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Abstract
The development of new survey data collection methods such as online surveys has
been particularly advantageous for social studies in terms of reduced costs, immediacy
and enhanced questionnaire possibilities. However, many such methods are strongly
affected by selection bias, leading to unreliable estimates. Calibration and Propensity
Score Adjustment (PSA) have been proposed as methods to remove selection bias in
online nonprobability surveys. Calibration requires population totals to be known for
the auxiliary variables used in the procedure, while PSA estimates the volunteering
propensity of an individual using predictive modelling. The variables included in
these models must be carefully selected in order to maximise the accuracy of the final
estimates. This study presents an application, using synthetic and real data, of variable
selection techniques developed for knowledge discovery in data to choose the best
subset of variables for propensity estimation.We also compare the performance of PSA
using different classification algorithms, after which calibration is applied. We also
present an application of this methodology in a real-world situation, using it to obtain
estimates of population parameters. The results obtained show that variable selection
using appropriate methods can provide less biased and more efficient estimates than
using all available covariates.

Keywords Online surveys · Propensity Score Adjustment · Selection bias · Variable
selection · Raking calibration

This study was partially supported by Ministerio de Ciencia e Innovación, Spain [Grant No.
PID2019-106861RB-I00/AEI/10.13039/501100011033]. The first-named author also received a FPU
grant from Ministerio de Ciencia, Innovación y Universidades, Spain.

B María del Mar Rueda
mrueda@ugr.es

Ramón Ferri-García
rferri@ugr.es

1 Department of Statistics and Operations Research, University of Granada, Granada, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00362-022-01296-x&domain=pdf
http://orcid.org/0000-0002-2903-8745


R. Ferri-García, M. d. M. Rueda

1 Introduction

In recent years, online surveys have undergone rapid development in a wide variety of
fields, including public opinion research (Couper 2000) and life sciences (Thornton
et al. 2016; Borodovsky et al. 2018). In contrast to traditional survey modes, which are
experiencing issues with response rates (according to Marken (2018), response rates
in Gallup Poll Social Series dropped from 28% in 1997 to 7% in 2017) and increasing
costs, online surveys offer a faster and cheaper method to measure certain features in
individuals. In addition, there is an increasing availability of large sets of data obtained
from theWeb with automatic procedures (such as web scraping or APIs) that are often
used for inference in finite populations.

Non-probabilistic surveys provide us with some advantages over traditional meth-
ods but also these surveys have given us many research problems: many problems
demand the type of velocity for both data processing and analysis, but the most impor-
tant is related to the quality of the data. Data quality is far more important than data
quantity. Meng (2018) studies some theoretical aspects related to the impact of the
application of non-probability online surveys on the estimation quality, and develops a
data defect index, a main topic of population inferences from Big Data and concludes
it is more important to reduce sampling and non-response biases than non-response
rates.

Indeed, non-probabilistic surveys emphasise certain types of nonsampling errors.
It is not feasible to obtain a representative sampling frame of the online population
except in specific situations where the target population is a well-characterised group
(such as company employees or university students each of whom is associated with
an e-mail address). For this reason, most online surveys or large volume datasets
are based on volunteer samples. In addition, the coverage of this approach is limited
by the extent of Internet penetration among the population, which is often subject
to demographic characteristics. For instance, according to the Spanish Survey on
Equipment and Use of Information and Communication Technologies in Households
(National Institute of Statistics of Spain 2018), while 98.5% of the Spanish population
aged 16–24 years make regular use of the Internet, only 49.1% of those aged 65–74
years do so. Although the difference has narrowed in the last few years, online surveys
are still unable to provide representative samples except when special procedures are
used, such as offline recruitment, panels or mixed modes (see Schonlau and Couper
2017 for a review of the available options).

The lack of a probability sampling scheme might lead to significant differences
between sampled and nonsampled individuals, which constitutes a selection bias that
cannot be redressed with the usual procedures (Elliott and Valliant 2017). Selection
bias is a particularly important concern in online surveys because of their intrinsic
characteristics (Couper 2000). Statistical adjustments are crucial to obtaining reliable
estimates from online survey data; in this context, calibration or Propensity Score
Adjustment (PSA) can be used, according to the kind of auxiliary information avail-
able. While calibration only needs the vector of population totals for some auxiliary
covariates, PSA requires a probability sample drawn from the same target population,
even when the nonprobability sample is drawn from a subset of it, which is the case
of Internet surveys (not everybody may have access to the Internet in a given popu-
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lation) and imperfect sampling frames in general. This sample is used to estimate the
(unknown) participation propensities for the individuals in the nonprobability sam-
ple through prediction models. These estimated propensities can be used as inclusion
probabilities to build weights for different parametric estimators.

The efficacy of PSA at removing selection bias has been proved, although some
considerations should be taken into account. First, PSA is strongly dependent on
the covariates used to estimate the propensities. Lee (2006) showed that the use of
covariateswhich are strongly related to the variables of interest in PSAmodels achieves
greater reductions in bias than is the casewith nonsignificant variables. Second, further
adjustments such as calibration procedures must be applied in order to maximise the
effectiveness of PSA (Lee and Valliant 2009; Valliant and Dever 2011; Valliant 2020).
Finally, the use of PSA is associated with an increase in the variance of the estimates.

In this study, we focus on the first point raised above: the choice of covariates. Lee
(2006) suggested that including all available covariates, as recommended byRubin and
Thomas (1996), might be a reasonable practice. However, statistical models based on
modern classification techniques such as Machine Learning algorithms might benefit
from feature selection to reduce the complexity of the models (and the variance of
their predictions). Variable inclusion in propensity models for treatment weighting has
been widely studied (Hirano and Imbens 2001; Brookhart et al. 2006; Austin 2008;
Schneeweiss et al. 2009; Austin 2011; Myers et al. 2011; Patrick et al. 2011; Austin
and Stuart 2015) and variables are often selected using a stepwise algorithm or they
are assessed prior to the study according to their known relationship to the outcome
or exposure variables. In this case, better results are obtained when the variables in
question are related to the outcome variables or to both the outcome and the exposure
variables.

In many real-world applications, there may be very little information about the pre-
existing relationships between variables, which increases the difficulty of selecting
the best subset of variables for propensity estimation. In the present study, we con-
sider howmodern techniques of feature selection (or variable selection) developed for
knowledge discovery in data can be used in propensity estimation modelling. These
techniques only require an appropriate dataset fromwhich to locate the variables more
closely related to a given target variable or that may be more influential with respect
to predicted values, according to the behaviour observed in the dataset. The benefits
of feature selection, in terms of increased accuracy and reduced computational costs,
have been demonstrated in classification tasks (Bolón-Canedo et al. 2013; Xue et al.
2015).

In survey research, feature selection has been studied with respect to the prob-
lem of calibration when a large number of variables must be considered. Breidt and
Opsomer (2017) reviewed this question and suggested that auxiliary variables for cal-
ibration may be too closely correlated or have poor predictive power, and therefore
model selection should be employed to improve the estimates obtained and to sta-
bilise the weights. Stepwise and best subsets algorithms have been considered for this
purpose, but models from the class of “least absolute shrinkage and selection opera-
tor” (LASSO), which perform feature selection by shrinking regression coefficients to
zero in non-informative variables, seem to be the most promising methods to improve
the weighting. Their efficiency in non-probability samples was highlighted by Chen
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et al. (2019), who showed that LASSO-weighted estimators have a lower RMSE than
PSA-weighted equivalents.

The rest of this paper is organised as follows: Sect. 2 presents the essential aspects
of calibration and PSA. The synthetic data and the real survey datasets used in our
experiments are then described in Sect. 3. In Sect. 4we describe the deployment of PSA
models with a grid of classifiers and feature selection algorithms for the study data.
The results of the experiments in terms of relative bias and efficiency are detailed in
Sect. 5, after which the method proposed is applied in a real-world context concerning
addiction and dependence, in Sect. 6. Finally, the implications of our findings are
discussed in Sect. 7.

2 Adjustments for nonprobability samples

2.1 Calibration

Calibration was developed by Deville and Särndal (1992) as a reweighting method
based on the availability of population totals for auxiliary variables measured in a
sample, although some later versions addressed missing data situations or the use of
dual frames for survey sampling (Ranalli et al. 2016). This adjustment is intended to
reduce the coverage error between the target population and the sample, and takes
the following form. Let x be a n × p matrix of p variables measured in a sample
of size n, xi j is the value of the i-th individual in the j-th auxiliary variable, X =
(X1, ..., X j , ..., X p) are the known population totals for the auxiliary variables and
d = (d1, ..., di , ..., dn) is the vector of design weights of the sample. If a probabilistic
unbiased sample from the same population is available, estimated population totals
can be used for X as an alternative (see Ferri-García and Rueda 2018 for a study
of its efficiency). Calibration then attempts to obtain a new vector of weights w =
w1, ..., wi , ..., wn byminimising their distance frp, d (from a class of distances leading
to different estimators) subject to the calibration equations:

n∑

k=1

wk xk j = X j , j = 1, ..., p (1)

When information on population totals is incomplete, and especially when the cross-
classification totals (also known as cell counts) are not known, it can be useful to use the
raking ratio as defined in Deville et al. (1993), which takes advantage of the estimation
of cell counts from the available data in the sample.Here, let N̂ab = ∑

k/xAk=a,xBk=b dk
be the estimated cell count of ab, which represents the number of individuals whose
measured value in the variables A and B is a and b respectively. The raking ratio uses
this information to reformulate the calibration equations, thus obtaining the calibrated
weights wk = dk N̂w

ab/N̂ab, where N̂w
ab = dk N̂ab represents the calibrated estimations

of the cell counts. The efficiency of calibration procedures depends on the relevance
of the auxiliary information in terms of relationship with the target variable and on
the mechanism producing the coverage error. Calibration has also been found to be
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effective for removing selection bias when the target variable is not related to the
selection mechanism (Bethlehem 2010; Rueda 2019).

2.2 Propensity Score Adjustment

Propensity Score Adjustment (PSA) was originally developed by Rosenbaum and
Rubin (1983) as a technique for balancing comparison groups in nonrandomised stud-
ies, where the inclusion in one group or another might be driven by or associated
with variables not controlled by the researchers. PSA was subsequently adapted to the
context of online surveys (Taylor 2000; Taylor et al. 2001; Lee 2006; Castro-Martín
et al. 2020a) as a means of reducing selection bias when a reference probability sam-
ple collected from the same target population is available. In this case, let sr be the
reference sample, sv the nonprobability sample obtained from the online survey and
s = sr ∪ sv . Furthermore, let R be a binary variable measured for U where Ri = 1 if
i ∈ sv and Ri = 0 otherwise. PSA assumes that the inclusion probability or propensity
score, π , for sv is conditional on a set of covariates, x, such that:

πi = P(Ri = 1|xi ), i ∈ U (2)

The inclusion probability can therefore be modelled through a proxy of R. Let z be
a binary variable measured for s which zi = 1 if i ∈ sv and zi = 0 if i ∈ sr . The
propensity score is then estimated by predicting the values of z using a model M :

π̂∗
i = EM [z = 1|xi ], i ∈ sv ∪ sr (3)

Note that in this case we are not estimating π but π∗, which is the propensity obtained
when we predict the measured participation z rather than the true participation R.

The propensity scores are used to reweight the nonprobability sample. In this
process, inverse probability weighting formulas can be used, such as the simple
inverse probability wPSAI PW1 = 1/π (Valliant 2020) or the inverse probability
allowing weights to be less than one, as proposed by Schonlau and Couper (2017):
wPSAI PW2 = (1−π)/π . Propensities can also be transformed into weights using the
subclassification methods proposed by Lee (2006) and Lee and Valliant (2009). This
technique stratifies the vector of propensities into c parts (following Cochran (1968),
c is usually taken as 5) with similar propensities, applying the formula:

wPSAsub1
i = fcd

v
i =

∑
k∈scr d

r
k /

∑
k∈sr d

r
k∑

j∈scv d
v
i /

∑
j∈sv d

v
i
dv
i (4)

where dr , dv represent the design weights for the reference and volunteer samples
respectively and scr , s

c
v are the individuals belonging to the c-th strata of propensities in

the reference and volunteer samples respectively. Valliant and Dever (2011) proposed
a similar method, but instead of calculating a correction factor,the propensities in
each stratum were averaged and then transformed into weights by inverse probability
weighting, as follows:
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wPSAsub2
i = 1

(π̂∗
g )

(5)

3 Data

3.1 Artificial data

An experiment with artificial data was performed to evaluate the benefits of feature
selection under different conditions. In this experiment, a population U of size N =
500, 000 was generated with 17 variables: eight variables x = (x1, ..., x8) were used
as covariates for PSA algorithms, out of which variables x1, x3, x5 and x7 were used
as calibration variables. Another eight variables y = (y1, ..., y8) were considered as
target variables and a variable π measured the probability of each individual of the
population being selected in the nonprobability sample.

The covariates were generated as described in Eq. 6. Four variables (x1, x3, x5,
x7) followed a Bernoulli distribution with p = 0.5 and the other four (x2, x4, x6, x8)
followed Normal distributions with a standard deviation of one and a mean parameter
dependent on the value of the previous Bernoulli variable for each individual; for
instance, if the i-th individual had a value of 1 in x1, then its value for x2 was simulated
according to a N (2, 1) distribution, and if it had a value of 0, then it was simulated
according to a N (0, 1) distribution. This procedure induced a collinearity in themodels
if all of the covariates were used, an issue that could be addressed by variable selection
algorithms.

x1i , x3i , x5i , x7i ∼ Be(0.5) i ∈ U

x ji ∼ N (μ j i , 1) i ∈ U , j = 2, 4, 6, 8

μ j i =
{
2, if x( j−1)i = 1
0, if x( j−1)i = 0

i ∈ U , j = 2, 4, 6, 8

(6)

The inclusion probability π was made dependent on x5, x6, x7 and x8 as described
in Eq. 7,which allowed the experiment to coverMissingAtRandom (MAR) situations.

ln

(
πi

1 − πi

)
= −0.5 + 2.5(x5i = 1) + √

2πx6i x8i − 2.5(x7i = 1), i ∈ U

(7)

The target variables were simulated as described in Eqs. 8 to 15. Four types of
relationship were considered: no relationship at all with any other variable (y1 and
y2), a relationship with the selection mechanism (y3 and y4), a relationship with some
covariates related to the selection mechanism (y5 and y6) and a relationship both with
the selection mechanism and with some covariates (y7 and y8).
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y1 ∼ Be(0.5) (8)

y2 ∼ N (10, 1) (9)

y3i ∼ Be

(
exp(πi )

1 + exp(πi )

)
, i ∈ U (10)

y4i ∼ N (10, 1) + 5πi , i ∈ U (11)

y5i ∼ Be

(
exp(0.5 + 0.25(x5i = 1) − 0.25(x5i = 0) + x6i )

1 + exp(0.5 + 0.25(x5i = 1) − 0.25(x5i = 0) + x6i )

)
, i ∈ U

(12)

y6i ∼ N (10, 1) + 2(x5i = 1) − 2(x5i = 0) + x6i , i ∈ U (13)

y7i ∼ Be

(
exp(0.5 + 0.25(x7i = 1) − 0.25(x7i = 0) + x8i + πi )

1 + exp(0.5 + 0.25(x7i = 1) − 0.25(x7i = 0) + x8i + πi )

)
, i ∈ U

(14)

y8i ∼ N (10, 1) + 2(x7i = 1) − 2(x7i = 0) + x8i + 5πi , i ∈ U (15)

This procedure allowed the target variables to reflect all of the missing data mech-
anisms; y1 and y2 are examples of Missing Completely At Random (MCAR) data,
where the outcome is not related to the selection. y5 and y6 are examples ofMissing At
Random (MAR) data, where the outcome is indirectly related to the selection through
some variables. Finally, y3, y4, y7 and y8 are examples of Missing Not At Random
(MNAR) data, where the outcome is directly related to the selection mechanism.

3.2 Real data

The experiment was then repeated using a real dataset as a pseudopopulation to
examine whether variable selection algorithms might be helpful when more complex
relationships are present in the data. The dataset was obtained by the January 2019
Barometer Survey (study number 3238) conducted by the Spanish Centre for Socio-
logical Research (CIS, Spanish initials), a monthly survey that measures political and
social opinions among the Spanish adult population (Spanish Center for Sociological
Research (2019)). The original dataset of the survey sample made available by the
CIS included n = 2989 individuals and p = 203 variables, out of which 17 variables
were finally selected:

– 6 target variables: assessment of the current economic situation in Spain and in their
own lives (binary, 1 if "bad" or "very bad", 0 otherwise), score on the ideological
self-positioning scale (numeric, 1–10), assessment of the central government’s per-
formance (binary, 1 if "Poor" or "Very poor", 0 otherwise), territorial organisation
preference (binary, 1 if "State with no autonomous structures", 0 otherwise) and
national sentiment (binary, 1 if "Self identification as only Spanish", 0 otherwise).

– 10 variables to be used as covariates in PSA or calibration variables: frequency
of attendance at religious acts, gender, age, education level, socioeconomic sta-
tus, autonomous community of residence, size of the municipality of residence,
nationality, marital status and degree to which voting is expected to change things.
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Gender, age and size of the municipality were chosen as calibration variables in
each simulation run, and were also included as potential covariates for PSA.

– One variable, use of internet in the three months prior to the survey (1 if it was
used, 0 otherwise), was taken as a delimiter of the population subset from which
nonprobability samples would be drawn. Individuals with a value of 1, but not
those with a value of 0, in this variable could belong to the nonprobability sample.
The rationale for this delimiter is that it reproduces the conditions that apply in
real online surveys, in which people with no internet access cannot be selected to
participate.

The pseudopopulation was obtained by bootstrapping the original sample up to
N = 500, 000 individuals through simple random sampling with replacement. Out
of the 500,000 individuals, 404,174 (80.83% of the pseudopopulation) had used the
internet in the three months prior to the survey. Despite internet’s large penentration,
the differences between the population with and without access to the internet are
noticeable in several target variables, which leads to a remarkable amount of coverage
bias when estimating population parameters using only people who had accessed the
internet. This coverage bias can be treated using calibration in addition to PSA. Those
differences can be observed in Table 1.

The pseudopopulation was obtained by bootstrapping the original sample up to
N = 500, 000 individuals through simple random samplingwith replacement. Prior to
the bootstrapping, anyone who did not answer ("Does not know"/"Does not answer")
any of the 17 items was excluded, as were the persons who answered "Other" for
education level, or who gave "Ceuta" or "Melilla" as their autonomous community
of residence. The reason for this filtering process was to remove highly uncommon
classes that could produce inconsistencies in a simulated sample and provoke errors
in the propensity scoring algorithms. Moreover, the education levels "No formal edu-
cation" and "Primary education" were collapsed into a single class, while missing
data in the variable concerning attendance at religious acts was taken as a new class
(given that everyone in this group was considered to be atheist or agnostic). After the
preprocessing, the sample size before bootstrapping was n = 2, 156.

4 Methods

4.1 Feature selection algorithms

Feature selection was performed prior to PSA to select those variables that are more
relevant for the prediction of a target variable (which must be present in the dataset).
In a model-based framework, we only have one variable of interest, y, for which we
both predict its values and estimate its population parameters. However, in the design-
based framework of PSA, we have two variables that must be considered: the indicator
variable z (zi = 1 if i ∈ sv , zi = 0 otherwise), for which we predict the probability
P(z = 1), and the target variable of the study, y, and its population parameters of
interest that we want to estimate.

123



Variable selection in Propensity...

Ta
bl
e
1

Po
pu

la
tio

n
va
lu
es

of
th
e
va
ri
ab
le
s
of

in
te
re
st
in

th
e
re
al
da
ta
si
m
ul
at
io
n.

A
ll
nu

m
be
rs
ar
e
po

pu
la
tio

n
pr
op

or
tio

ns
of

th
e
fe
at
ur
es

of
in
te
re
st
de
sc
ri
be
d
in

th
e
"T
ar
ge
t

va
ri
ab
le
"
co
lu
m
n,
ex
ce
pt

fo
r
"I
de
ol
og

ic
al
se
lf
-p
os
iti
on

in
g
sc
al
e
(1
–1

0)
"
w
he
re

th
e
nu

m
be
rs
co
rr
es
po

nd
to

th
e
po

pu
la
tio

n
m
ea
n

Ta
rg
et
va
ri
ab
le

Po
pu
la
tio

n
va
lu
es

D
if
fe
re
nc
e
be
tw
ee
n

co
m
pl
et
e
an
d
In
te
rn
et
po

ps
.

C
om

pl
et
e

In
te
rn
et

N
on

-i
nt
er
ne
t

A
bs
ol
ut
e

R
el
at
iv
e

E
co
n.

si
tu
at
io
n
in

Sp
ai
n
"p
oo

r"
or

"v
er
y
po

or
"

14
.4
%

13
.7
%

17
.5
%

0.
7%

5.
2%

Pe
rs
on

al
ec
on

.s
itu

at
io
n
"p
oo

r"
or

"v
er
y
po

or
"

3.
7%

3.
3%

5.
3%

0.
4%

11
.6
%

Id
eo
lo
gi
ca
ls
el
f-
po

si
tio

ni
ng

sc
al
e
(1
–1

0)
4.
59

4.
48

5.
04

0.
11

2.
4%

C
en
tr
al
go
v.
m
an
ag
em

en
t"
po

or
"
or

"v
er
y
po

or
"

14
.3
%

14
.6
%

13
.1
%

0.
3%

−1
.9
%

Pr
ef
er
en
ce

fo
r
a
st
at
e
w
ith

ou
ta
ut
on

om
ou

s
co
m
m
.

17
%

15
.4
%

23
.9
%

1.
6%

10
.7
%

Fe
el
s
on
ly

Sp
an
is
h

13
.8
%

12
.3
%

19
.9
%

1.
5%

11
.9
%

In
te
rn
et
po

pu
la
tio

n:
po

pu
la
tio

n
w
ho

ac
ce
ss
ed

th
e
in
te
rn
et
in

th
e
th
re
e
m
on

th
s
pr
io
rt
o
th
e
su
rv
ey
.N

on
-i
nt
er
ne
tp

op
ul
at
io
n:

po
pu

la
tio

n
w
ho

di
d
no

ta
cc
es
se
d
th
e
in
te
rn
et
in

th
e

th
re
e
m
on

th
s
pr
io
r
to

th
e
su
rv
ey
.A

bs
ol
ut
e
di
ff
er
en
ce
:|C

om
pl
et
e
-
In
te
rn
et

|.R
el
at
iv
e
di
ff
er
en
ce
:C

om
pl
et
e/
In
te
rn
et
-
1

123



R. Ferri-García, M. d. M. Rueda

Given that the predictive model is applied on z in PSA, it would be fair to assume
that the relevant variables for prediction should be selected considering z as the target
variable in the feature selection algorithms. However, given the previous research on
PSA for experimental designs and the fact that the bias must be removed for y (and not
necessarily for z), it could also be reasonable to select those variables which are more
relevant to y, and therefore to consider y as the target variable in the feature selection
algorithms. In this work, we have considered both scenarios: feature selection for the
prediction of z, and feature selection for the prediction of y. In the former case, the
combination of both samples sv ∪ sr can be used, while in the latter case only sv can
be used for feature selection, as y has only been measured for individuals in sv .

The following feature selection algorithms were used in the experiment, and their
performance was compared to the use of all variables and to the use of the variables
provided by Stepwise:

– CFS (Correlation-based Feature Selection) filter with best first search. This algo-
rithm, proposed by Hall (1999), searches the subset of variables which maximises
the correlation with the target variable and minimises that between the variables of
the subset. Thus, irrelevant and redundant features are discarded from the optimal
subset of features for prediction. Note that Pearson’s correlation is used to evaluate
the relationships between the variables; if any of the variables within a pair is non-
numeric, it is binarised and each of the binary variables is then used separately.
The simplicity of the algorithm makes it a fast and intuitive choice for finding the
optimal subset of relevant covariates, while at the same time addressing the multi-
colinearity problems that may arise from focusing only in the correlation between
the target variable and the covariates. On the other hand, the use of Pearson’s
correlation coefficient implies that nonlinear relationships or categorical variables
with high cardinality might be erroneously discarded by the algorithm.

– Chi-square filter. This approach calculates the Cramer’s V value between the target
variable and each independent variable, and so the user must define a cut-off point
for selection. In our experiment, the cut-off point was the Cramer’s V value with
the biggest difference from the V of the next variable in importance (ordered from
highest to lowest). This filter performs better at finding relationships between
categorical variables rather than continuous ones, given that Cramer’s V depends
on the number of classes of each pair of variables, and therefore the coefficient
might be considerably more sensitive towards continuous variables.

– Gain ratio. This entropy-based filter (Quinlan 1986) is calculated by dividing the
information gain by the entropy of the target variable. The information gain is
measured as the difference between the sum of the entropies of the independent
and the target variables and the entropy of the target variable after introducing the
independent variable into the predictive model (defined as a decision tree). The
gain ratio, thus, is a relative continuous measure of the predictive performance of
a variable. The cut-off point was the gain ratio’s value with the biggest difference
from the gain ratio of the next variable in importance (ordered from highest to
lowest). Gain ratio, as the rest of entropy-based filters, is assumed to identify
nonlinear relationships more precisely than correlation coefficients, but require
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discretization of continuous variables in order to seize all its potential (Yu and Liu
2003).

– One-R. This algorithm, developed by Holte (1993), is based on very simple rules
of association, by which each independent variable is tabulated with the target
variable. The number of errors is then determined and interpreted such that higher
values represent a stronger predictive power. OneR automatically divides contin-
uous variables into categories using discretization functions, hence it is a more
suitable filter in datasets with categorical and continuous variables. However, the
algorithm is prone to overfitting if the discretization aims to obtain "pure" classes
where all individuals take the same values.

– Random Forest importance filter. This algorithm computes the mean importance
value across the trees created in a Random Forest model (Breiman 2001) for each
independent variable. In our experiment, the importance value taken was the mean
decrease in accuracy when the variable was discarded from the Random Forest
model. The cut-off point was the importance value with the biggest difference
from the importance value of the next variable (ordered from highest to lowest
according to their importance value). This algorithm is suitable for any kind of
target variable and covariates, and its bagging configuration can be advantageous
in more complex situations. In addition, the use of the mean decrease in accuracy
instead of node impurity (measured with the Gini index) avoids the overestimation
of the importance value of continuous attributes. However, the method is still
sensitive to multicolinearity problems (Nicodemus et al. 2010).

– Boruta algorithm. This algorithm is based on the Random Forest importance mea-
sure, but it considers a set of non-informative variables created from the random
shuffling of each independent variable included in the model. As a result, the
algorithm selects the variables that have greater importance than non-informative
variables. To obtain statistically valid results, the procedure is repeated until every
variable has been deemed as "important" or "unimportant". Further details on this
algorithm can be consulted in Kursa and Rudnicki (2010). This algorithm can be
considered an improved version of the Random Forest importance filter and has
the advantage of automatically selecting the relevant variables and discarding the
irrelevant ones. However, the computational costs of the algorithm are large.

– LASSO regression (Tibshirani 1996). This regression model performs a variable
selection based on introducing penalisation terms into the Ordinary Least Squares
equations.As a result, a regressionmodel is provided but only the variables selected
have non-zero coefficients. In the present study, we take advantage of the LASSO
variable selection technique by extracting the variables with non-zero coefficients
and using them as inputs for the propensity estimation models. When all the coef-
ficients of the LASSO model are zero, no PSA is performed and therefore the
weights remain unitary. The LASSO algorithm has provided better results than
other predictive methods in nonprobability sampling contexts (Chen et al. 2019;
Castro-Martín et al. 2020a), but the variable selection is performed considering
a specific model and optimization criteria. The advantages on the use of subsets
of relevant variables according to LASSO as input variables for other predictive
algorithms are unclear.
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4.2 Estimation with Propensity Score Adjustment and calibration

Once the optimal subset of variables had been selected, the Propensity Score Adjust-
ment (PSA)was performed. Aswell as logistic regression (LR), the standard algorithm
in PSA, several other algorithms were also tested for propensity estimation, namely:
k-Nearest Neighbours (kNN), Gradient Boosting Machine (GBM) and feed-forward
neural networks (NN). Parameter tuning was performed for these three algorithms.
Ten-fold cross-validation was applied to the model, predicting z prior to PSA; the
following parameter grids were used for each algorithm:

– k-Nearest Neighbours (kNN): k = 5, 7, 9.
– Gradient BoostingMachine (GBM): number of trees= 50, 100, 150, learning rate

= 0.1, interaction depth = 1, 2, 3.
– Feed-forward neural networks (NN): number of units in the hidden layer= 1, 3, 5,
weight decay = 0.1, 0.0001, 0.

The choice of the kNN and GBM algorithms is based on their performance in the
previous study developed in Ferri-García and Rueda (2020), where they showed a
better performance than logistic regression in some situations in termsof bias andMSE.
The use of neural networks is based on providing more diversity in the approaches,
and the possible predictive advantage than neural networks may provide in modeling
(Breidt andOpsomer 2017). k-NearestNeighbors is a simple algorithm that canprovide
good results when the number of covariates is low, while its performance decreases
in contexts of high dimensionality. For this reason, variable selection might be highly
recommendable to boost kNN performance. Gradient BoostingMachines are better in
those high-dimensionality situations because of their boosting algorithm that is able
to internally select the best predictors.

4.3 Experiment settings

In both scenarios, the same procedure was followed to measure the effects of variable
selection in PSA and calibration on the estimation from nonprobability samples. This
procedure, repeated across 400 simulation runs for each dataset (artificial and real),
can be sequentially described as follows:

1. Two samples of size n = 1,000 are drawn. The first one, sr , is the probability sample
and is drawn by simple random sampling without replacement (SRSWOR) from
the full population. The second sample, sv , is the nonprobability sample and is
drawn according to the following schemes:

– Artificial dataset: unequal probability sampling where π is the vector of inclu-
sion probabilities, calculated as described in Equation 7.

– Real dataset (two schemes):
– SRSWOR from the subset of the population who had accessed the internet
during the three months prior to the survey.

– Unequal probability sampling from the subset of the population who had
accessed the internet during the three months prior to the survey, with
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inclusion probabilities proportional to the age:

πi = (200 − Agei )
5

(200 − 10)5
, i ∈ UI (16)

where UI is the subset of the pseudopopulation who used the Internet in
the three months prior to the survey.

2. Propensity of belonging to sv is estimated with PSA, using the variable selection
algorithms described in Sect. 4.1 to select the input covariates for propensity pre-
diction models, and the four choices of algorithms described in Sect. 4.2 to model
propensities. We also consider the choice where no variable selection algorithm is
applied and all covariates are included in the models.

3. Estimated propensities are transformed into weights using the inverse probability
weighting formula wi = 1/πi .

4. Weights are used to estimate the population mean of each target variable with and
without applying Raking calibration, on which the propensity weights w obtained
in step 3 are used as initial weights.

The resulting 400 estimates of the population mean for each combination of methods
are subsequently used to obtain the relative bias of a given combination of methods:

RB(%) =
∣∣∣∣∣∣

∑400
i=1

ŷi
400 − Y

Y

∣∣∣∣∣∣
· 100 (17)

where Y is the population mean of the target variable, and ŷi is the estimate of the
populationmean of the i-th simulation obtained after applying bias reductionmethods.
Together with the relative bias, the efficiency of each variable selection method with
respect to the case in which all variables are used is also shown, given a propensity
model m (Log. reg., GBM, kNN or NN), a Raking calibration choice (yes or no) r ,
and a choice for the target variable (exposure or outcome) in selection algorithms v:

Effectk|m,r ,v = MSEk,m,r ,v

MSEAll vars.,m,r ,v
(18)

where k = {Boruta, CFS, Chi-squared,Gain ratio, LASSO, StepWise, OneR,Random
Forest importance} is the variable selection algorithm and MSE is the Mean Squared
Error observed for the combination of methods:

MSE = Bias2 + Variance =
(∑400

i=1 ŷi
400

− Y

)2

+
∑400

i=1

(
ŷi −

∑400
i=1 ŷi
400

)2

399

(19)

An effect greater than 1 means that the use of the variable selection method k is
inefficient in comparison with using all covariates, while if it remains below 1 the
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selector k provides more efficient estimates, provided all other adjustments remain
equal. This "Effect" can be seen as the MSE of a certain variable selection method in
relation to the reference case in which all variables are used.

The statistical significance of each effect was tested using bootstrapping techniques.
Basic resampling (with 1000 replications) was performed to obtain each effect num-
ber, so the standard deviation of the effect could be estimated from the bootstrapped
samples. The standard deviation was used to perform t-tests on the following null
hypothesis:

H0 : Effectk|m,r ,v ≥ 1
H1 : Effectk|m,r ,v < 1

(20)

The t-tests used the standard deviation calculated from the bootstrap procedure, and
the confidence level was fixed at 95% for all effects. Rejection of the null hypothesis
would mean that there are statistical evidences that the variable selection method k
provides more efficient estimates given that the rest of conditions remain unchanged.
Resampling was performed using the resample package available in R (Hesterberg
2015).

Finally, for each feature selection algorithm and Raking choice (Raking used or not
used after PSA), we computed the estimated mean and median relative bias and effect.
For relative bias, we also computed the number of times that the estimates provided
by a feature selection algorithm have been among the best (Relative Bias less than 1%
greater than the minimum) conditional to a given variable of interest, target variable
in the feature selection algorith, PSA predictive algorithm and Raking strategy. For
the effect, we computed the number (and percentage) of times that the effect has been
below 1 (the MSE after applying a given feature selection algorithm was lower than
the MSE using all variables) and below 0.9 (the MSE after applying a given feature
selection algorithm was more than 10% lower than the MSE using all variables).

5 Results

5.1 Artificial data

The relative bias results obtained in the simulation with artificial data are shown
in Tables 8 and 9. For the MCAR variable y1, variable selection was useful
when neural nets were used as the predictive model and Raking was applied
after PSA, although the improvements were not dramatic. The least biased esti-
mates were provided by PSA with kNN using all variables in y1 and variables
selected by OneR (selecting on the variable of interest) with neural nets and no
Raking in y2, although this result was closely followed by the Gain ratio score
in the latter case. However, the differences are too small to be considered rele-
vant.

With the MAR variables (y5 and y6), Raking calibration markedly reduced the
bias in the estimates. Regarding variable selection, almost all the methods in y5
and some of them in y6 reduced the bias when the predictive model was logis-
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tic regression, although some reductions were also observed when other methods
were applied in different models. In the case of y6, the chi-square filter, the Gain
Ratio and Random Forest all reduced the bias from 2.88 (when using all avail-
able covariates) to 2.01 in y2 if logistic regression and Raking calibration were
applied.

Finally, in NMAR situations (y3, y4, y7 and y8), the application of Rak-
ing calibration also reduced bias but not as much as for MAR variables. For
y3 and y8, the best choice for the target variable in the selection algorithms
was the variable of interest (y), while fixing the target variable in the indicator
variable of inclusion in sv (z) provided better results in y4. The largest reduc-
tions in bias in y3 were obtained with the LASSO algorithm, although CFS,
Chi-square and the Gain Ratio also worked well when combined with Rak-
ing.

The effect of each variable selection method in comparison to using all vari-
ables, if the rest of methods remain equal, is detailed in Tables 10 and 11.
These results are in line with those for relative bias in each case, although they
reflect some improvement in a much larger set of situations. With the MCAR
variables (y1 and y2), MSE could be slightly reduced using variable selection in
some cases, but in general the effect improvements were small. Reductions were
always below 10% of the MSE using all variables, and only 7.03% of the effi-
ciencies were below 0.95 (this is, reductions above 5% of the baseline MSE),
all of them achieved selecting variables with regard to the variable of inter-
est.

Regarding the MAR variables (y5 and y6), very noticeable improvements in effi-
ciency were obtained in the estimation of y6. When Raking calibration was applied,
the use of the Chi-square filter, Gain Ratio or Random Forest reduced MSE by 11%
(if k-NN was used in PSA) to 50% (if LR was used in PSA), when they selected
variables using the variable of interest as the target. Reductions in MSE with the same
variable selection methods were also observed when Raking was not applied. Other
methods, too, provided larger effect values when y5 was estimated for the cases in
which logistic regression was used to estimate the propensities. It is worth noting
that the hypothesis of greater efficiency of selection methods was accepted in sev-
eral cases, which gives some evidence that variable selection methods can work in
practice.

Finally, regarding the NMAR variables, the reductions in MSE were noticeable:
12.5%, 11.7% and 24.2% of the times the effect was below 0.9 (improvements in the
MSE above 10%) in the estimation of y3, y7 and y8 respectively. In the estimation
of y3, all the combinations of methods, except for those involving Boruta selection
algorithm, provided efficiencies significantly lower than 1 (with a mean effect of
0.922) when selecting variables using the variable of interest as the target in feature
selection algorithms. The opposite situation was observed in y4: selecting variables
using the indicator variable of inclusion in sv as the target provided better results,
although the improvements were considerably lower despite many of them being
statistically significant. In y7, feature selection algorithms provided more efficient
estimates mainly in those cases where logistic regression was used, although OneR
(selecting on the variable of interest) provided gains when using other algorithms for
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PSA in the cases where Raking was not applied. For y8, there are statistical evidences
that all of the feature selection algorithms provide more efficient estimates (except
for StepWise and LASSO) when the selection is done using the variable of interest
as the target, regardless of the classifier used in PSA or the further use of Raking
calibration.

A summary of the relative bias and effect results observed in the artificial data simu-
lation can be found in Table 2. When Raking calibration is not applied, results on rela-
tive bias are very similar across variable selection strategies, although themost featured
method among the best ones is the strategy of using all variables. When Raking cali-
bration is applied, the situation slightly changes, with the gain ratio score appearing the
most in the set of algorithms that provide the best results, followed by the OneR algo-
rithm. These results can be explained by the fact that each Bernoulli covariate is related
to a Gaussian covariate, but the different Bernoulli and Gaussian covariates are inde-
pendent of each other. This scenario can bemore suitable for simple algorithms that test
one variable at a time, such asOneR, because it is only necessary to retain one of the two
variables that compose each Bernoulli-Gaussian relationship, while in more complex
scenarios the choice would not be that clear. Regarding the effect, none of the variable
selection algorithms seem to outperform the case where all variables are used when
Raking calibration has not been applied. If it has been applied, there is a certain evi-
dence towards the effectiveness of variable selection, with all of the algorithms except
for StepWise and Boruta achieving lowerMSE values than the case where all variables
are used more than a half of the times they are included in the preprocessing step.

5.2 Real data

The relative bias results obtained by each combination of methods in the simulation
using CIS data and considering SRSWOR from the Internet population to obtain the
nonprobability samples are listed in Table 12. Interestingly, the best choice in variable
selection differed according to the propensity estimation model considered. For exam-
ple, PSA using k-NN provided the best results when using all the available covariates,
except for the variable measuring central government performance. In the remaining
cases, the use of certain variable selection algorithms was associated with a decrease
in relative bias. This was especially apparent for the variables measuring the economic
situation in Spain, central government management and the preference for a unitary
national state without autonomous communities. In these cases, the largest reductions
in relative bias (compared to the case in which all variables were used) were obtained
when the variable selection algorithms used the variable of interest as the target vari-
able. Raking calibration had a modest positive effect on the variables measuring the
ideological self-positioning scale, the preference for a unitary national state without
autonomous communities and whether the respondent self identified as only Spanish,
while its impact on relative bias in the other variables was non-relevant or negative.
The efficiency of each variable selection algorithm for a given combination of adjust-
ments (propensity model, use of calibration and target variable choice for selection),
in comparison with the case in which all variables are used, is shown in Table 13. For
all variables, one or more selection algorithms increased the efficiency, in comparison
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with the case in which all variables were used. The estimated mean and median effect
of all the possible combinations of methods shown in Table 13 is below 1 for all the
target variables except for the ideological self-positioning scale. However, the num-
bers are strongly dependent on the target fixed in the feature selection algorithm. For
instance, the percentage of combinations with an effect below 0.9 (decrease of more
than 10% in the MSE in comparison to the case where all covariates are used) when
fixing the variable measuring the inclusion in sv (z) as the target is 0%when estimating
the economic situation in Spain, central government management and the preference
for a unitary national state without autonomous communities, but if the variable of
interest is fixed as the target in feature selection algorithms, the percentage rises up to
12.5%, 29.7% and 20.3% respectively. On the other hand, feature selection provides
better results in the estimation of ideological self-positioning scale scores when fixing
the variable measuring the inclusion in sv (z) as the target (estimated median effect:
0.942; percentage of combinations with an effect below 0.9: 20.3%). Some statistical
evidences can be observed regarding the effectiveness of several methods, such as the
chi-square filter, LASSO and OneR for PSA with logistic regression when estimating
the economic situation in Spain, or CFS andGain ratiowhen estimating the ideological
self-positioning scale mean score, among other examples.

A summary of the relative bias and effect results can be found in Table 3.
When Raking calibration is not applied, results on relative bias are very simi-
lar across variable selection strategies, although the most featured method among
the best ones is CFS, followed by using all variables. When Raking calibration
is applied, the situation slightly changes, with OneR appearing the most in the
set of algorithms that provide the best results, followed by CFS. Regarding effect,
it can be observed that all the variable selection algorithms (except for StepWise
and Boruta when applying Raking calibration) provide more efficient estimates in
more than half of the cases, a percentage that goes above 60% and even 80%
of the cases for CFS and OneR when Raking is applied. In both situations men-
tioned, along with the case of chi-square filter, the percentage of cases where the
effect is below 0.9 (reduction of the MSE above 10% in comparison to the case
where all covariates are used) is almost 20% (18.8%). These results, along with
the statistical evidence observed in hypothesis testing, suggest an advantage of
variable selection methods in comparison to the use of all the available covari-
ates.

The relative bias results obtained by each combination of methods in the simula-
tion using CIS data and considering probabilities proportional to the age to obtain the
nonprobability samples from the Internet population are listed in Table 14. It is worth
noting that the behavior of relative bias changes for some variables; the non-raked
estimates of the personal economic situation are less biased than the case where the
nonprobability sample is obtained via SRSWOR from the Internet population, but
more biased when estimating the rest of the variables of interest. On the other hand,
feature selection algorithms offer a very similar performance to the previous case,
providing less biased estimates in a variety of scenarios. The largest reductions in rel-
ative bias (compared to the case in which all variables were used) were again obtained
when the variable selection algorithms used the variable of interest as the target vari-
able, especially (but not exclusively) if Raking calibration was applied. The effect of
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each variable selection algorithm for a given combination of adjustments (propensity
model, use of calibration and target variable choice for selection), in comparison with
the case in which all variables are used, is shown in Table 15. In general, the effect
was noticeably lower in this scenario in comparison to the previous one (SRSWOR
from the Internet population to obtain the nonprobability samples). The percentage of
combinations that provided effects below 0.9 was more than 10% in the estimation all
the variables of interest, and the estimated median was below 1 except for ideological
self-positioning scale and feeling only Spanish variables. In those cases, it can be
shown that the effect is largely different depending on the choice for the target vari-
able in the feature selection algorithm; when estimating ideological self-positioning
scale, it is better to fix the indicator variable of inclusion in sv as the target (estimated
median effect: 0.933 against 1.37 when using the variable of interest), and vice versa
for feeling only Spanish (estimated median effect: 0.990 against 1.02 when using the
indicator variable of inclusion in sv). In addition, the number of statistically significant
results for the effect is large, up to the point that for each variable of interest andRaking
choice (except personal economic situation with no Raking, and feeling only Spanish
with Raking) there is a feature selection algorithm that has a positive effect on estima-
tors’ efficiency. The aforementioned results are summarized in Table 4. When Raking
calibration is not applied, the estimated mean and median relative bias observed is
smaller for certain feature selection methods, more precisely: chi-square filter, OneR
and Random Forest importance. These algorithms are also the ones that appear the
most among the best approaches for feature selection (in terms of relative bias). The
high performance of these algorithms remains in the case where Raking calibration is
applied. Regarding effect, it can be noticed that chi-squared filter, OneR, Gain ratio
and Random Forest importance are the ones that provide the best results, providing
efficient estimates around 70% of the times or even more than 80% sometimes, while
other algorithms also seem to offer a good performance, such as CFS. It is particularly
relevant to observe that the effect on the estimates of using chi-square and OneR algo-
rithms was below 0.9 more than 40% of the times when Raking calibration was used.

6 Application study

This section presents an application of variable selection for PSA in a real-world
context, to estimate the population mean of two variables using a probability and
a nonprobability sample. The application takes place within a study on abuse and
dependence in a population of university students.

The probability sample used as the reference sample was obtained from a sur-
vey conducted in 2015,targeting students at the University of Granada (UGR),
Spain. The sample was composed of nr = 856 respondents, recruited in face-
to-face interviews under a three-stage cluster sampling design, which produced an
estimated sampling error of ±3.3% in the case of p = q = 0.5 with a confi-
dence level of 95%. The survey questionnaire included screening instruments for
abuse and dependence, namely the Spanish Mobile Phone Abuse Questionnaire
(ATeMo) (Olivencia-Carrión et al. 2018), which provides a score between 0 and 100
points that reflects the level of mobile phone abuse of the participant. The ATeMo
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instrument contains 25 items of type 5-point Likert scale, where the possible val-
ues are 0, 1, 2, 3 and 4. The survey also included the Cannabis Abuse Screening
Test (CAST)(Legleye et al. 2007) and the Severity of Dependence Scale (SDS)
(Gossop et al. 1995), together with subscales regarding internet and videogames
addiction from the MULTICAGE-CAD4 instrument (Pedrero-Pérez et al. 2007).
The survey also recorded the age, gender and university faculty of each partici-
pant.

The nonprobability sample was derived from a survey completed by self-
selected respondents, conducted in January 2018 and also targeting UGR stu-
dents. The sample was composed of nv = 176 respondents, who were recruited
via snowball sampling performed by the students themselves. All of the vari-
ables included in this survey were measured in the reference sample. However,
some data preprocessing was performed prior to the analysis; four respondents
were ruled out because they were under 18 years old, as were another 43,
who left more than 85% of the questionnaire items unanswered or who left
blank all of the items of any of the scales. The final sample size, therefore,
was nv = 129 individuals. Missing data present in the sample was imputed
using the Classification and Regression Trees (CART) algorithm (Breiman et al.
1984).

Age, gender and faculty were used as calibration variables in Raking, as
the population totals (but not the cross-probabilities) were available. The covari-
ates eligible for PSA were the total score for the CAST and SDS scales,the
MULTICAGE subscales (internet and videogames), and the variables used for
calibration: age, gender, and faculty. In total, seven variables were eligible for
propensity modelling. The two variables of interest were present in both sam-
ples; this is not a feasible situation in real-world applications of PSA (the tar-
get variable would not be available in the probability sample) but in this case
it allowed us to compare the estimations from both samples. These variables
were:

– Mean score on the total ATeMo scale, which was 30.066 units in the reference
sample (with a sample standard deviation of 15 units) and 32.558 units in the
unweighted convenience sample (with a sample standard deviation of 13.99 units).

– Mean score on the item "I have tried to spend less time using my mobile phone but
I cannot do it" (number 16 in the ATeMo instrument). The mean score of this item
in the reference sample was 0.776 (with a sample standard deviation of 1.002)
while in the unweighted convenience sample it was 1.217 (with a sample standard
deviation of 1.132), this being the greatest difference observed in in any ATeMo
item between the reference sample and the convenience sample.

Table 5 shows the distributions of the covariates available for PSA in both sam-
ples. Except for gender, the values differ greatly in the distribution of the covariates
between the two samples. Overall, respondents to the online sample were younger
and more prone to cannabis consumption. In addition, their score for the MUL-
TICAGE subscales of internet and videogames addiction tended to be higher than
those of the reference sample members. Finally, the Science Faculty at the UGR
was clearly overrepresented in the online sample, as to a lesser extent was the
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Medicine Faculty, while the other faculties were underrepresented. Given that the
variability between samples can be identified in the covariates, it seems likely that
PSA might be helpful to obtain more efficient estimates out of the online sam-
ple.

Estimation of the population means followed the same procedure as described
in Sect. 4.3: each algorithm for variable selection was applied before PSA (with
the same predictive models -and hyperparameter optimisation- as in the simula-
tions: logistic regression, GBM, k-NN and neural networks) using the described
reference and convenience samples, and the resulting weights were used directly
in the estimators or as initial weights for Raking calibration. The estimated pop-
ulation means for each combination of methods and the estimated Leave-One-Out
jackknife variance (Quenouille 1956) are shown in Tables 6 and 7 respec-
tively.

In all cases, the use of variable selection algorithms made the estimates closer
to the value observed in the reference sample. For estimation of Item number 16,
selecting variables that set the indicator variable of inclusion in sv (z) as the tar-
get variable gave subsets that provided the closest estimates for each predictive
algorithm, while for the ATeMo score the best choice was to set the variable of
interest (y) as the target in the variable selection algorithms. Raking calibration
also helped provide estimates that were closer to the reference sample one, espe-
cially in the case of Item number 16. On the other hand, the application of these
methods increased the variance of the estimator, although in general this increase
was greater when any variable selection algorithm was used (with some excep-
tions).

7 Discussion and conclusions

In propensity estimation models for online surveys, the question of the variables
to be included has been widely discussed, and in some cases questions have been
included specifically to distinguish between the potentially covered population and
target population individuals (Schonlau et al. 2007). Informative variables can be
selected by the practitioner prior to the study, especially when there is some knowl-
edge on the relationships between variables. However, there is often no information
at all on the relationships present in the variables prior to the study, and this cir-
cumstance is even more likely in high dimensional contexts, which are becoming
ever-more frequent with the development of Big Data methods in survey sam-
pling.

In such cases, variable or feature selection algorithms may contribute to iden-
tifying the most informative subset of variables. The simulations performed in
our study, using synthetic data and a real survey, reveal the impact of vari-
able selection. In building the models, we also considered machine learning
classification algorithms and the subsequent application of Raking calibration,
in order to determine which alternatives are most effective in terms of bias
removal.

Our analysis shows that feature selection makes a significant contribution to
reducing relative bias. However, the best feature selection algorithm, in this respect
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Table 5 Distributions of covariates in online and reference samples

Variable Level Online sample Reference sample p-value

Gender

Male 43.4% 37.6% 0.2443b

Female 56.6% 62.4%

Age

Mean age 20.39 ± 2.78a 21.12 ± 3.05a 0.0068c

Faculty

Computing 3.9% 9.7% < 2.2e-16d

Science 58.9% 10.6% (χ2 = 209)

Business 3.9% 8.9%

Law 3.9% 8.3%

Humanities 5.4% 7.5%

Medicine 10.9% 4.3%

Other faculties 13.2% 50.7%

MULTICAGE

(internet) 0 9.3% 32.8% 3.84e-07d

1 30.2% 27.3% (χ2 = 35.4)

2 31.0% 19.7%

3 17.1% 14.1%

4 12.4% 6.0%

MULTICAGE

(videogames) 0 72.1% 81.7% < 2.2e-16d

1 15.5% 8.5% (χ2 = 246.9)

2 9.3% 6.0%

3 3.1% 2.6%

4 0.0% 1.3%

CAST

No consumption 21.7% 86.6% < 2.2e-16d

No issues 42.6% 4.7% (χ2 = 308.8)

Few issues 27.1% 4.6%

Considerable issues 5.4% 3.0%

Many issues 3.1% 1.2%

SDS

No consumption 22.5% 86.6% < 2.2e-16d

No issues 53.5% 8.3% (χ2 = 279.7)

Few issues 15.5% 3.4%

Considerable issues 3.9% 1.4%

Many issues 4.7% 0.4%

aStandard deviation of the age
bTwo sample test for equality of proportions with continuity correction
cWelch two sample t-test
dPearson’s Chi-squared test
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and regarding its effect on the estimation, varies according to the dataset con-
sidered and the adjustment choices made. The best variable selection method
depends on the dataset, meaning there is no one-size-fits-all solution. However,
the reduction of model complexity associated with variable selection consistently
produced more efficient estimators. As expected, selecting variables according
to their impact on the outcome variable provided the best results overall. In
line with Austin and Stuart (2015), we find that the propensity score works on
the covariates included in the model, so it is preferable to include prognosti-
cally important variables (related to the outcome) as the probability to mitigate
the bias in the estimation of the target variable will also be higher. In view of
these results, in practice the combination of several variable selection approaches,
rather than just one, might be useful to identify the best subset in each situa-
tion.

Regarding other adjustment methods, Raking calibration after PSA proved to
be the most efficient technique in almost all cases. The redundancy of variables
between adjustments can reduce the efficiency of their combination in some cases,
as observed by Lee and Valliant (2009), who reported that the use of the same vari-
ables for PSA and calibration resulted in estimates which, despite being less biased
than estimates using only PSA, underperformed versus adjustments with no redun-
dancy.

On the other hand, the use of classification algorithms instead of logistic regression
for estimating propensities was advantageous overall, but only for certain algorithms
and with no clear view as to which was the best algorithm for estimation. The appli-
cation of this sort of algorithm in nonprobability sampling was recently studied by
Buelens et al. (2018) as an option for model-based estimates, and by Castro-Martín
et al. (2020b), Ferri-García and Rueda (2020) and Ferri-Garca et al. (2020) for PSA
in online surveys. It has also been studied for PSA in nonresponse adjustment (Phipps
and Toth 2012; Buskirk and Kolenikov 2015), with promising results. Further stud-
ies should take into account this approach, together with the use of a wider range
of algorithms, and should consider how preprocessing (such as the feature selection
applied in the present study) might influence their performance in propensity estima-
tion.

Further research is needed regarding the implications of variable selection on
nonprobability samples, as our study presents certain limitations. Most importantly,
relatively few covariates were available for each simulation and for the application
study. Originally, feature selection algorithms were intended to reduce dimensional-
ity in large data sets, facilitating the selection of only the most significant variables
for prediction. Further research into these algorithms in PSA for selection bias treat-
ment using a larger number of covariates would enhance our understanding of these
questions. However, our results also support their use in a low dimensional context,
meaning that the value of these algorithms could extend beyond computing opti-
misation. For example, the use of variable selection algorithms could be extended
to calibration; although research has shown their potential and some methods have
been developed in this area (Chen et al. 2019), further study is needed to consider
this topic, as calibration requires little information and therefore can be more widely
applied. Finally, the use of more powerful algorithms for propensity estimation, such
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as deep learning techniques, should be considered in future studies, as these methods
usually involve automatic variable selection and could provide more precise esti-
mates.
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