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Summary 

The number of mortgages in Spain is a counting process that can be mod- 
elled as a doubly stochastic Poisson process (DSPP). A modelling method 
for the intensity of a DSPP is proposed. A first step consists on estimating 
discrete sample paths of it from observed ones of the DSPP, then a con- 
tinuous modelling is derived by means of Functional Principal Component 
Analysis. The method is validated by a simulation. Finally, it is applied to 
the real process of the mortgages in Spain discussing the interpretation of 
the principal components and factors. 

Keywords:  Doubly Stochastic Poisson Process, Point Estimation, Fhnc- 
tional Principal Component, Mortgages. 
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1 I n t r o d u c t i o n  

The number of mortgages in a country is an important index to evaluate the 
economic development of that country. This pape/r is focused in modelling 
the point process of the number of mortgages in Spain through a previous 
modelling of its intensity. The number of mortgages is considered as a doubly 
stochastic Poisson process (DSPP), that is a Poisson process conditioned to 
an external process; so its intensity is also a stochastic process (see Snyder 
1991 and Daley and Vere-Jones 1988, among others). We have chosen the 
DSPP to model this real counting process in order to consider a more complex 
structure of its intensity than in homogeneous and non-homogeneous Poisson 
processes. 

We have available large data of the DSPP,  it is of the number of mortgages 
in Spain; the monthly data of the stochastic process from 1991 to 2000 of 
the 52 Spanish provinces. These data can be seen as 52 sample paths of the 
DSPP. 

When the first two moments of the intensity process are known, its estimation 
has been deeply studied in literature. Even though, when there is not statisti- 
cal knowledge about the intensity process, Snyder and Miller (1991) propose 
to estimate it as a moving average of an observed trajectory of the DSPP 
and to make a regression so that the intensity can be modelled as a function 
of time. This estimation looses the stochastic nature of the intensity process 
of the DSPP which is the fundamental characteristic of this generalization 
of the Poisson process, so the DSPP is simplified to be a non-homogeneous 
one. The novelty of this paper is to present an estimating method of the 
intensity process by modelling its stochastic structure without any statistical 
assumptions on it. 

In Section 2, a point estimator for the intensity process of a DSPP is defined 
when a long enough trajectory of the process is observed but no other sta- 
tistical knowledge is available. Then, we propose a method of estimating a 
discrete sample path of the intensity process from each observed one of the 
DSPP. 

Section 3 is devoted to model the stochastic structure of the intensity process 
from the estimated trajectories calculated in the previous section by means of 
Functional Principal Components Analysis (FPCA). Therefore, the intensity 
is expressed in terms of an orthogonal expansion of the principal components 
(p.c.'s). See for example Ramsay and Silverman, 1997 and Valderrama et al. 
2000, for deeper study of FPCA and examples. 

In Section 4, the inference on the intensity process proposed is applied to a 
specific case of DSPP, a compound DSPP. This process is a random com- 
bination of four DSPP's. The simulation is used not only to illustrate the 
calculation of the point estimator and the FPCA, but also to show the sta- 
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bility of the mentioned estimator and to validate the modelling method. 

Finally, Section 5 applies the validated methodology to the real observed 
case of the number of mortgages in Spain mentioned above (see Bouzas et 
al., 2002 for an introductory work). Even more, the first three p.c's and 
principal factors are displayed and it is also treated their interpretation as 
well as a discussion on the estimation error. 

2 Estimated trajectories of the intensity 

The estimation problem of the intensity process is described as follows. Let 
{N(t)  : t >_ to} be a D S P P  with intensity process {~(t, x( t ) )  : t > to} where 
{x(t) : t _> to} is the information process. Our purpose is to estimate the 
stochastic process )~(t, x ( t ) ) ,  having no previous knowledge about  its struc- 
ture, from a trajectory of N ( t )  observed on the interval [to, to + rT) .  

From now on, we will write A(t) instead of A(t, x ( t ) )  to simplify the notation. 
We will considered that  the data available are k sample paths of the DSPP  
that  will be denoted by N~, w = 1 , . . . , k .  Let us now explain a way to 
estimate shorter k sample paths of/~(t) from the observed data. 

Due to the independence of the increments of a DSPP, each trajectory, N~, 
can be cut into r subtrajectories by dividing the time interval in r subintervals 
so that  they start  at the same time; this rescaling can be expressed as follows 

N ~ , i ( t ) = N ~ ( t + ( i - 1 ) T ) - N ~ ( t o + ( i - 1 ) T ) ,  t C ( t o , t o + T ]  

with i = 1 , . . . ,  r and w = 1 , . . . ,  k. The subintervals have equal length to use 
all the information in the estimator that  will be proposed below. 

We will define a point estimator of the intensity process in several instants 
of time of (t0, to + T] for each of the k sample paths, using the r new subtra- 
jectories of each one. Let us choose a partition in (to, to + T], defined by the 
knots 

to < t~,l ~ . . .  ~ tw,j ~ . . .  ~ t~,p~ = to + T 

with w = 1 , . . . ,  k. We denote the last knot by t~,p~ because the number of 
knots may be different for each k. Then, the point estimator is defined by 

1 ~-~ N~, i ( t~ , j )  - N~ , i ( t~ , j -1 )  
i ( t~ ,D  (1) 

r Y--~i=l t~,j tw,j-1 

with j ----- 1 . . . .  , p~ and w = 1 , . . . ,  k. Therefore, we have p~ estimations of A(t) 
in (to, to + T], for each w = 1 , . . . ,  k. They can be considered as k estimated 
discrete trajectories of the intensity in (to, to + T]. 



76 

Estimating the discrete sample paths of the  intensity process from observed 
data of the DSPP has various steps explained above. They are outlined in 
Figure 1. 

N~in[to,to + rT) l"partition ." N~,in [to,to+T ) 

N~,, in [to,t o +T)  

2 ~a partitionlr 

~(tr ~(to~,p| 
o) th estimated discrete trajectory 

of ~,(t) in [to,to+T) 

Figure 1: Diagram of the steps of the estimation of a trajectory of s 

2 .1  P r o p e r t i e s  a n d  c o n f i d e n c e  i n t e r v a l s  

Next, we study the main properties of this estimator. Using the fact that 
Nw i(tw j-l,  t~,j) are DSPP's with mean ;t~,j A(a) da, for every i = 1 , . . . ,  r, ' J~ca,j- 1 
let us notice that 

1 r E[N~,,(t~j_l,t~j)] f~;_, A(a)da 
E[X(t~,j)] = r '~:~1 t--~,j---- t--~,j--'l = tw,j - t,~,j-1 

and if m a x j = l , . . . , p ( t w j  -- t w , j - 1 )  --+ O, when p --* co, then the estimator is 
unbiased: 

E[~(t~,j)]  -~ ~(t~,~). 

It is also known that the variance of a DSPP coincides with its mean, so we 
can prove that 

1 ElLa Var[i~,i(tw,j-a, twj)] 1 f ~ - i  A(a) da r-.T 0 
Var[s = r2 (t~j - -  tw,j--1)  2 ~ -  T ( t w ,  j - -  t w , j _ i )  2 

(2) 
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so that  the eStimator is consistent. 

Let us extend the point estimation of the intensity process to estimation in 
a whole interval. First of all, we need an statistic with known distribution in 
which the parameter  is involved. In order to find it, let us take into account 
the distribution of various statistics. 

Due to the independence of the subtrajectories, N~,i(t), remembering that  

N~, i ( tw , j_ : ,  tw,j) are DSPP ' s  with mean f:~;,  -~ )~(a) da , for every i = 1,. .  , r  
and using the Central Limit Theorem, 

so then, 

( f'-,, Zz;_, "-~ N \Jt,~4_~ A ( a ) d a ,  

, (t~,, - t~,j_,) \ t-Z,, : t -22J  , (t~,j - t~,j_,) ~ ]  

Taking into account this last distribution and choosing a partition verifying 
maxj=:, . . . ,p( t~, j  - t~d_ : )  --. 0, when p ~ co, we obtain tha t  

s  -~  N ~( t~ ,~) ,  r ( t~ , j  - t~ ,~_: )  ] " 

Finally, we have found out that  the limit distribution of our point estimator 
if the amplitude of the parti t ion tends to zero. In practice, this can be trans- 
lated to be the distribution of ~(tj) for r large enough and a fine partition. 
Therefore, 

~(t~,j) - )~(t~,j) ~ N (0, 1). 
~/  ),(t~,~) 

r (t.~d - t ~ j - l )  

Due to the consistency of ~(twj) (see equation (2)), we can also assure that  
replacing A(tw,j) in the s tandard deviation of the Normal distribution by 

~(tw,j) the distribution is still the same. Using the usual method to derive a 
confidence interval, we obtain 

[ i 5,( t~, j )  , 5 , ( t ~ , j )  + z l _ . / ~  . , 
~ ( t w ' J )  - -  Z l - -~  T (tw'~j ----~j_l) r (t~mj ----~j-1) 

(a) 
where z:-c , /a  is the value of a s tandard Normal distribution whose distri- 
bution function is 1 - a /2 ,  therefore the confidence level of the interval is 
(1 - a )  100%. 
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Calculating the confidence interval for each knot of the partition, the set 
of all the inferior extremes and the set of all the superior extremes form a 
confidence band for the intensity process of a DSPP in the whole interval 
[to, to + T) .  

All the calculations needed for deriving the estimations and the confidence 
bands, have been implemented with Matlab 6.0. Therefore, our program can 
give discrete sample paths of the intensity process of a real DSPP from its 
observed sample paths. 

3 Continuous modelling of the intensity 

In the previous section we have developed point estimations of the intensity 
process in some instants of time. In this section, we will model the intensity in 
a continuous way by applying FPCA. Therefore, it will be expressed in terms 
of an orthogonal expansion of its principal components which is a continuous 
estimation of its stochastic structure. 

In Section 2, the point estimator of the intensity process given by equation (1) 
provided k discrete trajectories of it. Under the assumption that the intensity 
is a process continuous in quadratic mean and with squared integrable sample 
paths, we propose now to apply a FPCA to these trajectories in order to 
model the structure of their process. The number r is chosen such that these 
trajectories have the same length not to loose any information applying the 
FPCA. 

We will obtain an orthogonal expansion of the intensity process in terms of 
its first q principal components 

q 

+ L(t) 

where t~( t )  is the estimation of the expectation of )~(t) from the k estimated 
sample paths: 

k 
1 

~ ( t )  = ~ ~ ~ ( t )  
coral 

and i s ( t )  are the eigenfunctions, also called principal factors, associated to 
the eigenvalues of the second order integral equation 

t~  ] s ( u ) d u  = ~s is(t),  t E [ to , t o+T]  (4) 
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where C~ i s the estimator of the covariance function of A(t) : 

k ~ 1_2_ 
w = l  

^ 

and ~ , s  is the s-th principal component: 

fj tl ~ + T ~ , s - -  [ ~ ( t )  - ~,( t)]  fs(t)dt. 

Usually, trajectories are not completely known but observed in discrete in- 
stants of time (in the real case of mortgages in Spain that we will study 
in Section 5, not observed but estimated). On the other hand, equation (4) 
must be solved by numerical methods and the FPCA estimated from discrete 
observations. In any case, it is usual to assume that  the trajectories belong 
to a finite dimension space, generated by a basis denoted by ~ 1 , . - . ,  (P~, so 
that 

i~(t) = f i  ~,z~(t). 
/ = 1  

where a~,l are the corresponding coefficients. If the basis is orthonormal, the 
FPCA is reduced to multivariate PCA of the matrix whose rows are the coor- 
dinates of each estimated sample path, ~ (t), with respect to the basis. The 
computation of the coefficients can be solved by different numerical methods 
like different types of interpolation, projection, etc. In this paper, we will use 
natural cubic spline interpolation on the discrete estimated sample paths of 
the intensity (see Aguilera 1996). 

A specific Turbo Pascal program called SMCP 2 (see Aguilera 1999) was de- 
veloped in order to calculate the estimation of the FPCA. The program is 
composed by an executable program and twenty five libraries that  allow us 
to use different methods of estimation of the FPCA. 

4 Appl icat ion to simulations 

The estimator and confidence interval proposed in Section 2 have been applied 
to a simulated example in order to illustrate the methodology. Using that  
the real intensity of the simulation is known, we validate the inference by 
observing the behavior of the estimations of the intensity and its comparison 
to the real values. 

If we simulate k trajectories of the DSPP according to a chosen intensity. 
Then, we can obtain their corresponding k shorter estimated sample paths 
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of the intensity process. We propose the following measurement of the error 
committed in the estimation of each intensity trajeciory 

e ~  = - e ~ , i ,  ~ =  1 , . . . , k  (5)  

i= 1  

where 
1 Pw 

~ , i  = ~ - ~ [ ~ , i ( t ~ , ~ ) -  s i =  1 , . . . , r .  
5---_1 

The simulation example we are going to develop is a compound DSPP. It  
is formed from four DSPP ' s  in which each random intensity is uniformly 
distributed in [0, 1] for every t E [to, to + T), a four-dimensional boolean 
vector regulates the random occurrence of each of the four DSPP ' s  at the 
same time. An illustration of how to derive this compound DSPP can be 
seen in Figure 2. 

C~oe~dl3SPP 
j ~PP ~h mformly di~rb~ed ~m~ora i~e~ 

Umrom R~dom 
Number 1 

Umrom 
NmbeI2 

U~'om Ra~om 
Numberj 

I~o~nvectr K 

Figure 2: Diagram of a compound doubly stochastic Poisson process. 

There have been simulated K = 150 trajectories of the compound DSPP in 
[to, t o + r T )  - [0, 100). We have taken r = 10 and p - w  -- 20, ~ = 1 , . . . ,  150. 
Calculating the point estimator, there has been obtained other 150 shorter 
trajectories of the intensity in [0, 10) estimated in 20 equally spaced knots of 
the interval. As an illustration, we can see two simulated subtrajectories of 
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the intensity (dots) and their  estimated ones of the compound DSPP (con- 
tinuous line) in Figures 3A and 3B, as well as the confidence band (dashed 
line). 

The 150 simulated sample paths were also used to calculate the errors in esti- 
mation. We have got that  the error e~ is very small for every w -- 1 , . . . ,  150. 
All of them can be seen displayed in Figure 3C. Moreover, we can conclude 
that  the estimation error is small and keeps stable as the error mean among 
estimated trajectories of the intensity process has been 0.5711 and the stan- 
dard deviation 0.0775. 

We have performed the FPCA in this simulation from natural cubic spline 
interpolation as mentioned above; the variances of the p.c.'s and their accu- 
mulated variability appear in Table 1. 

p.c. Variance Accum. Variance 
E1 0.19 9.81% 
~2 0.16 18.44% 
~3 0.15 26.44% 
~a 0.15 34.08% 
~5 0.13 40.82% 
46 0.12 47.25% 
~7 0.12 53.50% 
{8 0.11 59.38% 
~9 0.11 64.97% 
410 0.10 70.23% 
~11 0.09 75.13% 
412 0.08 79.56% 

Total Variance 1.9 height 

Table 1: Variances and accumulated variances of the p.c.'s. 

Let us observe that it is necessary to select at least 12 p.c.'s in order to 
accumulate nearly 80% of the total variability. As examples, two of the 
sample paths (continuous line) and their orthogonal representation in terms 
of the first 12 p.c.'s (dashed line) are shown in Figures 3D and 3E. 

The mean square error committed by this p.c.'s representation is given by 

k 1 2 
MSEP(t) = -~ ~=I (Aw(t) - AP(t)) (6) 

where p is the number of p.c.'s taken for the approximation and it has been 
drawn in Figure 3F. 

We have observed that  in the application of our modelling methodology of 
the intensity process of a simulated compound DSPP, the estimation error 



82 

3 . A  
3 . . . .  

0 2 4 6 8 10 
a.c 

0.40.60B . ~ . . .  ~ .- . . . . . . . . . . .  .~ . . .  . . . . . .  ~ ,  ~- . . - -  ~..-~ . . . . . . .  .~ 

0 2  

3 .B  

:[-- j ' j  ,,j 
0 2 4 6 8 10 

0 50 1 O0 150 
;3.E 3 .F  

3 0 .8  

�9 [ 0 ,4  

0 .2  

0 2 4 6 8 10 0 

3 . 0  

1.5 ", 

r 

O. 

o~ ~ ~ ; ; lO 

0 2 4 6 8 10 

Figure 3: Plots for the compound DSPP simulation. 

is small and stable having simulated 150 sample paths, so this validates the 
methodology and in consequence it is adequate to be applied to a real case 
of DSPP. 

5 Mortgages in Spain 

The number of mortgages in the 52 provinces of Spain are different sample 
paths of the process which is going to be modelled by a DSPP. As the different 
provinces have different populations, we consider the number of mortgages 
per 10000 inhabitants in order to work with comparable data. 

In our case, N(t) is observed from to = 0, the beginning of 1991, to to + rT, 
(T = 12, r = 10), the end of 2000. Therefore, each subtrajectory is defined 
on a complete year (to, to + T]. In our real process of mortgages, the initial 
sample paths had the same length, so if we take the same number of knots 
of the first partition, r, the estimated sample paths of the intensity will also 
have the same length and it will be useful for us to apply F P C A  in order to 
use all the information from the observed data. 

The second partit ion has been chosen so that  the knots are the months of the 
year. It  is, t~ j ,  j = 1 , . . .  ,p~ are equally spaced and p,~ = 12, ~ = 1 , . . . ,  150. 
Calculating the point estimator of equation (1) for the 12 months of the year 
(j = 1 . . . .  ,12) and the 52 provinces (w = 1 , . . . ,  52), we have got 52 estimated 
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trajectories of the intensity process each one formed by its estimation in 12 
points of the year, in the twelve months. The estimated trajectories of the 
intensity of two of the provinces can be seen as examples in Figure 4 as well 
as the confidence bands derived from the confidence intervals at every point 
estimation from equation (3). 

13 

11 

8 
0 

15 

14 

13 

12 

11 

10 

9 

8 (  

o 

i i a 

2 4 6 8 10 
E s t i m a t e d  t r a j e c t o r y  

I --m- Confid . . . .  b a n d  I 

1. 
12 

-- -- --~ I ", o O 

I n I I i 
2 4 6 8 10 12 

Figure 4: Two subtrajectories of ~(t) of the mortgages in Spain, the estimated 
trajectory and confidence bands. 

In the real case of the number of mortgages in Spain, the 52 discrete estimated 
sample paths of A(t) in a year for the 52 provinces, have also been interpolated 
by natural cubic splines. The performance of the FPCA gives us the variances 
of the p.c.'s and their accumulated variability which appear in Table 2. 

Principal component % accumulated variance 
~l 96.348 
~2 97.227 
~3 98.027 
~4 98.486 
~5 98.884 
~6 99.202 

Total variance 181.919 

Table 2: Accumulated variances of the p.c.'s 

This table shows that the first three p.c.'s accumulate approximately 98% of 
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the total variability and the first six ones more than 99%. As the first one 
accumulates so much variability, more than 96%, we have decided to take into 
account the first six in order not to have a trivial representation (we will give 
further explanation in next subsection). As an illustration, Figure 5 shows 
two (among the 52) of the sample paths and its orthogonal representation in 
terms of the first six p.c.'s. 

11.5 

11 f 1 0 . 5  

1 0  

9 . 5  

9 
0 

13 

12"5 I 12 
11.5 

11 
10.5 

10 
9,5 0 

x ' ' ' ' ' 

x ~x I11 

i i i i i - -  2 4 6 8 10 12 
E s t i m a t e d  t r a j e c t o r y  "7 

- -  I n t e r p o l a t i o n  b y  Spl ine~J 
I ----'--:. R . . . .  , r u c t i o n  b y  FPCAJ 

, , , ., , 

,x \ \ ~ \  

2 4 6 8 10 12 

Figure 5: Two sample paths of ~(t) of the mortgages in Spain and their 
orthogonal representation. 

5 . 1  D i s c u s s  o n  t h e  p r i n c i p a l  c o m p o n e n t s  a n d  f a c t o r s  

It would be desirable to be able to interpret the principal factors and com- 
ponents and maybe it could help to choose the number of p.c.'s (q) on the 
expansion but it is most times very difficult. See Ramsay and Silverman, 1997 
for a further study on the interpretation of the p.c's and principal factors. 

Let us make an attempt to study them; therefore we present the plot of the 
first three principal factors in Figure 6 and the first three p.c.'s are plotted 
one versus another one in Figures 7 - 9 where the provinces are noted by its 
first letters. 

Let us observe Figure 6 which displays the first three principal factors of the 
intensity of the Spanish mortgages. It can be seen that the first principal 
factor is positive throughout the year and nearly the same for all the months. 
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Figure 6: First three principal factors. 

This means that  it corresponds to a measure of the uniformity of the mort- 
gages through the year. In fact, the variability of the monthly means of the 
point estimations of the intensity from the observed data  of the DSPP  is very 
small as we can see in Table 3. 

Month Mean Month Mean 
Jan. 11.40 
Feb. 10.93 

March 11.06 
April 10.14 
May 10.96 
June 10.61 

July 9.72 
August  9.34 

Sep. 10.63 
Oct. 10.90 
Nov. 10.95 
Dec. 9.62 

Table 3: Monthly mean of the point estimations of the intensity from the 
observed D S P P  

On the other hand, it is surprising to observe that  the order of the 52 
provinces on the first p.c. is the same as the order of the provinces pro- 
vided by their annual means of the point estimations of the intensity. As a 
consequence, the first p.c. that  explains 96% of the total variability of the in- 
tensity process is related with the mean of the DSPP  (E[N(t)] = f~o )~(a) do') 
and so with the global amount of mortgages in a Spanish province that  is 
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Figure 7: First principal component versus second one. 

nearly invariant in time. 

Taking into account tha t  the second and third p.c.'s explain a very small 
percentage of variability and they are orthogonal to the first one and as well 
as to each other, their associated eigenfunctions represent small variation 
from the general behavior and so, lightly specific patterns of the intensity of 
some provinces with major  or minor values of these two p.c.'s. 

We can point out about  the third principal factor that  has an oscillatory 
form with increasing amplitude and phase until august and then the function 
increases and has a maximum in november. In can be seen that  the variation, 
month to month, of the monthly mean of the data  (see Table 3) follows this 
same structure with a small translation in time. The provinces with high 
values in any of the second or third p.c. 's (as it can be observed Guadalajara  
(GU) in Figures 7 -9) have a very similar behavior to the associated principal 
factor. 

Let us amplify the reason of the decision of taking into account the first 
six p.c.'s. I t  is hold by the comparison of the mean square error on the 
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Figure 8: First principal component  versus third one. 

est imated intensity process (see equation (6)) commit ted  by taking p = 3 
or p = 6 in the expansion; the error in the intensity process est imation is 
notably smaller with p = 6. Figure 10 displays the comparison of the mean 
square errors commit ted  by both representations. 
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