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Abstract The problem of multicollinearity associated with the estimation of a func-
tional logit model can be solved by using as predictor variables a set of functional
principal components. The functional parameter estimated by functional principal
component logit regression is often nonsmooth and then difficult to interpret. To solve
this problem, different penalized spline estimations of the functional logit model are
proposed in this paper. All of them are based on smoothed functional PCA and/or
a discrete penalty in the log-likelihood criterion in terms of B-spline expansions of
the sample curves and the functional parameter. The ability of these smoothing ap-
proaches to provide an accurate estimation of the functional parameter and their clas-
sification performance with respect to unpenalized functional PCA and LDA-PLS are
evaluated via simulation and application to real data. Leave-one-out cross-validation
and generalized cross-validation are adapted to select the smoothing parameter and
the number of principal components or basis functions associated with the considered
approaches.
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1 Introduction

A part of the literature has recently been concerned with functional data in a wide
variety of statistical problems, and with developing procedures based on smoothing
techniques. A functional data set provides information about functions (curves, sur-
faces, etc.) varying over a continuum. The argument of the sample functions is often
time, but may also be a different magnitude as spatial location, wavelength or prob-
ability. A magistral compilation of models working with sample curves and interest-
ing applications in different fields are collected in Ramsay and Silverman (2005) and
Ramsay and Silverman (2002), respectively.

The aim of the functional logit model (FLM) is to predict a binary response vari-
able from a functional predictor and also to interpret the relationship between the
response and the predictor variables. In the last years, the FLM was applied in dif-
ferent contexts. A FLM was applied to predict if human foetal heart rate responds
to repeated vibroacoustic stimulation (Ratcliffe et al. 2002). The FLM was consid-
ered in the more general framework of functional generalized linear models in James
(2002). A nonparametric estimation procedure of the generalized functional linear
model for the case of sparse longitudinal predictors was proposed in Miiller (2005).
This extension included functional binary regression models for longitudinal data and
was illustrated with data on primary biliary cirrhosis. An alternative nonparametric
classification method was studied in Ferraty and Vieu (2003).

In order to reduce the infinite dimension of the functional predictor and to solve the
multicollinearity problem associated with the estimation of the FLM, a reduced num-
ber of functional principal components can be used as predictor variables to provide
accurate estimation of the functional parameter (Escabias et al. 2004). A climato-
logical application to establish the relationship between the risk of drought and time
evolution of temperatures was carried out by Escabias et al. (2005). The relationship
between lupus flares and stress level was analyzed by using a principal component
logit model in Aguilera et al. (2008). A functional PLS based solution was also pro-
posed by Escabias et al. (2007). The problem associated with these approaches is that
in many cases the estimated functional parameter is not smooth and therefore difficult
to interpret. The main objective of this paper is to solve this problem by introducing
different penalties based on P-splines.

The functional linear model was the first regression model extended to the case of
functional data. In order to estimate an accurate functional parameter, a smoothing
estimation approach based on penalizing the least squares criterion in terms of the
squared norm of a B-spline expansion of the functional parameter was introduced by
Cardot et al. (2003). A smoothed principal component regression based on ordinary
least squares regression on the projection of the covariables on a set of eigenfunc-
tions was also considered. When the functional predictor is corrupted by some error,
the functional parameter was estimated by total least squares by using smoothing
splines (continuous spline penalty based on the integral of the squared second deriva-
tive of the functional parameter) (Cardot et al. 2007). Two versions of functional PCR
for scalar response using B-splines and discrete roughness penalty were proposed in
Reiss and Ogden (2007). In one of them, the penalty is introduced in the construc-
tion of the principal components. In the other one, a penalized likelihood estimation
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is considered. The smoothing parameter was found by fitting a linear mixed model.
These penalized PCR approaches did not consider the functional form of the sample
paths but only the approximation in terms of basis functions of the functional param-
eter. When both the response and the predictor variables are functional, the idea of
discrete roughness penalties based on the absolute values of the basis function coeffi-
cient differences (corresponding to the LASSO) and the squares of these differences
(according to the P-spline methodology) was extended to the functional linear model
setting by penalizing the interpretable directions of the regression surface in Harezlak
et al. (2007). From a Bayesian point of view, approaches to control the modes of vari-
ation in a set of noisy and sparse curves were proposed by van der Linde (2008) where
Demmler—Reinsch basis was used to get smooth weight functions in the functional
PCA estimation.

In the general context of functional generalized linear models (FGLM), differ-
ent penalized likelihood estimations with B-spline basis were proposed to solve the
roughness problem of the functional parameter. The FGLM with P-spline penalty in
the log-likelihood criterion was developed in Marx and Eilers (1999). The benefits
of this functional model were compared with functional PLS and PCR. A penalized
estimation of the functional parameter via penalized log-likelihood was proposed by
Cardot and Sarda (2005). This estimation is quite similar to the one provided by Marx
and Eilers (1999) with the main difference coming from the continuous penalty that
was expressed as the norm of the derivative of given order of the function. A practical
mechanism to combine the GLM via penalized log-likelihood, the general additive
models (Hastie and Tibshirani 1990) and the varying-coefficient model (Hastie and
Tibshirani 1993) into a general additive structure was introduced by Eilers and Marx
(2002).

In this work, we propose four different methods based on penalized spline
(P-spline) estimation of the functional logit regression model by considering the func-
tional form of the sample paths and the functional parameter in terms of B-spline
basis expansions. The considered approaches are based on smoothed functional prin-
cipal component logit regression (FPCLOR) and functional logit regression via pe-
nalized log-likelihood.

In the FPCLOR context, three different versions of penalized estimation ap-
proaches based on smoothed functional principal component analysis (FPCA) are
introduced. On the one hand, FPCA of P-spline approximation of sample curves
(Method 1I) is performed. On the other hand, a discrete P-spline penalty that pe-
nalizes the roughness of the principal component weight functions is included in the
own formulation of FPCA (Method III). The third smoothed FPCLOR approach is
carried out by introducing the penalty in the likelihood estimation of the functional
parameter in terms of a reduced set of functional principal components (Method IV).
Moreover, direct P-spline likelihood estimation in terms of B-spline functions is also
considered (Method V).

The good performance of the proposed methods with respect to non-penalized
FPCLOR (Method I) and LDA-PLS is evaluated via two different data simulations,
a functional version of the well-known waveform data and a smooth principal com-
ponent reconstruction of the Ornstein—Uhlenbeck process. This study is completed
with an application to real data whose aim is to estimate the quality of cookies (good
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or bad) on the basis of the curves of resistance of dough during the kneading process
(functional data classification).

2 Functional logit model

The main objective of this paper consists in estimating the link between a binary ran-
dom variable Y and a functional predictor X = {X (¢)};c7. It will be assumed without
loss of generality that X is a centered second order stochastic process whose sample
paths belong to the space L, (T) of square integrable functions with the usual inner
product defined by (f, g) = fT f(t)g(t)dt. This means that E(X (¢)) =0,Vr e T.

Let {x1(t),x2(t),...,x,(t)} be a sample of the functional variable X and
{v1, y2, ..., yn} be a random sample of Y associated with them. That is, y; € {0, 1},
i =1,...,n. The functional logistic regression model is given by

vi=nwi+¢&, i=1,...,n,
where 7; is the expectation of Y given x; (f) modeled as

expla + [, x;(t)B(t) dt}

i =PlY=1|ix;(t):te€T}|= , 1i=1,...,n, (1
=7l i@ 1 1 +expla + [ xi (1) B(t) dt} )
with « being a real parameter, 8(¢) a functional parameter, and {¢; : i =1, ..., n}
independent errors with zero mean. The logit transformations can be expressed as
T .
l,-=1n|: ]:a—!—/xi(t)ﬁ(t)dt, i=1,...,n. 2)
1 —m T

In the functional logit model, we have to take into account different aspects. Firstly,
we cannot continuously observe the functional form of the sample paths. As much
we can observe each sample curve x;(¢) in a finite set of discrete sampling points
{tio, ti1, ..., tim;, € T, i =1,...,n}, so that the sample information is given by the
vectors x; = (X0, ..., Xim;)’, With x;; being the observed value for the ith sample
path x; (¢) at time t;; (k =0, ..., m;). Secondly, it is impossible to estimate the infi-
nite functional parameter with a finite number of observations n. In order to solve at
the same time the two questions, a functional estimation approach based on approxi-
mating the sample paths and the functional parameter in terms of basis functions was
proposed (Escabias et al. 2007). Different basis such as trigonometric functions (see
Aguilera et al. 1995 and Ratcliffe et al. 2002), cubic spline functions (see Aguilera
et al. 1996 and Escabias et al. 2005), or wavelet functions (see Ocaiia et al. 2008) can
be used depending on the nature of the functional predictor sample paths.

Let us consider that both the sample curves and the functional parameter are ap-
proximated as a weighted sum of basis functions as follows:

p

p
xi(0)=) aip;j0),  BO=) i), 3)

with p being the number of basis functions. Choosing the order of the expansion p is
an important problem. If p is increased, the fit to the data is better, but we risk fitting
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noise or variation that affects the raw data. On the other hand, if p is too small, we
may miss some important characteristics of the underlying smooth function.

Then, the FLM (2) turns into a multiple logit model whose design matrix is the
product between the matrix of basis coefficients of the sample paths and the matrix
of inner products between basis functions (Escabias et al. 2004). So, the logit trans-
formations in matrix form are given by

L=X8B, “4)

where L = (1, ..., 1) is the vector of logit transformations, X = (1|AY¥), with A =
(aij)nx p being the matrix of basis coefficients of the sample paths, ¥ = (Vi) pxp
the matrix of inner products between basis functions (v jx = f 7 @i (O¢r(t)dr), 1 =
(1,...,1)" an n-dimensional vector of ones, and 8 = (1, ..., B,) the vector of basis
coefficients of B(¢).

In order to estimate the multiple logit model (4), we must first approximate the
basis coefficients of each sample curve from its discrete time observations (rows of
matrix A). When the sample curves are smooth and observed with error, least squares
approximation in terms of B-spline basis is an appropriate solution for the problem of
reconstructing their true functional form. Other alternatives to B-spline approxima-
tion are techniques such as interpolation or projection in a finite-dimensional space
generated by basis functions. More recently, nonparametric techniques were used for
approximating functional data (Ferraty and Vieu 2006).

B-splines are constructed from polynomial pieces joined at a set of knots. Once the
knots are given, B-splines can be evaluated recursively for any degree of the polyno-
mial by using a numerically stable algorithm (De Boor 2001). Considering the least
squares approximation in terms of B-spline basis, the vector of basis coefficients of
each sample curve that minimizes the least squares error (x; — ®;a;) (x; — P;a;)
is given by d; = (®]®;) ' ®/x;, with ®; = (¢, (tik))m;xp and a; = (a;1, ..., aip) .
These approximated sample curves are known as regression splines. The choice of
the number of knots is an important problem when working with regression splines
because they do not control the degree of smoothness of the estimated curve. If too
many knots are selected, you have an overfitting of the data. On the other hand, too
few knots provide an underfitting. This problem is solved in this paper by using pe-
nalized splines. In this case, the smoothness of the approximated curve is controlled
by the smoothing parameter.

2.1 Penalized estimation with basis expansions

The log-likelihood function for the multiple model (4) is given by

LB =Y In(—m)+) y ln(1 f"n,)
i—1 i=1 ’
n p P n
:—Zln(l-l—exp(ZXij,Bj))+Z<Zyixij):3j' ®)
i=1 j=0 j=0

i=1

Then, the likelihood equations in matrix form are

VX =7'X,
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where y = (y1,..., ), T = (71, ...,7,) is the vector of likelihood estimators of
L. exp(X7_o XijB)) A . .
T = (mq,...,m,), with 1; = > ~— and B; the likelihood estimators of
H‘CXP(Z]':() XijB;j)
the basis coefficients of the functional parameter §(¢) in the FLM. Solving the likeli-
hood equations by mean of the iterative Newton—Raphson method, the vector of basis

coefficients of the functional parameter at iteration ¢ is given by

BO =B D L [X' Diag(x V(1 - ""Nx]' X (y—='V). ()

The maximum likelihood estimate of the parameters of the logit model can be calcu-
lated by iterative reweighted least squares as the limit of a sequence of weighted least
squares estimates, where the weight matrix changes each cycle. See Agresti (1990)
for a detailed study of this least squares procedure.

The estimation of this model is affected by multicollinearity due to the high corre-
lation between the columns of the design matrix. On the one hand, this problem can
be solved by logit regression of the response on a set of uncorrelated variables as,
for example, principal components. On the other hand, the problem can be solved by
using a penalized estimation of the regression coefficients based on the differences
of order d between adjacent coefficients (Le Cessie and Van Houwelingen 1992). In
order to obtain a more accurate and smoother estimation of the functional parameter,
this methodology is extended in this section to the functional logit model by intro-
ducing a penalty in the log-likelihood estimation of the multiple logit model given by
Eq. (4). This penalty is based on B-spline basis expansions of the sample curves and
the functional parameter, and a simple discrete penalty that measures the roughness
of the parameter function by summing the squared dth order differences between
adjacent B-spline coefficients (P-spline penalty).

Let us consider the basis expansion of the functional parameter given by Eq. (3).
Then, the penalized log-likelihood of the FLLM with logit transformation given by (4)
is given by

A
L5, B)=L(B) — E,B/Pdﬁ,

where B = (B1, ..., Bp) is the vector of basis coefficients of B(r), A is the smoothing
parameter, and P; = (A?)’A?, with A the matrix of differences of order d given by
the (p — d) x p matrix
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Let us observe that the vector of differences of order d of the vector B is given by
A?B and its components are the differences of order 1 of the vector of differences of
order d — 1 given by

d

Z(i)ﬁkﬂ» k=1,...,p—d.

J=0

The most common penalty matrix is P, = (A%) A2, with A2 the ( p — 2) X p matrix
of differences of order 2 given by

1 =2 1 0 0
, 0 1 -2 1 0
A=10o0 0o 1 -2 1

In this case, the Newton—Raphson solution for the penalized likelihood estimators
will be
BN = gD L [X'Diag(x (1 -7z )NX + 2P ' X' (y —x'7V). ()
The number of basis functions p and the smoothing parameter A are selected
by means of a double generalized cross validation (double-GCV) procedure (see
Sect. 4.4 for more details). Henceforth, this method will be called Method V.

3 Penalized estimation of functional principal component logit regression

As said before, the logit regression model given by Eq. (4) is affected by multi-
collinearity. In order to solve the problems of high dimension and high correlation
between the covariates of this model, a reduction dimension approach based on using
as covariates a reduced set of functional principal components of the predictor curves
was proposed (Escabias et al. 2004).

In general, the FLM can be rewritten in terms of functional principal components
as

L=oal+Ty, (3)
where I = (§;)nxp 18 a matrix of functional principal components of the sample
paths {x1(¢),...,x,(¢)}, y is the vector of coefficients of the model and « is the
intercept.

An accurate estimation of the functional parameter can be obtained by considering
only a set of g optimum principal components as predictor variables, so that I" =
(Sij)nxq (g < p).

Then, the vector S of basis coefficients is given by § = F'y, where the way of es-
timating F depends on the kind of functional principal component analysis (FPCA)
used to estimate the functional model and the kind of likelihood estimation (penal-
ized or non-penalized). According to it, four different methods are considered in this

paper.
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3.1 Method I: non-penalized functional principal components logit regression

A simple way to estimate the functional parameter is by means of non-penalized
functional logit regression on an optimum set of principal components. This method
known as non-penalized functional principal component logit regression (FPCLOR)
was performed by Escabias et al. (2004).

In the standard formulation of FPCA, the ith principal component is given by

Sij:/Txi(t)fj(t)dt, i=1,...,n, )
where the weight function or factor loading f; is obtained by solving
max y var[ [ x; (1) f (t) dt]
{s.t. IfI?=1 and [ fe@) f()dt=0,£=1,...,j—1.

The weight functions f; are the solutions to the eigenequation Cf; = A; fj,
with A; = var[§;] and C being the sample covariance operator defined by Cf =
f c(-,t) f(t)dt in terms of the sample covariance function

1 n
c(s, t) = - in (s)x; ().
i=1

In practice, functional PCA has to be estimated from discrete time observations of
each sample curve x; (¢) that is approximated in terms of basis functions. If we assume
that the sample curves are represented in terms of basis functions as in expression (3),

the functional PCA is then equivalent to the multivariate PCA of AW matrix, with

Lo : . . .
¥ 2 being the square root of the matrix of the inner products between B-spline basis
functions (Ocana et al. 2007). Then, matrix F that provides the relation between the
basis coefficients of the functional parameter and the parameters estimated in terms

1
of principal components is given by F =¥, 2 G x,, where G is the matrix whose
columns are the eigenvectors of the sample covariance matrix of A¥ !/2_ In this case,
the matrix of basis coefficients A is computed by using least squares approximation
with B-spline basis and y is estimated by maximum likelihood without penalty. The
optimum number of principal components of the predictor curves used as covariates

is chosen by GCV (see Sect. 4.3).
3.2 Method II: FPCLOR on P-spline smoothing of the sample curves

When the sample paths are observed with noise, the estimation of the FLM based on
FPCA of regression splines provides a noisy functional parameter. This is because of
regression splines do not control the smoothness of the sample paths. In order to quan-
tify the roughness of a curve, a continuous penalty based on the integrated squared
second derivative of the function was first introduced by Reinsch (1967). The com-
putation of this continuous penalty in terms of B-splines basis functions was consider
in O’Sullivan (1986). This approximation was called smoothing splines. The compu-
tational problem of this approach lies in the calculation of the integrals of products
of the dth order derivatives between B-spline basis functions. A penalty based on
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differences of order d between coefficients of adjacent B-splines (P-spline penalty)
was introduced by Eilers and Marx (1996). With this kind of penalty, the choice and
position of knots are not determined and it is sufficient to choose a relatively large
number of equally spaced basis knots (Ruppert 2002).

Therefore, a penalized estimation of the FLM based on FPCA of the P-spline
approximation of the sample curves is proposed. The basis coefficients in terms of
B-splines are computed by introducing a discrete penalty in the least squares criterion

(xi — ®ia;) (xj — ®ia;) + ra, Pya;,

where P; = (Ad)/Ad. The solutions are then given by a; = (05,-/951‘ + APd)_ICDIfxl-. In
the P-spline approach, the selection of the smoothing parameter A is very important
because it measures the rate of exchange between fit to the data and variability of the
function. The bigger the A, the smoother the approximated curve. On the other hand,
if A is smaller, the curve tends to become more variable since there is less penalty
placed on its roughness. A nonparametric strategy for the choice of the P-spline pa-
rameters was performed by Currie and Durban (2002), where mixed model (REML)
methods were applied for smoothing parameter selection. In our paper, the smoothing
parameter is chosen by leave-one-out cross validation (Sect. 4.1).

Once the P-spline approximation of sample curves has been performed, the multi-

variate PCA of AW > matrix is carried out as explained above. The difference between

smoothed FPCA via P-splines and non-penalized FPCA is only the way of comput-

ing the basis coefficients (rows of matrix A), with or without penalty, respectively.

Then, an optimum set of principal components is selected and the FPCLOR is car-
1

ried out. In this case, F = lI/p_ pr pxn> where G is the matrix whose columns are the
eigenvectors of the sample covariance matrix of A¥ /2, with A the basis coefficients
matrix estimated with P-splines penalty. In this method, y is estimated via maximum
likelihood without penalty.

The optimum number of principal components is chosen by GCV (see Sect. 4.3

for more details).
3.3 Method III: FPCLOR on P-spline smoothing of the principal components

In this section, we propose obtaining the principal components by maximizing a pe-
nalized sample variance that introduces a discrete penalty in the orthonormality con-
straint between weight principal component functions.

Taking into account the basis expansion of the sample paths given by (3),
the principal component weight function f; admits the basis expansion f;(7) =
211321 bjx¢i(t) and var[ [ x; (t) f (t) dt] = b'W VWb, with b being the vector of basis
coefficients of the weight functions, ¥ the matrix of inner products between basis
functions, and V =n—1A’A, where A = (aij)nxp 1s the matrix of basis coefficients
of the sample paths.

The ith principal component is now defined as in Eq. (9) and the basis coefficients
of the factor loading f; are obtained by solving

MaXp 37w 5 P)b

AVARZ)
{s.t. IfII?P=b'Yb=1 and VWb +b Pib;=0, t=1,...,j—1,
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where A is the smoothing parameter estimated by leave-one-out cross validation (see
Sect. 4.2) and P; the penalty matrix defined in Sect. 2.1.

Then, this variance maximization problem is converted into an eigenvalue prob-
lem, Y VWb = §(¥ + AP;)b, so that, applying the Cholesky factorization LL" =
¥ + APy, the P-spline smoothing of FPCA turns into a classical PCA of the matrix
AW (L™,

Finally, we carry out the FPCLOR on an optimum set of principal components
obtained by the P-spline smoothing of FPCA. Then, the estimated vector 8 of basis
coefficients of the functional parameter is given by 3 = Fp = (L™'YGyp, where
G is the matrix of eigenvectors of the sample covariance matrix of A¥ (L~!) and
y 1s estimated by the maximum likelihood criterion without penalty. The optimum
number of principal components to be included in the model as regressors is chosen
by GCV (see Sect. 4.3).

3.4 Method IV: FPCLOR with P-spline penalty in the maximum likelihood
estimation

As developed in Reiss and Ogden (2007) for the functional linear model, we propose
a smoothed version of FPCLOR that uses B-splines and roughness penalty in the
regression. This penalized regression version of FPCLOR incorporates a penalty in
the maximum likelihood estimation.

Taking into account the FLM in terms of non-penalized principal components and
Eq. (3), the estimator of the basis coefficients of the functional parameter corresponds
to ,é = Fy, where F is exactly the same as in Sect. 3.1 and y is estimated by means
of penalized likelihood.

Now the design matrix corresponds to X = (1|I"), where I" = (§;;), x4 is a matrix
of an optimal set of ¢ functional principal components of the sample paths. Then,
the penalized log-likelihood of the functional principal components logit model (4)
is given by

A
L*A,y)=L(y) — EJ//PdJ/,

with y = (y1, ..., y,)’ being the vector of the regression coefficients, P, the penalty
matrix defined in Sect. 2.1, with dimension (¢ x ¢) in this case, and L(y) given by
Eq. (5).

The optimal number of principal components and the smoothing parameter are
chosen by a double GCV procedure (see Sect. 4.4 for more details).

4 Model selection

Penalized FPCLOR requires selecting an optimal number ¢ of functional principal
components and the smoothing parameter A. Using P-spline smoothing of FPCA,
the problems of high dimension, multicollinearity, and roughness in the covariables
are solved. As cited in Reiss and Ogden (2007), and according to Marx and Eilers
(1999) and Cardot et al. (2003), it is often assumed that the number of basis functions
considered for computing P-splines has little impact as long as there are sufficiently
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many knots to capture the variation in the functional parameter. Methods based on
smoothed FPCA (Methods II and III) select A in a previous step to the selection of
the number ¢ of principal components.

On the other hand, when the smoothing is applied in the likelihood estimation
of the functional parameter coefficients (Methods IV and V), the sample paths are
approximated by regression splines. It is known that regression splines do not con-
trol the degree of smoothness in the curves. Therefore, the selection of the number
of predictor variables (non-penalized principal components for Method IV and ba-
sis functions for Method V) is essential. The optimal number of predictors and the
smoothing parameter are selected in these cases by a double-GCV procedure.

4.1 Choosing A in Method II

For Method II (Sect. 3.2) the smoothing parameter A was selected prior to the re-
gression. In order to select the same smoothing parameter for the n fitted P-splines,
a leave-one-out cross-validation (CV) method based on minimizing the mean of the
cross-validation errors over all P-splines is applied in this paper. This CV criterion
consists of selecting the smoothing parameter A that minimizes the expression

QA e
CVO) == | e =)/ omi 4 1),
i=1 k=0

where )21.(,: %) are the values of the ith sample path estimated at the time #;; avoiding the

kth observation knot in the iterative estimation process. The number of observation
knots of the ith sample path corresponds to m; + 1.

4.2 Choosing A in Method III

As in the previous section, selecting a suitable smoothing parameter is very impor-
tant to control the smoothness of the weight function associated with each principal
component. In this paper, CV (leave-one-out) method described in Ramsay and Sil-
verman (2005) has been adapted by considering the discrete roughness penalty based
on P-splines. It consists of selecting the value of A that minimizes

p
CV(y =~ > v,
P

where
1 )
CVy0) =~ DN I i
i=1
with qu(—i) = ZL 1 Si(e_ ) fg(_i) being the reconstruction of the sample curve x; in

terms of the first ¢ principal components estimated from the sample of size n — 1 that
includes all sample curves except x;.
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4.3 Choosing the number of principal components in Methods I, II, and III

The optimal number ¢ of functional principal components for Methods I, II, and III is
chosen by the GCV procedure following the notes given in Craven and Wahba (1979)
and Ramsay and Silverman (2005). The objective is to minimize

GCV(q)z( ! )( MSE(@) ) (10)
n—tr(H?) )\ n—tr(H?) )’

where MSE(q) = 1 Yo (i — )3;] )2 and HY is the “hat” matrix given by

n

1/2 -1 1/2
HT =W, X(X'W,X)"'x'W,””,
with W, = Diag[ﬁiq (1—- ﬁ'l-q )] as the weight matrix. The design matrix X depends on
the considered method as follows:

Method I: X = (1|I"), with I" being the matrix comprising the columns of the first g
functional principal components of A¥ !/, with A the matrix of basis coefficients
of the sample paths estimated via regression splines, and ¥ !/? the square root of
the matrix of the inner products between B-spline basis functions.

Method II: X = (1|I"), with I" being the matrix comprising the columns of the first g
functional principal components of AW /2, with A the basis coefficients estimated
via penalized splines (P-splines).

Method III: X = (1|I"), with I" being the matrix comprising the columns of the first
g functional principal components of AW (L~!)’, with A the matrix of basis coef-
ficients of the sample paths estimated via regression splines, and L given by the
Cholesky decomposition.

4.4 Choosing the number of predictors and the smoothing parameter in Methods IV
and V

In Methods IV and V, the log-likelihood is penalized and the parameters of the model
are simultaneously chosen by a double-GCV. In Method 1V, the double-GCV consists
in computing the GCV error (10) for each number of principal components g and
each A of a grid of possible values. Then, g is selected by minimizing the mean of
the GCV error over all possible values of A. Once g is selected, the value of A with
the lowest GCV error is chosen. In Method V, the procedure is the same by replacing
the number 