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Ensemble of coupling forms and networks among
brain rhythms as function of states and cognition
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The current paradigm in brain research focuses on individual brain rhythms, their spatio-

temporal organization, and specific pairwise interactions in association with physiological

states, cognitive functions, and pathological conditions. Here we propose a conceptually

different approach to understanding physiologic function as emerging behavior from com-

munications among distinct brain rhythms. We hypothesize that all brain rhythms coordinate

as a network to generate states and facilitate functions. We analyze healthy subjects during

rest, exercise, and cognitive tasks and show that synchronous modulation in the micro-

architecture of brain rhythms mediates their cross-communications. We discover that brain

rhythms interact through an ensemble of coupling forms, universally observed across cortical

areas, uniquely defining each physiological state. We demonstrate that a dynamic network

regulates the collective behavior of brain rhythms and that network topology and links

strength hierarchically reorganize with transitions across states, indicating that brain-rhythm

interactions play an essential role in generating physiological states and cognition.

https://doi.org/10.1038/s42003-022-03017-4 OPEN

1 Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA 02215, USA. 2Mind, Brain and Behaviour Research Center,
Department of Experimental Psychology, Faculty of Psychology, University of Granada, Campus de la Cartuja, Granada 18071, Spain. 3 Division of Sleep
Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA. 4 Institute of Biophysics and Biomedical Engineering, Bulgarian
Academy of Sciences, Acad. Georgi Bonchev Str. Block 21, Sofia 1113, Bulgaria. 5These authors contributed equally: Bolun Chen, Luis F. Ciria.
✉email: plamen@buphy.bu.edu

COMMUNICATIONS BIOLOGY |            (2022) 5:82 | https://doi.org/10.1038/s42003-022-03017-4 |www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03017-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03017-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03017-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03017-4&domain=pdf
http://orcid.org/0000-0003-2701-8342
http://orcid.org/0000-0003-2701-8342
http://orcid.org/0000-0003-2701-8342
http://orcid.org/0000-0003-2701-8342
http://orcid.org/0000-0003-2701-8342
http://orcid.org/0000-0001-7629-762X
http://orcid.org/0000-0001-7629-762X
http://orcid.org/0000-0001-7629-762X
http://orcid.org/0000-0001-7629-762X
http://orcid.org/0000-0001-7629-762X
mailto:plamen@buphy.bu.edu
www.nature.com/commsbio
www.nature.com/commsbio


The human brain is an interconnected system where firing
patterns of neurons integrate through networks of neuro-
nal populations in a coordinated manner to facilitate

communications between brain regions necessary for physiologic
functions. At the system level, collective neuronal activity is
manifested as brain waves and cortical rhythms1, with complex
intermittent dynamics and organization across spatio-temporal
scales2–4. Brain research has focused on the neuronal origins,
spatial distribution, and temporal dynamics of brain waves5–7,
and their role in facilitating physiological functions8–11. Robust
associations were established between distinct brain rhythms and
specific physiological states, neurophysiological and cognitive
functions12,13, and clinical conditions14,15. Low-frequency (high-
amplitude) delta waves, synchronized across cortical areas, dom-
inate during deep sleep9. In contrast, high-frequency (low-
amplitude) localized alpha waves are prevalent during quiet
wakefulness and rest, while the amplitude and density of theta
rhythms increase with the transition from wake to sleep16. Fur-
ther, beta rhythms are a prominent signal of sensorimotor cortical
activity during active wake and exercise17 with increasing power
after exercise, while alpha rhythms (a marker of arousal) exhibit
shift in power to higher frequencies following exhaustive
exercise18 in response to change in body temperature, cerebral
blood flow, and arousal level19,20. Moreover, alpha rhythms
amplitude during rest is reduced by certain physiological states
(eye opening, drowsiness) and cognitive functions (mental tasks)9,
in contrast to gamma rhythms which exhibit elevated activity with
affective and cognitive functions such as sensory perception21,
attention22, decision making23 and memory formation24. Reci-
procal activation of brain rhythms is also observed for cognitive
functions with enhanced executive processing, where beta rhythms
are suppressed before subjects’ response25 in association with
motor preparatory processes26, while theta rhythms are enhanced
following a correct response25 and diminish over error trials27.
Cortical rhythms are also continuously modulated by cardio-
respiratory autonomic function28, maturation, and aging29. Fur-
thermore, pronounced difference in activation from opposite
hemispheres or coexistence of pronounced brain rhythms
responsible for competing physiological functions (e.g., alpha and
delta waves) relate to pathological conditions30.

Thus, investigations focused on individual brain rhythms to
understand their complexity and role in physiological states
under health and disease. Dominant brain rhythms are tradi-
tionally considered signatures of physiological functions8,9,11,16—
an approach motivated by empirical observations of quasi-steady-
state behavior at large time scales during a given state, and gra-
dual change in amplitude of brain rhythms with transitions across
states1,9. In this classical paradigm, less attention is paid to non-
dominant brain rhythms, how their dynamics impact the tem-
poral and spatial organization of dominant rhythms, and whether
interactions among dominant and non-dominant rhythms exhi-
bit universal behaviors across brain areas that facilitate physio-
logical functions.

However, brain rhythms stem from bursting activation in
interconnected neuronal populations with heterogeneous func-
tions controlled by feedback mechanisms and embedded in an
extended network transcending brain regions1,11,16,31. Earlier
studies employed amplitude modulation index, auto-correlations,
scale-free, nonlinear, and criticality measures, focusing on dyna-
mical characteristics of individual brain rhythms and their
response to changes in states, conditions, and external/clinical
perturbations across different time scales3,32–35. Other works
have examined coupling and coherence of a given cortical rhythm
across brain locations, extending this connectivity approach to
different cortical rhythms separately5,36–38. Structural and func-
tional connectivity studies have predominantly utilized fMRI data

or cross-correlation on integrated EEG signals from different
cortical locations39–46. In recent years, research groups have
explored the interaction between cortical rhythms for selected
pairs (e.g., γ-α, γ-β, γ-θ, β-θ) specifically in the context of working
memory, perception, cognitive function, and consciousness47–57.

Here, we hypothesize that, due to neuronal network integra-
tion, both dominant and non-dominant cortical rhythms exhibit
cross-communication that may be persistent across brain areas
and unique for each physiological state. While recent studies have
identified certain pairwise interactions5,29,47–49,52,54–56,58, the
nature, functional forms of coupling, and how cortical rhythms
interact as a network remain unknown. Thus, in addition to the
traditional approach of defining states and functions through
individual brain rhythms, we propose that coordinated interac-
tions among all rhythms are essential for generating physiological
states. Two scenarios could underlie such interactions, where (i)
each state is associated with communication between some brain
rhythms, or (ii) a dynamic network of interactions among all
rhythms is a hallmark of physiological state and function. Fur-
ther, coupling forms may be identical for all pairs of brain
rhythms and specific for each state, or alternatively, states are
characterized by a hierarchically structured network of brain-
rhythm interactions with stronger or weaker network links
representing different forms of pairwise coupling organized in
distinct sub-networks.

We examine the micro-architecture in bursting dynamics of
brain rhythms and probe their coupling through patterns of
synchronous short timescale amplitude modulation on top of the
quasi-steady behavior that dominates cortical dynamics over large
time scales at each state. To identify forms of coupling between
cortical rhythms, and how rhythms cross-communicate and
collectively behave as a network, we develop a new analytic
approach and an experimental protocol, where cortical dynamics
of healthy subjects are studied during contrasting physiological
states – quiet rest, vigorous physical exercise, and cognitive effort
(Methods). High-intensity physical exercise after rest provides a
reliable framework to study physiologic transitions since exercise
is characterized by progressive physiological and cognitive
adaptation59; cognitive tasks introduced after exercise allow to
probe coupling forms and network interactions among brain
rhythms when executive processing is enhanced60. The approach
extends the analysis of single brain rhythms to probe time-
evolving network interactions among multiple brain rhythms in
response to change in physiological states.

We investigate the fundamental question of how cortical
rhythms integrate as a network to generate and facilitate distinct
physiological states and functions, and how these network
interactions reorganize with transitions from one state to another.
We analyze temporal patterns of reciprocal synchronous mod-
ulation in the spectral amplitudes of dominant and non-
dominant cortical rhythms and their transient reorganization
across states and uncover that a specific functional form char-
acterizes the coupling profile for each pair of brain rhythms.
Further, we find that each physiological state is uniquely defined
by an ensemble of coupling profiles, and that all coupling forms
fall in three major classes consistently observed at different brain
areas and across subjects. Moreover, we demonstrate that brain
rhythms continuously coordinate their dynamics and integrate as
a network that undergoes complex hierarchical reorganization
with transitions across states. The reported empirical observations
demonstrate the necessity for departure from the traditional
paradigm, where physiological states and functions are con-
sidered in association with specific brain rhythms, and underlie
the importance of coordinated brain-wave interactions within
specific network structure and network dynamics as a hallmark of
physiological state and function.
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Results
Synchronous amplitude modulation mediates brain-rhythm
interactions. To uncover effective interactions among brain
rhythms, we perform time-frequency analysis on EEG signals at
six cortical locations (Frontal: Fp1 and Fp2; Central: C3 and C4;
Occipital: O1 and O2) for a group of healthy young subjects
during rest, exercise, and cognitive task (Fig. 1a; Methods). At
each cortical location, we study the spectral dynamics of distinct
physiologically relevant brain rhythms (δ, θ, α, σ, β, γ) commonly
used in neurophysiology, exercise physiology, cognitive

psychology1,11,15,16,61. At large time scales of 10–30 mins, the
EEG spectral dynamics exhibit quasi-steady-state behavior,
characterized by the dominant presence of brain rhythms specific
for each state (Fig. 1a), consistent with the traditional view that
specific brain waves characterize physiological states and
functions9,12,62. However, a close inspection of the relative
spectral power of brain rhythms at short time scales of seconds
reveals complex temporal patterns of coordinated bursts and
synchronous amplitude modulation. Such continuous ‘ripples’
(red lines in Fig. 1b) on top of quasi-steady spectral dynamics

Fig. 1 Synchronous modulation in spectral components of complex brain dynamics underlie distinct coupling profiles of brain-rhythm interactions.
a (Top panel) Schematic diagram of the time course of experimental protocol consisting of consecutive sessions of distinct physiological states (rest, warm-
up, exercise, cool-down, cognitive task) with corresponding experimental conditions and set-ups for physiological data recording. The protocol was repeated
twice, for high and low physical effort during exercise, with respectively 80 and 20% ventilatory anaerobic threshold (VAT) (see Methods). (Bottom panels)
Time series of the relative spectral power, eSðΔf iÞ of physiologically relevant brain rhythms (frequency bands, Δfi= {δ, θ, α, σ, β, γ}) derived from C3 EEG
channel of a representative subject at 80% effort level (blue lines) and moving average (window 14 s; step 1 s; red lines) illustrating synchronous modulation
in the micro-architecture of cortical rhythms within each physiological state (Methods). b Time series of relative spectral power eSðΔf iÞ from a representative
subject for segments of rest, exercise (at 20% effort level), and cognitive tasks (blue lines; vertical dotted lines indicate the concatenation of two segments).
Moving averages (red lines) show coordination among cortical rhythms during all three physiological states with synchronous modulation in eSðΔf iÞ at small
time scales (s) indicating dynamic interactions between dominant and non-dominant brain rhythms. c Cross-correlation C between eSðΔf iÞ moving averages
for selected pairs of brain rhythms in non-overlapping 30 s windows (left panels) and corresponding normalized histograms of cross-correlation values (right
panels, population average) during rest, exercise (at 80% effort level), and cognitive task from the same representative subject. Note predominantly
negative C values for δ-γ coupling and predominantly positive C values for β-γ coupling during all three physiological states (left panels in c). Correlation
distribution profiles (right panels in c) reveal three classes of brain-rhythm coupling: stable anti-correlations (predominantly negative C values for δ-γ
coupling); stable positive correlations (predominantly positive C values for β-γ coupling); and mixed correlations where the distribution profile changes from
homogeneous during rest to positive cross-correlations during exercise and cognitive task (θ-α coupling).
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associated with each physiological state stem from neuronal
activities and encode brain-rhythm interactions. To quantify
coupling, we compute cross-correlation for pairs of brain rhythms
in short time windows of 30 s (Methods).

Analyses of EEG signals from C3 cortical area during
experimental protocol sessions (physiological states) show
interactions among brain rhythms manifested through synchro-
nous amplitude modulation in their respective spectral power.
These interactions lead to high degree of temporal cross-
correlation, and exhibit distinct coupling forms for different
pairs of brain waves (Fig. 1c)—e.g., during exercise, strong
positive β-γ cross-correlation results from parallel increase or
decrease in amplitude, while δ-γ coupling exhibits stable anti-
correlation coupling (amplitude modulation in opposite direc-
tions). The diverse coupling forms demonstrate a remarkable
complexity in brain-rhythm interactions.

Next, we test whether brain-rhythm interactions are preserved
with transitions from one physiological state to another. We find
that certain pairs of brain rhythms show noticeably different
coupling profiles for distinct physiological states (Fig. 1c)—e.g., θ
and α rhythms are weakly anti-correlated during rest, become
strongly positively correlated during exercise, and exhibit reduced
positive correlations during a cognitive task. Such significant
change in coupling with transitions across states unveil an
intriguing, previously unrecognized association between brain-
wave interactions and physiological states. These observations
indicate that endogenous mechanisms of neuro-autonomic
regulation influence coordinated activation among brain rhythms
and raise the hypothesis that a specific set of coupling profiles
representing all pairs of brain rhythms may uniquely represent
each physiological state (Fig. 2).

Distinct coupling profiles characterize interactions among
brain rhythms. We quantify all pairwise interactions of brain
rhythms and examine whether these interactions are consistent
among subjects. During a given physiological state (rest and
cognitive task), each pair of brain rhythms exhibits a distinct form
for the distribution of cross-correlation values C (Fig. 2; Methods).
Distribution profiles skewed to the left with a peak at C < 0
indicate strong anti-correlated coupling (predominant amplitude
modulation in opposite directions) for the set of pairs δ-θ, δ-α, δ-σ,
δ-β, and δ-γ. Distribution profiles skewed to the right with a peak
at C > 0 show strong positive cross-correlation (predominantly
parallel increase or decrease in amplitudes) for the set of pairs σ-β,
σ-γ, and β-γ. For other pairs (θ-α, θ-σ, θ-β, θ-γ, α-σ, α-β, α-γ), the
cross-correlation distributions are closer to uniform, where both
positive and anti-correlated coupling is present in significant
fractions of time, indicating a different mechanism of brain-
rhythm coordination compared to the positive and anti-correlated
pairs. These observations demonstrate surprisingly rich dynamics
of diverse and transient nature in brain-rhythm interactions.

These observations reflect a complex temporal organization in
brain-rhythm cross-communications that arise from collective
dynamics of synchronous neuronal activity and is manifested by
an ensemble of distinct coupling forms for different pairs of
cortical rhythms: strong positive correlations with synchronous
modulation in spectral power of cortical rhythms; strong negative
correlations with anti-synchronous modulations; and more
homogeneous coupling forms due to asynchronous neuronal
activities leading to segments of on/off positive or anti-correlated
coupling within a given physiological state (Fig. 2).

These complementary coupling relations among brain rhythms
are observed for repeated test protocols (Supplementary Fig. 2)
and in data from all subjects (Supplementary Fig. 7), demonstrat-
ing a universal behavior where each form of coupling plays a

distinct role in regulating a given physiological state and function.
This demonstrates the necessity to go beyond traditional
approaches where physiological states are studied through
dominant brain rhythms and their dynamics across brain areas9.
In contrast, our results show that each physiological state is
characterized by a set of coupling profiles (Fig. 2), resulting from
transient on/off brain-rhythm interactions that are mediated
through synchronous amplitude modulations in the micro-
architecture of brain dynamics (Fig. 1).

Unique ensemble of coupling profiles for each state. We find a
robust association between the cross-correlation distribution
profiles of brain-rhythm interactions and each physiological state
(rows in Fig. 2). Moreover, the coupling profile for each pair of
brain rhythms changes with transitions across physiological states
(columns in Fig. 2): strong anti-correlated δ-θ coupling with
pronounced negative peak and fast-decaying tail during exercise
transitions into intermediate coupling with slower decaying tail
during the cognitive task and to weaker negative coupling with fat
tail during rest; strong positive σ-β coupling with pronounced
positive peak and fast-decaying tail during exercise becomes
intermediate with fat tail during a cognitive task and significantly
diminishes during rest to more homogeneous coupling profile; θ-
α coupling with strong positive cross-correlations during exercise
changes to weaker positive coupling during cognitive task and
weak anti-correlated coupling during rest.

Our analyses show that despite changes in brain rhythms
coupling profiles with transitions across states, there is a global
organization in the interactions among all brain rhythms that is
present in all physiological states. Specifically, we identify three
major classes of brain-rhythm interactions based on the
evolution of cross-correlation profiles across states (Fig. 2): (i)
anti-correlated pairs (δ-θ, δ-α, δ-σ, δ-β, δ-γ) that show stable
negative correlations with pronounced peaks of cross-
correlation consistently at C < 0; (ii) positively correlated pairs
(σ-β, σ-γ, β-γ) that show stable positive correlations with cross-
correlation peaks consistently at C > 0; (iii) mixed-correlated
pairs (θ-α, θ-σ, θ-β, θ-γ, α-σ, α-β, α-γ) that exhibit state-
dependent variations in the coupling, switching between
negative and positive cross-correlations.

These three distinct classes of coupling profiles signify a
hierarchical organization in brain-rhythm interactions and indicate
a direct link between the coordinated activity of brain waves and
the emergence of integrated physiological functions during rest,
exercise, and cognitive tasks. Our observations demonstrate that
intrinsic patterns of synchronous modulation in brain-wave
amplitudes, embedded in the micro-architecture of EEG dynamics
at short time scales (Fig. 1b), play an important role in mediating
cross-communication among brain rhythms essential to generate
physiological states. Notably, these interactions are masked when
considering the absolute (instead of relative) spectral power in the
frequency bands corresponding to different brain rhythms due to
shifts in global EEG power at large time scales (see Statistical tests
and Supplementary Fig. 8). These observations are consistent for
repeated protocol sessions and all subjects (Supplementary Figs. 2
and 7), and reflect a robust intrinsic relation between interactions
among brain rhythms and mechanisms of physiologic regulation,
giving rise to an ensemble of robust coupling forms as a unique
hallmark of state and function.

To test the validity of our findings at the individual subject
level, we have calculated distribution profiles for all subjects
separately and found consistency among subjects for the coupling
profiles of all pairs of cortical rhythms at each physiological state.
Our finding that the coupling profiles fall into three basic classes
of interaction is robust as it is consistently observed for each
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individual subject (Supplementary Fig. 7). For each pair of brain
waves during a given physiological state, all individual subjects’
distributions collapse and conform to a single shape (coupling
profile) with a 95% confidence level (Wilcoxon signed-rank test),
indicating that the functional form of coupling for each pair of
brain rhythms is universal for all subjects. Remarkably, this data
collapse is consistently observed for all pairs of brain rhythms
during rest, exercise, and cognitive task, indicating the presence of
an ‘alphabet’ of brain-wave communications (an ensemble of
distinct coupling profiles) that uniquely characterizes each state at
the individual subject level. Moreover, our analyses show
reorganization in coupling strengths for all pairs of brain rhythms
with transitions across states (see next sub-section) that is
consistently observed for all subjects (Fig. 3). This universality
among subjects in the coupling forms of cortical rhythm
interactions and their classification in association with distinct
physiological states indicate the presence of previously unknown
basic laws of cortical rhythms regulation.

Degree of coupling in brain-rhythm interactions. To quantify
the brain-wave coupling profiles in Fig. 2, we introduce a measure
of the degree of cross-correlation for all pairs of brain rhythms.

Utilizing surrogate tests on randomized data (see Statistical tests
and Supplementary Fig. 9), we identify two significance thresh-
olds C0= ±0.5 for physiologically significant positive correlations
(C > 0.5) and negative correlations (C <−0.5). In the histograms
shown in Fig. 2, the number of counts for ∣C∣ > 0.5 measures the
fraction of time in data recording during a protocol session when
significant positive or negative cross-correlation between fre-
quency bands is detected—coupling profiles in Fig. 2 represent
histograms of cross-correlation values {Cij} in non-overlapping
30 s windows (Methods). The coupling profiles are quantified by
the areas of two extreme parts under the distribution curve, which
are numerically proportional to the probabilities of observing
statistically significant positive (C > 0.5) and negative (C <−0.5)
cross-correlations (Supplementary Fig. 3). Thus, we define the
degree of cross-correlation, associated with the coupling profile
for each pair of brain rhythms in Fig. 2, by two symmetric
matrices D± to categorize different classes of coupling profiles
(Methods). For a given physiological state, the matrix elements
D±

ij ¼ PðjCijj> 0:5Þ are the probabilities of observing strong
positive and strong anti-correlated coupling for a given pair i-j of
brain rhythms. Matrix elements D±

ij are represented as bars in
Fig. 3. The matrices D± are calculated for all physiological states

Fig. 2 Transitions in brain-rhythm interactions across physiologic states. Cross-correlation distribution profiles for each pair of brain rhythms during
different physiologic states (pooled data from all subjects in the database from two separate tests repeating the same protocol on different days at high
(80% VAT) and low (20% VAT) level of physical effort during exercise; see also Supplementary Fig. 2). Distributions are rescaled by the peak values of
cross-correlation and smoothed by moving average (solid lines, see Methods). For all states, interactions among distinct brain rhythms fall in three major
classes: (i) anti-correlated coupling with predominantly negative correlation values for the pairs δ-θ, δ-α, δ-σ, δ-β, δ-γ; (ii) positively correlated coupling with
predominantly positive correlation values for the pairs α-σ, α-β, α-γ, σ-β, σ-γ, β-γ; and (iii) mixed-correlated coupling for θ-α, θ-σ, θ-β, θ-γ, where the coupling
profile gradually changes (along each column) from weakly negative to homogeneous and positive. Note that within these major classes, the coupling
profile for each pair of cortical rhythms exhibits consistent modulation with transitions across states, e.g., fast-decaying tail during exercise (strong
coupling), slow-decaying tail during the cognitive task (intermediate coupling), and fat tail during rest (weaker coupling). A unique ensemble of coupling
profiles (along each row) characterizes each physiological state, and transitions across states are associated with changes in correlation profiles reflecting
reorganization of brain-rhythm interactions. These findings indicate that a specific set of brain-rhythm coupling forms (an ‘alphabet’ of profiles) uniquely
defines each physiologic state, and that a complex hierarchical organization in the cross-communication among brain rhythms is a hallmark of physiologic
states and functions.
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Fig. 3 Robust stratification in the degree of coupling between brain rhythms across physiological states. Bar plots represent coupling strength derived
from the cross-correlation distribution profile (Fig. 2) for each pair of brain rhythms at a given physiological state for (a) an individual subject and (b) the
group average represented by pooled data from all subjects (Supplementary Fig. 3). For each pair of brain rhythms, bars height quantifies the probability of
obtaining significant cross-correlation (∣C∣ > 0.5), where positive bars (colors matching states) represent the degree of positive correlation and negative
bars (yellow color) represent the degree of anti-correlation (see Methods). Three classes of brain-rhythm interactions are observed across all physiological
states: (i) strong anti-correlated interactions for pairs of rhythms δ-θ, δ-α, δ-σ, δ-β, δ-γ; (ii) strong positively correlated interactions for σ-β, σ-γ, β-γ; (iii)
mixed cross-correlations for θ-α, θ-σ, θ-β, θ-γ, α-σ, α-β, α-γ, with a high degree of positive coupling during warm-up, exercise and cool-down, and more
expressed negative (anti-correlated) coupling during cognitive task and rest. With transitions across physiological states, a clear stratification pattern in the
degree of coupling between brain rhythms is consistently observed for all subjects in the database. Error bars in (b) represent group standard deviation.
Such robust stratification in coupling strength based on physiological states reveals a universal complex organization of interactions among brain rhythms
across subjects.
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and protocol sessions (Supplementary Fig. 4) and all EEG channel
locations representing different cortical areas in the left- and
right-brain hemispheres (Supplementary Figs. 13–15).

Utilizing this matrix representation, we establish three major
classes of brain-rhythm interactions, based on the relative
magnitudes of the degree of positive and anti-correlated coupling,
that are consistently observed across all physiological states (pairs
of brain waves in different coupling classes are separated by
vertical lines in each panel of Fig. 3): (i) strong positive coupling
(D+ >D−) persistent for all states; (ii) strong anti-correlated
coupling (D+ <D−) for all states; (iii) mixed coupling where the
relative magnitude of the degree of positive (D+) and negative
(D−) coupling switches across states. As subjects go through
multiple states during the experimental protocol, this graphic
representation illustrates a clear stratification and reorganization
of brain-wave couplings, consistently observed for all individual
subjects (Fig. 3). Further, the three major coupling classes and the
stratification pattern in coupling strength remain robust in
respect to variations in the cross-correlation threshold C0 for rest
to exercise and cognitive task (Methods). These observations
indicate that, in response to changes in physiologic regulation,
brain rhythms collectively adjust their amplitudes and flexibly
adapt their forms of interaction and coupling strength to facilitate
basic states and functions.

To validate the physiological relevance and statistical signifi-
cance of the patterns in coupling strength and major classes of
brain-wave coupling profiles (Figs. 2 and 3), we conduct several
surrogate tests. First, we analyze pairs of brain rhythms where
each rhythm is taken from a different randomly selected subject
during the same physiological state. The resulting uniform cross-
correlation distribution profiles fail to differentiate pairs of brain
rhythms, and show no stratification across states (Supplementary
Fig. 11). This surrogate test confirms that the observed variety of
coupling forms for different pairs of brain waves at a given state,
the three major classes of brain-wave interactions, and the
stratification in degree of coupling across states represent
fundamental physiological interactions.

To test whether the observed classes of coupling profiles (Fig. 2)
and stratification patterns in coupling strength across physiolo-
gical states (Fig. 3) depend on cortical areas, we further analyze
data from six EEG channels (Fp1, Fp2, C3, C4, O1, O2). We find
that the three major classes of brain-wave interactions and their
stratification across states are consistently present at the Frontal,
Central, and Occipital areas in the ipsilateral hemisphere and
between contralateral hemispheres (Supplementary Figs. 13–15).

Our approach of extracting brain-rhythm interactions from
dynamical patterns of short-time synchronous modulation in
brain-wave activation allows to identify and trace transient
phenomena in each physiological state: When the relative spectral
power of one frequency band (e.g., δ rhythm) abruptly changes in
a short time window of several seconds, the relative spectral
power of other rhythms (e.g., θ, α, σ, β, γ) instantaneously and
reciprocally respond to this transient event, while maintaining
relatively steady compared to each other. These coordinated
responses reflect strong anti-correlation between δ and other
waves, various degrees of stable positive correlation between σ, β
and γ waves, and adjustable degrees of negative, positive and
homogeneous forms of coupling depending on physiological
states for the remaining pairs of brain waves—behavior which
cannot be observed when brain-wave absolute spectral power is
considered (Methods; Supplementary Fig. 8). Furthermore, such
reciprocal coupling relations among pairs of brain rhythms are
clearly manifested in the evolution of coupling strength across
consecutive protocol sessions corresponding to distinct states
(Fig. 4a). Mediated through synchronous brain-wave activation
patterns embedded in the micro-architecture of brain dynamics

on top of global trends in absolute spectral power of dominant
and non-dominant brain waves (Fig. 1), such interactions play an
essential role in maintaining a given physiological state and in
facilitating transitions across states by continuous adjustments in
coupling forms (Fig. 2) and coupling strength (Fig. 3), to adapt to
internal and external perturbations.

Finally, the measure we introduce to quantify brain-wave
interactions (Supplementary Fig. 3 and Fig. 3) represents the
frequency of occurrence of transient coupling events, where for a
fraction of time during a given state brain rhythm can be either
positively or negatively coupled (positive and negative bars for
each pair of waves in Fig. 3). Thus, our findings reveal a dual
nature of brain-wave interactions, where each pair of brain
rhythms adjusts the positive and negative components in the
coupling to facilitate physiological functions at a given state and
flexibility for transitions across states.

Networks of brain-rhythm interactions. To investigate the
complex behavior of integrated brain-wave communications, we
construct networks of positive and anti-correlated interactions
based on the established coupling forms (Fig. 2) and coupling
strength (Fig. 3) for all pairs of brain rhythms and track the
evolution of network structure with transitions from rest to
exercise and cognitive task (Fig. 4a). The degree of coupling
between brain waves can be presented as interaction matrices of
two sub-networks, where brain rhythms are network notes and
the matrix elements D±

ij represent the strength of network links
(Methods). This network approach quantifies brain-rhythm
coupling resulting from coexisting synchronous and anti-
synchronous behaviors represented by two parallel sub-
networks of positive and anti-correlated links. The dynamic
network representation in Fig. 4b reflects the emerging collective
behavior of coordinated brain-wave activities whose evolution
across physiological states can be tracked in time as snapshots of
distinct network configurations, and thus, demonstrates how
brain waves at different cortical locations integrate as a network
to generate physiological states.

During exercise, the D− sub-network exhibits a pronounced
clustering of anti-correlated interactions with very strong links
between δ and all other cortical rhythms (bottom, Fig. 4b). We
also identify a complementary D+ sub-network that is composed
of positive links between all brain rhythms except δ during
exercise (top, Fig. 4b). Thus, two major sub-network clusters of
positive and anti-correlated interactions uniquely define the state
of exercise. As subjects undergo transitions across warm-up, cool-
down, cognitive task and rest, coupling strength in the cluster of
anti-correlated links gradually decreases, while new anti-
correlated interactions among brain waves emerge during
warm-up and cool-down, and become more pronounced during
cognitive task and rest. Notably, links between θ, σ, α, β, γ in the
D+ sub-network, which are strongly positive during exercise,
gradually decrease in strength during cognitive task and rest (top,
Fig. 4b), and exhibit increased anti-correlated component
(bottom, Fig. 4b). In contrast, in the process of these transitions,
interactions of δ with other rhythms become increasingly
positively correlated, leading to emerging new links. These
findings reveal a competing nature of the positive and negative
coupling component for each pair of brain rhythms, and
demonstrate a complex reorganization in the network of brain-
wave interactions to adapt to changes in physiologic conditions.

The complementary D+ and D− sub-networks exhibit a
similar pattern of change in network topology (i.e., reorganiza-
tion in network connectivity and link strength) with transitions
from rest to warm-up, exercise, cool-down and cognitive task,
where links of both positive and anti-correlated coupling
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synchronously increase or decrease in strength (Fig. 4b). Such
reorganization with transitions across states is observed globally
at the network level as well as at each node, indicating a complex
hierarchical cross-communication among brain rhythms. In

particular, during rest θ-β interaction is characterized by a
positive cross-correlation coupling component in the D+ matrix,
the strength of which gradually increases during cognitive task
and warm-up, and is highly expressed during exercise and cool-

Fig. 4 Network of cortical rhythm interactions and their evolution across physiological states. a Color-coded matrix representation of the degree of
positive and anti-correlated coupling for all pairs of cortical rhythms shows the evolution of interactions in response to different physiological states.
Increasingly synchronous modulation in the micro-architecture of bursting activity in θ, α, σ, β and γ rhythms leads to a high degree of positive coupling
between these rhythms that is most pronounced during exercise (top panel, red color). This behavior is paralleled by asynchronous modulation in bursting
dynamics in δ waves compared to other cortical rhythms leading to anti-correlated coupling most pronounced during exercise (red color), intermediate
during the cognitive task (orange), and weak during rest. Note the consistency in coupling patterns (columns) for repeated segments of rest and the
cognitive task where subjects are in quasi-stationary states. The difference between transient periods of warm-up and cool-down indicates a robust
association of cortical rhythms coupling forms and strength with distinct physiological states. b Networks of brain-wave interactions for different
physiological states, where network nodes represent cortical rhythms at the C3 EEG channel location, and links indicate the degree of coupling (line
thickness and darkness correspond linearly to link strength). Coexisting sub-networks of positive (top panel) and anti-correlated (bottom panel)
interactions among cortical rhythms with the specific topology of links strength uniquely define each physiological state. A pronounced network cluster of
strong anti-correlated interactions of δ wave with all other brain rhythms is paralleled by a complementary cluster of positively coupled rhythms during
exercise. With transitions to warm-up, cool-down, cognitive task and rest, these parallel networks of coordinated interactions evolve and are characterized
by different topology and organization of links strength. Both positively and anti-correlated sub-networks of brain-rhythm interactions show transients
where link strength can vary for different time segments within a given physiological state, reflecting complex dynamics of on/off brain-wave cross-
communications are essential to facilitate flexibility and maintain the state. The coexistence of positive and anti-correlated interactions with different
strengths among brain rhythms uniquely defines physiologic states. The specific topology and clustering of these networks for distinct physiological states
demonstrate a direct association of the network cross-communication among brain rhythms with physiological states and functions.
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down (top, Fig. 4b). In contrast, the negative anti-correlated
component in the θ-β coupling, which is intermediately strong
during rest and cognitive task, significantly declines during
warm-up, exercise, and cool-down (bottom, Fig. 4b). While in the
traditional research framework θ and β waves are viewed as the
respective predominant brain rhythms that are characteristics for
cognition and physical activity, the reported here empirical
findings provide new insight on the effective network interactions
between these and other cortical rhythms as a hallmark of
physiological state, where the complementary nature of positive
and anti-correlated coupling plays a key role. In parallel to
changes in θ-β interactions across states, α-δ coupling remains
strongly anti-correlated during all states (bottom, Fig. 4b), while
interactions of α with all other rhythms are characterized by weak
anti-correlated links in the D− sub-network (bottom, Fig. 4b) and
reciprocally by strong positive links in the D+ sub-network (top,
Fig. 4b) during physical activity (warm-up, exercise, and cool-
down). In contrast, for cognitive tasks, α exhibits a comparable
degree of positive and anti-correlated coupling (except the α-δ
link), which implies a distinct role of α coupling compared to θ-
and β-related interactions.

Next, we examine the configuration of network links
considering separately the positive and anti-correlated coupling
component of the each link. As subjects traverse through
physiological states, a complex interplay emerges for positive
and anti-correlated coupling components among brain rhythms
(Fig. 5a)—(i) a cluster of network links for a subset of brain waves
(δ-γ, δ-β, δ-σ, δ-α, δ-θ) characterized by dominant anti-correlated
coupling component during all states (D�

ij > Dþ
ij ; high bars,

bottom right corner in Fig. 5a); (ii) a group of brain waves (β-γ,
σ-γ, σ-β) where network links are dominated by positive coupling
component during all states (D�

ij <Dþ
ij ; high bars, top left corner

in Fig. 5a); and (iii) brain waves with interactions mediated
through varying degree of positive and anti-correlated coupling,
where anti-correlated coupling dominates during rest, positive
coupling dominates for warm-up, exercise and cool-down, and
balanced degree of both anti-correlated and positive coupling
during cognitive task.

Extending our analyses to different cortical areas, we find
complex network organization of brain-rhythm interactions with
pronounced clustering that is specific for each sub-network of
positive and anti-correlated interactions: a cluster of strong
positive links among α, σ, β, γ in the D+ sub-network and a
cluster with strong anti-correlated links connecting δ with θ, α, σ,
β, γ in the D− sub-network (Fig. 5b). These topological clusters
characterize brain-wave interactions at all cortical locations and
are more pronounced at the Frontal areas with gradually
declining links strength at the Central and Occipital areas where
additional links emerge leading to higher connectivity—a robust
behavior observed ipsilaterally for both D+ and D− sub-networks
across all subjects in all physiological states. Further, our analyses
show a symmetry between left- and right-brain hemispheres that
is consistently present in both sub-networks at all cortical areas
and for all states (Fig. 5b).

Remarkably, with transitions across states, both sub-networks
undergo complex reorganization in connectivity and links
strength, where cluster-links are stronger during warm-up,
exercise, and cool-down, while rest and cognitive tasks are
characterized by higher network connectivity and weaker links
(Fig. 5b). Notably, the same stratification in network structure
(connectivity and links strength) across states is consistently
observed in both sub-networks for all cortical areas in all subjects,
indicating a robust mechanism of regulation underlying brain-
rhythm network communications in association with each
physiological state.

Our analyses show that all cortical rhythms (dominant and
non-dominant) at a given cortical location continuously coordi-
nate their dynamics and integrate as a network to facilitate brain
function during distinct states. This coordination among cortical
rhythms is mediated through a hierarchically structured network
characterized by sub-networks and network motifs within each
sub-network—e.g., σ-β-γ form a motif characterized by stronger
links within the positively correlated (D+) sub-network (Fig. 5b)
that is present at all cortical locations and across states. Based on
the identified stratification of coupling forms (links strength) into
three classes (Fig. 3), we find that at each state the network of
interaction among all cortical rhythms consists of two coexisting
sub-networks representing positive (synchronous) and anti-
correlated (asynchronous) coupling, and that within each sub-
network there are motifs of stronger and weaker links connecting
sub-groups of cortical rhythms. Our findings demonstrate that
both sub-networks and motifs within sub-networks change and
reorganize with transitions across physiological states (Fig. 5),
indicating hierarchical reorganization in cortical rhythms net-
work interactions.

Discussion
The classical paradigm of brain research addresses fundamental
questions related to the origins of brain waves, their dynamics,
and the role that individual dominant and non-dominant brain
rhythms and their spatio-temporal organization across brain
areas play in generating specific physiological states and
functions1,9. Studies have traditionally focused on variations in
spectral power of specific brain waves and their coherence across
brain areas63–65, with limited investigations on the synchronous
occurrence of specific pairs of cortical rhythms49,54,58,66, mainly
in the context of memory and cognition29,67,68. To test the
hypothesis that physiological states cannot be fully described by
focusing on individual brain rhythms and isolated pairwise
interactions, we systematically study interactions among all
physiologically relevant cortical rhythms. We discover that dis-
tinct coupling forms and a dynamic network with hierarchical
structure characterize interactions between dominant and non-
dominant brain rhythms that uniquely define each physiological
state and function.

Probing the micro-architecture of cortical dynamics, we
demonstrate that transient epochs of synchronous and asyn-
chronous brain-wave modulation at short time scales (Fig. 1b),
traditionally regarded as bursts and noisy fluctuations embedded
in the quasi-steady trends of spectral dynamics at large time
scales, carry essential information about the nature of brain-
rhythm interactions and physiological states. Our analyses of
temporal patterns in the amplitude of brain rhythms activation
derived from EEG data in healthy young subjects during repeated
periods of quiet rest, moderate–high-intensity aerobic exercise,
and cognitive function (Eriksen flanker task) (Fig. 1a; Methods),
show that continuous coordination among all cortical rhythms (δ,
θ, α, σ, β, γ) underlies each physiological state (Fig. 1b). We
empirically identify functional forms of cortical rhythms cou-
pling, and we discover that a specific cross-correlation distribu-
tion profile characterizes synchronous and asynchronous patterns
in amplitude modulation that mediate the interaction for each
pair of brain rhythms (Fig. 1c). Further, we find that different
pairs of brain rhythms are characterized by distinct coupling
forms (Fig. 2) and the strength of coupling (Fig. 3). Such diversity
in the forms of cross-communication is needed to maintain
flexibility in coordination among pairs of brain rhythms, and to
facilitate emerging collective behaviors associated with various
physiological states and functions.
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Our investigations demonstrate that despite the diversity in
brain-rhythm interaction patterns, all coupling forms fall in three
major classes, where some pairs of rhythms maintain the same
form of positive and anti-correlated coupling during all states,
while other pairs are characterized by mixed-correlated

interactions with different coupling forms for different states
(Fig. 2). The collective behavior of brain rhythms is represented
by an entire ensemble of coupling profiles that is consistent for all
healthy subjects and uniquely defines each physiological state
(Fig. 2). This ensemble of profiles captures the dynamics of

Fig. 5 Network communications and topological clustering of brain-rhythm interactions at different cortical locations uniquely represent physiological
states. a Three-dimensional representation of the degree of positive and anti-correlated components of coupling (bars height shows coupling strength for
positive (D+) and anti-correlated (D−) coupling, Methods) for the three major classes of brain-rhythm interactions (positively correlated, mix correlated
and anti-correlated pairs of brain rhythms; Fig. 2), and their evolution in time (Experimental protocol, Methods) across physiological states. The panel
shows coupling for all pairs of brain rhythms at the C3 EEG channel location and provides a complete picture of the response in brain-rhythm interactions
to changes in physiological states. b Networks representing brain-rhythm interactions at six cortical locations (Fp1, Fp2, C3, C4, O1, O2) for the left- and
the right-brain hemispheres during different physiological states. Sub-networks of positive (top panel) and anti-correlated (bottom panel) components of
brain rhythms coupling exhibit variations in topology and links strength organization depending on cortical locations and physiological states. Line thickness
and darkness are scaled linearly to link strength. A clear symmetry in network structure is observed between the left (Fp1, C3, O1) and the right (Fp2, C4,
O2) hemisphere for each physiological state. Sub-networks representing brain-wave interactions at the frontal areas are characterized by stronger links
compared to the central and occipital areas, a behavior more pronounced at rest and cognitive tasks. Notably, despite their differences, networks at each
cortical location undergo the same pattern of reorganization in topology and link strength across physiological states, indicating a global mechanism
regulating brain-rhythm interactions at different cortical locations.
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reciprocal amplitude modulation in brain rhythms, and demon-
strates a complex transient nature of brain-wave interactions at a
given physiological state. Remarkably, while the functional forms
of brain-rhythm coupling remain structured within three major
classes, the coupling strength changes with transitions across
states, leading to a hierarchical reorganization of the entire
ensemble of cortical rhythm interactions (Figs. 2 and 3). Our
observations that pairs of brain rhythms exhibit distinct func-
tional forms of coupling, which coexist during a given physio-
logical state and change with transitions across states, indicate a
previously unrecognized complexity in the temporal organization
of cortical rhythms, and demonstrate a robust association
between coordinated cross-communication among brain rhythms
and physiological states.

We develop a network approach (SANA method; section
Methods) to examine the integrated behavior of brain rhythms,
where network links represent the coupling strength (Fig. 3). We
discover that each physiological state is characterized by a
dynamic network of brain-rhythm interactions with the hier-
archical organization of two coexisting sub-networks with the
different topology of network links strength and motif organi-
zation, reflecting the degree of positive and anti-correlated cou-
pling components for each pair of rhythms (Fig. 4). This
hierarchical organization and clusters within sub-networks
remain stable across ipsilateral cortical areas—network topology
at the Frontal, Central, Occitipal areas is preserved, despite a
gradual change in network links strength from the Frontal to the
Occipital area (Fig. 5). Moreover, coupling forms, links strength,
and network clusters are symmetric across the left- and right-
brain hemispheres. These network characteristics are consistently
observed for repeated segments of each physiological state within
a protocol session and for repeated protocol sessions on different
days (Methods) for all subjects, indicating universality in brain-
rhythm interactions that must stem from an endogenous
mechanism of physiologic regulation. Further, with transitions
from one physiological state to another, brain-rhythm interac-
tions exhibit reorganization in sub-networks cluster structure and
link strength, indicating that continuous coordination in the
dynamics and coupling of all brain rhythms and their integration
as a network is a fundamental signature of physiological state and
function.

In the context of rest, exercise and cognitive task, the reported
here results indicate that in addition to the traditional framework,
where spatio-temporal characteristics of a specific (pronounced,
dominant) brain-rhythm are associated with each state – e.g., α-
waves during quiet rest9,18, β-waves during exercise17,25 and γ-
waves during cognitive task8,11 – the specific functional forms of
coupling and hierarchical organization in network interactions
among all cortical rhythms play an essential role for physiological
states. Earlier research59 pointed to an overall increase of oscil-
latory brain activity during moderate–high-intensity exercise with
respect to resting state, observed for all cortical rhythms and
locations. Our results show that physical exercise as a highly
demanding state where overall increase of oscillatory brain
activity is paralleled by dynamic network interactions among
cortical rhythms with increased links strength in certain network
clusters (Figs. 4b and 5). The pronounced transition in topolo-
gical clustering of brain-wave networks from resting state to
moderate–high-intensity exercise indicates a direct association
with states, where brain rhythms coordinate their activation and
collectively adjust their interactions in response to changes in
physiologic regulation due to physical exertion. The robustness of
this association is further confirmed by our observations that
network clusters and links strength recover their resting state
configuration after vigorous exercise. Repeated segments of the
same state within a protocol session and repeated experimental

protocols with different levels of physical efforts during exercise
(80 and 20% VAT, Methods) consistently show the same major
classes of coupling forms, similar network structure, and reor-
ganization with transitions across states (Supplementary Figs. 2
and 4). Notably, higher levels of physical effort (80% vs. 20%
VAT) are associated with stronger brain-rhythm network inter-
actions. Moreover, our finding that warm-up and cool-down
segments before and after exercise (maintained at the same low-
intensity effort of 20% VAT and same cadence of 60–90 rpm) are
characterized by the same network topology but significantly
stronger links during cool-down, indicates that brain-rhythm
interactions are sensitive to fatigue (Fig. 4b). Cognitive tasks also
alter the coupling forms and coordination among pairs of cortical
rhythms, where sub-networks of positive and anti-correlated
coupling exhibit stronger links compared to rest—a behavior
consistently observed across subjects for repeated segments of
cognitive tasks (Figs. 4 and 5, Supplementary Figs. 2 and 4).
While subjects performed the cognitive task equally well, the
observed sensitivity in network characteristics to enhance cog-
nition opens perspectives for further investigations of how brain
rhythms coordinate as a network to facilitate cognitive functions
at different levels of accuracy, and to develop novel network-
based markers that differentiate effects of accumulated physical
effort and attention focus69.

The uncovered here probabilistic transient nature of brain-
wave interactions, where periods of synchronous and asynchro-
nous modulation switch on and off to mediate coexisting forms of
coupling with varied strength, provides essential flexibility for
brain rhythms with distinct characteristics to dynamically adapt
and coordinate as a network in response to internal and external
perturbations in the process of maintaining physiological func-
tions during a given state and for facilitating transitions across
states. These empirical findings provide new insights into the
basic regulatory mechanisms of diverse physiological states and
may guide future efforts to understand the role of microscopic
signaling pathways and integration processes in neuronal popu-
lations dynamics play in regulating physiological functions70.

This is a preliminary, pilot study on a limited number of
subjects with a pre-configured setup of only 30 EEG electrodes,
and analyses of a larger cohort of subjects with a denser EEG
electrodes setup may be needed to confirm the validity of the
results. While our study is based on data from 19 subjects, the
unique experimental protocol we developed combines con-
secutive and repeated sessions of distinct physiological states
(rest, exercise, and cognitive task) within a single test. Thus, the
availability of data from repeated sessions of the same state allows
to test our hypothesis, and confirm the consistency of our find-
ings that distinct coupling profiles and coordinated networks of
cortical rhythm interactions characterize each state. Moreover,
each participant repeated the entire experimental protocol on two
separate days, effectively yielding 38 recordings in our analysis
(Methods). Since each experimental protocol is ~90 min long
(with continuous, 1000 Hz EEG recording), the size of the data set
is comparable to transitional pilot (non-clinical) studies in the
areas of cognitive neuroscience and exercise physiology where
brain dynamics are studied.

To confirm that physiological states can be differentiated
through the functional form and strength of coupling between
cortical rhythms not only at the group average level but also at the
individual subject level, we obtained for each subject separately
the ensemble of coupling profiles for all pairs of cortical rhythms
at all physiological states (Supplementary Fig. 7). For each pair of
brain waves during a given state (row of panels in Supplementary
Fig. 7), all individual subjects’ distributions conform to a com-
mon shape (coupling profile) with 95% confidence level (Wil-
coxon signed-rank test), indicating that the functional form of
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coupling for each pair of brain rhythms is universal for all sub-
jects. Remarkably, data collapse of the cross-correlation dis-
tribution profiles is consistently observed for all pairs of brain
rhythms, indicating the presence of an ‘alphabet’ of brain-wave
communications (an ensemble of coupling profiles) that uniquely
characterizes each physiological state—a differentiation observed
at the level of the individual subject. Supplementary Fig. 7 shows
consistency of (i) coupling profiles for all pairs and classes of
cortical rhythm interactions, and (ii) change in the functional
form of coupling profiles with transitions across states for all
individual subjects. Thus, the group average coupling profiles
(Fig. 2) and network structure of brain rhythm interactions
(Figs. 4b and 5b) have discriminative power for different states at
individual subject’s level.

To our knowledge, the reported here observations present first
empirical findings that (i) pairs of cortical rhythms communicate
through distinct forms of coupling, (ii) coupling forms for all
pairs of cortical rhythms fall within three major classes, and (iii) a
specific network configuration of coupling strengths among all
cortical rhythms uniquely defines basic physiological states such
as rest, exercise and cognitive function. Currently, there is no
theoretical framework and modeling approaches that account for
these observations. The findings provide key information for
future modeling efforts focusing on how neuronal populations
that generate different cortical rhythms couple with each other;
what are the temporal, functional, and spatial characteristics of
feedback loops in the global neuronal network that accounts for
synchronous and asynchronous modulation between cortical
rhythms at different time scales and cortical locations; how
transitions in physiological regulation across states affect the
coupling form/strength of cortical rhythms; and the mechanisms
through which states potentiate interactions of neurons within an
assembly and neuronal populations across assemblies in different
brain areas to generate specific synchronization networks among
cortical rhythms.

Earlier studies of physiological systems (cardiac, respiratory,
locomotor, brain) have focused on individual physiological vari-
ables and source signals (heart rate, respiratory intervals, gaits,
EMG, and EEG data) to establish associations between dynamical
features (auto-correlations, scaling measures, criticality, linearity/
non-linearity) with different states (rest/exercise, sleep/wake, sleep
stages, circadian phases, cognitive tasks, consciousness)3,33,71–82

and probe underlying control mechanisms83–86. In the context of
brain dynamics, long-range correlations, auto-correlation window
decay, and scaling behavior have been utilized to characterize
intrinsic neuronal time scales embedded in EEG/MEG/fMRI
source signals, and to associate changes of dynamical character-
istics with brain regions’ functions, physiological states, and
conditions32,34,35,87,88. In parallel to this important line of research
within the reductionist framework, investigations have focused on
integrative coupling, coherence, and synchronization phenomena
in brain dynamics and network-based approaches to understand
emerging behaviors through structural and functional
connectivity5,13,32,37,39–45,47–53,55–57,66,89–97. Our study focuses on
coupling forms and network interactions among dominant and
non-dominant brain rhythms that are simultaneously present at a
given cortical location during a given physiological state. In
addition to understanding how auto-correlation dynamics over
various neuronal intrinsic time scales (cortical rhythms) respond
to external inputs and change of states, our findings demonstrate
the utility of cross-communication and network integration
among all cortical rhythms in maintaining brain functions under
diverse physiological states. In the broader context of conscious-
ness, cognition, and mind51,90,95,98, our findings show that in
addition to dynamical patterns embedded in individual cortical
rhythms and source signals, dynamic networks of interaction

among all cortical rhythms with specific hierarchical structure play
an essential role in generating and maintaining cognitive function,
and thus, may serve as a mediating substrate (underlying
currency96) connecting neuronal level signaling with high-level
cognitive functions and consciousness.

Within the framework of Network Physiology99 where emer-
ging behaviors at the organism level are studied through the
prism of interactions among diverse physiological and organ
systems100,101, our findings open new horizons to investigate
network interactions among all cortical rhythms102–104, how
brain-rhythm cross-communications regulate individual
systems105–107, and to establish basic principles of multi-
component coordination and integration among dynamical sys-
tems to generate emerging functions108–111, where dynamic maps
of brain-rhythm network interactions are utilized as novel diag-
nostic and prognostic biomarkers in health and disease.

Methods
Subjects. Twenty young males, age 19–32 years (average 23.8 years), were
recruited from a pool of undergraduate students from the University of Granada,
Spain. Participants met inclusion criteria of: reporting >3 h of moderate physical
activity per week; normal or corrected to normal vision; no neurological, cardio-
vascular, or musculoskeletal disorders; no medication in-take. Participants’ fitness
level was confirmed by an incremental effort test (see sub-section Fitness assess-
ment). No invasive procedures were involved in the experimental protocol. All
subjects gave written informed consent before the study. The protocol was
approved following the University of Granada’s ethical guidelines and the
Declaration of Helsinki of 1964. One of the participants was subsequently excluded
from the final analyses because he did not attend all three protocol tests (fitness
assessment and two tests with different levels of physical effort; see sub-sections
below). De-identified data from the remaining 19 participants were included in the
analyses and reported in this study.

Fitness assessment. We adopt the ventilatory anaerobic threshold (VAT) as a
reference to determine the fitness level of participants. Defined as the volume of
Oxygen (VO2) when respiratory exchange ratio exceeds one (RER=
CO2production/O2intake)112,113, VAT is a sensitive measure of aerobic fitness and
cardio-respiratory endurance performance114,115. Before the fitness test, descriptive
anthropometric parameters (height, weight, and body mass index) were obtained
for each participant. Participants then performed an incremental effort cycle-
ergometer test to obtain their VATs, which were used to set the individual exercise
intensity for each subject in the experimental protocol. We used a ViaSprint 150P
cycle ergometer (Ergoline GmbH, Germany) to induce physical effort, obtain
pedaling power values, and a JAEGER Master Screen gas analyzer (CareFusion
GmbH, Germany) to measure gas exchange during the test. A brief warm-up was
introduced for each participant to set a preferred cadence (between 60–90 rev/min),
and the subject was asked to maintain it throughout the fitness assessment. The
incremental effort test to assess the individual fitness level of each subject started at
60W pedaling power (minimal resistance) which was kept for 2 min at a steady
workload of 60–90 rev/min cycling cadence, followed by 1 min period when the
pedaling power increased by 30W at a rate of 5W per 10 sec, while keeping the
cycling cadence at 60–90 rev/min. Starting at the higher pedaling power (resistance
level), the process repeats in ‘2 min+ 1 min’ cycles by incrementally increasing the
effort with 3W at the end of each cycle, while keeping the cycling cadence at
60–90 rev/min until the max resistance (exhaustion) was reached. The oxygen
uptake (VO2, ml/kg/min), RER, relative power output (W/kg), and heart rate
(bpm) were continuously recorded throughout the incremental effort fitness
assessment test. A participant is considered to have reached his VAT when the RER
was maintained above 1.0 during the 2 min constant load period or never reaching
1.1 during the 1 min ramping-up period. Once the VAT was obtained, the cor-
responding max pedaling power was recorded and used to set the workload (80%
or 20% VAT, measured in W) during the exercise sessions in the actual experi-
mental protocol, where gas exchange, oxygen volume VO2, and CO2 production
were not monitored. We note that this individual fitness assessment of each subject
is a sub-maximal cardio-respiratory VAT test, since it ends prior to full exhaustion.
The fitness assessment was performed for each subject 2–3 days before the actual
experimental protocol.

Experimental protocol. Upon their arrival at the laboratory, all participants
received verbal and written information regarding the experimental protocol59.
Each participant performed two similar experimental protocol tests of 120 min
each, at two different physical effort levels—Test-1 at 80% VAT and Test-2 at 20%
VAT, while keeping the cycling cadence at 60–90 rev/min. The two tests were
separated by at least 48 h and no more than 72 h to avoid possible fatigue or
training effects. Subjects were required to maintain a regular sleep-wake cycle for at
least 24 h before each experimental protocol test and to abstain from stimulating
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beverages or any intense physical activity. Each participant attended both tests at
the same time of the day to avoid circadian effects on the level of test performance.

Sessions. Subjects sat quietly in a comfortable chair in a dimly illuminated, sound-
attenuated room with a Faraday cage where they were prepared for electro-
physiological measurements. Initial baseline EEG activity was recorded for a
15 min resting period with eyes closed. Participants then started a 10 min warm-up
session on the ergometer at a pedaling power (resistance) corresponding to 20%
VAT determined in the incremental effort cycle-ergometer test individually for
each subject (see Fitness assessment). Following the 10 min warm-up session,
participants completed a 30 min cycling session performed at 80% VAT or 20%
VAT, measured in W as max pedaling power for each subject. Session power load
was counterbalanced across participants, where by random selection half of the
subjects performed first the protocol session with 20% VAT effort during exercise
followed by the session with 80% VAT effort, and the remaining half performed
first the 80% VAT session followed by the 20% VAT session. After an exercise
session, a 10 min cooling down period at 20% VAT was completed. Participants
were asked to maintain a pedaling cadence between 60–90 rpm throughout the
warm-up, exercise, and cool-down sessions, and were instructed to avoid body
movements as much as possible and to keep their gaze on a cross at the center of
the cycle-ergometer screen. Note that resistance on the cycle-ergometer pedals
(during warm-up, exercise, and cool-down sessions) was different for each parti-
cipant, depending on the individual’s fitness level determined by the incremental
effort test, thus allowing for proper comparison among subjects. Upon completing
the cooling down session, participants dismounted the ergometer and waited for
their heart rate to return to within 130% of their resting heart rate (average waiting
time 5.8 min). After that, participants performed a 6 min session of computerized
cognitive task, followed by another 15 min resting session with eyes closed, fol-
lowed by 6 min session of the same cognitive task, which concluded the experi-
mental protocol (see schematic diagram of the entire experimental protocol in
Fig. 1a).

Cognitive task. We applied a modified version of the Eriksen flanker task116 to
measure executive control after exercise with different levels of physical effort (see
Fitness assessment). A 21-inch monitor and a PC equipped with E-Prime software
(Psychology Software Tools, Pittsburgh, PA) were used to present visual stimuli
and collect responses from the keyboard. The PC screen center was situated at eyes
level, 50 cm from the participant’s head. The cognitive task consists of two types of
trials: (i) For congruent trials, a target arrow (at the screen center) is flanked by two
arrows on each side pointing at the same direction (e.g., < < < < < or > > > > > ); (ii)
For incongruent trials, the target arrow at the center is flanked by two arrows on
each side facing the opposite direction (e.g., < < > < < or > > < > > ). Participants
were instructed to press the left or right tab button, with the left or right index
finger respectively, when the target arrow regardless of trial condition (congruent
or incongruent) is pointing to the left (<) or the right (>). Two blocks of 60 trials
(randomized across trial conditions) were presented. Each block contains 30
congruent and 30 incongruent trials. Each trial started with the presentation of a
white fixation cross on a black background with random duration between 1 s and
1.5 s, followed by a stimulus with duration of 150 ms per trial; subjects response
time to stimulus ranged between 400–500 ms, and a variable inter-stimulus interval
of 1–1.5 s was introduced at the end of each trial. Each of the two cognitive task
sessions approximately lasts for 6 min without a break.

EEG recording and pre-processing. Continuous EEG data were acquired using a
30-channel actiCHamp System (Brain Products GmbH, Munich, Germany), with
active electrodes positioned according to the 10–20 EEG International System,
referenced to the Cz electrode and a sampling frequency of 1000 Hz. The EEG cap
was adapted to the individuals’ head size, and each electrode was filled with Signa
Electro-Gel (Parker Laboratories, Fairfield, NJ) to optimize signal transduction.
Electrode impedances were kept below 10 kΩ. Continuous EEG data from six
cortical locations (Frontal: Fp1 and Fp2; Central: C3 and C4; Occipital: O1 and O2)
were included in the analysis and were pre-processed through (i) a high-pass filter
at 0.1 Hz, and (ii) a surface Laplacian spatial filter117, where each electrode was re-
referenced to the average of neighboring electrodes, providing an approximation of
radial current density at each electrode site. The surface Laplacian filter has been
demonstrated as a reliable way to distinguish spatial differences in EEG activity and
to avoid spurious local coherence due to volume conduction81.

Special care was taken to obtain clean EEG recordings during the experimental
protocol by controlling external environmental inputs and maintaining steady
conditions during each session (physiological state) of the two tests—e.g.,
controlled sound, light, temperature, and sitting conditions during rest;
maintaining constant cycling cadence at 60–90 rev/min during exercise while
keeping gaze on a cross at the center of a screen placed in front of the cycle-
ergometer; steady stream of cognitive task inputs (visual stimuli) with fixed
duration. Each EEG recording was subject to visual inspection and no patches of
continuous noise (usually due to poorly attached EEG electrodes) were identified.

Spectral decomposition. To probe effective cross-frequency interactions among
brain rhythms, pre-processed EEG data from 30 channels are segmented into

moving windows of 2 s with 1s overlaps across all seven sessions in the experi-
mental protocol. Within each time window, power spectra of EEG signals are
computed using fast Fourier transform and the power S(Δfi) for six physiologically
relevant frequency bands is calculated: δ [0.5–3.5] Hz, θ [4–7.5] Hz, α [8–11.5] Hz,
σ [12–15.5] Hz, β [16–19.5] Hz, and γ [20-24.5] Hz. The spectral power S(Δfi) in a
frequency band Δfi is a time series with 1 s resolution representing the dynamics of
each physiologically relevant brain-rhythm. To quantify the relative contribution of
each brain-rhythm to the total EEG activity, we normalize the band power by the
sum of the power in all frequency bands, eSðΔf iÞ ¼ SðΔf iÞ=∑6

i¼1 SðΔf iÞ. A moving
average with a 14s window and a 1 s step is then applied to the time series eSðΔf iÞ.
The obtained relative spectral power eSðΔf iÞ captures not only the quasi-stationary
behavior of distinct brain waves during a specific physiological state but also
reflects the micro-architecture (1 s resolution) of synchronous modulation in the
amplitude of brain waves that gives rise to effective couplings, and allows to track
variations in coupling among brain waves with transitions across physiological
states (Fig. 1).

Cross-correlations between brain rhythms. Dynamical coupling of brain
rhythms are embedded in continuous and coordinated fluctuations of EEG band
powers. To uncover cross-communications and couplings between distinct brain
rhythms that occur as a result of synchronous modulation of their spectral
amplitudes at short time scales of a few seconds, we divide the relative spectral
power time series eSðΔf iÞ of each brain-rhythm into NL equally sized, non-
overlapping segments of length L ¼ 30 sec (NL ¼ N=L

� �
, where N is the length of

the time series). In each segment, the relative spectral power is converted into z-
score, eSðΔf iÞ ! sðΔf iÞ � ½eSðΔf iÞ � heSðΔf iÞi�=stdðeSðΔf iÞÞ with respect to the mean
heSi and standard deviation stdðeSÞ evaluated within the segment. The cross-
correlation matrix C is then defined as

C6 ´ 6 ¼
1
L

�sδ�
�sθ�
� � � ��
�sγ�

2
6664

3
7775
6 ´ L

j j j j
sTδ sTθ � � � sTγ
j j j j

2
64

3
75
L ´ 6

; ð1Þ

where each matrix element Cij is a normalized inner-product between two spectral
power vectors s(Δfi) and s(Δfj),

Cij ¼
1
L

sðΔf iÞ; sðΔf jÞ
D E

¼ 1
L
∑
L

t¼1
stðΔf iÞ stðΔf jÞ: ð2Þ

The pairwise cross-correlation Cij takes values between −1 (fully anti-correlation)
and +1 (fully positive correlation), with Cij= 0 indicating the absence of linear
relation between two frequency bands Δfi and Δfj in a 30 s window (Fig. 1c).

The proposed method is robust to effects of noise present in EEG recordings.
High-frequency noise (isolated spikes) is removed in the process of band pass
filtering—note that the frequency bands of the selected six cortical rhythms are in
the lower frequency range (time series of spectral power in Fig. 1a-b). Further,
special consideration was given to potential common shocks to EEG signals from
the environment (e.g., electric grid) that transcend all frequency bands. Indeed,
such shocks would affect the absolute power of each spectral band, leading to
spurious effects of cross-correlation (coupling) between cortical rhythms due to
global trends of increase or decrease in the spectral power of all bands. We consider
the relative contribution of each frequency band to the total EEG spectral power to
avoid such effects (Supplementary Fig. 8). Specifically, we perform tests to validate
our analyses based on the relative spectral power, and we find spurious positive
correlation profiles with no differentiation among different pairs of cortical
rhythms within a given physiological state when the absolute spectral power is
considered in each frequency band (Supplementary Fig. 8). This is in contrast to
the uncovered three distinct classes of cortical rhythm coupling forms and the
pronounced stratification in coupling strength with transitions across states
(Fig. 2). This demonstrates that considering the relative spectral power is essential
to quantify the micro-architecture of synchronized, short-time modulations in the
amplitude of brain rhythms that occur on top of their quasi-steady-state behavior
and large timescale trends, and give rise to different forms of coupling profiles.

Further, random isolated noisy spikes in EEG signals from the environment
follow certain i.i.d. processes with Gaussian amplitudes and Poisson inter-event
distribution, are homogeneously dispersed in time and are present in the entire
frequency domain (across all EEG bands/brain waves). By taking (i) the relative
spectral power of each cortical rhythms over consecutive, non-overlapping
windows, and (ii) cross-correlating spectral amplitudes of cortical rhythms over
large (30 s) windows, the effects of random isolated spikes are canceled out. The
advantage of the proposed novel method (Synchronous Amplitude Network
Analysis, SANA) is that it does not require excessive signal pre-processing, and can
be adapted to different scales of analysis.

We note that phase synchronization and phase-amplitude coupling measures
are based on the instantaneous phase and amplitude of a given cortical rhythm, or
across rhythms, extracted from the original signals or band-passed in the frequency
range, and thus, probe the dynamics at very short time scales comparable to the
sampling rate32,36–38,41,47,48,50,52,53,56,66,93. Moreover, the canonical formalism of
synchrony is based on the assumption of weakly coupled self-sustained oscillators

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03017-4 ARTICLE

COMMUNICATIONS BIOLOGY |            (2022) 5:82 | https://doi.org/10.1038/s42003-022-03017-4 |www.nature.com/commsbio 13

www.nature.com/commsbio
www.nature.com/commsbio


with small frequency mismatch118,119. Our empirical observation that coordinated
modulation in the spectral power of cortical rhythms with different frequencies
during homeostatically maintained physiological states occurs at larger time scales
(20–30 s) over quasi-steady cortical activity implies strong interactions among all
cortical rhythms. The proposed SANA method would effectively quantify distinct
forms of coupling for cortical rhythm interactions over various time scales, and
infer the embedded network structure based on coupling strength.

Cross-correlation distribution profiles and degree of coupling between brain
rhythms. During a specific physiological state (protocol session), synchronous
modulation in spectral power amplitudes among brain rhythms is quantified by the
distribution of cross-correlation values {Cij} for each pair of brain rhythms
obtained from consecutive, non-overlapping 30 s windows in the spectral power
time series, derived from the EEG signal at a given channel location. For each pair
of brain rhythms, a cross-correlation distribution profile is obtained for individual
subjects in each physiological state; {Cij} data from 30 s windows pooled from all
subjects are used to obtain group-averaged distribution profiles and to derive
degree of coupling between rhythms. A histogram of cross-correlation matrix
elements Cij is obtained by dividing the range [−1, 1] of cross-correlation values
into bins of size Δc= 0.05. The histogram is then rescaled by the max number of
counts and smoothed with a 5-bin moving average that outlines the distribution
profile for each pair of brain rhythms at each physiological state (Figs. 1c and 2,
Supplementary Fig. 2). The obtained distribution profile is proportional to the
probability density of cross-frequency coupling between brain rhythms that occurs
at short-time scales.

Since in our analysis, the relative spectral power time series eSðΔf iÞ of cortical
rhythms are divided into 30 s non-overlapping windows, where cross-correlation
values {Cij} between all pairs of rhythms are obtained, there are certain limitations
imposed by the length of data recordings during each physiological state in the
experimental protocol on the total number data points used to generate the cross-
correlation distribution profile for each pairs of cortical rhythms at a given state.
For the group average data of the cross-correlation distribution profiles (shown in
Fig. 2), the number of Cij values used to generate each profile ranges from 556
points (for the short 6 min cognitive task segment) to 2280 points (for the 30 min
exercise) when pooling together the corresponding sessions (rest, exercise, and
cognitive task) from the two separate experimental tests (with 80% VAT and 20%
VAT physical effort). These statistics are sufficient to differentiate profiles
(coupling forms) for all pairs of cortical rhythms at a given state, and allow for
differentiation among profiles and coupling strengths for each pair of rhythms
across states, even when we consider the two experimental tests (80% VAT and
20% VAT physical effort) separately (Supplementary Fig. 2).

We note that the morphology of EEG dynamics in the context of particular
physiological states or cognitive tasks imposes certain limitations on the minimal
length of data recording when our method can be reliably applied. Multiple time
scales are embedded in the EEG signals as a result of inputs integration from
neuronal units and neuronal assemblies with different temporal dynamics across
brain areas. Consequently, different EEG morphology and micro-architecture
characteristics can be probed at different time scales. For steady conditions where a
given physiological state is homeostatically maintained (as is the case for the resting
state, steady exercise, and cognitive task condition in our experimental design), we
observe synchronous/asynchronous modulation in the spectral power of cortical
rhythms at time scales of around 30 s. Thus, our approach focuses on cross-
communication among cortical rhythms at this and larger time scales, which also
imposes limitations on the minimal length of EEG recordings necessary to identify
and quantify cortical rhythm coupling profiles (Fig. 2 and Supplementary Fig. 2),
coupling strengths, and network interactions (Fig. 3 and Supplementary Figs. 3 and 4).
Our analyses and statistical tests show that continuous, high-frequency (1000Hz) EEG
recordings of 5–10min length is required. This falls within the majority of basic
physiological and clinical test protocols, and thus, allows for application of the
proposed method to broad range of states/conditions. In the case of studying
instantaneous responses to short-term perturbations, e.g., Event Response Potentials
(ERPs), the proposed Synchronous Amplitude Network Analysis (SANA) method can
be flexibly adapted to modulation patterns at much shorter time scales, and thus,
would require smaller windows of a few seconds and shorter continuous EEG
recordings to quantify instantaneous responses to perturbations in cortical rhythm
coupling and network structure.

Based on results of statistical tests from randomized data (see Statistical tests),
we find a threshold ∣C0∣= 0.5 that distinguishes physiologically significant positive
cross-correlation (Cij > 0.5) and significant anti-correlation (Cij <−0.5) between
two rhythms from accidental correlations in random data. We introduce two
symmetric matrices D± to characterize the degrees of cross-correlation among
brain rhythms (EEG frequency bands). The matrix elements D ±

ij represent the

probability of observing significant positive cross-correlation, Dþ
ij ¼ PðCij > 0:5Þ,

and the probability of observing significant anti-correlation, D�
ij ¼ PðCij<�0:5Þ,

respectively.
Each physiological state is represented by two matrices D±, where matrix

elements D ±
ij are the probabilities of finding strongly coupled (positively or

negatively cross-correlated) pairs of brain rhythms. Empirically, the matrix
elements D ±

ij are a measure of the fraction of time when statistically significant

cross-correlation values are observed during a protocol session (distinct
physiological state). Numerically, D±

ij are estimated as areas under the distribution
profile that are above or below the significant threshold C0= ±0.5, normalized by
the total area under the profile (see schematic diagram in Supplementary Fig. 3).

The degree of coupling between brain rhythms (i.e., D±) for a representative
subject and for the entire group is shown as bar plots in Fig. 3 with positive bars for
D+ and negative bars for D−. The matrices D± are calculated for all physiological
states (protocol sessions) and all EEG channel locations representing different
brain areas in the left and the right hemispheres (Supplementary Figs. 13–15).

Networks of brain-rhythm interactions. The degree of cross-correlations is a
concise characterization of brain-rhythm interactions. It reduces the distribution of
cross-correlation values {Cij}, obtained for multiple 30 s windows from spectral
power time series, to two numbers (probabilities D±

ij ) while preserving essential
features (e.g., skewness) of the distribution. To dissect the complex cross-frequency
coupling, we construct two sets of dynamic networks based on D± for positive
correlations and anti-correlations among the six brain rhythms (Figs. 4b and 5b).
Network links correspond to the group-averaged degree of cross-correlation cou-
pling for different pairs of brain rhythms derived from our Synchronous Ampli-
tude Network Analysis (SANA) method (links are linearly scaled with thickness
and color; thicker and darker lines represent stronger coupling). The coexistence of
both positively and anti-correlated networks for each physiologic state demon-
strates a complex duality and a transient nature of brain-wave communication.
Coupling between brain rhythms can switch on or off at different times during the
same physiologic state. The emergence of distinct sub-clusters in both networks
and their reorganization with transitions across physiological states indicate that
network communications among brain rhythms play a key role in physiologic
regulation.

We note that in the introduced here SANA method, the coupling measure
between brain rhythms represents amplitude–amplitude coupling since we cross-
correlate the relative spectral power of brain rhythms in non-overlapping windows
over the time course of the EEG recording for each session (physiological state) in
the experimental protocol. Because we have non-overlapping 30 s windows in
which amplitude–amplitude cross-correlation values are obtained, this measure
reflects synchronous amplitude modulation of cortical rhythms over their time
course at a given location. Our analyses show that different pairs of brain rhythms
cross-communicate through the different degrees of synchronous/asynchronous
modulation at a given state, and that the spectral amplitude modulation between
cortical rhythms changes for different physiological states leading to different
network configurations of coupling strengths among cortical rhythms.

Statistical tests
Control for different time scales of analyses. The aim of our study is to quantify
synchronous amplitude modulation in the spectral power of cortical rhythms
within the quasi-steady-state behavior of the total EEG power during a given
physiological state. Our approach is motivated by cortical rhythm dynamics
showing bursting activity in brain-waves ranging over seconds to minutes. The
choice of 30 s cross-correlation time window in our analysis is guided by mod-
ulation patterns in the relative spectral power of cortical rhythms with quasi-
periodicity of two to five waves within segments of 100 s (red lines in Fig. 1a, b and
Supplementary Fig. 1). This is also aligned with American Association of Sleep
Medicine guidelines for accessing physiological states (sleep/wake, sleep stages,
quiet rest) where 30 s are used as a basic epoch. Thus, within large time scales of
5–30 min during a given state, homeostatically maintained at steady conditions as
in our experimental protocol, our analyses focus on the micro-architecture
embedded in the quasi-stationary dynamics of cortical rhythms.

To examine the effect of different sizes for the cross-correlation time window,
we repeated our analyses over a range of time scales, yielding consistent results for
the ensemble of coupling profiles and coupling strengths among cortical rhythms
for all physiological states (Supplementary Fig. 5).

Further, we tested the effect of the moving average window size while keeping
the cross-correlation window fixed at 30 s. We note that a too-short window of just
a few data points does not have the desired smoothing effect to reveal synchronous
modulation in the spectral power time series of different brain rhythms at the 1s
resolution of our spectral power analysis. On the other hand, a smoothing window
that is too long (longer than half the chosen cross-correlation window) will carry
information from neighboring data segments, and thus, influences the coupling
information derived from our analysis within each cross-correlation window.
Repeating the analyses over a range of moving average windows on the relative
spectral power time series for fixed 30 s cross-correlation windows, we confirm the
validity of our findings of distinct coupling profiles between cortical rhythms, their
organization in three separate classes, and modulation in coupling profiles and
coupling strengths depending on physiological states (Supplementary Fig. 6). The
performed additional tests confirm that our findings are robust over a range of time
scales.

Collapse of individual profiles on group averages. To test the consistency of pairwise
coupling profiles across subjects (Supplementary Fig. 7), we ran Wilcoxon signed-
rank tests on the distribution profile of each pair of brain rhythms from an
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individual subject and the corresponding accumulated group average profile for
each physiological state (the subject being excluded from the group average cal-
culation). The null hypothesis (h= 0) is that there is no difference between the
individual distribution and the group average distribution profile. Results show that
a high percentage of individual profiles (>87%) passed the tests (p > 0.05)—i.e., the
majority of subjects share the same distribution form as the group profile. Statis-
tically, no more than three subjects (out of 19) have cross-correlation distribution
profiles that differ (with 95% confidence level) from the group averaged coupling
profile for all pairs of brain rhythms and all physiological states (protocol sessions).

Correlation distributions from absolute spectral power. Since the EEG amplitude
heavily influences oscillations across all frequency bands (i.e., brain rhythms at the
specific EEG channel location), applying the analysis to the absolute spectral power of
each frequency band results in strong positive correlations within the 30 s windows
for all pairs of brain rhythms, lacking differentiation of brain-rhythm interactions as a
function of physiological state (Supplementary Fig. 8). The reason is that large-scale
trends and modulation in EEG amplitude (due to intrinsic physiologic regulation or
external factors such as movement artifacts and changes in scalp connectivity) lead to
global change in the whole power spectrum and positive cross-correlations among all
frequency bands, and thus, mask short-time synchronization in the spectral power of
cortical rhythms that mediate their interactions. Considering the relative spectral
power of brain rhythms reduces these confounding factors, preserving each frequency
band’s relative contribution to the total spectral power and reveals physiologically
relevant coupling profiles that vary among brain rhythms for distinct physiological
states (Fig. 2 and Supplementary Fig. 2).

Surrogate test on shuffled data. To test the robustness of our results and to
determine the significance threshold (∣C0∣= 0.5) in the degree of coupling for all
pairs of brain rhythms, we perform surrogate analysis where normalized and
smoothed spectral power time series of the brain rhythms are shuffled before
calculating cross-correlation in 30 s windows (Supplementary Fig. 9). Gaussian-
shaped distribution profiles of cross-correlation from the surrogate test for all pairs
of brain rhythms and all physiological states are centered at C= 0 and decay to
zero near C= ±0.5 (93% of Cij values fall in the interval between −0.5 and+0.5).
This shuffled data surrogate test shows that the degree of positive cross-correlation
(C > 0.5) and anti-correlation (C <−0.5) does not result from a random process but
represents physiologically relevant coupling. Thus, the measure we introduce for
the degree of positive and anti-correlated coupling—normalized areas under the
coupling profile for each pair of brain rhythms that are beyond the threshold
∣C0∣= 0.5 (i.e., matrix elements D±

ij , depicted as bars in Fig. 3 and Supplementary
Figs. 3 and 4, see Cross-correlation distribution profiles and degree of coupling
between brain rhythms in Methods)—represents real physiological interactions
among brain rhythms. We find that the degree of coupling for each pair of brain
rhythms does not significantly change when varying the threshold |C0 | = {0.3, 0.4,
0.6, 0.7}, indicating robustness of our finding of three major classes of brain-wave
interactions and pronounced stratification across distinct physiological states of
rest, exercise and cognitive task (Fig. 3).

Cross-correlation p-value distributions. The statistical significance of our results is
further confirmed by the distribution of the p-values for the Pearson cross-
correlation coefficients {Cij} for all 30 s windows from all subjects. P-value dis-
tributions are centered below p= 0.05 (Supplementary Fig. 10a) with >96% of p-
values below p= 0.05, indicating statistical significance of the cross-correlation
values {Cij} and coupling profiles observed in the data for all pairs of brain rhythms
and all physiological states (protocol sessions), shown in Figs. 2 and 3. In contrast,
p-values of cross-correlation coefficients in 30 s windows pooled from shuffled
spectral power time series of each frequency band exhibit a uniform distribution
with >96% of the p-values above p= 0.05, thus verifying the null hypothesis that
the analyzed data are random samples (Supplementary Fig. 10b).

Surrogate test on random subjects data. To further validate the physiological origin
of the observed brain-rhythm coupling profiles, we analyzed cross-correlation for
pairs of brain rhythms where the spectral power time series for each rhythm was
taken from a different subject during the same physiological state. Surrogate test
coupling profiles for all pairs of brain rhythms were obtained pooling together
cross-correlation {Cij} values from 30 s windows in 19 realizations of surrogate
pairs, where a brain-rhythm of a subject at a given physiological state was paired
with a different brain-rhythm from a different, randomly chosen subject. While
actual data exhibit short timescale amplitude modulations on top of quasi-steady
states in the spectral power of cortical rhythms (Fig. 1a and b), these amplitude
modulations would not synchronize for different subjects, and thus, would not
result in consistent brain-wave interaction profiles, leading to uniform distribution
of cross-correlation {Cij} values for all pairs of brain rhythms, with no differ-
entiation between pairs (Supplementary Fig. 11a) and no stratification for phy-
siological states (Supplementary Fig. 11b). This surrogate random subjects test
confirms that the reported major classes of brain-rhythm coupling profiles (Fig. 2,
Supplementary Fig. 2) and stratification in network interactions among brain
rhythms across physiological states (Figs. 4 and 5) reveal genuine physiological
phenomena.

Surrogate test on Fourier phase randomization. To demonstrate the physiological
significance of brain-rhythm interactions, we also performed a Fourier phase
randomization120–124 on EEG signals, which preserves the global spectral power of
different frequency bands (brain rhythms) within the recording but destroys phase
information that relates to nonlinear EEG characteristics, and thus, eliminates the
fine temporal structure in the spectral dynamics and coupling between brain
rhythms. In Fourier-phase-randomized surrogate data, the relative ratios among
the average spectral power of brain rhythms are preserved, while synchronous
modulations in frequency bands that underlie effective cross-frequency coupling
and account for the nonlinear characteristics of EEG signals are eliminated. The
surrogate test shows a different set of interaction profiles (Supplementary Fig. 12)
compared to the actual data (Fig. 2): although the three major classes of coupling
between brain waves are still present, the shape of coupling profiles for specific
pairs of brain rhythms is modified at each physiological state. Specifically, while the
class of anti-correlated pairs of brain waves is still visible, the coupling profiles have
modified shapes compared to real data. In contrast, the other two classes (with
mixed and positive correlations) exhibit dramatically altered coupling profiles for
the surrogate data. These results indicate that the distinct coupling forms reveal
physiological information about (i) the relative difference in the total spectral
power at large time scales during a physiologic state and (ii) the synchronous
modulation of brain-wave spectral amplitudes at short time scales.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data analyzed in this work are multi-channel EEG recordings from the REXCO
Project. All source data underlying graphs are enclosed in the Supplementary
Information as an Excel spreadsheet Supplementary Data 1.

Code availability
MATLAB codes for data processing are available upon request from the corresponding
author.
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