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a b s t r a c t

Functional principal component analysis (FPCA) is a dimension reduction technique that
explains the dependence structure of a functional data set in terms of uncorrelated vari-
ables. In many applications the data are a set of smooth functions observed with error.
In these cases the principal components are difficult to interpret because the estimated
weight functions have a lot of variability and lack of smoothness. The most common
way to solve this problem is based on penalizing the roughness of a function by its inte-
grated squared d-order derivative. Two alternative forms of penalized FPCA based on B-
spline basis expansions of sample curves and a simpler discrete penalty that measures
the roughness of a function by summing squared d-order differences between adjacent
B-spline coefficients (P-spline penalty) are proposed in this paper. The main difference
between both smoothed FPCA approaches is that the first uses the P-spline penalty in
the least squares approximation of the sample curves in terms of a B-spline basis mean-
while the second introduces the P-spline penalty in the orthonormality constraint of the
algorithm that computes the principal components. Leave-one-out cross-validation is
adapted to select the smoothing parameter for these two smoothed FPCA approaches. A
simulation study and an application with chemometric functional data are developed to
test the performance of the proposed smoothed approaches and to compare the results
with non penalized FPCA and regularized FPCA.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Many application areas have functional data that come from the observation of a random function at a discrete set of sam-
pling points. In the majority of cases the sample curves are functions of time but in many others the argument is a different
magnitude. In spectroscopy, for example, the NIR spectrum is a functional variable whose observations are measured as
functions of wavelengths. The potential of functional data analysis methodologies for the chemometric analysis of spectro-
scopic data was shown in [1]. A wide variety of applications with functional data in different fields were collected and ana-
lyzed by [2].

When analyzing a functional data set it is usual to have a large number of regularly spaced observations for each sample
curve. Because of this a reduction dimension technique is necessary for explaining the main features of a set of sample curves
in terms of a small set of uncorrelated variables. This problem was solved by generalizing principal component analysis to
the case of a continuous-time stochastic process [3]. Asymptotic properties of the estimators of FPCA were deeply studied in
the general context of functional variables [4]. Nonparametric methods were developed to perform FPCA for the case of a
small number of irregularly spaced observations of each sample curve [5,6]. As in the multivariate case, the interpretation
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of the principal component scores and loadings is a useful tool for discovering the relationships among the variables asso-
ciated to a functional data set. To avoid misinterpretation of PCA, a new type of plots, named Structural and Variance Infor-
mation plots, were recently introduced by [7].

FPCA is a flexible tool in functional data analysis that is successfully used to solve important problems as the estimation of
the functional parameter in different functional regression models [8–14]. An alternative methodology for solving this esti-
mation problem in the functional linear model is the functional version of partial least squares (PLS) regression. A estimation
procedure based on basis expansions of sample curves was introduced by [15]. A Bayesian approach to FPCA based on a gen-
erative model for noisy and sparse observations of curves was developed in [16].

One usual form of estimating FPCA from discrete observations of the sample curves is based on basis expansion approx-
imation. This way, FPCA of a set of curves is reduced to multivariate PCA of a transformation of the matrix of basis coeffi-
cients [17]. B-spline basis are appropriate to approximate smooth curves. Cubic spline interpolation with B-spline basis
can be considered for approximating smooth sample curves observed without error [18]. On the other hand, least squares
approximation with B-spline basis is appropriate for reconstructing the true functional form of noisy smooth curves. This
type of approximation was performed to forecast lupus flares from time evolution of stress level [19]. The problem is that
regression splines do not control the degree of smoothness and, consequently, the principal component curves show sub-
stantial variability and their interpretation is difficult. This problem must be solved by introducing some kind of smoothing
in the estimation of principal component curves.

There are different ways of introducing smoothing in the estimation of FPCA. On the one hand, the data can be smooth
first and then an unpenalized FPCA is carried out. A spline smoothing that penalizes the integrated squared second derivative
of each sample path was considered by [20,21]. This approach was applied for smoothing and reconstructing a magnetic res-
onance imaging (FMRI) functional data in [22]. On the other hand, the smoothing can be introduced within the FPCA algo-
rithm. Two different approaches for smoothing functional principal components analysis were proposed by [23] and [24].
Both approaches use a continuous penalty that measures the roughness of the principal component curves by their inte-
grated squared d-order derivative but they differ in the way they incorporate the penalty. The Rice-Silverman approach
introduces the roughness penalty in the definition of the sample variance of the principal component weight functions.
The Silverman approach is known as regularized FPCA (RFPCA) and introduces the penalty in the orthonormality constraint
between principal components. This FPCA approach was extended to the case of multivariate functional data sets by using
Gaussian basis functions instead of B-splines [23]. An application of regularized FPCA with B-splines basis in actuarial sci-
ence was performed to estimate the risk of occurrence of a claim in terms of the driver’s age and others significative variables
[24]. A third way of penalizing FPCA is based on smoothing not the data or the components, but the covariance operator,
whose eigenfunctions are the principal component functions [6]. Penalized rank one approximation was recently proposed
as an alternative approach to the estimation of FPCA [25].

Penalized spline regression [26] is an increasingly popular smoothing approach that was used to estimate the functional
sample mean and to develop an iterative P-spline algorithm for estimating FPCA in [27]. The P-spline penalty measures the
roughness of a function by summing squared d-order differences between adjacent basic coefficients. In this paper, two dif-
ferent versions of smoothed FPCA based on penalized splines (P-splines) with B-splines basis are introduced and compared.
The first approach carries out an unpenalized FPCA on the P-spline smoothing of the sample curves. The second approxi-
mates the sample curves by unpenalized least squares and then incorporate the P-spline penalty in the orthonormality con-
straint within the FPCA algorithm. The accuracy of the estimates provided by both P-spline smoothed approaches is tested
with simulated and real data, and the results compared with non penalized FPCA and regularized FPCA. In order to get an
optimum estimation of the smoothing parameter, leave-one-out cross-validation is adapted to this context.

2. Functional principal component analysis

Let fxiðtÞ : t 2 T; i ¼ 1; . . . ;ng be a sample of functions that are the sample information related to a functional variable X. It
will be supposed that they are observations of a second order stochastic process X ¼ X tð Þ : t 2 Tf g, continuous in quadratic
mean whose sample functions belong to the Hilbert space L2 Tð Þ of square integrable functions with the usual inner product
f ; gh i ¼

R
T f tð Þg tð Þdt;8f ; g 2 L2 Tð Þ. Multivariate PCA was extended to the functional case to reduce the infinite dimension of a

functional predictor and to explain its dependence structure by a reduced set of uncorrelated variables [3]. In order to com-
pute the functional principal components, let us assume without loss of generality that the observed curves are centered so
that the sample mean n�1Pn

i¼1xi tð Þ is zero.
The principal components are obtained as uncorrelated generalized linear combinations with maximum variance (Var). In

general, the j-th principal component scores are given by

nij ¼
Z

T
xi tð Þfj tð Þdt; i ¼ 1; . . . ;n; ð1Þ

where the weight function or loading fj is obtained by maximizing the variance solving

Maxf Var
R

T xi tð Þf tð Þdt
� �

;

s:t:kfk2 ¼ 1 and
R

f‘ tð Þf tð Þdt ¼ 0; ‘ ¼ 1; . . . ; j� 1:

(
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It can be shown that the weight functions are the eigenfunctions of the sample covariance operator C. That is, the solu-
tions to the eigenequation

CðfjÞðtÞ ¼
Z

c t; sð Þfj sð Þds ¼ kjfjðtÞ; ð2Þ

where c t; sð Þ is the sample covariance function and kj ¼ Var½nj�. The sample curves are then expressed in terms of the func-
tional principal components by

xi tð Þ ¼
Xn�1

i¼1

nijfj tð Þ:

This principal component decomposition can be truncated providing the best linear approximation of the sample curves
in the least squares sense xq

i tð Þ ¼
Pq

i¼1nijfj tð Þ, whose explained variance is given by
Pq

i¼1ki.
The problem inherent to many applications is that interpreting the components is not always straightforward. This prob-

lem is usually solved by a rotation of the principal component curves that simplifies the factor structure and therefore makes
the interpretation easier. There are two main types of rotation: orthogonal when the resulting factors are also orthogonal to
each other, and oblique when the new factors are not required to be orthogonal to each other. Oblique rotations relax the
orthogonality constraint in order to simplify the interpretation. They are used more rarely than their orthogonal counter-
parts but, recently, new techniques are developed based on oblique rotations. An example is independent component anal-
ysis that was originally created in the domain of signal processing and neural networks, and derives, directly from the data,
an oblique solution that maximizes statistical independence [28].

The most popular orthogonal rotation method is indubitably Varimax. This rotation criterion has been applied to func-
tional PCA in two different ways, one based on Varimax rotation of the matrix of basis coefficients of the principal compo-
nent curves, and the other based on Varimax rotation of the matrix of values of the principal component curves in a grid of
equally spaced time points (see [29] for a detailed development of this functional Varimax rotation). The extension of oblique
rotations to functional PCA is out of the scope of this paper but could be developed by following the same idea that in the
Varimax case.

2.1. Basis expansion estimation

In order to compute the principal component weights it is necessary to solve the second order integral Eq. (2). It is a dif-
ficult problem that is further complicated in practice because the sample curves are usually observed at a finite set of sam-
pling points that can be different for the sample individuals. This means that in real data applications the sample information
is given by the vectors fxi ¼ xi0; . . . ; ximi

� �0
; i ¼ 1; . . . ;ng, with xik being the observed value for the sample path, xi tð Þ at the

sampling point tik; k ¼ 0;1; . . . ;mi.
The functional form of sample paths must be reconstructed from the discrete observations by using several different

methods that must be chosen depending on how the functional data was observed and the main characteristics of sample
curves.

One usual solution is to assume that sample paths belong to a finite-dimension space spanned by a basis
/1 tð Þ; . . . ;/p tð Þ
� �

, so that they are expressed as

xi tð Þ ¼
Xp

j¼1

aij/j tð Þ; i ¼ 1; . . . ;n:

The main objective of this paper is to solve the problem of estimating the functional principal components from a sample
of smooth curves observed with error so that the sample data are given by

xik ¼ xiðtikÞ þ �ik k ¼ 0;1; . . . ;mi; i ¼ 1; . . . ;n:

This means that least squares approximation with B-splines basis [30] are an appropriate choice to approximate the basis
coefficients.

A B-spline basis of degree q generates the space of the splines of the same degree, defined as curves consisting of piece-
wise polynomials of degree q that join up smoothly at a set of definition knots with continuity in their derivatives up to order
q� 1. The dimension of the B-spline basis of degree q equals the order of the polynomials plus the number of interior break-
points (see [30] for a detailed explanation). The spline functions of degree q are smooth and well-behaved functions that
provide design flexibility so that by increasing the degree q, we can progressively switch from the simplest piecewise con-
stant ðq ¼ 0Þ and piecewise linear ðq ¼ 1Þ representations to the other extreme, which corresponds to a bandlimited model
ðn!1Þ. Formulas and computational algorithms for optimal smoothing curves with B-splines basis for given set of discrete,
not necessarily equally spaced, data were studied in detail in [31,32]. Basis of splines were recently used to evaluate paper
manufactured using Eucalyptus globulus by means of multivariate adaptive regression splines [33].

Other useful basis systems are Fourier functions for periodic data, piecewise constant functions for counting processes or
wavelets bases for curves with strong local behavior. A successful application of FPCA with Fourier basis expansions was
developed in [34] where different functional principal component regression models were developed to forecast cypress
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pollen concentration from daily evolution of temperatures. An alternative solution could be to use non-parametric proce-
dures for estimating curves [35].

Let us suppose that the sample paths are expressed in terms of basis functions, so that x ¼ A/, where A ¼ aij
� �

the coef-
ficient matrix, / ¼ /1; . . . ;/p

� �0 and x ¼ x1; . . . ; xnð Þ0. Then, the principal component weight function fj admits the basis
expansion

fj tð Þ ¼
Xp

k¼1

bjk/k tð Þ ¼ / tð Þ0bj;

with bj ¼ bj1; . . . ; bjp
� �0. In this case,

Var½n� ¼ Var
Z

T
xi tð Þf tð Þdt

� 	
¼ n�1

Xn

i¼1

Z
T

Xp

j¼1

aij/j tð Þ
 ! Xp

k¼1

bk/k tð Þ
 !" #

¼ n�1
Xn

i¼1

b0Wa0iaiWb ¼ b0WVWb;

where V ¼ n�1A0A;A ¼ aij
� �

n�p and W ¼ Wij
� �

p�p ¼
R

T /i tð Þ/j tð Þdt. Therefore, computing the j-th principal weight function is
reduced to solve the maximization problem

Maxb b0WVWb;

s:t:b0Wb ¼ 1 and blWb ¼ 0; ‘ ¼ 1; . . . ; j� 1:

(

This means that FPCA is equivalent to the multivariate PCA of matrix AW
1
2, with W

1
2 being the squared root of the matrix of

inner products between basis functions [17].
Then, the vector bj of basis coefficients of the jth principal weight function is given by bj ¼ W�

1
2uj, where the vectors uj are

computed as the solutions to the eigenvalue problem n�1W
1
2A0AW

1
2uj ¼ kjuj, where n�1W

1
2A0AW

1
2 is the sample covariance ma-

trix of AW
1
2.

The principal components curves estimated by this unpenalized FPCA approach with B-spline basis can present a lot of
variability and have difficult interpretation. To solve this problem two new ways of introducing smoothing in FPCA are pro-
posed in this work. The first one consists of FPCA of the P-spline smoothing of sample curves. The second one is a P-spline
version of the smoothed FPCA carried out in [36].

3. Functional PCA of P-splines

The first version of smoothed FPCA consists of functional PCA of the P-spline smoothing of the original data.
An appropriate method to approximate the basis coefficients of smooth sample curves observed with error is ordinary

least squares approximation in terms of B-spline basis. The curves fitted by this way are known as regression splines and
their main problem is that they don’t control the degree of smoothness. A penalized least squares approach that measures
the roughness of a function by means of its integrated dth derivative was first introduced in [37] for solving this problem
with d ¼ 2. Smoothing splines are computed by using this continuous penalization in terms of B-spline basis expansions.
A simpler discrete penalty approach is based on defining the roughness of a function by summing squared d-order differ-
ences between adjacent B-splines [26]. This discrete penalty has two main advantages. First, it is mathematically simpler
than smoothing splines because is a good discrete approximation of the integrated square of the d-th derivative. Second,
the number of knots is not so determinant as in regression splines and can be easily compute by using Ruppert’s law of
thumb [38]. In general, the knots of a P-spline must be equally spaced and its number sufficiently large to fit the data
and not so large that computation time is unnecessarily big [39].

P-spline smoothing of each sample curve is obtained by minimizing the following penalized least squares error in terms
of B-spline basis functions

PMSEd aijxi; kð Þ ¼ xi �Uiaið Þ0 xi �Uiaið Þ þ ka0iPdai;

where Ui ¼ /j tikð Þ
� �

mi�p
; ai ¼ ðai1; . . . ; aipÞ0 and Pd is the matrix of penalties given by

Pd ¼ Md
� �0

M
d;

with Md being the matrix representation of the d-order difference operator.
These smoothers are known as penalized splines (P-splines) and their B-spline basis coefficients are given by

âi ¼ U0iUi þ kPd

� ��1
U0ixi: ð3Þ

The most used penalty order is d ¼ 2 although a different order can be used depending on the variability of the curve and
the quantity of noise in the observed data. A penalty of order 2 is equivalent to

a0iP2ai ¼ ai1 � 2ai2 þ ai3ð Þ2 þ � � � þ aip�2 � 2aip�1 þ aip
� �2

;
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where P2 ¼ M2
� �0

M
2 with M2 matrix given by

M
2 ¼

1 �2 1 0 � � �
0 1 �2 1 � � �
0 0 1 �2 � � �
..
. ..

. ..
. ..

. . .
.

2
6664

3
7775:

As we can see in the above development there are some important choices related to the P-spline fitting: the smoothing
parameter, the order of the penalty, the degree of the B-spline basis and the number of knots. The choice of the smoothing
parameter is discussed later in this section. The simplest and most usual choice for the other three parameters that should
work well in most applications is use a quadratic penalty, cubic splines and one knot for every four or five observations up to
a maximum of about 40 knots [38].

The cubic spline functions (piece-wise polynomial curves that has continuous derivatives to order two) tend to be the
most popular in applications with smooth functions because of their minimum curvature property (they have less tendency
to oscillate). In fact, cubic spline functions have proven to be a good compromise between accuracy and complexity. Higher
order splines allow more strongly curved surfaces to be modeled but also requires more calculations. Usually, degree 3 or 4 is
sufficient for B-splines.

Once the P-spline approximation of sample curves have been computed FPCA is performed on the approximated curves
instead of the original sample paths. This way FPCA on P-splines is equivalent to multivariate PCA of the matrix AW

1
2 where A

is the matrix whose rows are the estimated coefficients of the P-spline smoothing of the sample curves in terms of a basis of
B-splines.

3.1. Selection of the smoothing parameter

As in other smoothing methods, the smoothing parameter of P-splines controls the smoothness of the fitted
curve. P-splines penalize distant coefficients so that the larger is the parameter the smoother is the fitted curve.
Classical methods for smoothing parameter selection are leave-one-out cross-validation (CV), generalized cross-validation
[40], the Akaike information criterion (AIC) [41] and the Bayesian information criterion (BIC) [42]. A nonparametric pro-
cedure for choosing the P-spline parameters has been performed by [43], where mixed model methods based on re-
stricted maximum likelihood (REML) estimation were applied for smoothing parameter selection. The P-spline
smoothing of the FPCA (SFPCA) introduced in the next section is not associated to the estimation of a regression model
and because of this a direct implementation of the GCV, AIC, BIC and REML criteria is not possible. To make the results
comparable with those of the SFPCA approach, CV criterion is used in this paper to choose the optimum smoothing
parameter.

In order to select the same smoothing parameter for the n fitted P-splines, a CV method based on minimizing the mean of
the cross-validation errors over all P-splines is applied in this paper. This CV criterion consists of selecting the smoothing
parameter k that minimizes the expression

CVMSE kð Þ ¼ 1
n

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXmi

k¼0

xik � x̂ð�kÞ
ik

� �2
=ðmi þ 1Þ

vuut ;

where x̂ð�kÞ
ik are the values of the i-th sample path estimated at time tik avoiding the k-th observation knot in the iterative

estimation process.

4. P-Spline smoothed functional PCA

In order to control the roughness of the weight functions fi, the principal components can be computed by maximizing a
penalized sample variance that introduces the roughness penalty into the orthonormality constraint. A continuous penalty
based on the integrated squared d-order derivative was first proposed by [36]. Following this idea, a penalized sample var-
iance based on a discrete P-spline roughness penalty is introduced in this paper.

Let us consider a B-spline expansion of the weight functions given by f tð Þ ¼
Pp

k¼1bk/k tð Þ ¼ / tð Þ0b, where / tð Þ is a B-spline
basis. The discrete P-spline roughness penalty function is defined by PENd fð Þ ¼ b0Pdb, with Pd defined as in Section 3 and
b ¼ b1; . . . ; bp

� �
being the vector of coefficients of the weight function in terms of the B-spline basis.

The principal components are now computed as generalized linear combinations of the functional variable that maximize
the penalized sample variance defined by

PVar
Z

T
xi tð Þf tð Þdt

� 	
¼

Var½
R

T xi tð Þf tð Þdt�
kfk2 þ kPENd fð Þ

¼ b0WVWb
b0Wbþ kb0Pdb

¼ b0WVWb
b0 Wþ kPdð Þb

;

whit k being the smoothing parameter that controls the roughness of the weight function.
The jth principal component is now defined as in Eq. (1) and the factor loading coefficients of the factor loading fj are ob-

tained by solving
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Maxb PVar
R

T xi tð Þf tð Þdt
� �

¼ b0WVWb
b0 WþkPdð Þb ;

s:t:b0Wb ¼ 1 and b0Wbl þ b0Pdbl ¼ 0; ‘ ¼ 1; . . . ; j� 1:

8<
:

Let us observe that the first constraint is the usual requirement kfk2 ¼ 1 and the second is a modified form of orthogo-
nality that takes into account the roughness of the weight function.

This variance maximization problem can be converted into a eigenvalue problem

WVWb ¼ b Wþ kPdð Þb:

By applying a factorization (SVD or Choleski) of the form LL0 ¼ Wþ kPd with L being a lower triangular matrix, we have
L�1WVWL�10 L0b

� �
¼ b L0b

� �
, so that the weight coefficients are computed by solving the eigenvalue problem

L�1WVWL�10u ¼ bu;

with L0b ¼ u. This way P-spline smoothed PCA is reduced to multivariate PCA of the matrix whose rows are the transformed
vectors of coefficients L�1Wai. That is multivariate PCA of matrix AWL�10 . Finally, the basis coefficients of the principal com-
ponents curves are given by bj ¼ L�10uj renormalized so that b0jWbj ¼ 1. Let us observe that in this case the vectors ai of basis
coefficients of the sample curves in terms of the B-spline basis are first estimated by non penalized least squares approxi-
mation that provides âi ¼ U0iUi

� ��1U0ixi with Ui ¼ /j tikð Þ
� �

mi�p
; i ¼ 1; . . . ;n.

4.1. Selection of the smoothing parameter

As in previous section, selecting a suitable smoothing parameter is very important to control the smoothness of the
weight function associated to each principal component. In this paper, leave one out cross-validation (CV) has been
adapted by considering the discrete roughness penalty based on P-splines. It consists of selecting the value of k that
minimizes

CV kð Þ ¼ 1
p

Xp

q¼1

CVq kð Þ;

where

CVq kð Þ ¼ 1
n

Xn

i¼1

kxi � xq �ið Þ
i k2

;

with xq �ið Þ
i ¼

Pq
l¼1n

�ið Þ
il f �ið Þ

l being the reconstruction of the sample curve xi in terms of the first q principal components esti-
mated from the sample of size n� 1 that includes all sample curves except xi.

In terms of basis expansions these quadratic distances are given by

kxi � xq �ið Þ
i k2 ¼

Z
T

xi tð Þ � xq �ið Þ
i tð Þ

h i2
dt ¼

Z
T

Xp

j¼1

aij/j tð Þ �
Xq

l¼1

nð�iÞ
il

Xp

j¼1

bð�iÞ
lj /j tð Þ

" #2

¼
Z

T

Xp

j¼1

dij/j tð Þ
" #2

dt ¼ d0iWdi;

where di ¼ di1; . . . ; dip
� �0 and dij ¼ aij �

Pq
l¼1n

ð�iÞ
il bð�iÞ

lj .

5. Simulation study

The ability of the two smoothed versions of FPCA proposed in this paper (FPCA of P-splines and P-spline smoothed FPCA)
to approximate the true form of the factor loadings functions from a set of smooth curves observed with noise is tested on
simulated data. The results are compared with the ones provided by unpenalized FPCA in terms of B-splines and regularized
FPCA (RFPCA) based on penalizing the roughness of a the principal component curves by its integrated squared 2-order
derivative (see [36] for a detailed study).

Let fXt : t 2 ½0; T�g be the zero mean gaussian process with covariance function C t; sð Þ ¼ P exp �ajt � sjð Þ known as Orn-
stein–Uhlenbeck process. It can be shown [44] that the total variance of this process is T and the principal component
weights functions are given by the solutions of the integral eigenequation

Z T

0
P exp �ajt � sjð Þf sð Þds ¼ kf tð Þ;

whose eigenvalues are

ki ¼
2Pa

a2 þ b2
i

;
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with bi being the positive solutions of

tan bi
T
2


 �
¼ a

bi
i oddð Þ;

tan bi
T
2


 �
¼ �bi

a
i evenð Þ: ð4Þ

The first fourteen bi (solutions of Eq. 4) can be found in Table 1. The eigenfunctions normalized in ½0; T� are

fi tð Þ ¼
cos bi t � T

2

� �� �
T
2 1þ sin biTð Þ

biT

� �h i1
2

i oddð Þ

fi tð Þ ¼
sin bi t � T

2

� �� �
T
2 1� sin biTð Þ

biT

� �h i1
2

i evenð Þ: ð5Þ

The principal components of the Ornstein–Uhlenbeck process are uncorrelated random variables with normal distribu-
tion so that the principal component decomposition of this process is given by

X tð Þ ¼
X1
i¼1

kifi tð Þni; ð6Þ

where ni are random variables with distribution N 0;1ð Þ. Eq. (6) truncated in the 14th term provides a smoothed version of
the Orsntein-Ulenbeck process that explains a 99:4% of its total variance. In order to get noisy observations, a random error
e tð Þ with distribution N 0;r2

� �
was added so that the simulated process was

Y tð Þ ¼ X14 tð Þ þ e tð Þ: ð7Þ

The variance of the errors r2 was chosen to control the value of R2 ¼ Var X14
� �h i

= Var Yð Þ½ � close to 0:8. The simulation was
made for T ¼ 4; P ¼ 1 and a ¼ 0:1.

In order to test the performance of the four different FPCA approaches compared in this study, 350 samples of 100 sample
curves of the contaminated process YðtÞ given by Eq. (7) were simulated at 41 equally spaced knots in the observed domain
½0;4�.

The first step is to reconstruct the true functional form of the original sample paths X14 tð Þ from the noisy discrete obser-
vations YðtkÞ with tk ¼ k=10; k ¼ 0;1; . . . ;40. Following the methodology proposed in this paper, regression splines and P-
splines will be computed in terms of B-spline basis. In Fig. 1 it can be seen an example where an original smooth curve (solid
line), its contaminated curve (dotted line), the cubic B-spline (dashed line) and the quartic B-spline (dashed-dotted line)
approximations are superposed for the non penalized splines (left) and the penalized splines (right) with different number
of basis knots (15;25 and 30). It can be seen that the reconstructions of the curves provided by cubic and quartic B-splines
are very similar for penalized splines independently of the number of knots. In the non penalized case, the approximation
provided by the quartic splines is worse when the number of knots increases by loosing control in the extremes. Because
of this B-splines of degree 3 was chosen in this simulation study.

Our main goal is to get an accurate approximation of the true eigenfunctions and the original sample curves. The
approximations of the first, second and third eigenfunctions of the Ornstein–Uhlenbeck process by using the four con-
sidered FPCA approaches with different number of basis knots (15;25 and 30) are displayed in Fig. 2 for one of the 350
simulations. The true eigenfunctions given by the solutions of Eq. (5) are superposed with their approximations in the
same plot. To show the ability of the smoothed FPCA approaches to approximate the original process X14ðtÞ, the recon-
structions of two different sample paths with the first three PCs approximated by the four considered approaches are
displayed in Fig. 3.

In order to draw general conclusions, the box plots of the MSEs of approximation of the eigenfunctions estimated by using
FPCA, FPCA of P-splines, P-spline SFPCA and regularized FPCA with 15;25 and 30 basis knots for 350 simulations of the Orn-
stein–Uhlenbeck process were plotted in Fig. 4. On the other hand, the box plots of the MSEs of the reconstructions of all
sample curves with the first three PCs and with all PCs estimated by using the four FPCA approaches for the 350 simulations
are displayed in Figs. 5 and 6, respectively.

From the results of this simulation study it can be concluded that the penalized smoothing approaches (FPCA of P-splines,
P-spline smoothed FPCA and regularized FPCA) provide approximations of the eigenfunctions and sample curves much more

Table 1
The first 14 solutions bi of the Eq. (4).

b1 b2 b3 b4 b5 b6 b7

0.2164 0.8443 1.6020 2.3772 3.1574 3.9397 4.7230

b8 b9 b10 b11 b12 b13 b14

5.5069 6.2911 7.0757 7.8603 8.6452 9.4301 10.2151
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accurate and smoother than the non penalized FPCA. This is because the regression splines used to estimate the FPCA does
not control the degree of smoothness and the roughness and variability of the approximated sample paths increase dramat-
ically with the number of knots. The results provided by the three penalized approaches are quite similar for any number of
knots but they get their best behavior when a high number of knots is considered. The accuracy of the approximations pro-
vided by the two approaches based on penalizing the roughness of the principal component curves (SFPCA and RFPCA) are
very similar and the best approach is FPCA of P-splines because it gives the lowest estimation errors and is computationally
less expensive.

6. Real data application

Finally, we test the performance of the proposed smoothed FPCAs using the Diesel data set downloaded from the website
http://software.eigenvector.com/Data/SWRI/index.html. This data set was measured by the Southwest Research Institute
and consists of a training set of 133 samples and a validation set of 112 samples of the NIR transmission spectra. The NIR
spectra of a Diesel sample is measured as a function of wavelengths ranging approximately from 750 to 1550 nm and
was used to predict the cetane number of Diesel samples by using functional linear models [1]. In this paper, unpenalized

Fig. 1. Sample path of the Ornstein–Uhlenbeck simulated process approximated by regression splines (left column) and P-splines (right column) using B-
splines basis of degree 3 (dashed line) and degree 4 (dashed-dotted line). The original sample paths are displayed in solid line and the noisy sample paths in
dotted line.
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FPCA, FPCA of P-splines and P-spline SFPCA were performed to reduce the dimension of Diesel data and to obtain smooth
reconstructions of the NIR transmission spectra. In order to test the good behavior of the smoothed FPCA based on P-spline
penalties, cubic B-splines with 30 definition knots were used. The smoothing parameters selected by leave-one-out cross-
validation are k ¼ 0:05 and k ¼ 0;041 for FPCA of P-splines and P-spline SFPCA, respectively.

The estimated first and second eigenfunctions are displayed in Fig. 7. It can be seen that smoothed FPCA approaches pro-
vide smoother eigenfunctions than unpenalized FPCA, especially for the second eigenfunction. The smoothest eigenfunctions
are provided by FPCA of P-splines. On the other hand, it can be seen in Table 2 that the first two PCs estimated by FPCA of P-
splines explain a bigger proportion of explained variance than the other two FPCA approaches. In Fig. 8 two sample paths
were reconstructed with the first and second PCs estimated by each one of the FPCA approaches. All sample paths of the test
sample were reconstructed with the first and second PCs estimated by using the three FPCA approaches and plotted in Fig. 9.
It is clearly observed that FPCA of P-splines provides the smoothest approximation of sample curves.

7. Computational considerations

The numerical results presented in the two previous sections were obtained by using the free software R for statistical
computing and graphics. The computational cost of each of the four different FPCA approaches compared in the simulation
study was measured in based to the CPU times spent in their executions.

Fig. 2. First, second and third eigenfunctions of the Ornstein–Uhlenbeck process fitted by FPCA (short dashed line), FPCA via P-splines (long dashed line),
SFPCA (dotted line) and RFPCA (dashed-dotted line) for 15 basis knots (k of P-splines 2:77; k of SFPCA 0:21 and k of RFPCA 0:0038), 25 knots (k of P-splines
13:92; k of SFPCA 0:31 and k of RFPCA 0:005) and 30 knots (k of P-splines 24:37; k of SFPCA 0:15 and k of RFPCA 0:005). The true eigenfunctions are
represented by black and solid line.
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7.1. Description of R code

In this subsection, the R code generated to carry out the different FPCA approaches studied in this paper is explained. The
four compared methods were implemented by using available functions of different R libraries and new code developed by
the authors according to the theory described in previous sections.

1. Non penalized FPCA: This FPCA is equivalent to the multivariate PCA of the matrix AW
1
2, with A being the matrix with col-

umns the B-spline basis coefficients of the sample paths and W
1
2 being the squared root of the matrix of inner products

between basis functions. The R code use the following R functions:
� The Cubic B-splines basis is obtained with the function create.bspline.basis () of the fda package.
� A is obtained by means of the value coef provided by the function data2fd () of the fda package.
� The matrix of inner products between basis functions W is obtained with the function inprod () of the fda package.
� The squared root of the matrix of inner products between basis functions is computed by the singular value decom-

position with the function mroot (, method=’’svd’’) of the mgcv package.
� Finally, multivariate PCA is computed with the function princom () of the stats package.

2. FPCA of P-splines: The only difference between FPCA of P-splines and non penalized FPCA is the matrix A. In this case, the
basis coefficients of the sample curves are estimated by considering a discrete penalty based on P-splines in the least
squared criterion (see Section 3 for more details). The discrete penalty matrix of order 2 (matrix P2 ¼ M2

� �0
M

2 introduced
in Section 3) is computed with the following code:

M
2 ¼ diff ðdiff ðdiagðnnodosþ 2ÞÞÞ;

where ’’nnodos’’ is the number of basis knots. Then, the matrix of P-splines basis coefficients A is computed by using Eq. 3.

Fig. 3. Sample path (a) (left column) and sample path (b) (right column) of the Ornstein–Uhlenbeck simulated process reconstructed with the first three PCs
estimated by FPCA (short dashed line), FPCA of P-splines (long dashed line), P-spline SFPCA (dotted line) and RFPCA (dashed-dotted line) for 15 basis knots
(k of P-splines 2:46ðaÞ and 2:31ðbÞ; k of SFPCA 0:26ðaÞ and 0:05ðbÞ and k of RFPCA 0:005ðaÞ and 0:004ðbÞ), 25 knots (k of P-splines 13:29ðaÞ and 12:66ðbÞ, k of
SFPCA 0:10ðaÞ and 0:41ðbÞ and k of RFPCA 0:005ðaÞ and 0:0035ðbÞ) and 30 knots (k of P-splines 23:48ðaÞ and 22:59ðbÞ; k of SFPCA 0:92ðaÞ and 1:84ðbÞ and k of
RFPCA 0:0045ðaÞ and 0:005ðbÞ). The true original sample paths are displayed in black and solid line.
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3. P-spline SFPCA: This smoothed FPCA approach turns into a multivariate PCA of matrix AWL�10 (see Section 4 for more
details). In order to compute it the following routines were carried out:
� A is obtained by means of the value ’’coef’’ provides by the function data2fd () of the fda package.
� The matrix of inner products between basis functions W is computed with the function inprod () of the fda package.
� L is a lower triangular matrix obtained by applying a Choleski factorization of the form LL0 ¼ Wþ kP2, with P2 the dis-

crete penalty matrix previously computed for the FPCA of P-splines. The Choleski factorization was computed by
means of the function chol (Wþ kP2, pivot = TRUE) of the base package.

� Finally, multivariate PCA is computed with the function princom () of the stats package.
4. Regularized FPCA: The main difference between the computational algorithm of regularized FPCA and P-spline SFPCA is

the penalty matrix that is based on the integrated squared 2-order derivative of B-spline functions. The continuous pen-
alty matrix of order 2 is obtained by means of the function bsplinepen (basis, Lfdobj = 2) of the fda package.

Fig. 4. Box plots of the MSEs of the eigenfunction 1 (left column), eigenfunction 2 (central column) and eigenfunction 3 (right column) estimated by using
FPCA, FPCA of P-splines, P-spline SFPCA and RFPCA with 15;25 and 30 basis knots on 350 simulations of the Ornstein–Uhlenbeck process.

Fig. 5. Box plots of the MSEs of the reconstructions of sample curves with the first three PCs estimated by FPCA, FPCA of P-splines, P-spline SFPCA and
RFPCA with 15;25 and 30 basis knots for the 350 simulations of the Ornstein–Uhlenbeck process.
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7.2. Computational cost

To select the smoothing parameter k, a cross-validation criterion (leave-one-out) is considered in this paper. Three
smoothing parameters are needed for each simulation, one for computing FPCA of P-splines, other for the P-spline SFPCA
and another for regularized FPCA. From the results of the simulation study developed before, it has been concluded that there
are not big differences in the approximation errors provided by the three smoothing approaches (FPCA of P-splines, P-spline
SFPCA and RFPCA). However, FPCA of P-splines is preferable because its computational cost is lower and the approximation
errors are slightly smaller. When we talk about computational cost, we make reference to the CPU time that a computational
algorithm consumes during its execution.

In order to compare the computational cost of the cross-validation methods used to select k with FPCA of P-splines, P-
spline SFPCA and RFPCA for the 350 simulations of the Ornstein–Uhlenbeck process, the corresponding CPU times were mea-
sured by using the function system.time of R which returns CPU charged for the execution of user instructions of the calling
algorithm. The means of the CPU times required by the different methods are shown in Table 3. It is obvious that CPU times
spent by CV method with P-spline SFPCA (discrete penalty) and RFPCA (continuous penlty) are much larger than with FPCA
of P-splines.

Fig. 6. Box plots of the MSEs of the reconstructions of sample curves with all PCs estimated by FPCA, FPCA of P-splines, P-spline SFPCA and RFPCA with
15;25 and 30 basis knots for the 350 simulations of the Ornstein–Uhlenbeck process.

Fig. 7. First (left) and second (right) eigenfunctions estimated by FPCA (solid line), FPCA of P-splines (dashed line) and P-spline SFPCA (dotted line) for
Diesel data set.

Table 2
Variances (Var) and percentages of variances (%) explained by the three considered approaches: FPCA, FPCA of P-splines and P-spline SFPCA for Diesel data set.

PC FPCA FPCA of P-splines P-spline SFPCA

Var. % Var. % Var. %

1 7:07� 10�4 85.23 4:44� 10�4 87.39 5:73� 10�4 86.65

2 6:70� 10�5 8.08 4:75� 10�5 9.35 5:40� 10�5 8.17
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All simulations have been analyzed in the same experimental conditions (computers with the same characteristics). Spec-
ifying, the simulations were run on a cluster of 30 blade servers each one with two Intel XEON E5420 processors running at
2:5 GHz and with 16 GB of RAM memory. Each processor has four cores and the experiments are carried out in virtualized

Fig. 8. Noisy sample paths (a) and (b) (solid line) reconstructed by the first and second PCs estimated by FPCA (short dashed line), FPCA of P-splines (long
dashed line) and P-spline SFPCA (dotted line).

Fig. 9. Original noisy test sample of NIR spectra (top left) reconstructed with the first and second PCs estimated by FPCA (bottom left), FPCA of P-splines
(top right), and P-spline SFPCA (bottom right).
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Windows XP machines, each one with one virtualized processor and 1 GB of RAM memory. Until 25 Windows XP systems
have been simultaneously used to carried our the cross-validation procedures.

8. Conclusions

Two smoothed FPCA approaches based on P-spline penalties have been proposed in this paper to control the degree of
smoothness of the principal components weight functions estimated from smooth sample curves observed with error. Both
approaches are based on B-spline expansion of sample curves and a P-spline penalty that measures the roughness of a func-
tion by summing squared d-order differences between adjacent B-spline coefficients. The first smoothed FPCA approach
(called FPCA of P-splines) introduces the P-spline penalty in the least squares approximation of the sample curves with
B-spline functions (P-splines) and then carries out a unpenalized FPCA on the approximated curves. The second approach
approximates the sample curves by unpenalized least squares (regression splines) and then performed a penalized FPCA esti-
mation based on maximizing a penalized sample variance that introduces the P-spline penalty in the orthonormality con-
straint between principal components.

A simulation study was performed to test the ability of the proposed smoothed FPCA approaches to provide an accurate
and smooth estimation of the principal component curves. The results were compared with the estimations provided by non
penalized FPCA of the least squares approximation of sample curves with B-spline basis and regularized FPCA based on
penalizing the roughness of the principal component curves by its integrated squared 2-order derivative. From this simula-
tion study it can be concluded that the penalized approaches give much more accurate estimations than non penalized FPCA.
This is because FPCA looses control of the smoothness when the dimension of the B-spline base increases. On the other hand,
the smoothed FPCA approaches are quite insensitive to the choice of knots so that a relatively large number of equally spaced
basis knots is a good election for the definition of the B-spline basis. The advantage of the smoothed FPCA approaches based
on P-spline penalties respect to the ones based on penalizing the integrated squared d-order derivatives is that they are
mathematically simpler because the difference matrix is easier to compute than the matrix of integrals of products of d-or-
der derivatives between B-spline basis functions (see [45] for a detailed study on the calculation of integrals involving B-
splines). Finally, it can be concluded that FPCA of P-splines is preferable to P-spline SFPCA and regularized FPCA because
its computational cost is lower and the approximation errors are slightly smaller.
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