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Abstract

The characteristic functional (c.fl.) of a doubly stochastic Poisson process (DSPP) is studied and it pro-
vides us the finite dimensional distributions of the process and so its moments. It is also studied the case of a
DSPP which intensity is a narrow-band process. The Karhunen–Loève expansion of its intensity is used to
obtain the probability distribution function and a decomposition of this Poisson process. The covariance
derived from the general c.fl. is applied in this particular DSPP.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A random point process is a mathematical model for numerous phenomena characterized by
localized events distributed randomly in a continuous space. In practice, it can be of interest to
count the number of points in subsets of the space given arise to the counting processes. The
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Poisson processes are suitable models for many real counting phenomena but they are insufficient
in some cases because of the deterministic character of its intensity function. The doubly stochas-
tic Poisson process (DSPP) is a generalization of the Poisson process when the intensity of the
occurrence of the points is influenced by an external process called information process such that
the intensity becomes a random process. This process was introduced by Cox [1].

DSPP has been deeply studied. Pointing out some examples, it has been studied from the prob-
abilistic point of view by Grandell [2], Snyder and Miller [3], Valderrama et al. [17] etc. or from the
martingale point of view by Brémaud [4], Last and Brandt [5] and Daley and Vere-Jones [6] etc.
All of them have derived important tools to deal with the DSPP even the practical calculus for
most particular examples are generally difficult if not impossible to evaluate. Even though, we
can find that some of the mentioned authors and others, like Yue [7] or Bouzas et al. [8] have also
treated with more general processes as compound DSPP or filtered compound DSPP.

On the other hand, it is not so usual to give explicit expressions for the moments of many exam-
ple of DSPP�s because of their difficult evaluations. Also, the characteristic functional is defined in
very general stochastic processes [6] or for Poisson processes [3] but not for DSPP�s.

We have found many examples in optical communications systems where the signal carrier
arriving at a photodetector is Gaussian (i.e. cos[xt + h(t)]) and so, the number of photoelectrons
generated during [t0, t) is a Poisson process with a certain intensity (i.e. following the same exam-
ple, A{1 + mcos[xt + h(t)]} + k0, with A, m = constants depending on the photodetector surface,
Planck�s constant, etc. and k0 = constant that models extraneous counts due to background radi-
ation and dark current). These counting processes are used further to estimate the electricity inten-
sity modelling it as a filtered Poisson process. See Pratt [9] or Snyder and Miller [3] for more
examples and deeper study of them. This paper tries to give a contribution on the study of such
classes of counting processes so further applications of them can be better developed, studying a
more general Poisson process but with a similar structure to those. This will be the DSPP with
intensity of the form

kðt; xðtÞÞ ¼ a 1þ mA cos 2px0t þ hð Þ½ � þ k0; t 2 ½0; T �; ð1Þ

where A and h are independent random variables such that A follows a Rayleigh distribution with
parameter b and h follows an Uniform distribution (i.e. A,RðbÞ and h[U [0,2p]) so
A cos½2px0t þ h� is the harmonic oscillator, and a, m and k0 are suitable constants. The intensity
described above is obviously a stochastic process so, the point process could be a DSPP with such
intensity process. It is known that the harmonic oscillator which appears within the intensity pro-
cess is a narrow band and Gaussian process (see for example Ochi [10]). The fact of being a Gauss-
ian distribution could be seen as an objection to the model proposed because an intensity cannot
take negative values. For this reason the DSPP with this intensity does not exist but it can be seen
as an acceptable approximation of a DSPP because the probability of taking negative values is
negligible. We will discuss it later but as an introduction, we will remember that it is common
to find cases in which this assumption is naturally made in time or space.

The exposed ideas will be presented along the paper on the following way. In Section 2, we will
explicitly define the characteristic functional of a DSPP and derive from it the distribution of finite
dimensional random vectors and its moments.

In Section 3, we study the particular case of DSPP which intensity is given by a[1 +
mA cos(2px0t + h)] + k0, t 2 [0,T]. Within Section 3, in Section 3.1 we derive the Karhunen–
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Loève expansion of the intensity process and derived from it, the explicit expression of the para-
metric function as well as its distribution. We will also derive its probability density function
which can be calculated by means of a recursive formula for the generating function of the para-
metric function. Section 3.2 gives the characteristic function of this DSPP. It supplies us a decom-
position of the process in three other easier Poisson processes so, it can be seen as a Compound
DSPP.

2. Characteristic functional of a DSPP and consequences

First of all, let us give a brief theoretical review about DSPP. A DSPP {N(t): t P t0} with inten-
sity stochastic process {k(t,x(t)): t P t0} is defined as a conditioned Poisson process which inten-
sity is the process {k(t,x(t)): t P t0} given the information process {x(t): t P t0}.

Therefore, the probability that the number of points occurring in [t0, t) is n, using the condition-
ing method [3], is given by

P ½NðtÞ ¼ n� ¼ EfP ½NðtÞ ¼ n=xðrÞ : t0 6 r < t�g

¼ E
1

n!

Z t

t0

kðr; xðrÞÞdr

� �n

exp �
Z t

t0

kðr; xðrÞÞdr

� �� �

for n = 0,1,2, . . .
Let K(t,x(t)) � K(t) and k(t,x(t)) � k(t) in order not to complicate the notation. K(t) is the para-

metric function of the DSPP and KðtÞ ¼
R t

t0
kðrÞdr. Then, it is clearly also influenced by the infor-

mation process, so it is a process itself. Therefore, we can write

P ½NðtÞ ¼ n� ¼ E
1

n!
KðtÞne�KðtÞ

� �
¼ 1

n!
Gn

KðtÞð�1Þ; ð2Þ

where GK(t)(s) � GK(s) is the moment generating function (g.f.) of K(t).
The method of conditioning also allows us to have an expression of the characteristic function

(c.f.) of the process

MNðtÞðiuÞ ¼ E exp eiu � 1
� � Z t

t0

kðrÞdr

� 	� �
¼ E exp eiu � 1

� �
KðtÞ


 �� 

¼ MKðeiu � 1Þ; ð3Þ

where MK(s) is the c.f. of K(t).
Until now, we have just studied characteristics of unidimensional distributions. We will now

approach the study of finite-dimensional random vectors.
The characteristic functional (c.fl.) was first introduced by Kolmogorov [11]. It is a generaliza-

tion of the characteristic function. Given a random variable X in a linear space L, the c.fl. of X is
defined by UX(iv) = E[eihX,v i]. We give an expression for the c.fl. of a DSPP based on the definition
for a random measure g found in Daley and Vere-Jones [6], where Ug(iv) = E{exp[i�v(r)d(g)]}.

As the statistics of a DSPP are many times intractable, it is interesting to find any way of cal-
culating them. We show that the c.fl. allows us to determine the joint c.f. of a finite set of variables
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of the DSPP (i.e. {N(t1),N(t2), . . . ,N(tm)}). In particular, having the c.f. of {N(t1),N(t2)} we can
find the covariance of a DSPP. Finally, we will apply this result to the DSPP with intensity (1).

Definition 1. The characteristic functional of a DSPP is defined by

UNðivÞ � exp i

Z T

0

vðrÞNðdrÞ
� 	

; ð4Þ

where v is a real-valued function and the integral is a counting integral with evaluation

Z T

0

vðrÞNðdrÞ ¼
XNðT Þ
i¼1

vðxiÞ

being xi the occurrence times of the DSPP.

See Itô stochastic calculus for a deeper study of this kind of integrals, for example in Snyder
and Miller [3] or Kloeden and Platen [12].

Using the method of conditioning, the c.fl. of a DSPP becomes

UNðivÞ ¼ E exp i

Z T

0

vðrÞNðdrÞ=xðrÞ : t0 6 r < t
� 	� �

¼ E exp

Z T

0

kðr; xðrÞÞ eivðrÞ � 1
� �

dr

� 	� �
. ð5Þ

Taking different functions v(r) we can get c.f.�s of variables related with the DSPP, as we can see in
the following cases:

Case 1 (C.f. of the increments). Taking into account the following function:

vðrÞ ¼
0; 0 6 r < t1

a; t1 6 r < t2; 0 < t1 < t2 < T

0; t2 6 r < T

8><
>:

we have that (4) becomes

UNðivÞ ¼ E exp iaNðt1; t2Þ½ �f g � MNðt1;t2ÞðiaÞ.

It is the c.f. of the increment of the DSPP between t1 and t2.
We also have from (5) that

UNðivÞ ¼ E exp eia � 1
� � Z t2

t1

kðrÞdr

� 	� �

or in terms of the parametric function,

UNðivÞ ¼ E exp eia � 1
� �

Kðt2Þ � Kðt1Þð Þ

 �� 


¼ MKðt2Þ�Kðt1Þðeia � 1Þ;

being MK(t2)�K(t1)(is) the c.f. of K(t2) � K(t1).
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Case 2 (C.f. of finite-dimensional random vectors). Let us choose now the following v(r) function:

vðrÞ ¼

a1 þ a2 þ � � � þ am; 0 6 r < t1

a2 þ � � � þ am; t1 6 r < t2

..

. ..
.

am; tm�1 6 r < tm

0; tm 6 r < T ;

8>>>>>>><
>>>>>>>:

where 0 < t1 < t2 < � � � < tm < T.
From the definition of the c.fl. (see (4)), it results that

UNðivÞ ¼ E exp i a1 þ � � � þ amð ÞNðt1Þþ½f i a2 þ � � � þ amð Þ Nðt2Þ � Nðt1Þð Þ
þ � � � þ iam NðtmÞ � Nðtm�1Þð Þ�g

¼ E exp ia1Nðt1Þ þ � � � þ iamNðtmÞ½ �f g � MNðt1Þ;...;NðtmÞðia1; . . . ; iamÞ;

where MN(t1),. . .,N(tm)(ia1, . . . , iam) is the joint c.f. of (N(t1), . . . ,N(tm)).
From Eq. (5) we can also have

UNðivÞ ¼ E exp ðeiða1þ���þamÞ � 1Þ
Z t1

0

kðrÞdrþ � � � þ ðeiam � 1Þ
Z tm

tm�1

kðrÞdr

� 	� �

¼ Efexp½ðeiða1þ���þamÞ � eiða2þ���þamÞÞKðt1Þ þ � � � þ ðeiam � 1ÞKðtmÞ�g
¼ MKðt1Þ;...;KðtmÞðeiða1þ���þamÞ � eiða2þ���þamÞ; . . . ; eiam � 1Þ.

Taking m = 2, the c.f. of the bidimensional distributions is obtained. Having the joint c.f. of
N(t1) and N(t2), t1 < t2, it is possible to calculate the moments of (N(t1),N(t2)) as the covariance
function. We know that

RNðt1; t2Þ ¼ E Nðt1Þ � Nðt2Þ½ � � E Nðt1Þ½ �E Nðt2Þ½ �

¼ o2MNðt1Þ;Nðt2Þðia1; ia2Þ
oia1 oia2

�����
a1¼a2¼0

� E Kðt1Þ½ � � E Kðt2Þ½ �. ð6Þ

Differentiating UN(iv) (m = 2) and after some manipulations, the expression (6) becomes

RNðt1; t2Þ ¼ E Kðt1Þ � Kðt2Þ½ � þ E Kðt1Þ½ � � E Kðt1Þ½ � � E Kðt2Þ½ �

so, we can conclude that the covariance function of a DSPP is

RNðt1; t2Þ ¼ RKðt1; t2Þ þ E½Kðt1Þ�.

In terms of the intensity process, the covariance function can be written in the following way:

RNðt1; t2Þ ¼
Z t1

0

Z t2

0

Rkðu; vÞdvduþ
Z t1

0

E kðuÞ½ �du. ð7Þ
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3. DSPP in which intensity is a narrow-band process

This section studies the particular DSPP which intensity is

kðtÞ ¼ a 1þ mA cos 2px0t þ hð Þ½ � þ k0; t 2 ½0; T �; ð8Þ

where A and h are independent random variables such that A follows a Rayleigh distribution with
parameter b and h follows an Uniform distribution (i.e. A,RðbÞ and h[U[0,2p]). As mentioned
in Section 1, this intensity is a more general process than the usual A{1 + mcos[xt + h(t)]} + k0,
with A, m and k0 constants. Otherwise, intensity given in Eq. (8) has its advantages and inconve-
niences as we will see and discuss in Section 3.1.

3.1. Probability distribution function

We will first derive the Karhunen–Loève expansion of the intensity stochastic process defined in
(8), use it to find an explicit expression of the parametric function of the DSPP and find the
expression of the probability distribution function (pdf) for the DSPP with the intensity proposed.

The mean of the intensity process is {k(t,x(t)), t 2 [0,T]}.

E½kðtÞ� ¼ aþ amEfA cos½2px0t þ h�g þ k0 ¼ aþ k0.

On the other hand, defining the new process

k�ðtÞ ¼ kðtÞ � a� k0; ð9Þ

it is clearly centered and also Gaussian and its covariance function must be the same as the one of
k(t). The expression of its covariance function is

Rkðt; sÞ ¼ Rk�ðt; sÞ ¼ E½k�ðtÞk�ðsÞ� ¼ a2m2E½A2�
2

cos½2px0ðt � sÞ�. ð10Þ

As {k*(t), t 2 [0,T]} is a centered process and has a known covariance function, we can derive its
Karhunen–Loève expansion (see for example Todorovic [13], or Wong [14] for theoretical details).

Considering T ¼ k
x0

, k 2 Z, the Karhunen–Loève expansion of {k*(t), t 2 [0,T]} is

k�ðtÞ ¼
ffiffiffiffi
2

T

r
sinð2px0tÞn1 þ

ffiffiffiffi
2

T

r
cosð2px0tÞn2;

where n1 and n2 are independent identically centered Gaussian random variables with variance

equal to a, a ¼ a2m2E½A2�
4

T . In practical applications, the Karhunen–Loève expansion must be trun-
cated in order to obtain approximation of the stochastic process with a finite number of param-
eters. In our case, the intensity (9) has an exact expansion, because its covariance has an unique
eigenvalue with multiplicity two so that the space of eigenfunctions is bidimensional. For this rea-
son, the expansion is a linear combination of just the two elements of an orthonormal basis of the
space (see Appendix A for further details).

As k*(t) = k(t) � a � k0, we have that the Karhunen–Loève expansion of {k(t), t 2 [0,T]},
considering T ¼ k

x0
, k 2 Z is
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kðtÞ ¼
ffiffiffiffi
2

T

r
sinð2px0tÞn1 þ

ffiffiffiffi
2

T

r
cosð2px0tÞn2 þ aþ k0;

where n1 and n2 are i.i.d. random variables with the Gaussian distribution Nð0;
ffiffiffi
a
p
Þ; a ¼ a2m2E½A2�

4
T .

Having this expansion of {k(t), t 2 [0,T]}, it is possible and simple to find the explicit expression
of the parametric function of the DSPP, KðtÞ ¼

R t
t0

kðrÞdr

KðtÞ ¼ t aþ k0ð Þ þ
ffiffiffiffi
2

T

r
1� cosð2px0tÞ

2px0

n1 þ
sinð2px0tÞ

2px0

n2

� 	
. ð11Þ

From Eq. (11), we observe that K(t) is a linear combination of Gaussian random variables so, it is
also Gaussian with

E KðtÞ½ � ¼ t aþ k0ð Þ

and using the independence between n1 and n2, after few calculations we obtain

Var KðtÞ½ � ¼ a2m2E½A2� 1� cosð2px0tÞ½ �
4p2x2

0

.

As it is known, the parametric function must be positive, but in this case it could become negative
with positive probability. Note that large values of t and an adequate Rayleigh distribution with
no large E[A2] can make the probability of becoming negative to be negligible. The same problem
is approached in a similar way by Boel and Beneš [15] when they study the intensity of the number
of messages in a communication network. They suggest to multiply the intensity by an indicator
function that is equal to zero for negative values, so that they do not take into account negative
values. This consideration is made after the calculations because if the indicator function were
introduced before it would have changed the stochastic process and its pdf to unknown ones
and therefore no calculation could have been made.

Using the intensity of Eq. (8), we will calculate the probability that the intensity is negative. Let
us observe that k(t) < 0 if and only if

cosð2px0t þ hÞ < 0 and A >
�ðk0 þ aÞ

am cosð2px0t þ hÞ
so using the probability density function of a Rayleigh of parameter b, we have

P ½kðtÞ < 0� ¼ 1

2
exp

� k0þa
am cosð2px0tþhÞj j

� �2

2b2

2
64

3
75.

This probability can be made as small as we want. Choosing an integer k and after some calcu-
lations, we have got

P ½kðtÞ < 0� 6 10�k () k0 þ a
2amb

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k ln 10� ln 2
p

; for all t; h.

Therefore, choosing the parameter b or the constant a, we can make the probability that the inten-
sity is negative, the error of using it, to be negligible.
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It is usual to find in literature approximations or models that fit phenomena ‘‘well enough’’ or
‘‘reasonably’’. In fact, the Gaussian distribution is an usual theoretical assumption or approxima-
tion even though many real random variables cannot take negative values.

Bouzas et al. [16] have already solved this problem of negativity with positive probability using
truncated Gaussian distributions but the mathematical expressions are much more complicated.
Also a process with truncated Gaussian distributions as marginal distributions has unknown finite
dimensional distributions neither the covariance, so it is not possible to give explicit conclusions
as we do in the case considered in this paper.

Using the distribution of K(t) we have just calculated and the expression of the pdf of Eq. (2),
we can now give the following proposition:

Proposition 2. Let the process {N(t): t P t0} be a DSPP with the intensity process
{a[1 + mAcos(2px0t + h)] + k0, t 2 [0,T]}, where A and h independent r.v.�s such that A,RðbÞ
and h[U[0,2p], a, m and k0 constants and T ¼ k

x0
, k 2 Z. Its pdf has the expression

P ½NðtÞ ¼ n� ¼ 1

n!
GnÞ

KðtÞð�1Þ; n ¼ 0; 1; 2; . . . ; ð12Þ

where GnÞ
Kðt;xðtÞÞðsÞ is the nth derivative of the generating function of the parametric function K(t)

distributed as a Nðtðaþ k0Þ; am
2px0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½A2�½1� cosð2px0tÞ�

q
Þ.

It is not possible to find an explicit expression for GnÞ
K ð�1Þ but by means of a recursive formula

(see Appendix B), it can be shown that

GnÞ
K ð�1Þ ¼ Gn�1Þ

K ð�1Þ � tðaþ k0Þ �
a2m2E½A2� 1� cosð2px0tÞ½ �

4p2x2
0

� 	
þ ðn� 1ÞGn�2Þ

K ð�1Þ

� a2m2E½A2� 1� cosð2px0tÞ½ �
4p2x2

0

; ð13Þ

where we have that the function GKð�1Þ ¼ exp½a2m2E½A2�½1�cosð2px0tÞ�
8p2x2

0

� tðaþ k0Þ� and GnÞ
K ð�1Þ ¼ 0;

n < 0.

3.2. Characteristic function

We will now calculate the c.f. of the DSPP with intensity process defined in (8) by two different
ways, using the distribution of the parametric function K(t) and using the form of K(t) as a linear
combination of random variables (see Eq. (11)).

Taking into account Eq. (3) and the expression of the c.f. of a Gaussian random variable,
straightforward we deduce

MNðtÞðiuÞ ¼ exp eiu � 1
� �

t aþ k0ð Þ
�

þ eiu � 1
� � a2m2E½A2� 1� cosð2px0tÞ½ �

4p2x2
0

�

remembering the consideration made in Section 3.1 that T ¼ k
x0
; k 2 Z.
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The second way of calculating this c.f. leads us to the following proposition:

Proposition 3. Let the process {N(t): t P t0} be a DSPP with the intensity process
fa½1þ mA cosð2px0t þ hÞ� þ k0; t 2 ½0; T �g; where A and h independent r.v.�s such that A,RðrÞ
and h[U[0,2p], a, m and k0 constants and T ¼ k

x0
; k 2 Z, then

NðtÞ ¼ N 1ðtÞ þ N 2ðtÞ þ N 3ðtÞ;
where N1(t) is an inhomogeneous PP with parametric function K1(t) = t(a + k0), N2(t) is a DSPP

with K2ðtÞ ¼
ffiffiffi
2
T

q
1�cosð2px0tÞ

2px0
n1 and N3(t) another DSPP with K3ðtÞ ¼

ffiffiffi
2
T

q
sinð2px0tÞ

2px0
n2, n1 and n2 i.i.d.

random variables with distribution Nð0;
ffiffiffi
a
p
Þ; a ¼ a2m2E½A2�

4
T .

Proof. As mentioned in Eq. (3) and introducing the form of K(t) seen in Eq. (11) where n1 and n2

are independent, we can deduce

MNðtÞðiuÞ ¼ E exp eiu � 1
� �

KðtÞ

 �� 


¼ E exp eiu � 1
� �

t aþ k0ð Þ

 �� 


E exp eiu � 1
� � ffiffiffiffi

2

T

r
1� cosð2px0tÞ

2px0

n1

" #( )

� E exp eiu � 1
� � ffiffiffiffi

2

T

r
sinð2px0tÞ

2px0

n2

" #( )
.

This last expression can be rewritten as follows:

MNðtÞðiuÞ ¼ MN1ðtÞðiuÞ �MN2ðtÞðiuÞ �MN3ðtÞðiuÞ;

where N1(t), N2(t) and N3(t) are the stochastic processes mentioned in the proposition. N1(t) and
N2(t) are the type of DSPP called as randomly scaled Poisson process.

A similar proposition could have been enunciated using the form of the intensity process. h

3.3. Covariance

The covariance function of the DSPP studied in this paper which intensity process is described
in (8), has been calculated from Eq. (10). First, knowing the intensity function of the process, Eq.
(10) and with t1 < t2, it is obtained that

E
Z t1

0

Z t2

0

kðuÞkðvÞdvdu
� 	

¼
Z t1

0

Z t2

0

Rkðu; vÞdvdu

¼ a2m2E½A2�
2p2x2

0

cos px0 t1 � t2ð Þ½ � sin px0t1ð Þ sin px0t2ð Þ

so then, we finally have from Eq. (7) that

RNðt1; t2Þ ¼ t1 aþ k0ð Þ þ a2m2E½A2�
2p2x2

0

cos px0 t1 � t2ð Þ½ � sin px0t1ð Þ sin px0t2ð Þ.

P.R. Bouzas et al. / Applied Mathematical Modelling 30 (2006) 1021–1032 1029



Acknowledgement

This work was partially supported by project MTM2004-05992 of Dirección General de Inves-
tigación, Ministerio de Ciencia y Tecnologı́a. The authors want to express our thanks to Prof. F.
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Appendix A. Derivation of the Karhunen–Loève expansion for the intensity

As {k*(t), t 2 [0,T]} is a centered process and has a known covariance function, we can derive
its Karhunen–Loève expansion as follows.

Let us solve the following integral equation:

auðtÞ ¼
Z T

0

Rk�ðt; sÞuðsÞds ðA:1Þ

with Rk�ðt; sÞ of Eq. (10) to find the eigenvalues and eigenfunctions of the covariance function.
Differentiating (A.1) twice with respect to t, we obtain

au00ðtÞ ¼ � 2px0ð Þ2uðtÞ.

As it is well known, the general solution of this second-order linear differential equation is

uðtÞ ¼ b1 sinð2px0tÞ þ b2 cosð2px0tÞ. ðA:2Þ

Using this general solution (A.2) and introducing it in Eq. (A.1), after some calculations and con-
sidering T ¼ k

x0
; k 2 Z, we have

auðtÞ ¼ a b1 sinð2px0tÞ þ b2 cosð2px0tÞ½ � ¼ a2m2E½A2�
4

T b1 sinð2px0tÞ þ b2 cosð2px0tÞ½ �

¼ a2m2E½A2�
4

T uðtÞ;

so it resulted that the integral equation has a unique and double eigenvalue and it is a ¼ a2m2E½A2�
4

T .
An orthonormal basis of the bidimensional solutions space isffiffiffiffi

2

T

r
sinð2px0tÞ;

ffiffiffiffi
2

T

r
cosð2px0tÞ

( )
ðA:3Þ

and both functions verify the integral equation so, they are eigenfunctions of the integral
equation.

Having derived the eigenvalues and eigenfunctions of the integral equation, the Karhunen–
Loève expansion of {k*(t,x(t)), t 2 [0,T]}, considering T ¼ k

x0
; k 2 Z is

k�ðtÞ ¼
ffiffiffiffi
2

T

r
sinð2px0tÞn1 þ

ffiffiffiffi
2

T

r
cosð2px0tÞn2;
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where, due that k*(t) is Gaussian, n1 and n2 are independent Gaussian random variables and have
identically centered Gaussian distribution and variance equal to a, it is n1; n2 ,Nð0;

ffiffiffi
a
p
Þ;

a ¼ a2m2E½A2�
4

T .

Appendix B. Derivation of recursive formula for the probability distribution function

In this appendix we will prove that the nth derivative of the g.f. of the parametric function eval-
uated in �1, it is GnÞ

K ð�1Þ, which appears in the expression of the pdf in Eq. (12) can be calculated
by the recursive formula (13).

Remembering the distribution of K(t) (see Section 2), its g.f. is the following

GKðsÞ ¼ exp
1

2
r2s2 þ sl

� 	
;

where r2 ¼ Var½K� ¼ a2m2E½A2�½1�cosð2px0tÞ�
4p2x2

0

and l = E[K] = t(a + k0).

Let us calculate the consecutive derivatives of the g.f.:

n = 1,

G0KðsÞ ¼ exp
1

2
r2s2 þ sl

� 	
r2sþ l

 �

¼ GKðsÞ r2sþ l

 �

n = 2,

G00KðsÞ ¼ G0KðsÞ r2sþ l

 �

þ GKðsÞr2

..

.

n�1, let us suppose

Gn�1Þ
K ðsÞ ¼ Gn�2Þ

K ðsÞ r2sþ l

 �

þ n� 2ð ÞGn�3Þ
K ðsÞr2

n, and differentiating again, it results

GnÞ
K ðsÞ ¼ Gn�1Þ

K ðsÞ r2sþ l

 �

þ n� 1ð ÞGn�2Þ
K ðsÞr2.

so, we have proved by inducting a recursive formula for GnÞ
K ðsÞ.

Evaluating the function GnÞ
K ðsÞ in �1 and substituting l and r2 by its values, it is proved that

GnÞ
K ð�1Þ can be calculated with the recursive formula mentioned in order to calculate the pdf.
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