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This paper is, in a first stage, devoted to establishing a topolo-
gical–algebraic characterization of the principal component, 
U0(M), of the set of unitary elements, U(M), in a unital JB∗-
algebra M . We arrive to the conclusion that, as in the case of 
unital C∗-algebras,

U0(M) = M−1
1 ∩ U(M)

=
{
Ueihn · · ·Ueih1 (1) : n ∈ N, hj ∈ Msa

∀ 1 ≤ j ≤ n

}
=

{
u ∈ U(M) : there exists w ∈ U0(M) with

‖u− w‖ < 2
}

is analytically arcwise connected. Actually, U0(M) is the 
smallest quadratic subset of U(M) containing the set eiMsa . 
Our second goal is to provide a complete description of the 
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surjective isometries between the principal components of 
two unital JB∗-algebras M and N . Contrary to the case of 
unital C∗-algebras, we shall deduce the existence of connected 
components in U(M) which are not isometric as metric spaces. 
We shall also establish necessary and sufficient conditions 
to guarantee that a surjective isometry Δ : U(M) → U(N)
admits an extension to a surjective linear isometry between 
M and N , a conclusion which is not always true. Among 
the consequences it is proved that M and N are Jordan ∗-
isomorphic if, and only if, their principal components are 
isometric as metric spaces if, and only if, there exists a 
surjective isometry Δ : U(M) → U(N) mapping the unit of 
M to an element in U0(N). These results provide an extension 
to the setting of unital JB∗-algebras of the results obtained 
by O. Hatori for unital C∗-algebras.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Why are we so attracted by the unitary group of unital C∗-algebras? The celebrated 
Russo–Dye theorem, asserting that the convex hull of the unitary elements in a unital 
C∗-algebra is norm dense in its closed unit ball (cf. [47]), is probably one of the eldest 
tools leading our attention to the unitary group. It is perhaps unnecessary to recall that 
an element, u, in a unital C∗-algebra, A, lies in the subgroup, U(A), of all unitaries in A
if uu∗ = u∗u = 1. As we have already advanced, U(A) is a subgroup of A containing the 
unit element. Applications of the Russo-Dye theorem and subsequent generalizations 
have been employed along the last fifty five years, recent usages on problems about 
extensions of isometries appear, for example, in [45] and [6,15].

The unitary group of a unital C∗-algebra was employed as a complete invariant to 
classify von Neumann factors and certain unital C∗-algebras. Highlighting the group 
structure of the set of unitaries, S. Sakai established that if A and B are AW∗-factors 
and ρ : U(A) → U(B) is a uniformly continuous group isomorphism between their 
respective unitary groups, then there is a unique map T from A onto B which is either 
a linear or a conjugate linear ∗-isomorphism and agrees with ρ on U(A) (see [48]). A 
similar conclusion was proved by H.A. Dye for W∗-factors in [19] with an independent 
argument which also gives results when no continuity assumption is made on the group 
isomorphism. More recently, Al-Rawashdeh, Booth and Giordano show that if the unitary 
groups of two simple unital AH-algebras of slow dimension growth and of real rank zero 
are isomorphic as abstract groups, then their K0-ordered groups are isomorphic (cf. 
[3]).

In a surprising turn, O. Hatori and L. Molnár considered the set U(A), of unitary 
elements in a unital C∗-algebra A, as a metric space equipped with the metric given 
by the C∗-norm and forgot about its group structure (see [32]). It should be noted 
that the metric space (U(A), ‖ · ‖) is almost never compact (cf. [50, Exercise II.2.1]). 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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In the case of von Neumann algebras, the metric space given by the set of unitaries is 
a complete invariant since, as shown by Hatori and Molnár, every surjective isometry 
between the unitary groups of two von Neumann algebras admits an extension to a 
surjective real linear isometry between these algebras (see [32, Corollary 3]). Actually if 
Δ : U(A) → U(B) is a surjective isometry between the sets of unitary elements of two 
unital C∗-algebras, then there is a central projection p ∈ B and a Jordan ∗-isomorphism 
J : A → B satisfying

Δ(eix) = Δ(1)(pJ(eix) + (1 − p)J(eix)∗),

for all x ∈ Asa (see [32, Theorem 1]). In particular A and B are Jordan ∗-isomorphic. 
Here, and henceforth, the self-adjoint part of a C∗-algebra A will be denoted by Asa.

The framework of von Neumann algebras is a very favorable scenario since, among 
other things, the set of unitaries in a von Neumann algebra W is precisely the set 
exp(iWsa), which is an analytically arcwise connected set (cf. [38, Theorem 5.2.5]). How-
ever, it is well known that in the case of a general unital C∗-algebra A the set U(A) is 
not always connected (cf. [50, Exercise I.11.3], [38, Exercises 4.6.6 and 4.6.7], [32, pages 
162-164], [28]). The connected component of U(A) containing the unit element is called 
the principal component, and it is denoted by U0(A).

Hatori and Molnár pointed out in [32, Corollary 8] the existence of surjective isometries 
between the sets of unitaries in two unital commutative C∗-algebras which do not admit 
an extension to a surjective real linear isometry between these algebras. The problem 
of determining the structure of all surjective isometries between the sets of unitaries in 
two arbitrary unital C∗-algebras was carried out by O. Hatori in [28], where two main 
results are established: Suppose A and B are two unital C∗-algebras.

(a) Suppose Δ : U0(A) → U0(B) is a mapping. Then Δ is a surjective isometry if and 
only if there exist a central projection p ∈ B and a Jordan ∗-isomorphism J : A → B

satisfying

Δ(a) = Δ(1)
(
pJ(a) + (1 − p)J(a)∗

)
,

for all a ∈ U0(A). In particular A and B are Jordan ∗-isomorphic. The principal 
components U0(A) and U0(B) can be somehow replaced by any two connected com-
ponents (see [28, Theorem 3.1 and Corollary 3.5]).

(b) Each surjective isometry Δ : U(A) → U(B) can be written as a direct sum of a family 
of surjective real linear isometries between A and B restricted to the corresponding 
connected components, and the extensibility of Δ to a surjective real linear isometry 
is only possible under additional conditions ([28, Theorem 4.1 and Corollary 5.1]).

From a strict mathematical point of view, C∗-algebras are contained in the strictly 
wider class of JB∗-algebras, a class of Jordan-Banach algebras determined by an appro-
priate version of the Gelfand-Naimark axiom. The class of JB∗-algebras is nowadays a 
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consolidated object of study, whose origins go back to the works of P. Jordan, J. von 
Neumann, E. Wigner, I. Kaplansky, J.D.M. Wright, M. Youngson, H. Hanche-Olsen, E. 
Størmer, E.M. Alfsen and F.W. Shultz, among others. Detailed definitions and complete 
sources of references can be found in subsection 1.1 and in the monographs [1,2,26,11,12]. 
The notions of invertibility, spectrum and unitaries admit a perfect translation to the 
setting of unital JB∗-algebras, and there is a version of the Russo–Dye theorem estab-
lished by J.D.M. Wright and M. Youngson (see subsection 1.1 for more details). In the 
case of a unital JB∗-algebra M , the subset, U(M), of all unitaries in M is not a Jordan-
sub-semigroup of M –actually the Jordan product of two unitary elements need not be, 
in general, a unitary element even in the case of unital C∗-algebras–. So, in the Jordan 
setting we can no longer speak about the unitary group.

For any couple of elements a, b in a Jordan algebra M , we shall write Ua,b and Ma for 
the linear operators on M defined by

Ua,b(x) = (a ◦ x) ◦ b + (b ◦ x) ◦ a− (a ◦ b) ◦ x, and Ma(x) = a ◦ x

for all x ∈ M . We shall simply write Ua for Ua,a. If M is obtained from an associative al-
gebra (with product denoted by juxtaposition) equipped with its natural Jordan product 
a ◦ b = 1

2 (ab + ba), it can be easily checked that Ua,b(x) = 1
2 (axb + bxa) (a, b, x ∈ M).

In the same way that a celebrated theorem, due to Sakai, identifies von Neumann 
algebras with those C∗-algebras which are dual Banach spaces, in the setting of JB∗-
algebras, those which are dual Banach spaces are called JBW∗-algebras and enjoy 
additional geometric properties. For example, each JBW∗-algebra contains a unit ele-
ment, and every unitary element in a JBW∗-algebra M is of the form exp(ih), where 
h lies in the self-adjoint part, Msa, of M . In [16], the first and fifth authors of this 
note extended the previously-commented result by Hatori and Molnár, and proved that 
the set of unitaries in a JBW∗-algebra is a complete invariant too. More concretely, 
suppose Δ : U(M) → U(N) is a surjective isometry, where M and N are two JBW∗-
algebras. Then there exist a unitary ω in N , a central projection p ∈ N , and a Jordan 
∗-isomorphism Φ : M → N such that

Δ(u) = Uω∗ (p ◦ Φ(u)) + Uω∗ ((1
N
− p) ◦ Φ(u)∗)

= P2(Uω∗(p))Uω∗(Φ(u)) + P2(Uω∗(1
N
− p))Uω∗(Φ(u∗)),

for all u ∈ U(M). Consequently, Δ admits a (unique) extension to a surjective real linear 
isometry from M onto N (see [16, Theorem 3.9]).

Since unital C∗-algebras are unital JB∗-algebras when equipped with the natural 
Jordan product a ◦ b = 1

2 (ab + ba), and the same involution and norm; and when both 
structures are possible, the notions of unitary coincide, we know that the set of unitaries 
in a unital JB∗-algebra M need not be, in general, connected. The connected component 
of U(M) containing the unit element will be also called the principal component, and 
will be denoted by U0(M).
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Despite nowadays we have excellent and thorough academic monographs covering the 
theory of JB∗-algebras (cf., for example, [1,2,14,26] and the recent books [11,12]), some 
geometric aspects have not been explored yet. This is the case of the principal component 
of the set of unitaries. Section 2 is aimed to complete our knowledge on the principal 
component. The starting point is a result by O. Hatori which asserts that for each unital 
C∗-algebra A we have

U0(A) = {eih1 · . . . · eihn1eihn · . . . · eih1 : n ∈ N, h1, . . . , hn ∈ Asa}

is open, closed, and path connected, in the (relative) norm topology on U(A) (see [28, 
Lemma 3.2]). The advantage of the previous description is that it admits an expression 
in terms of expressions given by Jordan products. In Theorem 2.3 we prove that for each 
unital JB∗-algebra M , the principal component of the set of unitaries in M admits the 
following description

U0(M) = M−1
1 ∩ U(M)

= {Ueihn · · ·Ueih1 (1) : n ∈ N, hj ∈ Msa ∀ 1 ≤ j ≤ n}
=

{
u ∈ U(M) : there exists w ∈ U0(M) with ‖u− w‖ < 2

},
where M−1

1 stands for the principal component of the set M−1 of all invertible elements 
in M . Consequently, U0(M) is analytically arcwise connected. A central notion in the 
theory of Jordan algebras has already appeared in the previous description where the 
Ua operator associated with an element a in a Jordan algebra M is defined by

Ua(x) = 2(a ◦ x) ◦ a− (a ◦ a) ◦ x, (x ∈ M).

When an associative algebra A is regarded as a Jordan algebra with respect to the 
natural Jordan product we have Ua(x) = axa for all a, x ∈ A.

We should admit that the instability of U(M) under Jordan products is a handicap to 
find a description of this set in terms of algebraic properties. A similar instability affects 
the set of invertible elements in a unital Jordan-Banach algebra. In any case, given two 
invertible (respectively, unitary) elements a, b in a unital Jordan-Banach algebra (respec-
tively, in a unital JB∗-algebra) M the element Ua(b) is invertible (respectively, unitary). 
Let M be a unital Jordan-Banach algebra. Following [46], we shall say that a subset 
M ⊆ M−1 is a quadratic subset if UM(M) ⊆ M. Let us observe that U(M) is a self-adjoint 
subset of M whenever M is a unital JB∗-algebra, in such a case we also prove that U0(M)
is the smallest quadratic subset of U(M) containing the set eiMsa (see Proposition 2.6).

Surjective isometries between different connected components of the unitary sets of 
two unital JB∗-algebras are studied in section 3. In a first result we establish that for 
each surjective isometry Δ : U0(M) → U0(N) between the principal components of 
two unital JB∗-algebras, there exist k1, . . . , kn ∈ Nsa, a central projection p ∈ N and a 
Jordan ∗-isomorphism Φ : M → N such that
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Δ(u) = p ◦ Ueikn . . . Ueik1 Φ(u) + (1
N
− p) ◦ (Ue−ikn . . . Ue−ik1 Φ(u))∗ ,

for all u ∈ U0(M). Consequently, M and N are Jordan ∗-isomorphic, and there exists 
a surjective real linear isometry (i.e., a real linear triple isomorphism) from M onto 
N whose restriction to U0(M) is Δ (see Theorem 3.4). Surjective isometries between 
connected components of the unitary sets of two unital JB∗-algebras are described in 
Theorem 3.6.

Corollary 3.8 in [16] proves that two unital JB∗-algebras M and N are isometrically 
isomorphic as (complex) Banach spaces if, and only if, they are isometrically isomorphic 
as real Banach spaces if, and only if, there exists a surjective isometry between their 
unitary sets. Corollary 3.5 in this note improves this conclusion by showing that the 
following statements are equivalent:

(a) M and N are Jordan ∗-isomorphic;
(b) There exists a surjective isometry Δ : U(M) → U(N) satisfying Δ(1

M
) ∈ U0(N);

(c) There exists a surjective isometry Δ : U0(M) → U0(N).

The extendibility of a surjective isometry between the unitary sets of two unital JB∗-
algebras is discussed in section 3.1 (see Corollary 3.8 and Proposition 3.10).

We cannot conclude this section without pointing out the exceptional particularities 
naturally linked to the category of JB∗-algebras. For example, in a unital C∗-algebra 
A, any connected component Uc(A) of U(A) is isometrically isomorphic to the principal 
component U0(A) –it suffices to consider the left or right multiplication operator on A by 
an element in Uc(A). In the setting of unital JB∗-algebras this geometric property is not 
always true, combining our results with a construction due to R. Braun, W. Kaup and 
H. Upmeier in [8], we shall exhibit an example of a unital JB∗-algebra M admitting a 
unitary w such that the connected component of U(M) containing w is not isometrically 
isomorphic to the principal component (see Remark 3.7). This counterexample reinforces 
the fact that a unital JB∗-algebra admits many different Jordan products and involutions, 
at least as many as unitaries, and some of them produce structures which are not Jordan 
∗-isomorphic. However, by a fascinating result due to W. Kaup, each JB∗-algebra admits 
an essentially unique structure of JB∗-triple (see [39, Proposition 5.5] and subsection 
1.1). This is essentially the reason for which we employ JB∗-triple theory in some of our 
arguments.

1.1. Definitions and background

A complex (respectively, real) Jordan algebra M is a (non-necessarily associative) 
algebra over the complex (respectively, real) field whose product “◦” is commutative and 
satisfies the so-called Jordan identity:

(a ◦ b) ◦ a2 = a ◦ (b ◦ a2) (a, b ∈ M). (1)
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A normed Jordan algebra is a Jordan algebra M equipped with a norm, ‖.‖, satisfying 
‖a ◦b‖ ≤ ‖a‖ ‖b‖ (a, b ∈ M). A Jordan-Banach algebra is a normed Jordan algebra whose 
norm is complete. Every real or complex associative Banach algebra is a real Jordan-
Banach algebra with respect to its natural Jordan product. All Jordan algebras in this 
paper are assumed to be unital.

The Jordan identity implies that Jordan algebras are power associative, that is, each 
subalgebra generated by a single element a in a Jordan algebra M is associative. More 
concretely, let us set a0 = 1, a1 = a, and an+1 = a ◦ an (n ≥ 1). In this case the identity 
am+n = am ◦ an, holds for all natural numbers n, m (cf. [26, Lemma 2.4.5]). In the case 
that M is a Jordan-Banach algebra, the completeness of the norm assures that the series 

exp(a) = ea =
∞∑

n=0

an

n! is uniformly convergent on bounded subsets of M . Furthermore, 

the mapping a �→ ea defines an analytic mapping on M . The Jordan-Banach subalgebra 
C of M generated by an element a is a commutative associative subalgebra with respect 
to the inherited Jordan product [36, 1.1]. Suppose A is an associative Banach algebra. 
For each element a ∈ A, the powers of A with respect to the associative and to the 
Jordan product coincide, and thus ea is just the usual exponential in the usual sense 
for associative Banach algebras. It follows that exp(a) has its usual meaning in the 
Jordan-Banach subalgebra C, and, in particular we have

esa ◦ eta = e(s+t)a, for all s, t ∈ C. (2)

Two elements a, b in a Jordan algebra M are said to operator commute if the identity 
(a ◦ c) ◦ b = a ◦ (c ◦ b) holds for all c ∈ M (cf. [26, 4.2.4]). The centre of M is formed by 
all elements in M which operator commute with any other element in M .

In a Jordan algebra the left or right multiplication operator by a fixed element does 
not play the role played by the left or right multiplication in an associative Banach 
algebra. The protagonist in the Jordan setting is associated with the U operator. Let M
be a Jordan-Banach algebra. One of the fundamental identities in Jordan theory assures 
that

UUa(b) = UaUbUa, for all a, b in a Jordan algebra M (3)

(see [26, 2.4.18]). It can be easily proved, via an induction argument, that the following 
generalisation of (3) holds in every Jordan algebra M :

UUan ···Ua1 (b) = Uan
· · ·Ua1UbUa1 · · ·Uan

, (4)

for all n > 0, and all an, . . . , a1, b ∈ M .
An element a in a unital Jordan-Banach algebra M is called invertible whenever 

there exists b ∈ M satisfying a ◦ b = 1 and a2 ◦ b = a. The element b is unique and 
it will be denoted by a−1 (cf. [26, 3.2.9] and [11, Definition 4.1.2]). We know from 
[11, Theorem 4.1.3] that an element a ∈ M is invertible if and only if Ua is a bijective 
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mapping, and in such a case U−1
a = Ua−1 (cf. (3)). If an associative Banach algebra A is 

regarded with its natural Jordan product, the notion of invertibility in the Jordan setting 
is precisely the usual notion in the associative context. As in the associative setting, the 
set M−1 of all invertible elements in M is open (cf. [11, Theorem 4.1.7]), and its principal 
component (i.e. the connected component containing the unit element) will be denoted 
by M−1

1 .
Additional geometric axioms are required to define JB- and JB∗-algebras. The defini-

tion of JB∗-algebras is essentially due to I. Kaplansky, who introduced them as a Jordan 
generalization of C∗-algebras. A JB∗-algebra is a complex Jordan-Banach algebra M
equipped with an algebra involution ∗ satisfying the following geometric axiom:

‖Ua(a∗)‖ = ‖a‖3, (a ∈ M). (5)

Every C∗-algebra A is a JB∗-algebra when equipped with its natural Jordan product 
and the original norm and involution. We observe that in this case the geometric axiom 
(5) writes in the form ‖aa∗a‖ = ‖a‖3 (a ∈ A), which is known to be an equivalent 
reformulation of the Gelfand-Naimark axiom. M.A. Youngson proved in [54, Lemma 4]
that the involution of every JB∗-algebra is in fact an isometry.

A JB-algebra is a real Jordan-Banach algebra J in which the norm satisfies the fol-
lowing two axioms for all a, b ∈ J :

(i) ‖a2‖ = ‖a‖2;
(ii) ‖a2‖ ≤ ‖a2 + b2‖.

As pointed out by Kaplansky, the hermitian part, Msa, of a JB∗-algebra, M , is always 
a JB-algebra. The converse implication was open for some time, and it was shown to 
be true in a celebrated result due to J.D.M. Wright, asserting that the complexification 
of every JB-algebra is a JB∗-algebra (see [51]). The reader who may feel the necessity 
of additional details and explanations for any of the basic results on JB-algebras, JB∗-
algebras and JB∗-triples (whose definition appears below) can consult the monographs 
[26,14,1,2,11] and [12].

Let M and N be JB∗-algebras. A linear mapping Φ : M → N is called a Jordan 
homomorphism if Φ(a ◦ b) = Φ(a) ◦Φ(b) (a, b ∈ M), and a Jordan ∗-homomorphism if it 
is a Jordan homomorphism and Φ(a)∗ = Φ(a∗) for all a ∈ M . A Jordan ∗-isomorphism is 
a Jordan ∗-homomorphism which is also a bijection. A real linear mapping from M to N
preserving Jordan products will be called a real linear Jordan homomorphism. Real linear 
Jordan ∗-homomorphisms are similarly defined. A mapping between unital JB∗-algebras 
is called unital if it sends the unit in the domain to the unit in the codomain.

A JBW∗-algebra is a JB∗-algebra which is also a dual Banach space. Norm-closed 
Jordan ∗-subalgebras of C∗-algebras are called JC∗-algebras. JC∗-algebras which are 
also dual Banach spaces are called JW∗-algebras. Any JW∗-algebra is a weak∗-closed 
Jordan ∗-subalgebra of a von Neumann algebra. The reader should be warned about the 
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existence of exceptional JB∗-algebras which cannot be embedded as Jordan ∗-subalgebras 
of some B(H) (see [26, Corollary 2.8.5], [11, Example 3.1.56]).

We recall that an element u in a unital JB∗-algebra M is a unitary if it is invertible 
and its inverse coincides with u∗. As in the associative setting, we shall denote by U(M)
the set of all unitary elements in M . It is known that the identities

Uu(u∗) = u, and Uu((u∗)2) = 1,

hold for every unitary element u in M (cf. [11, Theorem 4.1.3]). Furthermore, M becomes 
a unital JB∗-algebra, with unit u, for the Jordan product and involution defined by

x ◦u y := Ux,y(u∗) and x∗u := Uu(x∗), respectively. (6)

This new unital JB∗-algebra (M, ◦u, ∗u) is called the u-isotope of M , and will be denoted 
by M(u) (see [11, Lemma 4.2.41(i)]). For each a ∈ M , we shall write a(n,u) for the n-th 
power of a in the JB∗-algebra M(u). Let us observe that if a unital C∗-algebra is regarded 
as a JB∗-algebra both notions of unitaries coincide. An element s in a unital JB-algebra 
J is called a symmetry if s2 = 1

J
. If M is a unital JB∗-algebra, the symmetries in M

are defined as the symmetries in its self-adjoint part Msa.
In a JBW∗-algebra M the set U(M) is path connected and coincides with the set 

{eih : h ∈ Msa} (cf. [16, Remark 3.2(9)]). However, as in the case of unital C∗-algebras, in 
a general unital JB∗-algebra the set of unitaries might contain many different connected 
components. The principal component of U(M) is the connected component containing 
the unit, and it will be denoted by U0(M).

Beside the deep connections with holomorphic theory on arbitrary complex Banach 
spaces and the classification of bounded symmetric domains in this complex setting which 
led W. Kaup to introduce those complex Banach spaces called JB∗-triples in [39], for the 
purposes of this note, we shall employ the JB∗-triple structure associated with each JB∗-
algebra to simplify all possible Jordan products and involutions under a triple product 
which encompasses all of them. A JB∗-triple is a complex Banach space E equipped 
with a continuous triple product {., ., .} : E × E × E → E, (a, b, c) �→ {a, b, c}, which 
is bilinear and symmetric in (a, c) and conjugate linear in b, and satisfies the following 
axioms for all a, b, x, y ∈ E:

(a) L(a, b)L(x, y) = L(x, y)L(a, b) +L(L(a, b)x, y) −L(x, L(b, a)y), where L(a, b) : E → E

is the operator defined by L(a, b)x = {a, b, x};
(b) L(a, a) is a hermitian operator with non-negative spectrum;
(c) ‖{a, a, a}‖ = ‖a‖3.

Examples of JB∗-triples include all C∗-algebras and JB∗-algebras with the triple prod-
ucts of the form

{x, y, z} = 1(xy∗z + zy∗x), (7)
2
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and

{x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗, (8)

respectively ([11, Fact 4.1.41 and Theorem 4.1.45]). Actually, when a C∗-algebra is re-
garded as a JC∗-algebra with its natural Jordan product, the expression in (8) coincides 
with the triple product in (7). The product in (7) is actually valid to define a structure 
of JB∗-triple on spaces B(H, K) of bounded linear operators between complex Hilbert 
spaces (infinite dimensional examples of rectangular matrices), complex Hilbert spaces, 
and J∗-algebras in the sense introduced by L. Harris in [27]–i.e. closed complex-linear 
subspaces of B(H, K) which are closed for the triple product in (7)–.

The triple product of every JB∗-triple is a non-expansive mapping, that is,

‖{a, b, c}‖ ≤ ‖a‖‖b‖‖c‖ for all a, b, c (9)

(see [25, Corollary 3]).
A (real linear) triple homomorphism between JB∗-triples E and F is a (real) linear 

mapping Φ : E → F preserving triple products, i.e.,

T{a, b, c} = {T (a), T (b), T (c)}, for all a, b, c ∈ E.

It is well known that every unital triple homomorphism between unital JB∗-algebras is 
a Jordan ∗-homomorphism.

Among the amazing geometric properties of those complex Banach spaces in the class 
of JB∗-triples we find a Banach-Stone type theorem, proved by W. Kaup, asserting that 
a linear bijection T between two JB∗-triples is an isometry if and only if it is a triple 
isomorphism (cf. [39, Proposition 5.5], see also [11, Theorem 2.2.28] or [18] and [23] for 
alternative proofs). Thanks to this result we can understand now that, despite of the 
existence of many different Jordan products and involutions on a unital JB∗-algebra, they 
all produce the same triple structure. Namely, if u1 is any unitary in a unital JB∗-algebra 
M , we know that the triple product on M given in (8) coincides with the one given by

{x, y, z}1 = (x ◦u1 y
∗u1 ) ◦u1 z + (z ◦u1 y

∗u1 ) ◦u1 x− (x ◦u1 z) ◦u1 y
∗u1 ,

because the identity mapping is a surjective linear isometry.
It should be remarked that Kaup’s Banach–Stone theorem is not, in general, true for 

surjective real linear isometries between JB∗-triples (cf. [17, Remark 2.7], [33, §4] and 
[22]). However, surjective real linear isometries between C∗-algebras and JB∗-algebras 
are all real linear triple isomorphisms (see [17, Corollaries 3.2 and 3.3] and [22, Corollary 
3.4]). We further know that every unital surjective real linear isometry between unital 
JB∗-algebras is a real linear Jordan ∗-isomorphism [17, Corollary 3.2].

For each couple of elements a, b in a JB∗-triple E, we denote by Q(a, b) the conjugate 
linear operator on E defined by Q(a, b)(x) = {a, x, b}. We shall write Q(a) for Q(a, a). 
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In the case of a JB∗-algebra M , the Q operator is intrinsically related to the U operator 
by the identity

Q(a, b)(x) = {a, x, b} = Ua,b(x∗), for all x ∈ M.

We have already mentioned that the involution of every unital JB∗-algebra M is 
an isometry. We can actually apply the previous Kaup’s Banach-Stone theorem to the 
involution as a surjective linear isometry from M onto the Banach space M equipped 
with the same norm but replacing the product by scalars by the one given by λ 
x = λx, 
or it can be directly checked that the involution is a (conjugate linear) triple isomorphism. 
Consequently, for any a and b in M , we have that

(Ua(b))∗ = ({a, b∗, a})∗ = {a∗, b, a∗} = Ua∗(b∗). (10)

By an induction argument we have

(Uan
· · ·Ua1(a0))∗ = Ua∗

n
· · ·Ua∗

1 (a
∗
0), (11)

for all natural n and an, . . . , a1, a0 ∈ M .
Each element e in a JB∗-triple E satisfying {e, e, e} = e is called a tripotent. If a 

C∗-algebra A is regarded as a JB∗-triple with the triple product in (7), the partial 
isometries in A are precisely the tripotents of A. Each tripotent e ∈ E determines a 
Peirce decomposition of E in the form

E = E2(e) ⊕E1(e) ⊕E0(e),

where Ej(e) = {x ∈ E : {e, e, x} = j
2x} (j = 0, 1, 2) is called the Peirce j-subspace.

Triple products among elements in Peirce subspaces satisfy the following Peirce arith-
metic:

{Ei(e), Ej(e), Ek(e)} ⊆ Ei−j+k(e) if i− j + k ∈ {0, 1, 2},
{Ei(e), Ej(e), Ek(e)} = {0} if i− j + k /∈ {0, 1, 2},

and {E2(e), E0(e), E} = {E0(e), E2(e), E} = {0}. Consequently, each Peirce subspace 
Ej(e) is a JB∗-subtriple of E.

The natural projection, Pk(e), of E onto Ek(e) is called the Peirce k-projection. It is 
known that P2(e) = Q(e)2, P1(e) = 2(L(e, e) −Q(e)2), and P0(e) = IdE−2L(e, e) +Q(e)2. 
Furthermore, ‖Pk(e)‖ ≤ 1 for all k = 0, 1, 2 (cf. [24, Corollary 1.2]). It is worth remarking 
that if e is a tripotent in a JB∗-triple E, the Peirce 2-subspace E2(e) is a unital JB∗-
algebra with unit e, product x ◦ey := {x, e, y} and involution x∗e := {e, x, e}, respectively 
(cf. [11, Theorem 4.1.55]).

The adjective “unitary” is also employed to denote some special tripotents. More 
precisely, a tripotent e in a JB∗-triple E is called unitary if E2(e) = E. However, there 
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is no risk of controversy, since, as shown by R. Braun, W. Kaup and H. Upmeier in 
[8, Proposition 4.3], the unitaries in a unital JB∗-algebra M are precisely the unitary 
tripotents in M when the latter is regarded as a JB∗-triple. We can therefore conclude 
that every surjective real linear isometry T between two unital JB∗-algebras M and N
maps U(M) onto U(N). In particular, for each unitary u ∈ M , the mapping Uu : M → M

is a triple isomorphism satisfying Uu (U(M)) = U(M).

2. Range tripotents and the principal component of the unitary set in a JB∗-algebra

The principal components of the sets of invertible elements, A−1, and of the unitary 
group, U(A), of a unital C∗-algebra A are the connected components of these subsets 
containing the unit 1 ∈ A. These principal components will be denoted by A−1

1 and 
U0(A), respectively. These two sets are well known, studied and described in the litera-
ture. More concretely, for any (associative) unital real or complex Banach algebra A, A−1

is an open subset of A which is stable under associative products. The principal compo-
nent of A−1 is precisely the least subgroup of A−1 containing exp(A) = {ea : a ∈ A}, it 
is path connected, and it can be algebraically described in the following terms:

A−1
1 = {ea1 · . . . · ean : n ∈ N, a1, . . . , an ∈ A}

(see [7, Propositions 8.6 and 8.7], [50, page 12] and [42, Theorem 2.3.1]).
The principal component of the unitary group of a unital C∗-algebra A has been also 

studied and described by different authors. It is known that

U0(A) = {eih1 · . . . · eihn : n ∈ N, h1, . . . , hn ∈ Asa}
= {eih1 · . . . · eihn1eihn · . . . · eih1 : n ∈ N, h1, . . . , hn ∈ Asa}

(12)

is open, closed, and path connected, in the (relative) norm topology on U(A) –the first 
equality in (12) can be found in Kadison–Ringrose book [38, Exercises 4.6.6 and 4.6.7], 
while the second equality, which is closer to the Jordan structure, is due to O. Hatori 
[28, Lemma 3.2]. Another interesting result asserts that, by the continuity of the module 
mapping x �→ |x| := (x∗x) 1

2 , we have

A−1
1 ∩ U(A) = U0(A) (see [50, Exercise 2, page 56]).

The reader should be warned that “polar decompositions” are not available for elements 
in a JB∗-algebra, so these arguments are not valid in the Jordan setting. To the best 
of our knowledge, in the setting of real C∗-algebras a full description of the principal 
component of the unitary group remains unknown.

In the case of a unital C∗-algebra A, the sets A−1, A−1
1 , U(A), U0(A) are closed for 

the associative product but they are not, in general, stable under Jordan products.
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In the case of Jordan-Banach algebras, B. Aupetit posed the question whether the 
principal component of the set of invertible elements in a Jordan-Banach algebra is ana-
lytically arcwise connected in [4, comments after the proof of Theorem 3.1]. A complete 
positive solution to this question was found by O. Loos in [43] (see also [11, Theorem 
4.1.111]). However, as long as we know the description of the principal component of the 
set of unitaries in a unital JB∗-algebras has not been explicitly treated in the literature. 
By employing some tools in the recent note [16], we shall complete the state-of-the-art in 
the Jordan setting. One of the main geometric properties derived from the local Gelfand 
theory in C∗-algebras assures that for each unitary u in a unital C∗-algebra A with 
‖1 − u‖ < 2 we can always find a hermitian element h ∈ Asa satisfying u = eih (see 
[38, Exercise 4.6.6]). Building upon the celebrated Shirshov-Cohn theorem, which proves 
that the JB∗-subalgebra of a JB∗-algebra generated by two self-adjoint elements (and 
the unit element) is a JC∗-algebra, that is, a JB∗-subalgebra of some B(H) (cf. [26, 
Theorem 7.2.5] and [51, Corollary 2.2]), the just commented result has been extended 
to the setting of unital JB∗-algebras in [16, Lemma 2.2].

Let M be a unital JB∗-algebra. Let us consider a unitary element u in M , and the 
u-isotope M(u) := (M, ◦u, ∗u) as defined in subsection 1.1. It is known that U(M) =
U(M(u)) (cf. [16, Lemma 2.1], [49, Lemma 4.2(ii) and Theorem 4.6] or [11, Lemma 
4.2.41(ii)]). Let us observe that the unital JB∗-algebras M and M(u) share the same 
underlying Banach spaces, the quoted unitary sets are equipped with the same norm 
and distance. Let us suppose that u lies in U0(M). Since the connected components of 
a topological space are disjoint, we can affirm that

U0(M(u)) = U0(M), for every u ∈ U0(M). (13)

Section 3 below is devoted to studying and describing the surjective isometries between 
the principal components of the unitary sets of two unital JB∗-algebras. For this purpose, 
we shall first establish an algebraic characterization of the set of unitary elements in terms 
of U operators of exponentials of skew symmetric elements, like the one commented in 
the case of unital C∗-algebras (cf. (12)).

Let us recall the local Gelfand theory to the readers. In a C∗-algebra, the C∗-
subalgebra A generated by a non-normal element cannot be identified, via Gelfand theory, 
with a commutative C∗-algebra of the form C0(L), for a locally compact Hausdorff space 
L. However, if we regard A as a JB∗-triple, the JB∗-subtriple generated by a single ele-
ment is always representable as a C0(L) space. Let 0 �= a be an element in a JB∗-triple 
E. The JB∗-subtriple of E generated by a (denoted by Ea) coincides with the norm 
closure of the linear span of the odd powers of a defined as a[1] = a, a[3] = {a, a, a}, 
and a[2n+1] :=

{
a, a, a[2n−1]}, (n ∈ N). The local Gelfand theory for JB∗-triples assures 

that Ea is isometrically JB∗-triple isomorphic to some C0(Ωa) for a unique compact 
Hausdorff space Ωa contained in the set [0, ‖a‖], such that 0 cannot be an isolated point 
in Ωa, where, along this note, the symbol C0(Ωa) will stand for the Banach space of 
all complex-valued continuous functions on Ωa vanishing at 0 in case that 0 ∈ Ωa, and 
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all continuous functions on Ωa otherwise. It is further known that there exists a triple 
isomorphism Ψ : Ea → C0(Ωa) satisfying Ψ(a)(t) = t (t ∈ Ωa) (cf. [40, Lemma 3.2, 
Corollary 3.4 and Proposition 3.5], [39, Corollary 1.15], see also [11, Theorem 4.2.9] or 
[14, Theorem 3.1.12]). The set Ωa is called the triple spectrum of a (in E), and it does 
not change when computed with respect to any JB∗-subtriple F ⊆ E containing a [40, 
Proposition 3.5]. In some reference, like [14, Theorem 3.1.12] and [11, Theorem 4.2.9], 
the local Gelfand theory is built upon the locally compact set Ω\{0}. Here we follow the 
notation in [40], where, in a more natural terminology, the triple spectrum is a compact 
set.

As in the associative setting, the local Gelfand theory opens the door to apply a 
continuous triple functional calculus. Given an element a in a JB∗-triple E, let Ωa and 
Ψ : Ea → C0(Ωa) denote the triple spectrum of a and the triple isomorphism given in the 
previous paragraph. For each continuous function f ∈ C0(Ωa), we set ft(a) := Ψ−1(f), 
and we call it the continuous triple functional calculus of f at a. If p(λ) = α1λ +α3λ

3 +
. . .+α2n−1λ

2n−1 is an odd polynomial with complex coefficients, it is easy to check that 
pt(a) = α1a +α3a

[3] + . . .+α2n−1a
[2n−1]. However, for more general functions in C0(Ωa)

the continuous triple functional calculus is not so obvious. For example if a is a non-
self-adjoint element in a C∗-algebra A, the element a[2] = ht(a) with h(t) = t2 does not 
coincide with a2 in A. Another example: the function g(t) = 3

√
t produces gt(a) = a[ 13 ]. 

Let us note that gt(a) = a[ 13 ] is the unique cubic root of a in Ea, i.e. the unique element 
a[ 13 ] ∈ Ea satisfying {

a[ 13 ], a[ 13 ], a[ 13 ]
}

= a. (14)

The sequence (a[ 1
3n ])n can be recursively defined by a[ 1

3n+1 ] =
(
a[ 1

3n ]
)[ 13 ]

, n ∈ N. It is 
easy to see that the sequence (a[ 1

3n ])n need not be, in general, norm convergent in E
(consider, for example, the element a(t) = t in E = C([0, 1])).

The functional analysis provides another topology to assure the convergence of the 
above sequence. Let us recall that a JBW∗-triple is a JB∗-triple which is also a dual 
Banach space (with a unique isometric predual [5]). The triple product of every JBW∗-
triple is separately weak∗-continuous (cf. [5]), and the second dual, E∗∗, of a JB∗-triple E
is always a JBW∗-triple under a triple product which extends the original triple product 
in E (cf. [12, Proposition 5.7.10]).

If W is a JBW∗-triple (in particular when we regard E as a JB∗-subtriple of E∗∗), the 
sequence (a[ 1

3n ])n converges in the weak∗-topology of W to a (unique) tripotent denoted 
by r(a). The tripotent r(a) is called the range tripotent of a in W . This range tripotent 
r(a) can be characterized as the smallest tripotent e ∈ W satisfying that a is positive in 
the JBW∗-algebra W2(e) (compare [20, Lemma 3.3]).

Given an element a in a JB∗-triple E, we shall denote by r(a) the range tripotent of a
in E∗∗. There exist examples in which we can guarantee that the element r(a) lies in E. 
According to the usual notation followed in [10,21,40,37], an element a in a JB∗-triple E
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is called von Neumann regular if a ∈ Q(a)(E); if a ∈ Q(a)2(E) we say that a is strongly 
von Neumann regular. For each von Neumann regular element a in a JB∗-triple E there 
might exist many different elements c in E satisfying Q(a)(c) = a. However, it is known 
(cf. [21, Theorem 1] and [40, Lemma 4.1, Lemma 3.2 and comments after its proof], [10, 
Theorem 2.3 and Corollary 2.4]) that the following statements are equivalent:

(a) a is von Neumann regular;
(b) There exists b ∈ E such that Q(a)(b) = a, Q(b)(a) = b and [Q(a), Q(b)] :=

Q(a) Q(b) −Q(b) Q(a) = 0;
(c) 0 does not belong to the triple spectrum, Ωa, of a;
(d) Q(a) has norm-closed range;
(e) The range tripotent r(a) of a lies in E and a is positive and invertible in the JB∗-

algebra E2(r(a)).

The element b appearing in statement (b) above is unique, and it will be called the 
generalized inverse of a in E (denoted by a†). Henceforth we shall write Reg

vN
(E) for 

the set of all von Neumann regular elements in E. It is further known that L(a, a†) =
L(a†, a) = L(r(a), r(a)) and Q(a)Q(a†) = Q(a†)Q(a) = P2(r(a)) (see, for example, [37, 
page 589], [10, comments in page 192] or [41, Lemma 3.2 and subsequent comments]).

If a is an invertible element in a unital JB∗-algebra M and the latter is regarded as 
a JB∗-triple, then a is von Neumann regular and its range tripotent, r(a), is a unitary 
element in M , that is,

a ∈ M−1 ⇒ r(a) ∈ U(M) (cf. [37, Lemma 2.2 and Remark 2.3]). (15)

Namely, in this case, by denoting z−1 the inverse of z in M we have

Q(z)((z−1)∗) = {z, (z−1)∗, z} = Uz(z−1) = z;

Q((z−1)∗)(z) = {(z−1)∗, z, (z−1)∗} = U(z−1)∗(z∗) = (z−1)∗;

Q(z)Q((z−1)∗)(x) = Uz

(
U(z−1)∗(x∗)

)∗ = UzUz−1(x) = UzU
−1
z (x) = x;

Q((z−1)∗)Q(z)(x) = U(z−1)∗ (Uz(x∗))∗ = U(z∗)−1Uz∗(x) = U−1
z∗ Uz∗(x) = x,

for all x ∈ M , which proves that z is von Neumann regular with z† = (z−1)∗ = (z∗)−1, 
and since P2(r(z)) = Q(z)Q(z†) = Id, the tripotent r(z) is a unitary in M .

We explore next certain properties of the continuous triple functional calculus which 
might result surprising. Let us fix an element a in a JB∗-triple E. Let us consider the 
isometric triple isomorphism Ψ : Ea → C0(Ωa) satisfying Ψ(a)(t) = t (t ∈ Ωa). The 
function g(t) = t2 lies in C0(Ωa), and hence gt(a) = a[2] is an element in Ea. The reader 
should be warned that a[2] is only a square for a local binary product depending on the 
element a. Suppose, additionally, that a is von Neumann regular, that is, Ωa ⊂ R+. In 
this case the function h(t) = 1

t lies in C0(Ωa) and a[−1] = ht(a) ∈ Ea. It is easy to see 
that



54 M. Cueto-Avellaneda et al. / Linear Algebra and its Applications 643 (2022) 39–79
{a, a, a[−1]} = a, {a, r(a), a[−1]} = r(a), and {r(a), a[−1], r(a)} = a[−1].

By definition a[2] belongs to the subtriple of E generated by a. Since the range tripotent 
of a satisfies that a ∈ E2(r(a)), it follows that Ea ⊆ E2(r(a)) because the latter is a 
JB∗-subtriple of E. The elements a, a[−1], a[2] and a† belong to the unital JB∗-algebra 
E2(r(a)). Having in mind that, by Kaup’s theorem, when the triple product of E is 
restricted to E2(r(a)) it coincides with

{x, y, z} = (x ◦r(a) y
∗r(a)) ◦r(a) z + (z ◦r(a) y

∗r(a)) ◦r(a) x− (x ◦r(a) z) ◦r(a) y
∗r(a) ,

for all x, y, z ∈ E2(r(a)). Then

r(a) = {a†, a, r(a)} = L(a†, a)(r(a)) = a† ◦r(a) a,

and a = L(a†, a)(a) = {a†, a, a}
= (a† ◦r(a) a

∗r(a)) ◦r(a) a + (a ◦r(a) a
∗r(a)) ◦r(a) a

† − (a† ◦r(a) a) ◦r(a) a
∗r(a)

= (a ◦r(a) a) ◦r(a) a
†.

Therefore a† = a[−1].
We make a pause at the next Jordan version of [50, Proposition I.4.10]. The proof 

provides the readers with a better understanding of the continuous triple functional 
calculus.

Proposition 2.1. Let Ω ⊂ R+
0 be a compact set, and let E be a JB∗-triple. Suppose EΩ

denotes the set of all elements a ∈ E with Ωa ⊆ Ω. If f : Ω → C is a continuous 
function, then the continuous triple functional calculus: a ∈ EΩ �→ ft(a) ∈ E is (norm) 
continuous. Consequently, the mapping a ∈ E �→ a[2] ∈ E is continuous.

Proof. A variant of the Stone-Weierstrass theorem established in [39] and [11, Lemma 
4.2.8] assures that if ι : Ω → C denotes the inclusion mapping, then the set

{p(ι2)ι : p a polynomial with complex coefficients}

is dense in C0(Ω). Therefore, given ε > 0 there exists a polynomial p with complex 
coefficients such that for q(λ) = p(λ2)λ we have supt∈Ω |q(t) −f(t)| < ε. By the continuity 
of q –via the continuity of the triple product– we can find δ > 0 such that ‖qt(a) −qt(b)‖ <
ε for all a, b ∈ E with ‖a −b‖ < δ and ‖a‖, ‖b‖ ≤ max Ω. Taking a, b ∈ EΩ with ‖a −b‖ < δ

we have

‖ft(a) − ft(b)‖ ≤ ‖ft(a) − qt(a)‖ + ‖qt(a) − qt(b)‖ + ‖qt(b) − ft(b)‖ < 3ε.

The last statement is clear. �
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The next corollary is our tool to avoid polar decompositions in the Jordan setting.

Corollary 2.2. Let M be a unital JB∗-algebra. Then the mapping

a ∈ M−1 �→ r(a) ∈ U(M) is continuous.

Proof. It is not hard to check, from the properties of the continuous triple functional cal-
culus, that for each von Neumann regular element a ∈ E the identity r(a) = Q(a†)(a[2])
holds.

We recall that the set of invertible elements in a unital Jordan-Banach algebra M is 
an open set, and the mapping a ∈ M−1 �→ a−1 ∈ M is continuous (cf. [11, Theorem 
4.1.7 and Proposition 4.1.6]). Therefore, if M is a unital JB∗-algebra, the mapping a ∈
M−1 �→ a† = (a−1)∗ ∈ M−1 is continuous. Consequently, by the continuity of the triple 
product, the mapping

a ∈ M−1 �→ r(a) = Q(a†)(a[2])

is continuous. Let us finally note that r(a) ∈ U(M) for all a ∈ M−1 (cf. (15)). �
We have already employed the notion of u-isotope associated with each unitary ele-

ment u in a unital JB∗-algebra M . This device also makes sense for invertible elements 
in M . More concretely, for each invertible element c in a unital Jordan–Banach algebra 
M then the vector space M becomes a Jordan–Banach algebra M(c) with unit element 
c−1 and quadratic operators

U (c)
a = UaUc. (16)

The linear Jordan product in M(c) is actually given by x ◦cy = x ◦(c ◦y) +y◦(c ◦x) −c ◦(x ◦y)
(cf. [36, §2, 1.7]). We should note that, according to the notation introduced in page 47, 
M(w) = M(w∗).

The algebraic characterization of the principal component of the set of unitaries in a 
unital JB∗-algebra reads as follows.

Theorem 2.3. Let M be a unital JB∗-algebra, let U0(M) denote the principal component 
of the set of unitaries in M and let u be an element in U(M). Then the following 
statements are equivalent:

(a) u ∈ M−1
1 ∩ U(M);

(b) There exists a continuous path Γ : [0, 1] → U(M) with Γ(0) = 1 and Γ(1) = u;
(c) u ∈ U0(M);
(d) u = Ueihn · · ·Ueih1 (1), for some n ∈ N, h1, . . . , hn ∈ Msa;
(e) There exists w ∈ U0(M) such that ‖u − w‖ < 2.
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Consequently,

U0(M) = M−1
1 ∩ U(M)

= {Ueihn · · ·Ueih1 (1) : n ∈ N, hj ∈ Msa ∀ 1 ≤ j ≤ n}
=

{
u ∈ U(M) : there exists w ∈ U0(M) with ‖u− w‖ < 2

} (17)

is analytically arcwise connected.

Proof. (a) ⇒ (b) Suppose u ∈ M−1
1 ∩ U(M). Since by [43, Corollary], the set M−1

1 is 
analytically arcwise connected, there exists a continuous path γ : [0, 1] → M−1

1 satisfying 
γ(0) = 1 and γ(1) = u. Corollary 2.2 assures that the mapping Γ : [0, 1] → U(M), 
Γ(t) := r(γ(t)) is continuous with Γ(0) = 1 and Γ(1) = u.

The implication (b) ⇒ (c) is clear.
(c) ⇒ (a) It follows from (a) ⇒ (b) ⇒ (c) that M−1

1 ∩U(M) ⊆ U0(M). We know from 
[43, Corollary] that M−1

1 is a clopen subset of M−1, and thus M−1
1 ∩ U(M) is a clopen 

subset of U(M) which contains the unit and is contained in U0(M). Having in mind that 
U0(M) is a connected set, we deduce that M−1

1 ∩ U(M) = U0(M).
We have proved that statements (a), (b) and (c) are equivalent and U0(M) = M−1

1 ∩
U(M) is analytically arcwise connected.

(b) ⇒ (d) Suppose there exists a continuous path Γ : [0, 1] → U(M) with Γ(0) = 1 and 
Γ(1) = u. Let us find, by continuity and compactness, 0 = t0 < t1 < . . . < tn < 1 = tn+1
such that ‖Γ(ti) −Γ(ti+1)‖ < 2 for all 0 ≤ i ≤ n. Set ui = Γ(ti) for all 0 ≤ i ≤ n + 1. By 
applying [16, Lemma 2.2] to the element u1 –which satisfies ‖u1−1‖ < 2– we deduce the 
existence of h1 ∈ Msa such that Ueih1 (1) = u1. Since 2 > ‖u1 − u2‖ = ‖1 − Ue−ih1 (u2)‖, 
a new application of [16, Lemma 2.2] shows the existence of h2 ∈ Msa satisfying 
Ue−ih1 (u2) = Ueih2 (1), or equivalently, u2 = Ueih1Ueih2 (1). Suppose, by an induction 
argument on n, that we have found h1, . . . , hn ∈ Msa with un = Ueih1 · · ·Ueihn (1). As 
before, the condition

2 > ‖un+1 − un‖ = ‖Ue−ihn · · ·Ue−ih1 (un+1) − 1‖,

implies, via [16, Lemma 2.2], the existence of hn+1 ∈ Msa such that u = un+1 =
Ueih1Ueih2 · · ·Ueihn+1 (1).

The implication (d) ⇒ (c) is also easy because given u = Ueihn · · ·Ueih1 (1), with n ∈
N, h1, . . . , hn ∈ Msa, the mapping Γ : [0, 1] → U(M) ⊆ M−1, Γ(t) = Ueithn · · ·Ueith1 (1)
is an analytic curve with Γ(0) = 1 and Γ(1) = u. This also proves the second equality in 
(17).

The implication (c) ⇒ (e) is clear.
Suppose finally that statement (e) holds, that is, there exists w ∈ U0(M) satisfy-

ing ‖w − u‖ < 2. By the first two equalities in (17), w = Ueihn · · ·Ueih1 (1) for some 
h1, . . . , hn in Msa. A similar argument to that in the proof of (b) ⇒ (d) implies that 
u = Ueihn+1Ueihn · · ·Ueih1 (1) ∈ U0(M). �
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In case that u is a unitary in an associative unital C∗-algebra A, the left multiplication 
operator Lu : A → A is a surjective linear isometry mapping the unit to u. Consequently, 
Lu(U0(A)) = u U0(A) is precisely the connected component of U(A) containing u. How-
ever, the left multiplication operator admits no direct Jordan analogue. We shall see next 
that assuming that a unitary element u in a unital JB∗-algebra M writes as the square 
of another unitary, the connected component containing it can be described.

Remark 2.4. Let u be a unitary element in a unital JB∗-algebra M . We cannot always 
guarantee that u = eih for some h ∈ Msa (cf. [38, Exercise 4.6.9]). Suppose that u satisfies 
the weaker condition that u = v2 for some unitary v ∈ M –this automatically holds if 
u = eih. Let Uc(M) denote the connected component of U(M) containing u. Since the 
mapping Uv : M → M(u) is a unital surjective linear isometry –and hence a Jordan 
∗-isomorphism between these two algebras– Uv(U0(M)) is a connected component of 
U(M) = U(M(u)) and contains u. It then follows from Theorem 2.3 that

Uc(M) = Uv(U0(M)) = {UvUeihn · · ·Ueih1 (1) : n ∈ N, hj ∈ Msa ∀ 1 ≤ j ≤ n} .

The existence of a unitary square root does not necessarily hold for any uni-
tary element, even in the setting of commutative C∗-algebras. Let T denote the unit 
sphere of the complex plane. The principal component of U(C(T )) is precisely the 
subgroup exp(iCR(T )), which is the set of all functions u : T → T which are de-
formable or homotopic to the unit element (cf. [38, Exercise 4.6.7]). The quotient group 
U(C(T ))/U0(C(T )) = U(C(T ))/ exp(iCR(T )) –known as the Bruschlinsky group– iden-
tifies with the ring Z of integers (see [34, §II.3] or [50, Exercise I.11.3]). It is known that 
the maps u1, u2 : T → T , u1(λ) = λ and u2(λ) = λ2 are not in the principal component 
of U(C(T )), they are actually in two different connected components (cf. [34, §II, Lemma 
3.2]). Therefore, u2 /∈ exp(iCR(T )) but u2 = u2

1 admits a unitary square root.

The hypothesis assuring that a unitary element u in a JB∗-algebra M admits a square 
root has been already considered in the literature, for example, in [8, Problem 5.1 and 
Lemma 5.2], [30], [13] and [44]. The good behavior exhibited by unital C∗-algebras, 
where the connected components of the unitary group can be derived from the principal 
component by just multiplying by a determined unitary on the left or on the right, 
fails in the setting of unital JB∗-algebras, not only due to the lacking of a left (or 
right) multiplication operator, but because of the possibility that two different connected 
components of the unitary set of a unital JB∗-algebra are not isometric as metric spaces 
(see Remark 3.7).

Remark 2.5. Let w be a unitary element in a unital JB∗-algebra M . Suppose Uc(M) is 
a connected component of U(M), w ∈ Uc(M) and M−1

w is the connected component of 
M−1 containing w. Let M(w) denote the w-isotope admitting w as unit element. Since 
U(M) = U(M(w)) and M−1 = (M(w))−1 as sets (cf. [16, Lemma 2.1]), Uc(M) and 
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M−1
w are the principal components of U(M(w)) and (M(w))−1, respectively. Therefore 

the previous Theorem 2.3 applied to the w-isotope M(w) gives

Uc(M) = M−1
w ∩ U(M)

=
{
U

(w)
eihn
w

· · ·U (w)
e
ih1
w

(w) : n ∈ N, hj ∈ (M(w))sa, ∀ 1 ≤ j ≤ n
}

= {u ∈ U(M) : there exists v ∈ Uc(M) with ‖u− v‖ < 2}

(18)

is analytically arcwise connected. We can actually take any w̃ ∈ Uc(M) and the same 
conclusion holds for the connected component Uc(M) and the w̃-isotope M(w̃).

It will be useful to establish several further consequences of the previous Theorem 2.3.
According to [46], given a unital JB∗-algebra M , a subset M ⊆ M−1 will be called 

a quadratic subset if UM(M) ⊆ M. Let us observe that U(M) is a self-adjoint subset of 
M .

Proposition 2.6. Let M be a unital JB∗-algebra. Then U0(M) is a self-adjoint quadratic 
subset of U(M), that is, for all u, w ∈ U0(M) the elements w∗ and Uw(u) belong to 
U0(M). Furthermore, U0(M) is the smallest quadratic subset of U(M) containing the 
set eiMsa . In particular,

UU0(M)
(
U0(M)

)
= U0(M) =

{
Ueihn · · ·Ueih1 (eih0) : n ∈ N, hj ∈ Msa ∀ 0 ≤ j ≤ n

}
.

Proof. Since u, w ∈ U0(M), Theorem 2.3 guarantees the existence of hermitian elements 
hm, . . . , h1, kn, . . . , k1 ∈ Msa such that w = Ueihm · · ·Ueih1 (1) and u = Ueikn · · ·Ueik1 (1)
with n, m ∈ N. In what concerns the involution we have

w∗ = (Ueihm · · ·Ueih1 (1))∗ = (by (11)) = Ue−ihm · · ·Ue−ih1 (1),

which proves that w∗ ∈ U0(M) (cf. Theorem 2.3).
Concerning the remaining property, we apply the identity in (4) to deduce that

Uw(u) = Uw (Ueikn · · ·Ueik1 (1)) = UU
eihm ···U

eih1 (1) (Ueikn · · ·Ueik1 (1))

= Ueihm · · ·Ueih1U1Ueih1 · · ·Ueihm (Ueikn · · ·Ueik1 (1))

= Ueihm · · ·Ueih1Ueih1 · · ·UeihmUeikn · · ·Ueik1 (1),

which in view of Theorem 2.3 assures that Uw(u) ∈ U0(M).
Fix an arbitrary w in U0(M). Since Uw is an invertible mapping with inverse Uw∗ , 

the above properties show that w∗ ∈ U0(M) and

U0(M) = UwUw∗(U0(M)) ⊆ Uw(U0(M)) ⊆ U0(M).
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Finally, suppose that V is a quadratic subset of U(M) containing the set eiMsa . Clearly 
for each h1, . . . , hn in Msa an induction argument shows that

Ueihn . . . Ueih1 (1) ∈ V,

and thus, by Theorem 2.3, U0(M) ⊆ V. The rest is clear. �
We conclude this section with a remark and an open problem.

Remark 2.7. Let M be a unital JB∗-algebra and let u be an element in U(M)\U0(M). 
Suppose Uc(M) is the connected component of U(M) containing u. The set

Eu :=
{
Ueih1 . . . Ueihn (u) : n ∈ N, hj ∈ Msa

for all 1 ≤ j ≤ n

}

is arcwise connected and contains u. Thus, Eu ⊆ Uc(M). We do not know if the reverse 
inclusion holds, in general. If M = A is a unital C∗-algebra both inclusions hold, a 
fact which is essentially due to the existence of left and right multiplication operators. 
Namely, since U0(A) = {eih1 ·. . .·eihn : n ∈ N, h1, . . . , hn ∈ Asa} (cf. (12)), and the right 
multiplication operator Ru : A → A, x �→ xu is a surjective linear isometry mapping the 
unit to u, we deduce that

{
eih1 · . . . · eihnu : n ∈ N, h1, . . . , hn ∈ Asa

}
= Ru(U0(A)) = Uc(A).

Similarly, the products of the form weihn · . . . · eih1 lie in Uc(A) for all w ∈ Uc(A), 
h1, . . . , hn ∈ Asa. So, given h1, . . . , hn ∈ Asa, the mapping Reih1 ·...·eihn is a surjective 
linear isometry on A mapping Uc(A) onto itself, and hence

Uc(A) =
{
eih1 · . . . · eihnueihn · . . . · eih1 : n ∈ N, h1, . . . , hn ∈ Asa

}
=

{
Ueih1 . . . Ueihn (u) : n ∈ N, hj ∈ Asa

for all 1 ≤ j ≤ n

}
.

Despite we do not know if the equality Eu = Uc(M) holds in general, the inclusion 
Eu ⊆ Uc(M) is enough to prove the following rule concerning the U -operators

UU0(M) (Uc(M)) = Uc(M), for all connected component Uc(M) of U(M). (19)

Indeed, by Theorem 2.3, every w ∈ U0(M) is of the form w = Ueihn · · ·Ueih1 (1) with 
n ∈ N, hj ∈ Msa. Therefore, given u ∈ Uc(M), it follows from (4) that

Uw(u) = UU ih ···U ih (1)(u) = Ueihn . . . Ueih1Ueih1 . . . Ueihn (u) ∈ Eu ⊆ Uc(M).

e n e 1
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We finally observe that the equality 
⋃

w∈Uc(M)

Ew = Uc(M) follows trivially from the 

above arguments.

3. Surjective isometries between principal components

We begin by observing that Theorem 2.9 in [16] decodes the main properties of a 
surjective isometry between the sets of unitary elements in two unital JB∗-algebras. In 
the next theorem we establish an analogous version of the just quoted result for surjective 
isometries between the principal components of the sets of unitary elements. The original 
proof requires a modified argument.

Theorem 3.1. Let Δ : U0(M) → U0(N) be a surjective isometry, where M and N are uni-
tal JB∗-algebras. Suppose u, v ∈ U0(M) with ‖u −v‖ < 1

2 . Then the following statements 
hold:

(1) For all x, y ∈ U0(M) we have∥∥Uv(x−1) − Uv(y−1)
∥∥ = ‖Uv(x∗) − Uv(y∗)‖ = ‖x∗ − y∗‖ = ‖x− y‖.

(2) The constant K = 2 − 2‖u − v‖ > 1 satisfies that

‖Uv(w∗) − w‖ =
∥∥Uv(w−1) − w

∥∥ ≥ K‖w − v‖,

for all w in the set

L0
u,v = {w ∈ U0(M) : ‖u− w‖ = ‖Uv(u−1) − w‖ = ‖Uv(u∗) − w‖ = ‖u− v‖}.

(3) There exists w ∈ U0(N) satisfying

Uw(Δ(u)∗) = Δ (Uv(u∗)) ,

and

‖Uw(x∗) − Uw(y∗)‖ = ‖x− y‖, ∀x, y ∈ U0(N).

(4) The equalities Δ(Uv(u∗)) = Δ(Uv(u−1)) = UΔ(v)(Δ(u)−1) = UΔ(v)(Δ(u)∗) hold.

Proof. Let us note that Theorem 2.9 in [16] proves that the same conclusion hold for 
every surjective isometry Δ : U(M) → U(N).

Since U0(M) ⊆ U(M), statements (1) and (2) follow directly from the same argument 
in [16, Theorem 2.9(a)] (see also [16, Lemma 2.8]).

(3) Let us consider the u-isotope M(u), and observe that v ∈ U(M(u)) (cf. [16, Lemma 
2.1(b)]). Let B denote the JB∗-subalgebra of M(u) generated by v and the unit of M(u), 
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that is, u. The Shirshov-Cohn theorem assures that B is a JB∗-subalgebra of B(H), for 
some complex Hilbert space H, and we can further assume that u is the unit in B(H)
(cf. [26, Theorem 7.2.5] and [51, Corollary 2.2]). Moreover, u can be identified with the 
unit of B(H). We shall use juxtaposition for the product in B(H), and the symbol 
 for 
its involution.

It is worth noting that when M and B are regarded as JB∗-triples, the triple product 
in B is precisely {·, ·, ·}M |B×B×B. At the same time, the triple product in B can be 
expressed in terms of the associative product of B(H). By Proposition 2.6 the element 
Uv(u∗) lies in U0(M), and hence we can apply Δ at this element and compute the next 
distances:

‖Δ(u) − Δ(Uv(u∗))‖N = ‖u− Uv(u∗)‖M = ‖u− {v, u, v}M‖M = ‖u− {v, u, v}B‖B
= ‖u− {v, u, v}

B(H)‖B(H) = ‖u− vu�v‖
B(H)

= ‖u− vv‖
B(H) = ‖v� − v‖

B(H) ≤ ‖v� − u‖
B(H) + ‖u− v‖

B(H)

= 2‖u− v‖
B(H) = 2‖u− v‖B = 2‖u− v‖M < 1.

.

Actually, there is another argument which avoids any use of the Shirshov-Cohn the-
orem. Namely, since B is the JB∗-subalgebra of the u-isotope M(u) generated by the 
unitary v –which is a unitary in M(u) [16, Lemma 2.1(b)]– and the unit of M(u) –i.e. 
u– it must be isometrically Jordan ∗-isomorphic to a unital commutative C∗-algebra, 
that is, to some C(Ω) for an appropriate compact Hausdorff space Ω, and under this 
identification, u corresponds to the unit (cf. [26, 3.2.4. The spectral theorem] or [11, 
Proposition 3.4.2 and Theorem 4.1.3(v)]). So, working in this commutative unital C∗-
algebra B ∼= C(Ω), we can compute the above distances in an even easier setting.

We are in a position to apply Lemma 2.2(b) in [16] to assure the existence of a unitary 
w ∈ U(N) satisfying

Uw(Δ(u)∗) = Δ (Uv(u∗)) .

However, by hypotheses ‖Δ(u) − Δ(v)‖ = ‖u − v‖ < 1
2 , and consequently, [16, Lemma 

2.2(b)] also guarantees that

‖w − Δ(v)‖ ≤ ‖w − Δ(u)‖ + ‖Δ(u) − Δ(v)‖ ≤ ‖Δ(u) − Δ(Uv(u∗))‖ + 1
2 < 2.

Since Δ(v) ∈ U0(N), Theorem 2.3 implies that w belongs to the principal component of 
U(N), that is, w ∈ U0(N).

Now, it follows from the fact that the mapping Uw is an isometry that

‖Uw(x∗) − Uw(y∗)‖ = ‖Uw(x−1) − Uw(y−1)‖ = ‖x−1 − y−1‖ = ‖x∗ − y∗‖ = ‖x− y‖,

for all x, y ∈ U0(N) ⊆ U(N).
(4) Let w ∈ U0(N) be the element given by (3).
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Let us define the mappings ϕ : U0(M) → U0(M) and ψ : U0(N) → U0(N) given by

ϕ(x) := Uv(x−1) = Uv(x∗), x ∈ U0(M),

and

ψ(y) := Uw(y−1) = Uw(y∗), y ∈ U0(N),

respectively. They are well defined thanks to Proposition 2.6.
We aim to apply [29, Theorem 2.4] to ϕ, ψ and Δ at a = u and c = v. For this 

purpose let us observe that, since v and w are unitaries lying in the respective principal 
components, ϕ and ψ are distance preserving bijections (cf. [16, Lemma 2.1(d)]).

On the other hand, the element v is invertible with v∗ as its inverse in M . That implies 
that ϕ(v) = Uv(v−1) = Uv(v∗) = v and

ϕ ◦ ϕ(x) = Uv((Uv(x−1))−1) = Uv((Uv(x∗))∗) = Uv(Uv∗(x)) = Uv(Uv−1(x)) = x,

for every x ∈ U0(M) (cf. (10)). That is, ϕ ◦ ϕ is the identity mapping on U0(M). By 
applying that Uw(Δ(u)∗) = Δ (Uv(u∗)) we have

ψ(Δ(u)) = Uw(Δ(u)∗) = Δ (Uv(u∗)) = Δ (ϕ(u)) , and

ψ (Δ (ϕ(u))) = Uw ((Δ (Uv(u∗)))∗) = (Uw∗ (Δ (Uv(u∗))))∗ = Δ(u)∗∗ = Δ(u).

Therefore the mappings ϕ, ψ, Δ, a = u and c = v satisfy all hypotheses in [29, 
Theorem 2.4], and hence the mentioned result implies that Uw(Δ(v)∗) = Δ(v). Since 
‖w − Δ(v)‖ < 2, [16, Lemma 2.3] guarantees that w = Δ(v). Having in mind that 
Uw(Δ(u)∗) = Δ (Uv(u∗)) we get Δ(Uv(u∗)) = UΔ(v)(Δ(u)∗), as desired. �

The next technical result is a refinement of [16, Lemma 3.3], which is in fact a Jordan 
version of [31, Lemma 7]. The main difference is that in the present result we have a 
surjective isometry between the principal components of the sets of unitaries in two 
unital JB∗-algebras, while in [16, Lemma 3.3] we find a surjective isometry between the 
whole sets of unitaries of two unital JB∗-algebras. Since the principal component are a
self-adjoint quadratic subset of the set of unitaries (cf. Proposition 2.6), the arguments in 
the proof of [16, Lemma 3.3] are also valid in our setting. So, the details will be omitted.

Lemma 3.2. Let M and N be two unital JB∗-algebras. Let {uk : 0 ≤ k ≤ 2n} be a subset 
of U0(M) (with n ∈ N) and let Φ : U0(M) → U0(N) be a mapping such that

Uuk+1(u∗
k) = uk+2, and Φ(Uuk+1(u∗

k)) = UΦ(uk+1)(Φ(uk)∗),

for all 0 ≤ k ≤ 2n − 2. Then Uu2n−1 (u∗
0) = u2n and

Φ
(
Uu n−1 (u∗

0)
)

= UΦ(u n−1 )Φ(u0)∗.
2 2
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Before addressing our main goal, we shall explore the behavior of those unital surjec-
tive isometries over U -products of exponentials of self-adjoint elements. The next result 
is the technical core of the arguments.

Proposition 3.3. For each natural n the identity

Δ0(Ueihn · · ·Ueih1 (eih0)) = UΔ0(eihn ) · · ·UΔ0(eih1 )(Δ(eih0)),

holds for every couple of unital JB∗-algebras M and N, every unital (i.e., Δ0(1M
) = 1

N
) 

surjective isometry Δ0 : U0(M) → U0(N) and every hn, . . . , h1, h0 ∈ Msa. Furthermore, 
if we fix a couple of unital JB∗-algebras M and N, and we denote by Iso1(U0(M), U0(N))
the set of all surjective unital isometries between U0(M) and U0(N), then there exists a 
mapping k : Msa × Iso1(U0(M), U0(N)) → Nsa satisfying the following properties:

(a) If we fix Δ0 ∈ Iso1(U0(M), U0(N)), the mapping k(·, Δ0) : Msa → Nsa is a surjective 
(real) linear isometry;

(b) k(·, Δ0)−1 = k(·, Δ−1
0 ), for every Δ0 ∈ Iso1(U0(M), U0(N));

(c) Δ0(eith) = eitk(h,Δ0) for all Δ0 ∈ Iso1(U0(M), U0(N)), h ∈ Msa and t ∈ R.

Proof. Concerning the first identity, we observe that it suffices to prove that for each 
natural n the identity

Δ0(Ueihn · · ·Ueih1 (1
M

)) = UΔ0(eihn ) · · ·UΔ0(eih1 )(1N
) (20)

holds for every Δ0 and hn, . . . , h1 ∈ Msa as in the hypotheses. Namely, if h0 ∈ Msa and 
the previous identity (20) is true we have

Δ0(Ueihn · · ·Ueih1 (eih0)) = Δ0(Ueihn · · ·Ueih1U
ei

h0
2

(1
M

))

= UΔ0(eihn ) · · ·UΔ0(eih1 )UΔ0(ei
h0
2 )

(1
N

) = UΔ0(eihn ) · · ·UΔ0(eih1 )Δ0(U
ei

h0
2

(1
M

))

= UΔ0(eihn ) · · ·UΔ0(eih1 )(Δ0(eih0)),

where at the penultimate equality we applied (20).
We shall prove (20) by induction on n. Let us first assume that n = 1, and fix Δ0 and 

h1 ∈ Msa as in the hypotheses. Fix an arbitrary h0 ∈ Msa and consider the continuous 
mapping Eh0 : R → U0(M), Eh0(t) = eith0 . We begin our argument by proving that the 
identity

Δ0(Uvt(vs)) = UΔ0(vt)(Δ0(v∗s )∗) (21)

holds for every vs = eish0 = Eh0(s) and vt = eith0 = Eh0(t) in Eh0(R).
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Namely, choose a positive integer m such that

e
‖i(s+t)h0‖

M
2m − 1 <

1
2 , and hence

∥∥∥e i(s+t)h0
2m − 1

M

∥∥∥
M

≤ e
‖i(s+t)h0‖

M
2m − 1 <

1
2 . (22)

Consider now the family {ul : 0 ≤ l ≤ 2m+1} ⊆ U0(M), where

ul = v∗s ◦ e
il(s+t)h0

2m = e−ish0 ◦ e
il(s+t)h0

2m = (2) = e

(
−is+ il(s+t)

2m

)
h0 , 0 ≤ l ≤ 2m+1.

Having in mind (2) it is not hard to see that

u0 = v∗s , u2m = vt, u2m+1 = Uvt(vs),

Uul+1(ul
∗) = Uul+1(u−1

l ) = ul+2, for any 0 ≤ l ≤ 2m+1 − 2,

and ‖ul+1 − ul‖ =
∥∥∥vs∗ ◦ e i(l+1)(s+t)h0

2m − vs
∗ ◦ e

il(s+t)h0
2m

∥∥∥
≤ ‖vs∗‖

∥∥∥e il(s+t)h0
2m ◦ e

i(s+t)h0
2m − e

il(s+t)h0
2m

∥∥∥
≤

∥∥∥e il(s+t)h0
2m

∥∥∥ ∥∥∥e i(s+t)h0
2m − 1

M

∥∥∥
≤ e

‖i(s+t)h0‖
2m − 1 <

1
2 , for all 0 ≤ l ≤ 2m+1 − 1.

(23)

An application of Theorem 3.1(3) to Δ0 and the unitaries ul+1 and ul gives

Δ0(Uul+1(ul
∗)) = UΔ0(ul+1)(Δ0(ul)∗), for every l ∈ {0, . . . , 2m+1 − 1}. (24)

It follows from (23) and (24) that we are in a position to apply Lemma 3.2 with 
Φ = Δ0 and n = m + 1 to deduce that

Δ0(Uvt(vs)) = Δ0(Uvt((vs∗)∗)) = Δ0(Uu2m (u0
∗))

= UΔ0(u2m )(Δ0(u0)∗) = UΔ0(vt)(Δ0(vs∗)∗),

which concludes the proof of (21).
Let us see some consequences derived from (21). If in this identity we take t = 1, 

s = 0 and h0 = h1 ∈ Msa we get

Δ0(ei2h1) = Δ0(Ueih1 (1
M

)) = UΔ0(eih1 )(1N
) = Δ0(eih1)2, (25)

which, in particular, proves (20) for n = 1.
Second, by replacing t = 0 and h0 = h1 ∈ Msa in (21) we get

Δ0(eish1) = Δ0(e−ish1)∗, ∀h1 ∈ Msa, ∀s ∈ R. (26)

The most important consequence derived from (21) (and (26)) assures that, for each 
h0 ∈ Msa, the mapping
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R → U0(N), t �→ Δ0(eith0)

is a uniformly continuous one-parameter family of unitaries satisfying the hypotheses of 
the Jordan version of Stone’s one-parameter theorem in [16, Theorem 3.1]. Namely,

UΔ0(eith0 )(Δ0(eish0)) = UΔ0(eith0 )(Δ0(e−ish0)∗) = Δ0(Ueith0 (eish0))

= Δ0(ei(2t+s)h0).

Therefore there exists a unique k(h0, Δ0) ∈ Nsa, depending on h0 and Δ0, satisfying

Δ0(eith0) = eitk(h0,Δ0), for all t ∈ R. (27)

We observe that the mapping k(·, Δ0) : Msa → Nsa is well defined, and moreover, 
by (27), 1

N
= Δ0(eit0) = eitk(0,Δ0), for all t ∈ R, which assures that k(0, Δ0) = 0. 

Let us prove that this mapping is a surjective isometry, and as a consequence of the 
Mazur–Ulam theorem, it must be a surjective (real) linear isometry.

Similarly, by considering the surjective isometry Δ−1
0 : U0(N) → U0(M), the above 

arguments prove that for each k0 ∈ Nsa there exists a unique h(k0, Δ−1
0 ) ∈ Msa, de-

pending on k0 and Δ−1
0 , satisfying

Δ−1
0 (eitk0) = eith(k0,Δ−1

0 ), for all t ∈ R. (28)

As before, the mapping h(·, Δ−1
0 ) : Nsa → Msa is well defined. By combining (27) and 

(28) we get

eith0 = Δ−1
0 Δ0(eith0) = Δ−1

0

(
eitk(h0,Δ0)

)
= eith(k(h0,Δ0),Δ−1

0 ), and

eitk0 = Δ0Δ−1
0 (eitk0) = Δ0

(
eith(k0,Δ−1

0 )
)

= eitk(h(k0,Δ−1
0 ),Δ0),

for all t ∈ R, h0 ∈ Msa, k0 ∈ Nsa. Taking a simple derivative at t = 0 we arrive to the 
identities

h(k(h0,Δ0),Δ−1
0 ) = h0, and k(h(k0,Δ−1

0 ),Δ0) = k0,

for all h0 ∈ Msa, k0 ∈ Nsa, that is, k(·, Δ0) and h(·, Δ−1
0 ) are bijections with h(·, Δ−1

0 ) =
k(·, Δ0)−1.

We shall next prove that k(·, Δ0) : Msa → Nsa is an isometry. This is a standard 
procedure already in [32,28,16]. Given h0, h′

0 ∈ Msa and a real number t it is well known 
that

‖ · ‖- lim
t→0+

eith0 − eith
′
0

t
= ‖ · ‖- lim

t→0+

eith0 − 1
M

t
− eith

′
0 − 1

M

t
= ih0 − ih′

0.

It follows from (27) that
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‖eitk(h0,Δ0) − eitk(h′
0,Δ0)‖

N
= ‖Δ0(eith0) − Δ0(eith

′
0)‖

N
= ‖eith0 − eith

′
0‖

M
.

Therefore, we deduce from the uniqueness of the limits above that

‖k(h0,Δ0) − k(h′
0,Δ0)‖N

= ‖h0 − h′
0‖M

,

witnessing that k(·, Δ0) : Msa → Nsa is a surjective isometry, and hence a surjective 
linear isometry by the Mazur–Ulam theorem. We have shown the following: for each 
unital surjective isometry Δ0 : U0(M) → U0(N)

the mapping k(·,Δ0) : Msa → Nsa is a surjective linear isometry. (29)

We shall next prove the following identity

Δ0(Ueih1 (eih0)) = UΔ0(eih1 )(Δ0(eih0)), for all h1, h0 ∈ Msa. (30)

Namely, fix h1 ∈ Msa and consider the surjective isometry Δh1
0 := UΔ0(eih1 )∗Δ0

Ueih1 : U0(M) → U0(N), which is well defined by Theorem 2.3. By (25) we obtain

Δh1
0 (1

M
) = UΔ0(eih1 )∗Δ0Ueih1 (1

M
) = UΔ0(eih1 )∗Δ0(e2ih1) = UΔ0(eih1 )∗(Δ0(eih1)2)

= UΔ0(eih1 )∗UΔ0(eih1 )(1M
) = 1

N
,

witnessing that the mapping Δh1
0 = UΔ0(eih1 )∗Δ0Ueih1 is unital.

Let k(·, Δ0), k(·, Δh1
0 ) : Msa → Nsa be the surjective linear isometries given by (27)

and (29) for Δ0 and Δh1
0 , respectively.

Choose, by continuity, ε > 0 such that

‖eih1 − e−ith‖ <
1
2 , ∀t ∈ R, h ∈ Msa with |t− 1| < ε, and ‖h + h1‖ < ε.

By applying Theorem 3.1(3) to Δ0 and the unitaries eih1 , e−ith ∈ U0(M) with t in R
and h ∈ Msa satisfying ‖h + h1‖ < ε and |t − 1| < ε we conclude that

Δ0(Ueih1 (eith)) = UΔ0(eih1 )((Δ0(e−ith))∗) = (26) = UΔ0(eih1 )(Δ0(eith)).

The previous identity implies, by the definition of k(·, Δ0) and k(·, Δh1
0 ), that

eitk(h,Δ0) = eitk(h,Δh1
0 ), ∀t ∈ R, h ∈ Msa with |t− 1| < ε, and ‖h + h1‖ < ε.

If we fix an arbitrary h ∈ Msa with ‖h + h1‖ < ε and we take a simple derivative at 
t = 1 in the above equality we obtain

k(h,Δ0) = k(h,Δh1
0 ), for all h ∈ Msa with ‖h + h1‖ < ε,
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and the linearity of k(·, Δ0), k(·, Δh1
0 ) implies that k(·, Δ0) = k(·, Δh1

0 ).
Now, it follows from (27) that

Δ0(eith0) = eitk(h0,Δ0) = eitk(h0,Δ
h1
0 ) = Δh1

0 (eith0) = UΔ0(eih1 )∗Δ0Ueih1 (eith0),

for all real t and all h0 ∈ Msa, which concludes the proof of (30).
Let us now proceed with the final part in the induction argument to get (20). Suppose 

by the induction hypothesis that (20) holds for every unital surjective isometry Δ0 and 
hn, . . . , h1 ∈ Msa as in the hypotheses. Take an arbitrary unital surjective isometry Δ1 :
U0(M) → U0(N) and hn+1, hn, . . . , h1 ∈ Msa. Set w0 = e2ihn+1 and w̃0 = Δ1(e2ihn+1) ∈
U0(N). We consider the unital JB∗-algebras given by the isotopes M(w0) and N(w̃0) with 
the corresponding Jordan products ◦w0 and ◦w̃0 and involutions ∗w0 and ∗w̃0 , respectively. 
Since w0 ∈ U0(M) and w̃0 ∈ U0(N), it follows from (13) that

U0(M(w0)) = U0(M), and U0(N(w̃0)) = U0(N),

and thus Δ̃1 : U0(M(w0)) = U0(M) → U0(N(w̃0)) = U0(N), Δ̃1(a) = Δ1(a) is a unital 
(i.e., Δ1(w0) = w̃0) surjective isometry.

The mapping Ueihn+1 : M → M(w0) is a unital surjective linear isometry, and hence 
a Jordan ∗-isomorphism between these two unital JB∗-algebras (cf. [16, Lemma 2.1(d)]
or [53]). Therefore ĥk := Ueihn+1 (hk) ∈ (M(w0))sa for all 1 ≤ k ≤ n.

By applying the induction hypothesis to Δ̃1 : U0(M(w0)) → U0(N(w̃0)), and 
ĥ1, . . . , ̂hn we obtain

Δ1U
(w0)
expw0 (iĥn)

. . . U
(w0)
expw0 (iĥ1)

(w0) = Δ̃1U
(w0)
expw0 (iĥn)

. . . U
(w0)
expw0 (iĥ1)

(w0)

= U
(w̃0)
Δ̃1(expw0 (iĥn))

. . . U
(w̃0)
Δ̃1(expw0 (iĥ1))

(w̃0).
(31)

Let us carefully decode the identity in (31). First by (16) and the fact that M(w0) =
M(w∗

0 ), for any v1, v2 ∈ U0(M) we have

U (w0)
v1

(v2) = Uv1Uw∗
0 (v2) = Uv1Ue−2ih1 (v2). (32)

Furthermore, since, as before, expw0
denotes the exponential in the unital JB∗-algebra 

M(w0), it follows from the fact that Ueihn+1 : M → M(w0) is a Jordan ∗-isomorphism 
that

expw0
(iĥk) = expw0

(iUeihn+1 (hk)) = Ueihn+1 (eihk), for all 1 ≤ k ≤ n, (33)

and by the fundamental identity (3) we deduce

U
(w0)
expw0 (iĥk)

= Uexpw0 (iĥk)Uw0∗ = UU
e
ihn+1 (eihk )Uw0∗

= U ih U ih U ih U −2ih = U ih U ih U −ih ,
(34)
e n+1 e k e n+1 e n+1 e n+1 e k e n+1
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where in the last step we applied that eihn+1 and e−2ihn+1 operator commute.
Having in mind (32) and (34), the left hand side of (31) writes in the form

Δ1U
(w0)
expw0 (iĥn)

. . . U
(w0)
expw0 (iĥ1)

(w0)

= Δ1Ueihn+1UeihnUe−ihn+1 . . . Ueihn+1Ueih1Ue−ihn+1 (e2ihn+1)

= Δ1Ueihn+1UeihnUeihn−1 . . . Ueih2Ueih1 (1
M

).

(35)

To deal with the right hand side of (31) we observe that, by (33), for 1 ≤ k ≤ n we have

U
(w̃0)
Δ̃1(expw0 (iĥk))

= U
(w̃0)
Δ1(expw0 (iĥk))

= UΔ1(U
e
ihn+1 (eihk ))Uw̃∗

0

= (by (30)) = UU
Δ1(eihn+1)

Δ1(eihk )Uw̃∗
0

= (by (3))

= UΔ1(eihn+1 )UΔ1(eihk )UΔ1(eihn+1 )UΔ1(e2ihn+1 )∗

= (by (25)) = UΔ1(eihn+1 )UΔ1(eihk )UΔ1(eihn+1 )U(Δ1(eihn+1 )2)∗

= UΔ1(eihn+1 )UΔ1(eihk )UΔ1(eihn+1 )∗

= UΔ1(eihn+1 )UΔ1(eihk )U
−1
Δ1(eihn+1 ),

and hence the right hand side of (31) writes in the form

U
(w̃0)
Δ̃1(expw0 (iĥn))

. . . U
(w̃0)
Δ̃1(expw0 (iĥ1))

(w̃0)

= UΔ1(eihn+1 )UΔ1(eihn ) . . . UΔ1(eih1 )U
−1
Δ1(eihn+1 )(Δ1(e2ihn+1))

= (by (25)) = UΔ1(eihn+1 )UΔ1(eihn ) . . . UΔ1(eih1 )U
−1
Δ1(eihn+1 )(Δ1(eihn+1)2)

= UΔ1(eihn+1 )UΔ1(eihn ) . . . UΔ1(eih1 )(1N
).

(36)

Finally, (31), (35) and (36) give

Δ1Ueihn+1Ueihn . . . Ueih2Ueih1 (1
M

) = UΔ1(eihn+1 )UΔ1(eihn ) . . . UΔ1(eih1 )(1N
).

By induction, we have (20) for every Δ0, n ∈ N, and hn, . . . , h1 ∈ Msa. �
The notion of orthogonality has been studied and developed for general elements in a 

JB∗-triple (cf. [9]). Elements a, b in a JB∗-triple E are called orthogonal (written a ⊥ b) 
if L(a, b) = 0. It is known that a ⊥ b ⇔ {a, a, b} = 0 ⇔ {b, b, a} = 0 ⇔ b ⊥ a (see [9, 
Lemma 1]).

Theorem 3.4. Let Δ : U0(M) → U0(N) be a surjective isometry between the principal 
components of the unitary sets of two unital JB∗-algebras. Then there exist k1, . . . , kn ∈
Nsa, a central projection p ∈ N and a Jordan ∗-isomorphism Φ : M → N such that
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Δ(u) = p ◦ Ueikn . . . Ueik1 Φ(u) + (1
N
− p) ◦ (Ue−ikn . . . Ue−ik1 Φ(u))∗ ,

for all u ∈ U0(M). Consequently, M and N are Jordan ∗-isomorphic, and there exists 
a surjective real linear isometry (i.e., a real linear triple isomorphism) from M onto N
whose restriction to U0(M) is Δ.

Proof. Since Δ(1
M

) ∈ U0(N), Theorem 2.3 implies the existence of k1, . . . , kn ∈ Nsa

such that Δ(1
M

) = Ueikn . . . Ueik1 (1
N

). It follows from Proposition 2.6 that the mapping 
Δ0 = Ue−ik1 . . . Ue−ikn Δ : U0(M) → U0(N) is a surjective isometry, and by construction 
Δ0(1M

) = 1
N

.
Let k(·, Δ0) : Msa → Nsa be the surjective linear isometry given by Proposition 3.3.
The self-adjoint part of any JB∗-algebra is a JB-algebra. Thus, k(·, Δ0) : Msa → Nsa

is a surjective linear isometry between JB-algebras. Theorem 1.4 and Corollary 1.11 
in [35] guarantee the existence of a central symmetry k(1

M
, Δ0) in Nsa and a Jordan 

∗-isomorphism Φ : M → N such that

k(h,Δ0) = k(1
M
,Δ0) ◦ Φ(h), (37)

for every h ∈ Msa.
The rest of the proof follows similar arguments to those in the proof of [16, Theo-

rem 3.4]. That is, by construction there exists a central projection p in N such that 
k(1

M
, Δ0) = 2p − 1

N
= p − (1

N
− p), where p and (1

N
− p) clearly are orthogonal 

projections in N , and for any n > 0,

(2p− 1
N

)n = (p− (1
N
− p))n = p + (−1)n(1

N
− p).

The mapping Δ0 can be expressed in terms of p and Φ by some simple computations. 
Namely, given an arbitrary h ∈ Msa, we have

Δ0(eih) = eik(h,Δ0) = eik(1
M

,Δ0)◦Φ(h) = ei(2p−1
N

)◦Φ(h) =
∞∑

n=0

(i(2p− 1
N

) ◦ Φ(h))n

n! .

We now make use of the properties of Φ as Jordan ∗-isomorphism and the expression of 
(2p− 1

N
)n given above. It is worth noting that k(1

M
, Δ0) (and hence p) is central, and 

so it operator commutes with any element in N . Therefore,
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Δ0(eih) =
∞∑

n=0

in(2p− 1
N

)n ◦ Φ(h)n

n! =
∞∑

n=0

in (p + (−1)n(1
N
− p)) ◦ Φ(hn)

n!

=
∞∑

n=0

inp ◦ Φ(hn)
n! +

∞∑
n=0

in(−1)n(1
N
− p) ◦ Φ(hn)
n!

= p ◦
∞∑

n=0

inΦ(hn)
n! + (1

N
− p) ◦

∞∑
n=0

in(−1)nΦ(hn)
n!

= p ◦ Φ
( ∞∑

n=0

inhn

n!

)
+ (1

N
− p) ◦ Φ

( ∞∑
n=0

in(−1)nhn

n!

)
= p ◦ Φ(eih) + (1

N
− p) ◦ Φ(e−ih) = p ◦ Φ(eih) + (1

N
− p) ◦ Φ(eih)∗.

(38)

Let us fix an arbitrary element u ∈ U0(M). By Theorem 2.3, there exist a natural m
and h1, . . . , hm ∈ Msa such that u = Ueihm · · ·Ueih1 (1

M
). According to this expression, 

we can apply Proposition 3.3 and (38) to compute the evaluation of Δ0 at the element 
u:

Δ0(u) = Δ0(Ueihm · · ·Ueih1 (1
M

)) = UΔ0(eihm ) · · ·UΔ0(eih1 )(Δ0(1M
))

= U(
p◦Φ(eihm )+(1

N
−p)◦Φ(eihm )∗

) · · ·U(
p◦Φ(eih1 )+(1

N
−p)◦Φ(eih1 )∗

)(1
N

).

Since p is a central projection in N , it is not hard to see that

Up◦a+(1
N
−p)◦b = Up◦a + U(1

N
−p)◦b = p ◦ Ua + (1

N
− p) ◦ Ub,

for all a, b ∈ N . The orthogonality of p and 1
N
− p can be now combined with the fact 

that Φ is a Jordan ∗-isomorphism to conclude that

Δ0(u) = p ◦ Φ(Ueihm · · ·Ueih1 (1
M

)) + (1
N
− p) ◦ Φ(Ueihm · · ·Ueih1 (1

M
))∗

= p ◦ Φ(u) + (1
N
− p) ◦ Φ(u)∗.

Finally, by the definition of Δ0, we arrive at

Δ(u) = Ueikn . . . Ueik1 Δ0(u) = Ueikn . . . Ueik1 (p ◦ Φ(u) + (1
N
− p) ◦ Φ(u)∗) ,

= p ◦ Ueikn . . . Ueik1 Φ(u) + (1
N
− p) ◦ (Ue−ikn . . . Ue−ik1 Φ(u))∗ ,

for all u ∈ U0(M), which concludes the proof. �
We can now strengthen the conclusion in [16, Corollary 3.8] where it is deduced that 

two unital JB∗-algebras M and N are isometrically isomorphic as (complex) Banach 
spaces if, and only if, they are isometrically isomorphic as real Banach spaces if, and 
only if, there exists a surjective isometry Δ : U(M) → U(N).
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Corollary 3.5. Let M and N be two unital JB∗-algebras. Then the following statements 
are equivalent:

(a) M and N are Jordan ∗-isomorphic;
(b) There exists a surjective isometry Δ : U(M) → U(N) satisfying Δ(1

M
) ∈ U0(N);

(c) There exists a surjective isometry Δ : U0(M) → U0(N).

Proof. The implication (a) ⇔ (b) is almost explicit in [16, Corollary 3.8], we include 
here an alternative argument.

The implication (a) ⇒ (b) is clear because every Jordan ∗-isomorphism is an isometry 
and maps unitaries to unitaries.

(b) ⇒ (c) Suppose there exists a surjective isometry Δ : U(M) → U(N) satisfy-
ing Δ(1

M
) ∈ U0(N). Since every surjective isometry maps connected components to 

connected components, Δ(U0(M)) is a connected component of U(N) and contains an 
element in U0(N), the equality Δ(U0(M)) = U0(N) holds, and thus Δ|U0(M) : U0(M) →
U0(N) is a surjective isometry.

Finally, the implication (c) ⇒ (a) is a consequence of Theorem 3.4. �
If in Corollary 3.5 the set U(M) is connected all the statements are also equivalent to 

the existence of a surjective isometry Δ : U(M) → U(N).
Let M be a unital JB∗-algebra, let Uc(M) be a connected component of U(M), and 

let w be an element in Uc(M). We shall be mainly interested in the case in which 
Uc(M) �= U0(M). We have already commented that Uc(M) is the principal component 
of the unitary set of the w-isotope M(w) (cf. Remark 2.5). When particularized to the 
corresponding isotopes, the previous Theorem 3.4 can be re-stated as follows.

Theorem 3.6. Let M and N be unital JB∗-algebras. Let Δ : Uc(M) → Uc(N) be a 
surjective isometry between two connected components of U(M) and U(N). Suppose w1 ∈
Uc(M) and w2 ∈ Uc(N). Then there exist k1, . . . , kn ∈ (N(w2))sa, a central projection 
p ∈ N(w2) and a Jordan ∗-isomorphism Φ : M(w1) → N(w2) such that

Δ(u) = p ◦w2 U
(w2)
expw2 (ikn) . . . U

(w2)
expw2 (ik1)Φ(u)

+ (w2 − p) ◦w2

(
U

(w2)
expw2 (−ikn) . . . U

(w2)
expw2 (−ik1)Φ(u)

)∗w2
,

for all u ∈ Uc(M). In particular, the unital JB∗-algebras M(w1) and N(w2) are Jordan 
∗-isomorphic, and there exists a surjective real linear isometry (i.e., a real linear triple 
isomorphism) from M onto N whose restriction to Uc(M) is Δ.

We are now in position to exhibit additional, and deep, differences between the natural 
properties of the connected components of the unitary group in a unital C∗-algebra with 
respect to those in the unitary set of a unital JB∗-algebra.
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Remark 3.7. R. Braun, W. Kaup and H. Upmeier show in [8, Example 5.7] that there 
exists a unital JB∗-algebra M with unit 1

M
containing a unitary element w for which 

we cannot find a surjective linear isometry T : M → M mapping 1
M

to w, that is, the 
group of all surjective linear isometries on M –equivalently, triple automorphisms– on M
is not transitive on U(M). It is further shown in [11, Antitheorem 3.4.34] that the unital 
JB∗-algebras M and M(w) are not Jordan ∗-isomorphic. For the concrete example it 
suffices to consider the transposition on M2(C), the unit circle T in C, the JB∗-algebra

M = {a : T → M2(C) continuous : a(λ)t = a(λ) for all λ ∈ T}

of all continuous functions from T to the JB∗-algebra of all symmetric (complex) matrices 
in M2(C) equipped with the natural Jordan product a ◦ b := 1

2 (ab + ba), and the unitary 

w : T → M2(C), w(λ) =
(
λ 0
0 1

)
.

Let Uc(M) denote the connected component of U(M) containing w. We can now 
conclude that there exists no surjective isometry from U0(M) onto Uc(M). Otherwise, 
Theorem 3.6 would imply that M and M(w) are Jordan ∗-isomorphic, which is impos-
sible.

Consider now the unitary v = w2 ∈ M . Let U c̃(M) denote the connected component 
of U(M) containing v. Since v is the square of w and the mapping Uw : M → M(v) is a 
Jordan ∗-isomorphism mapping 1

M
to v (cf. Remark 2.4), it follows that Uw

(
U0(M)

)
=

U c̃(M).

3.1. Extensibility of surjective isometries between Jordan unitary sets

We have already noted the necessity of working with surjective real linear isometries 
when studying surjective isometries between connected components of the unitary sets 
of two unital JB∗-algebras. More concretely, contrary to the conclusions in the setting 
of unital C∗-algebras, Jordan ∗-isomorphisms (for the original Jordan product and invo-
lution) are not enough to describe these maps (cf. Theorem 3.6 and Remark 3.7).

As observed by O. Hatori and L. Molnár in the setting of commutative unital C∗-
algebras (see [32, Corollary 8]), and subsequently by Hatori in the more general case of 
unital C∗-algebras A and B, a surjective isometry Δ : U(A) → U(B) need not admit 
an extension to a surjective real linear isometry from A onto B (cf. [28, Corollary 5.1]). 
We are now in a position to consider the extendibility of a surjective isometry between 
the unitary sets of two unital JB∗-algebras. We include here a new argument based on 
a variant of the Russo–Dye theorem for unital JB∗-algebras due to J.D.M. Wright and 
M.A. Youngson [52].

Corollary 3.8. Let Δ : U(M) → U(N) be a surjective isometry between the unitary sets of 
two unital JB∗-algebras. Let {U0(M)} ∪{Uj(M) : j ∈ Λ} be the collection of all connected 
components of U(M). For each j ∈ Λ ∪ {0}, let Tj : M → N denote the surjective real 
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linear isometry extending the mapping Δ|Uj(M) : U j(M) → Δ(U j(M)) whose existence 
is assured by Theorem 3.6. Then the following statements are equivalent:

(a) Δ admits an extension to a surjective (real linear) isometry from M onto N ;
(b) The extensions Tj1 and Tj2 coincide for all j1, j2 ∈ Λ ∪ {0}.

Proof. (a) ⇒ (b) Suppose there exists a surjective isometry T : M → N such that 
T |U(M) = Δ. Fix j ∈ Λ ∪ {0}, by hypothesis, T (u) = Δ(u) = Tj(u) for all u ∈ Uj(M).

Fix u0 ∈ Uj(M). Let us consider the unital JB∗-algebra given by the u0-isotope 
M(u0). By the variant of the Russo–Dye theorem proved in [52, Corollary], the closed 
unit ball of the space M = M(u0) is the closed convex hull of the set

{expu0
(ih) : h ∈ (M(u0))sa}.

By applying Remark 2.5 we deduce that the latter set is contained in the principal 
component of U(M(u0)) which is precisely Uj(M). It follows from the real linearity of 
T and Tj , combined with the fact that these two maps coincide on Uj(M), that T = Tj

on the closed unit ball of M , and hence on the whole M .
(b) ⇒ (a) This implication is easy, it suffices to take T = Tj for any j ∈ Λ ∪ {0}. �
It is not hard to find surjective isometries between sets of unitary elements in two 

unital JB∗-algebras which are not extendable to surjective real linear isometries. Namely, 
as in Remark 3.7 we can find a unital JB∗-algebra M and a unitary element w0 such that 
the connected components U0(M) and Uc(M) are not isometric (where Uc(M) is the 
connected component of U(M) containing w0). Let us pick two surjective linear isometries 
T1, T2 : M → M with T1 �= T2 and Tj(U0(M)) = U0(M) for all j = 1, 2 –consider, for 
example, Tj = Uuj

with u1 �= u2 in U0(M). We define a mapping Δ : U(M) → U(M)
given by Δ(u) = T1(u) if u ∈ U0(M) and Δ(u) = T2(u) otherwise. The surjectivity of Δ is 
clear because Tj(U0(M)) = U0(M), and thus T2(U(M)\U0(M)) = U(M)\U0(M). Since, 
by Theorems 2.3 and 2.5, given u, v belonging to two different connected components of 
U(M) we have ‖u − v‖ = 2, it follows from the definition of Δ that it is an isometry. 
Obviously, Δ is non-extendable by Corollary 3.8.

Proposition 3.9. Let T, T0 : M → N be two real linear surjective isometries between 
two unital JB∗-algebras. Let us assume that T0 is a real linear Jordan ∗-isomorphism, 
and suppose that UT0(u0) = UT (u0) for all u0 ∈ U0(M). Then there exists a central 
projection p ∈ M such that T |M◦p≡M2(p) = T0|M◦p≡M2(p) and T |M◦(1−p)≡M2(1−p) =
−T0|M◦(1−p)≡M2(1−p).

Proof. Assume first that T is unital and hence a real linear Jordan ∗-isomorphism (cf. 
the comments in page 48). It follows from the assumptions that given h ∈ Msa we have

UT0(eith)(1) = UT (eith)(1),
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for all t ∈ R. Taking derivatives at t = 0 in the above equality we arrive at

2T0(ih) = 2UT0(ih),1(1) = 2UT (ih),1(1) = 2T (ih),

which proves that T0(ih) = T (ih) for all h ∈ Msa. We should recall that T and T0
are merely real linear maps. Having in mind that T and T0 are real linear Jordan ∗-
isomorphisms we deduce that

−T (h2) = T (ih)2 = T0(ih)2 = −T0(h2), for all h ∈ Msa,

witnessing that T and T0 coincide on positive elements of M . Since every element in Msa

writes as the orthogonal sum of two positive elements in M , we conclude that T and T0
coincide on Msa, and for each x ∈ M we set x = h + ik with h, k ∈ Msa to prove that

T (x) = T (h + ik) = T (h) + T (ik) = T0(h) + T0(ik) = T0(x).

We have therefore proved that T = T0 in this case.
By hypothesis, Id = UT0(1) = UT (1), and hence T (1)∗ = UT (1)(T (1)∗) = T (1), wit-

nessing that T (1) is a symmetry in N , that is, there exist two orthogonal projections 
q1, q2 ∈ N such that T (1) = q1−q2 and q1 +q2 = 1. Since Uq1 +Uq2 −2Uq1,q2 = Uq1−q2 =
Id = Uq1+q2 = Uq1 + Uq2 + 2Uq1,q2 , it can be easily deduced that Uq1,q2 = 0 and hence 
N = N2(q1) ⊕∞ N2(q2), which implies that q1 and q2 are central projections.

Since T0 is a real linear Jordan ∗-isomorphism, the elements p1 = T−1
0 (q1) and 

p2 = T−1
0 (q2) are two orthogonal central projections in M with p1 + p2 = 1 and 

M = M2(p1) ⊕∞M2(p2). Under these circumstances, every unitary u in M is of the form 
u = u1+u2 with uj ∈ M2(pj), and U0(M) identifies with U0(M2(p1)) ×U0(M2(p2)). It is 
clear from the hypotheses that T0 is the orthogonal sum of the two real linear Jordan ∗-
isomorphisms T0|M2(p1) : M2(p1) → N2(q1) and T0|M2(p2) : M2(p2) → N2(q2). Moreover, 
since T is a surjective real linear isometry (and hence a real linear triple isomorphism, 
cf. [17, Corollary 3.2] or [22, Corollary 3.4]) with T (1) = q1− q2. Therefore, the mapping 
T : M → N(q1 − q2) is a real linear Jordan ∗-isomorphism, and T writes as the orthog-
onal sum of the two real linear Jordan ∗-isomorphisms T |M2(p1) : M2(p1) → N2(q1) and 
T |M2(p2) : M2(p2) → N2(−q2).

We claim that the pairs T0|M2(p1), T |M2(p1) : M2(p1) → N2(q1) and −T0|M2(p2), 
T |M2(p2) : M2(p2) → N2(−q2) (which are clearly unital) satisfy the hypothesis assumed 
for the pair T0, T . Namely, given uj ∈ U0(M2(pj)), the element u = u1 + u2 is a uni-
tary in U0(M), and by our hypotheses and the fact that M = M2(p1) ⊕∞ M2(p2) and 
N = N2(q1) ⊕∞ N2(q2) we obtain that

UT (u1) + UT (u2) = UT (u1+u2) = UT0(u1+u2) = UT0(u1) + UT0(u2),

which implies that UT0(u1) = UT (u1) and UT0(u2) = UT (u2), because these maps have 
orthogonal ranges and supports. This finishes the proof of the claim.
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We can therefore apply the conclusion in the first paragraph of this proof to the pairs 
T0|M2(p1) and T |M2(p1) and −T0|M2(p2) and T |M2(p2) to obtain that T0|M2(p1) = T |M2(p1)
and −T0|M2(p2) = T |M2(p2). The proof concludes by taking p = p1. �

We have seen in the previous results that the extendibility of a surjective isometry 
Δ between the sets of unitary elements in two unital JB∗-algebras M and N is not 
always an easy task. Actually, the extendibility is, in general, hopeless. It is natural 
to ask whether an additional algebraic hypothesis can be added to guarantee a linear 
extension. The instability of the set of unitaries under Jordan products induces us to 
discard the preservation of the Jordan product as extra algebraic hypothesis. In view of 
the properties of surjective real linear isometries between JB∗-algebras and the conclusion 
in [46, Proposition 3.9], it seems natural to assume the following extra premise:

Δ{u, v, u} = ΔUu(v∗) = UΔ(u) (Δ(v)∗) = {Δ(u),Δ(v),Δ(u)}, for all u, v ∈ U(M).

We have been able to find a positive answer under some extra suppositions on the 
connected components of the unitary set. We shall only remark that the extra assumption 
is weaker than the property asserting that every unitary element admits a unitary square 
root.

Proposition 3.10. Let Δ : U(M) → U(N) be a surjective isometry between the unitary 
sets of two unital JB∗-algebras. Let {U0(M)} ∪ {Uj(M) : j ∈ Λ} be the collection of all 
connected components of U(M). Assume that for each j ∈ Λ there exists uj ∈ U(M) with 
u2
j ∈ Uj(M). Suppose additionally that

Δ{u, v, u} = ΔUu(v∗) = UΔ(u) (Δ(v)∗) = {Δ(u),Δ(v),Δ(u)}, (39)

for all u, v ∈ U(M). Then Δ admits an extension to a surjective (real linear) isometry 
from M onto N .

Proof. Up to replacing the original Jordan product and involution on N by the one 
in Δ(1)-isotope, we can assume that Δ is unital, and hence Δ(U0(M)) = U0(N). Let 
Tj : M → N denote the surjective real linear isometry extending the mapping Δ|Uj(M) :
U j(M) → Δ(U j(M)) whose existence is assured by Theorem 3.6.

Fix j, k ∈ Λ satisfying 
(
U j(M)

)∗ = Uk(M). For each uj ∈ Uj(M), it follows from (39)
that

Tk(u∗
j ) = Δ(u∗

j ) = ΔU1(u∗
j ) = U1(Δ(uj)∗) = Tj(uj)∗,

which proves that Tk(u∗
j ) = Tj(uj)∗ for all uj ∈ Uj(M). We fix wj ∈ Uj(M). Since, 

by the Wright-Youngson-Russo-Dye theorem [52, Corollary], the convex hull of the set 
{expwj

(ih) : h ∈ (M(wj))sa}(⊂ Uj(M) = U0(M(wj))) is norm dense in the closed unit 
ball of M(wj), it follows from the linearity and continuity of Tk and Tj that
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Tk(x∗) = Tj(x)∗ for all x ∈ M. (40)

Take now an arbitrary u0 ∈ U0(A). By (19) we have Uu0(u∗
j ) ∈ Uk(M), and hence by 

(39) we get

UTk(u0)(Tj(uj)∗) = UTk(u0)(Tk(u∗
j )) = TkUu0(u∗

j ) = ΔUu0(u∗
j ) = UΔ(u0)

(
Δ(u∗

j )
)

= UT0(u0)
(
Tk(u∗

j )
)

= (40) = UT0(u0) (Tj(uj)∗)
,

for all uj ∈ Uj(M). A new application of the Wright-Youngson-Russo-Dye theorem as 
in the previous paragraph –together with the surjectivity of Tj– implies that UTk(u0) =
UT0(u0) for all u0 ∈ U0(M). Proposition 3.9 assures the existence of a central projection 
pk ∈ M such that

Tk = T0|M2(pk) ⊕ T0|M2(1−pk). (41)

Fix an arbitrary l ∈ Λ. By assumptions, there exists ul ∈ U(M) with u2
l ∈ U l(M). 

We can assume that ul ∈ Uj(M) and u∗
l ∈ Uk(M) for some j, k ∈ Λ. By hypotheses,

Tl(u2
l ) = Δ(u2

l ) = ΔUul
(1) = UΔ(ul)Δ(1) = Δ(ul)2 = Tj(ul)2. (42)

By considering the central projections pl and pj given by (41), by orthogonality, we have

Tj(ul)2 = (T0(ul ◦ pj) − T0(ul ◦ (1 − pj)))2 = T0(u2
l ◦ pj) + T0(u2

l ◦ (1 − pj)) = T0(u2
l )

and

Tl(u2
l ) = T0(u2

l ◦ pl) − T0(u2
l ◦ (1 − pl)),

which combined with (42) give T0(u2
l ◦ (1− pl)) = 0, and hence u2

l ◦ (1− pl) = 0 (by the 
injectivity of T0). Having in mind that pl is a central projection, we have

0 = u2
l ◦ (1 − pl) = Uul

(1 − pl),

witnessing that 1 − pl = 0, and consequently, Tl = T0. The arbitrariness of l ∈ Λ and 
Corollary 3.8 give the desired statement. �
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