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We obtain a Runge approximation theorem for holomorphic Legendrian curves and
immersions in the complex projective 3–space CP 3, both from open and compact
Riemann surfaces, and we prove that the space of Legendrian immersions from an
open Riemann surface into CP 3 is path-connected. We also show that holomorphic
Legendrian immersions from Riemann surfaces of finite genus and at most countably
many ends, none of which are point ends, satisfy the Calabi–Yau property. Coupled
with the Runge approximation theorem, we infer that every open Riemann surface
embeds into CP 3 as a complete holomorphic Legendrian curve. Under the twistor
projection � WCP 3

! S4 onto the 4–sphere, immersed holomorphic Legendrian
curves M !CP 3 are in bijective correspondence with superminimal immersions
M ! S4 of positive spin, according to a result of Bryant. This gives as corollaries
the corresponding results on superminimal surfaces in S4. In particular, superminimal
immersions into S4 satisfy the Runge approximation theorem and the Calabi–Yau
property.

53D10; 32E30, 32H02, 53A10

1 Introduction

It is well known that the 3–dimensional complex projective space CP3 admits a unique
complex contact structure, that is to say, a completely noninvolutive holomorphic
hyperplane subbundle � of the tangent bundle T CP3 such that any other holomorphic
contact bundle on CP3 is contactomorphic to � by an automorphism of CP3 ; see
C LeBrun and S Salamon [39; 38]. This contact structure is determined by the following
homogeneous 1–form on C4 via the standard projection C4 n f0g !CP3 :

(1-1) ˛0 D z0 dz1� z1 dz0C z2 dz3� z3 dz2:
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3508 Antonio Alarcón, Franc Forstnerič and Finnur Lárusson

(See Section 2.) Uniqueness makes this contact structure fundamentally interesting. This
was amplified in 1982 when R Bryant [21] discovered that the Penrose twistor projection
� WCP3

!S4 — a fibre-bundle projection onto the 4–sphere whose fibres are projective
lines — induces a bijective correspondence between immersed holomorphic Legendrian
curves in CP3 and immersed superminimal surfaces of positive spin in S4. (When
speaking of the 4–sphere, we always consider it endowed with the spherical metric
induced by the Euclidean metric on the unit sphere S4 �R5.) Furthermore, the contact
bundle � on CP3 is the orthogonal complement of the vertical tangent bundle of � in
the Fubini–Study metric, and the differential d� maps � isometrically onto T S4, so �
maps Legendrian curves locally isometrically to superminimal surfaces in S4. The latter
form an interesting subclass of the class of all minimal surfaces in S4. Bryant proved
in [21, Theorem F] that for any pair of meromorphic functions f;g on a Riemann
surface M with g nonconstant, the map given in homogeneous coordinates by

(1-2) B.f;g/D
�
dg W f dg� 1

2
g df W g dg W 1

2
df
�
WM !CP3

is a holomorphic Legendrian curve in CP3. Using this formula, he showed that
any compact Riemann surface M admits a holomorphic embedding into CP3 as a
Legendrian curve (see [21, Theorem G]), and he inferred that any such M admits
a conformal, generically injective immersion M ! S4 onto a superminimal surface
in S4 (see [21, Corollary H]).

In the present paper we go considerably further by treating not only Legendrian curves
in CP3 and conformal superminimal surfaces in S4 parametrised by compact Riemann
surfaces, but also those parametrised by open or by compact bordered Riemann surfaces.
In particular, we obtain the first general existence and approximation results in the
literature for complete noncompact superminimal surfaces in the 4–sphere. More about
this below.

Let us now describe the contents of the paper.

We begin by presenting in Section 2 a unified approach from first principles to a couple
of representation formulas for Legendrian curves in CP3, the one of Bryant in (1-2)
and another one adapted from the recent papers by Alarcón, Forstnerič and López [12]
and Forstnerič and Lárusson [29]; see (2-7)–(2-8). The relationship between them
is given by (2-9). As pointed out in Remark 2.6, the optimal choice of a formula to
use depends on the particular problem one wants to solve. Although each formula
has a set of exceptional curves it does not cover, any given Legendrian curve is
nonexceptional in some homogeneous coordinates on CP3 ; see Proposition 2.2. By
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Holomorphic Legendrian curves in CP 3 and superminimal surfaces in S4 3509

choosing homogeneous coordinates on CP3 so that the hyperplane at infinity intersects
our Legendrian curve transversely, which is possible by Bertini’s theorem, the two
meromorphic functions determining the curve have only simple poles. This condition
means that the curve is immersed near the poles.

In Section 3 we use Bryant’s formula (1-2) to prove the Runge approximation theorem
coupled with the Weierstrass interpolation theorem for holomorphic Legendrian curves
in CP3, both from compact and open Riemann surfaces (see Theorem 3.2), as well as the
corresponding result for holomorphic Legendrian immersions (see Theorem 3.4). For
open Riemann surfaces, we also have a Runge approximation theorem for Legendrian
embeddings into CP3 (see Corollary 3.7), where by an embedding we mean an injective
immersion.

In Section 4 we use the second representation formula (2-8) to prove that the space
of all Legendrian immersions M ! CP3 from an arbitrary open Riemann surface
is path-connected; see Theorem 4.1. On the other hand, the space of Legendrian
immersions is not connected if M is compact. It will split into components by degree,
and perhaps further.

These results imply that every formal Legendrian immersion from an open Riemann
surface to CP3 can be deformed to a genuine holomorphic Legendrian immersion,
unique up to homotopy; see Theorem 5.1. It remains an open problem whether
the inclusion of the space of holomorphic Legendrian immersions M ! CP3 into
the space of formal Legendrian immersions satisfies the full parametric h–principle.
For immersed Legendrian curves in C2nC1 with its standard contact structure, the
parametric h–principle was proved in [29]; however, the technical problems that arise
for Legendrian curves in projective spaces are considerable.

In Section 6 we introduce an axiomatic approach to the Calabi–Yau problem, which
unifies recent results in this direction in various geometries. The motivation behind
results of this type is the Calabi–Yau problem for minimal hypersurfaces, asking whether
there exist complete bounded minimal hypersurfaces in Rn for n� 3. This problem
originates in Calabi’s conjecture from 1965 that such hypersurfaces do not exist; see
[23, page 170]. Nothing seems known about this question concerning hypersurfaces
in Rn for n� 4. However, several constructions of complete bounded 2–dimensional
minimal surfaces in Rn for any n� 3 have been developed, starting with the seminal
works of L Jorge and F Xavier [36] in 1980 and N Nadirashvili [40] in 1996. (Note
that we are not talking of hypersurfaces, unless n D 3.) Subsequent developments
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were inspired by S-T Yau’s 2000 millennium lecture [48], where he revisited Calabi’s
conjectures and proposed several questions concerning topology, complex structure,
and boundary behaviour of complete bounded minimal surfaces in R3. A recent survey
of this topic can be found in Alarcón and Forstnerič [8, Section 5.3]; see also their
paper [10], where the Calabi–Yau theorem was established for immersed minimal
surfaces in Rn , n � 3, from any open Riemann surface of finite genus and at most
countably many ends, none of which are point ends.

Recently, the Calabi–Yau phenomenon has been discovered in other geometries, and it
is reasonable to expect that more examples will follow. This motivated us to formulate
an axiomatic approach by introducing the Calabi–Yau property, which a class of
immersions into a given Riemannian manifold N (or a class of manifolds) may or
may not have; see Definition 6.1 and Theorem 6.2. This property means that one
can enlarge the intrinsic diameter of an immersed manifold as much as desired by
C 0 –small perturbations of the immersion in the given class. Combining the Calabi–Yau
property with Runge’s approximation property for immersions of the given class into
the manifold N (see Definition 6.8) gives complete immersions of this class from all
open admissible manifolds into N ; see Theorem 6.9.

As a particular case of interest, we discuss Legendrian immersions. It was proved
in [7] that holomorphic Legendrian immersions from bordered Riemann surfaces
into any complex contact manifold with an arbitrary Riemannian metric enjoy the
Calabi–Yau property. We show that one can at the same time interpolate the given
map at finitely many points; see Corollary 6.7. Coupled with the Runge approxima-
tion theorem for Legendrian embeddings of open Riemann surfaces into CP3 (see
Corollary 3.7) and Bryant’s Legendrian embedding theorem for compact Riemann
surfaces [21, Theorem G], it follows that every Riemann surface embeds into CP3 as
a complete holomorphic Legendrian curve; see Corollary 6.11.

In Section 7 we apply our results to the study of superminimal surfaces in the 4–
sphere S4, endowed with the spherical metric. It follows in particular that the Runge
approximation theorem and the Weierstrass interpolation theorem hold for conformal
superminimal immersions of Riemann surfaces (both open and closed) into S4, and
every open Riemann surface is the conformal structure of a complete conformally
immersed superminimal surface in S4 ; see Corollaries 7.2 and 7.3. Furthermore,
any smooth conformal superminimal immersion M ! S4 from a compact bordered
Riemann surface can be approximated as closely as desired, uniformly on M, by a
continuous map M!S4 whose restriction to the interior of M is a complete conformal
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superminimal surface with Jordan boundary; see Theorem 7.4. The analogous result for
minimal surfaces in Rn , n� 3, with the Euclidean metric was proved in [4]. Finally,
for every open Riemann surface M, the spaces of conformal superminimal immersions
M ! S4 of positive or negative spin are path-connected; see Corollary 7.6.

Results of this paper concerning holomorphic Legendrian curves in CP3 can be gener-
alised to higher-dimensional projective spaces CP2nC1 with the unique holomorphic
contact structure determined by the following homogeneous holomorphic 1–form
on C2nC2 :

˛0 D

nX
jD0

z2j dz2jC1� z2jC1 dz2j :

Since CP2nC1 is the twistor space of the quaternionic projective space HPn (see
[39, page 113]), this gives similar applications to superminimal surfaces in HPn

for n> 1. We shall not give the details of this generalisation because this would
considerably enlarge the paper without providing any substantially new ideas or tech-
niques. After the completion of this paper, the approach developed here was used
by the second author in [26] to establish the Calabi–Yau property of superminimal
surfaces of appropriate spin in any self-dual or anti-self-dual Einstein four-manifold,
the four-sphere being a special case.

2 Representation formulas for Legendrian curves in CP 3

Let ˛0 be the homogeneous 1–form on C4 defined by (1-1). Its differential is the
standard complex symplectic form on C4. At each point zD .z0; z1; z2; z3/2C4nf0g,
ker˛0.z/ is a complex hyperplane in TzC4 containing the radial vector

P3
iD0 zi

@
@zi

.
Let � WC4 n f0g ! CP3 be the standard projection and Œz0 W z1 W z2 W z3� be the
homogeneous coordinates on CP3. Since ˛0 is homogeneous, there is a unique
holomorphic hyperplane subbundle � � T CP3 defined by the condition

fv 2 TzC4
W d�z.v/ 2 ��.z/g D ker˛0.z/; z 2C4

n f0g:

It turns out that � is a holomorphic contact bundle on T CP3, and the essentially
unique one; see [39] or [38, Proposition 2.3]. The following lemma shows that the
restriction of � to any affine chart C3 � CP3 is linearly contactomorphic to the
standard contact structure on C3.

Geometry & Topology, Volume 25 (2021)
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Lemma 2.1 For every projective hyperplane CP2
Š H � CP3, there are linear

coordinates .z0
1
; z0

2
; z0

3
/ on C3 DCP3

nH in which � is defined by the contact form

(2-1) ˛ D dz01C z02 dz03� z03 dz02:

Note that every linear automorphism of C3 extends to a unique projective automorphism
of CP3. Hence, in the context of the lemma, there exists � 2 Aut.CP3/ such that
�.H /DH and ��.�/D ker˛ on C3 DCP3

nH .

Proof Due to symmetries of ˛0 as defined in (1-1), it suffices to consider hyperplanes
H �CP3 of the form z0 D a1z1C a2z2C a3z3 for some a1; a2; a3 2C . The affine
chart CP3

nH DC3 is then determined by the affine hyperplane

ƒD fz0D 1C a1z1C a2z2C a3z3g �C4:

Note that .z1; z2; z3/ are affine coordinates on ƒ, and the restriction of ˛0 to it is

˛ D .1C a2z2C a3z3/ dz1� .z3C a2z1/ dz2C .z2� a3z1/ dz3:

We introduce new linear coordinates on C3 by

z01 D z1; z02 D z2� a3z1; z03 D z3C a2z1:

Then,
.1C a2z2C a3z3/ dz1 D .1C a2z0

2
C a3z0

3
/ dz1;

.z3C a2z1/ dz2 D z03.dz02C a3 dz1/D z03 dz02C a3z03 dz1;

.z2� a3z1/ dz3 D z02.dz03� a2 dz1/ D z02 dz03� a2z02 dz1;

and hence ˛ is given in these coordinates by (2-1).

Lemma 2.1 shows that for any hyperplane H � CP3, homogeneous coordinates
on CP3 can be chosen such that H D fz0 D 0g and the contact structure � is given
on C3 DCP3

nH as the kernel of the holomorphic contact form

(2-2) ˛ D dz1C z2 dz3� z3 dz2; ˛^ d˛ D 2dz1 ^ dz2 ^ dz3 ¤ 0:

Globally on CP3, ˛ is a meromorphic 1–form with a second-order pole along the
hyperplane H D fz0 D 0g. It can be viewed as a nowhere vanishing holomorphic
contact 1–form on CP3 with values in the normal line bundle L D T CP3=� of
the contact structure. (See [39, Section 2] for the precise explanation.) Furthermore,
!D ˛^d˛ is a holomorphic 3–form on CP3 with values in the line bundle L2, hence
an element of H 0.CP3;K˝L2/, where K Dƒ3.T �CP3/ is the canonical bundle
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of CP3. Being nowhere vanishing, ! defines a holomorphic trivialisation of K˝L2,
so we infer that LŠK�1=2 D OCP3.2/. In other words, the dual bundle L� DL�1

is the square of the universal bundle on CP3.

We also consider the contact form on C3 given by

(2-3) ˇ D dz1C z2 dz3;

with ˇ^ dˇ D dz1 ^ dz2 ^ dz3 . The map  WC3!C3 defined by

(2-4)  .z1; z2; z3/D
�
z1C

1
2
z2z3; z3;�

1
2
z2

�
is a polynomial automorphism of C3, and a simple calculation shows that  �˛ D ˇ .
It follows that  maps ˇ–Legendrian curves to ˛–Legendrian curves. Clearly, we can
represent ˇ–Legendrian curves in either of the following two forms:

z1 D f; z2 D �
df

dg
; z3 D g;(2-5)

z1 D �

Z
h dg; z2 D h; z3 D g;(2-6)

where f , g and h are meromorphic functions on a given Riemann surface M. (The
part of the curve contained in C3 is the image of the complement M nP of the set P

of poles of the respective pair of functions .f;g/ or .h;g/.)

In the first case (2-5), the pair of functions .f;g/ is arbitrary subject only to the
condition that g is nonconstant. The exceptional family of Legendrian lines with
z1 D constant and z3 D constant cannot be represented in this way.

In the second case (2-6), the pair .h;g/ must be such that h dg is an exact meromorphic
1–form, which therefore has a meromorphic primitive f D �

R
h dg determined up

to an additive constant. We discuss this condition in Proposition 2.4. Conversely,
assuming that g is nonconstant, we can express h in terms of f by hD�df=dg .

Applying the automorphism  2Aut.C3/ given by (2-4) to ˇ–Legendrian curves given
by (2-5) and (2-6), yields the following formulas for ˛–Legendrian curves in CP3 :

B.f;g/D

�
1 W f � 1

2
g

df

dg
W g W 1

2

df

dg

�
D
�
dg W f dg� 1

2
g df W g dg W 1

2
df
�
;(2-7)

F .h;g/D

�
1 W 1

2
hg�

Z
h dg W g W �1

2
h

�
D

�
1 W

Z
g dh� 1

2
hg W g W �1

2
h

�
:(2-8)

Both formulas depend on the choice of homogeneous coordinates and are related by

(2-9) B.f;g/DF .h;g/; where f D�
Z

h dg and hD�
df

dg
:
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The formula (2-7) was used by Bryant [21] to prove that every compact Riemann
surface embeds in CP3 as a holomorphic Legendrian curve. The second formula (2-8)
has been exploited in the study of Legendrian curves in C3 in the recent work [12].

The family of exceptional ˇ–Legendrian lines z1 D a D constant, z2 D 2t 2 C ,
z3 D b D constant is mapped by the automorphism  given in (2-4) to the family of
exceptional ˛–Legendrian lines

(2-10) Œ1 W aC bt W b W �t � with t 2CP1 and a; b 2C

which are not of the form B.f;g/. On the other hand, every Legendrian curve
intersecting this affine chart equals F .h;g/ for a unique pair of meromorphic functions
.h;g/ and a choice of an additive constant determining the value of the integral

R
h dg

at an initial point p0 2M.

We now show that every nonconstant Legendrian curve in CP3 is of the form B.f;g/

and F .h;g/ in some homogeneous coordinate system on CP3.

Proposition 2.2 Let F WM !CP3 be a nonconstant holomorphic Legendrian curve
from an open or compact Riemann surface M.

(a) There are homogeneous coordinates on CP3 such that F DB.f;g/ (see (2-7)),
where f and g are meromorphic functions on M with only simple poles.

(b) There are homogeneous coordinates on CP3 such that F DF .h;g/ (see (2-8)),
where h and g are meromorphic functions on M with only simple poles.

Furthermore , every Legendrian curve M ! CP3 given by (2-7) or (2-8), with the
functions f , g and h having only simple poles , is an immersion on a neighbourhood
of the union of the sets of poles of f and g for (2-7), or h and g for (2-8).

Proof Let F WM ! CP3 be a nonconstant holomorphic Legendrian curve. In
view of E Bertini’s theorem — see eg [33, page 150], or [37] and note that this is
essentially an application of the transversality theorem — F intersects most complex
hyperplanes H �CP3 transversely. Fix such an H , and choose homogeneous coor-
dinates Œz0 W z1 W z2 W z3� on CP3 with H D fz0 D 0g and so that the contact form on
CP3

nH DC3 is given by (2-2). The preimage F�1.H /D fp 2M W F.p/ 2H g is
then a closed discrete subset of M. Hence, we can represent F in either form (2-7)
or (2-8), the only exceptions being the family of projective lines (2-10), which cannot
be represented by Bryant’s formula (2-7). We shall deal with this issue later.

Geometry & Topology, Volume 25 (2021)



Holomorphic Legendrian curves in CP 3 and superminimal surfaces in S4 3515

Consider a point p 2 F�1.H /. Choose a local holomorphic coordinate � on M with
�.p/D 0. Write F D Œ1 W F1 W F2 W F3� and let k 2N be the maximal order of poles
at p of the components F1 , F2 and F3 . Multiplying by �k we obtain

F.�/D Œ�k
W �kF1.�/ W �

kF2.�/ W �
kF3.�/�;

where the functions �kFj .�/ for j 2 f1; 2; 3g are regular at � D 0 and at least one of
them is nonvanishing at � D 0. Looking at the map F in the corresponding affine chart
fzj D 1g, we see that F is transverse to H at the point p if and only if the derivative
dz0=d� is nonvanishing at � D 0, which holds if and only if k D 1. Inspection of
the formulas for B.f;g/ and F .h;g/ then shows that the functions f and g , or h

and g , have at most simple poles at p . Conversely, the above argument shows that the
intersection of F with H is transverse at any simple pole of the functions f and g

or h and g . In particular, F is an immersion near such points.

It remains to show that the exceptional lines (2-10) become nonexceptional in another
coordinate system. Consider the following coordinates on CP3 :

z00 D z0; z01 D z1; z02 D�z3; z03 D z2:

We have not changed H D fz0 D 0g, so we are still in the same affine chart. In these
coordinates, the form ˛0 (1-1) restricted to the affine chart fz0 D 1g equals

˛ D dz01C z02 dz03� z03 dz02;

and the exceptional family of lines is given in the new coordinates by

Œ1 W aC bt W t W b� with t 2CP1 and a; b 2C:

This curve equals B.f;g/ with f .t/D aC 2bt and g.t/D t . This shows that every
nonconstant Legendrian curve in CP3 is of the form B.f;g/ in some homogeneous
coordinate system.

There are Legendrian immersions (2-7) and (2-8) given by functions f , h and g with
higher-order poles. However, this means that the hyperplane H determining the affine
chart was not well chosen, and a small deformation of it yields a representation by
functions with simple poles.

The following is an immediate corollary to Proposition 2.2.

Corollary 2.3 Let F DF .h;g/ WM !CP3 be a holomorphic Legendrian curve of
the form (2-8) with g and h having only simple poles. Then , F is an immersion if and
only if .h;g/ WM nP !C2 is an immersion , where P D P .h/[P .g/ is the union
of polar loci of h and g .
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Proof By Proposition 2.2, F is an immersion if and only if its restriction M nP!C3

is an immersion. This restriction is equivalent to the ˇ–Legendrian curve (2-6) under the
automorphism  2Aut.C3/ given by (2-4). Obviously, the map (2-6) is an immersion
if and only if .h;g/ WM nP !C2 is an immersion.

The precise conditions for a Legendrian map F D B.f;g/ to be an immersion are
more complicated. By Lemma 3.3, if g is an immersion, then B.f;g/ is an immersion.
See the discussion preceding Theorem 3.4 for more information.

Let us look more closely at the formula (2-8). The meromorphic 1–form h dg on M is
exact if and only if

R
C h dgD 0 for every closed curve C in M which does not contain

any poles of h dg . There are two types of curves to consider: those in a homology
basis of M (they can be chosen in the complement of the set of poles of h dg ), and
small loops around the poles of h dg . The integral of h dg around a pole a equals
2� i Resa.h dg/. Let us record this observation.

Proposition 2.4 A pair of meromorphic functions .h;g/ on a Riemann surface M

determines a Legendrian map F D F .h;g/ WM ! CP3 (2-8) if and only if the
following two conditions hold :

(a)
R

C h dgD 0 for every closed curve in a basis of the homology group H1.M;Z/.

(b) Resa.h dg/D 0 holds at every pole of h dg .

If a is a simple pole of g or h, then condition (b) is equivalent to

(2-11) c�1.h; a/c1.g; a/� c�1.g; a/c1.h; a/D Resa.h dg/D 0;

where ck.h; a/ denotes the coefficient of the term .z � a/k in a Laurent series repre-
sentation of h at a (so c�1.h; a/D Resa h).

The situation is more complicated at poles of higher order. However, the case of
first-order poles is a generic one in view of Proposition 2.2.

Proof It remains to show that (2-11) holds at a simple pole a 2M of h or g . In a
local holomorphic coordinate z on M, with z.a/D 0, we have that

h.z/D
c�1.h/

z
C c0.h/C c1.h/zC � � � ;

g.z/D
c�1.g/

z
C c0.g/C c1.g/zC � � � ;

g0.z/D�
c�1.g/

z2
C c1.g/C � � � ;

Geometry & Topology, Volume 25 (2021)
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from which we easily infer that

Res0.hg0/D c�1.h/c1.g/� c�1.g/c1.h/:

This gives (2-11) and completes the proof.

Remark 2.5 In particular, if a 2M is a simple pole of h while g is regular at a,
we have

Resa.h dg/D Resa.hg0/D g0.a/Resa h:

Similarly, if a is a simple pole of g while h is regular at a, we have

Resa.h dg/D h0.a/Resa g:

Assuming that h and g have only simple poles and no common pole, we infer that the
1–form h dg has vanishing residues precisely when h has a critical point at each pole
of g , and g has a critical point at each pole of h.

Remark 2.6 An advantage of Bryant’s formula (2-7) over (2-8) is that it applies to
any pair .f;g/ of meromorphic functions with g nonconstant. A disadvantage is that
the Legendrian curve B.f;g/ does not depend continuously on .f;g/ near a common
critical point of f and g ; see Remark 3.9. This becomes a major drawback especially
when trying to construct families of Legendrian curves depending continuously on
parameters. A similar difficulty was encountered in [28] when studying holomorphic
Legendrian curves in projectivised cotangent bundles. On the other hand, the Legendrian
curve F .h;g/ (2-8) depends continuously on the pair .h;g/ for which h dg is an
exact 1–form.

3 Approximation and interpolation for Legendrian curves
in CP 3

In this section we prove the Runge approximation theorem with interpolation at
finitely many points for holomorphic Legendrian curves in CP3 (Theorem 3.2) and
holomorphic Legendrian immersions (Theorem 3.4), both from compact and open
Riemann surfaces. As a corollary, we obtain the interpolation theorem on a discrete set
(Corollary 3.6).

We shall use the following version of the Runge approximation theorem, proved by
H L Royden [44] in 1967, which we state here for the reader’s convenience. In this
theorem, the given function is allowed to have poles on the set where the approximation
takes place.

Geometry & Topology, Volume 25 (2021)
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Theorem 3.1 (Royden [44]) Let M be a compact Riemann surface and K ¤M

be a compact subset of M. Let E consist of one point in each connected component
of M nK, let f be holomorphic on a neighbourhood of K except for finitely many
poles in K, and let D be an effective divisor with support in K. Given � > 0, there is
a meromorphic function F on M, holomorphic on M nE except at the poles of f ,
such that .f �F /�D and jf �F j< � on K.

The condition .f �F / � D in the theorem simply means that F agrees with f to
order D.x/ > 0 at every point x 2K of the finite support of the divisor D .

Here is our first approximation theorem.

Theorem 3.2 Let M be a Riemann surface , open or compact , and let K be a compact
subset of M. Every holomorphic Legendrian map ˆ from a neighbourhood of K

to CP3 can be approximated uniformly on K by holomorphic Legendrian maps
M !CP3. The approximants can be taken to agree with ˆ to any finite order at each
point of any finite subset of K.

We take a Riemann surface to be connected by definition, but the neighbourhood in the
theorem need not be connected.

Proof First we note that the compact case of the theorem implies the open case. Indeed,
if M is open, we exhaust M by smoothly bounded compact domains containing K

and use induction, applying the compact case of the theorem to a compactification of
each domain. Hence, from now on, we assume that M is compact.

Let ˆ be a holomorphic Legendrian map from a neighbourhood V of K¤M to CP3.
By Proposition 2.2, we may assume that ˆDB.f;g/, where f and g are meromorphic
on V and g is not constant on any connected component of V .

Let B be the finite subset of K consisting of the poles of f , the poles of g , and the
common critical points of f and g in K. We use Royden’s theorem to approximate
f and g uniformly on a neighbourhood of K by meromorphic functions fn and gn

on M, respectively, such that the functions �n D fn � f and  n D gn � g , which
are holomorphic and go to zero uniformly on a neighbourhood of K, vanish at each
point of B to sufficiently high order N , independent of n, to be specified as the proof
progresses.
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We claim that if N is sufficiently large, then the holomorphic Legendrian maps
B.fn;gn/ WM !CP3 converge to B.f;g/ uniformly on K as n!1.

Near a point p of K nB , with respect to a local coordinate z centred at p ,

B.f;g/D
�
g0 W fg0� 1

2
f 0g W gg0 W 1

2
f 0
�
:

On a neighbourhood U of p with U \B D¿, fn! f and gn! g uniformly, these
functions are holomorphic, and the same holds for their derivatives, so�

g0n; fng0n�
1
2
f 0ngn;gng0n;

1
2
f 0n
�
!
�
g0; fg0� 1

2
f 0g;gg0; 1

2
f 0
�

uniformly on U as n!1. Also, .g0; fg0� 1
2
f 0g;gg0; 1

2
f 0/¤ .0; 0; 0; 0/ at every

point of U, so B.fn;gn/!B.f;g/ uniformly on U.

Next, let p 2B . Then the lowest order m2Z at p of the components g0 , fg0� 1
2
f 0g ,

gg0 and 1
2
f 0 of B.f;g/ is not zero. If N is large enough, then a component of

B.f;g/ of order m corresponds to a component of B.fn;gn/ of lowest order, and
that lowest order is also m. If we now multiply the components by z�m , then we are
in the same situation as before and need to show that�
z�mg0n; z

�m
�
fng0n�

1
2
f 0ngn

�
; z�mgng0n;

1
2
z�mf 0n

�
!
�
z�mg0; z�m

�
fg0� 1

2
f 0g

�
; z�mgg0; 1

2
z�mf 0

�
uniformly near p as n!1. Note that each difference

z�mg0n� z�mg0; z�m
�
fng0n�

1
2
f 0ngn

�
� z�m

�
fg0� 1

2
f 0g

�
;

z�mgng0n� z�mgg0; 1
2
z�mf 0n�

1
2
z�mf 0

is a sum of terms of the form z�m times one of the functions

�0n;  0n; �n 
0
n; �0n n;  n 

0
n; f 0 n; f  0n; g0�n; g�0n; g0 n; g 0n;

perhaps with a factor of 1
2

. By the maximum principle, z�N�n and z�N n go to zero
uniformly near p . Likewise, z�NC1�0n and z�NC1 0n go to zero uniformly near p .
Hence, if N is big enough, all those differences go to zero uniformly near every point p

in the finite set B .

Jet interpolation can be achieved by taking N large enough and, if necessary, adding
finitely many points to B .

Next we adapt Theorem 3.2 to immersions. First we need to determine those meromor-
phic functions f and g for which B.f;g/ is an immersion.
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First, if f is constant, then B.f;g/ D Œdg W f dg W g dg W 0� D Œ1 W f W g W 0� is an
immersion if and only if g is an immersion. Now suppose that f is not constant. In
suitable local coordinates centred at a point p in M and at the point g.p/ in CP1,
write g.x/D xb , b ¤ 0, and f .x/D xah.x/, where h is holomorphic near p and
h.0/¤ 0. If aD 0, then

B.f;g/D
�
bxb�1

W bxb�1f .x/� 1
2
xbf 0.x/ W bx2b�1

W
1
2
f 0.x/

�
:

The orders of the components at p are

Œb� 1 W b� 1 W 2b� 1 W ordp f
0
� 0�:

If a¤ 0, then

B.f;g/D�
bxb�1

W bxb�1xah.x/� 1
2
xb.axa�1h.x/Cxah0.x// W bx2b�1

W

1
2
.axa�1h.x/Cxah0.x//

�
;

so the orders of the components at p are

Œb� 1 W c W 2b� 1 W a� 1�; where c D

�
aC b� 1 if a¤ 2b,
aC bC ordp h0 if aD 2b.

Now B.f;g/ is regular at p if and only if the smallest and the second smallest order
differ by 1. It is easily checked that this condition is satisfied when g is regular at p ,
that is, when b D˙1. Indeed, for b D 1, the orders are8<:

Œ0 W 0 W 1 W � 0� if aD 0,
Œ0 W � 3 W 1 W 1� if aD 2,
Œ0 W a W 1 W a� 1� if a¤ 0; 2,

and for b D�1, the orders are8<:
Œ�2 W �2 W �3 W � 0� if aD 0,
Œ�2 W � �3 W �3 W �3� if aD�2,
Œ�2 W a� 2 W �3 W a� 1� if a¤ 0;�2.

Let us record this observation.

Lemma 3.3 If g is an immersion , then B.f;g/ is an immersion.

We see that when g is critical at p — that is, b � 2 or b � �2 — then B.f;g/ is
regular at p if, for example, aD b�1. On the other hand, regularity of f may not be
enough to ensure regularity of B.f;g/, for example when aD 1 and b D 3.
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In fact, we see that if g is critical at p , then B.f;g/ is regular at p if and only if the
degrees of the first two terms in the Laurent series of f at p belong to a certain set of
admissible pairs of integers that only depends on the order of g at p (and that is quite
complicated to describe explicitly).

Theorem 3.4 Let M be a Riemann surface , open or compact , and let K be a compact
subset of M. Every holomorphic Legendrian immersion ˆ from a neighbourhood of K

to CP3 can be uniformly approximated on K by holomorphic Legendrian immersions
M !CP3. The approximants can be taken to agree with ˆ to any given finite order
at each point of any given finite subset of K.

Remark 3.5 We shall see in Corollary 6.11(ii) that the approximating immersion
M ! CP3 in Theorem 3.4 can always be chosen to be complete, ie such that the
pullback of any Riemannian metric on CP3 by the immersion is a complete metric
on M.

Proof of Theorem 3.4 As in the proof of Theorem 3.2, it suffices to take M to be
compact. By Theorem 3.2, a Legendrian immersion � from a neighbourhood U of K

to CP3 can be approximated on K by a Legendrian map B.f0;g/ WM !CP3. If we
approximate sufficiently well on a compact neighbourhood of K in U, then B.f0;g/

will be an immersion on a neighbourhood V of K. On M nV , g has finitely many
critical points, at which B.f0;g/ may not be regular.

Let h be a meromorphic function on a neighbourhood of the disjoint union L of a
compact neighbourhood K0 of K and closed coordinate discs centred at each of the
critical points of g in M nK, such that h D f0 near K0 , and h has order b � 1

at each critical point of g of order b . As in the proof of Theorem 3.2, we can use
Royden’s theorem to approximate h uniformly on L by a meromorphic function f
on M such that

� B.f;g/ is as close as we wish to B.f0;g/ on K0 , so in particular, B.f;g/ is
an immersion on a neighbourhood of K;

� at each critical point of g in M nK of order b , f has order b� 1, so B.f;g/

is regular there.

Then B.f;g/ WM ! CP3 is a Legendrian immersion that uniformly approximates
� on K as closely as desired. Finally, jet interpolation can be incorporated using
Theorem 3.2.
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Corollary 3.6 Let E be a closed discrete subset of a Riemann surface M. Every map
E!CP3 can be extended to a holomorphic Legendrian immersion M !CP3.

Proof For a compact Riemann surface M this is a corollary of Theorem 3.4, applied
to K being the union of small mutually disjoint discs around the points of E . For an
open Riemann surface we apply Theorem 3.4 inductively, interpolating at more and
more points of the given discrete set as we go.

Corollary 3.7 Let M be an open Riemann surface. Every holomorphic Legendrian
immersion M !CP3 can be approximated , uniformly on compact subsets of M, by
holomorphic Legendrian embeddings M ,!CP3.

Proof Let � WM ! CP3 be a holomorphic Legendrian immersion. Choose an
exhaustion K1 �K2 � � � � of M by compact subsets without holes so that each Kj

is contained in the interior of the next set KjC1 . By [7, Theorem 1.2], � can be
approximated arbitrarily closely, uniformly on Kı

3
, by a holomorphic Legendrian

embedding  WKı
3
! CP3. By Theorem 3.4,  can be approximated uniformly

on K2 by a holomorphic Legendrian immersion �1 WM !CP3. If the approximation
is close enough then �1 is injective on K1 . Repeating the same argument, �1 can
be approximated arbitrarily closely on K3 by a holomorphic Legendrian immersion
�2 WM !CP3 that is an embedding on K2 . Continuing in this way with sufficiently
close approximations and passing to the limit, the corollary is proved.

Problem 3.8 Let M be a compact Riemann surface. Is it possible to approximate
every holomorphic Legendrian immersion M !CP3 by a holomorphic Legendrian
embedding?

In this connection, Bryant did prove in [21, Theorem G] that every compact Riemann
surface admits a holomorphic Legendrian embedding into CP3, but his proof does not
seem to provide an answer to the above problem, and we could not find one either.

Remark 3.9 We have a bijection .f;g/ 7! B.f;g/ from the space of pairs .f;g/
of meromorphic functions on M with g nonconstant to the space of holomorphic
Legendrian maps M!CP3 whose image does not lie in a plane of the form Œz0 W z2�D

constant. As noted in Remark 2.6, this bijection is not continuous. (The analogous
phenomenon for projectivised cotangent bundles was observed in [28].) Take, for
example, M DC , f .x/D x2, and g�.x/D .xC �/

2 with � 2C . Then

B.f;g�/.x/D
�
xC � W 1

2
x.x2

� �2/ W .xC �/3 W x
�
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and in particular, B.f;g0/.x/ D
�
1 W 1

2
x2 W x2 W 1

�
, so B.f;g�/.0/ D Œ1 W 0 W �

2 W 0�

for � ¤ 0, but B.f;g0/.0/D Œ1 W 0 W 0 W 1�.

The inverse bijection B�1 , however, is continuous. Indeed, we can retrieve g from
B.f;g/ by postcomposing by the meromorphic function

 W Œz0 W z1 W z2 W z3� 7!
z2

z0

;

and retrieve f by postcomposing by

� W Œz0 W z1 W z2 W z3� 7!
z0z1C z2z3

z2
0

;

so B�1.h/D .� ı h;  ı h/ for a holomorphic Legendrian map h WM !CP3 whose
image does not lie in a plane of the form Œz0 W z2� D constant. To see that B�1 is
continuous, note that the image of h will not lie in the indeterminacy locus of either �
or  , since both loci lie in the plane where z0 D 0.

As shown in the proof of Theorem 3.2, despite the failure of continuity of B , if
.fn;gn/! .f;g/ uniformly on a neighbourhood of a compact subset K of a Riemann
surface and the functions fn�f and gn�g , which are holomorphic and go to zero
uniformly on a neighbourhood of K, vanish to sufficiently high order, independent
of n, at each pole of f , pole of g , and common critical point of f and g in K, then
the holomorphic Legendrian maps B.fn;gn/ converge to B.f;g/ uniformly on K

as n!1.

4 The space of Legendrian immersions M ! CP 3 is
path-connected

In this section we prove the following result.

Theorem 4.1 The space of holomorphic Legendrian immersions from an open Rie-
mann surface to CP3 is path-connected in the compact–open topology.

From a purely technical viewpoint, this may be the most difficult result in the paper. The
fact that homogeneous coordinates on CP3 can be chosen such that the meromorphic
functions defining a given immersed holomorphic Legendrian curve have only simple
poles (see Proposition 2.2) is essential in our proof.
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We shall need the following parametric version of Weierstrass’s interpolation theorem
for finitely many points in an open Riemann surface. A similar result holds for a
variable family of infinite discrete sets of points, but this simple version suffices for
our present application.

Lemma 4.2 Let M be an open Riemann surface. Given maps aj W Œ0; 1�!M with
j D 1; : : : ; k of class C r for some r 2 f0; 1; : : : ;1; !g and integers n1; : : : ; nk 2N ,
there is a path of holomorphic functions ft 2 O.M / with C r dependence on t such
that for every t 2 Œ0; 1� and j D 1; : : : ; k , the function ft vanishes to order nj at aj .t/

and has no other zeros.

Proof It suffices to prove the result for k D 1 and n1 D 1; the general case is then
obtained by taking, for each j D 1; : : : ; k , a path of functions fj ;t with a simple zero
at aj .t/ and no other zeros, and letting ft D

Qk
jD1 f

nj

j ;t .

Hence, let a W Œ0; 1�!M be a C r function. Assume first that a is real-analytic. Then,
a complexifies to a holomorphic map from an open simply connected neighbourhood
D � C of the interval Œ0; 1� � R � C to M. Its graph † D f.z; a.z// W z 2 Dg �

D�M is a smooth complex hypersurface, which defines a divisor on the Stein surface
D �M. Since we clearly have H 2.D �M;Z/D 0, K Oka’s solution of the second
Cousin problem [41] shows that this divisor is defined by a holomorphic function
f 2 O.D �M / which vanishes to order 1 on † and has no other zeros. The function
ft D f .t; � / 2 O.M / then has a simple zero at a.t/ and no other zeros, and its
dependence on t 2 Œ0; 1� is real-analytic.

If a is of class C r but not real-analytic, we proceed as follows. Choose a nowhere
vanishing holomorphic vector field V on M and a relatively compact Runge domain
M0 b M such that a.t/2M0 for all t 2 Œ0; 1�. There is � > 0 such that the flow �s.x/

of V exists for any initial point �0.x/D x 2M0 and for all s 2C with jsj< � , and
s 7! �s.x/ maps the disc jsj< � biholomorphically onto a neighbourhood U.x/�M

of x . The diameter of these neighbourhoods in a fixed metric on M is uniformly
bounded from below for x 2M0 . Hence, approximating a W Œ0; 1�!M0 sufficiently
closely by a real-analytic map za W Œ0; 1� ! M, we have that za.t/ D �s.t/.a.t// for
a unique C r function s D s.t/ with js.t/j < � for all t 2 Œ0; 1�. If zft 2 O.M / is
a real-analytic path of functions with simple zeros at za.t/ for t 2 Œ0; 1�, then ft D

zft ı�s.t/ 2 O.M0/ is a C r path of functions with simple zeros at a.t/.

To complete the proof, we approximate the path ft by a path of holomorphic functions
on M without creating additional zeros. This is done inductively, exhausting M
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by an increasing sequence of Runge domains M0 � M1 � � � � �
S1

jD1 Mj D M

and constructing a sequence of C r paths fj ;t 2 O.Mj /, j 2 ZC , having simple
zeros at a.t/ and converging to a C r path ft 2 O.M / with the same property. Note
that fjC1;t D fj ;tgj ;t on Mj , where gj ;t is a C r path in O.Mj ;C�/. By the
parametric Oka theorem for maps to C�, we can approximate the path gj ;t by a
C r path zgj ;t 2 O.MjC1;C

�/. Replacing fjC1;t by fjC1;t zg
�1
j ;t gives a C r path in

O.MjC1;C
�/, which approximates fj ;t as closely as desired on a chosen compact

subset of Mj . Assuming that the approximations are close enough, the sequence fj ;t

converges as j !1 to a C r path ft 2 O.M / solving the problem.

Proof of Theorem 4.1 Given a pair of Legendrian immersions F0;F1 WM !CP3,
we must find a path of Legendrian immersions Ft WM !CP3, t 2 Œ0; 1�, connecting
F0 to F1 .

Choose a hyperplane H � CP3 such that F0 and F1 are transverse to H . (Most
hyperplanes satisfy this condition by Bertini’s theorem, see [37].) By Proposition 2.2,
there are homogeneous coordinates Œz0 W z1 W z2 W z3� on CP3, with H D fz0D 0g, such
that Fj DF .hj ;gj / for j D 0; 1, where hj and gj are meromorphic functions on M

with only simple poles satisfying condition (2-11). To prove the theorem, we shall find
a path .ht ;gt / with t 2 Œ0; 1� of pairs of meromorphic functions on M connecting
.h0;g0/ to .h1;g1/ and satisfying the following conditions for every t 2 Œ0; 1�:

(i) ht and gt have only simple poles, and the relations (2-11) hold.

(ii)
R

C ht dgt D 0 for every closed curve C in a homology basis of M.

(iii) Let Pt D P .ht /[P .gt /�M denote the union of the polar loci of ht and gt .
Then the map .ht ;gt / WM nPt !C2 is an immersion.

(By the assumptions, these conditions hold for t D 0; 1.) In light of (i), condition (iii)
is clearly equivalent to

(iv) .ht ;gt / WM ! .CP1/2 is an immersion.

The path of holomorphic Legendrian immersions Ft DF .ht ;gt / WM !CP3 with
t 2 Œ0; 1� then satisfies the conclusion of the theorem.

We shall do this by inductively approximating a path .ht ;gt / satisfying the stated
conditions on some connected Runge domain D b M by a path satisfying the same
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conditions on a bigger Runge domain D0 b M. To be precise, we exhaust M by an
increasing sequence

K1 �K2 � � � � �

1[
jD1

Kj DM

of compact smoothly bounded domains without holes such that Kj �Kı
jC1

for every
j 2 N . (The set K1 may be chosen as big as desired.) At every stage we shall
approximate a given family of solutions .hj

t ;g
j
t / on a neighbourhood of Kj by one

on a neighbourhood of KjC1 which has the same jets at a prescribed finite family of
points in Kj . Furthermore, we will ensure that .hj

t ;g
j
t / agrees with the given pair

.ht ;gt / for t D 0 and t D 1.

Since we shall be using partitions of unity on Œ0; 1�, we must give ourselves some
freedom at the endpoints. To this end, choose a small number 0< r1 <

1
2

and define

.ht ;gt /D

�
.h0;g0/ for t 2 Œ0; r1�;

.h1;g1/ for t 2 Œ1� r1; 1�:

For t 2 Œ0; r1�[ Œ1� r1; 1�, let At , Bt and Ct denote closed discrete subsets of M

such that

(a) At is the set of poles of ht which are not poles of gt ,

(b) Bt is the set of poles of gt which are not poles of ht ,

(c) Ct is the set of common poles of gt and ht .

Thus, the set
Pt WDAt [Bt [Ct �M

is the union of polar loci of ht and gt . (The reason for specifically distinguishing
points in Ct will become apparent shortly.) These sets do not depend on t in the
indicated pair of intervals, but they will become t –dependent in subsequent steps when
extending them to bigger sets of parameter values t 2 Œ0; 1�.

In the initial stage of the induction process we shall construct a path .ht ;gt / of pairs
of meromorphic functions on an open neighbourhood U D U1 of K1 in M such that
conditions (a)–(c) above hold for all t 2 Œ0; 1� at the points in Pt \U. This will be
done in four steps. The neighbourhood U may shrink around K1 at every step without
saying so each time.

Fix, once and for all, a holomorphic immersion � WM !C (as provided by the theorem
of R Gunning and R Narasimhan [34]), so � provides a local holomorphic coordinate
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at every point of M. We can express any meromorphic function h in a neighbourhood
of a point p 2M by a Laurent series in the local holomorphic coordinate zD ���.p/.
We denote by ck.h;p/ the k th coefficient of h at p in this series. Note that these
coefficients are already defined for our functions ht ;gt near t D 0; 1, they vanish for
k < �1 since the functions have only simple poles, and they satisfy condition (2-11).

Step 1 Choose a connected open neighbourhood D1 of K1 such that bD1 \P0 D

bD1\P1 D¿. For t 2 Œ0; r1�[ Œ1� r1; 1�, let

A1
t DAt \D1; B1

t D Bt \D1; C 1
t D Ct \D1:

We now extend each of these sets to all parameter values t 2 Œ0; 1� — possibly adding
more points to the already given sets — as follows. We connect a point a 2 A1

0
to a

point a0 2 A1
1

by a smooth path a.t/ 2D1 , t 2 Œ0; 1�, so that a.t/D a for t 2 Œ0; r1�

and a.t/D a0 for t 2 Œ1� r1; 1�, ensuring that paths of this kind with distinct initial
points remain distinct at all t 2 Œ0; 1�. This is possible for all points in A1

0
and A1

1
if

and only if they have the same cardinality. If A1
0

has more points than A1
1

, we choose
a path a.t/ starting at a point in A1

0
without a matching pair in A1

1
such that a.t/

exits D1 at some time t0 2 .0; 1/, and we define it in an arbitrary way (but staying
in M nD1 ) for the remaining values t 2 .t0; 1�. If on the other hand A1

1
has more

points than A1
0

, we do the same for points in A1
1

without matching pairs in A1
0

, with t

now running from t D 1 back to t D 0. (The parts of these paths lying in M nD1 will
be redefined in the next stage of the induction process.) Let A1

t �M, t 2 Œ0; 1� denote
the finite set of points obtained in this way. Note that the cardinality of A1

t for each t

equals the bigger of the cardinalities of A0\D1 and A1\D1 , and in the process we
may have added more points to these sets.

We repeat the same procedure with the points in the families B and C , making sure
that the resulting sets A1

t ;B
1
t ;C

1
t are pairwise disjoint for all t 2 Œ0; 1�. Let

(4-1) P1
t WDA1

t [B1
t [C 1

t :

By construction, the points in P1
t vary smoothly with t and their number does not

depend on t . Hence, by Lemma 4.2 there is a smooth path of holomorphic functions
ft 2O.M /, t 2 Œ0; 1�, vanishing to order 2 at each of the points in P1

t and nowhere else.

Step 2 Let D1 be the neighbourhood of K1 as in Step 1. We extend the meromorphic
jets of .ht ;gt / containing terms of orders �1; 0; 1 in their Laurent series expansion,
which are already defined at points in P1

t \D1 for t 2 Œ0; r1�[ Œ1� r1; 1�, to a smooth
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path of jets defined at all points of P1
t \D1 , t 2 Œ0; 1�, such that condition (2-11) holds.

(Recall that this condition ensures the existence of local meromorphic primitives of
ht dgt at the points in P1

t \D1 .)

Let us explain the details. We are interested in jets of the form

�h
p .�/D ch

�1.p/.� � �.p//
�1
C ch

0 .p/C ch
1 .p/.� � �.p//;(4-2)

�g
p .�/D c

g
�1
.p/.� � �.p//�1

C c
g
0
.p/C c

g
1
.p/.� � �.p//:(4-3)

For p 2 P1
t \D1 with t 2 Œ0; r1�[ Œ1� r1; 1�/, and j D�1; 0; 1, we set

ch
j .p/D cj .ht ;p/ and c

g
j .p/D cj .gt ;p/;

where ht and gt are the meromorphic functions given initially. It is elementary to
extend the coefficients ch

j and c
g
j to smooth functions

ch
j ; c

g
j W P

1
t \D1!C for t 2 Œ0; 1�; j D�1; 0; 1;

satisfying the following conditions:

� At points p 2A1
t \D1 we have ch

�1
.p/¤ 0 and c

g
1
.p/D 0.

� At points p 2 B1
t \D1 we have c

g
�1
.p/¤ 0 and ch

1
.p/D 0.

� At points p 2 C 1
t \D1 we have ch

�1
.p/¤ 0, c

g
�1
.p/¤ 0, and

ch
�1.p/c

g
1
.p/� c

g
�1
.p/ch

1 .p/D 0:

These are precisely condition (2-11). There are no conditions on ch
0

and c
g
0

.

Remark 4.3 The above conditions on points p 2 Ct allow nonzero values of ch
1
.p/

and c
g
1
.p/, while those for points p 2At force c

g
1
.p/D 0, and those for points p 2Bt

force ch
1
.p/D 0. Hence, if a common pole of ht and gt split into a pair of distinct

poles of these functions for nearby values of t , the required conditions could not always
be satisfied in a continuous way. For this reason, these three types of poles must remain
distinct for all values of t .

Step 3 We shall find smooth paths ht and gt of meromorphic functions on a neigh-
bourhood U �D1 of K1 having the jets constructed in Step 2 at the points of P1

t \U.
(It will suffice to use paths of class C 1 in the variable t 2 Œ0; 1�.) In particular, these
functions will agree with the already given ones for t near 0 and 1, and they will
satisfy the following conditions for every p 2 Pt \U and t 2 Œ0; 1�:

ch
˙1.p/D c˙1.ht ;p/ and c

g
˙1
.p/D c˙1.gt ;p/:
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These are Mittag-Leffler interpolation conditions at a variable family of points in the
open Riemann surface M. This problem can be solved by using the x@–equation together
with Lemma 4.2. An important point is that a convex combination of solutions is again
a solution, a fact which allows for the use of partitions of unity in the t variable. A
detail that one must pay attention to is that the number of points in the sets P1

t \D1

may vary with t . We now explain how to do this.

Fix a point t0 2 .0; 1/. We shall first solve the problem locally for t near t0 . (For
t0 D 0 and 1, we take the already given functions defined on all of M.) Choose a
domain D0

1
with K1 �D0

1
�D1 such that P1

t0
\ bD0

1
D¿; see (4-1). Then, there is

an open interval It0
� Œ0; 1� around t0 such that P1

t \bD0
1
D¿ for all t 2 It0

. Hence,
the number of points in the set

P1
t \D01 D fp1.t/; : : : ;pk.t/g

is independent of t 2 It0
. Choose small pairwise disjoint coordinate neighbourhoods

Uj � D0
1

of the points pj .t0/ for j D 1; : : : ; k , and for each j choose a smooth
function �j WM ! Œ0; 1� which equals 1 on a neighbourhood Vj b Uj of pj .t0/ and
has support contained in Uj . Shrinking the interval It0

around t0 , we may assume that
pj .t/ 2 Vj for all t 2 xIt0

and j D 1; : : : ; k . Recall that the jet �h
p is given by (4-2).

We define

zht .x/D

kX
jD1

�j .x/ �
h
pj .t/

.�.x// for x 2M:

The same expression, with �h replaced by �g , defines zgt . Note that zht is a smooth
function on M nP1

t , whose restriction to Vj agrees with �h
pj .t/

for every j D 1; : : : ; k ;
the analogous statement holds for zgt . Since the number of points pj .t/ 2 P1

t \D0
1

is independent of t 2 It0
, Lemma 4.2 furnishes a path of holomorphic functions

ft 2 O.M / with t 2 It0
, vanishing to order 2 at these points and nowhere else. We

look for the desired path .ht ;gt / with t 2 It0
, in the form

ht D
zht �ft�t ; gt D zgt �ft�t ;

where �t and �t are paths of smooth functions to be found. The choice of ft implies
that .ht ;gt / has the same jet with coefficients �1; 0; 1 as .zht ; zgt / at the points in
P1

t \D0
1

, and hence condition (2-11) still holds for .ht ;gt /.

The condition that ht is holomorphic (except at the poles in P1
t \D0

1
) is

0D x@ht D
x@zht �ft

x@�t ()
x@�t D

x@zht

ft
DW ˛t :
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Note that x@zht vanishes in V
j
t for each j D 1; : : : ; k , and since ft has zeros only on

P1
t \D0

1
, ˛t is a smooth .0; 1/–form on M depending smoothly on t 2 It0

. Hence,
the equation x@�t D ˛t has a solution depending smoothly on t 2 It0

, and we get a
desired path of functions ht as above. The same procedure applies to gt .

Remark 4.4 (on the parametric x@–equation) There are several approaches in the
literature to solving the nonhomogeneous x@–equation by bounded linear operators,
which therefore also apply in the parametric case. In the simple case at hand we have
a 1–parameter family of x@–equations on a domain in an open Riemann surface. In
this case, a solution operator — a Cauchy–Green-type operator similar to the one in
the complex plane — has already been constructed by H Behnke and K Stein in 1949;
see [19]. A discussion of this topic can be found in [24, Section 2]; see in particular
Remark 1 there.

It remains to combine the partial solutions, obtained in this way on parameter subinter-
vals It0

� Œ0; 1�, into a solution .h1
t ;g

1
t /, t 2 Œ0; 1�, over a neighbourhood U of K1 .

This is done by applying a smooth partition of unity on Œ0; 1�. We can easily arrange
that g1

t be a nonconstant function for each t and that .h1
t ;g

1
t / agree with the initial

pair .ht ;gt / for t near 0 and 1.

Step 4 We shall deform the path .h1
t ;g

1
t /, t 2 Œ0; 1�, of meromorphic functions

from Step 3, keeping it fixed to the second order at the points in P t
1
\U for all t ,

and on U for t near 0 and 1, to a path of immersions .ht ;gt / W U ! .CP1/2 such
that the 1–forms ht dgt have vanishing periods on a system of curves forming a
homology basis of K1 . (The neighbourhood U is allowed to shrink around K1 .)
Then, Ft DF .ht ;gt / for t 2 Œ0; 1� (see (2-8)) is a path of holomorphic Legendrian
immersions from a neighbourhood of K1 into CP3 , which agrees with the given path
for t near 0 and 1.

The deformation will consist of two substeps. In the first one we shall obtain a path of
immersions U ! .CP1/2, and in the second one we will modify it (through a path of
immersions) to one satisfying also the period vanishing conditions.

For Substep 1 we consider paths .ht ;gt / of the form

(4-4) ht D h1
t Cft�t ; gt D g1

t Cft�t ;

where ft 2 O.M / is a path of holomorphic functions vanishing to the second order at
the points of P1

t and nowhere else (such a path exists by Lemma 4.2) and �t ; �t 2O.U /

Geometry & Topology, Volume 25 (2021)



Holomorphic Legendrian curves in CP 3 and superminimal surfaces in S4 3531

are paths of holomorphic functions to be chosen. Note that every such map is already
an immersion into .CP1/2 in small neighbourhoods of the points in P t

1
\ U for

all t . For a generic choice of the pair �t ; �t 2 O.U / near the zero function, the
map .ht ;gt / W U ! .CP1/2 is then an immersion by H Whitney’s general position
theorem [45]. Indeed, the domain of the map has real dimension 3 (including the
t variable) and the maps are smooth, so the derivative with respect to the variable
x 2 U of a generic map .ht ;gt / of this kind misses the origin 0 2C2, the latter being
of real codimension 4.

To simplify the notation, we denote the resulting path of immersions U ! .CP1/2

again by .ht ;gt /. We may assume that gt is nonconstant for each t . In Substep 2 we
keep gt fixed and consider deformations of ht of the form

(4-5) zht D ht Cmt�t for t 2 Œ0; 1�;

where mt 2 O.U / is a path of holomorphic functions vanishing to the second order
at the points in P1

t \U, and also at every critical point of gt in U which is not a
pole of gt , while �t 2 O.U / is a path of holomorphic functions. A suitable path of
multipliers mt is given by

mt D .ft /
3.g0t /

2 for t 2 Œ0; 1�;

where ft 2 O.M / is a path of holomorphic functions vanishing to the second order
at the points of P1

t (such a path exists by Lemma 4.2) and g0t D dgt=d� . (Here,
� WM ! C is an immersion chosen at the beginning of the proof.) Indeed, at any
(simple) pole of gt the derivative g0t has a second-order pole, and since ft has a
second-order zero there, mt vanishes to order 6�4D 2. On the other hand, at a critical
point of gt which is not a pole, the function .g0t /

2 has a second-order zero, and hence
so does mt . We have that

d zht D dht C �t dmt Cmt d�t :

At any critical point of gt not in P1
t , the second and the third term on the right-hand side

vanish but dht does not (since .ht ;gt / is an immersion at such a point), and hence d zht

does not vanish either. This shows that any choice of path �t in (4-5) furnishes a path of
immersions .zht ;gt / W U ! .CP1/2, and at the poles these functions have only changed
for a second-order term, which does not affect the residues of ht dgt (these remain zero).

It remains to choose the path �t 2 O.U / in (4-5) such that the 1–form zht dgt has
vanishing periods on a homology basis of K1 . This can be done by the method in
[12, Section 4]. Indeed, since we are deforming our maps only on the complement
of the sets of poles, we are dealing with the standard contact form (2-3) on C3 and
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the results in [12] apply. One uses the convex integration method along with period-
dominating sprays and the parametric Mergelyan approximation theorem. (A proof of
the parametric Mergelyan approximation theorem for maps to any complex manifold
is spelled out in [27, Theorem 4.3].) Note that the problem is linear in �t , so we may
use partitions of unity in the t variable. This reduces the problem to small subintervals
of Œ0; 1�, where it is almost the same as the problem for a single map, treated in [12],
since the poles vary smoothly with t . In particular, locally in t we can choose the
homology basis of K1 in the complement of P1

t . (The parametric case for Legendrian
immersions is treated in more detail in [29].)

This completes the initial stage of the induction. Let us denote the resulting path
of meromorphic functions, defined on a neighbourhood of K1 , again by .h1

t ;g
1
t /.

The construction ensures that .h1
t ;g

1
t / agrees with the initial family .ht ;gt / near the

endpoints of Œ0; 1�.

In the second stage of the induction, we construct a path .h2
t ;g

2
t /, t 2 Œ0; 1�, of the same

type on a neighbourhood of K2 , which approximates .h1
t ;g

1
t / from stage 1 on K1 ,

agrees with it near t D 0; 1, and satisfies conditions (i)–(iii) (stated at the beginning
of the proof) on the set K2 . This can be done by essentially the same procedure as
in the initial stage, but using also the parametric Runge approximation theorem, which
is a special case of the parametric Oka–Weil theorem; see [25, Theorem 2.8.4]. In
Step 1, the sets A2

t ;B
2
t ;C

2
t must be defined so that they agree with A1

t ;B
1
t ;C

1
t in a

neighbourhood of K1 ; this amounts to redefining the sets from the initial stage in the
complement of K1 . Let P2

t D A2
t [B2

t [C 2
t ; so P2

t \K1 D P1
t \K1 for all t . In

Step 2, we extend the jets of .h1
t ;g

1
t /, t 2 Œ0; 1�, smoothly from P1

t \K1 to P2
t \K2

so that condition (2-11) holds. When solving the x@–problem in Step 3, we correct the
solutions by using the parametric Runge theorem so that they approximate those from
the first stage on K1 . Step 4 can be handled by the same tools, using period-dominating
sprays and the parametric Mergelyan approximation theorem in order to preserve the
period-vanishing conditions on K1 and, in addition, fulfil those on the new curves in
the period basis for K2 . The details are similar to those in [29] and we omit them.

Proceeding in the same way, we obtain a sequence of solutions .hm
t ;g

m
t /, t 2 Œ0; 1�,

on Km , m 2 N , which approximates .hm�1
t ;gm�1

t / on Km�1 and agrees with the
initial data .ht ;gt / for t near 0 and 1. Assuming, as we may, that the approximations
are close enough at every step, the sequence .hm

t ;g
m
t / converges to a solution .ht ;gt /

on M as m!1.
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5 The homotopy principle

Let M be an open Riemann surface. Let Lformal.M;CP3/ be the space of formal
holomorphic Legendrian immersions from M to CP3, that is, commuting squares

TM
�

//

��

�

��

M
f
// CP3

where � is the contact subbundle of T CP3, � is a monomorphism, and f is holomor-
phic. In this section we show that the inclusion

L .M;CP3/ ,!Lformal.M;CP3/

induces a bijection of path components.

There are very few results of this kind in the literature. The full parametric h–principle
holds for Legendrian holomorphic immersions of M into C2nC1 with the standard
complex contact structure; see [29]. Here, crucial use is made of the projection
C2nC1!C2n , .x;y; z/ 7! .x;y/ (the standard contact form is dzCxdy ). For plain
maps, not necessarily immersions, the h–principle is obvious.

There are also results for projectivised cotangent bundles with the standard complex
contact structure; see [28]. The inclusion of the space of holomorphic Legendrian
maps M ! PT �Z , where Z is a manifold with dim Z � 2, into the space of formal
holomorphic Legendrian maps induces a surjection of path components. For closed
holomorphic curves that are strong immersions, the inclusion induces a bijection of
path components. And if dim Z � 3, the inclusion also induces an epimorphism of
fundamental groups, but this fails in general when dim Z D 2. Here, crucial use is
made of the projection PT �Z!Z and the fact that its fibres are Oka.

Consider now formal holomorphic immersions of M into an Oka manifold Y , directed
by a subbundle � of T Y . Trivialise TM once and for all. Then a formal holomorphic
immersion M ! Y , directed by � , is nothing but a holomorphic map M !E , where
E is the holomorphic fibre bundle over Y obtained from � by removing the zero
section. The fibre of E is Ck n f0g, where k is the rank of � . Hence E is an Oka
manifold, so the inclusion O.M;E/ ,! C .M;E/ is a weak equivalence. Determining
the weak homotopy type of the space of formal holomorphic immersions M ! Y ,
directed by � , is thus reduced to a purely topological problem.
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The long exact sequence of homotopy groups

� � � ! �1.C
k
n f0g/! �1.E/! �1.Y /! � � �

shows that if Y is simply connected and k � 2, then E is simply connected, so
O.M;E/ is path-connected. The basic h–principle follows, as long as there is at least
one genuine holomorphic immersion M ! Y , directed by � .

Now we return to holomorphic Legendrian immersions of M into CP3. Here, of course,
CP3 is simply connected and k D 2, so Lformal.M;CP3/ is path-connected. Also,
by Theorem 4.1, L .M;CP3/ is path-connected and clearly nonempty — consider
for example B.1;g/D Œ1; 1;g; 0�, where g WM !C is a holomorphic immersion, as
provided by the theorem of Gunning and Narasimhan [34]. Thus we have the following
h–principle.

Theorem 5.1 Every formal holomorphic Legendrian immersion from an open Rie-
mann surface to CP3 can be deformed to a genuine holomorphic Legendrian immer-
sion , unique up to homotopy.

6 Calabi–Yau property and complete immersions

In this and the following sections we discuss implications of our new results, as well as
those from some other recent papers, to the existence of complete Legendrian curves
in CP3 and conformally immersed superminimal surfaces in the 4–sphere S4.

We begin by discussing completeness of immersions on a formal level, with the aim of
conceptualising and unifying phenomena of this type in different geometries.

Let .N;g/ be a connected smooth Riemannian manifold of dimension n, possibly
endowed with some additional structure. For example, N could be a complex manifold,
a complex contact manifold, a manifold with a chosen subset of the tangent bundle, etc.

Assume that M is a smooth manifold of dimension dim M < nD dim N . For every
immersion F WM ! .N;g/ we have the induced Riemannian metric F�g and distance
function distF on M. Assume now that M is either noncompact, or a compact manifold
with nonempty smooth boundary. For a fixed interior point p0 2M we denote by

(6-1) RF .M;p0/ 2 .0;C1�

the intrinsic radius of M, defined as the infimum of lengths (in the metric F�g ) of
all divergent paths  W Œ0; 1/!M with  .0/D p0 . (A path  is said to be divergent
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if the point  .t/ 2 M leaves any compact subset of the interior of M as t ! 1.)
If M is a compact manifold with boundary bM and F WM ! N is an immersion,
then RF .M;p0/ D distF .p0; bM / is simply the distance from p0 to bM in the
metric F�g . Changing the basepoint clearly changes the intrinsic radius by an additive
constant, which is irrelevant in our considerations.

An immersion F WM !N is said to be complete if F�g is a complete metric on M,
ie the induced distance function distF makes M into a complete metric space. If
M is an open manifold (noncompact and without boundary), this is equivalent to
RF .M;p0/DC1. We refer to M do Carmo [22], where these concepts are explained
in more detail.

Consider a class F . � ;N / of C 1 immersions from smooth manifolds M of dimension
dim M < nD dim N , possibly with boundary, into a given manifold N . (Typically one
considers immersions which are solutions of some elliptic PDE, so they are smooth in
the interior of M.) For a given M, we denote by F .M;N / the space of immersions
M !N of this class, endowed with the C 1 topology. The source manifolds may also
carry additional geometric structures. For example, they may be conformal surfaces or
Riemann surfaces, the case of main interest to us. As for the class F . � ;N /, we could be
considering, for example, conformal minimal immersions from conformal surfaces to a
Riemannian manifold .N;g/, or holomorphic immersions from Riemann surfaces into
a complex manifold N , or holomorphic Legendrian immersions into a complex contact
manifold .N; �/, or holomorphic null curves M !N DCn with n� 3, etc. We shall
say that M and N are admissible for the given class of immersions if the definition
of the class makes sense for them. For example, when considering holomorphic
immersions, our manifolds must be complex, and for conformal immersions, they must
be conformal manifolds. The precise smoothness class of manifolds and immersions
may depend on the situation.

We shall assume the following conditions on a class F . � ;N / that we wish to consider:

(a) If F 2F .M;N / and M0�M is either an open domain or a compact smoothly
bounded domain, then F jM0

2 F .M0;N /. Conversely, if F WM ! N is an
immersion which is of class F . � ;N / on an open neighbourhood of any point
of M, then F 2F .M;N /.

(b) If M is a compact admissible manifold with boundary, then F .M;N / is
nonempty.
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(c) If a sequence Fj 2F .M;N /, j 2N , converges in the C 1.M;N / topology on
compacts in M to an immersion F WM !N , then F 2F .M;N /.

(d) (interior estimates) Let g0 be a Riemannian metric on M. Given F 2F .M;N /,
a pair of relatively compact domains M0 b M1 �M and a number � > 0, there
is ı > 0 such that for any G 2F .M1;N /, we have that

(6-2) max
p2M1

distg.F.p/;G.p// < ı D) max
p2M0

distg0;g.dFp; dGp/ < �:

Condition (a) says that immersions of class F are sections of a sheaf of immersions.
Condition (b) is typically fulfilled by the existence of F –immersions M !N with
values in a chart of N. Condition (c) says that F .M;N / is closed in the space of
all immersions M ! N in the C 1 topology. Condition (d) means that the distance
between F and G in the C 1 topology on the smaller domain M0 can be estimated by
the distance between the two maps in the C 0 topology (ie the uniform distance) on the
bigger domain M1 . This is a typical elliptic-type estimate, which holds whenever our
immersions are solutions of some elliptic PDE; in particular, it holds for harmonic and
holomorphic maps.

We have already mentioned the Calabi–Yau problem for minimal surfaces in the
introductory section. We now introduce the following key condition, which lies behind
all recently established Calabi–Yau-type theorems in various geometries.

Definition 6.1 (Calabi–Yau property) Assume that .N;g/ is a Riemannian manifold
and F . � ;N / is a class of immersions into N satisfying conditions (a)–(d) above. The
class F . � ;N / enjoys the Calabi–Yau property if the following holds true. Given a
compact F –admissible manifold M with boundary bM, a point p0 2M n bM, an
immersion F0 2F .M;N /, and numbers � > 0 (small) and � > 0 (big), there exists
an immersion F 2F .M;N / such that

(6-3) distg.F;F0/ WD max
p2M

distg.F.p/;F0.p// < � and RF .M;p0/ > �:

Recall that RF denotes the intrinsic radius (6-1) of the immersion F.

The following result may be viewed as an abstract Calabi–Yau theorem. It is motivated
by the classical Calabi–Yau problem for minimal surfaces, and it summarises all recent
results on this subject in the literature; see Example 6.4. For the history of this problem,
see the discussion and references in [8; 10] and [14, Chapter 7].
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Theorem 6.2 Assume that .N;g/ is a Riemannian manifold and F . � ;N / is a class
of immersions into N satisfying conditions (a)–(d) above and the Calabi–Yau property;
see Definition 6.1. Let M be a compact F –admissible manifold with boundary. Then ,
every F0 2F .M;N / can be approximated as closely as desired , uniformly on M , by
a continuous map F WM !N such that F jMı WMı DM n bM !N is a complete
immersion in F .Mı;N /.

If , in addition , the immersion F in (6-3) can always be chosen to be injective on M

or bM, then F as above can be chosen injective on M or bM, respectively.

If , in addition , the immersion F in (6-3) can always be chosen to agree with F0 to a
given finite order at each point in a given finite subset of Mı, then F as above can also
be so chosen.

Furthermore , if M0 is a domain in Mı obtained by removing from Mı a countable
family of pairwise disjoint , compact , smoothly bounded domains Dj , j 2N , then for
every F0 2F .M;N / and � > 0, there exists a continuous map F WM0!N such that
distg.F;F0jM0

/ < � and F jM0
WM0!N is a complete immersion in F .M0;N /.

Proof The first statement is seen by following [4, Proof of Theorem 1.1]. Indeed, the
Calabi–Yau property allows one to construct a sequence of immersions Fj 2F .M;N /,
j 2N , which converges uniformly on M to a continuous map F WM !N such that

(6-4) lim
j!1

RFj
.M;p0/DC1:

Assuming, as we may, that the approximation of Fj by FjC1 is sufficiently close
in every step, condition (d) on the class F . � ;N / (see in particular (6-2)) implies
that the restrictions of Fj to any relatively compact subset of Mı converge in the
C 1 topology to an immersion, and hence F jMı 2F .Mı;N / in view of condition (a).
Completeness of the limit immersion F jMı WMı!N follows from (6-4) in view of
[10, Lemma 2.2], which shows that the intrinsic radius RFj

.M;p0/ can decrease only
a little under C 0 –small deformations of the map. (This is obvious for deformations
which are small in the C 1 norm, but the point is that it also holds for C 0 –small
deformations.) Alternatively, one can apply the argument in [4, proof of Theorem 1.1],
which controls from below the intrinsic radii of an increasing sequence of compact
domains in M exhausting Mı, using the fact that the convergence Fj ! F is in
the C 1 topology on each compact subset of Mı. There, it is also explained how to
obtain injectivity of the limit map F on M or bM, provided the immersions Fj in the
sequence can be chosen to be injective and the uniform approximation is close enough
at each step.
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The second statement is seen by [10, Proof of Theorem 1.1], where this was proved for
conformal minimal immersions from Riemann surfaces to flat Euclidean spaces Rn.
Fix a point p0 2M0 and for k 2 N consider the decreasing sequence of domains
Mk D Mı n

Sk
jD1 Dj . By using the Calabi–Yau property (see in particular (6-3))

we construct a sequence of immersions Fk 2F .Mk ;N /, k D 1; 2; : : : , converging
uniformly on M0 D

T
k Mk to a continuous map F WM0!N , and such that

(6-5) lim
k!1

RFk
.Mk ;p0/DC1:

Assuming, as we may, that the convergence Fk ! F on M0 is fast enough, the
interior estimates (6-2) ensure that the sequence Fk converges in the C 1 topology
on any compact subset of M0 to an immersion, and hence F jM0

2 F .M0;N / by
condition (a). Finally, from (6-5) and [10, Lemma 2.2] it follows that F jM0

is a
complete immersion.

Remark 6.3 Since the immersions F in Theorem 6.2 have ranges contained in a
compact neighbourhood of the range F0.M / of the initial immersion, and since any
two metrics on N are comparable on a compact set, the approximating immersions in
Theorem 6.2 are complete in any given Riemannian metric on N .

Example 6.4 The following classes of manifolds and immersions are known to enjoy
the Calabi–Yau property, and hence the conclusion of Theorem 6.2 holds for them.

(i) N DRn with n� 3, M is a compact conformal surface with boundary (or a
compact bordered Riemann surface), and F .M;Rn/ is the space of conformal
minimal immersions M !Rn . See [4, Theorem 1.1] for the orientable case and
[13, Theorem 6.6] for the nonorientable one. Injectivity on bM can be obtained
for any n� 3, and injectivity on M for any n� 5.

(ii) N D Cn , M is a compact bordered Riemann surface, and F .M;Cn/ is the
space of holomorphic (or null-holomorphic if n � 3) immersions; see [6]. In
this case, injectivity on M can be obtained for any n � 3, and injectivity on
bM for any n� 2.

(iii) N DC2nC1 with the standard complex contact structure given by (2-2), M is
a compact bordered Riemann surface, and F .M;C2nC1/ is the space of Leg-
endrian immersions of class C 1.M;C2nC1/ which are holomorphic on Mı D

M n bM ; see [12, Theorem 1.2 and Lemma 6.5]. The limit map can be chosen
to be injective on M.
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(iv) .N; �/ is an arbitrary complex contact manifold, M is a compact smoothly
bounded domain in an open Riemann surface zM, and F .M;N / is the space
of holomorphic Legendrian immersions F W UF !N on small open neighbour-
hoods UF �

zM of M. As in the previous case, the limit map can be chosen
to be injective on M. Indeed, by [7, Theorem 1.3], the Calabi–Yau property is
obtained from the standard case N DC2nC1 (case (iii)) by using a holomorphic
Darboux neighbourhood of the immersed holomorphic Legendrian curve eF ; see
[7, Theorem 1.1].

In all these examples, the Calabi–Yau condition was established by finding approximate
solutions to the Riemann–Hilbert boundary value problem in the respective geometry,
combined with the method of exposing boundary points of compact bordered Riemann
surfaces. The former is the most difficult part of the work, intricately depending on the
geometric properties of manifolds and immersions. The main advantage of the Riemann–
Hilbert modification method over other possible methods is that it provides very precise
geometric control on the placement of the image of M inside N , something which was
impossible by the earlier methods used in the Calabi–Yau problem for minimal surfaces
in Euclidean spaces. Most importantly, this technique allows one to keep the source
manifold M and its associated structures (such as the conformal structure) unchanged.
Sufficient conditions for the existence of injective immersions are obtained by proving
a suitable general position theorem for a given class of immersions, and this typically
depends on the dimensions of manifolds and other geometric conditions associated to
the given class of immersions.

The following is one of the most challenging questions in this subject.

Problem 6.5 Let F . � ;N / be the class of conformal minimal immersions from
smooth, compact, bordered conformal surfaces into a smooth Riemannian manifold
.N;g/ of dimension at least 3. Does this class enjoy the Calabi–Yau property for
every .N;g/?

Although we do not see any a priori reasons against this being true, it seems that an
(affirmative) answer is known only when N is a flat Euclidean space; see Example 6.4(i).
We will see in the following section that the Calabi–Yau property also holds for super-
minimal surfaces in the 4–sphere with the spherical metric; see Theorem 7.4. After the
completion of this paper, Forstnerič [26] established the Calabi–Yau property for confor-
mal superminimal surfaces of appropriate spin in any self-dual or anti-self-dual Einstein
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4–manifold by using the techniques developed in this paper in the special case of the 4–
sphere. The key point is to use Corollary 6.7 together with an analogue of the Bryant cor-
respondence, given by Theorem 7.1, for this class of oriented Riemannian 4–manifolds.

A complex-analytic analogue of the Calabi–Yau problem is called Yang’s problem,
named after P Yang [47], who in 1977 asked about the existence of complete bounded
complex submanifolds in complex Euclidean spaces. There has been a surge of recent
activity on this problem, initiated by A Alarcón and F Forstnerič [5] in 2013, A Alarcón
and F J López [18] in 2016, and, with a completely different method, by J Globevnik [32]
in 2015; see the survey in [8, pages 291–292]. In some of these works — see especially
[1; 9; 15; 16] — a weaker analogue of the Calabi–Yau property was established by a
different technique, using holomorphic automorphisms of complex Euclidean spaces
to successively deform a given complex submanifold so that it avoids more and more
pieces of a certain labyrinth, thereby increasing its intrinsic radius and making it
complete in the limit. The advantage of this method, when compared to the Riemann–
Hilbert method, is that it preserves embeddedness, but the disadvantage is that one
must cut away pieces of the source manifold to keep the image bounded, so one loses
control of its complex structure.

Immersions of types (i) and (ii) in Example 6.4 are known to satisfy the interpolation
condition in Theorem 6.2. We now show that the classes (iii) and (iv) also satisfy this
condition. The following is an extension of [7, Lemma 4.1].

Lemma 6.6 (Calabi–Yau property with interpolation for holomorphic Legendrian
immersions) Let N be a complex contact manifold endowed with a Riemannian
metric. Also , let M be a compact bordered Riemann surface , E �Mı DM n bM

be a finite set , p0 2Mı be a point , and F0 WM !N be a holomorphic Legendrian
immersion on an neighbourhood of M in an ambient Riemann surface. Given a number
� > 0 (big), F0 can be approximated uniformly on M by holomorphic Legendrian
immersions F WM !N satisfying the following conditions:

(i) distF .p0; bM / > �.

(ii) F agrees with F0 to any given finite order at every point of E .

Furthermore , if F0jE WE! N is injective then F WM ! N can be chosen to be an
embedding.

Proof The novelty with respect to [7, Lemma 4.1] is condition (ii). When N D

C2nC1 with the Euclidean metric, the lemma coincides (except for condition (ii)) with
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[12, Lemma 6.5], which holds true for any compact bordered Riemann surface; see the
discussion at the beginning of [12, Section 6]. The interpolation condition (ii) is easily
achieved by the techniques developed in [12]. It is the same technique which gives
holomorphic immersions .x;y/ WM!C2n for which x dyD

Pn
jD1 xj dyj is an exact

1–form on M ; any such defines a Legendrian immersion F D .x;y; z/ WM !C2nC1

with the last component z D �
R

x dy . To achieve the interpolation conditions, we
arrange in addition that the immersion .x;y/ has correct jets at points of the given finite
set E (matching those of the initially given immersion to specified orders), and the
integral of x dy has suitably prescribed values on a collection of arcs in M connecting
a basepoint p0 2M to the points in E . The last condition, which is achieved by the
methods in [12, Proof of Theorem 5.1], can be used to ensure that the last component
function z D�

R
x dy also has correct values at the points of E ; the jet interpolation

condition for z at the points of E then follows immediately from those for .x;y/. For
the details in a similar setting, see [3].

This proves the lemma for N D C2nC1. It is shown in [7, Theorem 1.1] that every
complex contact manifold N admits a holomorphic Darboux chart around any immersed
noncompact holomorphic Legendrian curve. Using such charts, the general case of
the lemma is obtained by following word for word the proof of [7, Lemma 4.1], but
applying the special case of Lemma 6.6 for N DC2nC1 instead of [12, Lemma 6.5].

In view of Theorem 6.2, Lemma 6.6 implies the following Calabi–Yau-type theorem for
holomorphic Legendrian curves in any complex contact manifold. Except for the inter-
polation condition, the statement for finite bordered Riemann surfaces coincides with [7,
Theorem 1.3], while the part for surfaces with countably many boundary curves is new.

Corollary 6.7 (Calabi–Yau theorem for Legendrian curves) Holomorphic Legendrian
immersions from any compact bordered Riemann surface into an arbitrary complex
contact manifold satisfy the conclusion of Theorem 6.2.

In particular , if M is an open Riemann surface of finite genus with at most count-
ably many ends , none of which are point ends , then M admits a complete injective
holomorphic Legendrian immersion into any complex contact manifold.

By the uniformisation theorem of X He and O Schramm [35], every open Riemann
surface as in the second part of the above corollary is conformally equivalent to a
domain in a compact Riemann surface with at most countably many closed geometric
discs removed. Hence, it is of the kind as in the last statement in Theorem 6.2, so that
result applies.
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We now introduce the notion of a Runge exhaustion for a given class of immersions.

Definition 6.8 Let M be an admissible manifold for a class of immersions F . � ;N /.
An exhaustion M1 � M2 � � � � �

S1
jD1 Mj D M of M by compact smoothly

bounded domains is an F . � ;N /–Runge exhaustion if for every j 2 N we have
Mj � M ı

jC1
and every F 2 F .Mj ;N / can be approximated in C 1.Mj ;N / by

immersions G 2F .MjC1;N /. The exhaustion satisfies the interpolation condition if,
in addition, for every F as above, the immersion G can be chosen to agree with F to
a given finite order at a given finite set of points in M ı

j .

Note that the definition tacitly includes the topological condition concerning extendibil-
ity of maps from sets in the given exhaustion.

For holomorphic or (conformal) harmonic immersions from open Riemann surfaces,
one typically tries to show that any exhaustion by compact sets without holes in M is a
Runge exhaustion. This holds for instance for holomorphic immersions M !Cn, null
holomorphic immersions M !Cn for n� 3 [6, Corollary 2.7], conformal minimal
immersions into Rn for any n� 3 (see [17] for nD 3 and [11, Theorem 5.3] for the
general case), and holomorphic Legendrian immersions into complex Euclidean or
complex projective spaces with their standard complex contact structures (see [12] for
C2nC1 and Section 3 of this paper for CP3 ).

We have the following Runge approximation theorem for (complete) F –immersions.

Theorem 6.9 Assume that .N;g/ is a Riemannian manifold and F . � ;N / is a class
of immersions into N. If M is an open F –admissible manifold which admits an
F . � ;N /–Runge exhaustion .Mj /j2N (see Definition 6.8), then every immersion
Fi 2 F .Mi ;N / with i 2 N can be approximated in C 1.Mi ;N / by immersions
F 2F .M;N /. If in addition the class F . � ;N / enjoys the Calabi–Yau property (see
Definition 6.1), then F can be chosen to be complete.

Proof Let .Mj /j2N be an F –Runge exhaustion of M and Fi 2 F .Mi ;N / for
some i 2 N . Assume that the class F . � ;N / enjoys the Calabi–Yau property. By
alternately using the Runge exhaustion property (Definition 6.8) and the Calabi–Yau
property (Definition 6.1), we find a sequence Fj 2F .Mj ;N / with j � i such that for
every j D i; iC1; : : : , the restriction FjC1jMj

approximates Fj as closely as desired
in C 1.Mj ;N / and the intrinsic diameter of MjC1 with respect to FjC1 is arbitrarily
large. By doing this in the right way, the sequence Fj converges in C 1.Mk ;N / for
every k � i to a complete immersion F 2F .M;N /, which approximates Fi on Mi .
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If the Calabi–Yau property holds for embeddings, we can obtain a complete embedding
M ,!N in F .M;N /. In the absence of the Calabi–Yau property, the above argument
still holds without completeness and yields F 2F .M;N / approximating Fi on Mi .

Remark 6.10 (a) Since the Calabi–Yau property pertains to maps with ranges in
a relatively compact neighbourhood of the range of a given map, we see that the
immersion F 2F .M;N / in Theorem 6.9 can be chosen to be complete in any given
metric on N .

(b) In many cases of interest, it is possible to include the jet interpolation condition into
the Runge approximation property and thereby obtain a version of Theorem 6.9 with
jet interpolation on infinite closed discrete subsets of M. This typically requires one to
refine the exhaustion at each inductive step by adding new intermediate sets.

Corollary 6.11 (complete embedded Legendrian curves) (i) Every Riemann sur-
face admits a complete injective holomorphic Legendrian immersion into CP3.

(ii) In Theorem 3.4 (the Runge approximation theorem for Legendrian immersions of
open Riemann surfaces into CP3 ), the approximating immersion can be chosen
to be complete.

(iii) Every open Riemann surface admits a complete injective holomorphic Legen-
drian immersion into CP3 with (everywhere) dense image.

(iv) Let N be a connected complex contact manifold and M be an open Riemann
surface. Assume that every regular exhaustion of M by compact domains with-
out holes is a Runge exhaustion with interpolation for holomorphic Legendrian
immersions into N ; see Definition 6.8. Then , there exists a complete injective
holomorphic Legendrian immersion M !N with dense image.

Proof For a compact Riemann surface, (i) holds by Bryant’s theorem [21, Theorem G].
For an open Riemann surface, it is seen by combining Theorem 3.4 (the Runge ap-
proximation theorem for holomorphic Legendrian immersions into CP3 ), Lemma 6.6
(the Calabi–Yau property with interpolation for Legendrian immersions), the general
position theorem for holomorphic Legendrian immersions into an arbitrary complex
contact manifold (see [7, Theorem 1.2]), and the proof of Theorem 6.9. The same
argument gives (ii).

To obtain (iii), we apply the same proof but add also the interpolation condition at
finitely many points at every step of the inductive construction, adding more and
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more points of a given closed discrete subset E in the open Riemann surface M

as we proceed. This also requires one to refine the exhaustion at every step of the
induction. In this way, we can arrange that the resulting injective Legendrian immersion
F WM !CP3 interpolates a prescribed injective map E!CP3 with dense image,
and hence the curve F.M / is dense in CP3. See [2, Section 4.4] for the details. The
same arguments apply in any complex contact manifold enjoying the Runge property
for holomorphic Legendrian immersions from open Riemann surfaces, thereby giving
part (iv).

7 Superminimal surfaces in the four-dimensional sphere

In this section, we apply some results from Section 6 to establish the Calabi–Yau
property and a Runge approximation theorem for conformal superminimal surfaces
in the 4–sphere S4. The proofs are based on the Bryant correspondence given by
Theorem 7.1.

We begin by recalling the construction and basic properties of the Penrose twistor map
� WCP3

! S4 ; see eg [42; 43]. We shall follow Bryant’s paper [21, Section 1], but the
reader may also wish to consult J Bolton and L M Woodward [20] and J C Wood [46].
A self-contained exposition can also be found in [26, Section 6], where additional
references are provided.

Let H denote the algebra of quaternions. An element of H can be written uniquely as

q D xC iyC juC kv D zC jw; where z D xC iy 2C and w D u� iv 2C:

Here, i; j; k are the quaternionic units. In this way, we identify H with C2 and the
quaternionic plane H2DH�H with C4. Write H2

�DH2nf0g. Consider the following
diagram:

C� �
�

// H2
� DC4

�

�
��

CP1 � � // CP3

�
��

HP1 D S4

The map � WC4
�!CP3 is the standard quotient projection. The map �ı� WH2

�!HP1

associates to each quaternionic line H �H2 the corresponding point in the quaternionic
1–dimensional projective space HP1, which is the 4–sphere. Each complex line
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ƒ�C4DH2 spans the unique quaternionic line H Dƒ˚ jƒ�H2, and the space of
all complex lines within a given quaternionic line (which may be identified with C2 )
is clearly parametrised by CP1. This observation defines a real-analytic fibre bundle
� WCP3

! S4 with fibre CP1, called the twistor map or the twistor projection. The
fibres of � are projective lines CP1

�CP3. We endow CP3 with the Fubini–Study
metric and S4 with the spherical metric.

As shown by Bryant [21, Theorem A], the complex hyperplane distribution � � T CP3,
where for every p 2 CP3 the hyperplane �p is the orthogonal complement of the
tangent space at p to the fibre ��1.�.p// in the Fubini–Study metric, is a holomorphic
contact bundle given in suitable homogeneous coordinates by (1-1). Furthermore, the
differential d�p W �p ! T�.p/S

4 for p 2 CP3 is an isometry in the Fubini–Study
metric on CP3 and the spherical metric on S4.

Among all minimal surfaces in S4 (and, more generally, in any smooth Riemannian
4–manifold), there is a natural and important subclass consisting of superminimal
surfaces. This term was introduced in 1982 by R Bryant [21], although such surfaces
had been studied much earlier. In particular, Bryant mentions several works by E Calabi
and S S Chern from the period 1967–70 in which the authors exploited the fact that every
minimal immersion of the 2–sphere into a higher-dimensional sphere is superminimal.
A minimal immersion from a Riemann surface M into S4 is superminimal if and only
if a certain holomorphic quartic form on M vanishes identically [21, page 466] (on
the 2–sphere M D S2 it always does).

We now recall a geometric characterisation of superminimal surfaces in any smooth
Riemannian 4–manifold .N;g/, due to T Friedrich [30; 31], who pointed out that this
class of minimal surfaces was first described by K Kommerell in his 1897 dissertation.
See also the brief historical survey in [26].

Assume that M � N is a smooth embedded surface with the induced conformal
structure in the Riemannian manifold .N;g/. (Our considerations will be of local
nature, so they also apply to immersed surfaces.) Then, TN jM D TM ˚ � , where �
is the orthogonal normal bundle of M in N . A unit normal vector n 2 �x at a point
x 2M determines a second fundamental form Sx.n/ W TxM ! TxM, a self-adjoint
linear operator. The surface M is said to be superminimal if for every point x 2M

and tangent vector 0¤ v 2 TxM, the curve

(7-1) Ix.v/D fSx.n/v W n 2 �x; jnjg D 1g � TxM

is a circle centred at 0 2 TxM, possibly reducing to the origin.
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If the surface M and the ambient 4–manifold .N;g/ are both oriented (so M with
this orientation and the induced conformal structure is a Riemann surface), then one
defines superminimal surfaces M � N of positive or negative spin as follows. We
coorient the normal bundle � so that the orientations on TM and � add up to the
orientation on TN jM D TM ˚ � . For x 2M , denote by Cx the positively oriented
unit circle in the oriented normal space �x . The nontrivial circles Ix.v/ of (7-1) are
also positively oriented with respect to the orientation on TxM. A superminimal
surface M �N is of positive spin if for every point x 2M and vector 0¤ v 3 TxM,
the map Cx 3 n! S.n/v 2 Ix.v/� TxM is orientation-preserving, and is of negative
spin if this map is orientation-reversing. (This condition is irrelevant at points x 2M

where the circle Ix.v/ of (7-1) reduces to 0 2 TxM.) We denote by S˙.M;N / the
spaces of conformal superminimal immersions of positive or negative spin, respectively.
Clearly, the spin gets reversed if we reverse the orientation on N . (However, changing
the orientation on M also changes the coorientation on the normal bundle � , and hence
the spin does not change.) In particular, the postcomposition by the antipodal map
x 7! �x on S4 (which is an orientation-reversing isometry) interchanges the spaces
S˙.M;S4/. For this reason, it suffices to consider superminimal surfaces in S4 of
positive spin.

The following result is called the Bryant correspondence; see [21, Theorems B, B0, D].
A generalisation to more general Riemannian 4–manifolds is due to T Friedrich
[30, Proposition 4]; see also the summary statement [26, Theorem 4.6].

Theorem 7.1 (Bryant [21]) Let � WCP3
! S4 be the Penrose twistor bundle with

the horizontal holomorphic contact subbundle � � T CP3 (orthogonal to the fibres
of � ). If M is a Riemann surface and X WM ! CP3 is a holomorphic Legendrian
immersion , then � ıX WM ! S4 is a conformal superminimal immersion of positive
spin. Conversely , every conformal superminimal immersion M ! S4 of positive spin
lifts to a unique holomorphic Legendrian immersion M !CP3.

Explicit formulas for the lifting can be found in [21, Section 1], and a simpler geometric
description is given by T Friedrich [30]; see also [26, Equation (4.3)]. Uniqueness of
a holomorphic Legendrian lifting of a superminimal surface is intimately related to
the nonintegrability of the contact structure � . In fact, every superminimal surface of
positive spin in S4 admits precisely two Legendrian liftings in CP3, a holomorphic and
an antiholomorphic one, and these two liftings get interchanged by the antiholomorphic
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involution � WCP3
!CP3,

�.Œz1 W z2 W z3 W z4�/D Œ�xz2 W xz1 W �xz4 W xz3�;

which preserves the fibres of � WCP3
! S2. (See [26, Section 6] for more details.)

By Theorem 7.1, postcomposition by the twistor projection � WCP3
! S4 defines a

homeomorphism
�� WL .M;CP3/! SC.M;S4/

from the space of holomorphic Legendrian immersions M !CP3 onto the space of
superminimal immersions M ! S4 of positive spin, both endowed with the compact–
open topology.

We now describe some applications of the results on holomorphic Legendrian immer-
sions into CP3, obtained in the previous sections, to superminimal surfaces in S4.

Corollary 7.2 (Runge approximation theorem for superminimal surfaces in S4 ) Let
M be a Riemann surface , either open or compact , and let K be a compact subset of M.
Every conformal superminimal immersion of positive spin from a neighbourhood of K

to S4 can be approximated uniformly on K by complete superminimal immersions
Y WM ! S4 of positive spin. Furthermore , we may choose Y to agree with X to
a given finite order at each point of a given finite subset of K. In particular , every
Riemann surface immerses into the 4–sphere as a complete conformal superminimal
surface of positive spin.

Since the antipodal map x 7! �x on S4 interchanges the spaces S˙.M;S4/, the
corresponding result also holds for superminimal surfaces of negative spin in S4.

Proof Let X W U ! S4 be a superminimal immersion of positive spin from a neigh-
bourhood U �M of K. Fix a number � > 0, a finite set E �K, and an integer k 2N .
By Theorem 7.1, X lifts to a holomorphic Legendrian immersion F W U ! CP3,
ie X D � ıF . By Theorem 3.4 and Corollary 6.11 we can approximate F uniformly
on K by complete holomorphic Legendrian immersions G WM !CP3 agreeing with
F to order k at each point of E . (If M is compact then every immersion from it
is complete; the main point here concerns open Riemann surfaces.) The projection
Y WD � ı G WM ! S4 is then a superminimal immersion (see Theorem 7.1) that
approximates X on K and agrees with X to order k at each point of E . Since
G is complete and the twistor projection is an isometry from the contact subbundle
� � T CP3 onto T S4, Y is complete as well.
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Similarly one proves the following interpolation theorem.

Corollary 7.3 (Weierstrass interpolation theorem for superminimal surfaces in S4 )
Let M be a Riemann surface , open or compact , and let E be a closed discrete subset
of M. Every map E! S4 extends to a complete superminimal immersion M ! S4

of positive spin.

From the Calabi–Yau theorem for Legendrian immersions to CP3 (see Corollary 6.7)
and the fact that d� is an isometry on the contact subbundle � � T CP3 , we infer the
following.

Theorem 7.4 (Calabi–Yau theorem for conformal superminimal surfaces in S4 )
If M is a compact bordered Riemann surface and X WM ! S4 is a superminimal
immersion of positive spin (defined on a neighbourhood of M in an ambient Riemann
surface), then X can be approximated as closely as desired uniformly on M by a
continuous map Y WM ! S4 whose restriction to the interior Mı DM n bM is a
complete , generically injective superminimal immersion of positive spin , and whose
restriction to the boundary bM is a topological embedding. In particular , Y .bM /�S4

is a union of pairwise disjoint Jordan curves. The analogous result holds for bordered
surfaces with countably many boundary curves and without point ends; see the last part
of Theorem 6.2 for the precise statement.

Proof This is seen by the same argument as in the proof of Corollary 7.2; however,
we must justify the statement that Y can be chosen generically injective on M and
injective on bM. To this end, it suffices to show that at every step of the inductive
construction, the Legendrian immersion Xj WM !CP3 can be chosen such that the
superminimal immersion Yj WD � ıXj WM ! S4 is generically injective on M and
injective on bM. If we approximate sufficiently closely at every step, then the limit
map Y D limj!1 Yj WM ! S4 will enjoy the same properties. (For the details in a
similar setting, see [4, Proof of Theorem 1.1].)

Let X0 WM ! CP3 be a holomorphic Legendrian immersion. We claim that there
is an arbitrarily C 1 –small holomorphic Legendrian perturbation X of X0 such that
� ıX WM ! S4 is generically injective and � ıX W bM ! S4 is injective; this will
complete the proof.

Pick a point p 2 S4 which does not lie on the surface � ıX0.M /� S4, and choose
Euclidean coordinates on S4 n fpg D R4. We associate to any map X WM ! CP3
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uniformly close to X0 the difference map ıX WM �M !R4 defined by

(7-2) ıX.x;x0/D � ıX.x/�� ıX.x0/ 2R4 for x;x0 2M:

Since X0 is a Legendrian immersion, the map � ıX0 WM ! S4 is an immersion
by Theorem 7.1, and hence there is an open neighbourhood U � M �M of the
diagonal � WD f.x;x/ W x 2M g such that ıX0 does not assume the value 0 2 R4

on U n�. The same is then true for all maps sufficiently close to X0 in C 1.M;CP3/.
By the general position argument in [12, Proof of Lemma 4.4], a generic holomorphic
Legendrian immersion X WM !CP3 close to X0 in C 1.M;CP3/ is such that the
difference map ıX WM �M !R4, and also its restriction ıX W bM � bM !R4, are
transverse to the origin 0 2R4 on M �M nU and bM �bM nU, respectively. (The
argument in [12, Lemma 4.4] is written for the standard contact structure on CP3, but
it applies in any complex contact manifold in view of the Darboux neighbourhood
theorem, [7, Theorem 1.1]. Compare with [7, Proof of Theorem 1.2].) Assume that
X is such. Since dim bM � bM D 2 < 4, it follows that ıX does not assume the
value 0 2 R4 on bM � bM n�, which means that � ıX is injective on bM. Also,
since dim M �M D 4, transversality of ıX to 0 2R4 on M �M nU implies that
.ıX /�1.0/�M �M consists of the diagonal � together with at most finitely many
points in M �M n�.

The following is an immediate consequence of Corollary 6.11(iii) and Theorem 7.1.

Corollary 7.5 Every open Riemann surface admits a complete superminimal immer-
sion into S4 with dense image.

Finally, Theorem 4.1 on path-connectedness of the space of Legendrian immersions
from any open Riemann surface into CP3 immediately implies the following.

Corollary 7.6 For every connected open Riemann surface M, the spaces S˙.M;S4/

of superminimal immersions M ! S4 of positive (resp. negative) spin are path-
connected.
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[32] J Globevnik, A complete complex hypersurface in the ball of CN , Ann. of Math. 182
(2015) 1067–1091 MR Zbl

[33] M Goresky, R MacPherson, Stratified Morse theory, Ergeb. Math. Grenzgeb. 14,
Springer (1988) MR Zbl

[34] R C Gunning, R Narasimhan, Immersion of open Riemann surfaces, Math. Ann. 174
(1967) 103–108 MR Zbl

[35] Z-X He, O Schramm, Fixed points, Koebe uniformization and circle packings, Ann.
of Math. 137 (1993) 369–406 MR Zbl

[36] L P d M Jorge, F Xavier, A complete minimal surface in R3 between two parallel
planes, Ann. of Math. 112 (1980) 203–206 MR Zbl

[37] S L Kleiman, The transversality of a general translate, Compos. Math. 28 (1974)
287–297 MR Zbl

[38] C LeBrun, Fano manifolds, contact structures, and quaternionic geometry, Int. J. Math.
6 (1995) 419–437 MR Zbl

[39] C LeBrun, S Salamon, Strong rigidity of positive quaternion-Kähler manifolds, Invent.
Math. 118 (1994) 109–132 MR Zbl

[40] N Nadirashvili, Hadamard’s and Calabi–Yau’s conjectures on negatively curved and
minimal surfaces, Invent. Math. 126 (1996) 457–465 MR Zbl

[41] K Oka, Sur les fonctions analytiques de plusieurs variables, III: Deuxième problème
de Cousin, J. Sci. Hiroshima Univ. 9 (1939) 7–19 Zbl

[42] R Penrose, Twistor theory as an approach to fundamental physics, from “Foundations
of mathematics and physics one century after Hilbert” (J Kouneiher, editor), Springer
(2018) 253–285 MR

[43] R Penrose, M A H MacCallum, Twistor theory: an approach to the quantisation of
fields and space-time, Phys. Rep. 6C (1973) 241–315 MR

[44] H L Royden, Function theory on compact Riemann surfaces, J. Anal. Math. 18 (1967)
295–327 MR Zbl

[45] H Whitney, Differentiable manifolds, Ann. of Math. 37 (1936) 645–680 MR Zbl

[46] J C Wood, Twistor constructions for harmonic maps, from “Differential geometry and
differential equations” (C H Gu, M Berger, R L Bryant, editors), Lecture Notes in Math.
1255, Springer (1987) 130–159 MR Zbl

[47] P Yang, Curvatures of complex submanifolds of Cn , J. Differential Geom. 12 (1977)
499–511 MR Zbl

[48] S-T Yau, Review of geometry and analysis, from “Mathematics: frontiers and perspec-
tives” (V Arnold, M Atiyah, P Lax, B Mazur, editors), Amer. Math. Soc., Providence,
RI (2000) 353–401 MR Zbl

Geometry & Topology, Volume 25 (2021)

http://dx.doi.org/10.4007/annals.2015.182.3.4
http://msp.org/idx/mr/3418534
http://msp.org/idx/zbl/1333.32018
http://dx.doi.org/10.1007/978-3-642-71714-7
http://msp.org/idx/mr/932724
http://msp.org/idx/zbl/0639.14012
http://dx.doi.org/10.1007/BF01360812
http://msp.org/idx/mr/223560
http://msp.org/idx/zbl/0179.11402
http://dx.doi.org/10.2307/2946541
http://msp.org/idx/mr/1207210
http://msp.org/idx/zbl/0777.30002
http://dx.doi.org/10.2307/1971325
http://dx.doi.org/10.2307/1971325
http://msp.org/idx/mr/584079
http://msp.org/idx/zbl/0455.53004
http://www.numdam.org/item?id=CM_1974__28_3_287_0
http://msp.org/idx/mr/360616
http://msp.org/idx/zbl/0288.14014
http://dx.doi.org/10.1142/S0129167X95000146
http://msp.org/idx/mr/1327157
http://msp.org/idx/zbl/0835.53055
http://dx.doi.org/10.1007/BF01231528
http://msp.org/idx/mr/1288469
http://msp.org/idx/zbl/0815.53078
http://dx.doi.org/10.1007/s002220050106
http://dx.doi.org/10.1007/s002220050106
http://msp.org/idx/mr/1419004
http://msp.org/idx/zbl/0881.53053
http://msp.org/idx/zbl/65.0361.01
http://dx.doi.org/10.1007/978-3-319-64813-2_10
http://msp.org/idx/mr/3822555
http://dx.doi.org/10.1016/0370-1573(73)90008-2
http://dx.doi.org/10.1016/0370-1573(73)90008-2
http://msp.org/idx/mr/475660
http://dx.doi.org/10.1007/BF02798051
http://msp.org/idx/mr/214757
http://msp.org/idx/zbl/0153.39801
http://dx.doi.org/10.2307/1968482
http://msp.org/idx/mr/1503303
http://msp.org/idx/zbl/62.1454.01
http://dx.doi.org/10.1007/BFb0077687
http://msp.org/idx/mr/895404
http://msp.org/idx/zbl/0621.58009
http://dx.doi.org/10.4310/jdg/1214434221
http://msp.org/idx/mr/512921
http://msp.org/idx/zbl/0409.53043
http://dx.doi.org/10.1016/s0378-3758(98)00182-7
http://msp.org/idx/mr/1754787
http://msp.org/idx/zbl/1031.53004


Holomorphic Legendrian curves in CP 3 and superminimal surfaces in S4 3553

Departamento de Geometría y Topología e Instituto de Matemáticas (IEMath-GR)
Universidad de Granada
Granada, Spain

Faculty of Mathematics and Physics, University of Ljubljana
Ljubljana, Slovenia

Institute of Mathematics, Physics and Mechanics
Ljubljana, Slovenia

School of Mathematical Sciences, University of Adelaide
Adelaide SA, Australia

alarcon@ugr.es, franc.forstneric@fmf.uni-lj.si,
finnur.larusson@adelaide.edu.au

Proposed: Tobias H Colding Received: 29 October 2019
Seconded: Yasha Eliashberg, Paul Seidel Revised: 7 September 2020

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

mailto:alarcon@ugr.es
mailto:franc.forstneric@fmf.uni-lj.si
mailto:finnur.larusson@adelaide.edu.au
http://msp.org
http://msp.org


GEOMETRY & TOPOLOGY
msp.org/gt

MANAGING EDITOR

András I. Stipsicz Alfréd Rényi Institute of Mathematics
stipsicz@renyi.hu

BOARD OF EDITORS
Dan Abramovich Brown University

dan_abramovich@brown.edu
Ian Agol University of California, Berkeley

ianagol@math.berkeley.edu
Mark Behrens Massachusetts Institute of Technology

mbehrens@math.mit.edu
Mladen Bestvina Imperial College, London

bestvina@math.utah.edu
Fedor A. Bogomolov NYU, Courant Inst., and HSE Univ., Moscow

bogomolo@cims.nyu.edu
Martin R. Bridson Imperial College, London

m.bridson@ic.ac.uk
Jim Bryan University of British Columbia

jbryan@math.ubc.ca
Dmitri Burago Pennsylvania State University

burago@math.psu.edu
Ralph Cohen Stanford University

ralph@math.stanford.edu
Tobias H. Colding Massachusetts Institute of Technology

colding@math.mit.edu
Simon Donaldson Imperial College, London

s.donaldson@ic.ac.uk
Yasha Eliashberg Stanford University

eliash-gt@math.stanford.edu
Benson Farb University of Chicago

farb@math.uchicago.edu
Steve Ferry Rutgers University

sferry@math.rutgers.edu
Ron Fintushel Michigan State University

ronfint@math.msu.edu
David M. Fisher Indiana University - Bloomington

fisherdm@indiana.edu
Mike Freedman Microsoft Research

michaelf@microsoft.com
David Gabai Princeton University

gabai@princeton.edu
Stavros Garoufalidis Southern U. of Sci. and Tech., China

stavros@mpim-bonn.mpg.de
Cameron Gordon University of Texas

gordon@math.utexas.edu
Lothar Göttsche Abdus Salam Int. Centre for Th. Physics

gottsche@ictp.trieste.it
Jesper Grodal University of Copenhagen

jg@math.ku.dk
Misha Gromov IHÉS and NYU, Courant Institute

gromov@ihes.fr

Mark Gross University of Cambridge
mgross@dpmms.cam.ac.uk

Rob Kirby University of California, Berkeley
kirby@math.berkeley.edu

Frances Kirwan University of Oxford
frances.kirwan@balliol.oxford.ac.uk

Bruce Kleiner NYU, Courant Institute
bkleiner@cims.nyu.edu

Urs Lang ETH Zürich
urs.lang@math.ethz.ch

Marc Levine Universität Duisburg-Essen
marc.levine@uni-due.de

John Lott University of California, Berkeley
lott@math.berkeley.edu

Ciprian Manolescu University of California, Los Angeles
cm@math.ucla.edu

Haynes Miller Massachusetts Institute of Technology
hrm@math.mit.edu

Tom Mrowka Massachusetts Institute of Technology
mrowka@math.mit.edu

Walter Neumann Columbia University
neumann@math.columbia.edu

Jean-Pierre Otal Université d’Orleans
jean-pierre.otal@univ-orleans.fr

Peter Ozsváth Columbia University
ozsvath@math.columbia.edu

Leonid Polterovich Tel Aviv University
polterov@post.tau.ac.il

Colin Rourke University of Warwick
gt@maths.warwick.ac.uk

Stefan Schwede Universität Bonn
schwede@math.uni-bonn.de

Paul Seidel Massachusetts Insitutute of Technology
pseidel@mit.edu

Peter Teichner University of California, Berkeley
teichner@math.berkeley.edu

Richard P. Thomas Imperial College, London
richard.thomas@imperial.ac.uk

Gang Tian Massachusetts Institute of Technology
tian@math.mit.edu

Ulrike Tillmann Oxford University
tillmann@maths.ox.ac.uk

Nathalie Wahl University of Copenhagen
wahl@math.ku.dk

Anna Wienhard Universität Heidelberg
wienhard@mathi.uni-heidelberg.de

See inside back cover or msp.org/gt for submission instructions.

The subscription price for 2021 is US $635/year for the electronic version, and $910/year (C$65, if shipping outside the
US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to
MSP. Geometry & Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications
and the Science Citation Index.

Geometry & Topology (ISSN 1465-3060 printed, 1364-0380 electronic) is published 7 times per year and continuously
online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall
#3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.
POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University
of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

GT peer review and production are managed by EditFLOW® from MSP.
PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2021 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/gt
mailto:stipsicz@renyi.hu
mailto:dan_abramovich@brown.edu
mailto:ianagol@math.berkeley.edu
mailto:mbehrens@math.mit.edu
mailto:bestvina@math.utah.edu
mailto:bogomolo@cims.nyu.edu
mailto:m.bridson@ic.ac.uk
mailto:jbryan@math.ubc.ca
mailto:burago@math.psu.edu
mailto:ralph@math.stanford.edu
mailto:colding@math.mit.edu
mailto:s.donaldson@ic.ac.uk
mailto:eliash-gt@math.stanford.edu
mailto:farb@math.uchicago.edu
mailto:sferry@math.rutgers.edu
mailto:ronfint@math.msu.edu
mailto:fisherdm@indiana.edu
mailto:michaelf@microsoft.com
mailto:gabai@princeton.edu
mailto:stavros@mpim-bonn.mpg.de
mailto:gordon@math.utexas.edu
mailto:gottsche@ictp.trieste.it
mailto:jg@math.ku.dk
mailto:gromov@ihes.fr
mailto:mgross@dpmms.cam.ac.uk
mailto:kirby@math.berkeley.edu
mailto:frances.kirwan@balliol.oxford.ac.uk
mailto:bkleiner@cims.nyu.edu
mailto:urs.lang@math.ethz.ch
mailto:marc.levine@uni-due.de
mailto:lott@math.berkeley.edu
mailto:cm@math.ucla.edu
mailto:hrm@math.mit.edu
mailto:mrowka@math.mit.edu
mailto:neumann@math.columbia.edu
mailto:jean-pierre.otal@univ-orleans.fr
mailto:ozsvath@math.columbia.edu
mailto:polterov@post.tau.ac.il
mailto:gt@maths.warwick.ac.uk
mailto:schwede@math.uni-bonn.de
mailto:pseidel@mit.edu
mailto:teichner@math.berkeley.edu
mailto:richard.thomas@imperial.ac.uk
mailto:tian@math.mit.edu
mailto:tillmann@maths.ox.ac.uk
mailto:wahl@math.ku.dk
mailto:wienhard@mathi.uni-heidelberg.de
http://dx.doi.org/10.2140/gt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
https://msp.org/


GEOMETRY & TOPOLOGY
Volume 25 Issue 7 (pages 3257–3753) 2021

3257Bounds on spectral norms and barcodes

ASAF KISLEV and EGOR SHELUKHIN

3351Rational Pontryagin classes of Euclidean fiber bundles

MICHAEL S WEISS

3425Quot schemes of curves and surfaces: virtual classes, integrals,
Euler characteristics

DRAGOS OPREA and RAHUL PANDHARIPANDE

3507Holomorphic Legendrian curves in CP 3 and superminimal
surfaces in S4

ANTONIO ALARCÓN, FRANC FORSTNERIČ and FINNUR

LÁRUSSON

3555A formula for the Voevodsky motive of the moduli stack of vector
bundles on a curve

VICTORIA HOSKINS and SIMON PEPIN LEHALLEUR

3591On the monopole Lefschetz number of finite-order diffeomorphisms

JIANFENG LIN, DANIEL RUBERMAN and NIKOLAI

SAVELIEV

3629Producing 3D Ricci flows with nonnegative Ricci curvature via
singular Ricci flows

YI LAI

3691Factorization statistics and bug-eyed configuration spaces

DAN PETERSEN and PHILIP TOSTESON

3725Codimension-1 simplices in divisible convex domains

MARTIN D BOBB

G
E

O
M

E
T

R
Y

&
T

O
P

O
L

O
G

Y
2021

Vol.25,
Issue

7
(pages

3257–3753)

http://dx.doi.org/10.2140/gt.2021.25.3257
http://dx.doi.org/10.2140/gt.2021.25.3351
http://dx.doi.org/10.2140/gt.2021.25.3425
http://dx.doi.org/10.2140/gt.2021.25.3425
http://dx.doi.org/10.2140/gt.2021.25.3507
http://dx.doi.org/10.2140/gt.2021.25.3507
http://dx.doi.org/10.2140/gt.2021.25.3555
http://dx.doi.org/10.2140/gt.2021.25.3555
http://dx.doi.org/10.2140/gt.2021.25.3591
http://dx.doi.org/10.2140/gt.2021.25.3629
http://dx.doi.org/10.2140/gt.2021.25.3629
http://dx.doi.org/10.2140/gt.2021.25.3691
http://dx.doi.org/10.2140/gt.2021.25.3725

	1. Introduction
	2. Representation formulas for Legendrian curves
	3. Approximation and interpolation for Legendrian curves
	4. The space of Legendrian immersions is path-connected
	5. The homotopy principle
	6. Calabi–Yau property and complete immersions
	7. Superminimal surfaces in the four-dimensional sphere
	Acknowledgements

	References
	
	

