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(UHPLC-MS) analysis with later bioinformatics data 
analysis. Once the significantly different metabo-
lites were identified, the KEGG database was used on 
them to establish which were the metabolic pathways 
mainly involved. Area under receiver-operating curve 
(AUROC) analysis was used to test the discriminatory 
ability of lipid biomarkers for frailty based on the Short 
Physical Performance Battery. We identified a panel of 
five metabolites including ceramides Cer (40:2), Cer 
(d18:1/20:0), Cer (d18:1/23:0), cholesterol, and phos-
phatidylcholine (PC) (14:0/20:4) that were significantly 
increased in physically frail older adults compared with 
robust older adults at hospital admission. The most 
interesting in the physically frail metabolome study 
found with the KEGG database were the metabolic 
pathways, vitamin digestion and absorption, AGE-
RAGE signaling pathway in diabetic complications, 

Abstract Identifying serum biomarkers that can pre-
dict physical frailty in older adults would have tremen-
dous clinical value for primary care, as this condition is 
inherently related to poor quality of life and premature 
mortality. We compared the serum lipid profile of phys-
ically frail and robust older adults to identify specific 
lipid biomarkers that could be used to assess physical 
frailty in older patients at hospital admission. Forty-
three older adults (58.1% male), mean (range) age 86.4 
(78–100 years) years, were classified as physically frail 
(n = 18) or robust (n = 25) based on scores from the 
Short Physical Performance Battery (≤ 6 points). Non-
targeted metabolomic study by ultra-high performance 
liquid chromatography coupled to mass spectrometry 
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and insulin resistance. In addition, Cer (40:2) (AUROC 
0.747), Cer (d18:1/23:0) (AUROC 0.720), and choles-
terol (AUROC 0.784) were identified as higher values 
of physically frail at hospital admission. The non-tar-
geted metabolomic study can open a wide view of the 
physically frail features changes at the plasma level, 
which would be linked to the physical frailty phenotype 
at hospital admission. Also, we propose that metabo-
lome analysis will have a suitable niche in personalized 
medicine for physically frail older adults.

Keywords Frailty · Lipidomic · Ceramides · 
Cholesterol · Phosphatidylcholines · Biomarker · 
Older adults

Introduction

The concept of frailty is gaining traction as an inde-
pendent clinical syndrome to explain differential 
outcomes in older adults 1. Weakness, slowness, and 
poor balance are some of the main physical manifes-
tations of frailty, which is associated with adverse 
events that can lead to a dramatic decline in the qual-
ity of life and independence 2. It is estimated that 
25–50% of all people over the age of 85 are frail and 
are, consequently, at significantly higher risk of falls, 
disability, long-term care, and death 3.

Frailty is characterized by a host of manifestations, 
including metabolic abnormalities, neuroendocrine 
dysregulation, and impaired immunity, and may also 
be influenced by underlying genetic and environmental 
factors (e.g., physical inactivity, smoking, and unhealthy 
diet). Identifying populations at-risk and exploratively 
identifying potential early and/or predictive biomark-
ers of age-associated changes that could guide effective 
health promotion interventions are especially relevant 
4. One of these strategies has been the investigation of 
the metabolome, the complete set of molecular weight 
molecules (metabolites) present in a biological sample. 
Pujos-Guillot et al. recently used an untargeted metabo-
lomic approach to identify several circulating metabo-
lites that were predictive of pre-frailty 5. Metabolomic 
approaches that analyze changes in metabolite levels 
thus seem promising for the development of non-inva-
sive diagnostic biomarkers of the frailty phenotype, yet 
data from older adults at hospital admission are sparse.

The multidimensional nature of frailty presents 
challenges in accurately measuring the degree of 

frailty, and several instruments have been devel-
oped in recent years to assess the frailty phenotype, 
although most are focused on different subpopula-
tions of the elderly 6. Given the established rela-
tionship between functional decline, disability, and 
comorbidity, an objective clinical approach to assess 
physical status is to have a “proxy-frailty” measure 
based on, for example, the Short Physical Perfor-
mance Battery (SPPB) 7. The predictive role of this 
clinical tool for future disabilities, frailty, and other 
adverse outcomes including institutionalization, hos-
pital admissions, and mortality has been confirmed 
in several clinical settings 7–9. The SPPB is, however, 
essentially a descriptive clinical tool and is therefore 
unable to assess the molecular/biochemical modifica-
tions underlying the loss of functionality.

While the causal processes involved in the patho-
genesis of frailty are not fully understood, growing 
evidence supports a role for lipid metabolism in the 
risk for frailty by modulating skeletal muscle mass 
and function 10. To date, however, few studies have 
conducted broad lipidomic analyses to assess the rela-
tionship between frailty and blood lipids 11–13. In the 
present study, we explored the potential of a targeted 
lipidomic approach to better characterize the bio-
chemistry underlying physical frailty and to identify 
molecular biomarkers that might be useful to improve 
the clinical assessment of frailty in acutely hospital-
ized older patients at admission. To do this, we com-
pared plasma lipidomic profile differences between 
physically frail and robust older adults at hospital 
admission.

Materials and methods

Patients and study design

In this study, we enrolled 43 elderly patients from 
2018 to 2020 admitted from 2018 to 2020 to an 
Acute Geriatric Ward of a tertiary Hospital in Spain. 
Inclusion criteria were age ≥ 70 years, Barthel Index 
score ≥ 60 points, and ability to ambulate (with/with-
out assistance) and to communicate and collaborate 
with the research team. Exclusion criteria were very 
severe cognitive decline (a score of 7 on the Global 
Deterioration Scale), terminal illness, uncontrolled 
arrhythmias, acute pulmonary embolism or myocar-
dial infarction, or extremity bone fracture in the past 
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3  months. Participants signed an informed consent 
approved by the ethics committee before entering the 
study. The study followed the principles of the Dec-
laration of Helsinki and was approved by the local 
Research Ethics Committee (ID Pyto2018/7; 15 May 
2018). Patients were evaluated by a staff of 8 geriatri-
cians at the moment of admission and were classified 
as physically frail (n = 18) or robust (n = 25) based to 
their performance on the SPPB.

Clinical and functional parameters

Height was measured to the nearest 0.1  cm and 
body mass was measured to the nearest 100 g. Body 
mass index (BMI) was computed as weight in kilo-
grams divided by height in meters squared. Handgrip 
strength was measured in the seated position using 
a Takei 5401 digital dynamometer (Takei Scientific 
Instruments Co., Tokyo, Japan). Patients were asked 
to perform 2 maximum force trials for each hand, 
with the dynamometer beside but not against their 
body, and the maximum value was used as the final 
score 14.

Physical frailty was measured by the SPPB, which 
combines balance, gait velocity, and leg strength 
(five times sit-to-stand test) in a single score from 
0 (worst) to 12 (best). Gait speed was calculated for 
each participant using distance in meters and time in 
seconds, and was obtained by dividing the distance 
traveled (4 m) on a flat and unobstructed path by the 
time to cover that distance. The total SPPB score was 
obtained through summing the scores obtained from 
each component. The total score was categorized 
as follows: 0–6 points = physically frail and 7–12 
points = robust. We based this cut-off on two studies. 
Guimarães Rocco et al. 15 highlighted an SPBB cut-
off point ≤ 6 as the most suitable for screening physi-
cally frail older people in their sample, with a sensi-
tivity of 0.52, a specificity of 0.70, and an accuracy 
0.88. Another study, carried out in Spain, also found 
that the best cut-off point was ≤ 6, with an area under 
the curve (AUC) of 0.956 and sensitivity and speci-
ficity of 0.88 9.

Cognitive function was assessed with the Mini-
Mental State Examination (MMSE, 30-point ques-
tionnaire; scale of 0 [worst] to 30 [best]) 16; and 
activities of daily living (ADLs) was assessed with 
the Barthel Index, with a scale of 0 (severe functional 
dependence) to 100 (functional independence) 17. 

Data related to number of diseases, cumulative illness 
rating scale score for geriatrics (CIRS-G), and length 
of hospital stay were collected from clinical records.

Lipid extraction and UHPLC-MS analysis

Fasting venous blood samples were collected on the 
next morning after admission to the hospital from 
the antecubital vein (08:00 to 09:00 am). Blood was 
inverted five times and allowed to sit for 30 min for 
clotting. Samples were then centrifuged at 2,000 × g 
for 10  min at 4  °C, and plasma was aliquoted and 
stored at − 80 °C until use. Metabolite extraction has 
been previously described in detail 22. Briefly, plasma 
extracts were mixed with sodium chloride (50  mM) 
and chloroform/methanol (2:1) in 1.5 mL microtubes 
on ice. After brief vortex mixing, the samples were 
incubated for 1  h at − 20  °C. After centrifugation at 
16,000 × g for 15 min at 4 °C, the organic phase was 
collected and dried in a speed vacuum dryer. Dried 
extracts were reconstituted in acetonitrile/isopropanol 
(1:1), centrifuged (18,000 × g for 5 min at 4 °C), and 
transferred to vials for ultra-high performance liq-
uid chromatography coupled to mass spectrometry 
(UHPLC-MS) analysis. Chromatographic separation 
and mass spectrometric detection conditions have 
been previously described 22. The UHPLC-MS-based 
platform was developed for optimal profiling of glyc-
erolipids (di- and tri-glycerides), cholesteryl esters, 
sphingolipids (ceramides and sphingomyelins), and 
glycerophospholipids (diacylglycerophospholipids 
and 1-ether, 2-acylglycerophospholipids).

Data pre-processing

Data pre-processing was carried out using the Target-
Lynx application manager for MassLynx 4.1 (Waters 
Corp., Milford, MA). The chromatography/MS fea-
tures (as defined by retention time and mass-to-charge 
ratio pairs, Rt-m/z) used in the study were identified 
prior to the analysis, either by comparison of their 
accurate mass spectra and chromatographic Rt with 
those of available reference standards, or when these 
were not available, by accurate mass MS/MS frag-
ment ion analysis. Lipid nomenclature and classifi-
cation follow the LIPID MAPS convention (https:// 
www. lipid maps. org). Additionally, once the fea-
tures with significantly different levels (Padjus ≤ 0.05) 
between the study groups were identified, it was 

https://www.lipidmaps.org
https://www.lipidmaps.org
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possible to establish the most involved metabolic 
pathways in the study. This approach was performed 
using the Client-side REST access to KEGG (KEG-
GREST) package (https:// www. genome. jp/ kegg/).

Statistical analysis

Clinical and functional characteristic data for con-
tinuous variables are presented as mean (SD). Data 
normalization was performed by inclusion of multiple 
internal standards and pool calibration samples fol-
lowing a previously described procedure 23. Briefly, 
logarithmic transformation of the lipidomic data was 
applied to transform non-normal data into data that 
follow a normal distribution. Limma package (3.34.9) 
was used to compute the differential expression on 
physically frail and robust samples 18. In addition, 
data was adjusted for age, sex, and BMI, in order to 
avoid the influence of confounding variables. Fur-
thermore, lmFit function was used to perform the 
empirical Bayes (eBayes) statistics and a false discov-
ery rate (FDR). The P-values obtained were adjusted 
according to the Benjamini and Hochberg method 19. 
The adjusted P-values < 0.05 were considered signifi-
cant. Principal component analyses (PCA) between 
the study group were performed. Later, for each of 
these compounds, the FoldChangeLog was calcu-
lated to select the features with higher differences in 
plasma levels between the groups. These calculations 
were performed using the statistical software package 
R v.3.4.1 (R Development Core Team, 2017; http:// 
cran.r- proje ct. org).

Area under receiver-operating curve (AUROC) 
analysis was used to test the discriminatory ability 
of lipid biomarkers for frailty based on the SPPB. 
Cut-off points were chosen based on the Youden 
index (J), which uses the point on the ROC curve 
that is farthest from the line of equality 20. Valid-
ity measurements were calculated for the cut-off 
point of the SPPB scale and served as a basis for 
calculating the prevalence of physical frailty and 
the post-test probability. The positive likelihood 
ratio was also determined. AUROCs were com-
pared by a non-parametric approach suggested by 
DeLong et  al. 21. Percent improvement in prediction 
error was calculated according to the following for-
mula: 100 ×  (AUROCTest-Score-AUROCReference-Score) / 
1 −  AUROCReference-Score), where Test-Score refers to 
the first (superior) and Reference-Score to the second 

(inferior) score. A P-value < 0.05 was generally con-
sidered statistically significant. The STATA statistical 
package (Version 13.0, College Station, TX) was used 
to perform clinical data management and AUROC 
analyses.

Results

The clinical and functional characteristics of the 
study group are shown in Table 1. The study included 
43 older adults (58.1% male) with a mean (SD) age of 
86.4 (4.2) years (range, 78–100 years). As expected, 
the scores for SPPB, gait speed, and five times sit-
to-stand test were all significantly lower in the physi-
cally frail group than in the robust group, whereas the 
opposite was seen for functional dependence.

The untargeted metabolomic study of the physi-
cally frail and robust plasma samples performed by 
UHPLC-MS identified 250 common features among 
the study individuals (Electronic Supplementary 
Material 1), of which had statistically significant 
differences between the study groups, after “FDR” 
adjustment. PCA by the study group dispersion is 
shown in Fig. 1.

The outcome obtained by this selection criterion is 
presented in the heatmap displayed in Fig. 2, in which 
it was possible to isolate five features that were highly 
differentiated between the study groups. Changes 
were observed in both neutral lipids and phospholip-
ids, including sphingolipids (ceramides [Cer]), cho-
lesterol, and phosphatidylcholine (PC) which are also 
displayed in the boxplots of Fig. 3, and were possible 
to observe in the HMDB and LIPID MAPS database.

Regarding the most involved metabolic pathways 
in the physically frail metabolome study, it was pos-
sible to link features with significant differences 
between the study groups with 27 different metabolic 
pathways of the KEGG/HMDB databases. However, 
only 15% (n = 4) of the metabolic pathways were 
linked by four metabolites; these metabolic pathways 
are shown in Table 2.

The AUROC analyses of five plasma metabo-
lites in identification of physically frail at hospital 
admission are shown in Table  3. The AUROC of 
the cholesterol with regard to presence of physically 
frail was similar to Cer (40:2) biomarkers (Fig. 4); 
however, no differences in AUROCs were also 
observed.

https://www.genome.jp/kegg/
http://cran.r-project.org
http://cran.r-project.org
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Discussion

Frail older people are highly vulnerable to negative 
health outcomes such as falls, fractures, disability, 
and dementia, which is associated with poor quality 
of life 22. Consequently, there is a need for developing 
new biomarkers to predict frailty in the older popula-
tion. In the present study, we characterized the plasma 
lipidomic profiles of physically frail and robust older 

adults at hospital admission using targeted UHPLC-
MS. We found that the circulating plasma levels of 
five metabolites including ceramides, cholesterol, 
and phosphatidylcholines were significantly lower in 
physically frail older adults. Among them, choles-
terol and ceramides had acceptable levels of accuracy 
to discriminate physically frail at hospital admission 
and, accordingly, might be a useful biomarker in clin-
ical practice.

The development of serum biomarkers for frailty 
in older adults would be enormously valuable in clini-
cal practice because of its association with premature 
mortality 23 and the inevitable increased cost and 
use of healthcare resources 24. Our analysis revealed 
a signature of five metabolites including ceramides 
Cer (40:2), Cer (d18:1/20:0), Cer (d18:1/23:0), cho-
lesterol, and PC (14:0/20:4) that were significantly 
increased in physically frail compared to robust older 
adults at hospital admission. Interestingly, a recent 
metabolome study also showed that some features 
were linked to some pathophysiological alterations of 
sarcopenia 25.

We identified differential expression of ceramides 
Cer (40:2), Cer (d18:1/20:0), and Cer (d18:1/23:0), 
which were all significantly higher in physically frail 
older adults. Sphingolipids, including ceramides, 
have their essential biological roles to influence aging 

Table 1  Clinical and functional characteristics at hospital admission

Data are presented as the mean (SD), except for the sex group*. BMI, body mass index; CIRS-G, Cumulative Illness Rating Scale 
for Geriatrics; SPPB, Short Physical Performance Battery. aThe most prevalent diseases were coronary, pulmonary, genitourinary, 
and neurologic diseases. bThe CIRS-G scale evaluates individual body systems, ranging from 0 (best) to 56 (worst). cThe SPPB scale 
ranges from 0 (worst) to 12 (best). dMMSE, The Mini-Mental State Examination ranges from 0 (worst) to 30 (best). eThe Barthel 
Index ranges from 0 (severe functional dependence) to 100 (functional independence)

Variable Full sample
n = 43

Physically frail
n = 18

Robust
n = 25

P for group

Sex (male) (n (%))* 25 (58.1) 15 (83.3) 10 (40.0) 0.472
Age (years) 86.4 (4.3) 87.8 (3.9) 85.4 (4.3) 0.075
Body mass (kg) 69.0 (15.9) 71.4 (12.9) 67.2 (17.8) 0.401
BMI (kg/m2) 27.5 (5.4) 27.2 (5.2) 27.7 (5.6) 0.790
CIRS-G  scoreb 11.9 (6.3) 11.0 (7.0) 12.9 (5.4) 0.405
Length of hospital stay (days) 7.2 (2.0) 7.2 (1.2) 7.0 (1.6) 0.560
SPPB (score)c 6.1 (2.9) 3.4 (1.3) 8.1 (2.0)  < 0.001
Gait speed (s (6 m)) 10.8 (5.1) 13.7 (6.1) 8.8 (2.8)  < 0.001
Five times sit-to-stand test (s) 17.9 (8.5) 24.9 (11.9) 15.1 (4.4) 0.002
MMSE  (scored) 23.0 (4.2) 22.8 (3.8) 23.1 (4.6) 0.829
Barthel Index (ADL) (score)e 76.3 (17.4) 69.7 (16.4) 81.5 (16.7) 0.030
Handgrip strength (kg) 17.6 (5.4) 17.4 (5.4) 17.7 (5.5) 0.853

Fig. 1  Principal component analysis (PCA) between the study 
groups. Score plot of PCA using 250 features identified by 
the metabolomic study between the study groups. The orange 
points correspond to physically frail subjects, and the green 
points correspond to and robust subjects
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26. Ceramides increase in concentration with age in 
mammals and have been linked to various age‐related 
ailments, including cancer, type 2 diabetes, neurode-
generation, immune dysfunction, and cardiovascular 
disease 26. Huang et  al. also have showed that cera-
mide accumulation is also correlated with increased 
insulin resistance and oxidative stress 27. Interest-
ingly, Chaurasia et al. found that the deletion of dihy-
droceramide desaturase 1 improves insulin resistance 
and hepatic steatosis in mice 28. Thus, it has been 
proposed that clinical therapies that reduce ceramide 
concentrations may delay or ameliorate symptoms of 
aging in humans.

Our study also supports that cholesterol, which 
had a ROC AUC value greater than 0.75 (defined as 
being of good diagnostic value), might be useful to 
discriminate physically frail from robust older adults. 
Several studies have examined the usefulness of dif-
ferent lipids or lipid-related proteins as biomarkers 
of aging or age-related disease 26. Interestingly, this 
metabolite has been previously associated with hyper-
cholesterolemia and hyperlipoproteinemia 29,30, which 
are well-known cardiovascular risk factors related to 
atherosclerosis. In addition, due to the role of choles-
terol in myelin maintenance and cognition in schiz-
ophrenia, it has been considered being potentially 
relevant in neurological disorders. Al Awam et  al. 

identified cholesterol as a good biomarker to discrim-
inate between schizophrenia patients and unaffected 
controls 31. Among the same line, previous studies 
have suggested a role for steroid analysis as a poten-
tial diagnostic tool 32–34. Our findings suggest that 
cholesterol might be relevant for frailty development. 
However, since the pathophysiological alterations of 
cholesterol metabolism associated with frailty are still 
incompletely understood, further studies are needed 
to understand the underlying mechanisms for the 
breakdown in the cholesterol machinery.

We also identified differential expression of PC 
(14:0/20:4), which was significantly higher in physi-
cally frail older adults. Note that this phosphatidyl-
choline has been previously proposed as an obesity 
biomarker 35–37. Phosphatidylcholine is a major phos-
pholipid of cellular membrane and is a well-known 
marker of age-related membrane degeneration 38. 
Moreover, it is worth noting that deregulation of lipid 
metabolism markers such as phosphatidylcholine has 
been reported to contribute to the link between physi-
cal frailty and cognitive decline 39.

The results of the present study may have impor-
tant implications for clinical management and pub-
lic health surveillance. We identify five biomarkers 
that could facilitate the stratification of physically 
frail older adults, providing a clinical resource for 

Fig. 2  Heatmap of Cer (40:2), Cer (d18:1/20:0), Cer (d18:1/23:0), cholesterol, and PC (14:0/20:4) after logarithmic transformation 
of the data



GeroScience 

1 3
Vol.: (0123456789)

Fig. 3  Boxplots of Cer (40:2) (upper left panel), Cer 
(d18:1/20:0) (upper right panel), Cer (d18:1/23:0) and cho-
lesterol (middle panel), and PC (14:0/20:4) (bottom panel) 

after logarithmic transformation of the data. FoldChangeLog 
value for each metabolite was 0.94, 0.87, 0.87, 0.80, and 0.79, 
respectively
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Table 2  The metabolic pathways most involved in the physically frail metabolome study

We used the metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used for searches metab-
olites by their chemical name in the database and their KEGG codes were registered. This code locates the pathways where the 
metabolite is involved. Then, the script program obtains the most involved metabolic KEGG pathways by counting the number of 
metabolites (significantly differentiated) involved in each pathway (https:// www. genome. jp/ kegg/). *Lipid nomenclature and clas-
sification follow the LIPID MAPS convention (https:// www. lipid maps. org) from The Human Metabolome Database (HMDB) ID. –, 
no informed

Metabolite (common name) Chemical formula KEGG code KEGG pathways/biological process KEGG map code

Cholesterol C27H46O C00187 Lipid and atherosclerosis map05417
Vitamin digestion and absorption map04977
Steroid hormone biosynthesis map00140/map00100
Metabolic pathways map01100
Fat digestion and absorption map04975
Cholesterol metabolism map04979
Overview of biosynthetic pathways map01010
Bile secretion map04976
Primary bile acid biosynthesis map00120
Steroid degradation map00984
Microbial metabolism in diverse envi-

ronments
map01120

Ovarian steroidogenesis map04913
Aldosterone synthesis and secretion map04925
Cortisol synthesis and secretion map04927

PC (14:0/20:4) C42H76NO8P C00157 Biosynthesis of secondary metabolites map01110
Metabolic pathways map01100
alpha-Linolenic acid metabolism map00592
Linoleic acid metabolism map00591
Arachidonic acid metabolism map00590
Glycerophospholipid metabolism map00564

Cer (d18:1/20:0) C38H75NO3 C00195 Sphingolipid signaling pathway map04071
Insulin resistance map04931
Sphingolipid metabolism map00600
Metabolic pathways map01100
Neurotrophin signaling pathway map04722
Adipocytokine signaling pathway map04920
AGE-RAGE signaling pathway in 

diabetic complications
map04933

Diabetic cardiomyopathy map05415
Cer (d18:1/23:0) C41H81NO3 HMDB0000950* Lipid peroxidation  − 

Insulin signaling pathway  − 
Apoptosis  − 
Lipid metabolism pathway  − 
Phospholipid metabolism  − 
Lipid transport  − 
Lipid metabolism  − 
Fatty acid metabolism  − 

https://www.genome.jp/kegg/
https://www.lipidmaps.org
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diagnosis that supports the importance of lipidomic 
evaluation in this population. Future longitudinal 
studies should investigate the potential of these bio-
markers as predictors for frailty development. Like-
wise, given the complexity of frailty phenotype, 
exploratory approaches will be needed to allow the 
identification of specific signatures relevant to dis-
tinguish frailty status. Of note, metabolic pathways, 
vitamin digestion and absorption, the AGE-RAGE 
signaling pathway in diabetic complications, and 

insulin resistance were linked by four of the metabo-
lites identified in this study. More research is needed 
to determine the main consequences of the aberrant 
lipidomic profile in frail older adults and to provide 
more insight into the metabolic pathways in frailty. 
The identification of metabolomic profiles of physi-
cally frail older adults may allow the design of stra-
tegic interventions and approaches for delaying the 
progression of frailty in older populations, and the 
demonstration of changes in some lipid metabolomic 

Table 3  Performance of ROC-derived cut-off values for Cer (40:2), Cer (d18:1/20:0), Cer (d18:1/23:0), cholesterol, and PC 
(14:0/20:4) in identification of physically frail at hospital admission

AUC , area under the curve; SE, standard error; CI, confidence interval; + PV, positive predictive value; − PV, negative predic-
tive value; + LR, likelihood ratio positive; − LR, likelihood ratio negative. aMost suitable threshold according to ROC analysis and 
Youden’s J statistic

Parameter Cer (40:2) Cer (d18:1/20:0) Cer (d18:1/23:0) Cholesterol PC (14:0/20:4)

AUC (SE) 0.747 (0.0751) 0.689 (0.0825) 0.720 (0.0791) 0.784 (0.0732) 0.611 (0.0885)
95% CI 0.591 to 0.867 0.530 to 0.821 0.562 to 0.846 0.633 to 0.895 0.450 to 0.756
P-value  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
Youden index 0.5044 0.3689 0.3689 0.6089 0.2489
Cut-offa 0.457 0.4724 0.3862 0.6653 0.3386
Sensitivity 56.00 48.00 48.00 72.00 36.00
Specificity 94.44 88.89 88.89 88.89 88.89
 + LR 10.08 4.32 4.32 6.48 3.24
 − LR 0.47 0.59 0.59 0.32 0.72
 + PV 93.3 85.7 85.7 90.0 81.8
 − PV 60.7 55.2 55.2 69.6 50.0

Fig. 4  Performance of five plasma metabolites in prediction 
of physically frail. Receiver operating characteristic (AUROC, 
left panel) and precision-recall cures (AUPRC, right panel) for 

different plasma metabolite scores in prediction of physically 
frail at hospital admission
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biomarkers prior to the onset of frailty could provide 
a basis for future preventative interventions.

Our present study is not without limitations. First, 
our analysis was cross-sectional, and so causative 
relationships could not be made. Longitudinal stud-
ies will be needed to determine temporal relation-
ship between changes in the lipidomic profile and the 
development of physical frailty. Second, the study 
population comprised a cohort including only Cauca-
sians, which impedes the generalization of our find-
ings to other ethnic groups. Additionally, although 
the cohort was extensively characterized, it was rela-
tively small and analyses involved a large set of vari-
ables. Even considering these limitations, the study 
included 250 metabolic features and UHPLC-MS was 
used for the analyses, which has been established as 
a sensitive and highly reliable method for lipidomic 
analysis 40. Also, we investigated, for the first time to 
our knowledge, the correlation between serum lipid 
changes in physically frail and robust patients using 
a targeted lipidomic method, which could be a good 
starting point to further investigate the predictive 
value of the specific lipidomic signatures of frailty.

Conclusion

In summary, the present targeted lipidomic approach 
found that five circulating metabolites including cera-
mides, cholesterol, and phosphatidylcholines were 
significantly increased in physically frail compared 
with robust older adults at hospital admission, point-
ing to the existence of a lipidomic profile of older 
adults with physical frailty. Moreover, cholesterol and 
ceramides had acceptable levels of accuracy to dis-
criminate physically frail at hospital admission and, 
therefore, might be useful biomarkers in clinical prac-
tice. The non-targeted metabolomic study can open a 
wide view of the physically frail features changes at 
the plasma level, which would be linked to the physi-
cal frailty phenotype at hospital admission. Also, we 
propose that metabolome analysis will have a suitable 
niche in personalized medicine for physically frail 
older adults. Larger-scale longitudinal studies will be 
needed as a next step to provide novel insights about 
aberrant lipid metabolism and the development of 
physical frailty in older adults.
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