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Abstract

Functional logistic regression has been developed to forecast a binary response variable from a functional predictor. In order to
fit this model, it is usual to assume that the functional observations and the parameter function of the model belong to a same finite
space generated by a basis of functions. This consideration turns the functional model into a multiple logit model whose design
matrix is the product of the matrix of sample paths basic coefficients and the matrix of the inner products between basic functions.
The likelihood estimation of the parameter function of this model is very inaccurate due to the high dependence structure of the so
obtained design matrix (multicollinearity). In order to solve this drawback several approaches have been proposed. These employ
standard multivariate data analysis methods on the design matrix. This is the case of the functional principal component logistic
regression model. As an alternative a functional partial least squares logit regression model is proposed, that has as covariates a set
of partial least squares components of the design matrix of the multiple logit model associated to the functional one.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Functional logistic regression (FLR) has received much attention in literature in recent years with different objectives.
On the one hand, James (2002) used FLR in the more general framework of functional generalized linear models with
the emphasis on the prediction of the response variable (5-year survival on a randomized placebo controlled trial of the
drug D-penicillamine on patients with primary biliary cirrhosis of the liver). With the same objective, Ratcliffe et al.
(2002) used a FLR model for predicting if human foetal heart rate responds to repeated vibroacoustic stimulation, and
Rossi et al. (2002) predicted whether an examinee would answer a certain item of a specific test correctly. In this context,
FLR can be used as a curve discrimination method alternative to those developed in literature, as linear discriminant
analysis on functional data (Preda and Saporta, 2005b) or nonparametric curves discrimination (Ferraty and Vieu,
2003). On the other hand, Escabias et al. (2004) paid their attention to the accurate estimation of the parameter function
of the FLR model without forgetting the importance of an accurate prediction of the response. An interpretation of the
parameter function in terms of odds ratios was developed in Escabias et al. (2005) with a climatological application to
establish the relationship between the risk of drought and time evolution of temperatures. More recently, Müller and
Stadtmüller (2005) have developed asymptotic inference for a class of generalized functional linear regression models
based on approximating the predictor process with a truncated Karhunen–Loève expansion.
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These different objectives of FLR have shown different ways of dealing with the problem with a common point,
that is the multiple approach to the functional logit model after considering that both the observations of the functional
predictor and the parameter function are expressed in terms of basis functions. James (2002) and Rossi et al. (2002)
consider the basis coefficients as unobservable quantities and use the EM algorithm to estimate them. On the other
hand, Ratcliffe et al. (2002) used least squares approximation of the basis coefficients from discrete time observations of
the sample paths meanwhile Escabias et al. (2005) developed a quasi-natural cubic spline interpolation procedure. All
of these methods transform the functional model into a multiple logistic regression model with high multicollinearity
that makes the estimation of the parameters of the model inaccurate with high estimated variance in spite of the good
prediction of the response variable. In order to solve this problem and to provide an accurate estimation of the parameter
function of the model, Escabias et al. (2004) studied two different functional principal component (PC) approaches
that take as covariates a reduced set of PCs of the design matrix of the multiple logit model equivalent to the original
FLR model.

Many criticisms have been made to principal component analysis (PCA) as a resource to avoid multicollinearity,
mainly in multiple regression methods, based on the fact that PCs are calculated without taking into account the response
variable.As an alternative to PCA of the predictors in regression methods (also known as principal component regression
(PCR)) Wold (1975) introduced the partial least squares (PLS) analysis, that consists of obtaining a set of uncorrelated
latent variables (as the PCs) that takes into account the relationship between the response and the predictor variables,
and to fit the regression model with the PLS components as covariates. Different algorithms for computing the PLS
components have been developed in the literature as NIPALS (see Geladi and Kowalski, 1986), SIMPLS (De Jong, 1993)
and more recently powered PLS (Indahl, 2005). Moreover, PLS has been incorporated within the iteratively reweighted
least squares (IRWLS) steps for multinomial or binary logistic regression (Marx, 1996). Frank and Friedman (1993)
and Garthwaite (1994) compared PLS with different methods for solving multicollinearity in linear regression, i.e. PLS,
PCR, ridge regression (RR), variable subset selection (VSS), ordinary least squares (OLS), forward variable selection,
PCR and a Stein shrinkage method, and concluded that PLS is suited to models with many variables and large error
variances. In addition, Garthwaite (1994) provides an interpretation of the PLS components that can be viewed as
weighted averages of predictor variables where each predictor holds the residual information in an explanatory variable
that is not contained in earlier components.

Due to the great interest raised by PLS in recent years (see the special issue on PLS published in Computational
Statistics and Data Analysis in 2005), this technique has been extended and adapted to be used with other statistical
methods such as generalized linear regression models (Bastien et al., 2005). For the special situation of logistic
regression in presence of multicollinearity, Aguilera et al. (2006) show that PC logistic regression (PCLR) can provide
an estimation of the parameters of the model as accurate as the one given by the PLS logit algorithm of Bastien et al.
(2005), with a subtle variation in the selection of PCs, that consists of selecting them by a stepwise method based on
conditional likelihood ratio test.

Other statistical field where literature has been wide over the last few years, has been functional data analysis (FDA)
where data are functions usually observed at a finite set of time points. Classical statistical techniques as PCA, linear
regression or canonical correlation analysis, among others, have been extended to the functional case (see Ramsay and
Silverman, 2005 for a detailed study). Functional methods have also been developed to solve the prediction problem in
several areas of statistics as for example the PCP models to forecast a process in the future from its recent past (Aguilera
et al., 1999a,b) and its adaptation to forecast continuous time series (Aguilera et al., 1999c). On the other hand, PLS
regression have recently been generalized to PLS of a stochastic process (Preda and Saporta, 2005a) for solving the
problem of estimating the functional linear model.

The objective of this paper is to give a new step in all these generalizations by introducing the functional PLS logistic
regression (FPLSLR) model as an alternative to the functional principal component logistic regression (FPCLR)
introduced by Escabias et al. (2004) for solving multicollinearity. Our approach is different from the one proposed
by Preda and Saporta (2005a) in the linear case where the PLS components of the multiple model that result after
selecting a set of knots and considering the average (between knots) of the sample paths, were obtained. They state that
the so obtained multiple PLS components were the same as the functional ones. In this paper, we propose to use PLS
multiple logit regression on the design matrix of the multiple logit model obtained after considering that the parameter
function and the functional predictor belong to a finite space generated by a basis of functions. In order to do this, we
apply the PLS generalized linear regression algorithm proposed by Bastien et al. (2005) to the particular case of the
logit model.
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The paper has been organized in four sections. After the introductory section, we summarize the functional logit
regression model, its parameter function interpretation, the fitting problems, the multiple-based solution and the mul-
ticollinearity problem. In Section 3, we describe the algorithm to obtain the PLS components for the logit regression
model and present our proposed FPLSLR model. Finally, in Section 4 we develop three simulation studies, the two
first focused on the accurate estimation of the parameter function, and the last one based on curve discrimination.

2. The functional logistic regression model and the problem of multicollinearity

As we have emphasized in the Introduction, functional data analysis methodologies have received much attention
in recent years, generalizing a lot of statistical techniques to the functional field. Among these methods is logistic
regression that has been extended to the functional case to forecast a binary response from a functional predictor whose
observations are functions instead of vectors as in the classical multivariate setting. As in other functional regression
methods, the fitting procedure is usually based on expressing the functional observations of the predictor variable and
the parameter function of the model in terms of a basis of functions. Let us formulate the FLR model and the most used
method of fitting, showing the problems that arise and how they are usually solved.

Let {x1(t), . . . , xn(t) : t ∈ T } be a random sample of observations (sample paths) of a functional variable X(t), and
{y1, . . . , yn} a set of observations of a binary response variable Y associated to them (i.e. yi ∈ {0, 1}, ∀i =1, . . . , n). In
order to formulate the FLR model, we will assume that the random variables X andY are defined on the same probability
space with X valued in the separable Hilbert space L2

T , whose usual inner product is defined as

〈�, �〉 =
∫

T

�(t)�(t) dt ∀�, � ∈ L2
T .

Then, the FLR model is given by

yi = �i + �i , i = 1, . . . , n,

where the probability that the binary response variable takes value one given a functional observation, �i = P {Y =
1|X(t) = xi(t)}, is modelized as

�i = exp{� + 〈xi, �〉}
1 + exp{� + 〈xi, �〉} = exp{� + ∫

T
xi(t)�(t) dt}

1 + exp{� + ∫
T

xi(t)�(t) dt} (1)

with � being a real parameter and � the parameter function of the model that belong to the space L2
T . As in the multiple

logistic regression model (Hosmer and Lemeshow, 2000), �i are centered independent random errors with variance
Var[�i] = �i (1 − �i ). Eq. (1) can be expressed alternatively in terms of the logit transformation, li = log[�i/(1 −
�i )] ∀i = 1, . . . , n, as

li = � +
∫

T

xi(t)�(t) dt , (2)

so that the FLR model can be seen as a particular case of the functional generalized linear models introduced in James
(2002). Let us observe that the conditional distribution of Y given X(t) is a Bernoulli distribution that belongs to the
exponential family.

Formula (2) leads us to the interpretation of the parameter function. That is, the integral of the parameter function
multiplied by a constant K, can be interpreted as the multiplicative change in the odds of response Y =1 obtained when
a functional observation is incremented constantly in K units along T (Escabias et al., 2005).

As in the case of the functional linear regression model, in the FLR model we have to take into account different
aspects. Firstly, we cannot observe the functional form of the sample paths continuously, as much we can observe each
of them in a finite set of discrete time points. Secondly, it is impossible to estimate the parameter function (that is infinite
no numerable) with a finite number of observations n. In order to circumvent the first task which is common to all
functional methods, different proposals can be found in literature. In the context of functional PLS, Preda and Saporta
(2005a) reconstruct the functional form of sample paths by fixing a set of knots and considering the average between
knots of the sample paths observed at a finite set of points. In the more general context of functional generalized linear
models, Cardot and Sarda (2005) discuss identifiability of the model and propose an estimation procedure based on
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B-splines and penalized likelihood. In that paper, it is proved that in order to ensure the identifiability of the FLR model
it is necessary to assume that the functional variable X is of second order and the eigenvalues of its covariance operator
are nonzero.

In this paper, we will apply the usual solution in functional regression methods that solves at the same time the two
pointed questions by expressing the sample paths and the parameter function in terms of a basis of functions that spans
the space where the sample paths belong to (see Ramsay and Silverman (2005) for a general revision). Different basis
as trigonometric functions (Aguilera et al., 1995; Ratcliffe et al., 2002), cubic spline functions (Aguilera et al., 1996;
Escabias et al., 2005) or wavelets functions (Amato et al., 2006; Ocaña et al., 2006) can be used depending on the
nature of the functional predictor sample paths. In the particular case of doubly stochastic Poisson processes, Bouzas
et al. (2006) have proposed a new procedure for estimating the mean process based on monotone piecewise cubic
interpolation of its sample paths.

If we denote by �= (�1(t), . . . ,�p(t))′ a vector of basic functions (the prime denote transpose) that span the space
where xi(t) and �(t) belong to, then we have

xi(t) = a′
i�, �(t) = �′�,

where ai = (ai1, . . . , aip)′ is the vector of sample path basis coefficients and � = (�1, . . . , �p)′ the parameter function
basis coefficients. Therefore, the functional model in terms of the logit transformations (2) is expressed in matrix form
as

L = 1� + A��, (3)

with L = (l1, . . . , ln)
′, 1 = (1, . . . , 1)′, A being the n × p matrix which has as rows the sample path basis coefficients

a′
i and � = (	jk) being the p × p matrix which has as entries the basic functions inner products

	jk =
∫

T

�j (t)�k(t) dt, j, k = 1, . . . , p.

The A matrix is usually obtained by least squares approximation from the observations of the sample curves at discrete
points that could be different for each sample individual.

The multiple logistic regression model (3) so obtained provides a design matrix with high dependence structure
(multicollinearity). The multicollinearity problem has an undesirable effect in regression methods providing inaccurate
estimated parameters and increasing their estimated variances (see Jollife (2002) for multicollinearity discussion in
linear regression or Aguilera et al. (2006) for logistic regression). In order to solve this problem and to obtain an
accurate estimation of the parameter function, Escabias et al. (2004) proposed several FPCLR models based on different
functional PCAs of the functional predictors and a stepwise procedure based on conditional likelihood ratio tests for
selecting the PCs to be included in the logit model. In this paper, we are going to develop a functional PLS logit model
that uses as covariates of the multiple logit model (3) the logit PLS components of its design matrix A�. The next
section summarizes the algorithm to obtain the logit PLS components, the model in terms of the logit PLS components
and the estimation of the parameter function basis coefficients.

3. A solution to multicollinearity: the functional PLS logit model

As an alternative to FPCLR, we propose a new functional regression method based on the PLS logit model introduced
by Bastien et al. (2005) that consists of adapting the classical PLS regression algorithm (Wold, 1975) to the logistic
regression model.

In any PLS regression method, the PLS components are defined as uncorrelated linear spans of the explicative
variables of the regression model that maximize the covariance between linear spans of explicative and response
variables, respectively. These linear spans are usually obtained by algorithmic methods. In the logistic regression case
the PLS algorithm proposed by Bastien et al. (2005) considers as the linear spans’s coefficients, a transformation of
the slope parameters of the simple logit fittings of the response Y on each single explicative variable as covariate. The
functional PLS logit model that we propose in this work is based on a multiple PLS logit regression model that has
A� as design matrix (see Eq. (3)).
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The algorithm for computing the FPLSLR model consists of the three following steps:

(1) Computation of a set of PLS components.
Let Y be a binary variable and Hj , j = 1, . . . , p the columns of the design matrix of the functional logit model.
Then, the algorithm that computes the logit PLS components is summarized as follows:

Step 1: First logit PLS component

• Logit regression fits Y/Hj (j = 1, . . . , p), denoting the estimated slope parameters by 
̂1 = (̂
11, . . . , 
̂1p)′
and by V1 = (v11, . . . , v1p)′ its normalized vector (v1j = 
̂1j /‖̂
1‖).

• Set equal to zero those coefficients v1j that are not significant in base to the usual Wald test. That means to
delete those components of V1 that verify |̂
1j /SE(̂
1j )|�z�/2, with SE(̂
1j )being the estimated standard
deviation of 
̂1j and z�/2 being a fixed critical value of the standard normal distribution.

• The first logit PLS component is defined as T1 = v11H1 + · · · + v1pHp.

Step l: Given T1, . . . , Tl−1 the first l − 1 logit PLS components, the lth one is obtained as follows:

• Logit regression fits Y/(T1, . . . , Tl−1, Hj ) (j = 1, . . . , p), denoting by 
̂l = (̂
l1, . . . , 
̂lp)′ the estimated slope
parameter corresponding to the variables Hj in each logit regression and by Vl = (vl1, . . . , vlp)′ its normalized
vector (vlj = 
̂lj /‖̂
l‖).

• Set equal to zero those coefficients vlj that are not significant, |̂
lj /SE(̂
lj )|�z�/2, with SE(̂
lj ) being the
estimated standard deviation of 
̂lj .

• Linear regression fits Hj/(T1, . . . , Tl−1) (j =1, . . . , p), denoting by R
(l−1)
1 , . . . , R

(l−1)
p their residual vectors.

• The lth logit PLS component is defined by Tl = vl1R
(l−1)
1 + · · · + vlpR

(l−1)
p .

The algorithm stops at the step where the component Tl is not significant because none of the coefficients vlj

is significantly different from 0. That means that |̂
lj /SE(̂
lj )|�z�/2 ∀j = 1, . . . , p. Other usual method for
selecting the number s of PLS components to be retained is cross-validation on the predictive power of the model
(see Tenenhaus, 2002 for a detailed study).

(2) Logit regression fitting of the response variable Y on the retained PLS components.
First, all logit PLS components are expressed in terms of the original covariates (columns Hj of the A� matrix)
instead of the corresponding residual vectors. If we denote by � the matrix of logit PLS components of the design
matrix A�, then we have � = A�V, with V being the matrix whose columns are the vector of coefficients of the
logit PLS components in terms of the original predictors.

Let us consider the multiple expression (3), then the logit model in terms of the PLS components is expressed as

L̂ = 1 �̂0 + � �̂,

where �̂ = ( �̂1, . . . , �̂s)
′ are the maximum likelihood estimators of the coefficients of the logit model in terms of

the s logit PLS components obtained in the previous algorithm.
(3) Formulation of the PLS logit regression model in terms of the original predictors

L̂ = 1 �̂0 + A�V �̂,

so that we can finally obtain the following estimation of the parameter function: �̂(t) = �̂
′
�, in terms of its basis

coefficients estimated from the gamma parameters �̂ = V �̂.

4. Simulation study

In order to test the performance of functional PLS logit model, we have developed three simulation examples. In the
first and the second ones, we follow two different simulation schemes proposed in Escabias et al. (2004), where the
effects of multicollinearity on the parameter function estimation were analyzed. In the third example, the simulation
process is the one developed in Ferraty and Vieu (2003). The first and second examples are devoted to the accurate
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Fig. 1. Simulated sample curves of Example 1: (a) curves with response Y = 1; (b) curves with response Y = 0.

estimation of the parameter function of the FLR model meanwhile the third one deals with its curve discrimination
ability. In all cases we have calculated the usual goodness of fit measures of the logistic regression model, i.e. the
deviance statistic, given by

G2 = 2
n∑

i=1

[
yi log

yi

�̂i

+ (1 − yi) log
1 − yi

1 − �̂i

]
,

its p-value, the area under the receiver operating curve (ROC), and the correct classification rate (CCR) defined as
the rate of correct response classifications by using 0.5 as cut-point taking into account that those observations with
predicted probability greater than 0.5 are classified as Y =1 and the rest as Y =0. In these examples, the results provided
by FPLSLR are compared with other existing estimation methods as the nonfunctional multiple PLS logit regression
(MPLSLR) (Bastien et al., 2005) that uses as predictors the vectors of the observations of the sample curves at a finite
set of time points, and other functional approaches as the FPCLR (Escabias et al., 2004), among others.

4.1. Example 1

In the first example, we considered as functional explicative variable the one whose sample curves are cubic spline
functions expressed in terms of the basis of cubic B-spline functions defined by the knots {0, 1, 2, . . . , 10}

x(t) =
11∑

j=−1

ajBj (t), (4)

with Bj (t) being the cubic B-spline functions. In order to simulate a set of sample paths we simulated 100 vectors of
dimension 13 of a centered multivariate normal distribution with highly correlated components, which correspond to
the coefficients of the B-splines in expression (4) (see Escabias et al., 2004 for a detailed explanation of the simulation
method). Fig. 1 shows these sample paths. As parameter function of the logit model we considered the natural cubic
spline interpolation of the function sin(t − �/4) on the knots previously defined (see Fig. 3). Finally, each observation
of the response variable yi (i =1, . . . , n) was simulated by using a Bernoulli distribution with probability �i calculated
by expression (1) with � = 0.5.

After simulating the data, we fitted the functional logistic regression model given by Eq. (3), obtaining the estimated
parameter function given in Fig. 2. Let us observe the great difference from the simulated one. The variance of the
estimated parameter function defined in this paper as the sum of the estimated variances of its basis coefficients,
is 668.4326. This extremely high value is a symptom of inaccuracy of the parameter function estimation caused
by multicollinearity. In order to evaluate the functional logistic regression model we obtained some goodness of fit
measures as the CCR giving 88% of correct classifications and the deviance statistic G2 =56.48 that provides a p-value
of 0.9942. All these measures show that the logistic model is a good choice for these data. As measure of accuracy of
the parameter function estimation, we calculated the integrated mean squared error (IMSEB) of the parameter function
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Fig. 2. Simulated parameter function (solid line) and FLR estimation (broken line) for a particular simulation of Example 1.
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Fig. 3. Simulated parameter function (solid line), FPLSLR estimation (broken line) and best FPCLR estimation (dotted line) for a particular simulation
of Example 1.

defined as

IMSEB = 1

T

∫
(�(t) − �̂(t))2 dt .

This measure showed that the estimation so obtained was very inaccurate providing IMSEB = 1.16E + 5.
In order to better estimate the parameter function of the FLR model by avoiding the multicollinearity problem, we

obtained the functional logit PLS components by the algorithm proposed in Section 3, finding that there were only three
components. After that, we fitted the logit model in terms of these components and reconstructed the parameter function
as was shown in the previous section. The estimated parameter function so obtained can be seen in Fig. 3 from which
we can state that this estimation is much better than the one seen in Fig. 2. Following this, we obtained the goodness
of fit measures of this model with CCR = 88% and deviance statistic G2 = 59.66 (p-value = 1.00) which showed that
the model fitted well. Finally the parameter function accuracy measures were calculated, obtaining IMSEB = 0.03 and
estimated variance of the estimated parameter function Var=1.44, all of which were much lower than the ones obtained
without using PLS components. All these measures showed a better estimation of the parameter function by using the
functional PLS logit model.

In order to compare the performance of FPLSLR with other competitors as the FPCLR model, we obtained the PCs
of the design matrix of Model (3) and fitted the multiple logit model in terms of different numbers of PCs. We found
that the model with the first six PCs (the ones that cumulate more than 95% of the total variability) provided the best
parameter function estimation with the lowest IMSEB.

From Table 1 and Fig. 3, we can observe that the parameter function estimations obtained by FPLSLR and FPCLR
are very similar, in both cases they provide a clear improvement in the estimations with respect to the functional logit
model. The FPLSLR model may be superior to FPCLR model in a bigger reduction of dimension in the number of
components needed to obtain the best possible estimation. Escabias et al. (2004, 2005) proved that in the case of FPCLR
it is better to include PCs in the model in the order given by a stepwise method than in the natural order of explained
variability, in order to obtain an accurate estimated parameter function.
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Table 1
Goodness of fit and accuracy measures of the different logit models fitted to a particular simulation of Example 1

Method Covariates IMSEB ROC area CCR G2 p-value

FLR 13 1.16E+5 0.912 88 56.48 0.990
FPCLR 6 1.78E − 1 0.942 88 59.57 0.997
FPLSLR 3 2.76E − 2 0.944 88 59.66 0.998

Table 2
Mean and standard deviation of goodness of fit and accuracy measures of the different optimum logit models after 350 simulations of Example 1

Measures FPLSLR FPCLR

Mean SD Mean SD

Covariates 2.72 0.53 4.19 0.91
ROC area 0.945 0.022 0.937 0.019
CCR 87.11 3.42 85.97 2.96
IMSEB 0.52 2.19 0.95 0.76
G2 57.13 11.66 0.98 0.001

In order to check if the previously proved results are the general rule, we repeated the simulation of the binary response
variable 350 times and fitted the FPLSLR and FPCLR models in each one. For the FPCLR model, we considered as
optimum model in each repetition the one which had the lowest IMSEB after fitting the models in terms of different
number of PCs included one by one by explained variability. In the two types of models, we obtained the mean and
standard deviation of the goodness of fit and accuracy measures previously defined for the optimum models. The results
can be seen in Table 2, and from them we can see that the mean CCR and ROC area are similar in both methods, that the
mean number of components needed for the best possible estimation of the parameter function is lower in the FPLSLR
model (2.72) than in FPCLR model (4.19) and that the mean IMSEB is lower too in FPLSLR model (0.52) than in the
FPCLR model (0.95). From these results, we can state that the conclusions seen before are the rule and not a particular
case.

4.2. Example 2

In order to compare the results of FPLSLR and FPCLR with MPLSLR regression, we have developed a new example
where the sample paths are only observed at a finite set of time points given by {0, 0.1, 1.3, 1.4, 2.6, 3.1, 3.5, 3.6, 3.9,
7.10, 7.1, 7.60, 7.66, 7.9, 8.6, 8.7, 9.8, 10.351, 10.353, 10.4, 11.1, 11.2, 12.3, 12.71, 12.74, 13.5, 13.8, 14.8, 14.9, 15}.
We have considered as functional predictor the stochastic process

X(t) = Z(t) + t/4 + 5E,

where Z(t) is a zero mean Gaussian stochastic process with covariance function given by C(t, s) = (1/2)80|t−s| and
E is a Bernoulli random variable with parameter p = 0.1. Then we have simulated observations of a sample of 100
curves of this process at the previous set of 30 unequally spaced times of the interval [0,15].

In order to reconstruct the functional form of the original curves we consider that they are cubic splines and can be
expressed in terms of the basis of B-splines defined by the knots {0, 1.1, 2.5, 3.7, 5.1, 6.9, 8.2, 9.6, 10.9, 12.1, 13.3, 15}.
The basis coefficients of the corresponding expansion of each sample curve is obtained by least squares approximation.

The parameter function considered in this example is the cubic spline interpolation of cos(t −�/4) on the nodes that
define the B-spline functions. Each value of the response variable was again simulated by using a Bernoulli distribution
whose parameter was computed by using expression (1) with � = 1.5.

The following steps for fitting the FPLSLR and FPCLR models are the same as those seen in the first example. In this
example, we have also repeated the simulation and the fits 340 times and we have obtained the same resume measures
for the optimum models. In addition, we have estimated for each simulation a MPLSLR model based on logit regression
of the response on the logit PLS components associated to the data matrix whose rows are the vectors of observations of
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Table 3
Mean and standard deviation of goodness of fit and accuracy measures of the different optimum logit models after 340 simulations of Example 2

Measures FPLSLR FPCLR MPLSLR

Mean SD Mean SD Mean SD

Covariates 1.72 0.82 5.17 2.04 1.96 0.76
ROC area 0.921 0.054 0.926 0.109 0.949 0.047
CCR 94.76 2.13 94.97 1.91 95.75 1.95
IMSEB 0.68 1.51 0.47 0.19 4.20 25.47
G2 27.62 9.31 27.39 8.54 22.02 9.44

each predictor curve at discrete time points. In order to compute the IMSEB associated to this multiple model, we have
computed the parameter function by using least squares approximation of the estimated parameter vector (values of the
parameter function at the observation time points) on the same B-splines basis used for approximating the predictor
sample paths.

The mean and standard deviation of the goodness of fit and accuracy measures of the three models (FPLSLR, FPCLR
and MPLSLR) adjusted to each simulation can be seen in Table 3. From this table, we can corroborate the results of
Example 1 and compare them with the ones provided by MPLSLR. Let us observe that the mean CCR and ROC area are
similar for the three methods, the mean number of components needed for the best possible estimation of the parameter
function is lower with FPLSLR and MPLSLR than with FPCLR, and the mean IMSEB is similar for the functional
models (FPLSLR and FPCLR) and higher for the MPLSLR approach.

4.3. Example 3

In Examples 1 and 2, we have shown the ability of the FPLSLR model to provide an accurate estimation of the
parameter function. Next we have developed another simulated example with the emphasis on its prediction ability.
As we have noted in previous sections, logistic regression is a good method for discrimination, so we have used
the FPLSLR model for curve discrimination in order to compare it with different methods which can be found in
literature, such as the classification and regression tree procedure (CART), functional discriminant analysis (FDA),
multivariate partial least-squares regression (MPLSR), penalized discriminant analysis (PDA) or nonparametric curve
discrimination (NPCD) (see Ferraty and Vieu, 2003 for a detailed explanation).

In order to follow the simulation scheme developed in Ferraty and Vieu (2003) we simulated 1000 curves of two
different classes, for the first class we simulated 500 curves according to the function

x(t) = uh1(t) + (1 − u)h2(t) + �(t),

and another 500 curves were simulated for the second class according to the function

x(t) = uh1(t) + (1 − u)h3(t) + �(t),

with u and �(t) being uniform and standard normal simulated random values, respectively, and

h1(t) = max{6 − |t − 11|, 0}, h2(t) = h1(t − 4), h3(t) = h1(t + 4).

The sample curves were simulated at 101 equally spaced points on the interval [1, 21]. As binary response variable,
we considered Y = 0 for the curves of the first class and Y = 1 for the ones of the second class. Finally, we considered
500 curves (250 of each class) as training sample and the rest as test sample. Some of the curves of each class can be
seen in Fig. 4.

After simulating the data, we obtained a least squares approximation of the curves on the space spanned by the cubic
B-spline functions defined on 70 equally spaced knots of the interval [1, 21]. The heuristic reason for choosing this high
dimension is to obtain an accurate reconstruction of predictor sample paths with a suitable balance between smoothness
and roughness. Then, we fitted the FLR model given by Eq. (3), by obtaining as estimated parameter function the one
drawn in Fig. 5. The variance of this estimated parameter function was very large (Var = 3.12E + 015) which caused
us to suspect the inaccuracy of this estimation. This inaccurate estimation can be caused by any of two problems, on
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Fig. 4. Simulated sample curves of Example 3: (a) first class curves; (b) second class curves.
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Fig. 5. Parameter function estimations of Example 3: (a) FLR; (b) FPLSLR.

the one hand the high multicollinearity that exists in the multiple model (3), and on the other hand the high number of
variables (72) that the model has. The logistic regression model is very sensitive to the number of variables, in fact when
the number of variables is high the algorithms of most statistical packages tend to fail giving estimated probabilities
close to zero or one and making the likelihood function to be unstable or undefined.

In order to avoid these two problems we decided to use the FPLSLR model proposed in this paper, so we obtained
the functional logit PLS components, finding that only one component was able to be extracted, and we fitted the
logit model in terms of this component. The estimated parameter function provided by this model is in Fig. 5 and its
estimated variance was Var = 2.34 far from the one obtained without using logit PLS. The goodness of fit measures
associated to this model were G2 = 18.33 (p-value = 1.00) and CCR = 98.2 what showed that the model fitted well.

Finally we used the test sample in order to evaluate how the model discriminates the curves. Therefore, we used the
least squares approximation of the curves of the test sample and the estimated parameter function in order to predict
the probabilities given by expression (1) for the test sample. Finally, we used 0.5 as cut point in order to predict the
values of the response variable and calculated the correct classification rate (CCR = 96.8), providing that only 3.2% of
curves were incorrectly classified.

In order to compare our methods with those existing for curve discrimination (Ferraty and Vieu, 2003) we repeated
the simulation of the training and test samples 50 times, fitted the FPLSLR, FPCLR and MPLSLR models and obtained
the misclassification rate and the ROC area in each repetition. Escabias et al. (2004) proved that for the FPCLR model
the best possible estimation of the parameter function (the one with the lowest IMSEB) was achieved by the model
previous to an outstanding increment of the variance of the parameter function, after including PCs in the model one by
one according to the explained variance. Thus in each repetition we considered this criterion to select the most accurate
parameter function estimation in FPCLR.

The mean of the ROC areas of the FPLSLR, FPCLR and MPLSLR models fitted to each one of the 50 simulations are
0.996, 0.999 and 0.939, with standard deviations 0.006, 0.001, and 0.071, respectively. The mean and variance of the test
sample misclassifications provided by the adjusted FPLSLR, FPCLR and MPLSLR models over the 50 simulations
can be seen in Table 4, next to the ones obtained by Ferraty and Vieu (2003) with alternative curve discrimination
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Table 4
Comparison of different curves discrimination methods

Method Error rates Standard deviations

CART 0.262 1.8E − 2
FDA 0.123 1.4E − 2
NPCD 0.079 1.2E − 2
PDA 0.089 1.6E − 2
FPLSLR 0.030 8.7E − 3
FPCLR 0.032 8.3E − 3
MPLSLR 0.243 1.4E − 1

Mean and standard deviation of misclassifications after 50 simulations of Example 3.

methods on 50 different simulated data set of the same functional predictor. From this table, we can see that FPLSLR
is the best model for curve discrimination because the error rate is much lower than the rest. Let us also observe how
the functional PLS approach proposed in this paper overperforms the multiple PLS logit regression on the vectors of
observed values of sample curves, and provides similar results (similar high CCR and ROC areas) to the functional PC
approach.

5. Conclusions

In this paper, we have proposed a functional PLS logit regression model as a method to avoid the multicollinearity
problem in functional logistic regression. We have shown that the method also avoids the problem of high dimensionality
that precludes the logit model. The improvement of the proposed method with respect to the logit model is achieved
by providing a more accurate parameter function estimation and by discriminating in an accurate way a set of curves
of a functional variable.

From the three simulated examples developed in this paper, we can conclude that FPLSLR provides an accurate
estimation of the parameter function estimation similar to the one given by the alternative FPCLR but with a bigger
dimension reduction. On the other hand, the ability of FPLSLR for curve discrimination is also similar to FPCLR and
better than other competitors.
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