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Abstract

Biodiversity is declining globally at unprecedented rates. Ecological niche mod-

els (ENMs) are one of the most widely used toolsets to appraise global change

impacts on biodiversity. Here, we identify a variety of advantages of incorporat-

ing remotely sensed ecosystem functioning attributes (EFAs) into ENMs. The

development of ENMs that explicitly incorporate ecosystem functioning will

allow a more holistic and integrative perspective of the habitat dynamics. The

synergies between the increasingly available open-access satellite images and

cloud-based platforms for planetary-scale geospatial analysis offer an unprece-

dented opportunity to incorporate ecosystem processes and disturbances (such

as fires, insect outbreaks or droughts) that have been so far largely neglected in

ecological niche characterization and modelling. The most paradigmatic exam-

ple of EFAs is the application of time series of spectral vegetation indices

related to primary productivity and carbon cycle. EFAs related to surface energy

balance and water cycles derived from remote sensing products such as land

surface temperature or soil moisture enable a fine-scale characterization of the

species’ niche—eventually improving the predictive performance of ENMs. All

these advantages confirm that a new generation of ENMs based on such EFAs

would offer great perspectives to increase our ability to monitor habitat suit-

ability trends and population dynamics. However, despite the technical

advances and increasing effort of remote sensing community to develop inte-

grative EFAs, ENMs have yet to make full profit of the most recent develop-

ments by integrating them in ENMs. A coordinated agenda for remote sensing

experts and ecological modellers will be essential over the coming years to

bridge the gap between remote sensing and ecology disciplines and to take full

(and timely) advantage of the fast-growing body of Earth observation data and

remote sensing technologies—with special emphasis on the development and

testing of new variables related to key processes driving ecosystem functioning.
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Introduction

Biodiversity is declining globally at unprecedented rates,

with species extinctions accelerating (Tittensor et al., 2014).

To address this challenge, ecological modellers need to

improve their capacity to assess ongoing environmental

changes. Methodological advances will play a critical role in

this regard (IPBES, 2016). Ecological niche models (here-

after ENMs, also known as habitat suitability models or spe-

cies distribution models; Sillero, 2011; Peterson &

Sober�on, 2012) are one of the most used toolsets to

appraise global change impacts on biodiversity (Bro-

tons, 2014), support decision-making and evaluate policies

(Guisan et al., 2013; Villero et al., 2017). Still, despite all

their applications, ENMs present important shortcomings

that limit their ‘real-world’ applicability for conservation

decision-making (Franklin, 2010). ENMs are based on the

quantification of species–environment relationships (Gui-

san & Zimmermann, 2000). Since ENMs require ecologi-

cally meaningful predictor variables (Franklin, 1995), the

lack of descriptors of key processes driving habitat dynam-

ics can reduce their predictive power (Mod et al., 2016;

Scherrer & Guisan, 2019). In addition, the changing nature

of processes driving ecological changes highlights the need

for long-term time series of data (Fisher et al., 2010). In this

sense, Earth observation data and remote sensing technolo-

gies offer a new perspective on species’ habitat dynamics

(Hobi et al., 2017). Remote sensing variables are collected

with highly systematic, repeatable and standardized proce-

dures, presenting a global synoptic coverage at different

spatial and temporal resolutions. The increasing availability

of long-term time series of satellite data allows computing a

broad range of new variables related to ecosystem function-

ing, that is the biogeochemical flow of energy and matter

within ecosystems (see glossary in Table 1; Jax, 2005; Lovett

et al., 2006).

In ENMs, environmental variables have traditionally

informed about multiple dimensions of abiotic conditions

such as soil, climate or topography (Mod et al., 2016). The

inclusion of land-use/cover information into ENMs has

gradually become more common to explicitly capture

ecosystem and landscape composition and structure (Leit~ao

& Santos, 2019; Randin et al., 2020). Including such

satellite-based land-use/cover predictors is particularly key

given that land-use changes are the primary driver of biodi-

versity erosion globally (Titeux et al., 2017, 2019). However,

to date, most studies only relied on snapshots for specific

time windows (e.g. land-use change analysis focused on two

dates; Pellissier et al., 2013), accounting only for a small

fraction of the species’ habitat dynamics (Coops & Wul-

der, 2019), which might lead to a biased perception of the

factors driving distributions and population dynamics.

Moreover, remote sensing data have been proven valuable

Table 1. Glossary of concepts and key terms as used in this paper.

Abrupt ecological change: Substantial changes in the mean or

variability of a system that occur in a short period of time

relative to typical rates of change (Ratajczak et al., 2018)

Disturbance: Relatively discrete event in time that alters the biotic

and/or abiotic components of an ecosystem (Ratajczak

et al., 2018). Disturbances are a major driver of ecosystem

dynamics influencing many structural and functional ecosystem

properties such as vegetation and soil structure, species

composition, water and CO2 fluxes, etc

Ecological niche: N-dimensional hypervolume in environmental

space within which populations of a species can persist

(Hutchinson, 1957)

Ecosystem functioning: The attributes related to the performance

of an ecosystem as a whole that is the consequence of one or

multiple ecosystem processes (Jax, 2005; Lovett et al., 2006)

Gross Primary Productivity (GPP): The rate at which ecosystem’s

producers capture a provided amount of energy as biomass in a

given time duration.

Intra-annual variability: The annual seasonal behaviour of a process

variable that can be measured in terms of quantity (i.e.

centrality measure like the average, or area under the curve

integral), seasonal variation or range (i.e. dispersion measure

such as amplitude, inter-quartile range, std-dev.), phenology

(i.e. timing of specific events such as the day of maximum/

minimum value or length of time) and extreme values (i.e.

minimum/maximum)

Inter-annual variability: The temporal behaviour of a process

variable in a period of time larger than a year, that allows

detecting abrupt or monotonic changes across several years in

regard to, for example, a reference value such as a long-term

average (e.g. anomalies, Tukey outliers, breakpoints) or a long-

term trend (e.g. Sen slope, Mann-Kendal tau)

Land Surface Phenology: The seasonal pattern of variation in

vegetated land surfaces observed from remote sensing. LSP

dynamics reflect the response of vegetated surfaces of the

earth to seasonal and annual changes in the climate and

hydrologic cycle (Alemu & Henebry, 2017; De Beurs &

Henebry, 2004)

Phenology: The study of the timing of recurring biological events,

the causes of their timing with regard to biotic and abiotic

forces, and the interrelation among phases of the same or

different species (Leith, 1974)

Process variable: Current measured value of a particular part of a

process which is being monitored or controlled

Net Primary Productivity: How much carbon dioxide vegetation

takes in during photosynthesis minus how much carbon dioxide

the plants release during respiration (metabolizing sugars and

starches for energy)

Remotely sensed ecosystem functioning attributes (EFAs):

Integrative descriptors of ecosystem functioning computed from

intra-annual variability of remote sensing products related to

different components of ecosystem functioning

Seasonality: The presence of variations that occur at specific regular

intervals shorter than a year, such as weekly, monthly or

quarterly

Many of these terms are unfamiliar to non-specialists and experts in

certain disciplines.
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for modelling both animals and non-dominant plant species

(i.e. rare, low-abundance specialist species; see e.g. Alcaraz-

Segura et al., 2017; Arenas-Castro et al., 2019; Gonc�alves
et al., 2016). Such species often hold an indiscernible influ-

ence in energy-matter flows of ecosystems and hence do not

blur the distinction between modelling potential distribu-

tions (or habitat suitability) and remotely sensed detection

(Bradley et al., 2012). More caution is needed when mod-

elling dominant plant species since spectral vegetation

indices can be directly capturing the signal of the target spe-

cies to be modelled.

From a niche theory perspective, the non-inclusion of

ecosystem functioning attributes (hereafter: EFAs) such as

annual primary productivity or seasonal heat dynamics

could be constraining the real volume of species’ niche expe-

rienced along its annual cycle (sensu Hutchinson’s niche;

Hutchinson, 1957) (see Fig. 1). For instance, a recent study

found that long-distance bird migrants track vegetation green-

ness throughout their annual cycle (measured through the nor-

malized difference vegetation index [NDVI]), adjusting the

timing and direction of migratory movements with seasonal

changes in resource availability (Mayor et al., 2017; Thorup

et al., 2017). Another study found that the inter-annual

dynamics in primary productivity significantly influences habi-

tat colonization and occupancy dynamics of primary con-

sumers (Fern�andez et al., 2016). This importance of primary

productivity in determining the overall quantity and quality of

food resources available to herbivores underlines the need of

considering key regulatory functions determining the net

energy fluxes driving trophic webs (Fern�andez et al., 2016;

Ram�ırez et al., 2017; Regos et al., 2021;Wiegand et al., 2008).

Here, we provide a workflow connecting different com-

ponents of ecosystem functioning derived from time series

of remote sensing products (such as evapotranspiration, soil

moisture, spectral indices or satellite band combinations; see

Fig. 1) with ENMs. First, we highlight the technical advances

of the remote sensing community in developing integrative

descriptors of ecosystem functioning and then identify a variety

of advantages of incorporating these descriptors into ENMs

(both for species’ niche characterization and model-based

monitoring approaches). Second, we discuss the advantages of

incorporating a more functional perspective into ENMs and

review to what extent remotely sensed EFAs have been incorpo-

rated so far in ENM development and applications to identify

gaps between the ENM and the remote sensing communities.

Finally, we provide two case studies to illustrate how EFAs can

be used formapping species habitat trends.

Remote Sensing Offers New
Descriptors of Ecosystem Functioning

A promising contribution of remote sensing to ENMs is

the description of several components of ecosystem

functioning (Alcaraz-Segura et al., 2017; Leit~ao & San-

tos, 2019) (see remote sensing products in Fig. 1A).

Ecosystem functioning can be understood as an umbrella

term for the ensemble of processes related to the biogeo-

chemical flow of energy and matter within ecosystems

(Loreau, 2008). One of the most commonly used defini-

tions of ecosystem functioning—‘the attributes related to

the performance of an ecosystem as a whole that is the

consequence of one or of multiple ecosystem processes’

(Jax, 2005; Lovett et al., 2006)—explicitly relates ecosys-

tem processes (e.g. evapotranspiration) to ecosystem func-

tioning (e.g. climate regulation) (Pettorelli et al., 2018).

To successfully mainstream ecosystem functioning into

ecological models, a joint effort from remote sensing and

ENM communities in the development and application of

global datasets of remotely sensed EFAs (expressing the

temporal variability of different components of ecosystem

functioning, as shown in Fig. 1B) is required—including

the main factors influencing them (e.g. disturbance

regimes). In this regard, remote sensing technologies have

greatly advanced and are now able to inform—either

directly or indirectly—on various components and attri-

butes of ecosystem functioning (Pettorelli et al., 2018).

Spectral vegetation indices such as the well-known

NDVI or the enhanced vegetation index (EVI) are posi-

tively correlated with aboveground net primary produc-

tion, with the fraction of the photosynthetically active

radiation (FAPAR) (Sellers et al., 1992) or with the leaf

area index (Wang et al., 2005). The seasonal and intra-

annual dynamics of these vegetation indices are closely

related to fluxes of CO2 in photosynthesis and respiration,

and to atmospheric N deposition (Chen & Coops, 2009)

(Fig. 3B), being increasingly used by the remote sensing

communities as proxies for ecosystem functioning

(Alcaraz et al., 2006; Fern�andez et al., 2010; Paruelo

et al., 2001) (Figs. 1 and 2).

Among other metrics, the annual mean of these vegeta-

tion indices has been used as linear estimator of annual

primary productivity; their seasonal range or standard

deviation as descriptors of the differences in carbon and

nitrogen gains between seasons; and the date of the maxi-

mum value of these vegetation indices as a phenological

indicator of the growing season peak (see Figs. 1B and 2).

Satellite-based phenological measures of the Earth’s sur-

face, calculated from time series of spectral vegetation

indices, are perhaps one of the most active applications,

with several measures proposed (J€onsson &

Eklundh, 2004). For instance, temporal trends and spatial

heterogeneity in NDVI seasonal dynamics were found to

be affected by climate change (temperature and precipita-

tion) and land-use/cover changes (land-use intensifica-

tion) across the globe (Dieguez & Paruelo, 2017; Fensholt

et al., 2012; Ichii et al., 2002; Piao, 2003). However, these
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applications mostly focus on the timing of specific events

related to the carbon and nitrogen cycles (e.g. growing

season peak or duration). These metrics can in fact be

applied to other ecosystem attributes (e.g. soil moisture

or land surface temperature [LST]; see Fig. 1A and B;

Table S1.1). They can be computed from spectral indices

related to the water cycle such as the Normalized Differ-

ence Water Index (NDWI; Gao, 1996) or the Land Sur-

face Water Index (J€onsson & Eklundh, 2004), among

others, to inform about the dynamics of water content in

vegetation or soil (Rickebusch et al., 2008; Fig. 1). Evapo-

transpiration is a key component of the global water

cycle, closely tied to carbon and surface energy exchanges.

The biophysical meaning and properties encapsulated in

remote sensing products such as Evapotranspiration or

Soil Moisture enhance our capabilities for monitoring

water and energy cycles across scales (Rodr�ıguez-

Fern�andez et al., 2019; Zhang et al., 2016), including their

intra- and inter-annual dynamics and feedbacks with

anthropogenic global change (see Fig. 1B and C).

A key advantage of remotely sensed EFAs is their sensi-

tivity to environmental changes, including: (1) regular

fluctuations, mostly driven by inter-annual climatic vari-

ability; (2) abrupt ecological changes, caused by extreme

events or disturbances such as droughts, floods or wild-

fires; or even (3) long-term gradual or monotonic trends

linked to processes such as urban sprawl, post-fire recov-

ery or ecological succession (see Fig. 1C). For instance,

disturbances such as wildfires, which represent a critical

exchange of energy and matter between the land and the

atmosphere via combustion, can affect dramatically these

biophysical descriptors of ecosystem functioning (Kasis-

chke et al., 1995). In terms of the land surface energy bal-

ance, fires initially reduce surface albedo due to the

production of charcoal (Archibald et al., 2018). The sub-

sequent dynamics will depend on the albedos of pre- and

Figure 2. Hue-saturation-value (HSV colour space) image of annual vegetation productivity (annual average, value component), their seasonality

or intra-annual variation (annual standard deviation, saturation component) and phenology (monthly maximum of EVI, in the hue circular

component) computed for land areas (terrestrial ecosystems, excluding Greenland and Antarctic) in Google Earth Engine from the combination of

MODIS EVI time series. EVI, enhanced vegetation index.

Figure 1. Pipeline connecting different ecosystem functioning components with remotely sensed ecosystem functioning attributes (RS-EFAs) and

ecological niche models (ENMs). Different components of ecosystem functioning can be measured—either directly or indirectly—through various

remote sensing products such as evapotranspiration, soil moisture, spectral indices or satellite band combinations (A). RS-EFAs are computed from

intra-annual time series of these remote sensing products (e.g. the average annual value of NDVI time series as proxy of annual primary

productivity) (B). The medium- and long-term variability of RS-EFAs can be computed from an inter-annual time series of RS-EFAs (e.g. the inter-

annual trend in the annual primary productivity measured through RS-EFAs) (C). RS-EFAs computed for a specific year or longer periods can be

incorporated as predictor variables in model development, according to the specific hypotheses and objectives of the model (D). NDVI, normalized

difference vegetation index.
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post-fire vegetation and land surface (Archibald

et al., 2018), and the rate at which different species and

vegetation types recover (Torres et al., 2018).

In conclusion, EFAs measured through time series of

satellite images can be considered integrative descriptors

of environmental status and change, as they can timely

inform about intra- and inter-annual variability of differ-

ent components of ecosystem functioning. Their incorpo-

ration into ENMs therefore holds strong advantages for

both biodiversity modelling and monitoring.

Advantages of Incorporating
Ecosystem Functioning into ENMs

Remotely sensed EFAs improve species’
niche characterization

Remotely sensed EFAs have been used as proxies for ecosys-

tem functioning in different types of models to predict spe-

cies distributions, abundances and diversity (Cabello

et al., 2012; Coops et al., 2009; Hobi et al., 2017; Radeloff

et al., 2019). Remotely sensed EFAs are closely related to

abiotic and biotic conditions experienced by organisms on

the ground. Thus, EFAs allow us to better characterize spe-

cies ecological niche than with macroclimatic datasets and

thus enhance our capacity to model their habitat dynamics

through time. As mentioned above, the most paradigmatic

example of EFAs measured from space is the application of

time series of spectral vegetation indices related to primary

productivity (Fig. 2).

For instance, the ‘Gerês lily’ (Iris boissieri)—a narrow-

ranged endemic plant—tends to occur in areas character-

ized by cool temperatures and high precipitation during

the summer season, which translates into maximum pri-

mary productivity in summer and minimum in winter

(measured from EVI time series; see Fig. 3A). The aerial

part of the plant disappears as the summer advances, and

only the underground part (i.e. bulb) remains in a latent

state during the less favourable season, favoured by

deposits of organic matter of the soil in open, fire-prone

scrublands (Arenas-Castro et al., 2018, 2019) (Fig. 3A).

Some mammals such as the European badger (Meles

meles) prefer mosaic landscapes consisting of fruit orch-

ards and natural vegetation, which provide shelter and

food resources (Requena-Mullor et al., 2014). In the

south-eastern Iberian Peninsula, badger diet depends on

fruit orchards and other derived food resources (e.g.

insects) (Fig. 3B). Ecosystem functioning variables related

to primary productivity derived from EVI time series

were used as proxies for the spatial and temporal variabil-

ity of food resources for badgers in these environments.

In fact, models calibrated with these EFAs outperformed

models built with land-cover variables, and their

combination resulted significatively increased model accu-

racy (see Requena-Mullor et al., 2014 for details).

Differences between characterizing the species’ niche

exclusively with compositional or structural descriptors

(e.g. forest cover) or adding EFAs (e.g. primary produc-

tivity) are likely more important for those species depen-

dent on the seasonal dynamics of such attributes (see

examples in Fig. 3). In addition, EFAs related to LST or

soil moisture can better characterize the species’ niche

than macroclimate sets inferred from interpolation, since

they provide information more closely related to the ‘real’

conditions experienced by organisms at ground level (e.g.

microclimate; see Lembrechts et al., 2018). This may

translate into an improvement in ENM performance

(Amiri et al., 2020), especially important for species living

in areas with steep environmental gradients (e.g. moun-

tain regions) (Bramer et al., 2018).

Remotely sensed EFAs improve ENM and
monitoring

Recent research showed how ENMs based on remotely

sensed EFAs can provide early warnings of range shifts

and predictions of short-term fluctuations in suitable

conditions for plant species of conservation concern

(Alcaraz-Segura et al., 2017). For instance, considering

Scrophularia grandiflora (a narrow endemic forb from

central Portugal), climate- and EFA-based models were

equally accurate. However, while climate-based models

forecasted expansion under near-future climate condi-

tions, EFA-based models estimated contractions of habitat

availability, capturing habitat suitability dynamics at finer

scales associated with observed land-use changes (Alcaraz-

Segura et al., 2017). These findings support the need of

global EFA databases to boost the development of

process-based models that enable future projections of

key ecosystem functioning components (e.g. carbon cycle)

under climate and land-use scenarios (e.g. dynamic global

vegetation models such as the LPJ-GUESS; https://web.

nateko.lu.se/lpj-guess/).

EFAs related to carbon cycle dynamics were useful

descriptors of plant species distributions and abundance

at different scales, independent of their range and life

form (Arenas-Castro et al., 2018, 2019). A recent study

modelling the abundance of ‘Gerês lily’ revealed that the

species’ abundance is mainly influenced by annual mini-

mum green-up days, related to late winter–early spring

precipitation, and by low vegetation productivity during

the winter–early spring (see Fig. 3)—ecosystem attributes

linked to sparsely vegetated landscape mosaics dominated

by crawling scrub and grasslands (Arenas-Castro

et al., 2019). In another study, inter-annual changes in sea-

sonal marine productivity influenced seabird fitness in the
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Arctic. The increasing temporal lag in sea ice melting—
which is the physical process driving the annual bloom of

sea ice algae and pelagic phytoplankton—resulted in rapidly

decreasing breeding performance for little auks and

Br€unnich’s guillemots (Ram�ırez et al., 2017). In Spain,

habitat selection of brown bears (Ursus arctos)—a species

showing hyperphagia and hibernation as evolutionary

adaptation to seasonal peaks and bottlenecks in ecosystem

productivity—was related to ecosystem properties and

functioning, measured through seasonal patterns of NDVI

(Wiegand et al., 2008). Recent studies also found that

MODIS-derived gross primary productivity and net pri-

mary productivity (NPP) were highly correlated with bird

species richness across different scales (Nieto et al., 2015;

Phillips et al., 2008; Radeloff et al., 2019; Toszogyova &

Storch, 2019)—an issue that is especially relevant in the

light of species-energy theory and the role of energy vari-

ability (Carrara & V�azquez, 2010; Hurlbert, 2004).

In addition, recent studies also suggest that the incorpo-

ration of descriptors of the water cycle into ENMs can sup-

port decision-making in wildlife conservation and

management (e.g. in species recovery planning; Regos,

Vidal, et al., 2020), since these variables can indirectly pro-

vide information, not only on habitat availability and qual-

ity, but also on spatial and temporal variations in resource

availability (Requena-Mullor et al., 2014; Wiegand

(A)

(B)

Figure 3. Examples of ecological niche characterization for ‘Gerês lily’ (Iris boissieri) and European badger (Meles meles) from ecosystem

functioning attributes computed from the seasonal variation of the enhanced vegetation index (EVI).
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et al., 2008). For instance, one of these studies showed that

seasonal variation of water content, measured by the stan-

dard deviation of the NDWI computed from Sentinel-2,

was the most important habitat descriptor at local scale of a

waterbird species—the common snipe (Gallinago gallinago)

(Regos, Vidal, et al., 2020). Model-based response curves

showed that wet grasslands with either low or high seasonal

variability throughout the breeding season do not provide

habitat because fluctuations of the water content of vegeta-

tion are either too small (i.e. areas with no water) or too

high (i.e. areas with a steep decrease in water content). The

limited amount of water content in this period of the spe-

cies’ biological cycle is critical and relates to soil penetrabil-

ity and invertebrate density (i.e. prey availability) (Regos,

Vidal, et al., 2020). In addition, EFAs based on NDWI sea-

sonality were also found to boost modelling performance of

several oak species (Vila-Vic�osa et al., 2020).
Other authors computed different satellite-based metrics of

seasonal dynamics from LST and albedo as predictor variables

to incorporate energy balance into ENMs (Amiri et al., 2020;

Arenas-Castro et al., 2018; Cord & R€odder, 2011; Regos,

G�omez-Rodriguez, et al., 2020). For instance, surface tempera-

ture during the coldest month (an energy balance EFA) was a

more relevant predictor for explaining the distribution of the

threatened plant ‘Ger̂es lily’ at coarse scale than EFAs related to

the carbon cycle (Arenas-Castro et al., 2018). The distribution

of birds nesting in rocky cavities such as the common raven

(Corvus corax), the common rock thrush (Monticola saxatilis)

or the Eurasian crag martin (Ptyonoprogne rupestris) was corre-

lated with sensible heat dynamics and radiative balance—mea-

sured from minimum or maximum Albedo and mean or

standard deviation of LST time series (Regos, G�omez-

Rodriguez, et al., 2020). Finally, novel applications of remote

sensing time series have recently been described to model ani-

mal and plant phenology. For instance, the phenology of two

moth species (Orthosia gothica and Ectropis crepuscularia) was

related to snow melt-off date (from MODIS daily snow maps)

and greening date (using MODIS NDWI)—processes driving

the water cycle dynamics (P€oyry et al., 2017; Fig. 1). In China,

ENMs developed with land surface phenology, captured by

high-temporal resolution remotely sensed imagery, allowed for

characterizing and monitoring the habitat of the giant panda

(Ailuropodamelanoleuca) (Tuanmu et al., 2011).

Synergies Between Ecological
Modelling and Remote Sensing
Communities

EFA-based ENMs in the support of global
biodiversity monitoring

Over the last years, several authors have called the atten-

tion of the great potential of remote sensing for ENM

(Bradley & Fleishman, 2008; He et al., 2015; Leit~ao &

Santos, 2019; Randin et al., 2020). The synergies between

the increasingly available open-access satellite images (e.g.

Terra/MODIS, Landsat, Sentinel) (Wulder et al., 2016)

and cloud-based platforms for planetary-scale geospatial

analysis (e.g. Google Earth Engine (GEE), EOS Engine,

CODE-DE) (Gorelick et al., 2017) in the Era of Big Data

(e.g. Earth observation Data Cube) (Lewis et al., 2016)

are enabling new approaches to old problems (Casu

et al., 2017). Despite the progressive integration of remote

sensing variables into ENMs over the last decades (Estes

et al., 2010; He et al., 2015; Pottier et al., 2014) (Fig. 4),

the ENM community is still far from embracing its

full potential, especially regarding the incorporation of

the ecosystem functioning dimension (Fig. 4) (He

et al., 2015). A quick search in the ISI Web of Knowledge

shows the modest role that ecosystem functioning vari-

ables have played so far in ENM development and appli-

cations, in contrast to the increasing availability of

remote sensing products capturing features of ecosystem

functioning at several spatio-temporal scales (Fig. 4;

Tables S1.1 and 1.2). This quick search evidenced that

many ecosystem processes and properties that are ecologi-

cally relevant for species (e.g. NPP or evapotranspiration)

have been neglected in ENM. There may be various rea-

sons for this, but a lack of technology to develop spatially

explicit variables related to ecosystem functioning does

not seem to be one (Fig. 4).

This gap between the ENM and the remote sensing

communities potentially holds important consequences

for conservation decision-making and environmental

management. For instance, habitat loss and degradation

caused by land-use changes are one of the main threats to

biodiversity in the Anthropocene (Newbold et al., 2015;

WWF ZSL, 2016). In the last decade, the number of stud-

ies including land-use/cover change in ENMs has

increased (but see Titeux et al., 2016). The interplay of

climate and land-use change has been predicted to

strongly affect the distribution of a wide range of species

across different taxa (Barbet-Massin et al., 2012; Marshall

et al., 2017; Smith et al., 2016). However, while habitat

loss and degradation caused by land-use conversions (e.g.

from land abandonment; Pellissier et al., 2013) can be

easily integrated into ENMs (e.g. through land-cover time

series; Bradley et al., 2012; Pellissier et al., 2013), other

processes and disturbances are much more difficult to

incorporate. Forest defoliation processes favoured by the

concomitant effects of insect outbreaks and extreme cli-

matic events (e.g. droughts), or changes caused by shorter

harvesting timing or increased extracting rates are exam-

ples of how changes within—and not only between—
landscape features can dramatically affect ecosystem func-

tioning and, in turn, species diversity, abundance and/or
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distribution (James et al., 2010; Lalibert�e et al., 2010;

Venier & Holmes, 2010). Such habitat changes would not

be captured by land cover data, thus preventing an accu-

rate prediction of the subsequent dynamics of species.

Ecological disturbances—such as wildfires that involve a

large exchange of matter and energy—can impact species

distributions in many different ways depending on the

intensity, recurrence or time since the disturbance took

place (Griffiths et al., 2015; Kelly et al., 2020; Taillie

et al., 2018). As a result, potential impacts of natural (or

anthropogenic) disturbances on species distributions are

hard to predict (Vallecillo et al., 2009), especially when

interacting with other drivers (e.g. climate change), and

require more dynamic approaches involving large

amounts of data describing environmental conditions

over long time series (Shang et al., 2004).

Remotely sensed EFAs allow incorporating a more

functional and dynamic perspective of ecosystem/habitat

conditions into ENMs, going beyond often used structural

and compositional attributes. As described above, feeding

EFA-related variables as predictors in ENMs holds several

advantages for understanding species diversity patterns

and predicting responses to environmental changes: (1)

EFAs allow adding niche descriptors complementary to

those traditionally used, thus providing a more complete

view of the species’ ecological niche (Fig. 3); (2) EFAs

allow incorporating intra- and inter-annual variability of

ecosystem functioning (Fig. 1B and C); (3) EFAs can be

measured systematically through remote sensing technolo-

gies at different spatio-temporal scales, facilitating a

cross-scale, standardized, repeatable and cost-effective

model-assisted monitoring (see e.g. Alcaraz-Segura

et al., 2017; Arenas-Castro et al., 2019; Regos, G�omez-

Rodriguez, et al., 2020); and (4) long-term data archives

such as those provided by Landsat or Terra/Aqua satellites

offer the possibility to assess decadal changes in ecosystem

functioning at a resolution suitable for species modelling

applications to conservation (Fig. 1B) (Berry et al., 2007;

Cabello et al., 2012). Many of these advantages are

requirements for being selected as essential biodiversity

variables (EBVs) (see Pettorelli et al., 2016 and reference

therein).

Figure 4. The delayed response of the ecological niche modelling community to the ever-increasing availability of data and methods provided by

the RS community that is progressively offering new variables related to ecosystem functioning (see Table S2 for details). RS, remote sensing;

ENMs, ecological niche models; EFAs, ecosystem functioning attributes; BC, biodiversity and conservation; ECO, environmental sciences and

ecology. Despite the outstanding development of remote sensing products related to ecosystem functioning (olive green colour line) and the

increasing applicability of ENMs in Biodiversity and Ecology journals, the number of studies incorporating remotely sensed EFAs into ENMs has

only increased slightly (<30 papers in 2019, light green line).
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Illustrative case studies—mapping species
habitat trends driven by ecosystem
functioning

To illustrate how remotely sensed EFAs can be incorpo-

rated into ENMs (Fig. 1), we modelled two emblematic

species: the whooping crane (Grus americana) and the

snow leopard (Panthera uncia) (details in Appendix S2).

Records were compiled for the whole distribution range

available from GBIF. Satellite data from MODIS were

used to calculate EFA variables (Fig. 1A). We computed

several metrics describing the intra-annual properties of

each product listed in Table S1.1: the average (as a

descriptor of quantity), the minimum and the maximum

annual values (descriptors of extreme conditions) and the

standard deviation (intra-annual seasonal variation or

‘seasonality’) (Fig. 1B). These statistical measures were

calculated for each complete year from 2001 to 2018. To

capture multi-year conditions of EFA variables, we com-

puted the average (Fig. 1C). All calculations were per-

formed in GEE (Gorelick et al., 2017). A total of 40 EFA

variables were generated as candidate predictors for mod-

elling (Fig. 1D).

Due to the lack of previous knowledge in species–envi-
ronment relationships regarding each EFA variable and

the target species, we applied a model-driven procedure

to select the best predictors. First, we performed a prelim-

inary round of models which included all available vari-

ables and was based on the Random Forest algorithm—
known for handling well large numbers of variables and

multicollinearity. Second, an iterative selection of vari-

ables was performed to decrease multicollinearity based

on pairwise correlation and the importance rank (details

in Table S1.2) which retained the best five predictors by

species. Note that multicollinearity problems must be also

tested before modelling when combining EFAs with other

environmental predictors such as bioclimatic variables

(see e.g. Alcaraz-Segura et al., 2017; Arenas-Castro

et al., 2018; Regos et al., 2019; Vila-Vic�osa et al., 2020 for

comparison between climate-based and EFA-based

ENMs), and that should be selected according to the eco-

logical requirements of the target species (see some exam-

ples for birds in Regos, G�omez-Rodriguez, et al., 2020).

To deal with model uncertainty, we implemented an

ensemble/consensus model with eight different algorithms

(biomod2 R package; Thuiller et al., 2016). The ensemble

models were then projected to the EFA conditions for

each year, between 2001 and 2018, to obtain annual

projections of habitat suitability and assess its change.

Finally, to assess the habitat suitability trends between

2001 and 2018, we computed the Theil–Sen estimator

based on annual habitat suitability projections. This

method allowed assessing the change sign (increase or

decrease), its magnitude and the trend statistical signifi-

cance (Fig. 5).

The illustrated workflow clearly identifies some advan-

tages in relation to more ‘classical’ approaches based on

static habitat features or bioclimatic variables. Although

in these examples we have calibrated the ENMs based on

multi-year averaged EFA variables (which was needed

given the timespan of presence records), we encourage

modellers to characterize the species niche with the inter-

annual variability of the EFA variables, which can increase

model performance, as shown for climate niche models

(see Perez-Navarro et al., 2020).

Concluding Remarks

Despite the many technical advances and the increasing

effort by the remote sensing community to develop inte-

grative descriptors of ecosystem functioning, ENM have

yet to make full profit of the most recent developments

by integrating them in ENM pipelines (see Fig. 4). The

synergies between the increasingly available open-access

satellite images (e.g. Sentinel missions) (Wulder

et al., 2016) and cloud-based platforms for planetary-scale

geospatial analysis (such as GEE) (Gorelick et al., 2017)

offer an unprecedented opportunity for ecologists to

incorporate ecosystem processes and properties that have

been so far largely neglected in ecological niche character-

ization and modelling. Remotely sensed EFAs are charac-

terized by an increasingly higher spatial and temporal

resolution that can complement traditional environmental

variables extracted from interpolated macroclimate data

or describing static habitat features (Coops &

Wulder, 2019; Mod et al., 2016)—thereby potentially

improving ecological niche characterization and the pre-

dictive performance of ENMs. In addition, EFAs can be

measured systematically and synoptically through Earth

Observation data and remote sensing technologies, facili-

tating cross-scale, standardized, repeatable and cost-

effective biodiversity monitoring.

All these advantages strongly suggest that a new genera-

tion of ENMs based on such EFAs would offer great per-

spectives to increase our ability to monitor habitat

suitability trends and population dynamics (Gonc�alves

Figure 5. Habitat suitability trends between 2001 and 2018 for two emblematic species: whooping crane (Grus americana) (area under the ROC

curve [AUC] of 0.972 and true skill statistic [TSS] of 0.820) and snow leopard (Uncia uncia) (AUC of 0.999 and TSS of 0.995), computed from

ecological niche models based exclusively on remotely sensed EFA variables (see details in Appendix S2). Photographs taken from Wikipedia with

Public domain license. EFA, ecosystem functioning attribute.
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et al., 2016) (Figs. 1 and 5) and to predict species distri-

butional shifts under global change (Regos et al., 2019;

Tuanmu et al., 2011). The development of new global

datasets supporting the implementation of EBVs relevant

for monitoring ecosystem functioning is a priority for the

Group on Earth Observations Biodiversity Observation

Network (GEOBON; see Working Group ‘Ecosystem

function’, http://geobon.org/working-groups/ecosystem-

function/) (Skidmore et al., 2015), with great potential

for ‘Species Population EBVs’ through their incorporation

into ENMs (see Working Group ‘Species Populations’,

https://geobon.org/ebvs/working-groups/species-

populations/). Freely available and continuously updated

global datasets of RS-EFAs will boost research in conser-

vation biogeography and macroecology—as already hap-

pened in the history of ENMs in the context of climate

datasets and climate change scenarios after the release of

the first special report on emission scenarios (SRES) by

the Intergovernmental Panel on Climate Change (IPCC)

and the development of global climate datasets (e.g.

WorldClim) (Titeux et al., 2017). The development of

models and scenarios that explicitly incorporate ecosystem

functioning will allow the Intergovernmental Platform on

Biodiversity and Ecosystem Services (IPBES) (D�ıaz

et al., 2015) to assess global change impacts on biodiver-

sity in more integrative way, by including ecosystem pro-

cesses and disturbances often neglected in global

assessments.

A coordinated agenda for remote sensing experts and

ENM will be essential over the coming years to bridge the

gap between remote sensing and ecological disciplines,

and to take full (and timely) advantage of the fast-

growing body of Earth observation data (Skidmore

et al., 2015)—with special emphasis on the development

and testing of new variables related to key features of

ecosystem functioning.
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