
International Journal of Approximate Reasoning 137 (2021) 94–112
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Spark solutions for discovering fuzzy association rules

in Big Data

Carlos Fernandez-Basso, M. Dolores Ruiz ∗, Maria J. Martin-Bautista

Department of Computer Science and A.I. and CITIC-UGR, University of Granada, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 September 2020
Received in revised form 7 May 2021
Accepted 5 July 2021
Available online 24 July 2021

Keywords:
Big Data
Fuzzy frequent itemset
Fuzzy association rules
Spark

The high computational impact when mining fuzzy association rules grows significantly
when managing very large data sets, triggering in many cases a memory overflow
error and leading to the experiment failure without its conclusion. It is in these
cases when the application of Big Data techniques can help to achieve the experiment
completion. Therefore, in this paper several Spark algorithms are proposed to handle with
massive fuzzy data and discover interesting association rules. For that, we based on a
decomposition of interestingness measures in terms of α-cuts, and we experimentally
demonstrate that it is sufficient to consider only 10 equidistributed α-cuts in order to
mine all significant fuzzy association rules. Additionally, all the proposals are compared
and analysed in terms of efficiency and speed up, in several datasets, including a real
dataset comprised of sensor measurements from an office building.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Nowadays, the increasing data generation in the majority of companies, social media, etc. has given rise to the Big Data
phenomenon. Moreover, every day more buildings sum to the “smart sensored” fashion by incorporating sensor devices to
collect data in order to use them for improving their energy usage and therefore save not only energy but also money and
natural resources. The constantly necessity of information discovery from these huge amounts of data is the key in this
competitive world. In this regard, Big Data philosophy, based on the MapReduce framework, helps in that task. In particular,
many Data Mining techniques had been developed using Big Data techniques [1–4].
Association rules can be helpful in this ambit to uncover hidden relationships in gathered data without supervising. Asso-
ciation rules are often represented by implications of the type A → B , representing the joint co-occurrence of A and B in
a high percentage of transactions. However, numerical data coming e.g. from sensors may contain very granulated values
that difficult their analysis. At this respect, some works have employed discretization of these numerical values. But this
may bias the obtained results since final results can vary a lot depending on how the attribute values are divided. This
problematic has been pointed out by several authors like in [5]. Fuzzy Sets theory [6] has been proven to be a good solution
to discretize numerical values in a soften way and represent them in a understandable way to users. As a result of this
fuzzy discretization process, fuzzy databases are created where fuzzy association rules can be extracted [7]. Additionally,
there are fields where data can be affected by some kind of uncertainty or imprecision, and they are gathered following a
fuzzy description of attributes [8].

In this paper, we study which can be the best procedure to analyse Big Data by means of fuzzy association rules.
Non-distributive proposals can be found to perform such analysis, but they run into problems when the volume of data
increases, becoming less efficient and leading, in many cases, to memory overflow errors. To this end, we have proposed

* Corresponding author.
E-mail address: cjferba@decsai.ugr.es (C. Fernandez-Basso).
https://doi.org/10.1016/j.ijar.2021.07.004
0888-613X/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ijar.2021.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2021.07.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cjferba@decsai.ugr.es
https://doi.org/10.1016/j.ijar.2021.07.004
http://creativecommons.org/licenses/by-nc-nd/4.0/

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
different Spark proposals for mining fuzzy association rules, enabling the distributed processing of massive datasets. Spark
implementations [9] enables faster memory operations than other frameworks like Hadoop [10] because in-memory com-
putations are allowed. In [11] there is a very complete comparison between Hadoop and Spark frameworks for different
Machine Learning algorithms, obtaining that Spark outperforms Hadoop in the majority of cases.

Fuzzy association rules in the Big Data environment have not attracted yet much attention, and to the best of our
knowledge, there does not exist any implementation in distributive environments for fuzzy association rules. Therefore,
the main contribution of this work is then the proposal, implementation and comparison of different algorithms for fuzzy
association rules mining in Spark, improving the existing implementations of crisp association rules algorithms, by enabling
the uncovering of fuzzy association rules with no restrictions in either the number of items present in the antecedent or the
consequent. The results of our experiments show that Big Data approach improves the efficiency of algorithms, with respect
to non-distributed techniques. For that we have compared their performance in terms of execution time and also in memory
consumption, attending to the number of transactions and the number of items to be analysed. However, the growth in the
number of items, due to the exponential combination among them, the different proposals may not achieve a significant
improvement in time, but thanks to the distribution capability of Big Data, substantial improvements are achieved in terms
of memory problems, enabling to finish the analysis, in contrast to the memory overflow problems that sometimes appear
in traditional approaches.

Additionally, our proposals are based on a decomposition of interestingness measures in terms of α-cuts which facilitates
their implementation to other interestingness measures different to that of support and confidence using the formal model
developed in [12]. In order to facilitate the decision of what set of α-cuts it is necessary to employ when mining fuzzy
association rules, we experimentally demonstrate that it is sufficient to consider only 10 equidistributed α-cuts in order to
uncover all significant fuzzy association rules.
These proposals employ elements of efficient search and seek to maximize the use of data cluster resources to improve
computational efficiency and data processing capabilities.
The paper organization is the following: Section 1 makes a literature revision in the ambit of Big Data technologies and
association rules mining algorithms. Section 2 introduces the definitions and concepts related to Big Data and fuzzy asso-
ciation rules mining necessary for the comprehension of the paper. Section 3 describes the different algorithms proposed
and developed for fuzzy association rules mining using Spark. Section 4 presents the experiments performed and results
obtained, before concluding the paper in Section 5.

1. Related work

Data mining techniques can be classified into two main types: supervised techniques such as classification methods and
non-supervised techniques such as clustering or association rules. This work is focused in association rule mining, but there
are also many works which restrict to frequent itemsets mining, the first step in the process of discovering association rules.

1.1. Algorithms review for frequent itemsets mining

In this section we review the existent algorithms in the literature for frequent itemset extraction. Once frequent itemsets
are discovered, association rules can be extracted by assessing the strength of the relation (e.g. by means of confidence).

1.1.1. Apriori based algorithms
Apriori algorithm was proposed in the mid-nineties [13]. It consists on finding the set of frequent itemsets L, in a given

database D . This algorithm searches the items in the transactions structure, which is consulted in each iteration to check
if larger itemsets are satisfied. In this first work [13], the authors identified a fundamental property: the downward closure
property. This property assures that any subset of a frequent itemset must be also frequent. This gave rise to divide the
process in two main steps that are repeated to find frequent itemsets of length k: first one is known as the candidate gen-
eration step, in which the support of the corresponding k-itemsets is computed by scanning the transactional database, and
second one is known as the large itemset generation, in which frequent k + 1-itemsets are generated by pruning the can-
didate itemsets that do not exceed the minimum support threshold. These steps are then repeated until no more frequent
itemsets can be found. Afterwards, an interestingness measure like the confidence is employed to discover the association
rules, using the frequent itemsets extracted in the first step.
There are two limitations of this algorithm: one limitation comes from the complex itemset generation process which is
very costly in time and memory, and the second limitation comes from the excessive number of scans necessary in the
candidate generation step.
An improvement of Apriori is the algorithm called Apriori-TID [13]. This version of Apriori algorithm improves the perfor-
mance of traditional Apriori algorithm with large databases. This approach is based on an itemset reduction by removing
non-frequent itemsets in the database in each step, and has some changes with respect to the Apriori algorithm. The first
change consists of sorting the transactions by item frequency, and removing the non-frequent items. The second change is
that it uses the previous k candidate itemsets which were calculated in the previous phase to generate the itemsets of k + 1
size.
This version improves the Apriori algorithm in small datasets, but for large datasets the performance of Apriori-TID is similar
to Apriori although the use of memory is improved [14].
95

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
1.1.2. ECLAT TID-list based algorithm
Another way to improve the frequent itemset mining is by means of intermediate storage of data. In this case, a TID-

list1 is employed [15], where a binary list is created for each itemset, containing 1 in position j, if the item is satisfied in
the transaction j and 0 otherwise.2 This structure allows the computation of item and itemset supports using the boolean
operators. The use of these operations improves the performance of the algorithm because boolean operations are performed
very efficiently. One of the most known algorithms using this approach is the ECLAT [14][16] algorithm.
The main problem of this algorithm is that for a large number of items it would be necessary to store very large lists and
the memory consumption would grow a lot. Additionally, the extension of this process in the distributed environment is not
straightforward because each TID-List has a lot of dependencies with other TID-lists. However, the performance of ECLAT is
faster in comparison with Apriori in the classical framework [17].

1.1.3. Frequent pattern FP-Growth algorithm
Another kind of algorithm for frequent itemset extraction is that using the FP-tree structure [18]. This algorithm called

FP-Growth [19] uses the divide-and-conquer technique. In the FP-Growth algorithm the search space is decomposed on
length-1 suffixes, reducing the number of searches in the database by using the representation of the data in a FP-tree
structure.
This algorithm was originally designed for query recommendation where only top-k frequent itemsets are extracted. This
issue is a drawback for association rules mining, because frequent itemsets of every length are needed to extract the
association rules, unless we are interested in only the association rules with higher support. This means that FP-Growth is
not exhaustive.

1.1.4. Algorithm comparison
In the literature different comparative studies of frequent itemsets algorithms can be found [20]. Amongst them we can

emphasize works comparing the Apriori algorithm most widely used and known, to the rest of approaches. In [17] the
Apriori algorithm is compared with ECLAT and it was appreciated how the use of the TID-lists improves the performance of
the Apriori, although the use of memory is higher. Regarding the FP-Growth algorithm it scans the database of transactions
only once, having thus a faster algorithm than Apriori [20]. However, one of the problems of FP-Growth is that, for very
large datasets, the FP-tree may not fit in memory. Another feature to take into account, is that, it is not exhaustive, that is,
FP-Growth does not obtain all the possible association rules since it does not generate all the possible frequent itemsets.
Moreover, in [21] there is a study comparing the most employed approaches, namely Apriori, ECLAT and FP-Growth. The
experimental evaluation concludes that FP-Growth is more scalable and outperforms the others. In [22], a comparative study
in the Big Data paradigm in a crisp framework is presented. As a conclusion, it shows that the distributed adaptation of
FP-Growth is not always convenient to extract association rules, since it only provides the most frequent itemsets as well as
their support. In our case, the algorithms of our proposal are exhaustive, finding all possible frequent itemsets. Hence, we
propose the implementation and comparison of the Apriori, AprioriTID and ECLAT based algorithms in Spark to extract both
frequent itemsets and fuzzy association rules in an exhaustive way.

1.2. Big Data algorithms for frequent itemset mining

The MapReduce framework employed in Big Data was designed by Google in 2003. Its foundation lies on two different
functions, as its name indicates, to distribute the computation. In particular, the Map() function is in charge of transforming
data into pairs of the type (key, value) attending to some criteria that should be specified. And the Reduce() function is em-
ployed to aggregate those (key, value) pairs containing the same key to finally obtain a piece of processed data according
to the specified criteria.
When implementing MapReduce algorithms, two different frameworks arise as the most employed: Hadoop and Spark.
These platforms have been improved in the last few years by incorporating diverse functions to fully take advantage of the
capacity processing of a cluster, enabling to obtain thus more scalable algorithms and improving substantially traditional
ways of cluster programming. In particular, for the case of association rules, within the Spark library, the PFP (Parallel FP-
Growth) is included. This is a distributed adaptation of known FP-Growth algorithm that can be employed to extract higher
level itemsets exceeding the minimum support threshold [23].
Other proposals for frequent itemsets mining that employ MapReduce techniques can be found in the literature for the non-
fuzzy case. There exist some approaches which present Apriori-based algorithms using Hadoop: [24–26]. Note that these
implementations are made in Hadoop, and according to the analysis made in [11], Spark accelerates executions since it
enables in memory computations. Moreover, algorithms proposed in [24–26] do not employ data structures like tree, hash
tree or hash table that can help to decrease execution times (see the study made in [27]).
In [28] and [29] the authors proposed the R-Apriori and YAFIM algorithms respectively, which are Apriori-based algorithms
using Spark. These proposals can be compared to the non-fuzzy phase of our approach (made for each α-cut), but their

1 TID stands for Transaction IDentifier.
2 Another variant of TID-list consists on a list for each item containing the ids of the transactions where the item is satisfied.
96

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
proposal bases on a vectorial processing to obtain the itemsets of length k in the distributed process which uses a hash
tree, while our proposal uses a hash table when applying MapReduce for every k-itemset. In addition, posterior analysis
made in [27] which compares MapReduce implementations for different data structures concluded that using the hash table
accelerates the algorithm performance versus using hash trees and tries (prefix trees).
Beside this, parallel adaptations of most used algorithms have been also developed for frequent itemsets mining [30] such
as: ParEclat (Parallel Eclat) [31], Par-FP (Parallel FP-Growth with Sampling) [32], HPA (Hash Partitioned Apriori) [33]. All
these algorithms use different data structures to improve the performance and take advantage of the potential of multi-
processors. But the problem is that the multiprocessor it is not enough for all cases. When data exponentially increase,
algorithms need more processing capability. For this reason distributed algorithms arise as a new option for frequent item-
sets extraction.

1.3. Distributed algorithms for association rules mining

As described previously, most of the reviewed algorithms focus only on frequent itemset data extraction. Besides, in the
literature as far as we know, no significant improvements have been described in the association rules creation phase, since
the most time/memory consuming part is that of obtaining frequent itemsets. We can highlight the work of [34] where
PEAR (Parallel Efficient Association Rules) algorithm is developed to improve the association rule mining step, but the global
complexity is not decreased because the cost of extracting the frequent itemsets is much higher than in other algorithms. In
[23] it is developed a distributed algorithm which extracts association rules but enabling only one item in the consequent
part of the rule.
Conversely, in our approach, described in Section 3, it is presented an improvement of this part that enables the uncovering
of association rules with no restrictions in either the number of items in the antecedent or the consequent.

1.4. Distributed algorithms for fuzzy association rule mining

The best to our knowledge, the only one work using the MapReduce framework for mining fuzzy association rules can
be found in [35]. This proposal is based on an extension of the Count Distribution algorithm [36,37] to the fuzzy case.
This algorithm uses similar procedure than R-Apriori [28] algorithm where in the second phase, in charge of computing
the itemset support, Hadoop is employed instead of Spark. This approach differs from our proposal since we employ the
resilient distributed dataset structure that enables across cluster computation.

1.5. Discussion

We have reviewed several types of frequent itemset extraction algorithms and association rules. As it can be seen, there
are different options to improve the efficiency and computational capacity of these algorithms, on the one hand paralleli-
sation which does not allow the full usage of computational power of modern processors to improve the efficiency of the
algorithms. On the other hand, the new distributed computing tools, such as Spark, get profit of the whole processing ca-
pability to efficiently apply the algorithms.
This paper, and the proposals presented in it, focuses on the latter technology, by designing new algorithms based on dis-
tributed computing in large clusters to improve the capabilities of current algorithms for the extraction of fuzzy association
rules. In this way, these new algorithms can be applied to massive data sets, as we will see in Section 4.

2. Preliminaries

2.1. Fuzzy association rules

Agrawal et al. [38] formally defined association rules for the first time, although in Observational Calculi [39,40] it was
also investigated the analysis of associations.

In general, the Association Rule discovery problem consists in uncovering implications of the form A → B where A, B are
itemsets from I = {i1, i2, . . . , im} such that A ∩ B = ∅ in D = {t1, t2, . . . , tn}, a database formed by a set of n transactions each
of them containing subsets of items (i.e. itemsets) from I . The right part of the rule, A, is often referred as the antecedent
of the rule and the right part, B , as the consequent of the rule.

The problem of association rules discovery has two differentiated sub-tasks consisting on

• discovering all the itemsets exceeding the imposed threshold for the support, where support is defined as the percent-
age of transactions satisfying an itemset. These are known as frequent itemsets.

• Once frequent itemsets are obtained, association rules are those which exceed the minimum confidence threshold or
another established assessment measurement (e.g. Lift).

However, as it was mentioned in the introduction, the data to be analysed can be diverse and can be numerical, categor-
ical, imprecise, etc. For continuous numerical attributes, it is often applied a categorization process, for instance, the price of
97

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
an object may be divided in different intervals indicating its belonging, like for example [100, 200]. However, depending on
the definition of the intervals, the obtained associations can be very different. To prevent this, fuzzy linguistic labels appear
as a solution to overcome this problem. In the previous example, a label like “expensive”, that can be represented by a fuzzy
set, could be a good option for the representation of the price of an object, and offering at the same time a meaningful and
understandable semantic to the user [5]. Moreover, there can be occasions where crisp methods for describing data cannot
be directly applied (see for example [41]).

In all these cases, the data has to be represented by a gradual value, leading to the concepts of fuzzy transaction and
fuzzy association rule. Definitions of these concepts are taken from [42,7].

Definition 1. A fuzzy transaction, t, is a non-empty fuzzy subset of I , where I is a set of items. That is, the membership degree of an
item i ∈ I in t is represented by a number in the range [0, 1] and denoted by t(i).

Note that this definition generalizes the idea of crisp transaction to the special case of fuzzy transaction. From now on,
D̃ will denote a fuzzy transactional database (see for instance Table 1).

Definition 2. Let A denote an itemset, i.e. a subset of items in I . The degree of membership of A in a fuzzy transaction t ∈ D̃ is defined
as follows:

t(A) = min
i∈A

t(i). (1)

This means that t(A) is the minimum of the membership degree of all its items.

Definition 3. Let A, B ⊂ I be itemsets in a fuzzy database D̃. Then, a fuzzy association rule A → B is satisfied in D̃ if and only if
t(A) ≤ t(B) ∀t ∈ D̃ , that is, the degree of satisfiability of B in D̃ is greater than or equal to the degree of satisfiability of A for all fuzzy
transactions t in D̃ .

Different assessment measures have been proposed and analysed from different perspectives for fuzzy association rules
(a good review can be found in [43]). The cardinality based generalization proposed in [7] and also generalized in works
like [44,45], is a good option due to their good properties (see [7] and [46]). However, other measures arise using of
the combination of particular inclusion and cardinality operators. The study made in [47] focuses in studying the suitable
operators yielding a fuzzy Ruspini’s partition in close relation with negated items in rules. For a deeper discussion on the
possible frameworks to assess fuzzy association rules we recommend the review made in [43].

The support and confidence measures employed in this work are based on a semantic approach for the evaluation
of quantified sentences [42]. This approach uses the G D-method [7] and the quantifier Q M(x) = x, which represents the
quantifier “the majority”. The following definitions can be found in [42,7].

Definition 4. The support of a fuzzy itemset A is defined as:

F Supp(A) =
∑

αi∈�

(αi − αi+1)
|{t ∈ D̃ : t(A) ≥ αi}|

|D̃| (2)

where � = {α1, α2, . . . , αp} with αi > αi+1 and αp+1 = 0 is a set of α-cuts.

Definition 5. The support of a fuzzy association rule A → B is defined as:

F Supp(A → B) =
∑

αi∈�

(αi − αi+1)
|{t ∈ D̃ : t(A) ≥ αi and t(B) ≥ αi}|

|D̃| (3)

where � = {α1, α2, . . . , αp} with αi > αi+1 and αp+1 = 0 is a set of α-cuts.

Definition 6. The confidence of a fuzzy association rule A → B is defined as:

F Conf (A → B) =
∑

αi∈�

(αi − αi+1)
|{t ∈ D̃ : t(A) ≥ αi and t(B) ≥ αi}|

|{t ∈ D̃ : t(A) ≥ αi}|
(4)

where � = {α1, α2, . . . , αp} with αi > αi+1 and αp+1 = 0 is a set of α-cuts.

From these definitions leads that fuzzy association rules can be discovered by fixing a set of predefined α-cuts [44] to
compute the support and confidence measures. Note that the computed measures will be closer to the real measure when
considering every α ∈ [0, 1] appearing in the dataset if we fix a sufficiently dense set of α-cuts in the unit interval. This
idea is behind of our proposal using MapReduce for fuzzy association rules mining. And we will see in the experiments that
it is enough to consider 10 equidistributed α-cuts to obtain the whole set of fuzzy association rules.
98

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Table 1
Fuzzy database example.

ID A B C D

1 0.75 0.15 0.35 0.1
2 0 0.5 0.2 0
3 0.8 0.4 0 0.45
4 1 0.25 0.85 1
5 0.5 1 0 0.8
6 0.3 0 0.75 0

3. Fuzzy association rule mining algorithms using Spark

In this section, we present three new algorithms for frequent itemsets extraction and the common part of these algo-
rithms for fuzzy association rules (from now on FAR) mining, all of them following the Big Data paradigm for distributed-
mode algorithms. These proposals are inspired by the operation of the traditional sequential Apriori, Apriori-TID and ECLAT
algorithms and are all implemented using the Spark Framework, which has several facilities for developing Big Data al-
gorithms based on MapReduce and improvements like the use of main memory or advanced DAG. In this regard, the
implemented data structure in Apache Spark, called Resilient Distributed Dataset (RDD), abstracts the concept of data parti-
tion and will be employed through all our proposals, meaning that data are distributed across the clusters [48].
Before presenting the algorithms it is necessary to describe the following primitive Spark functions:

• Map: Applies a transformation function to each RDD and returns a transformed RDD. For instance, a Map function
applied to < key, value > pairs will give transformed pairs:

Map(< item, valuei >) →< item, transf ormed_valuei > (5)

• F latMap: Similar to Map, but each input item can be mapped to 0 (Equation (6) A), or to a pair (Equation (6) B) or
different output items by means of auxiliary functions (Equation (6) C).

F latMap(< item, valuei >) → ∅ (6)

F latMap(< item, valuei >) →< itemset, value j > (7)

F latMap(< item, valuei >) → set(< itemset, value j >) (8)

• Reduce: Aggregates the elements of the dataset using an aggregation function. For example, the frequency of appearance
of an item is computed by applying a Reduce function in the following way:

Reduce(< item, list(value) >) →< item, valueaggregated > (9)

• F ilter: This function allows to filter the distributed data according to a condition.

Additionally, the algorithms use broadcast variables to enable access to global variables in every node of the cluster, i.e.
broadcast variables are available in every partition performed by the Map functions.

In the following, we explain the different approaches proposed to extract frequent itemsets and fuzzy association rules
using Big Data technologies.
Traditional algorithms problems when dealing with large amounts of data are mainly due to the multiple scans made of
the whole database. This often raise in an increasing of the execution time along with the number of transactions. In our
proposals, Spark is employed to improve the Apriori and ECLAT algorithms for mining fuzzy association rules. In both cases
the data is stored using the HDFS (Hadoop Distributed File System), which permits replication and enables distributed
processing.
In the following sections we present the different algorithms designed for extracting fuzzy association rules using Spark.

3.1. BDFARE-Apriori

This section is devoted to present the new algorithm, BDFARE-Apriori (Big Data Fuzzy Association Rules Extraction),
which is comprised of different phases: preprocessing, phase 1, phase 2 and fuzzy association rule extraction.

The overall process is depicted in Algorithm 1. In that, we have employed the acronym DCS (Distribute Computing using
Spark) to represent each chunk of data automatically created by Spark when distributing the data among the clusters. Each
chunk is noted by Si . This notation is also used in the subsequent algorithms.
For a better understanding of the running algorithms we will use the fuzzy database example in Table 1.
99

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Algorithm 1 Main Spark procedure for BDFARE-Apriori algorithm.
1: Input: Data: Fuzzy RDD transactions: {t1, . . . , tn}
2: Input: AlphaCuts: List of alpha cuts: {α1, . . . , αp}
3: Input: MinSupp: minimum support threshold.
4: Output: Frequent itemsets exceeding MinSupp (FreqItemset)

Preprocessing
5: DCS in q chunks of Data: {S1, . . . , Sq}
6: Bit ArraySi ← Si .Map (F uzzyT o Array(tk ∈ Si)) # Map function computes independently each transaction in Si

Phase 1: FreqItems()
7: DCS in q chunks of BitArray: {B A1, . . . , B Aq}
8: {< it1, bit_list1 >, . . . , < itm, bit_listm >} ← B A j .FlatMap()
9: {< it1, card1 >, . . . , < itm, cardm >} ← ReduceByKey(

∣∣bit_listitk

∣∣)
10: ItemSupport ← Support(itk)

11: DicFreqItemset ← Filter(ItemSupport ≥ MinSupp)

Phase 2: Candidate generation
12: Candidate ← DicF reqItemset #Candidates of Length = 1
13: Length = 2
14: Global_F reqItemset ← Candidate
15: broadcast(Global_F reqItemset) #Creates a broadcast variable for its use across the cluster
16: do
17: DCS in q chunks of BitArray: {B A1, . . . , B Aq}
18: {< itemset1, bit_list1 >, . . . , < itemsetm, bit_listm >} ←

B A j .FlatMap(BitListComputation(Global_F reqItemset))
#see Algorithm 3

19: {< itemset1, card1 >, . . . , < itemsett , cardt >} ←
ReduceByKey(

∣∣bit_listitemsetk

∣∣)
20: ItemsetSupport ← Support(itemsetk)

21: DicF reqItemset = Filter(Itemset Support ≥ MinSupp)

22: end DCS computation
23: Length + +
24: Candidate ← CandidateGen(DicF reqItemset, Length)

25: Global_F reqItemset.append(Candidate)
26: while |DicF reqItemset| > 1
27: return Candidate

3.1.1. Preprocessing
The different algorithms proposed for fuzzy association rule mining algorithms have a first step to pre-process the data

transforming them into an array of BitSets. Other works like [49] and [50], which use this kind of representation, have
obtained very good results in terms of execution time and memory used. The BitSet representation has the advantage of
accelerating logical operations such as conjunction or cardinality. This is an important part of the algorithm when calculating
item conjunctions and their frequencies.

Therefore, for fuzzy association rules mining, the BDFARE-Apriori algorithm processes the data and stores them into
an array of bit-lists whose size will depend on the number of transactions contained in the chunk, obtaining for each
transaction an array of itemsets with their corresponding bit-list. This is described in lines 6-10 of Algorithm 1. Note that
all this process is made in a distributive manner, i.e. for each chunk of data, in order to accelerate the computation. Then,
for each transaction and for each item a bit-list will be created containing 1 in position j if the membership value of the
item in that transaction is higher or equal than α j and 0 otherwise. In this way, each item is represented by its bit-list
depending on its value in the transaction. For that, we implement a procedure called F uzzyT o Array, whose pseudocode is
in Algorithm 2. For instance, if the itemset X is satisfied with degree 0.25 in a transaction ti , i.e. μX (ti) = 0.25, and the set
of α-cuts is {1, 0.75, 0.5, 0.25}, then the associated bit-list of X in that transaction will be [0, 0, 0, 1].

The implementation of this type of bit-lists has been made using the numpy library available in python, which enables
concurrent management of lists without going through every list element, enabling the distribution of computations along
different clusters. Regarding the use of BitSets, it is necessary to emphasize the low memory resources needed to manage
the array of bit-lists created during the preprocessing phase for big amounts of data (see also [12,49,50]). In addition, this
structure improves the performance of the algorithm since it accelerates conjunction and cardinality computations.

3.1.2. Phase 1
The first step involves the dataset load and computation of each item appearance in the set of transactions. Fot

that, it uses the Map and Reduce functions. In lines 7-11 of Algorithm 1 we can see how is the process of count-
ing the items using the MapReduce paradigm. Firstly, we use a FlatMap function (see line 8) to transform the lists
[item1_bit_list], . . . , [itemm_bit_list] to lists of pairs of the form < itemi, bit_listi >. We perform this transformation for
being able to use a ReduceB yK ey function that adds all the Bitlists of the same key (i.e. of the same item) to obtain the fre-
quencies of each item. In Fig. 1 we can see an example for the value of minimum support threshold of 0.5. In this example,
the F latMap() function, returns the pairs < itemi, bit_listi >. Afterwards, the items are grouped using the ReduceB yK ey
100

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Algorithm 2 Pseudocode of FuzzyToArray function.
1: Input: Data: a fuzzy transaction tk .
2: Input: AlphaCuts: List of alpha cuts: {α1, . . . , αp}
3: Output: An array of Bit-lists for each item

FuzzyToArray()
4: For every item it ∈ tk

5: j = 0
6: Array = []
7: Do
8: If(μit (tk) ≥ α j)
9: Array.append(1)

10: Else
11: Array.append(0)
12: j + +
13: While j ≤ p
14: end for
15: return {Array} # For each tk the Array contains lists of the type <item,bit_list>

Fig. 1. Example of first phase of BDFARE algorithms applied to the fuzzy items in Table 1.

function using the operator of numpy library explained previously, and their support is calculated using the formula in
equation (2). The last step is in charge of selecting those items with support greater than threshold (MinSupp = 0.5). In the
example provided in Fig. 1 only item A fulfils that condition.

3.1.3. Phase 2
The second phase is in charge of extracting the size-k frequent itemsets (lines 12-26 of Algorithm 1). For this task we

use different functions, for example the CandidateGen() function generates the itemsets combinations for next k iteration of
the algorithm. On the other hand, the function BitListComputation() (see Algorithm 3) performs in a distributed way, the
AN D combination in each transaction of the candidate itemsets stored in the global variable Global_F reqItemset through its
use in a FlatMap() function (see line 18 of Algorithm 1). The input of this FlatMap() is a chunk of the dataset transformed
into bit-lists and the variable Global_F reqItemset containing the frequent itemsets of length k. Its output will be a list of
pairs comprised of the key of the itemset and its corresponding bit_list for each transaction. The way to perform this task
is to go through all the itemsets in Global_F reqItemset and search in the transaction each one of the items contained in the
itemset (see lines 5-7 Algorithm 3). This returns a list with the obtained itemsets and their corresponding bit-list (where
the AN D operation has been applied to the bit-lists (see lines 8-10 Algorithm 3).
Afterwards, these pairs will be grouped by means of a function ReduceB yK ey which calculates the cardinal of the bit-lists.
This function will return a list with the items and their cardinal with which we will calculate the support of each one (see
lines 19-21 of Algorithm 1). Then in line 21 the DicF reqItemset variable is overwritten with the new candidates and the
new frequent itemsets are added to the Candidate variable and if there is more than one new candidate a new iteration is
made. These tasks are repeated until no new itemsets of length k can be found (see line 26).

As mentioned in Section 1, one of the main differences with other crisp approaches developed in Spark is the use of a
hash table to accelerate the searching of itemsets. When other structures, like a linear search at each node, are employed,
it results in an increase of time. A comparative study among these structures can be found in [27] where the experiments
confirmed that the hash table surpassed the other data structures considered (hash tree, trie and hash table) for both real
and synthetic datasets.

3.1.4. Fuzzy association rule mining
Once frequent itemsets are extracted, the final step is to uncover the fuzzy association rules that exceed the predeter-

mined thresholds for support and confidence. This procedure is described in Algorithm 4. The result of previous phases
101

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Algorithm 3 Pseudocode of BitListComputation function.
1: Input: Data: a fuzzy transaction tr .
2: Input: Global_FreqItemset: List of k-Itemsets
3: Output: ItemsetList: List of pairs < itemset, bit_list >.

BitListComputation()
4: ItemsetList=[]
5: For every k-itemset A ∈ Global_FreqItemset
6: {it1, . . . , itm} = Split(A)
7: ArrayOfBitList: {bit_list1, . . . , bit_listm} =SeekItems({it1, . . . , itm}, tr)
8: bit_list A ← bit_list1 ∧ · · · ∧ · · · ∧ bit_listm

9: ItemsetList.append(< A, bit_list A >)

10: end for
11: return ItemsetList

Algorithm 4 Main Spark procedure for extracting fuzzy association rules in BDFARE type algorithms.
1: Input: Candidate: Candidate list of frequent itemsets.
2: Input: MinConf minimum threshold for confidence.
3: Output: Fuzzy Association Rules exceeding MinConf
4: DCS in r chunks of Candidate: {C1, . . . , Cr}
5: {< Rule1, Conf1 >, . . . , < Rules, Confs >} ←

C j .FlatMap(GenerateRules(), Conf()) # The FlatMap generate the
rules using the list of candidates and computes their confidence using
the frequency information in Global_F reqItemset variable

6: Rules ← ReduceByKey(RuleConf ≥ MinConf)
7: return Rules
8: end DCS computation

Fig. 2. General association rules mining procedure using MapReduce.

is a list of frequent itemsets that will be in RDD format used by Spark. The idea of this last part of the algorithm is to
use a F latMap function and afterwords a Reduce function as follows. For each partition of frequent itemsets the F latMap
function generates the possible rules (see Fig. 2 and lines 4-5 of pseudocode of Algorithm 4). This task is performed by
the GenerateRules() function which generates rules from an itemset sequentially [51]. Therefore the distributed execution
of GenerateRules through F latMap returns pairs of the form < Rule, Conf idence >, and finally, through a ReduceB yK ey
operation we filter those pairs keeping only those above MinConf threshold (see lines 6-7 of Algorithm 4).

3.2. BDFARE-Apriori-TID

Another developed algorithm is BDFARE-Apriori-TID, design following the philosophy of Apriori-TID. In this case, the
structure similar to the BDFARE-Apriori algorithm explained in the previous section.

3.2.1. Preprocesing
The preprocessing phase is equal to the BDFARE-Apriori algorithm, because the structure of data for distributive process-

ing across the cluster is the same.

3.2.2. Phase 1
The first phase of Algorithm 5 is similar to Algorithm 1. The main difference is that those items with support value lower

than the MinSupp threshold are removed from the bit-list vector storage in the Bit-Array and sorted after the counting (see
line 11). The ordering followed is from the highest to the lowest according to the number of occurrences of the item in the
database.
102

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Algorithm 5 Main Spark procedure for BDFARE-Apriori-TID algorithm.
1: Input: Data: Fuzzy RDD transactions: {t1, . . . , tn}
2: Input: AlphaCuts: List of alpha cuts: {α1, . . . , αp}
3: Input: MinSupp: minimum support threshold.
4: Output: Frequent itemsets exceeding MinSupp (FreqItemset)

Preprocessing
5: \\ Equal to preprocessing in Algorithm 1

Phase 1: FreqItems()
6: DCS in q chunks of BitArray: {B A1, . . . , B Aq}
7: {< it1, bit_list1 >, . . . , < itm, bit_listm >} ← B A j .FlatMap()
8: {< it1, card1 >, . . . , < itm, cardm >} ← ReduceByKey(

∣∣bit_listitk

∣∣)
9: ItemSupport ← Support(itk)

10: DicFreqItemset ← Filter(ItemSupport ≥ MinSupp)

11: Bit Array ← B A j .Map(Remove(DicFreqItemset)).
.Map(Sort(DicFreqItemset)).collect()

Phase 2: Candidate generation
12: \\ Equal to lines 12-16 of Algorithm 1
13: do
14: DCS in q chunks of BitArray: {B A1, . . . , B Aq}
15: {< itemset1, bit_list1 >, . . . , < itemsetm, bit_listm >} ←

B A j .FlatMap(BitListComputation(Global_F reqItemset))
see Algorithm 3

16: {< itemset1, card1 >, . . . , < itemsett , cardt >} ←
ReduceByKey(

∣∣bit_listitemsetk

∣∣)
17: ItemsetSupport ← Support(itemsetk)

18: DicF reqItemset = Filter(Itemset Support ≥ MinSupp)

19: Bit Array ← B A j .Map(Remove(DicFreqItemset))
20: end DCS computation
21: Length + +
22: Candidate ← CandidateGen(DicF reqItemset, Length)

23: Global_F reqItemset.append(Candidate)
24: while |DicF reqItemset| > 1
25: return Candidate

3.2.3. Phase 2
The principal difference with BDFARE-Apriori is that in each iteration of the frequent itemsets searching process all

infrequent items are removed (see line 22 Algorithm 5).

3.2.4. Fuzzy association rule mining
The extraction rules phase is equal to the BDFARE-Apriori algorithm explained in Section 3.1.4. We use the hash table

obtained with the frequent itemsets for extracting the association rules and calculate the measures like the confidence, lift
or certainty factor of each rule.

3.3. BDFARE-ECLAT

We have also implemented the BDFARE algorithm following the philosophy of the sequential ECLAT algorithm, but using
the MapReduce paradigm in the Spark framework. In this case, the principal difference resides in the data distribution by
itemset, instead of process distribution by set of transactions like in Apriori.

3.3.1. Preprocesing
The preprocessing in BDFARE-ECLAT algorithm is different from the previous explained algorithms. In this way, BDFARE-

ECLAT needs the data grouped by item joint with their membership degree (in the format of bit-list) (see Algorithm 6).
Therefore the main difference is the aggregation by item in the MapReduce phase depicted in Fig. 3, where there is an
example of the aggregation function and output data of BDFARE-ECLAT preprocessing.

Firstly, the algorithm transforms each transaction into pairs < itemi, bit_listi > as explained in the preprocessing phase
of BDFARE-Apriori algorithm. Then, the algorithm aggregates the different lists by items using a GroupB yK ey function (see
line 6 of Algorithm 6), generating pairs with an item and a large list of lists containing a bit-list per transaction.

3.3.2. Phase 1
In the first phase, the algorithm counts the number of appearances of every item in every transaction depending on the

established set of α-cuts. After that, the algorithm calculates frequent items and generates the itemsets for the next step.
The main difference with BDFARE-Apriori resides in how to compute the frequency of items using the list data format. In
this case the F latMap function (see line 8 of Algorithm 6) returns pairs comprised of items and their corresponding bit-lists
per transaction. Then, the ReduceB yK ey function calculates the cardinal per item with this data, and afterwards the support
is computed (see lines 9-11 of Algorithm 6).
103

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Algorithm 6 Main Spark procedure for BDFARE-ECLAT algorithm.
1: Input: Data: Fuzzy RDD transactions: {t1, . . . , tn}
2: Input: AlphaCuts: List of alpha cuts: {α1, . . . , αp}
3: Input: MinSupp: Minimum support threshold.
4: Output: Frequent itemsets exceeding MinSupp

Preprocessing
5: DCS in q chunks of Data: {S1, . . . , Sq}
6: Bit ArraySi ← Si .Map(FuzzyToArray(tk ∈ Si)).GroupByKey()

Map function computes independently each transaction in Si

Bit ArraySi contains lists of the form < item,
[bit_list1, . . . , bit_listn] >, in this way, they can be distributed in the
cluster by item (see Fig. 3)

Phase 1: FreqItems()
7: DCS in q chunks of BitArray: {B A1, . . . , B Aq}
8: {< it1, [bit_list1, . . . , bit_listn] >, . . . , < itm, [bit_list1, . . . , bit_listn] >} ←

B A j .FlatMap()
9: {< it1, card1 >, . . . , < itm, cardm >} ← ReduceByKey(

∣∣bit_listitk

∣∣)
10: ItemSupport ← Support(itk)

11: DicFreqItemset ← Filter(ItemSupport ≥ MinSupp)

Phase 2: Candidate generation
12: Candidate ← DicF reqItemset #Candidates of Length = 1
13: Length = 2
14: Global_F reqItemset ← Candidate
15: broadcast(Global_F reqItemset) #Creates a broadcast variable for using across the cluster
16: do
17: DCS in q chunks of items list of BitArray: {I B A1, . . . , I B Aq}
18: {< itemset1, bit_list1 >, . . . , < itemsetm, bit_listm >} ←

I B A j .FlatMap(BitListComputation(Global_F reqItemset))
see Algorithm 3

19: {< itemset1, card1 >, . . . , < itemsett , cardt >} ←
ReduceByKey(

∣∣bit_listitemsetk

∣∣)
20: ItemsetSupport ← Support(itemsetk)

21: DicF reqItemset = Filter(Itemset Support ≥ MinSupp)

22: end DCS computation
23: Length + +
24: Candidate ← CandidateGen(DicF reqItemset, Length)

25: Global_F reqItemset.append(Candidate)
26: while |DicF reqItemset| > 1
27: return Candidate

Fig. 3. Preprocessing data phase which transforms fuzzy items into bit-lists in BDFARE-ECLAT.

3.3.3. Phase 2
For the calculation of itemsets support, the algorithm uses the F latMap() function in the same way as in the Apriori

case. The main difference is how the pair lists are computed. In this case, the F latMap() function returns a pair comprised
of an itemset and a list for each transaction with the bit-list using the numpy array format (see Fig. 4 and lines 18-19 of
Algorithm 6). Therefore, the algorithm calculates all the cardinalities needed for the computation of the cardinality of the
104

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Fig. 4. Example of second phase of BDFARE-ECLAT applied to the fuzzy items in Table 2.

obtained itemsets using the ReduceB yK ey() function, and afterwards computes their support. This step will be repeated
until there are not new frequent k-itemsets.

3.3.4. Fuzzy association rule mining
The extraction rules phase is equal to BDFARE-Apriori and BDFARE-Apriori-TID previously explained.

4. Experiments and results

Our aim is to study the behaviour of the new algorithms designed for distributed computation using Spark framework.
The following experiments have been designed to analyze the following different aspects:

• Compare proposed algorithms among them taking into account the execution time along different configurations for
the experiments, and towards different datasets.

• Compare the proposed algorithms for the calculation of measures like support and confidence when the algorithms use
numpy vector or traditional method.

• Analyse proposed algorithms measuring the speed up and the efficiency achieved by increasing the number of cores in
the procedure.

• Study the performance of proposed algorithms with respect to different sets of α-cuts.

To this end, the algorithms have been tested in several fuzzy transactional datasets to analyse their execution time attending
to different parameters: the number of items, the length of datasets, the number of transactions, and the number of α-cuts.
Nine different datasets have been considered. Four of them from the UCI Machine Learning repository3 where some con-
tinuous attributes have been conveniently fuzzyfied using trapezoidal labels according to the semantics of the attributes, as
described in [45] and in Fig. 5. The German dataset is comprised of transactions about credits offered by a german bank.
Three variables were fuzzyfied: amount of the credit, its duration and the age of the person who owns the credit. The
Autompg dataset comprises several attributes about cars. In this case, the continuous attributes were fuzzified using the
following linguistic labels: low, medium and high. The Bank4 dataset contains marketing data from different campaigns of a
Portuguese banking institution. The Higgs [52] dataset is comprised of several attributes about Higgs Boson produced dur-
ing several Monte Carlo simulations. It contains 28 continuous attributes plus the class attribute. The continuous attributes
have been fuzzified using three different labels: low, medium and high as it can be seen in Fig. 5, and the class attribute
remains the same containing the values 1 or 0.

The Forest-equidepth database is originated from the database used in [53] where binary attributes were excluded
and we have fuzzified the remaining attributes using equi-depth intervals explained in [54].

A new dataset obtained from social networks has been also used, more precisely a dataset obtained from twitter about
the 2016 American elections. The content of the tweets has been fuzzified using the TF-IDF5 that gives values in the unit
interval for those words appearing in the tweets.
For the reminder of datasets, a different strategy for fuzzification of attributes has been followed, using the automatic pro-
cess described in [55]. The Energy ICPE dataset, comprises data from an office building in Romania located in Bucharest.
It comprises 273 sensors containing different metering data that were collected during a year (from September 2016 to
September 2017) with a total of 3,649,678 transactions. Other dataset with energy related data is FARO. This dataset is
comprised of sensors for heating, air conditioning, lights and power consumption, taken in the FARO airport, useful to anal-
yse the behaviour of the building in terms of energy consumption. This dataset contains data from 64 sensors that have

3 http://archive .ics .uci .edu /ml/.
4 http://ugritlab .ugr.es :82 /cjferba /datasets.
5 TF-IDF stands for term frequency–inverse document frequency. It is a measure often used when analysing the frequency of terms in text documents.
105

http://archive.ics.uci.edu/ml/
http://ugritlab.ugr.es:82/cjferba/datasets

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Fig. 5. Fuzzyfication of Higgs features using quartiles.

Table 2
Datasets.

Fuzzy Database Transactions Fuzzy Items Supp Conf

Bank 1 446 752(45 211) 112 0.2 0.8
Higgs 11 000 000 86 0.2 0.8
Forest-equidepth 581 012 37 0.2 0.8
Energy ICPE 3 649 678 1 121 0.4 0.8
Energy FARO 5 693 452 246 0.05 0.8
Tweets for EEUU elections 100 000 1 478 0.1 0.8
ASHRAE 20 200 000 109 0.1 0.8
Autompg 1 630 208(398) 39 0.05 0.8
German 1 000 000(1000) 79 0.05 0.8
Soildb 1 000 000(542) 33 0.1 0.8

been fuzzified with the same methodology followed in the previous dataset. It is composed of 5 693 452 transactions corre-
sponding to the summer season (from 1st of June to 15th of September) of 2017. The ASHRAE energy predictor dataset can
be obtained from the public Kaggle repository.6 This dataset contains different datasets involving time, consumption and
building type. We have merged them using the location and timestamp, as well as removing some of the features that were
not going to be of interest such as the building ID or some of the weather features. Then the variables have been fuzzified.
After this process, the resulting dataset contains 20 million records and 109 fuzzified items.
In order to test the behaviour of the algorithms with more datasets, those datasets that were not sufficiently big have been
replicated in order to have a more extensive experimentation. This is propitiated due to the lack of massive datasets with
fuzzy data in the literature. These are Bank, German, Soildb and Autompg, whose original number of transactions is the
one framed in parentheses (see Table 2). The experimental evaluation has been made in a cluster comprised of 4 servers
with 102 cores and 420 Gb of RAM where intel’s hyperthreading functionality was disabled for testing. The Spark version
employed was 2.2 which uses a fully distributed mode with Ambari Server.

We have made several experiments with different threshold values Minsupp ∈ {0.03, 0.05, 0.1, 0.2, 0.4} and Minconf ∈
{0.8}. The high values fixed for the minimum support have been chosen to reduce the number of obtained rules, because
some of the fuzzy items are very frequent in some of the databases, leading to a huge amount of discovered rules. The idea
of these thresholds is to have a comparable set of obtained fuzzy rules (in terms of number of rules).
Additionaly, 10 alpha cuts have been selected in all the experiments because the results of the algorithms using 10, 50 and
100 are practically the same, changing only a little the precision of the computations for support and confidence.

Fig. 7 shows the number of fuzzy association rules obtained for the different datasets in Table 2. These values differ from
dataset to dataset due to the nature and composition of the datasets. Minimum support values have been chosen to obtain
a “similar” number of rules in each of the examples, taking into account their characteristics. For example, in the case of
the Energy ICPE dataset there is a high frequency of repeated values in the sensors as well as a large number of items, so
the combination of these items is much higher, leading to a higher number of association rules. In the particular case of the
Energy FARO dataset, where the sensor values have very low frequencies, the support is fixed lower.

We are interested in analysing the performance of every algorithm according to the variation of the following: the
number of transactions, the number of items and the set of α-cuts. In addition to this, note that the proposed algorithms
extract fuzzy association rules without restricting the number of items appearing in the consequent or the antecedent of
the rules.
We have also analysed the behaviour of the algorithms when the number of resources (cores and memory) increases. Figs. 8
to 16 show the behaviour of the algorithms when the resources (1 core means sequential and 24, 48, 72, 102 is equivalent
to 1, 2, 3, 4 nodes where each node has 100 Gb of RAM) are increased in each of the datasets. It can be observed that
BDFARE-Apriori-TID is the most efficient, and BDFARE-Apriori performed better than BDFARE-ECLAT.

6 https://www.kaggle .com /c /ashrae -energy-prediction.
106

https://www.kaggle.com/c/ashrae-energy-prediction

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Fig. 6. Performance in logarithmic scale of BDFARE algorithms for Energy ICPE dataset when the quantity of items increases.

Fig. 7. Number of fuzzy association rules extracted for each dataset.

Table 3
Table of results (in seconds) obtained by the algorithms in their sequential and distributed version.

Dataset sequential
Apriori

BDFARE
Apriori

sequential
Apriori-TID

BDFARE
Apriori-TID

sequential
Eclat

BDFARE
ECLAT

German 983 598 908 294 1 652 978
Bank 1 542 492 1 050 280 1 780 890
Autompg 1 309 393 1 220 212 1 509 726
Forest 2 307 300 2 107 240 2 207 270
Higgs 8 986 546 7 829 440 - 1 892
ASHRAE - 30 172 - 22 819 - -
FARO - 61 029 - 47 829 - 77 281
ICPE - 71 400 - 68 400 - 69 600
Tweets - 128 514 - 118 179 - 119 028

Moreover, BDFARE-ECLAT has some memory problems in Higgs, ASHRAE (see Fig. 11) and Energy ICPE dataset,
because these datasets have a lot of transactions and items, and therefore the lists that BDFARE-ECLAT has to create are
very big. For this reason it needs to use a big amount of memory. By contrast, BDFARE-Apriori and BDFARE-Apriori-TID
algorithms completed all the executions.
To be exhaustive, a detailed description of running times can be found in Table 3. It can be seen that in those datasets with
1 million and 11 million of transactions, the algorithms achieved in average time savings of 40% and 60% respectively if
they are compared to the non-distributed case (1 core). In addition, in the sequential versions of several of the algorithms
we encountered memory problems such as for Higgs, Twiter, FARO, ICPE and ASHRAE datasets. This is caused by the
large number of transactions or items that require more memory and computational capacity to deal with the dataset. In
the table of results (see Table 3) we can see marked with the sign “-” those executions that could not finished.

Fig. 6 shows the time spent by the algorithms when the number of items increases for Energy ICPE dataset. In this
graph it can be observed that BDFARE does not offer substantial improvements in terms of time, because the increment of
time is exponential by the number of items. This is due to the items combinatorial explosion of Apriori-based algorithms.
Additionally, BDFARE does not achieve always more efficient executions, because during the jobs planning, necessary when
distributing data, there is also a waste of time. However the performance of the BDFARE algorithm tends to improve when
the number of transactions increases. This is because the distribution of data across the clusters is made by transaction.
Moreover we can see that the BDFARE-ECLAT algorithm, although it uses a list of items, the performance is similar to
BDFARE-Apriori. This is because the use of long lists of elements in each node does not work efficiently.
107

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Fig. 8. Time for different number of clusters for Energy ICPE dataset. Fig. 9. Time for different number of clusters for Energy FARO dataset.

Fig. 10. Time for different number of clusters for Twiter dataset. Fig. 11. Time for different number of clusters for ASHRAE dataset.

Fig. 12. Time for different number of clusters for Forest-equidepth
dataset. Fig. 13. Time for different number of clusters for Bank dataset.

For the analysis of the speed up and the efficiency [56–58] when different number of cores are used, the known speed up
measure has been employed, defined as [58,59]

Sn = T1/Tn (10)

where T1 represents the time spent by the sequential algorithm and Tn the time of the distributed algorithm with several
cores. To complement the speed up, the efficiency measure [56–58] is defined as

En = Sn/n = T1/(n · Tn) (11)
108

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Fig. 14. Time for different number of clusters for Higgs dataset. Fig. 15. Time for different number of clusters for German dataset.

Fig. 16. Time for different number of clusters for Autompg dataset.

Fig. 17. Performance in logarithmic scale of BDFARE-Apriori-TID algorithm
when the quantity of α-cuts increases in forest-equidepth dataset.

Fig. 18. Performance in logarithmic scale of BDFARE-Apriori-TID algorithm
with 10 and 100 α-cuts when the quantity of cores increases (from 1
core=sequential to 32 cores) in Bank dataset.

In Figs. 19 and 20 it can be seen that as the numbers of cores increase, the efficiency and speed up are improved, even
they are not optimal. This factor is influenced by the cores workloads and also by the network congestion caused by the
communication among the cores.
Fig. 19 shows the speed up of the different proposals. In this figure, it can be observed the evolution of the execution times
having the greatest reduction when the number of processors is higher. Although the speed up obtained increased along the
number of processors used, we can see that it moves away from proportional speed up as resources expand. This is because
increased resources may not be used as efficiently with respect to the same amount of data using fewer resources. Note also
that there are parts of the algorithm that are iterative (e.g. calculation of the itemset of size k + 1 needs to execute those
of length k), so certain parts are not totally distributed and this actually affects efficiency. As far as we can see in Fig. 20
the efficiency does not increase proportionally. This same behaviour of efficiency and speed up has been observed in other
studies of distributed algorithms where the efficiency does not increase proportionality with more processors [60,58].
109

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Fig. 19. Speed up of BDFARE-Apriori-TID algorithm for Higgs dataset.
Fig. 20. Efficiency of BDFARE-Apriori-TID algorithm for Higgs dataset
measured by percentage of improvement.

Regarding the performance of BDFARE algorithms with respect to the set of α-cuts we have performed different experi-
ments. Fig. 18 describes how BDFARE-Apriori-TID algorithm performs when it uses lists to represent α-cuts and the number
of α-cuts is increased, using from 1 to 16 cores (1, 24, 8, 16 cores). The difference of the performance when the algorithm
uses lists or not for different number of α-cuts is noticeable, concluding that using lists improves the efficiency.

Moreover, in Fig. 17 it can be observed the performance when the quantity of α-cuts increases. In that experiment, we
have observed that the number of rules found considering 100, 50 α-cuts and 10 α-cuts is the same (in all the experiments).
Then, it seems that using only 10 α-cuts it is sufficient to achieve the precision of computations to retrieve all the fuzzy
association rules, which will decrease the number of computations and therefore, the efficiency of the BDFARE algorithms.

5. Conclusions and future research

This paper has proposed different fuzzy association rules mining algorithms in the ambit of Big Data for the discovery of
co-occurrence patterns from fuzzy datasets. It has been shown, that non-distributed algorithms proposed for mining fuzzy
association rules can fail when handling massive datasets due to the memory overflow errors and their efficiency is affected
when the dataset grows.
To this end, the proposals presented, which uncovers fuzzy association rules using the Spark framework, are capable of
analysing massive data. To prove this, the different proposals have been compared and analysed obtaining improvements not
only in the running time, but also in their memory, enhancing their processing capacity (note that some of the experiments
could not finish their execution in the non-distributed cases). An additional advantage of Big Data proposals is that their
performance can be easily improved just by expanding the system by adding more computation nodes or clusters. This
makes easier to improve the scalability of our proposals, enabling also their execution in external cloud systems like for
instance Amazon Web Services.
These advantages are obtained not only in terms of execution times and efficiency, but also in terms of the ability to apply
these algorithms to large data sets. For example, applying it to large sets of sensors, social network data or cybercrime
advertisements on the darknet. All of these types of datasets contain large amounts of transactions that are impossible to
tackle with traditional algorithms.

Additionally, our proposal is based on a decomposition of interestingness measures in terms of α-cuts which facilitates
their implementation to other interestingness measures different to that of support and confidence using the formal model
developed in [12], and we have experimentally demonstrated that it is sufficient to consider only 10 equidistributed α-cuts
in order to mine all significant fuzzy association rules.
Currently, there is not any large fuzzy dataset available in open data repositories. For this reason, as for this article we have
created different datasets by fuzzifying the items, as future work we intend to create a repository to share collections of
large data sets containing fuzzy data.
As regards future research, we plan the application of these proposals to real world problems such as in the analysis of
social media or in the energy field, by the combination of other Data Mining and Machine Learning techniques in order
to obtain more valuable knowledge from the data, utilising association rules as a first exploratory step in the knowledge
discovery process.
Lastly, we also intend to generalise these Big Data procedures to other techniques that are formulated in terms of association
rules such as gradual dependencies [61,62] or exception and anomalous rules [63].
110

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The research reported in this paper was partially supported the COPKIT project from the 8th Programme Framework
(H2020) research and innovation programme (grant agreement No 786687) and from the BIGDATAMED projects with refer-
ences B-TIC-145-UGR18 and P18-RT-2947.

References

[1] S. del Río, V. López, J.M. Benítez, F. Herrera, On the use of MapReduce for imbalanced big data using random forest, Inf. Sci. 285 (2014) 112–137,
Processing and Mining Complex Data Streams.

[2] D. Anastasiu, J. Iverson, S. Smith, G. Karypis, Big data frequent pattern mining, in: Frequent Pattern Mining, Springer International Publishing, Switzer-
land, 2014, pp. 225–259.

[3] A. Fernández, C. Carmona, M. del Jesus, F. Herrera, A view on fuzzy systems for Big Data: progress and opportunities, Int. J. Comput. Intell. Syst. 9
(2016) 69–80.

[4] C. Fernandez-Basso, M. Ruiz, M. Martin-Bautista, Extraction of association rules using Big Data technologies, Int. J. Des. Nat. Ecodyn. 11 (3) (2016)
178–185.

[5] E. Hüllermeier, Y. Yi, In defense of fuzzy association analysis, IEEE Trans. Syst. Man Cybern., Part B, Cybern. 37 (4) (2007) 1039–1043.
[6] L. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338–353.
[7] M. Delgado, N. Marín, D. Sánchez, M. Vila, Fuzzy association rules: general model and applications, IEEE Trans. Fuzzy Syst. 11 (2) (2003) 214–225.
[8] J. Calero, G. Delgado, M. Sánchez-Marañón, D. Sánchez, J. Serrano, M.A.V. Miranda, Helping user to discover association rules: a case in soil color as

aggregation of other soil properties, in: ICEIS 2003, Proceedings of the 5th International Conference on Enterprise Information Systems, Angers, France,
April 22-26, 2003, 2003, pp. 533–540.

[9] X. Meng, et al., MLlib: machine learning in Apache Spark, J. Mach. Learn. Res. 17 (2016) 1–7, http://arxiv.org /abs /1505 .06807.
[10] T. White, Hadoop: The Definitive Guide, fourth edition, O’Reilly, 2015.
[11] L. Liu, Performance comparison by running benchmarks on Hadoop, Spark and Harm, Ph.D. thesis, University of Delaware, 2016, http://udspace .udel .

edu /bitstream /handle /19716 /17628 /2015 _LiuLu _MS .pdf?sequence =1.
[12] M. Delgado, M.D. Ruiz, D. Sánchez, J.-M. Serrano, A formal model for mining fuzzy rules using the RL representation theory, Inf. Sci. 181 (23) (2011)

5194–5213.
[13] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in: Proc. of the Twentieth Inter. Conf. on Very Large Databases,

Santiago, Chile, 1994, pp. 487–499.
[14] J. Hipp, U. Güntzer, G. Nakhaeizadeh, Algorithms for association rule mining - a general survey and comparison, ACM SIGKDD Explor. Newsl. 2 (1)

(2000) 58–64.
[15] M.J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, et al., New algorithms for fast discovery of association rules, in: KDD, vol. 97, 1997, pp. 283–286.
[16] M.J. Zaki, Scalable algorithms for association mining, IEEE Trans. Knowl. Data Eng. 12 (3) (2000) 372–390.
[17] C. Borgelt, Efficient implementations of Apriori and Eclat, in: FIMI’03: Proc. of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations,

2003.
[18] C.R.J. Li, Z.H. Deng, Mining frequent ordered patterns without candidate generation, in: FSKD 2007, ACM Press, New York, 2007, pp. 402–406, arXiv:

cond -mat /0611061v2, http://portal .acm .org /citation .cfm ?doid =342009 .335372.
[19] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in: SIGMOD’00 Proc. of the 2000 ACM SIGMOD Int. Conf. on Management

of Data, 2000, pp. 1–12.
[20] Z. Zheng, R. Kohavi, L. Mason, Real world performance of association rule algorithms, in: Proc. of the Seventh ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, ACM, 2001, pp. 401–406.
[21] K. Garg, D. Kumar, Comparing the performance of frequent pattern mining algorithms, Int. J. Comput. Appl. 69 (25) (2013).
[22] C. Fernandez-Basso, M. Ruiz, M. Martin-Bautista, A comparative analysis of Spark frequent itemsets and association rule mining algorithms, Knowl.-

Based Syst. (2020), submitted for publication.
[23] H. Li, Y. Wang, D. Zhang, M. Zhang, E.Y. Chang, PFP: parallel FP-growth for query recommendation, in: Proc. of the 2008 ACM Conference on Recom-

mender Systems, ACM, 2008, pp. 107–114.
[24] N. Li, L. Zeng, Q. He, Z. Shi, Parallel implementation of Apriori algorithm based on MapReduce, in: Proc. of the 2012 13th ACIS Int. Conf. on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD ’12, IEEE Computer Society, Washington, DC, USA, 2012,
pp. 236–241.

[25] Z. Farzanyar, N. Cercone, Efficient mining of frequent itemsets in social network data based on MapReduce framework, in: Proc. in ASONAM 2013,
2013, pp. 1183–1188.

[26] Z. Farzanyar, N. Cercone, Accelerating frequent itemset mining on the cloud: a MapReduce-based approach, in: IEEE 13th Int. Conf. on Data Mining
Workshops, 2013, pp. 592–598.

[27] S. Singh, R. Garg, P. Mishra, Performance analysis of Apriori algorithm with different data structures on Hadoop cluster, Int. J. Comput. Appl. 128 (9)
(2015) 45–51.

[28] S. Rathee, M. Kaul, A. Kashyap, R-Apriori: an efficient Apriori based algorithm on Spark, in: Proc. of the PIKM’15, ACM, Melbourne, VIC, Australia, 2015.
[29] H. Qiu, R. Gu, C. Yuan, Y. Huang, YAFIM: a parallel frequent itemset mining algorithm with Spark, in: Parallel & Distributed Processing Symposium

Workshops (IPDPSW), 2014 IEEE International, IEEE, 2014, pp. 1664–1671.
[30] R. Agrawal, J.C. Shafer, Parallel mining of association rules, IEEE Trans. Knowl. Data Eng. 8 (6) (1996) 962–969.
[31] M.J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, Parallel algorithms for discovery of association rules, Data Min. Knowl. Discov. 1 (4) (1997) 343–373.
[32] S. Cong, J. Han, J. Hoeflinger, D. Padua, A sampling-based framework for parallel data mining, in: Proc. of the Tenth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, ACM, 2005, pp. 255–265.
[33] T. Shintani, M. Kitsuregawa, Hash based parallel algorithms for mining association rules, in: Parallel and Distributed Information Systems, 1996, Fourth

Int. Conf. on, IEEE, 1996, pp. 19–30.
[34] A. Mueller, Fast sequential and parallel algorithms for association rule mining: a comparison, Tech. Rep., University of Maryland at College Park, College

Park, MD, USA, 1998.
111

http://refhub.elsevier.com/S0888-613X(21)00103-1/bibC5DE2A5C22382E8D19EF4852C068E47Cs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibC5DE2A5C22382E8D19EF4852C068E47Cs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibE7C7F17B720E860DD9AFDA01B8BE3E23s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibE7C7F17B720E860DD9AFDA01B8BE3E23s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibFDC07D81F40B6E73013A92948ED6D381s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibFDC07D81F40B6E73013A92948ED6D381s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib26A12E139FE1234816E7B6BBC1A79C54s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib26A12E139FE1234816E7B6BBC1A79C54s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibD970DC272742CA77BFB59CFE84164BFCs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib3D71DE7B5A08F958D4A8F420106EE41Ds1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib999FD0F60D389A88BDEC8ED14969113Fs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibFD1AD2AD9CAF13C64A8B1D50B0677C84s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibFD1AD2AD9CAF13C64A8B1D50B0677C84s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibFD1AD2AD9CAF13C64A8B1D50B0677C84s1
http://arxiv.org/abs/1505.06807
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibE9713AE04A02A810D6F33DD956F42794s1
http://udspace.udel.edu/bitstream/handle/19716/17628/2015_LiuLu_MS.pdf?sequence=1
http://udspace.udel.edu/bitstream/handle/19716/17628/2015_LiuLu_MS.pdf?sequence=1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib82E20A5EA223EC2F0AB2D663E7024741s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib82E20A5EA223EC2F0AB2D663E7024741s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib4826FE4C534A53B55D998B2855C4EDD8s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib4826FE4C534A53B55D998B2855C4EDD8s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibA9731C480115C70F47662D40A1AA5526s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibA9731C480115C70F47662D40A1AA5526s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibF38AEB60EEF2F61EE8F542AE6C4DA48Bs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibA69A6C8862E97332EDB805AFF4AFF0D6s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib03FB9427E7FD91925572BBEB0FAE9F8Bs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib03FB9427E7FD91925572BBEB0FAE9F8Bs1
http://portal.acm.org/citation.cfm?doid=342009.335372
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib92DE9844C076E47F423E11A915ADC821s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib92DE9844C076E47F423E11A915ADC821s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibE2E64EA599B8A48E88A4743BB65F15D6s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibE2E64EA599B8A48E88A4743BB65F15D6s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib8DA4B1FDEB93D44D77ECDB090ED1A946s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib742F53AA4BB3153A6B2DB6345B0BB2F0s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib742F53AA4BB3153A6B2DB6345B0BB2F0s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibC0E8518739BAB788F2B816C9F2FFEA6Cs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibC0E8518739BAB788F2B816C9F2FFEA6Cs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibFCE545DFB5234D56DC81A4272D1A42D8s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibFCE545DFB5234D56DC81A4272D1A42D8s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibFCE545DFB5234D56DC81A4272D1A42D8s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib44F714AE8C31547D8D4217E2BCB58DBEs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib44F714AE8C31547D8D4217E2BCB58DBEs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib87EF1E3DE093AEDD802ECF031C46CA10s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib87EF1E3DE093AEDD802ECF031C46CA10s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib1496718EBD182531CFB694C904429A4Bs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib1496718EBD182531CFB694C904429A4Bs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibFA7F5521F98B29A45985EC17E0E1D1ADs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib6DCA815402F0B9D34C735261A9D8D122s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib6DCA815402F0B9D34C735261A9D8D122s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib5128CDBD84085130C92F761110874749s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib214D10CB378BC109DCD654C8F8063297s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib91F0D0101A26E02BD8170539793EBA61s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib91F0D0101A26E02BD8170539793EBA61s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib139D5DBB7E5677D76B8DF6CD05735DA7s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib139D5DBB7E5677D76B8DF6CD05735DA7s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib88C62975FCBE636EA01B8AC067425883s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib88C62975FCBE636EA01B8AC067425883s1

C. Fernandez-Basso, M.D. Ruiz and M.J. Martin-Bautista International Journal of Approximate Reasoning 137 (2021) 94–112
[35] M. Gabroveanu, M. Cosulschi, F. Slabu, Mining fuzzy association rules using MapReduce technique, in: Int. Symposium on INnovations in Intelligent
SysTems and Applications, INISTA, 2016, pp. 1–8.

[36] M. Gabroveanu, I. Iancu, M. Cosulschi, N. Constantinescu, Towards using grid services for mining fuzzy association rules, in: Proc. of the 1st East
European Workshop on Rule-Based Applications, RuleApps, 2007, pp. 507–513.

[37] M. Gabroveanu, M. Cosulschi, N. Constantinescu, A New Approach to Mining Fuzzy Association Rules from Distributed Databases, Annals of the Uni-
versity of Bucharest LIV, 2005, pp. 3–16.

[38] R. Agrawal, T. Imielinski, A. Swami, Mining associations between sets of items in large databases, in: ACM-SIGMOD Int. Conf. on Data, 1993,
pp. 207–216.

[39] P. Hájek, The question of a general concept of the GUHA method, Kybernetika 4 (1968) 505–515.
[40] P. Hájek, T. Havranek, Mechanizing Hypothesis Formation, Springer Verlag, Berlin, 1978.
[41] J. Calero, G. Delgado, M. Sánchez-Marañón, D. Sánchez, M.A.V. Miranda, J. Serrano, An experience in management of imprecise soil databases by means

of fuzzy association rules and fuzzy approximate dependencies, in: ICEIS 2004, Porto, Portugal, April 14-17, 2004, 2004, pp. 138–146.
[42] F. Berzal, M. Delgado, D. Sánchez, M. Vila, Measuring accuracy and interest of association rules: a new framework, Intell. Data Anal. 6 (3) (2002)

221–235.
[43] N. Marín, M. Ruiz, D. Sánchez, Fuzzy frameworks for mining data associations: fuzzy association rules and beyond, Wiley Interdiscip. Rev. Data Min.

Knowl. Discov. 6 (2) (2016) 50–69.
[44] M. Delgado, M. Ruiz, D. Sánchez, J. Serrano, A formal model for mining fuzzy rules using the RL representation theory, Inf. Sci. 181 (23) (2011)

5194–5213.
[45] M.D. Ruiz, D. Sánchez, M. Delgado, M.J. Martin-Bautista, Discovering fuzzy exception and anomalous rules, IEEE Trans. Fuzzy Syst. 24 (4) (2016)

930–944.
[46] M. Delgado, M.D. Ruiz, D. Sánchez, Studying interest measures for association rules through a logical model, Int. J. Uncertain. Fuzziness Knowl.-Based

Syst. 18 (1) (2010) 87–106, https://doi .org /10 .1142 /S0218488510006404.
[47] D. Dubois, E. Hüllermeier, H. Prade, A systematic approach to the assessment of fuzzy association rules, Data Min. Knowl. Discov. 13 (2) (2006)

167–192.
[48] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: a fault-tolerant

abstraction for in-memory cluster computing, in: Proc. of the 9th USENIX Conference on Networked Systems Design and Implementation, USENIX
Association, 2012.

[49] E. Louie, T. Young, Finding association rules using fast bit computation: machine-oriented modeling, in: International Symposium on Methodologies for
Intelligent Systems, Springer, 2000, pp. 486–494.

[50] J. Rauch, M. Šimůnek, An alternative approach to mining association rules, in: Foundations of Data Mining and Knowledge Discovery, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005, pp. 211–231.

[51] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A.I. Verkamo, et al., Fast discovery of association rules, Adv. Knowl. Discov. Data Min. 12 (1) (1996)
307–328.

[52] P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nat. Commun. 5 (2014) 4308.
[53] H. Liu, F. Hussain, C.L. Tan, M. Dash, Discretization: an enabling technique, Data Min. Knowl. Discov. 6 (4) (2002) 393–423.
[54] M. Calvo-Flores, M. Ruiz, D. Sánchez, J. Serrano, A fuzzy rule mining approach involving absent items, in: Proc. of the EUSFLAT’2011, 2011, pp. 275–282.
[55] C. Fernandez-Basso, M. Ruiz, M. Martin-Bautista, A fuzzy mining approach for energy efficiency in a Big Data framework, IEEE Trans. Fuzzy Syst. (2020),

https://doi .org /10 .1109 /TFUZZ .2020 .2992180.
[56] V.P. Kumar, A. Gupta, Analyzing scalability of parallel algorithms and architectures, J. Parallel Distrib. Comput. 22 (3) (1994) 379–391.
[57] A.Y. Grama, A. Gupta, V. Kumar, Isoefficiency: measuring the scalability of parallel algorithms and architectures, IEEE Parallel Distrib. Technol. 1 (3)

(1993) 12–21.
[58] C. Barba-González, J. García-Nieto, A. Benítez-Hidalgo, A.J. Nebro, J.F. Aldana-Montes, Scalable inference of Gene Regulatory Networks with the Spark

distributed computing platform, in: J. Del Ser, E. Osaba, M.N. Bilbao, J.J. Sanchez-Medina, M. Vecchio, X.-S. Yang (Eds.), Intelligent Distributed Computing
XII, Springer International Publishing, Cham, 2018, pp. 61–70.

[59] F.J. Baldán, J.M. Benítez, Distributed FastShapelet Transform: a Big Data time series classification algorithm, Inf. Sci. (2018).
[60] C. Barba-Gonzaléz, J. García-Nieto, A.J. Nebro, J.F. Aldana-Montes, Multi-objective Big Data optimization with jMetal and Spark, in: H. Trautmann, G.

Rudolph, K. Klamroth, O. Schütze, M. Wiecek, Y. Jin, C. Grimme (Eds.), Evolutionary Multi-Criterion Optimization, Springer International Publishing,
Cham, 2017, pp. 16–30.

[61] E. Hüllermeier, Association rules for expressing gradual dependencies, in: Proc. PKDD 2002, in: Lecture Notes in Computer Science, vol. 2431, 2002,
pp. 200–211.

[62] F. Berzal, J. Cubero, D. Sánchez, M. Vila, An alternative approach to discover gradual dependencies, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 15 (5)
(2007) 559–570.

[63] M. Delgado, M. Ruiz, D. Sánchez, New approaches for discovering exception and anomalous rules, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 19 (2)
(2011) 361–399.
112

http://refhub.elsevier.com/S0888-613X(21)00103-1/bibA6E677AB61B91BF93E5F0378AE4FE66Ds1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibA6E677AB61B91BF93E5F0378AE4FE66Ds1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibAC3167F4A0DCBFA4C1E9E49BFE69423Bs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibAC3167F4A0DCBFA4C1E9E49BFE69423Bs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibBB9B5E5D8F00BA2E9089A85640A17A94s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibBB9B5E5D8F00BA2E9089A85640A17A94s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibA84A24D91D38DD211ED09F1E2D85B141s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibA84A24D91D38DD211ED09F1E2D85B141s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibABF9C348C9A27DFEAC85FFE36FA41627s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibDE9E8131BB83642B422A42D639BE41F8s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib58E7C8A776535159E881E2E041452ED1s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib58E7C8A776535159E881E2E041452ED1s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib571CE20EF54D770A352325B97282EA0Es1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib571CE20EF54D770A352325B97282EA0Es1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibB462EFCCF5058F955F1A61EA2CCD05F7s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibB462EFCCF5058F955F1A61EA2CCD05F7s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib64E8F8D82647F110BD3BCBA0E04660FFs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib64E8F8D82647F110BD3BCBA0E04660FFs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib46D59C157A3F7C67C107806683546D41s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib46D59C157A3F7C67C107806683546D41s1
https://doi.org/10.1142/S0218488510006404
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib5BE9B3A112D1E177C0423586EA13FFFBs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib5BE9B3A112D1E177C0423586EA13FFFBs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibC2D03762DE3FDCB88A768676F42954C6s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibC2D03762DE3FDCB88A768676F42954C6s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibC2D03762DE3FDCB88A768676F42954C6s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibAFC2C51CA6A2497BEFC7BDF08157CE67s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibAFC2C51CA6A2497BEFC7BDF08157CE67s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib01417816DC8101D36CD7A9AE03AEA714s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib01417816DC8101D36CD7A9AE03AEA714s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibDD654DA6661A49C01DE41BD232AF79B4s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibDD654DA6661A49C01DE41BD232AF79B4s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib3FD84AD798638EFC87C54C8E941F2BDEs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib52CDDC029DD4884A44EB1A6CE5BEFF17s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib3A46715DDEF5BB92D2DB7F9C139E6EB4s1
https://doi.org/10.1109/TFUZZ.2020.2992180
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibA6F56317E9B8B80C7187D19EFD31B41Es1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibB1BBA0A7AAC357120B4313F3D4CFC048s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibB1BBA0A7AAC357120B4313F3D4CFC048s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib7853FC9C1AADA969EC8E228C42FA683Fs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib7853FC9C1AADA969EC8E228C42FA683Fs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib7853FC9C1AADA969EC8E228C42FA683Fs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib2E338D2D135C888AB301011D45C07FACs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibD5C9610F0927D47427A665DE9C9DA67Ds1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibD5C9610F0927D47427A665DE9C9DA67Ds1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibD5C9610F0927D47427A665DE9C9DA67Ds1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib5AC586B06E14FF1D249AE534FF15A6EBs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bib5AC586B06E14FF1D249AE534FF15A6EBs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibA040A5DD432292BBB3AC4C26B35F437Cs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibA040A5DD432292BBB3AC4C26B35F437Cs1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibEEA747CCC622392CCB1FD8324EF8CA60s1
http://refhub.elsevier.com/S0888-613X(21)00103-1/bibEEA747CCC622392CCB1FD8324EF8CA60s1

	Spark solutions for discovering fuzzy association rules in Big Data
	1 Related work
	1.1 Algorithms review for frequent itemsets mining
	1.1.1 Apriori based algorithms
	1.1.2 ECLAT TID-list based algorithm
	1.1.3 Frequent pattern FP-Growth algorithm
	1.1.4 Algorithm comparison

	1.2 Big Data algorithms for frequent itemset mining
	1.3 Distributed algorithms for association rules mining
	1.4 Distributed algorithms for fuzzy association rule mining
	1.5 Discussion

	2 Preliminaries
	2.1 Fuzzy association rules

	3 Fuzzy association rule mining algorithms using Spark
	3.1 BDFARE-Apriori
	3.1.1 Preprocessing
	3.1.2 Phase 1
	3.1.3 Phase 2
	3.1.4 Fuzzy association rule mining

	3.2 BDFARE-Apriori-TID
	3.2.1 Preprocesing
	3.2.2 Phase 1
	3.2.3 Phase 2
	3.2.4 Fuzzy association rule mining

	3.3 BDFARE-ECLAT
	3.3.1 Preprocesing
	3.3.2 Phase 1
	3.3.3 Phase 2
	3.3.4 Fuzzy association rule mining

	4 Experiments and results
	5 Conclusions and future research
	Declaration of competing interest
	Acknowledgements
	References

