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A solution to the problem of calibrating a counting device from observed data, is developed in this paper by
means of a Cox process model. The stochastic intensity of the process for counting emitted particles is
estimated by functional principal components analysis and confidence bands are provided for two
radioactive isotopes, 226Ra and 137Cs. A hypothesis test to assess the coherence of the new observed data
with the estimated model is also included.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The practical problem that arises in the laboratory of assessing the
proper functioning of a spectrometer or other detection device led us
to derive a solution. These detectors give as an output the counts of
particles emitted by a source such as a radioactive isotope at several
time points over an interval of time. First of all, it is necessary to
establish a model for the counting process when the detector is
working properly. Then, this model could be used as a control model
for testing new observed data. The present paper proposes to model
the counting process as a Cox process (CP) and provides a stochastic
estimation of its intensity. Thus, on the one hand it is possible to
reconstruct the functional sample paths of the intensity in an interval
of time and on the other hand, the required model is obtained. This
estimation is applied to the radioactive counting of the isotopes 226Ra
and 137Cs. The first theoretical novelty of this paper is that bymeans of
the specific stochastic representation of the two isotopes intensities, a
confidence band for the intensity process in an interval of time is
obtained. Then, this representation of the intensity enables us to build
a hypothesis test to decide whether the new observed data follow the
same model which is the second novelty. If this is the case, the
detector is assumed to be working properly but if not it is understood
to be out of control.

In the framework of chemical counting processes, the homoge-
neous or nonhomogeneous Poisson processes (by which the intensity
is a constant or a function of time, respectively) have traditionally
been used to model data. The intensity estimation of these processes

is a very useful tool in many fields such as instrument quality control,
signal processing, nuclear medicine or image processing in photon
counting (Bityukov et al. [1]; Jansen [2], amongmany others). Even so,
experimental data suggest that these models are insufficient. In this
respect, Bayne et al. [3] stated “amore complex decay functionmay be
required to approximate decreasing ion intensity”. See also the
conclusions section in Nádai and Várlaki [4] as another example. A
generalization of those models, the CP, began to be used time ago (see
for example Snyder [5]; Teich and Saleh [6]). In recent years, the use of
doubly stochastic processes has expanded (see Nádai and Várlaki [4],
Molski [7]), even though, most of the studies in this field still uses
homogeneous or nonhomogeneous Poisson process for modeling
these counting phenomena. The reason for this may be the
intractability of explicit expressions of the moments of doubly
stochastic processes. That is why in this paper we use the CP but
from the point of view of functional data analysis (FDA) which allows
us to obtain the results mentioned above.

The CP or doubly stochastic Poisson process is a Poisson process
whose intensity is also a stochastic process. Due to the stochastic
nature of its intensity, the CP is quite flexible and realistic for the
purposes of modeling real phenomena. CP was first defined by Cox [8]
and it has been studied at length for example by Daley and Vere-Jones
[9], Snyder andMiller [10], Andersen et al. [11], Last and Brand [12] or
Grigoriu [13]. From these references it can be observed that this
process-counting model has been used in various fields including risk
analysis, economics, population theory, biology, catastrophe analysis,
medicine, signal processing and optics.

Estimating the intensity process of a CP is a problem that has been
widely considered. For instance, Boel and Beneš [14], Snyder and
Miller [10], Manton et al. [15], Nádai and Várlaki [4], among many
others, have formulated approaches using filtering methodology but
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with these models it has always been necessary to impose a fixed
model on the intensity moments. When stochastic processes are
observed at discrete time points, FDA models reconstruct the
functional form of their sample paths (see Ramsay and Silverman
[16] and Valderrama et al. [17]). The advantage of using FDA is that it
does not require to impose a distribution on the process or to have
known moments. Bouzas et al. [18] proposed an estimation of the
intensity process of a CP from the FDA point of view, just from
observed sample paths of the CP in a finite set of points. In a
subsequent paper, Bouzas et al. [19] proposed applying FDA in order
to estimate the mean process of a CP and with the novelty of
preserving the monotonicity of its sample paths, thus providing an ad
hoc stochastic estimation of this mean process. Finally, Bouzas et al.
[20] extended the estimation of the intensity process by providing a
new stochastic estimation by means of its relation with the mean
process.

The above-mentioned ad hoc estimation of the intensity process is
applied in this paper to both 226Ra and 137Cs radioactive counting
processes. The counts are observed in a discrete set of time points and
using Functional Principal Components Analysis (FPCA), the intensity
is expressed in terms of an expansion of random variables (r.v.'s)
multiplied by functions of time. From this stochastic estimation, the
intensity can be estimated for any instant of time of the whole
observation interval. Furthermore, knowledge of the joint distribution
of those r.v.'s allows us to estimate the marginal intensity distribution
and then to obtain a confidence band of the intensity for an interval of
time, and as a final contribution, to perform a hypothesis test. The
latter is used as a tool for calibrating the counting device, and so it
fulfils the first aim of this paper.

The rest of the paper is structured as follows: in the first subsection
of Section 2, we review the theoretical background for estimating the
intensity process while the second subsection describes how to build
a confidence band for the intensity and to design a hypothesis test to
determine whether the new data are in accordance with the
estimated model. In Section 3, the procedure is applied to the data
counts of radioactive 226Ra and 137Cs obtaining explicit expressions
for these real examples. Finally, some conclusions are drawn in
Section 4.

2. The stochastic Cox model

A CP {N(t) : t≥ t0} with intensity {λ(t) : t≥ t0} is defined as a Poisson
process with an intensity described as the stochastic process {λ(t) :
t≥ t0}. Then, its mean process is given by Λ(t)=∫ t0

t λ(σ) dσ. Besides
the mean, all the characteristics of the CP depend on its intensity
process. That is why it is so important to estimate the intensity in
general and in our application. Our aim is to estimate λ(t) in [t0, t0+T)
having no previous knowledge about its structure, from several
sample paths of N(t) observed in a wider interval [t0, t0+rT).

2.1. Stochastic estimation of the intensity process

Let us start from the initial situation of having observed k
independent sample paths of the CP {N(t) ; t≥ t0} with intensity
process {λ(t) ; t≥ t0} at several time points along the interval [t0, t0+
rT) denoted by

fNωðtÞ : ω = 1;…; kg

From each of the observed sample paths of N(t), Bouzas et al. [19]
estimated values of themean sample path in a finite set of time points,
tj, j=0,…,p, within the shorter interval [t0, tp= t0+T). This method is
based on splitting up each initial trajectory in r independent shorter
ones all of which are contained within [t0, tp= t0+T). This approach is
possible due to the independence property of the increments of a CP.
Therefore, we work with r subtrajectories in order to estimate a

sample path of the mean process. Let us denote the estimated values
by Λ̂ωðtjÞ; j=0,…,p, ω=1,…,k.

The above-mentioned paper also describes the reconstruction of
the mean sample paths which is necessary for FPCA application. The
mean sample paths are known to be nondecreasing monotone.
Therefore, their functional reconstruction is obtained by monotone
cubic interpolation in order to preserve their theoretical nondecreas-
ing property. Let us denote the polynomials by pω(t), t∈ [t0, tp= t0+
T), ω=1,…,k.

As Λ(t)=∫ t0
t λ(σ)dσ, the intensity sample paths can be estimated

by differentiation of those obtained. Let us denote them by pω′(t),
t∈ [t0, tp= t0+T), ω=1,…,k. Bouzas et al. [20] derives the explicit
expressions as follows

p′ωðtÞ = ∑
p−1

j=0
F2jðtÞ

3
2hj

Λ̂ωðtj + 1Þ−Λ̂ωðtjÞ
� �

−
dωj + dωj + 1

4

" #

+ ∑
p−2

j=0
F3jðtÞ + F1j + 1ðtÞ

� �
dωj + 1 + F10ðtÞdω0 + F3p−1ðtÞdωp

ð1Þ

where

F1j =

(
F1; t∈½tj; tj + 1Þ
0;otherwise ; F2j =

(
F2; t∈½tj; tj + 1Þ
0;otherwise

andF3j =

(
F3; t∈½tj; tj + 1Þ
0; otherwise

and 〈F1,F2,F3〉 is the usual quadratic Lagrange basis and dωj, j=0,…,p,
are constants calculated to preserve the monotonicity.

Having derived these reconstructions, FPCA can be applied. Bouzas
et al. [20] also showed that the intensity process λ(t) can be modeled
by the following truncated orthogonal decomposition denoted by λq

(t)

λqðtÞ = μ̂ðtÞ + ∑
q

j=1
ζ̂j f̂jðtÞ ð2Þ

in [t0, tp) where μ̂ðtÞ is its estimatedmean function, ζ̂j are centered and
uncorrelated random variables, estimations of the principal compo-
nents, and f̂jðtÞ are functions of time, estimations of the principal
factors. The truncation in the q-th term is chosen to explain a high
proportion of the variability. Therefore, a stochastic model for the
intensity has been derived without making any restricted assumption
about the intensity or its moments, except the usual finite second
order moments and squared integrable sample paths. Then, even the
counting process is observed in a finite set of time points, it is possible
to estimate its intensity process, which is stochastic, in any t∈ [t0, tp).

2.2. Confidence band and hypothesis test for the intensity model

In real cases, it is important not only to estimate the intensity but
to go further and deal with its inference. This subsection contains the
theoretical novelty of the present paper in which we develop a
confidence band for the intensity process and a hypothesis test for its
mean in order to determine whether new observed data are
consistent with the estimated model.

The r.v.'s, ζj, j=1,…,q are centered and uncorrelated which
estimated variances are provided by the FPCA procedure but have
unknown distributions. As a sample of each one has also been derived
in the FPCA calculations, a fitting distribution test can be applied. The
particular case in which the random vector (ζ1,…,ζq) is fitted by a
multivariate Normal distribution is particularly important because
then, it is possible to deal with the intensity inference. As we see in the
next section for 226Ra and 137Cs counting process, this is verified.
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Considering this joint distribution for all the q r.v.'s and as they are
uncorrelated, it is known that they have independent Normal
distributions; therefore as λ(t) is an expansion of these variables,
we obtain that it is also Gaussian. Then, making use of Eq. (2), we
obtain the estimators

E½λqðtÞ� = ̂μðtÞ and Var½λqðtÞ� = Var ∑
q

j=1

̂ζj ̂fjðtÞ
" #

= ∑
q

j=1
σ̂ 2

j
̂f
2
j ðtÞ = σ̂2ðtÞ

ð3Þ

where σĵ
2 are the corresponding estimated variances of ζ̂j. Accord-

ingly, it could be possible to build a confidence interval (L1(t), L2(t)) at
a confidence level of (1−α)100% for themean of the intensity process
in each fixed t and its corresponding hypothesis test.

Data available for counting processes and for radioactivity
counting in particular are sample paths of that counting process
observed at discrete time points. It is important to estimate the
intensity thoroughly in order to achieve a good model but it is a
matter of fact that recording new data for a long time to calibrate the
device is not always possible or practical. For this reason, we propose
to estimate the mean and variance as explained above and assume
that they are close to the real ones. For new observed data, we propose
to use a point estimator of λ(t) which requires much less observation
time than the estimation used in the reconstruction of its functional
sample paths before applying FPCA. Observing new s original sample
paths of N(t) of length p×m, we suggest applying the point estimator
proposed in Bouzas et al. [18] to each of the s sample paths. Then, we
obtain

λ̂lðtjÞ =
1
m

∑
m

i=1

NiðtjÞ−Niðtj−1Þ
tj−tj−1

; j = 0;…;p−1; l = 1;…; s ð4Þ

It has been shown that this point estimator is unbiased and
consistent. The estimated values of the intensity process at each time
point can play the role of the sample values to calculate the
experimental value of μ(tj) denoted by μexp(tj), j=0,…,p−1.

Then, for each fixed t, we have s sample paths of the process and
hence the confidence interval using σ̂2ðtÞ from Eq. (3) as a good
estimator of the variance is

̂μexpðtÞFt1−α=2;s−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s
∑
q

j=1
σ̂ 2

j
̂f
2
j ðtÞ

s" #

where t1− α /2, s− 1 is the (1−α /2) percentile of a t-student
distribution.

Taking into account the instant t, we can conclude by following
the usual statistical reasoning and using the terminology of Quality
Control; given an experimental value of μ(t), let us denote it by μexp
(t), if μexp(t)∈(L1(t),L2(t)) it is accepted that the production process
is under control (the experimental value is coherent with themodel)
and if μexp(t)∉(L1(t),L2(t)) it is rejected, i.e. the production process is
out of control at that fixed time point. In our actual framework, if the
intensity were modeled in the knowledge that the counting detector
was working properly, the interpretation should be that the
measurement process is now still under control, working properly,
or, on the contrary, it is out of control, not functioning properly at that
fixed time point. This statement is equivalent to the following
hypothesis test proposing μ0 = μ̂ðtÞ given a fixed t

H0 : E½λðtÞ� =μ̂ðtÞ
H1 : E½λðtÞ� ≠ μ̂ðtÞ

�

where P[μexp(t)∉(L1(t),L2(t))|H0 is true]=α, the probability of
rejecting the model being true, is known as the producer risk and P

[μexp(t)∈(L1(t),L2(t))|H0 is false]=β, the probability of accepting the
model being false, is known as the consumer risk. As usual, defining

the p-value at time t as p�valueðtÞ = 2P j μexpðtÞ− μ̂ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s
∑q

j = 1σ̂
2
j

̂f
2

j ðtÞ
r jN t1−α=2; s−1

2
4

3
5,

the acceptance of H0 is decided if p-value(t)Nα.
Remembering that the intensity we are studying is a stochastic

process, i.e. it evolves over time, an extension of the confidence
interval and of the above hypothesis test is needed by extending the
reasoning to every t, we obtain a confidence band for the process in
the whole interval [t0, tp). In addition, following the reasoning of the
hypothesis test given above for every observation time tj, we obtain p-
value(tj), j=0,…,p−1 to test our model for the process λ(t). It is
recommended that these tj should be the same time points as were
used for the modeling of λ(t) so as not to complicate the
implementation of the program. Fig. 1 illustrates how to obtain μexp
(tj), j=0,…,p−1.

It is clear that as we have an “experimental” sample path of μ(t)
observed at p time points, we cannot accept or reject the null
hypothesis on the basis of a single time; rather, we must take into
account all the information available and thus use the information of
the p tests. On the basis of Simultaneous Inference, we propose to use
the multiple testing criterion proposed by Benjamini and Hochberg
[21] (BH procedure) for taking a decision. The proposal to adopt this
stepdown procedure rather than any other is based on the fact that
the λ(tj) variables are independent for a CP (see Benjamini and
Hochberg [21] for a more extended and technical explanation) and it
provides powerful results than other similar methods. Considering
the following multiple test

HðjÞ
0 : E½λðtjÞ� = μ̂ðtjÞ

HðjÞ
1 : E½λðtjÞ� ≠ μ̂ðtjÞ

; j = 0;…;p−1

8<
:

and ordering the above p-values, p-value(1)≤…≤p-value(p), H0 is
accepted if and only if p-value(1)Nα/p,p-value(2)N2α /p,…,p-value(j)N
jα/p,…,p-value(p)Nα. If at least one of the previous comparisons is not
true, let k be the largest i for which p-value(i)≤ iα/p. Then, following
the BHprocedure [21], all single hypothesisH0

(j) with p-value(j) less than
p-value(k) are rejected and thus, in our case H0 is also rejected.

Therefore, we have derived a way for testing if new observed data
of the counting process are coherent with the model of the intensity
process. This can be useful in many situations but in particular, for
testing whether a spectrometer or other counting detection system is
under control.

3. Application to real counting data

In order to minimize the influence of radioactive decay in the data
analysis, we used the long life isotopes 226Ra (half life: 1600 years)
and 137Cs (30.07 years), so in these conditions decay effect is
negligible. Therefore, the counts can be considered independent in
disjoint intervals of time and the proposal to model them by CP is
consistent. Measurements were made with an IMPO MC24E event
counter, attached to a Geiger–Mullar probe supplied by Fredeiksen
(Denmark). The polarization potential probe was fixed in the plateau
zone. The system was controlled through a RS232 interface by a
personal computer and Datalyse software (Carl Hemmingsen 2004).
Every 10 s the count number was recorded by the software until 1000
data were obtained and a total of 60 of these series were recorded for
each isotope.

Let us express this in our notation.We collected k=60 sample paths
observed at 1000 equidistant time points in the interval [t0, t0+
rT]≡[0,10000] with the time expressed in seconds, with one observa-
tion being taken every 10 s. For both isotopes, its corresponding

118 P.R. Bouzas et al. / Chemometrics and Intelligent Laboratory Systems 103 (2010) 116–121



intensity processwas estimated taking r=40, in [t0, tp=t0+T)≡[0,250)
with tj=10j, j=0,…,p and p=25.

3.1. Isotope 226Ra

In the above conditions with k=60, the intensity process of 226Ra
was estimated as explained in Section 2.1. After deriving the
corresponding polynomial of Eq. (1), FPCA was applied. The number
of terms for the truncation had to be such as to explain a large amount
of the total variability but at the same time allowing the hypothesis
test to be sensitive enough. Therefore, after studying different
possibilities we decided to choose q such that the first q r.v.'s explain
at least 85% of the variability. This criterion has to be studied in each
case. For 226Ra, we have found that the q=15 r.v.'s accumulate 86.93%
of the total variance. Then, the representation of the intensity of
Eq. (2) becomes

λ15ðtÞ = p′15ðtÞ = μp′ ðtÞ + ∑
15

j=1
ζ̂jfjðtÞ

in the time interval [0,250). Fig. 2 shows two sample paths of the
intensity continuously reconstructed by means of Eq. (1). Note that
this representation is continuous in [0,250); this means that it
provides the estimation of the intensity process for any instant of time
of the interval even if the counting process is only observed within a
finite set of time points.

Sample values of the 15 r.v.'s were studied and a well fitting
distribution found. Two statistical multivariate normality tests, Roy-
ston's and Henze–Zirkler's, were applied to these samples and these

showed that for the 226Ra counting process, the 15 r.v.'s can be assumed
to have a joint Normal distribution with a significance level of 0.05.
Therefore, following Section 2.2, the inference of the intensity process
can be developed.

Finally, in order to illustrate the application of the hypothesis test,
some new erratic sample paths (causing errors in measurements) and
some other new controlled ones were observed of the original 226Ra
counting process. Errors were produced by slightly changing the
voltage in the detector or the isotope position during the measure-
ments. For each example, the values s=5 andm=8were chosen and
again the same value of tj=10j, j=0,…,25was used to apply Eq. (4). s
and m were chosen taking into account the practical aspects of data
recording. After calculating the point estimations of the intensity
process for these new sample paths and its corresponding experi-
mental mean, the hypothesis test was applied. With a significance
level of α=0.05, the decision to accept H0 with the new observed
sample paths that were coherent with the model was right for 75.44%
of the control sample paths, while the rejection of the hypothesis was
correct for 90.48% of the erratic sample paths. Note that the errors
provoked were not very pronounced, but even so, the hypothesis test
detected them. Fig. 3 shows two new sample paths of the intensity
mean and the corresponding confidence band; the first one accepts H0

while the second rejects it. This can be interpreted in the sense that a
problem occurred while the second one was being measured. Table 1
shows their corresponding p-values and decision making step by step
for α=0.05.

All calculations were implemented in MatLab R2008a/7.6. The
program consists of several subroutines dedicated to different tasks

Fig. 1. Sketch of how to calculate μexp(tj).

Fig. 2. Examples of reconstructed sample paths of the 226Ra intensity.
Fig. 3. Example of two new point estimated intensity mean sample paths of 226Ra for
applying the hypothesis test.
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such as point estimation of the mean process, reconstruction of the
continuous intensity sample paths, FPCA estimation of the intensity,
calculation of confidence bands, point estimation of the intensity for new
observed data, p-value calculations and decision making procedure,
presentation of different type of figures, etc.

3.2. Isotope 137Cs

An analogous study was carried out for 137Cs. The data were
chosen to have the same structure over the same period of time and
60 sample paths were studied. The behavior recorded was similar to
the 226Ra one even its activity is much more pronounced.

Let us summarize the results obtained. The stochastic represen-
tation of this intensity is

λ14ðtÞ = p′14ðtÞ = μp′ ðtÞ + ∑
14

j=1
ζ̂jfjðtÞ

in the time interval [0,250) where the q=14 r.v.'s accumulate 87.55%
of total variability. It was also proved that these variables have joint
multivariate Normal distribution and therefore it was possible to build
the confidence band for the 137Cs intensity mean. Fig. 4 shows two
reconstructed sample paths and the corresponding confidence band.
The hypothesis test was applied to the erratic and the control sample
paths and again, the test detected them very precisely accepting
84.44% of the control sample paths and rejecting 100% of the erratic

ones. Fig. 5 illustrates it showing two new sample paths of the
intensity mean and the confidence band; the first accepts H0 and the
second rejects it.

4. Results and discussion

The radioactivity of 226Ra and 137Cs is studied modeling both of
them as a CP or doubly stochastic Poisson process. This fact implies
that their intensities are considered as stochastic processes and not
just a simple constant parameter or a function of time.

For both isotopes and from the observed counts of the emitted
particles, the intensity process is estimated by means of FPCA.
Thereby, a stochastic estimation in terms of an expansion of
uncorrelated random variables is derived without having been
assumed any previous and restricted model for the intensity or its
moments. This provides continuous estimation of the intensity over a
whole interval of time and not only at isolated time points. This means
that it is possible to estimate the intensity value for the whole interval
of estimation.

As the intensity is modeled as a stochastic process, it is a random
variable at each time point and so, by means of its estimation,
probability distributions can be addressed. Taking advantage of this
possibility, the corresponding confidence band for the intensity
process for both 226Ra and 137Cs was built using the fitted probability
distribution of the random vector from the stochastic estimation. Note
that this confidence band depends on time, it is not a simple band of
lower and upper constant limits.

Again using this distribution, together with Simultaneous Infer-
ence, a hypothesis test for both intensity models was developed. After
modeling the intensity, the test allows us to verify whether new
counting observations follow the same model. By controlling the
measurement parameters, the intensity model can be considered as a
reference, therefore the test provides a way to evaluate the proper
functioning of a detector. We call attention to the fact that the random
vector of principal components has been fitted by a multivariate
Normal distribution; although this is restrictive and could make us
think that the studied examples are very particular, it is not an
uncommon situation. The test was found to be fairly sensitive
detecting even slightly erratic new observations.

Table 1
BH criterion for two examples of new sample paths with α=0.05.

Sample path that accepts H0 Sample path that rejects H0

p-value(j) jα /p Decision p-value(j) jα /p Decision

0.0048 0.002 Accept 0.0040 0.002 Reject
0.0063 0.004 Accept 0.0049 0.004 Reject
0.0085 0.006 Accept 0.0056 0.006 Reject
0.0097 0.008 Accept 0.0086 0.008 Accept

⋮ ⋮ ⋮ ⋮ ⋮
0.9682 0.046 Accept 0.7653 0.046 Accept
0.9803 0.048 Accept 0.9115 0.048 Accept
0.9936 0.05 Accept 0.9708 0.05 Accept

Fig. 4. Examples of reconstructed sample paths of the 137Cs intensity.

Fig. 5. Example of two new point estimated intensity mean sample paths of 137Cs for
applying the hypothesis test.
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