120,
1991.

[144] Mahmood, M. A., Seah, W. K., and Welch, I. Reliability in wireless sensor networks: A
survey and challenges ahead. Computer Networks, 79:166–187, 2015.

[145] Maker, F., Amirtharajah, R., and Akella, V. Meloades: Methodology for long-term
online adaptation of embedded software for heterogeneous devices. Journal of Systems
Architecture, 59(8):643–655, 2013.

[146] Malik, S. and Kim, D.-H. A comparison of RESTful vs. SOAP web services in actuator
networks. In 2017 Ninth International Conference on Ubiquitous and Future Networks
(ICUFN), pages 753–755. IEEE, 2017.

[147] Maréchaux, J.-L. Combining service-oriented architecture and event-driven architecture
using an enterprise service bus. IBM developer works, 12691275, 2006.

References 233

[148] Maróti, M., Kusy, B., Simon, G., and Lédeczi, A. The flooding time synchronization
protocol. In Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 39–49, 2004.

[149] Matos, S. N. and Fernandes, C. T. Early definition of frozen and hot spots in the
development of domain frameworks. In Fourteenth ACM SIGSOFT Symposium on
Foundations of Software Engineering, 2006.

[150] McIlroy, B. J. N. P. . R. B., M. D. Mass-produced software components. In Proceedings
of the 1st international conference on software engineering, Garmisch Pattenkirchen,
Germany. 1968, pages 88–98. Garmisch Pattenkirchen, 1968.

[151] McKinley, P. K., Sadjadi, S. M., Kasten, E. P., and Cheng, B. H. Composing adaptive
software. Computer, 37(7):56–64, 2004.

[152] McMeekin, N., Wu, O., Germeni, E., and Briggs, A. How methodological frame-
works are being developed: evidence from a scoping review. BMC medical research
methodology, 20(1):1–9, 2020.

[153] Mehdi, M., Mühlmeier, G., Agrawal, K., Pryss, R., Reichert, M., and Hauck, F. J.
Referenceable mobile crowdsensing architecture: A healthcare use case. Procedia
computer science, 134:445–451, 2018.

[154] Mell, P., Grance, T., et al. The NIST definition of cloud computing. 2011.

[155] Michelson, B. M. Event-driven architecture overview. Patricia Seybold Group, 2(12):
10–1571, 2006.

[156] Microsoft. What can I still do with my Microsoft
Band? URL https://support.microsoft.com/en-us/topic/
what-can-i-still-do-with-my-microsoft-band-a2a59355-5be0-3441-9fff-4dc27bcbafb5.

[157] Miró, E., Martínez, M. P., Sánchez, A. I., Prados, G., and Medina, A. When is pain
related to emotional distress and daily functioning in fibromyalgia syndrome? the
mediating roles of self-efficacy and sleep quality. British journal of health psychology,
16(4):799–814, 2011.

[158] Miyazaki, T., Li, P., Guo, S., Kitamichi, J., Hayashi, T., and Tsukahara, T. On-demand
customizable wireless sensor network. Procedia Computer Science, 52:302–309, 2015.

[159] Mottola, L., Picco, G. P., and Sheikh, A. A. Figaro: Fine-grained software reconfiguration
for wireless sensor networks. In European Conference on Wireless Sensor Networks,
pages 286–304. Springer, 2008.

[160] Muchandi, V. Applying 4+ 1 view architecture with uml 2. FCGSS White Paper, 2007.

[161] Munkittrick, K. and McCarty, L. An integrated approach to aquatic ecosystem health:
top-down, bottom-up or middle-out? Journal of aquatic ecosystem health, 4(2):77–90,
1995.

[162] Murray, N. Technologies - Niall Murray. URL http://www.niallmurray.info/technologies.

234 References

[163] Muse. Muse 2 - Tu asistente personal de meditacion. URL
https://choosemuse.com/es/muse-2/?store_id=eu&utm_source=
Google&utm_medium=PaidSearch&utm_campaign=Shopping&
gclid=Cj0KCQiA15yNBhDTARIsAGnwe0X7YNMH6NZGzoaaFq_
MLidnAX3G5zt7RpKvthSft9VwiU7AbHYYuMoaAjDIEALw_wcB.

[164] Nadareishvili, I., Mitra, R., McLarty, M., and Amundsen, M. Microservice architecture:
aligning principles, practices, and culture. " O’Reilly Media, Inc.", 2016.

[165] Naqvi, N. Z., kishore Ramakrishnan, A., Preuveneers, D., and Berbers, Y. Walking in the
clouds: deployment and performance trade-offs of smart mobile applications for intelli-
gent environments. In 2013 9th International Conference on Intelligent Environments,
pages 212–219. IEEE, 2013.

[166] Nast, I., Bolten, M., Meinlschmidt, G., and Hellhammer, D. H. How to measure prenatal
stress? A systematic review of psychometric instruments to assess psychosocial stress
during pregnancy. Paediatric and perinatal epidemiology, 27(4):313–322, 2013.

[167] Navarrete-Navarrete, N., Peralta-Ramírez, M., Sabio, J., Martínez-Egea, I., Santos-Ruiz,
A., and Jiménez-Alonso, J. Quality-of-life predictor factors in patients with sle and their
modification after cognitive behavioural therapy. Lupus, 19(14):1632–1639, 2010.

[168] Netsim. NetSim Network Simulator. URL https://www.boson.com/
netsim-cisco-network-simulator.

[169] Neumitra. Neumitra. URL https://www.neumitra.com/.

[170] Newman, S. Building microservices: designing fine-grained systems. O’Reilly Media,
Inc., 2015.

[171] Newsroom, S. What you may not know about galaxy s4 innovative tech-
nology – samsung global newsroom. URL https://news.samsung.com/global/
what-you-may-not-know-about-galaxy-s4-innovative-techonology.

[172] Ng, K.-G., Ting, C.-M., Yeo, J.-H., Sim, K.-W., Peh, W.-L., Chua, N.-H., Chua, N.-K.,
and Kwong, F. Progress on the development of the mediwatch ambulatory blood pressure
monitor and related devices. Blood Pressure Monitoring, 9(3):149–165, 2004.

[173] ns-3. ns-3 Network Simulator. URL https://www.nsnam.org/.

[174] OMNeT++. Omnet++ discrete event simulator. URL http://omnetpp.org/.

[175] OpNet. Optnet network simulator. URL https://opnetprojects.com/
opnet-network-simulator/.

[176] Ortiz, Ó., García, A. B., Capilla, R., Bosch, J., and Hinchey, M. Runtime variability for
dynamic reconfiguration in wireless sensor network product lines. In Proceedings of the
16th International Software Product Line Conference-Volume 2, pages 143–150, 2012.

[177] Oxipatch. Oxi tire patches. URL https://oxipatch.com/.

References 235

[178] O’Grady, M. J., O’Hare, G. M., and Donaghey, C. Delivering adaptivity through
context-awareness. Journal of Network and Computer Applications, 30(3):1007–1033,
2007.

[179] O’Grady, M. J., Muldoon, C., Dragone, M., Tynan, R., and O’Hare, G. M. Towards
evolutionary ambient assisted living systems. Journal of Ambient Intelligence and
Humanized Computing, 1(1):15–29, 2010.

[180] Palagini, L., Tani, C., Mauri, M., Carli, L., Vagnani, S., Bombardieri, S., Gemignani,
A., and Mosca, M. Sleep disorders and systemic lupus erythematosus. Lupus, 23(2):
115–123, 2014.

[181] Pallapa, G., Das, S. K., Di Francesco, M., and Aura, T. Adaptive and context-aware
privacy preservation exploiting user interactions in smart environments. Pervasive and
Mobile Computing, 12:232–243, 2014.

[182] Papazoglou, M. P. Service-oriented computing: Concepts, characteristics and directions.
In Proceedings of the Fourth International Conference on Web Information Systems
Engineering, 2003. WISE 2003, pages 3–12. IEEE, 2003.

[183] Pearce, M., Goel, A. K., Kolodner, I., Zimring, C., Sentosa, L., and Billington, R.
Case-based design support: A case study in architectural design. IEEE expert, 7(5):
14–20, 1992.

[184] Peltz, C. Web services orchestration and choreography. Computer, 36(10):46–52, 2003.

[185] Perrey, R. and Lycett, M. Service-oriented architecture. In 2003 Symposium on Applica-
tions and the Internet Workshops, 2003. Proceedings, pages 116–119. IEEE, 2003.

[186] Pfannemuller, M., Breitbach, M., Krupitzer, C., Weckesser, M., Becker, C., Schmerl, B.,
and Schurr, A.

[187] Polar. Polar H9 | Pulsómetro con banda pectoral económico | Polar España, . URL
https://www.polar.com/es/productos/accesorios/pulsometro_H9.

[188] Polar. Polar H7 | user manual, . URL https://support.polar.com/e_manuals/H7_Heart_
Rate_Sensor/Polar_H7_Heart_Rate_Sensor_accessory_manual_English__.pdf.

[189] Pons-Estel, G. J., Alarcón, G. S., Scofield, L., Reinlib, L., and Cooper, G. S. Understand-
ing the epidemiology and progression of systemic lupus erythematosus. In Seminars in
arthritis and rheumatism, volume 39, pages 257–268. Elsevier, 2010.

[190] Pramsohler, T., Schenk, S., Barthels, A., and Baumgarten, U. A layered interface-
adaptation architecture for distributed component-based systems. Future Generation
Computer Systems, 47:113–126, 2015.

[191] Radios, B. Blueradios provides low energy bluetooth 4.0 smart ready wireless sensors
and single-mode modules for wireless medical patient monitoring. URL https://www.
blueradios.com/hardware_sensors.htm.

236 References

[192] Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., and
Liljeberg, P. Exploiting smart e-Health gateways at the edge of healthcare Internet-of-
Things: A fog computing approach. Future Generation Computer Systems, 78:641–658,
2018.

[193] Rajput, A. and Brahimi, T. Characterizing internet of medical things/personal area
networks landscape. In Innovation in Health Informatics, pages 353–371. Elsevier,
2020.

[194] Rhodes, B. J. The wearable remembrance agent: A system for augmented memory.
Personal Technologies, 1(4):218–224, 1997.

[195] Rowland, S. P., Fitzgerald, J. E., Holme, T., Powell, J., and McGregor, A. What is the
clinical value of mhealth for patients? NPJ digital medicine, 3(1):1–6, 2020.

[196] Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B.,
Rebeck, K., and Team, T. K. M. M. A systems thinking framework for knowledge
management. Decision support systems, 31(1):5–16, 2001.

[197] Rudestam K. E., N. R. R. Surviving your dissertation. 1992.

[198] Ruparelia, N. B. Software development lifecycle models. ACM SIGSOFT Software
Engineering Notes, 35(3):8–13, 2010.

[199] Ryu, S. Book review: mhealth: new horizons for health through mobile technologies:
based on the findings of the second global survey on ehealth (global observatory for
ehealth series, volume 3). Healthcare Informatics Research, 18(3):231–233, 2012.

[200] Saad, E., Awadalla, M., and Darwish, R. A data gathering algorithm for a mobile sink in
large-scale sensor networks. In 2008 The Fourth International Conference on Wireless
and Mobile Communications, pages 207–213. IEEE, 2008.

[201] Sabatucci, L., Seidita, V., and Cossentino, M. The four types of self-adaptive systems: a
metamodel. In International Conference on Intelligent Interactive Multimedia Systems
and Services, pages 440–450. Springer, 2018.

[202] Salehie, M. and Tahvildari, L. Self-adaptive software: Landscape and research chal-
lenges. ACM transactions on autonomous and adaptive systems (TAAS), 4(2):1–42,
2009.

[203] Samsung. Gear 2 Neo | Soporte Samsung CL. URL https://www.samsung.com/cl/
support/model/SM-R3810ZOACHO/.

[204] Sanctis, M. D., Bucchiarone, A., and Marconi, A.

[205] Saravanan, K., Julie, E. G., and Robinson, Y. H. Smart cities & iot: evolution of
applications, architectures & technologies, present scenarios & future dream. In Internet
of Things and Big Data Analytics for Smart Generation, pages 135–151. Springer, 2019.

[206] Satyanarayanan, M. Fundamental challenges in mobile computing. In Proceedings of
the Fifteenth Annual ACM Symposium on Principles of Distributed Computing, PODC
’96, 1996.

References 237

[207] Satyanarayanan, M. Pervasive computing: Vision and challenges. IEEE Personal
communications, 8(4):10–17, 2001.

[208] Schilit, B., Adams, N., and Want, R. Context-aware computing applications. In 1994
First Workshop on Mobile Computing Systems and Applications, pages 85–90. IEEE,
1994.

[209] Schmuckler, M. A. What is ecological validity? A dimensional analysis. Infancy, 2(4):
419–436, 2001.

[210] Searle, J. R. and Searle, J. R. Speech acts: An essay in the philosophy of language,
volume 626. Cambridge university press, 1969.

[211] Sedighiani, K., Shokrollahi, S., and Shams, F. Basba: a framework for building adaptable
service-based applications. Journal of Systems and Software, 179:110989, 2021.

[212] Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M.,
and Seneviratne, A. A survey of wearable devices and challenges. IEEE Communications
Surveys & Tutorials, 19(4):2573–2620, 2017.

[213] Sensorcon. Buy portable co detectors & gas detectors | sensorcon – sensorcon - sensing
solutions by molex. URL https://www.sensorcon.com/pages/co-collection.

[214] Shah, R., Roy, S., Jain, S., and Brunette, W. Data MULEs: modeling a three-tier
architecture for sparse sensor networks. In Proceedings of the First IEEE International
Workshop on Sensor Network Protocols and Applications, 2003.

[215] Shan, T. C. and Hua, W. W. Taxonomy of java web application frameworks. In 2006
IEEE International Conference on e-Business Engineering (ICEBE’06), pages 378–385.
IEEE, 2006.

[216] Shaw, M. The coming-of-age of software architecture research. In Proceedings of the
23rd international conference on Software engineering, page 656. Citeseer, 2001.

[217] Shawish, A. and Salama, M. Cloud computing: paradigms and technologies. In Inter-
cooperative collective intelligence: Techniques and applications, pages 39–67. Springer,
2014.

[218] Shevtsov, S., Berekmeri, M., Weyns, D., and Maggio, M. Control-theoretical software
adaptation: A systematic literature review. IEEE Transactions on Software Engineering,
44(8):784–810, 2017.

[219] Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. Edge computing: Vision and challenges.
IEEE internet of things journal, 3(5):637–646, 2016.

[220] Sinaeepourfard, A., Garcia, J., Masip-Bruin, X., Marín-Tordera, E., Cirera, J., Grau, G.,
and Casaus, F. Estimating smart city sensors data generation. In 2016 Mediterranean
Ad Hoc Networking Workshop (Med-Hoc-Net), pages 1–8. IEEE, 2016.

[221] Sinclair, M. A guide to understanding theoretical and conceptual frameworks. Evidence-
Based Midwifery, 5(2):39–40, 2007.

238 References

[222] Singh, R. P., Javaid, M., Haleem, A., Vaishya, R., and Ali, S. Internet of medical
things (iomt) for orthopaedic in covid-19 pandemic: Roles, challenges, and applications.
Journal of Clinical Orthopaedics and Trauma, 11(4):713–717, 2020.

[223] Singh, S. K. and Kumar, P. A comprehensive survey on trajectory schemes for data col-
lection using mobile elements in wsns. Journal of Ambient Intelligence and Humanized
Computing, 11(1):291–312, 2020.

[224] Smuts, H., Van Der Merwe, A., Loock, M., and Kotzé, P. A framework and methodol-
ogy for knowledge management system implementation. In Proceedings of the 2009
Annual Research Conference of the South African Institute of Computer Scientists and
Information Technologists, pages 70–79, 2009.

[225] SNaur, . R. B., P. Report on a conference sponsored by the NATO science committee. In
In NATO Software Engineering Conference, 1968.

[226] Sobeih, A., Chen, W.-P., Hou, J. C., Kung, L.-C., Li, N., Lim, H., Tyan, H.-Y., and
Zhang, H. J-sim: A simulation environment for wireless sensor networks. In 38th
Annual Simulation Symposium, pages 175–187. IEEE, 2005.

[227] Sommerville, I. Ingeniería del software. Pearson educación, 2005.

[228] Special Mobile Group (SMG). Universal Mobile Telecommunications System (UMTS);
Selection procedures for the choice of radio transmission technologies of the UMTS
(UMTS 30.03 version 3.2.0) - TR 101 112 V3.2.0 (1998). Technical report, European
Telecommunications Standards Institute, 1998.

[229] Staneva, A., Bogossian, F., Pritchard, M., and Wittkowski, A. The effects of maternal
depression, anxiety, and perceived stress during pregnancy on preterm birth: A systematic
review. Women and Birth, 28(3):179–193, 2015.

[230] Sun, L., Li, Y., and Memon, R. A. An open iot framework based on microservices
architecture. China Communications, 14(2):154–162, 2017.

[231] Swanson, R. A. and Chermack, T. J. Theory building in applied disciplines. Berrett-
Koehler Publishers, 2013.

[232] SysML. SysML Open Source Project - What is SysML? Who created it? URL
https://sysml.org/.

[233] Taherkordi, A., Loiret, F., Rouvoy, R., and Eliassen, F. Optimizing sensor network
reprogramming via in situ reconfigurable components. ACM Transactions on Sensor
Networks (TOSN), 9(2):1–33, 2013.

[234] Technologies, S. N. Qualnet network simulation software. URL https://www.
scalable-networks.com/products/qualnet-network-simulation-software/.

[235] Teng, X.-F., Zhang, Y.-T., Poon, C. C., and Bonato, P. Wearable medical systems for
p-health. IEEE reviews in Biomedical engineering, 1:62–74, 2008.

[236] Thompson, E. C. G. L. S. A. S. M. . W. D., D. Distributed component object model
(dcom). 1997.

References 239

[237] Thönes, J. Microservices. IEEE software, 32(1):116–116, 2015.

[238] Tichy, W. F. Should computer scientists experiment more? Computer, 31(5):32–40,
1998.

[239] TinyOS. Tossim. URL http://tinyos.stanford.edu/tinyos-wiki/index.php/TOSSIM.

[240] Tomovic, S. and Radusinovic, I. Mapping Application Requirements to Virtualization-
Enabled Software Defined WSN. Wireless Personal Communications, 97(2):1693–1709,
2017.

[241] Tracz, W. Domain-specific software architecture (DSSA) frequently asked questions
(FAQ). ACM SIGSOFT Software Engineering Notes, 19(2):52–56, 1994.

[242] Unhelkar, B. and Murugesan, S. The enterprise mobile applications development
framework. IT professional, 12(3):33–39, 2010.

[243] University, R. M. C. Small for gestational age - health encyclopedia - University of
Rochester Medical Center. URL https://www.urmc.rochester.edu/encyclopedia/content.
aspx?ContentTypeID=90&ContentID=P02411.

[244] Valencia-Flores, M., Resendiz, M., Castãno, V. A., Santiago, V., Campos, R. M., Sandino,
S., Valencia, X., Alcocer, J., Garcia Ramos, G., and Bliwise, D. L. Objective and
subjective sleep disturbances in patients with systemic lupus erythematosus. Arthritis
& Rheumatism: Official Journal of the American College of Rheumatology, 42(10):
2189–2193, 1999.

[245] Valtolina, S., Hachem, F., Barricelli, B. R., Belay, E. G., Bonfitto, S., and Mesiti, M.

[246] Van Dam, K., Pitchers, S., and Barnard, M. Body area networks: Towards a wearable
future. In Proc. WWRF kick off meeting, Munich, Germany, pages 6–7, 2001.

[247] Villegas, N. M., Tamura, G., Müller, H. A., Duchien, L., and Casallas, R. Dynamico: A
reference model for governing control objectives and context relevance in self-adaptive
software systems. In Software engineering for self-adaptive systems II, pages 265–293.
Springer, 2013.

[248] Vlissides, J. M. and Linton, M. A. Unidraw: A framework for building domain-specific
graphical editors. 8(3), 1990. ISSN 1046-8188.

[249] Vresk, T. and Čavrak, I. Architecture of an interoperable iot platform based on mi-
croservices. In 2016 39th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pages 1196–1201. IEEE, 2016.

[250] Wagh, K. and Thool, R. A comparative study of SOAP vs REST web services provision-
ing techniques for mobile host. Journal of Information Engineering and Applications, 2
(5):12–16, 2012.

[251] Wallace, D. and Hahn, B. H. Dubois’ Lupus Erythematosus and Related Syndromes
E-Book: Expert Consult-Online. Elsevier Health Sciences, 2012.

240 References

[252] Wan, J., O’grady, M. J., and O’Hare, G. M. Dynamic sensor event segmentation for real-
time activity recognition in a smart home context. Personal and Ubiquitous Computing,
19(2):287–301, 2015.

[253] Wang, J., Gao, Y., Liu, W., Sangaiah, A. K., and Kim, H.-J. An intelligent data
gathering schema with data fusion supported for mobile sink in wireless sensor networks.
International Journal of Distributed Sensor Networks, 15(3):1550147719839581, 2019.

[254] Watier, K. A. Marketing wearable computers to consumers: an examination of early
adopter consumers’ feelings and attitudes toward wearable computers. PhD thesis,
Citeseer, 2003.

[255] Wei, E. J. and Chan, A. T. Campus: A middleware for automated context-aware
adaptation decision making at run time. Pervasive and Mobile Computing, 9(1):35–56,
2013.

[256] Weible, C. M. and Sabatier, P. A. Theories of the policy process. Routledge, 2018.

[257] Weiser, M. and Brown, J. S. The coming age of calm technology. In Beyond calculation,
pages 75–85. Springer, 1997.

[258] Weyns, D. Software engineering of self-adaptive systems: an organised tour and future
challenges. Chapter in Handbook of Software Engineering, 2017.

[259] Weyns, D. and Ahmad, T. Claims and evidence for architecture-based self-adaptation: A
systematic literature review. In Drira, K., editor, Software Architecture, pages 249–265,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[260] Weyns, D., Malek, S., and Andersson, J. On decentralized self-adaptation: lessons from
the trenches and challenges for the future. In Proceedings of the 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems, pages 84–93, 2010.

[261] Wink. Wink | help | spotter. URL https://www.wink.com/help/products/
quirkyge-spotter-multipurpose-sensor/.

[262] Wooldridge, M. An introduction to multiagent systems. John wiley & sons, 2009.

[263] Wrona, K. and Gomez, L. Context-aware security and secure context-awareness in
ubiquitous computing environments. Annales Universitatis Mariae Curie-Sklodowska,
sectio AI–Informatica, 4(1):332–348, 2006.

[264] Wu, H., Hu, J., Sun, J., and Sun, D. Edge computing in an IoT base station system:
Reprogramming and real-time tasks. Complexity, 2019, 2019.

[265] Wu, X. and Li, F. A method for application reconfiguration in wireless sensor networks.
Transactions of the Institute of Measurement and Control, 35(3):301–309, 2013.

[266] Yamauchi, M., Jacono, F. J., Fujita, Y., Kumamoto, M., Yoshikawa, M., Campanaro,
C. K., Loparo, K. A., Strohl, K. P., and Kimura, H. Effects of environment light during
sleep on autonomic functions of heart rate and breathing. Sleep and Breathing, 18(4):
829–835, 2014.

References 241

[267] Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J.,
and Jue, J. P. All one needs to know about fog computing and related edge computing
paradigms: A complete survey. Journal of Systems Architecture, 98:289–330, 2019.

[268] Yue, W., Hao, W., Liu, P., Liu, T., Ni, M., and Guo, Q. A case—control study on
psychological symptoms in sleep apnea-hypopnea syndrome. The Canadian Journal of
Psychiatry, 48(5):318–323, 2003.

[269] Yue, Y.-G. and He, P. A comprehensive survey on the reliability of mobile wireless
sensor networks: Taxonomy, challenges, and future directions. Information Fusion, 44:
188–204, 2018.

[270] Zavala, E., Franch, X., and Marco, J. Adaptive monitoring: A systematic mapping.
Information and software technology, 105:161–189, 2019.

[271] Zhao, D., Ma, H., Tang, S., and Li, X.-Y. COUPON: A cooperative framework for
building sensing maps in mobile opportunistic networks. IEEE transactions on parallel
and distributed systems, 26(2):392–402, 2014.

[272] Zhao, L., Liu, G., Chen, J., and Zhang, Z. Flooding and directed diffusion routing
algorithm in wireless sensor networks. In 2009 Ninth International Conference on
Hybrid Intelligent Systems, volume 2, pages 235–239. IEEE, 2009.

[273] Zhou, C. and Krishnamachari, B. Localized topology generation mechanisms for wireless
sensor networks. In GLOBECOM’03. IEEE Global Telecommunications Conference
(IEEE Cat. No. 03CH37489), volume 3, pages 1269–1273. IEEE, 2003.

[274] Zhu, C., Wu, S., Han, G., Shu, L., and Wu, H. A tree-cluster-based data-gathering
algorithm for industrial wsns with a mobile sink. IEEE Access, 3:381–396, 2015.

Appendix A

Simulation Results

244 Simulation Results

Table A.1 System configuration upgrade propagation times for networks consisting of 50
sensor nodes, 1 destination node, and from 4 to 10 intermediary (interm.) nodes. Random Walk
mobility model.

10 interm. 9 interm. 8 interm. 7 interm. 6 interm. 5 interm. 4 interm.

Sec.
Net.

upgraded Sec.
Net.

upgraded Sec.
Net.

upgraded Sec.
Net.

upgraded Sec.
Net.

upgraded Sec.
Net.

upgraded Sec.
Net.

upgraded
2.09 1.67% 2.20 1.69% 2.15 1.72% 2.08 1.75% 2.09 1.79% 2.22 1.82% 2.16 1.85%
2.10 3.33% 2.21 3.39% 2.20 3.45% 2.13 3.51% 2.15 3.57% 2.26 3.64% 2.29 3.70%
2.13 5.00% 2.24 5.08% 2.27 5.17% 2.23 5.26% 2.23 5.36% 2.31 5.45% 2.32 5.56%
2.17 6.67% 2.33 6.78% 2.29 6.90% 2.24 7.02% 2.31 7.14% 2.33 7.27% 2.33 7.41%
2.19 8.33% 2.38 8.47% 2.30 8.62% 2.26 8.77% 2.32 8.93% 2.39 9.09% 2.35 9.26%
2.20 10.00% 2.40 10.17% 2.32 10.34% 2.28 10.53% 2.35 10.71% 2.43 10.91% 2.39 11.11%
2.24 11.67% 2.42 11.86% 2.38 12.07% 2.32 12.28% 2.39 12.50% 2.72 12.73% 2.44 12.96%
2.28 13.33% 2.45 13.56% 2.39 13.79% 2.36 14.04% 2.43 14.29% 2.79 14.55% 2.48 14.81%
2.33 15.00% 2.48 15.25% 2.43 15.52% 2.36 15.79% 2.47 16.07% 2.81 16.36% 2.49 16.67%
2.35 16.67% 2.50 16.95% 2.49 17.24% 2.41 17.54% 2.49 17.86% 2.85 18.18% 2.51 18.52%
2.36 18.33% 2.82 18.64% 2.52 18.97% 2.42 19.30% 2.77 19.64% 2.86 20.00% 2.83 20.37%
2.38 20.00% 3.10 20.34% 2.52 20.69% 2.43 21.05% 2.81 21.43% 3.59 21.82% 3.14 22.22%
2.41 21.67% 3.12 22.03% 2.54 22.41% 2.46 22.81% 3.10 23.21% 3.60 23.64% 3.21 24.07%
2.46 23.33% 3.14 23.73% 3.04 24.14% 2.75 24.56% 3.17 25.00% 3.62 25.45% 3.31 25.93%
2.78 25.00% 3.18 25.42% 3.13 25.86% 2.79 26.32% 3.26 26.79% 3.63 27.27% 3.37 27.78%
2.80 26.67% 3.21 27.12% 3.15 27.59% 2.80 28.07% 3.36 28.57% 3.68 29.09% 3.58 29.63%
2.83 28.33% 3.24 28.81% 3.17 29.31% 2.84 29.82% 3.47 30.36% 3.70 30.91% 3.76 31.48%
2.85 30.00% 3.26 30.51% 3.21 31.03% 2.89 31.58% 4.06 32.14% 3.73 32.73% 4.18 33.33%
3.14 31.67% 3.38 32.20% 3.27 32.76% 2.96 33.33% 4.14 33.93% 3.86 34.55% 4.26 35.19%
3.15 33.33% 3.71 33.90% 3.34 34.48% 3.00 35.09% 4.16 35.71% 4.16 36.36% 4.29 37.04%
3.20 35.00% 3.72 35.59% 3.41 36.21% 3.27 36.84% 4.18 37.50% 4.21 38.18% 4.34 38.89%
3.25 36.67% 3.76 37.29% 3.74 37.93% 3.53 38.60% 4.20 39.29% 4.22 40.00% 4.70 40.74%
3.66 38.33% 4.07 38.98% 3.79 39.66% 3.58 40.35% 4.32 41.07% 4.31 41.82% 4.71 42.59%
3.66 40.00% 4.11 40.68% 4.07 41.38% 3.60 42.11% 4.40 42.86% 4.42 43.64% 4.73 44.44%
3.68 41.67% 4.14 42.37% 4.09 43.10% 3.66 43.86% 4.71 44.64% 4.45 45.45% 4.79 46.30%
3.71 43.33% 4.17 44.07% 4.13 44.83% 3.72 45.61% 4.80 46.43% 4.48 47.27% 4.84 48.15%
3.77 45.00% 4.23 45.76% 4.18 46.55% 3.79 47.37% 4.84 48.21% 4.50 49.09% 5.15 50.00%
3.78 46.67% 4.25 47.46% 4.20 48.28% 3.83 49.12% 4.88 50.00% 4.82 50.91% 5.17 51.85%
3.84 48.33% 4.27 49.15% 4.29 50.00% 4.20 50.88% 4.93 51.79% 5.14 52.73% 5.23 53.70%
4.18 50.00% 4.28 50.85% 4.41 51.72% 4.28 52.63% 4.94 53.57% 5.15 54.55% 5.28 55.56%
4.22 51.67% 4.31 52.54% 4.44 53.45% 4.29 54.39% 4.96 55.36% 5.18 56.36% 5.67 57.41%
4.26 53.33% 4.35 54.24% 4.68 55.17% 4.42 56.14% 5.21 57.14% 5.26 58.18% 5.81 59.26%
4.33 55.00% 4.37 55.93% 4.75 56.90% 4.50 57.89% 5.29 58.93% 5.29 60.00% 6.16 61.11%
4.37 56.67% 4.37 57.63% 4.87 58.62% 4.62 59.65% 5.33 60.71% 5.33 61.82% 6.25 62.96%
4.43 58.33% 4.39 59.32% 4.92 60.34% 4.64 61.40% 5.36 62.50% 5.35 63.64% 6.31 64.81%
4.50 60.00% 4.42 61.02% 5.14 62.07% 4.78 63.16% 5.45 64.29% 5.43 65.45% 6.65 66.67%
4.52 61.67% 4.46 62.71% 5.17 63.79% 4.82 64.91% 5.47 66.07% 5.47 67.27% 7.29 68.52%
4.58 63.33% 4.48 64.41% 5.19 65.52% 5.09 66.67% 5.58 67.86% 5.69 69.09% 8.33 70.37%
4.65 65.00% 4.52 66.10% 5.20 67.24% 5.12 68.42% 5.83 69.64% 5.91 70.91% 10.01 72.22%
4.92 66.67% 4.73 67.80% 5.21 68.97% 5.17 70.18% 5.93 71.43% 6.27 72.73% 11.28 74.07%
5.13 68.33% 4.76 69.49% 5.22 70.69% 5.20 71.93% 5.98 73.21% 6.40 74.55% 11.61 75.93%
5.20 70.00% 4.77 71.19% 5.33 72.41% 5.22 73.68% 6.18 75.00% 6.85 76.36% 11.97 77.78%
5.25 71.67% 4.82 72.88% 5.37 74.14% 5.24 75.44% 6.29 76.79% 7.05 78.18% 12.53 79.63%
5.29 73.33% 5.12 74.58% 5.42 75.86% 5.29 77.19% 6.35 78.57% 8.72 80.00% 13.19 81.48%
5.31 75.00% 5.16 76.27% 5.73 77.59% 5.39 78.95% 6.36 80.36% 9.14 81.82% 13.39 83.33%
5.64 76.67% 5.25 77.97% 5.78 79.31% 5.77 80.70% 6.45 82.14% 9.22 83.64% 14.14 85.19%
5.71 78.33% 5.33 79.66% 5.90 81.03% 5.84 82.46% 6.80 83.93% 9.51 85.45% 15.15 87.04%
5.79 80.00% 5.37 81.36% 5.97 82.76% 6.63 84.21% 7.31 85.71% 10.13 87.27% 16.36 88.89%
5.82 81.67% 5.41 83.05% 6.56 84.48% 7.32 85.96% 8.91 87.50% 11.86 89.09% 17.43 90.74%
5.87 83.33% 5.41 84.75% 6.66 86.21% 9.97 87.72% 11.08 89.29% 11.87 90.91% 19.14 92.59%
6.04 85.00% 5.50 86.44% 6.72 87.93% 10.82 89.47% 11.64 91.07% 12.21 92.73% 19.52 94.44%
7.06 86.67% 5.74 88.14% 6.73 89.66% 12.57 91.23% 13.30 92.86% 12.51 94.55% 24.22 96.30%
7.19 88.33% 6.12 89.83% 8.91 91.38% 12.67 92.98% 13.43 94.64% 12.59 96.36% 64.49 98.15%
8.27 90.00% 8.45 91.53% 8.96 93.10% 12.95 94.74% 14.15 96.43% 17.02 98.18% 73.03 100.00%
8.39 91.67% 8.77 93.22% 9.69 94.83% 13.97 96.49% 16.55 98.21% 17.51 100.00%
9.03 93.33% 9.35 94.92% 10.06 96.55% 16.23 98.25% 16.69 100.00%
9.56 95.00% 9.40 96.61% 11.67 98.28% 17.96 100.00%

10.08 96.67% 13.14 98.31% 14.58 100.00%
12.10 98.33% 14.04 100.00%
13.33 100.00%

245

Table A.2 Propagation results for networks composed of 5 fixed source nodes, 10 mobile source
nodes, 1 destination node, and from 1 to 6 intermediary nodes. RPGM model.

Net.
upgraded

6 interm.
(sec.)

5 interm.
(sec.)

4 interm.
(sec.)

3 interm.
(sec.)

2 interm.
(sec.)

1 interm.
(sec.)

5% 2.034266 2.1113512 2.15234 2.1246 2.10347582 2.10561823
10% 2.1346234 2.134512 2.162345 2.13623 2.1572759 2.156925123
15% 2.146234 2.26243 2.27234 2.2156232 2.2157295 2.225612385
20% 2.572346 2.42435 3.423466 2.35234 2.30587183 2.31235123
25% 2.6234 2.85234 3.62345 2.36234 2.3158273 2.3517263
30% 3.452344 3.762346 3.7435835 4.1783346 4.85568981 4.605761484
35% 3.623466 3.7772346 3.9958356 4.6344 6.662345 6.42366453
40% 4.624367 4.7234677 5.4345236 6.3534 7.246346 7.23523445
45% 5.234512 5.413466 6.623466 7.47966 8.345667 8.34566345
50% 5.8834 5.672346 7.973457 8.3456 14.34566 15.345666
55% 7.332356 7.634 8.554367 10.24567 14.845688 16.3266418
60% 8.34566 8.62346 10.167832 10.486345 17.935778 18.3564912
65% 9.12667 9.23356 11.724662 17.6434589 19.234666 57.46587612
70% 10.1572455 10.34623 13.572823 17.945 49.52346
75% 10.52346 11.3452 18.732457 59.565735
80% 11.67234 12.23467 21.634666
85% 12.46234 14.62346 21.6634666
90% 14.52477 15.134678
95% 15.34662 16.22356

100% 15.92345 17.34656

246 Simulation Results

Table A.3 Propagation results for networks composed of 5 fixed source nodes, 10 mobile source
nodes, 1 destination node, and from 1 to 6 intermediary nodes. Manhattan Grid mobility model.

Net.
upgraded

6 interm.
(sec.)

5 interm.
(sec.)

4 interm.
(sec.)

3 interm.
(sec.)

2 interm.
(sec.)

1 interm.
(sec.)

5% 2.31563456 2.4556834 2.563568 2.8176834 2.9056128 3.101926413
10% 2.4663456 2.54 2.635738 2.9723457 3.1056123 3.3056181
15% 2.75673 2.956834 3.15683 3.27243572 3.7056471 3.805764398
20% 2.955637 3.0556834 3.254834 3.6585366 3.9 4.20517283
25% 3.08568345 3.1556834 3.7145683 3.9373546 4.155632 4.905712
30% 3.2172345 3.7556783 3.9435835 4.1783546 4.85568981 5.605761484
35% 3.8173456 3.9356834 4.0958356 4.87835634 5.61765976 5.7056482
40% 4.0157234 4.1168345 4.8758356 5.347347 5.726593 5.860127357
45% 4.1245723 4.8156835 5.2156834 5.6234578 5.9156898 6.470132659
50% 4.7688345 5.3456834 5.857834 7.963467 8.2356898 9.231235
55% 5.21445234 6.35637 6.3458645 9.283456 14.1856849 16.3266418
60% 6.172345 6.415638 8.2345688 10.486345 17.15698401 18.3564912
65% 6.245723 7.4145673 10.25344845 14.6434589 21.35698419 57.46587612
70% 7.1572455 8.2568345 12.58834567 19.273455 48.591783
75% 7.9724556 9.0966345 16.4568345 59.565735
80% 8.4723455 10.125683 18.8567834
85% 8.567235 11.59453 26.94663456
90% 9.3245672 12.75683456
95% 10.352345 13.35345634

100% 11.524562 13.863456

Table A.4 Results for data gathering with and without prioritisation. No in-network prepro-
cessing operations are performed on the data. Networks composed of 50 sensor nodes, 1
destination node, and from 1 to 10 intermediary nodes. Random Walk mobility model.

Data gathered (KiB)
With prioritisation Without prioritisation

Intermediary
nodes

Data generated
in sources for each
priority/type (KiB)

Priority 1 Priority 2 Priority 3 Type 1 Type 2 Type 3

1 13007.9245 7144.86269 5306.439713 3813.116972 4771.0769 5291.39388 5161.314635
2 13006.8613 7984.797383 6305.760504 6022.590996 7421.445853 6380.811893 7421.445853
3 13007.7984 9719.326068 8235.147898 7480.909412 8478.461126 7828.064901 8478.461126
4 13007.2684 9837.164856 8418.247443 7862.939146 8900.034951 8836.196393 8900.034951
5 13007.3958 10048.0103 8705.74859 8336.583693 9096.354883 9030.114196 8966.275638
6 13007.5928 10773.44925 9670.949596 9104.85773 9589.593701 9589.593701 9514.017659
7 13008.1728 11191.91418 9695.755708 9215.334033 10294.49313 9832.58173 9572.42324
8 13007.8273 11315.3854 10000.29724 9352.775763 10743.13645 10294.49313 10500.14842
9 13007.1195 11322.37065 10177.58224 10000.29724 11150.4796 10500.08338 10564.52897

10 13007.4483 12750.95295 10432.61561 10070.96929 11605.16293 10824.68746 10760.24187

247

Table A.5 Data gathered when in-network preprocessing is applied vs. when it is not applied.
Networks composed of 50 sensor nodes, 1 destination node, and from 1 to 10 intermediary
nodes. Random Walk mobility model.

Data gathered (KiB)
Intermediary

nodes
Total data

generated (KiB)
Without in-network

preprocessing
With in-network

preprocessing
1 39023.7735 16264.41937 20449.50741
2 39020.5839 20311.48859 24139.30817
3 39023.3952 25435.1368 29466.10356
4 39021.8052 26117.03407 31378.44974
5 39022.1874 27089.24152 33110.06929
6 39022.7784 29548.50307 34865.73137
7 39024.5184 30103.57853 36013.05533
8 39023.4819 30668.22923 36860.90217
9 39021.3585 31498.30072 37294.70401
10 39022.3449 33253.32045 38214.77377

Table A.6 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 1 destination node, and from 0 to 6 intermediary nodes. Without
in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2328.548311 2241.390107 6238.158809 2296.542598 4029.56543 0
1 2327.354316 1562.681465 6239.553496 500.6960742 3206.157227 3298.789063
2 2326.756738 1341.712793 6238.105576 201.4454199 3115.087891 3908.369141
3 2327.136006 1209.499287 6238.468662 121.5790137 3365.405273 3873.261719
4 2326.828047 1138.141523 6239.76833 71.03786133 3675.605469 3685.004883
5 2328.387285 1082.444902 6238.029424 67.32629883 3993.47168 3429.448242
6 2327.800264 1067.683076 6238.312383 50.68054688 4010.175781 3445.976563

Table A.7 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 2 destination nodes, and from 0 to 6 intermediary nodes. Without
in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2327.980596 2100.338994 6238.165469 1078.292422 5388.330078 0
1 2327.720801 1487.730566 6239.193584 294.8283496 4427.910156 2357.895508
2 2327.129668 1297.442168 6238.269561 153.6894824 4508.466797 2607.729492
3 2327.804824 1181.276504 6238.227295 88.26147461 4844.204102 2455.351563
4 2327.867158 1109.893525 6238.882227 62.93984375 5182.255859 2216.005859
5 2327.289961 1056.249922 6239.193848 52.72412109 5477.158203 1983.945313
6 2329.020166 1049.967432 6239.151279 34.04385742 5435.239258 2053.149414

248 Simulation Results

Table A.8 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 3 destination nodes, and from 0 to 6 intermediary nodes. Without
in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2328.035371 2016.414277 6239.51627 576.3815039 5975.74707 0
1 2328.05334 1439.967402 6237.591836 207.9189844 5547.744141 1371.660156
2 2327.946279 1250.602529 6239.142461 112.1746875 5651.777344 1554.643555
3 2328.03874 1125.978193 6238.731377 72.15911133 5966.850586 1404.360352
4 2327.732598 1060.398613 6238.844043 44.24443359 6293.618164 1171.645508
5 2327.508984 1010.01875 6239.081533 41.4252832 6502.919922 1016.601563
6 2327.783984 993.8728516 6239.03373 29.65873047 6510.463867 1038.095703

Table A.9 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 4 destination nodes, and from 0 to 6 intermediary nodes. Without
in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2328.192734 1750.658555 6239.081719 574.6090625 6242.988281 0
1 2327.678213 1242.536611 6238.339531 199.335625 5665.004883 1460.81543
2 2328.52002 1092.943848 6239.444541 99.95723633 5777.451172 1599.716797
3 2327.703398 984.3733203 6238.122568 82.15577148 6158.374023 1344.160156
4 2327.96041 932.1986914 6239.748408 50.01696289 6454.482422 1135.805664
5 2327.467617 896.9891016 6238.697822 41.2124707 6635.898438 996.0302734
6 2327.581133 878.3330859 6238.719551 28.23126953 6715.092773 949.5117188

Table A.10 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 5 destination nodes, and from 0 to 6 intermediary nodes. Without
in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2327.059854 1586.635049 6239.524609 294.8957031 6686.5625 0
1 2327.691445 1159.141641 6237.999004 130.2304492 6685.678711 592.5732422
2 2328.21626 1010.140088 6240.397969 78.14699219 6849.760742 632.8808594
3 2327.075879 901.5631836 6238.823145 64.80458984 7035.478516 566.8261719
4 2328.148535 859.349707 6239.539521 43.04538086 7209.785156 459.5947266
5 2327.617852 823.9459766 6240.202451 38.15166992 7337.96875 372.0654297
6 2327.615898 813.53875 6239.714307 26.23774414 7328.974609 403.3642578

Table A.11 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 6 destination nodes, and from 0 to 6 intermediary nodes. Without
in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2328.07543 1398.00707 6239.81307 242.864824 6928.41309 0
1 2327.2161 1006.53251 6238.55314 109.944746 6979.00879 472.158203
2 2327.39004 860.563867 6239.89527 76.1062109 7127.96875 505.136719
3 2326.83589 771.845654 6239.19407 62.1725879 7293.91113 441.113281
4 2327.0347 728.343291 6239.11604 42.9099805 7444.28711 354.248047
5 2327.33979 704.165967 6238.77646 35.3438379 7537.92969 293.120117
6 2326.99253 712.847021 6240.32855 23.5414453 7559.59961 276.450195

249

Table A.12 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 1 destination node, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2327.47959 2240.44346 6238.03551 3985.71617 2339.35547 0
1 2327.45541 1561.79623 6239.20123 2605.86627 2377.19727 2021.79688
2 2326.96231 1113.96915 6239.66515 1692.45323 2393.97949 3366.22559
3 2327.95512 813.858438 6238.07063 1078.84212 2436.0498 4237.27539
4 2328.10246 631.037031 6238.75132 711.20249 2486.17676 4738.4375
5 2327.55723 485.486914 6238.17241 487.889209 2626.19629 4966.15723
6 2327.62121 408.392695 6239.28438 333.844922 2742.61719 5082.05078

Table A.13 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 2 destination nodes, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2328.54639 2100.93896 6238.9824 2390.62791 4075.96191 0
1 2327.53375 1476.7818 6238.77811 1526.35623 4143.2373 1419.93652
2 2328.04162 1061.2301 6239.12009 985.570283 4226.03516 2294.32617
3 2327.95813 790.712031 6239.22581 649.299053 4355.78613 2771.38672
4 2328.48434 614.875938 6238.85325 441.978252 4602.77344 2907.70996
5 2327.95634 474.753213 6238.22788 311.308936 4835.87402 2944.24805
6 2328.25329 401.241572 6239.83432 237.197598 5058.14941 2871.49902

Table A.14 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 3 destination nodes, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2327.49161 2015.78263 6239.09604 1348.62729 5202.17773 0
1 2328.0191 1437.41363 6239.44867 848.05707 5382.04102 899.956055
2 2328.07443 1037.13693 6237.89233 575.36792 5530.40039 1423.06152
3 2327.33787 766.839824 6238.93029 392.060176 5777.49023 1629.87793
4 2326.95029 597.443457 6239.09768 289.55666 6017.6416 1661.40625
5 2328.19035 463.620039 6239.70171 227.050342 6267.85156 1609.37012
6 2328.27814 388.214668 6238.43298 177.212275 6450.37598 1550.9082

Table A.15 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 4 destination nodes, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2327.9788 1750.33231 6238.59111 994.294238 5821.94336 0
1 2327.38753 1243.82308 6239.95617 632.846797 6068.67188 622.001953
2 2327.68561 912.45123 6238.7665 436.55459 6325.93262 891.513672
3 2327.8272 698.774463 6239.12663 313.408857 6590 964.770508
4 2327.94055 546.763789 6240.62675 227.428506 6854.43848 939.936523
5 2327.99484 433.614961 6238.62102 176.443281 7064.36035 892.197266
6 2327.95611 362.980527 6239.265 138.791367 7251.58203 813.867188

250 Simulation Results

Table A.16 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 5 destination nodes, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2327.41604 1588.77346 6239.37462 551.547471 6426.46973 0
1 2327.77881 1126.4751 6238.86728 369.467861 6791.27441 279.428711
2 2328.17104 822.526514 6238.91661 265.606064 7099.53125 379.423828
3 2327.0699 633.398027 6238.28023 199.88668 7315.84961 416.21582
4 2327.70385 507.30834 6238.72937 152.425654 7498.76465 407.93457
5 2327.44361 404.811777 6239.52601 125.33167 7652.84668 383.979492
6 2328.52836 346.301797 6238.5108 109.096738 7759.19922 352.441406

Table A.17 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 6 destination nodes, and from 0 to 6 intermediary
nodes. Without in-network preprocessing operations.

Intermediary
nodes

Data generated in
fixed sources (KiB)

Remaining data in
fixed sources (KiB)

Data generated in
mobile sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 2327.16811 1396.85072 6238.95518 335.205176 6834.06738 0
1 2327.19176 998.217148 6239.12853 245.036729 7202.0459 121.020508
2 2327.3857 737.664023 6238.77448 188.808662 7464.80957 174.87793
3 2327.85676 573.335273 6237.78208 149.945166 7646.5918 195.766602
4 2327.80894 460.284521 6238.13679 119.142646 7786.93848 199.580078
5 2327.22753 368.472646 6239.21936 105.151973 7892.70996 200.112305
6 2327.84764 313.472637 6240.80557 92.5926758 7982.7002 179.887695

Table A.18 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 1 destination node, and from 0 to 6 intermediary nodes. With
in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.670712 315.5076631 229.6542598 311.5087891 0
1 856.6907812 156.1265448 50.06960742 468.7338722 181.7607568
2 856.4862314 156.8563379 20.14454199 493.4026171 186.0827344
3 856.5604668 132.2443622 12.15790137 524.1272266 188.0309766
4 856.6596377 81.70819527 7.103786133 565.1723877 202.6752686
5 856.6416709 61.56529102 6.732629883 563.6945703 224.6491797
6 856.6112647 57.74975291 5.068054688 567.1080469 226.6854102

Table A.19 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 2 destination nodes, and from 0 to 6 intermediary nodes. With
in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.6146065 305.9943487 107.8292422 442.7910156 0
1 856.6914385 177.9673925 29.48283496 544.0921094 105.1491016
2 856.5399229 151.4356231 15.36894824 578.9350586 110.800293
3 856.6032119 107.9508926 8.826147461 620.7435058 119.082666
4 856.6749385 75.75839552 6.293984375 654.3698877 120.2526709
5 856.6483809 62.31688669 5.272412109 663.8361524 125.2229297
6 856.8171445 44.92398926 3.404385742 659.8481885 148.640581

251

Table A.20 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 3 destination nodes, and from 0 to 6 intermediary nodes. With
in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.7551641 244.3425996 57.63815039 554.7744141 0
1 856.5645176 168.9347285 20.79189844 614.991211 51.84667971
2 856.708874 144.9967764 11.21746875 644.4374609 56.05716796
3 856.6770117 134.7218428 7.215911133 656.1569824 58.5822754
4 856.6576641 85.70538874 4.424443359 691.0865234 75.44130858
5 856.6590517 61.78849598 4.14252832 710.6794873 80.04854006
6 856.6817714 47.20515615 2.965873047 719.4507031 87.06003908

Table A.21 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 4 destination nodes, and from 0 to 6 intermediary nodes. With
in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.7274453 232.7660508 57.46090625 566.5004883 0
1 856.6017744 163.9719228 19.9335625 616.9185938 55.77769531
2 856.7964561 131.3603028 9.995723633 658.4697265 56.97070313
3 856.5825966 110.487625 8.215577148 679.9533056 57.92608886
4 856.7708818 71.90492771 5.001696289 702.44104 77.42321779
5 856.6165439 42.82391003 4.12124707 731.7100978 77.96128905
6 856.6300684 22.32598445 2.823126953 749.8954004 81.58555665

Table A.22 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 5 destination nodes, and from 0 to 6 intermediary nodes. With
in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.6584463 158.6010049 29.48957031 668.5678711 0
1 856.5690449 137.683207 13.02304492 683.5388672 22.32392578
2 856.8614229 123.7342237 7.814699219 703.5308301 21.78166992
3 856.5899024 100.6021192 6.480458984 725.1488038 24.35852051
4 856.7688056 74.80313472 4.304538086 745.9188672 31.74226563
5 856.7820303 60.81207819 3.815166992 757.7855371 34.36924805
6 856.7330205 57.02428515 2.623774414 761.6436328 35.44132813

Table A.23 Data gathering under RPGM model. Networks composed of 10 mobile source
nodes, 5 fixed source nodes, 6 destination nodes, and from 0 to 6 intermediary nodes. With
in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.78885 139.6610586 24.2864824 692.841309 0
1 856.576924 120.0365509 10.9944746 709.7882374 15.75766112
2 856.728531 107.0090232 7.61062109 726.2804004 15.82848632
3 856.602996 85.56981951 6.21725879 744.269531 20.54638673
4 856.615074 63.78403685 4.29099805 762.9554688 25.5845703
5 856.611625 52.06845191 3.53438379 775.2468166 25.76197267
6 856.732108 47.90433057 2.35414453 779.0884571 27.38517577

252 Simulation Results

Table A.24 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 1 destination node, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.55151 224.044346 398.571617 233.935547 0
1 856.665664 156.179623 260.586627 334.7659772 105.1334378
2 856.662746 111.396915 169.245323 407.7092285 168.3112795
3 856.602575 81.3858438 107.884212 451.2314741 216.1010449
4 856.685378 63.1037031 71.120249 474.1535645 248.3078615
5 856.572964 48.5486914 48.7889209 484.405977 274.829375
6 856.690559 40.8392695 33.3844922 497.5437502 284.9230468

Table A.25 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 2 destination nodes, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.752879 210.093896 239.062791 407.596191 0
1 856.631186 147.67818 152.635623 483.9006195 72.41676252
2 856.716171 106.12301 98.5570283 537.3198245 114.7163085
3 856.718394 79.0712031 64.9299053 566.270835 146.44645
4 856.733759 61.4875938 44.1978252 599.8474221 151.2009179
5 856.618422 47.4753213 31.1308936 616.0785642 161.9336428
6 856.808761 40.1241572 23.7197598 629.4530265 163.5118165

Table A.26 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 3 destination nodes, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.658765 201.578263 134.862729 520.217773 0
1 856.746777 143.741363 84.805707 574.2023442 53.9973633
2 856.596676 103.713693 57.536792 617.800781 77.54541
3 856.626816 76.6839824 39.2060176 662.4684324 78.2683836
4 856.604797 59.7443457 28.955666 682.6081686 85.29661636
5 856.789206 46.3620039 22.7050342 696.3448243 91.37734375
6 856.671112 38.8214668 17.7212275 705.5954981 94.53291994

Table A.27 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 4 destination nodes, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.656991 175.033231 99.4294238 582.194336 0
1 856.73437 124.382308 63.2846797 634.8572759 34.21010742
2 856.645211 91.245123 43.655459 676.1680667 45.57656253
3 856.695383 69.8774463 31.3408857 706.4062012 49.07084963
4 856.85673 54.6763789 22.7428506 729.6208646 49.81663572
5 856.661586 43.3614961 17.6443281 744.5229247 51.13283692
6 856.722111 36.2980527 13.8791367 753.9456152 52.59930665

253

Table A.28 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 5 destination nodes, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.679066 158.877346 55.1547471 642.646973 0
1 856.664609 112.64751 36.9467861 691.701733 15.36857911
2 856.708765 82.2526514 26.5606064 728.8636719 19.03183592
3 856.535013 63.3398027 19.988668 753.6235889 19.58295409
4 856.643322 50.730834 15.2425654 769.4429152 21.22700682
5 856.696962 40.4811777 12.533167 781.2966114 22.38600585
6 856.703916 34.6301797 10.9096738 787.5038575 23.66020506

Table A.29 Data gathering under Manhattan Grid mobility model. Networks composed of 10
mobile source nodes, 5 fixed source nodes, 6 destination nodes, and from 0 to 6 intermediary
nodes. With in-network preprocessing operations.

Intermediary
nodes

Preprocessed data
to be gathered (KiB)

Remaining data in
fixed sources (KiB)

Remaining data in
mobile sources (KiB)

Data received in
destinations (KiB)

Remaining data in
intermediaries (KiB)

0 856.612329 139.685072 33.5205176 683.406738 0
1 856.632029 99.8217148 24.5036729 726.1345949 6.172045908
2 856.616018 73.7664023 18.8808662 754.2548145 9.71393553
3 856.563884 57.3335273 14.9945166 774.4426761 9.79316408
4 856.594573 46.0284521 11.9142646 788.6728519 9.9790039
5 856.644689 36.8472646 10.5151973 799.1023632 10.1798633
6 856.865321 31.3472637 9.25926758 805.0525004 11.20628908

254 Simulation Results

Table A.30 Average battery level of network nodes over time when in-network preprocessing is
applied vs. when it is not applied.

Sec.
With in-network

preprocessing (mAh)
Without in-network

preprocessing (mAh)
0 1.92 1.92

500 1.84253074 1.651131389
1000 1.720187469 1.443092927
1500 1.592994385 1.265054435
2000 1.489941996 1.107505726
2500 1.451565008 1.004022743
3000 1.326721014 0.9064349185
3500 1.288283324 0.8514849593
4000 1.258187336 0.8104174433
4500 1.148074298 0.7616005105
5000 1.09673915 0.7616005105
5500 1.09673915 0.7274138642
6000 1.042557627 0.7274138642
6500 1.015847544 0.7274138642
7000 0.9642481509 0.7274138642
7500 0.9563206253 0.6980448577
8000 0.9410087111 0.6222571577
8500 0.89202666 0.5712924469
9000 0.89202666 0.5173125243
9500 0.89202666 0.4078303812

10000 0.89202666 0.2356733122
10500 0.8676957047 0.06971999423
11000 0.8676957047
11500 0.8120788209
12000 0.7951782803
12500 0.7951782803
13000 0.7880064723
13500 0.7816971951
14000 0.7121508955
14500 0.7121508955
15000 0.6463077127
15500 0.6463077127
16000 0.6016750248
16500 0.5291758691
17000 0.4852687963
17500 0.4521342129
18000 0.3371213896
18500 0.2784574608
19000 0.2181538507
19500 0.07204811897

255

