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Abstract. - This study addresses the analysis of the cloud effects on photosynthetically 13 

active radiation (PAR, 400-700 nm) for global (PARGlobal) and its diffuse component 14 

(PARDiffuse). To this aim, a 11-year database of measured PARGlobal and modeled PARDifuse 15 

recorded in a Mediterranean site was analyzed, for both clear-sky and all-sky scenarios. 16 

PARGlobal mean values for the entire period were estimated in (200 ± 50) Wm-2 and (240 17 

± 50) Wm-2 for all- and clear-sky scenarios, respectively, while the values obtained for 18 

PARDiffuse were (59 ± 6) Wm-2 for all-skies and (51 ± 5) Wm-2 for clear-skies. PARGlobal 19 

monthly averages show the typical annual pattern driven by the annual course of solar 20 

position and PARDiffuse presents a similar but less marked pattern. The observed seasonal 21 

behavior was explained in terms of cloud cover, cloud frequency, liquid and ice content 22 

for all-sky scenarios. Higher variability during spring was detected due to the more 23 

complex cloud features in this season. Cloud Radiative Effect (CRE) showed negative 24 

values associated with a decrease in PARGlobal (-36 + 14) Wm-2 and positive values 25 

corresponding to an increase in PARDiffuse (+7 + 5) Wm-2.  A clear seasonal pattern was 26 

found for CREGlobal and CREDiffuse with higher values in spring and autumn, and lower 27 



values in summer and winter. Additionally, the PAR-to-Total ratio and diffuse fraction 28 

(kPAR) values were evaluated under different sky conditions. Monthly mean values of the 29 

PAR-to-Total ratio showed steady values around 0.44 and any dependence on clearness 30 

index (kt) nor total cloud cover (TCC) was found. However, kPAR seemed to increase with 31 

TCC, taking averages values of 0.45 for all-sky and 0.28 for clear-sky scenarios. For all-32 

sky conditions a clear seasonal pattern was observed with higher values in colder 33 

months. A secondary maximum value for kPAR was found in summer for clear-sky 34 

scenarios, revealing the important effect of the Saharan dust intrusions in the 35 

Mediterranean region. Finally, a well-defined logistic relationship was found between 36 

kPAR and kt, leading to estimate kPAR from total solar irradiance measurements. 37 
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 40 

1.- INTRODUCTION 41 

Solar radiation is the main driver for the Earth’s climate and, therefore, for many of the 42 

life forms (Stocker et al., 2013; Trenberth et al., 2009). Approximately half of the Sun’s 43 

energy is supplied in the so-called photosynthetically active radiation (PAR) range (Yu et 44 

al., 2015), which corresponds to the solar radiation in the spectral interval between 400 45 

and 700 nm (McCree, 1972). This definition is associated to the crucial role played by 46 

the solar radiation at this spectral interval for plant photosynthesis and related 47 

processes such as biomass production or greenhouse gases emitted by crops (Keane et 48 

al., 2017; Manevski et al., 2017; Roebroek et al., 2020; Tan et al., 2018). Partitioning of 49 

PAR radiation into its direct and diffuse components is of special interest. This 50 



partitioning highly influences canopy photosynthesis being the light-use efficiency, 51 

defined as the ratio between grams of accumulated biomass and intercepted 52 

PAR radiation, higher under cloudy conditions due to the enhancement of the PARDiffuse 53 

radiation under these situations (Gu et al., 2002; Kanniah et al., 2012). 54 

Despite the PAR’s relevance, fundamental aspects such as the aerosol and cloud effects 55 

on PAR, and its role on climate change, remain unclear (Cohan et al., 2002; Lozano et al., 56 

2021; Stocker et al., 2013). Clouds are the main factor determining the PAR amount and 57 

are a key for the diffuse-to-direct partitioning and, consequently, of special interest for 58 

the plant primary production (e.g. Gu et al., 2002; Mercado et al., 2009). Important 59 

changes in the cloud features affecting the solar radiation trends have been reported 60 

over many different regions during the last and the present century (Hatzianastassiou 61 

et al., 2020; Wild, 2009, 2016). These variations on cloudiness and their effect on solar 62 

radiation take special relevance on sensitive climate change regions such as the 63 

Mediterranean basin. Several authors have reported significant trends in total solar 64 

irradiance (280-4000 nm), up to +0.82 Wm-²decade-1 over the western Mediterranean, 65 

associated with cloud changes in the last decades (Hatzianastassiou et al., 2020; 66 

Kambezidis et al., 2016; Sánchez-Lorenzo et al., 2017). Cloud effects have been widely 67 

analyzed over short- and long-wave spectral intervals in the Mediterranean area 68 

(Córdoba-Jabonero et al., 2011; Dong et al., 2017; Freile-Aranda et al., 2017; Mateos et 69 

al., 2013a, 2013b; Nikitidou et al., 2017; Pyrina et al., 2015; Tzoumanikas et al., 2016) 70 

but very few studies have addressed them for the PAR spectral range (Alados et al., 71 

2000; Jacovides et al., 2007). To our knowledge, only the study carried out by Trisolino 72 

et al. (2018) has focused on the analysis of the cloud effects of long-term series of PAR 73 

measurements. In this study, Trisolino et al. (2018) applied a multi-linear model to relate 74 



the deseasonalized cloud radiative effect and cloud properties. They observed that, while 75 

global PAR interannual variability may be associated with cloud variability in winter, 76 

diffuse PAR can not be described by a simple multi-linear model due to its non-linear 77 

dependency on cloud properties, particularly on the cloud optical depth. 78 

Several authors have pointed out the scarcity of PAR measurements (e.g. Ferrera-Cobos 79 

et al., 2020; Niu et al., 2019; Wang et al., 2016) and the absence of a worldwide 80 

measurement network with standardized protocols (Ge et al., 2011) as the main reasons 81 

explaining the reduced number of studies about PAR. This lack of measurements is much 82 

more remarkable for the PARDiffuse component, which requires a shading device that 83 

prevents the sensor from the direct component. Although shadow-rings and Sun-84 

trackers are commonly employed to measure diffuse radiation in the total solar 85 

spectrum (Sánchez et al., 2012), it is extremely rare to use these devices for measuring 86 

the diffuse component in the PAR spectral interval (Alados & Alados-Arboledas, 1999). 87 

In this context, it should be noted the effort at constructing a PAR dataset during 1961-88 

2014 in China for 2474 CMA (Chinese Meteorological Administration) stations by 89 

applying a model with highest accuracy and strongest robustness (Qin et al., 2019). 90 

Besides, Feng et al. (2018) studied the spatial and temporal variations of the annual 91 

mean PAR value over mainland China using the genetic model.  92 

In order to address this worldwide measurement gap, several authors have proposed 93 

different models to estimate PAR values. Among these models, empirical algorithms to 94 

derive global PAR (PARGlobal) from Total solar irradiance (e.g. Alados et al., 1996; Alados 95 

& Alados-Arboledas, 1999; Foyo-Moreno et al., 2017; Mizoguchi et al., 2014; Peng et al., 96 

2015; Wang et al., 2013), from spectral band measurements (e.g. Trisolino et al., 2016), 97 

parametric models (e.g. Alados et al., 2002; Alados-Arboledas et al., 2000) and from 98 



satellite data  (Hao et al., 2019; Harmel & Chami, 2016; Vindel et al., 2018) stand out. A 99 

very common practice is to estimate the PARGlobal as a constant fraction of the Total solar 100 

irradiance (Britton & Dodd, 1976; Janjai et al., 2015; Yu et al., 2015; Zhang et al., 2000), 101 

with values around 0.41 commonly assumed for the PAR-to-Total ratio (Jacovides et al., 102 

2004). Although in a much more limited number, several models have been specifically 103 

proposed for the PARDiffuse component (e.g. Foyo-Moreno et al., 2018; Jacovides et al., 104 

2010). 105 

However, several authors have highlighted important dependences of the PAR-to-Total 106 

ratio on specific atmospheric conditions (Alados et al., 1996; González & Calbó, 2002; Su 107 

et al., 2007). Thus, a clear dependence of the PAR-to-Total ratio on air mass under 108 

cloudless conditions have been reported at several sites (González & Calbó, 2002; Yu et 109 

al., 2015; Zhang et al., 2000) and particularly at Granada, in the Western Mediterranean 110 

basin (Alados-Arboledas et al., 2000). However, very few studies have analyzed the PAR-111 

to-Total ratio values under cloudy conditions, for which this ratio can reach values up to 112 

0.48 for hourly averages (Jacovides et al., 2004; Wang et al., 2015). Moreover, the 113 

PARDiffuse component is commonly analyzed by its PAR diffuse fraction (kPAR), defined as 114 

the ratio between the PARDiffuse and PARGlobal. Several models have been proposed to 115 

estimate kPAR from the PAR clearness index (kt,PAR), defined as the ratio between the 116 

PARGlobal at the surface and the PAR radiation at the top of the atmosphere. Most of 117 

these models are based on linear or polynomial functions of kt,PAR and have been 118 

developed for clear-sky conditions (Foyo-Moreno et al., 2018; Jacovides et al., 2010). 119 

These one-parameter models describe the general behaviour of kPAR but they do not 120 

reproduce the variability due to the different sky scenarios, being clouds the main factor 121 

driving this variability. 122 



In this context, this study aims to analyze the cloud effects on PARGlobal and PARDiffuse at 123 

an urban Northern mid-latitude site, in the Mediterranean basin. To this goal, an 124 

empirical model has been applied to derive PARDiffuse from PARGlobal and Sun-geometry 125 

parameters. Then, a long-term database of measured PARGlobal and modelled PARDiffuse, 126 

covering the period (2008-2018), have been analyzed, for both clear- and all-sky 127 

scenarios, and the cloud radiative effect (CRE) have been assessed for both, PARGlobal and 128 

PARDiffuse. Additionally, the PAR-to-Total ratio and kPAR have been evaluated versus the 129 

clearness index (kt) and total cloud cover (TCC) and for all- and clear- sky scenarios. 130 

 131 

2.- Experimental site and instrumentation 132 

2.1 Experimental site 133 

The experimental dataset has been acquired at the IISTA-CEAMA radiometric station 134 

located at Granada (37.164 oN, 3.605 oW, 680 m.a.s.l.), a non-industrialized 135 

Southeastern Spanish city in the Western Mediterranean region. The city is located 136 

within a natural basin surrounded by mountains with a continental Mediterranean 137 

climate characterized by dry and hot summers and cold winters, with mean daily 138 

maximum surface temperature of (32 ± 3) ºC and (14.6 ± 2.4) ºC, respectively (AEMET, 139 

Spanish Meteorology Statal Agency; period 1981-2010). The orography at Granada 140 

favors winter-time thermal inversions with prevalence of very low wind speeds (Lyamani 141 

et al., 2012). The main local aerosol sources are traffic, re-suspended local mineral dust 142 

in the dry season and domestic heating during winter (Titos et al., 2012, 2017) and 143 

bioaerosols (Cariñanos et al., 2021), while the most important allochthonous aerosol 144 

particles are anthropogenic pollution from the European continent, mineral dust 145 



particles from Sahara desert in North Africa (Guerrero-Rascado et al., 2008, 2009; 146 

Lyamani et al., 2006; Valenzuela et al., 2012) and smoke from fires occurring in the 147 

Iberian Peninsula and North America (Alados‐Arboledas et al., 2011; Ortiz-Amezcua et 148 

al., 2017). IISTA-CEAMA facilities are part of the observatory AGORA (Andalusian Global 149 

ObservatoRy of the Atmosphere) in the framework of ACTRIS (Aerosol, Clouds and Trace 150 

Gases Research Infrastructure). 151 

 152 

2.2 Radiation measurements 153 

Two solar radiation datasets have been employed in this study. The first dataset is 154 

composed by two years (1994-1995) of one-minute experimental measurements of 155 

PARGlobal and PARDiffuse. Both components were measured by two LICOR-190 SA quantum 156 

sensors (Lincoln, NE, USA), consisting of a diffuser, a visible bandpass interference filter, 157 

and a Si-photodiode. The LICOR-190SA quantum sensors has a relative error of less than 158 

5% with a systematic spectral error below 1 % (Ross & Sulev, 2000) and an angular 159 

response with a maximum deviation from the ideal cosine response of 7 % at 80º (LICOR 160 

Sensor SA Type Manual, 1992). One of these sensors was mounted on a polar axis 161 

shadowband in order to measure the diffuse component. Due to its structure, this 162 

device causes an underestimation in the measurements because the band screens not 163 

only the Sun’s disk but also a substantial portion of the sky and, therefore, these 164 

measurements must be corrected. In this study the method proposed by Batlles et al. 165 

(1995) has been applied to correct for the shadowband error (Alados & Alados-166 

Arboledas, 1999). PARGlobal and PARDiffuse measurements in this two-year dataset 167 

guarantee the inclusion of a wide range of seasonal conditions and solar zenith angles 168 



and have been used to fit and validate the proposed model for the diffuse component 169 

described in Section 3.1.This dataset has been employed to reproduce PARDiffuse values 170 

and analyze the cloud effect on PARGlobal and PARDiffuse (Foyo-Moreno et al., 2018). In this 171 

study, this data set, the only period with experimental values of PARGlobal and PARDiffuse 172 

in our location, has been employed to get the empirical coefficient involved in the kPAR 173 

model described in Section 3.1. and from which the long-term time series of PARDiffuse 174 

radiation analyzed in this study has been built. The approach proposed by Foyo-Moreno 175 

et al. (2018) could not be applied in this study due to the lack of the total diffuse 176 

irradiance measurements required for this model. 177 

The second dataset is composed of eleven years (2008-2018) of experimental 1-minute 178 

measurements of PARGlobal and global total (280-2800 nm) irradiance.  PARGlobal 179 

measurements were recorded by a SKP 215 PAR Quantum Sensor (#28715) 180 

manufactured by Skye Instruments. This sensor uses a blue enhanced planar diffused 181 

silicon detector with a sensitivity of 0.015 𝜇A/𝜇mol m-2s-1, and a maximum relative error 182 

of 5%. A conversion factor of 4.57 𝜇mol m-2s-1/ Wm-2 (McCree, 1972) were used to 183 

convert PAR photons measurements into energy units. Simultaneous measurements of 184 

total global irradiance were recorder with a CM11 radiometer (#861452) manufactured 185 

by Kipp&Zonen. The CM11 sensor is based on the Moll–Gorczynski thermopile with a 186 

black-painted ceramic disk. The pyranometer is provided with two hemispherical glass 187 

domes that are essentially transparent to solar radiation within the interval 280-2800 188 

nm and opaque to larger wavelengths. The CM11 complies with the International 189 

Organization for Standardization (ISO) 9060 criteria for an ISO secondary standard 190 

pyranometer. It is classified as high quality according to the WMO nomenclature (WMO, 191 

2008), with a directional error lower than 10 Wm-2 for zenith angles up to 80º (Kipp & 192 



Zonen, 2000). Radiometers involved in this study have been intercompared with 193 

reference instruments several times along the 11-year period analyzed. A detailed 194 

description of this issue can be found in Lozano et al. (2021). Particularly, a variation of 195 

only 0.4 mV/Wm-2 in the calibration factors applied for the entire period analyzed in this 196 

study (2008-2018) has been detected for the SKP 215 PAR Quantum Sensor. 197 

In order to guarantee the data quality a control analysis has been performed to detect 198 

and remove anomalous and low-accurate measurements. Thus, the constraint 0 < kt <1, 199 

being kt the clearness index defined as the ratio between the global irradiance at the 200 

surface and the total irradiance at the top of the atmosphere, both on a horizontal 201 

surface, has been applied to both datasets. Additionally, only measurements recorded 202 

at zenith angles lower than 80º have been considered to avoid the cosine response error 203 

in radiation measurements. Then, a visual inspection was performed to detect outliers 204 

as well as malfunctioning related to power supply and temperature. This high-quality, 205 

11-year database guarantees the representativeness of a great variety of meteorological 206 

scenarios, seasonal conditions and solar geometries. 207 

 208 

2.3 Cloud data 209 

Cloud data employed in this study have been taken from the European Centre for 210 

Medium-range Weather Forecasts (ECMWF) Reanalysis Fifth Generation (ERA5) 211 

database. This reanalysis has been generated using a 4-dimensional variational (4D-Var) 212 

analysis of the ECMWF’s Integrated Forecast System (IFS). The process involves vast 213 

amounts of historical observations, including satellite, aircraft and surface data, to 214 

obtain globally consistent time series of multiple climate variables (C3S, 2017). ERA5 215 



provides hourly estimates of many atmospheric, land-surface and sea-state variables 216 

together with their uncertainties along the period 1950-to-present. Particularly, 217 

atmospheric variables are on regular latitude-longitude grids at 0.25o x 0.25o resolution 218 

on 37 pressure levels. Thus, ERA5 provides data with a high temporal resolution for the 219 

long-term series analyzed in this study and with the suitable spatial resolution to 220 

account for the complex orography of our region (close to the coast and at the foothills 221 

of the highest Iberian mountain), which highly determines the development of different 222 

cloud types affecting the city of Granada. This reanalysis is an open access dataset 223 

available after registration at the Climate Data Store 224 

(https://cds.climate.copernicus.eu/cdsapp#!/home). 225 

Particularly, the cloud variables used in this study are the total cloud cover (TCC), total 226 

column cloud liquid water (TCLW), total column cloud ice content (TCIW) and the total 227 

cloud cover for low- (LCC), mid- (MCC) and high-cloud (HCC). Cloud cover variables are 228 

estimated as the proportion of the grid box covered by clouds. Low-, mid- and high-cloud 229 

cover are defined as the integration of all clouds from the surface to 800 hPa, 800 hPa 230 

to 450 hPa and from 450 hPa to the top of the atmosphere (TOA), respectively (Forbes, 231 

2017). Total cloud cover integrates all clouds from the surface level to the TOA with 232 

overlap assumptions (Barker, 2008; Jakob & Klein, 2000). Total column cloud liquid 233 

water is the amount of liquid water contained within cloud droplets in a column 234 

extending from the surface to the TOA and averaged for the model grid box. These ERA5 235 

cloud variables have been analyzed and compared in several regions against surface and 236 

satellite cloud observations with good agreements in both comparisons (Danso et al., 237 

2019; Lei et al., 2020; Yao et al., 2020). Thus, in the analysis performed by Yao et al. 238 

(2020) for the period 2007-2016, ERA5 shows monthly mean cloud cover with relative 239 



errors below 10% with respect to MODIS, with special good behaviour for latitudes 240 

between 0-30º. 241 

 242 

3.- Methodology 243 

3.1 Diffuse PAR modelling 244 

Many authors have studied the functional relationship between the diffuse and global 245 

irradiance in the total solar spectrum (280-4000 nm). This relationship is usually 246 

quantified using irradiance ratios due to their lower uncertainty with respect to the 247 

absolute values (Badarinath et al., 2007; Meloni et al., 2006). Thus, several empirical 248 

models to estimate/derive the diffuse fraction (k), defined as the ratio between diffuse 249 

and global irradiance, and from the clearness index (kt) , can be found in the literature 250 

(Kuo et al., 2014; Ridley et al., 2010; Torres et al., 2010). This relationship has been 251 

translated into other spectral intervals such as the ultraviolet (e.g. Sánchez et al., 2017) 252 

and PAR (e.g. Foyo-Moreno et al., 2018; Tsubo & Walker, 2005). 253 

Similarly to the total solar spectrum, kPAR and kt,PAR are defined at the PAR interval as: 254 

𝑘𝑃𝐴𝑅 =
𝑃𝐴𝑅𝐷𝑖𝑓𝑓𝑢𝑠𝑒

𝑃𝐴𝑅𝐺𝑙𝑜𝑏𝑎𝑙
         (1) 255 

𝑘𝑡,𝑃𝐴𝑅 =
𝑃𝐴𝑅𝐺𝑙𝑜𝑏𝑎𝑙

𝐼𝑃𝐴𝑅,𝑇𝑂𝐴
        (2) 256 

Following (Iqbal, 1983), the PAR irradiance at the top of the atmosphere, IPAR,TOA, has 257 

been calculated as: 258 

𝐼𝑃𝐴𝑅,𝑇𝑂𝐴 = 𝐼𝑃𝐴𝑅,0𝐸0𝑐𝑜𝑠𝑆𝑍𝐴       (3) 259 



where SZA is the solar zenith angle, E0 is the eccentricity correction factor of the Earth’s 260 

orbit, computed by the expression developed by Spencer (1971), and IPAR,0 is the solar 261 

constant for the PAR range, with an estimated value of 634.40 W m−2 (Iqbal, 1983). 262 

Different functional forms of the relationship between kPAR and kt,PAR were analyzed in 263 

previous studies. Thus, Jacovides et al. (2010) revealed the good performance of the 264 

model proposed by Ridley et al. (2010) (usually known as BRL model), originally 265 

proposed to estimate the diffuse fraction in the total spectrum, when applied at the PAR 266 

spectral interval. Later, Kathilankal et al. (2014) analyzed a more complete version of the 267 

Ridley’s model for the kPAR given by: 268 

𝑘𝑃𝐴𝑅 =
1

1+𝑒𝑥𝑝(𝑎1+𝑎2𝑘𝑡,𝑃𝐴𝑅+𝑎3𝛼+𝑎4𝐴𝑆𝑇+𝑎5𝐾𝑡,𝑃𝐴𝑅
′ +𝑎6𝛹𝑃𝐴𝑅)

   (4) 269 

where ai are the coefficients to be fit and kt,PAR  is the PAR hourly clearness index. The 270 

rest of variables involved in this model have been included in order to reproduce the 271 

kPAR variability under different sky conditions. Thus, α is the solar elevation in degrees 272 

and accounts for the enhancement in the Rayleigh scattering as α decreases, while AST 273 

is the apparent solar time and considers differences in the atmosphere between the 274 

morning and afternoon. Moreover, K’t,PAR is the daily clearness index which is a 275 

measurement of the daily variability in  PAR  mainly associated with clouds. Finally, ΨPAR 276 

is defined as a persistence index and takes into account the very slow rate of change in 277 

the radiation under cloud-free or overcast skies evaluated in a given interval (from 278 

“time-1” to “time+1”). These two last variables are directly related with the cloud 279 

characteristics and are defined at the PAR interval as: 280 

𝐾𝑡,𝑃𝐴𝑅
′ =

∑ 𝑃𝐴𝑅𝐺𝑙𝑜𝑏𝑎𝑙
24
𝑖=1

∑ 𝐼𝑃𝐴𝑅,𝑇𝑂𝐴
24
𝑖=1

       (4.a) 281 



𝛹𝑃𝐴𝑅 =
𝑘𝑡,𝑡𝑖𝑚𝑒−1+𝑘𝑡,𝑡𝑖𝑚𝑒+1

2
        (4.b) 282 

An important advantage of this model is that it proposes a continuous curve, instead of 283 

a set of piecewise linear fittings and, despite its complex appearance, it is easily 284 

linearizable and fitable. Additionally, the variables included in this model to account for 285 

the kPAR variability do not require additional data than PARGlobal and the date and time at 286 

which each measurement is recorded, allowing for its application to generate long-term 287 

series. 288 

This model has been analyzed for our location using the 2-year database described in 289 

Section 2.1. In our knowledge, this is the first time that this model has been applied to 290 

our location using PAR radiation measurements. This dataset has been hourly averaged 291 

and randomly splitted into two subsets: (1) a fitting subset containing the 75 % of data, 292 

to obtain the model coefficients, and (2) a validation subset composed by the remaining 293 

25 % of data, for the model validation. The fitting coefficients obtained for this model at 294 

Granada are summarized in Table 1. The model performs notably well with 295 

determination coefficient (r2) higher than 0.85, and low values of root mean square error 296 

(RMSE) and mean bias error (MBE), below 0.10 Wm-2 and 0.007 Wm-2, respectively. 297 

These results are similar to those obtained by other authors at different locations (e.g. 298 

Jacovides et al., 2010; Kathilankal et al., 2014) and have been confirmed by the statistics 299 

obtained in the validation process (r2=0.87, RMSE = 0.10 Wm-2, MBE = 0.008 Wm-2). 300 

Figure 1 shows the kPAR values obtained using both experimental measurements and the 301 

logistic empirical model described by the Eq. (4) with respect to kt,PAR for the validation 302 

dataset. This figure also confirms the agreement between kPAR values derived from 303 

experimental measurements and the empirical model not only in their general behavior 304 



but also in the kt,PAR  dispersion due to the different sky conditions resulting in the same 305 

kt,PAR value. 306 

 307 

3.2 Data analysis 308 

Once the time series of kPAR were built, PARDiffuse irradiance for the analyzed period was 309 

obtained from Eq. (1). Clear- and all-sky conditions have been differentiated in this 310 

study. Clear-sky scenarios were extracted by the application of the test #1 and #3 311 

proposed by the Long and Ackerman method (Long & Ackerman, 2000). These two tests 312 

identify clear-sky conditions using local values of normalized total solar irradiance and 313 

analyzing the total solar irradiance variability at the surface with respect to its variation 314 

at the TOA, respectively. Due to the lack of total diffuse solar irradiance measurements, 315 

tests #2 and #4 of this methodology could not be applied. Instead, a thorough supervised 316 

inspection of the whole data set was made in order to detect misclassified data points. 317 

After that, the monthly mean and annual evolution of PARGlobal and PARDiffuse have been 318 

obtained from daily average values derived from hourly mean values. A detailed 319 

monthly statistic computing the arithmetic mean (Ave), standard deviation (SD), median 320 

(Md), minimum (Min), maximum (Max), 5th, 25th, 75th and 95th percentiles (P5, P25, 321 

P75 and P95, respectively), skewness (Ske), kurtosis (Kur) and the variation coefficient 322 

(VC), estimated as the percentage of the ratio between the standard deviation and the 323 

mean, have been analyzed for both clear- and all-sky scenarios. 324 

The influence of clouds on the PARGlobal and PARDiffuse has been assessed through the 325 

analysis of the so-called Cloud Radiative Effect (CRE). This variable is defined as the 326 



difference between all- and clear-sky radiation (Harrison et al., 1990; Ramanathan et al., 327 

1989), and can be computed at PAR range as follows: 328 

𝐶𝑅𝐸𝑃𝐴𝑅 = 𝑃𝐴𝑅𝐴𝑙𝑙 − 𝑃𝐴𝑅𝐶𝑙𝑒𝑎𝑟      (5) 329 

Finally, cloud effects on the PAR-to-Total ratio and kPAR along with the annual evolution 330 

for all- and clear-sky scenarios of both variables have been analyzed. Additionally, their 331 

dependence on different sky conditions have been considered. To this aim, two 332 

parameters have been selected in order to determine the sky conditions, namely kt and 333 

TCC. The first parameter considers the atmosphere transparency accounting for the 334 

attenuation effects of all the atmospheric components (gases, clouds and aerosols). Due 335 

to the low variability of atmospheric gases at a given location (compared with other 336 

atmospheric constituents), the most dominant factors controlling solar radiation 337 

variations, and therefore kt values, are clouds and aerosols. Then low values of kt are 338 

usually associated with the presence of clouds and aerosols while high kt values indicate 339 

the opposite situation. For its part, TCC quantify the cloud presence. This analysis has 340 

been performed with the dataset composed of the coincident cases in the ERA5 and 11-341 

year radiation databases. 342 

 343 

4.- Results and discussion  344 

4.1 Cloud radiative effect on PARGlobal and PARDiffuse 345 

Figure 2 shows the time series of monthly mean values of PARGlobal and PARDiffuse during 346 

the whole period 2008-2018 differentiating between all- and clear-sky scenarios. Under 347 

clear-sky scenarios the expected annual cycle is observed for PARGlobal, with higher 348 



values during warm months and minimum values during cold ones, due to the different 349 

course of the solar zenith angle along the year (also highlighted from the statistical 350 

analysis shown in Figure 3). This behaviour is roughly found for PARGlobal under all-sky 351 

situations, where the cloud presence slightly modified the monthly mean radiative field. 352 

Moreover, the time series of monthly mean PARDiffuse values for both all- and clear-sky 353 

scenarios are noisier as a consequence of the high variability in the presence of clouds 354 

and aerosols over the study area. Thus, a value of (279 ± 15) Wm-2 is found for all-skies 355 

in July 2014 and (320 ± 40) Wm-2 for clear-skies in May 2013 for PARGlobal, while for 356 

PARDiffuse the maximum values reached (74 ± 13) Wm-2 in April 2011 and (76 ± 22) Wm-2 357 

in March 2018 for all- and clear-skies, respectively. Additionally, notable interannual 358 

variability has been observed with differences between the maximum and minimum 359 

annual mean values, being estimated in 20 Wm-2 and 16 Wm-2 for PARGlobal in all- and 360 

clear-sky conditions, respectively, and around 5 Wm-2 for PARDiffuse in all-sky and 9 Wm-361 

2 for clear-sky scenarios. 362 

As it was expected, in clear-sky situations PARGlobal reaches higher values than in all-sky 363 

situations due to the cloud attenuation. The opposite behaviour was observed for 364 

PARDiffuse which increases under cloudy conditions due to the increase of the scattering 365 

processes. The average values of PARGlobal for the entire period 2008-2018 has been 366 

estimated in (200 ± 50) Wm-2 and (240 ± 50) Wm-2 for all- and clear-sky scenarios, 367 

respectively (i.e. 17% less). These values agree with those reported by other authors 368 

over the Mediterranean area. Thus, Alados et al. (2000) and López et al. (2001) reported 369 

values of PARGlobal for different periods at Granada and Almería (Southern Spain) ranging 370 

between 205 and 234 Wm-2 for all-sky conditions, and between 205 and 276 Wm-2 for 371 

clear-sky scenarios, while Zempila et al. (2016) reported an average value for PARGlobal 372 



of 223 Wm-2 in 2005 over Greece. On the other hand, average PARDiffuse takes values of 373 

(59 ± 6) Wm-2 and (51 ± 5) Wm-2 for all- and clear-sky scenarios, respectively (16% more). 374 

These values are clearly higher than those reported by Trisolino et al. (2018), who 375 

estimated mean PARDiffuse values of 26 Wm-2 and 35 Wm-2 for clear- and all-sky scenarios, 376 

respectively, for the period 2002-2016 at Lampedusa, in central Mediterranean. These 377 

large differences for PARDiffuse can be attributed to differences in altitude, surface 378 

albedo, atmospheric aerosols and clouds which determine the diffuse component. 379 

Figure 3 displays the annual evolution of the statistics for PARGlobal and PARDiffuse under 380 

all- and clear-sky scenarios for the entire dataset. The seasonal distribution of PARGlobal 381 

shows an evident cycle with its maximum median values around 271 Wm-2 in July for all-382 

sky and 289 Wm-2 both in May and July under clear-sky situations. The minimum values 383 

occurred in winter with median PARGlobal reaching 127 Wm-2 in January for all-sky and 384 

159 Wm-2 in December for clear-sky scenarios. For all-sky conditions, the behavior driven 385 

by the annual course of solar position is reinforced by the annual evolution of the cloud 386 

cover over our location, which shows the same pattern both in cloud frequency (Figure 387 

4.a) and total cloud cover (TCC; Figure 4.c). On the other hand, as it was expected, 388 

PARGlobal for cloud-free situations presents low variability, below 6% observed in March. 389 

However, all-sky situations present high variability ranging between 2% in July and 20% 390 

in March, with winter- and springtime showing the highest variability, explained by the 391 

higher cloud frequency and a wider range of the TCC, TCLW and TCIW values during 392 

these seasons. 393 

The seasonal pattern observed in Figure 3 for PARDiffuse is notably less marked than for 394 

PARGlobal, mostly due to the high complexity of the processes involved in the diffuse 395 



component. While median PARDiffuse values show a similar annual evolution than those 396 

observed for PARGlobal, the maximum and minimum values, as well as its variability, show 397 

a more complex pattern. Thus, the maximum median values for PARDiffuse have been 398 

detected in May for all-sky situations, with values of 66 Wm-2, and in July and August for 399 

clear-sky scenarios with a value of 59 Wm-2. The minimum median values for PARDiffuse 400 

occurred in December reaching 49 Wm-2 and 45 Wm-2, for all- and clear-sky scenarios, 401 

respectively. PARDiffuse variability also shows more vague differences between all- and 402 

clear-sky conditions. Thus, PARDiffuse variability for all-sky scenarios varies from 6% to 403 

13% with its maximum found in February and December, under cloud-free situations 404 

PARDiffuse variability ranges from 4% to 20% with its maximum in February and March. 405 

These lower differences in PARDiffuse between all-sky and clear-sky conditions are 406 

probably due to the higher sensitivity of the diffuse component with respect to the 407 

geometric and microphysical characteristics of cloudiness, and the atmospheric aerosol 408 

particles, which highly increase the scattering processes under clear-sky conditions. This 409 

last factor also could explain the high variability of PARDiffuse under clear-skies. Besides, 410 

due to its proximity to the Sahara Desert, Granada is frequently affected by large dust 411 

loads favoring the increase of PARDiffuse during clear-skies, even during wintertime (e. g. 412 

Foyo-Moreno et al., 2014). Particularly, the maximum values observed for clear-skies in 413 

February and March are related to winter-time extreme dust events over Granada (i.e. 414 

Cazorla et al., 2017; Fernández et al., 2019). In fact, Lozano et al. (2021) found relatively 415 

high values of maximum AOD at 500 nm (0.66) for this database in these months. 416 

Variability of the all-sky situations seems to be associated with the cloud characteristics 417 

similarly to the PARGlobal variability in these same conditions.  418 

Figure 4 shows a detailed characterization of clouds for the period 2008-2018 at 419 



Granada. Three different sky conditions have been differentiated: “overcast”, “broken 420 

clouds” and “clear”. This classification has been built from the TCC values taking as 421 

“overcast” those situations for which TCC> 0.9, as “broken-cloud” those cases with 0.1< 422 

TCC < 0.9 and “clear-skies” when with TCC<0.1. During winter- and springtime the 423 

frequency of cloudy skies (overcast and broken clouds) are around 70%, meanwhile in 424 

summer frequency of overcast and broken cloud situations fall down to 0% and 24%, 425 

respectively (Figure 4a). High clouds presence is at least 50% of the total, with the 426 

exception of July when its minimum percentage has been detected (37%; Figure 4b). In 427 

agreement with the frequency of sky scenarios, TCC decreases from January to July and 428 

then increases, similarly to that observed for with the TCLW (Figure 4c and 4d). 429 

However, the TCIW does not follow the same pattern and reaches its maximum values 430 

in spring (0.029 kgm-2) and autumn (Figure 4e), in concordance with the maximum 431 

values observed for the high clouds frequency. 432 

Figure 5a and 5b present a boxplot of the monthly values of CREGlobal and CREDiffuse 433 

estimated from eq. (5). The negative sign of CREGlobal indicates a decrease in surface PAR 434 

due to cloud effects meanwhile the positive sign of CREDiffuse involves the opposite effect, 435 

that is, an increase of the diffuse component. The average value of the full period of 436 

study is about (-36 ± 14) Wm-2 for CREGlobal and (+7 ± 5) Wm-2 for CREDiffuse. Trisolino et 437 

al. (2018) found a value of -14.7 Wm-2and +8.1 Wm-2 for CREGlobal and CREDiffuse, 438 

respectively. Both CREGlobal and CREDiffuse show a clear seasonal pattern with two 439 

maxima, in absolute values, in spring (more intense) and autumn and minimum values 440 

in summer and winter. Thus, CREGlobal reaches its maximum value, in absolute terms, in 441 

April (-61.8 Wm-2) and its minimum value in July (-16.7 Wm-2). Similarly, the maximum 442 

CREDiffuse has been detected in April (+16.9 Wm-2) and its minimum in January (+1.2 Wm-443 



2). For CREDiffuse, this particular behavior seems to be related with the annual pattern 444 

observed in high clouds frequency and the TCIW values, as shown in Figure 4.b and 4.e. 445 

High clouds are mainly composed of non-spherical ice crystal particles with effective 446 

radius in the range of 20-140 microns (Liou et al., 2008). These characteristics are 447 

responsible for an increase of the scattering processes favoring the pattern clearly 448 

observed in CREDiffuse. In the case of CREGlobal this pattern is the result of a more complex 449 

combination of the different cloud characteristics that entails higher cloud opacity in 450 

autumn but mainly in spring when the maximum absolute values of CREGlobal are 451 

observed. This seasonal pattern with maximum values (in absolute terms) in April for 452 

both CREGlobal and CREDiffuse was also found by Trisolino et al. (2018) for PAR and Pyrina 453 

et al. (2015) in the shortwave range in the Mediterranean basin, who associated this 454 

pattern to elevated values of cloud optical thickness in this month. 455 

 456 

4.2 Effect of sky conditions on PAR-to-Total ratio and PAR diffuse fraction 457 

(kPAR) 458 

Figure 6 shows the relationship between the PAR-to-Total ratio and kt and TCC, 459 

respectively, for 1-minute data and the entire period of study. No significant 460 

dependence on kt nor TCC has been observed for the PAR-to-Total ratio, which for bin-461 

averaged values vary from 0.43 ± 0.03 to 0.46 ± 0.05. However, a great point spread can 462 

be appreciated for the whole range of kt and TCC. This behavior is stronger for low values 463 

of kt and high values of TCC, when the PAR-to-Total ratio can reach values between 0.25 464 

and 0.55. Other authors, such as Ferrera-Cobos et al. (2020), have recently reported a 465 

reduction in the relationship of PAR-to-Total ratio when kt increases, using data from 466 



three stations located in mainland Spain and Akitsu et al. (2015) in Tsukuba (Japan) 467 

found a slight negative correlation with dependence kt. Some studies with long-term 468 

series such as Niu et al. (2019) reported slightly lower values in China for 1961-2016, 469 

with variations in the PAR-to-Total ratio from 0.39 in winter to 0.42 in summer. 470 

Meanwhile, Peng et al. (2015) reported values from 0.38 in winter to 0.43 in summer for 471 

the Tibetan Plateau in 2006-2012. Yu et al. (2015) compiled values from various studies 472 

in which the annual mean of the PAR-to-Total ratio varied from 0.42 to 0.52. Zhang et 473 

al. (2020) found a mean value of 0.43 for Xinzhou, a suburban site on the North China 474 

Plain. Jacovides et al. (2004) reported higher values for overcast skies (0.44 ± 0.02 475 

against 0.41 ± 0.01), indicating that clouds reduce total irradiance more than PAR. Wang 476 

et al. (2015) for data in Mongolia from 1990 to 2012 found also higher values for 477 

overcast conditions, 0.44 against 0.41. 478 

Focusing on the monthly statistics of PAR-to-Total ratio, Figure 7 presents the annual 479 

evolution of the statistics of these values for all- and clear-sky situations, showing a very 480 

similar behavior of the PAR-to-Total ratio for both sky conditions. The higher values of 481 

the PAR-to-Total ratio have been detected in summer while the lower values occur 482 

during winter months. This behavior under clear-skies is explained because of the higher 483 

water vapor concentration in summer, which absorbs radiation in the infrared range of 484 

the total solar spectrum but barely affects the PAR range. This result has been also 485 

reported in previous works such as Akitsu et al. (2015), with values of 0.47 for summer 486 

and 0.42 for winter, also associated with higher values of water vapor pressure. A higher 487 

variability is observed for all-sky conditions, mainly during winter months, related with 488 

the higher frequency of clouds together with the wide range of TCC. Both, total and PAR 489 



irradiance decrease under cloud presence but the percentage of attenuation in each 490 

spectral range will depend on the specific characteristics of the cloud cover.  491 

Figure 8a and 8b shows the relationships between kPAR and kt and TCC, respectively, for 492 

the entire period of study. In contrast to the PAR-to-Total ratio, there is a clear 493 

dependence of kPAR on both variables. The functional form describing the kPAR-kt 494 

relationship is a logistic function similar to that observed between kPAR and kt,PAR in 495 

Section 3.1. This is a direct consequence of the mostly constant behavior observed 496 

previously for the PAR-to-Total ratio and suggests a potential modeling of kPAR from 497 

global total irradiance data. A fitting has been performed between kPAR and kt, using the 498 

same database as in Section 3.1. This fitting shows a RMSE of 0.74 and r2 of 0.77. The 499 

corresponding fitting coefficients are summarized in Table 2. In this new fitting, the 500 

coefficients associated to the daily values of the total clearness index (K’t) and AST, takes 501 

a non-significant value, and, therefore, these terms could be removed from this new 502 

model. 503 

As it was expected, kPAR increases with increasing TCC, although in all the bins 504 

analyzed kPAR shows a wide range of variation. A significant slope of 0.47 ± 0.03 with a r2 505 

of 0.95 and with a p-value < 0.001 was found to this relation. The dispersion of kPAR is 506 

higher for TCC values between 0.5 and 0.8 with a standard deviation of 0.35. The average 507 

values vary between 0.29 ± 0.20 for TCC of 0.1 and 0.8 ± 0.3 for TCC of 1. These results 508 

point out the relevant role of the TCC but also the relevance of other cloud 509 

characteristics in the scattering processes increasing the contribution of the diffuse 510 

component. 511 



The mean values kPAR has been estimated in 0.45 and 0.28 for all- and clear-skies, 512 

respectively. This large difference highlights the relevant role of clouds over the increase 513 

of the diffuse component. In order to detect seasonal patterns, Figure 9 presents the 514 

statistical analysis of the monthly values of kPAR for both skies conditions. For all-sky 515 

situations, a clear annual behavior was observed, with higher values of kPAR in colder 516 

months (0.55 in January) and minimum values in warmer ones (0.32 in July). This 517 

behavior relates the higher cloud cover and higher frequency of overcast skies with the 518 

higher values of kPAR, while, in summer the lower frequency of clouds favors a high 519 

penetration of solar radiation to the surface, and therefore the decrease in kPAR. Similar 520 

results were reported by Trisolino et al. (2018) who estimated a mean value of 0.39 ± 521 

0.08 with a marked seasonal trend with maxima around 0.50 in winter and minima at 522 

about 0.25-0.30 in summer. On the other hand, kPAR maximum values for clear-sky were 523 

also found in winter months, due to the lower solar elevation angles in this season which 524 

involve a higher atmospheric path for the solar radiation favoring the attenuation of 525 

PARGlobal and the increase of PARDiffuse. A secondary maximum value was found after an 526 

increased trend from spring to summer, in August. This increase in kPAR in the warmer 527 

months matches with the high occurrence of Saharan dust intrusions events (Salvador 528 

et al., 2014). Thus, the clear seasonal pattern found under all sky conditions is smaller 529 

for clear skies. For these skies, Trisolino et al. (2018) found a mean value of 0.24 ± 0.04 530 

with also a lower seasonal variation. 531 

 532 

5. CONCLUSIONS 533 



This study thoroughly analyzes the cloud effects over the photosynthetically active 534 

radiation (PAR, 400-700 nm) at an urban site located in a mid-latitude in the Western 535 

Mediterranean region (Granada, Spain). An unprecedented eleven-year time series 536 

(2008-2018) of experimental PARGlobal measurements in this region has been analyzed 537 

together co-located cloud features obtained from the ERA5 reanalysis. Additionally, this 538 

PARGlobal data set has been the base to build a simultaneous PARDiffuse time series. This 539 

PARDiffuse data set has been obtained through the first adaptation of the Ridley et al. 540 

(2010) BRL model at this location, which allows for reproducing both the amount and 541 

the variability of the diffuse component. This is the first study in the area in which the 542 

cloud radiative effects on PARGlobal and PARDiffuse as well as on the PAR-to-Total ratio and 543 

PAR diffuse fraction have been simultaneously assessed for such period. The main 544 

conclusions of this study are listed below: 545 

1. This study confirms the results observed in previous analysis regarding with the 546 

higher values of PARGlobal under clear-sky than all-sky scenarios and the opposite 547 

for PARDiffuse. However, it should be stand out the high variability (2-20%) for both 548 

variables under both sky types, which is explained by the cloud type diversity and 549 

the Sahara dust events over the region. In this location, the diffuse component 550 

(with respect to the PARGlobal) has been estimated in a 21% for clear skies, 551 

increasing up to a 30% under the presence of clouds. 552 

2. CRE was obtained from the differences between all- and clear-sky, with a mean 553 

value of (-36 ± 14) Wm-2
 for PARGlobal and (+7 ± 5) Wm-2 for PARDiffuse. A seasonal 554 

pattern was found for CREGlobal and CREDiffuse with two maxima (in absolute terms) 555 

in spring and autumn (the former more intense) and minimum values in summer 556 



and winter. The pattern for CREDiffuse seems to be related with the annual pattern 557 

observed for the frequency of high clouds and the total cloud ice water, whereas 558 

the pattern for CREGlobal is caused by a more complex combination of cloud 559 

characteristics, dominated by the cloud opacity.  560 

3. The PAR-to-Total ratio was evaluated for different sky conditions, showing no 561 

dependence on clearness index (kt) and cloud cover total (TCC), with average 562 

values from 0.43 ± 0.03 to 0.46 ± 0.05, respectively. Higher values were found in 563 

summer for both all- and clear-sky scenarios because the higher water vapour 564 

concentration in the atmosphere during this season implies more absorption in 565 

the infrared region and, consequently, more reduction of Total irradiance. 566 

Although these mean values are similar to those reported in previous studies, it 567 

should be highlighted the great range of PAR-to-Total values under cloud 568 

presence. Depending on the cloud type and cloud cover, PAR-to-Total ratio can 569 

be modified up to 50%. 570 

4. In contrast to the PAR-to-Total ratio, there was a clear dependence of kPAR (ratio 571 

between PARDiffuse and PARGlobal) on kt and TCC, decreasing with kt and increasing 572 

with TCC. The mean values were 0.45 and 0.28 for all- and clear-sky scenarios, 573 

respectively. A clear seasonal pattern was found for all-sky conditions with 574 

maximum values during the coldest months associated to the presence of high 575 

clouds, while the maximum values found under clear-sky scenarios in winter 576 

were caused by the lower solar elevation angles, i.e. higher atmospheric path for 577 

the travelling solar radiation, favoring the attenuation of PARGlobal and the 578 

increase of PARDiffuse. A secondary maximum value found in summer for clear-sky 579 



scenarios was explained by the predominance of Saharan dust events during this 580 

season. 581 

5. A well-defined logistic relationship was found between kPAR and kt, leading the 582 

possibility to estimate kPAR from total solar irradiance measurements and, 583 

consequently, an estimation of PARDiffuse was available. 584 
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 979 

Table 1. Fitting coefficients obtained for the PAR diffuse fraction (kPAR) model. 980 

Table 2. Fitting coefficients obtained for the logistic function fitting kPAR - kt. 981 

Figure 1. Hourly PAR diffuse fraction (kPAR) modeled (red) and measured (black) versus the hourly 982 

clearness index (kt,PAR) for the validation subset during the period 1994-1995 at Granada. 983 

Figure 2. Time series of monthly mean PARGlobal and PARDiffuse for all-sky (solid lines) and clear-sky 984 

scenarios (dashed lines) for the entire analyzed period (2008-2018) at Granada. 985 

Figure 3. Monthly statistics for PARGlobal for (a) all- and (b) clear-sky, and PARDiffuse for (c) all- and 986 

(d) clear-sky, during the period 2008-2018 at Granada. In each box central lines are the median, 987 

and upper and lower limits refer to percentiles 75th and 25th. Limits of the segment represent 988 

minimum and maximum average month value in the period, and red stars are the mean values.  989 

Figure 4. Cloudless description in 2008-2018 period. (a) Contribution of the clear-sky (white bars; 990 

TCC ≤ 0.1), broken clouds (gray bars; 0.1 < TCC ≤ 0.9) and overcast (black bars; TCC > 0.9), (b) 991 

percentage of low, medium and high clouds, (c) total cloud cover (TCC), (d) total column cloud 992 

liquid water (TCLW) and (e) total column cloud ice content (TCIW). Bars in box-plots correspond 993 

to the minimum and maximum values. The box limits are the P25 and P75 percentiles and the 994 

midline is the median. 995 

Figure 5. Annual statistics of CRE for the period 2008-2018: (a) global and (b) diffuse component. 996 

Bars correspond to the minimum and maximum values. The box limits are the P25 and P75 997 

percentiles and the midline is the median. 998 

Figure 6. Relationship between PAR-to-Total ratio and sky conditions for instantaneous values 999 

at Granada during the entire period 2008-2018: a) PAR-to-Total vs clearness index (kt); b) PAR-1000 

to-Total vs Total Cloud Cover (TCC). Black curve represents the bin-averaged values and the 1001 

standard deviations. 1002 

Figure 7. Annual statistics of (a) all-sky and (b) clear-sky PAR-to-Total ratio, for the period 2008-1003 

2018. Bars correspond to the minimum and maximum values. The box limits are the P25 and 1004 

P75 percentiles and the midline is the median. 1005 

Figure 8. Relationship between PAR diffuse fraction (kPAR) and sky conditions for instantaneous 1006 

values at Granada during the entire period 2008-2018: a) kPAR vs clearness index (kt); b) kPAR vs 1007 

Total Cloud Cover (TOC). Black curve represents the bin-averaged values and the standard 1008 

deviations. 1009 



Fig 9. Annual statistics of (a) all-sky and (b) clear-sky kPAR, for the period 2008-2018. Bars 1010 

correspond to the minimum and maximum values. The box limits are the P25 and P75 1011 

percentiles and the midline is the median. 1012 
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