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ABSTRACT
Software engineering is one of the most significant areas, which extensively used in
educational and industrial fields. Software engineering education plays an essential
role in keeping students up to date with software technologies, products, and processes
that are commonly applied in the software industry. The software development project
is one of the most important parts of the software engineering course, because it covers
the practical side of the course. This type of project helps strengthening students’ skills
to collaborate in a team spirit to work on software projects. Software project involves the
composition of software product and process parts. Software product part represents
software deliverables at each phase of Software Development Life Cycle (SDLC)
while software process part captures team activities and behaviors during SDLC. The
low-expectation teams face challenges during different stages of software project.
Consequently, predicting performance of such teams is one of the most important
tasks for learning process in software engineering education. The early prediction of
performance for low-expectation teams would help instructors to address difficulties
and challenges related to such teams at earliest possible phases of software project
to avoid project failure. Several studies attempted to early predict the performance
for low-expectation teams at different phases of SDLC. This study introduces swarm
intelligence -basedmodel which essentially aims to improve the prediction performance
for low-expectation teams at earliest possible phases of SDLC by implementing Particle
SwarmOptimization-KNearest Neighbours (PSO-KNN), and it attempts to reduce the
number of selected software product and process features to reach higher accuracy with
identifying less than 40 relevant features. Experiments were conducted on the Software
Engineering Team Assessment and Prediction (SETAP) project dataset. The proposed
model was compared with the related studies and the state-of-the-artMachine Learning
(ML) classifiers: Sequential Minimal Optimization (SMO), Simple Linear Regression
(SLR), Naïve Bayes (NB), Multilayer Perceptron (MLP), standard KNN, and J48. The
proposed model provides superior results compared to the traditional ML classifiers
and state-of-the-art studies in the investigated phases of software product and process
development.
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INTRODUCTION
Data mining and machine learning have been used in several studies (Naidu et al., 2020;
Pérez & Rubio, 2020) to achieve successful education development. Educational data
mining (Bacos, 2019) is key technique that aims to get better educational practices and
improves learning outcomes. Software engineering (Akhlaq & Yousaf, 2010; Hayes et al.,
2016; Rubinstein, 2007) aims to understand the overall SDLC to increase the poor-quality
of software product. Educational software engineering (Ömeroğulları, Guill & Köller, 2020;
Bavota et al., 2012) is an academic field that extensively explores several aspects about
software product and process. The software project is an essential part of the software
engineering course and it consists from both software product and process parts. The
software product is the final product that resulted from adapting the software process.
The software process involves following specific practices and behavior while working in
software project. Software projects have characteristics for each of software product and
process. Usually, software projects are evaluated at theoretical and technical perspectives.
The theoretical part reflects the software process aspects while the technical part is relevant
to the software product aspects.

Asuncion & Newman (2007) concluded that measuring such characteristics during the
software engineering course is very important to assess the performance of software
teams and eventually achieve better learning outcomes. The software product features
capture software product deliverable as user interface, performance, architecture, database
design, code, and presentation for final delivery. Besides, the software process features
capture certain team activities and practices like quality, meetings participation, and time
completeness for the software deliverables.

Project-based learning is an important teaching method in software engineering
education. Software projects learning (Adriano, 2019; Dingsøyr et al., 2018) is a key task
in software engineering and it is hard to evaluate software projects. Software projects
have teams, teams shall have certain skills to learn the proper activities and practices
related to software project development. Students who are working in teams face some
challenges related to their performance, cooperation, delivery deadline, etc. So, detecting
these problems at early phases of software project would effectively help low-performing
teams to overcome these challenges.

There are a number of studies (Menezes, Gusmão & Moura, 2019; Bajwa et al., 2017)
discovered project failure analysis and prediction from an industrial aspect. Other
studies (Gulati & Sharma, 2020; Sauer & Cuthbertson, 2003; Sauer, Gemino & Reich, 2007;
Daughtrey, 2014; Reel, 1999; Charette, 2005; Duhigg, 2016; Menezes, Gusmão & Moura,
2019) explored the software engineering project failure in the educational perspective.
Gulati & Sharma (2020) pointed that the prediction performance of teams in the project-
based environment is a demanding task due to the existence of various difficulties like
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team distribution, time zone, and physical distance. Moreover, some studies (Sauer &
Cuthbertson, 2003; Sauer, Gemino & Reich, 2007; Daughtrey, 2014; Reel, 1999; Charette,
2005; Duhigg, 2016) presented the causes of software project failures such as: teamwork
failures, lack of experience, schedule delay, and global distribution perspective. In addition,
Menezes, Gusmão & Moura (2019) stated other factors that might contribute to software
project failure such as imprecise project goals, poor teamwork communication, and
incorrect project requirements.

The prediction of performance for students teams in software project is time-consuming
to conduct manually. So, there are several studies (Fitzgerald, Letier & Finkelstein, 2011;
Manalif et al., 2012; García et al., 2017; Hale, Jorgenson & Gamble, 2011; Raza, Faria &
Salazar, 2019; Nguyen & Chua, 2016) which proposed various tools for tracking the
performance of students in software projects. Fitzgerald, Letier & Finkelstein (2011)
presented a tool that automated failure analysis models by employing ML classification
algorithms to evaluate students performance. Manalif et al. (2012) presented different
evaluation tools for project risk that used the flippant fuzzy reasoning with the aid of the
professional COCOMO. Further, García et al. (2017) used information technology tools
for evaluating project performance through integrating with ML approaches to better deal
with imprecision issues that affect the project-learning evaluation. Moreover, an integrated
course-ware tool called (SEREBRO) is presented inHale, Jorgenson & Gamble (2011)which
allows the instructor to visualize and provide feedback in the ongoing software projects.
Similarly, Raza, Faria & Salazar (2019) presented a tool called (ProcessPAIR) which used
to automate the performance analysis of students in software development projects. Also,
another prediction tool is presented by Nguyen & Chua (2016) that used to provide a
performance feedback on how each team’s member is contributing in software project.
Le, Chua & Wang (2017) supported a solution tool that utilizes Git-driven technology to
measure team contributions in software engineering projects.

Predicting the performance of students teams (Fitzgerald & Stol, 2017) has increased
attention to improve learning techniques in software engineering education. The
early prediction of low-performing teams reduces the possibilities of project failure
which is considered a major challenge against successful software engineering. Several
studies (Petkovic et al., 2014; Petkovic et al., 2016; Petkovic et al., 2018; Al-Taharwa, 2020;
Naseer, Zhang & Zhu, 2020a; Naseer, Zhang & Zhu, 2020b) attempted to early predict
the performance of students teams in software engineering education by implementing
different classification models and features selection techniques by demonstrating different
phases of software project.

Feature selection is an urgent task that should be applied to handle difficulties related
to classification models. The high dimensional data increased speedily and enforced
significant challenges on the existing classification methods as it caused slow learning of
model. Therefore, it becomes a necessity to know how to handle this type of data. The
optimal way to deal with such data is to perform a feature selection technique. Feature
selection can be defined as a pre-step task to select the best subset of features and to remove
the redundant and irrelevant features. This study utilizes a metaheuristic algorithm as a
features selection technique to decrease cost and time while running classifiers, and increase
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the chances to detect the most relevant features which lead to increase the performance of
ML classifiers. Such improvement happened based on utilization of the wrapper features
selection method that follows the evaluation criteria at each selection. The proposed model
uses one of the most effective feature selection technique (PSO) which helps to detect the
most relevant product and process features.

This study uses PSO as feature selection method, and the KNN as classification model
to introduce an swarm intelligence -based model (PSO-KNN) to improve the predicting
performance of low-expectation teams at the earliest possible phases of software product
and process development. The proposed model investigates the first five time intervals
(T1 to T5) as training set, and utilizes the last time interval (T11) as a testing set. During
each phase, the results are tracked to detect the earliest possible phase of SDLC to early
predict the final grade for these certain types of teams. Capturing the most relevant features
significantly improves the prediction accuracy for the (KNN) classifier. As a result, using
such combination between PSO and KNN would improve the prediction performance
for the low-expectation teams instead of using traditional ML classifiers. Experiments
were conducted on SETAP project dataset and compared with different traditional ML
classifiers and related studies. The proposed model outperforms others ML classifiers in
the investigated phases for software product and process development.

The motivation of this study is to improve the prediction performance for low-
expectation teams at the earliest possible phases of SDLC. The proposed model helps
to improve the learning practices and outcomes of software projects by encouraging
the low-expectation teams to progress in a more efficient manner and prepare them
to better move for the software industry in their future careers. Using the proposed
model would be valuable to better understand the intersection points between software
engineering education and software industry. Furthermore, the proposed model has
significant implication at theoretical (i.e., software process) and practical (i.e., software
product) aspects of the software project. Also, the proposed model helps to decrease the
rate for the project failure by bridging the gaps and miscommunication issues between
instructors and students, and helps instructors to have better assessment strategies for the
low-expectation teams through tracking their future progress during different phases of
software project.

Further, the proposed model helps to achieve cooperative learning among teams to
make better academic achievements. By using the proposed model, software engineering
instructors can track the performance of low-expectation teams at the product development
through checking the software deliverable that related to requirements, design, coding,
testing, and etc. With respect to software process, software engineering instructors can
detect the dynamic behavior and practices of such teams while they work on each phase
of SDLC. Capturing both perspectives of software product and process would allow
instructors to predict the performance of low-performing teams at the earliest possible
phases of SDLC by early detecting the concerns and challenges that affect the overall project
progress such as late submissions, miscommunication, and incorrect software deliverables.

The limitations of this study could be declared as follows: (1) It is difficult to generalize
the reported findings by the proposed model on such a one type of datasets, other types of
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dataset was difficult to obtain in software engineering education; (2) another limitation was
that the proposed model demonstrated the experiments of software product and process
parts separately, in the case of combining the product and process features together, the
prediction performance of the proposed model might be affected.

The remaining parts of the paper is structured as follows: A brief summary of the
relevant studies is given in Related Work. Materials and Methods presents the dataset and
the proposed methodology used in this research. Experiments and Results describe the
obtained results at both software product and process development. The Discussion for
the outcomes is described as in discussion section. The limitations of this study is declared
in the Limitations section. Also, the findings of this research and future works directions
are stated in the Conclusion and Future Work section.

RELATED WORK
Several approaches (Kotsiantis, 2012; Lykourentzou et al., 2009; Castro et al., 2007; Baker
& Yacef, 2009; Baker, 2000; Macfadyen & Dawson, 2010; Delen, 2010; Jovanovic et al., 2012;
Hu, Lo & Shih, 2014; Guo et al., 2015) used various ML approaches to assess individual
performance of students by investigating personal and quantitative academic aspects such
as grades, dropping frequency, teaching effectiveness, and e-learning techniques. Similarly,
some other studies (Zafra & Ventura, 2009; Thai-Nghe, Horváth & Schmidt-Thieme, 2010)
used traditional methodologies such as genetic programming and task recommendation
systems to evaluate the performance of students in software projects. Nevertheless, these
studies used specific attributes such as quizzes, assignments, attendance, and GPA to
evaluate the students’ performance. Another study (Abidin et al., 2019a) was conducted
to explore individual performance of students in software engineering courses using MLP
approach. Moreover, Le, Chua & Wang (2017) used text similarity and machine learning
to construct formative evaluation for students in software projects. These studies explored
the performance based on individual assessment instead of considering the teamwork
assessment. In contrast, the proposed model explores the teamwork assessment which is
very essential key to predict the overall performance in project-learning environment of
software engineering.

The research studies (Petkovic et al., 2014; Petkovic et al., 2016; Petkovic et al., 2018;
Al-Taharwa, 2020; Naseer, Zhang & Zhu, 2020a; Naseer, Zhang & Zhu, 2020b) aimed to
early predict performance of low-expectation teams by utilizing the SETAP project dataset,
they applied various classification and features selection techniques on different time
intervals of software project.

Some studies (Petkovic et al., 2014; Petkovic et al., 2016; Petkovic et al., 2018) used
Random Forest (RF) classifier and the GINI index as feature selection technique to
early predict performance of students teams. These studies considered second time
interval (T2) for software process and the third time interval (T3) for software product
to report their results. These studies investigated single phases of software product and
process development instead of capturing the continues phases of software product and
process development. They used these particular phases in a purpose of guiding software
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engineering instructors to implement an early intervention strategy at the early design and
implementation phases to avoid the project failure for low-expectation teams.

Al-Taharwa (2020) used decision tree classifier on the second and sixth time intervals
(T2 and T6) for software process, and the third and seventh time intervals (T3 and T7)
for software product to early predict the software project failure by focusing on teamwork
distribution. His approach used those time intervals to increase the ability to predict the
dynamical behaviors of software teams at design and implementation phases of SDLC.

In addition, Naseer, Zhang & Zhu (2020b) used software product dataset to predict
coding intricacy through highlighting code deliverable characteristics by employing
LogitBoost, AdaBoost, Bagging, Random forest, J48, sequential minimal optimization
(SMO), multilayer perceptron (MLP), and Naïve Bayes (NB) classifiers, they used the
last time interval (T11) as training and testing set as it covered composite aspects of
implementation through final delivery phases.

Further,Naseer, Zhang & Zhu (2020a) employed J48 as a classifier and information gain
as feature selection technique on software product dataset to early predict the performance
of low-expectation teams at the essential phases of SDLC. The study utilized the first five
time intervals (T1, T2, T3, T4, T5) as training set and the last time interval (T11) as testing
set. However, the study captured only software product development rather than process
development. This study captured both of software product and process development.
Exploring software process development is an important method to track the behavior
of low-expectation teams at the main phases of SDLC. As Naseer, Zhang & Zhu (2020a)
utilized the same training and testing set like this study, we compared the results achieved
by the proposed model with their findings in particular to software product development.

This study introduces an swarm intelligence based model (PSO-KNN) which aims to
improve the performance prediction of low-performing teams at the earliest possible phases
of SDLC, and it attempts to reduce the selected software product and process features. This
paper uses PSO as feature selection method and the KNN as classification model, and it
captures both software product and process perspectives to investigate the continues phases
of SDLC (i.e., requirements analysis, design, implementation, testing, and maintenance).
During each phase, the obtaining results are tracked to detect the earliest possible phase of
software development to predict the final grade for low-expectation teams.

MATERIALS AND METHODS
The section contains the following subsections: description of the used dataset, features
selection, PSO, background about (PSO-KNN), the proposedmethodology, and evaluation
measures which have been applied in this research study.

Dataset description
The dataset was developed in the SETAP project during the fall semester of 2012 to 2015
for 74 different students-teams in software engineering course. The SETAP project collects
the objective and quantitative data through a joint project among San Francisco State
University (SFSU), Fulda University (Fulda), and Florida Atlantic University (FAU). The
dataset contains 115 software product features and 84 process features, and these features
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are collected using various data sources like weekly time cards, tool logs, class data, and
instructor observations as declared in Petkovic et al. (2014). Weekly time cards are used to
collect information from each single student about the time spent on coding, meeting, and
teamwork activities during each week. Tool logs is used to collect statistics information
about usage of cooperation and development tools like total number of e-mails between the
members of each team, frequencies of postings to source code repository, and number of
commit messages. Class data is used to collect general information such as year, semester,
team leader gender, team-ID, and team distribution (i.e., local or global). Instructor
observation is used to help instructors record information about different activities as team
participation, number of instructor intervention, and number of timely delivered issues.

Software product features represent software deliverables at each phase of SDLC while
software process features capture the activities and dynamic behaviors of software teams
during SDLC. There are 11 time intervals (T1 through T11) of assessments, and each team
is assessed at these different time intervals to predict the performance of teams during
software project. Moreover, each student’s team is graded as A (high expectation) or F
(low expectation) for each time interval. The first five-time intervals (T1, T2, T3, T4, and
T5) represent the key phases of SDLC. The remaining time intervals(T6 through T11) are
aggregated-tasks and they are combined from different sets of the first five-time intervals
(T1 through T5). The goal of such aggregation is to track the dynamical behavior of
students teams during the software development life cycle. For example, the eleventh time
interval (T11) represents the last phase, and it combines information from the third time
interval until the fifth time interval (T3 through T5). The final phase records the behavior
of teams during coding, testing, and final product delivery phases. Further description of
the dataset and features are provided by Petkovic et al. (2016).

Features selection
The classification models depend on high-quality training data. If the data suffer from
redundant and useless information, then it can lead to adverse outcomes from time
to time (Al-Qudah et al., 2020a; Ala’M et al., 2021; Srinivasan et al., 2021; Al-Zoubi
et al., 2021; Faris et al., 2017; Al Qudah et al., 2020b). Recently, the high dimensional
data increased promptly and enforced significant challenges on the existing classifier
methods (Obiedat et al., 2021). For instance, it may be caused performance to degenerate,
interpret difficulty, and slow learning of model. Therefore, it becomes a necessity to know
how to handle this type of data. The optimal way to deal with such data is to perform a
feature selection technique. Feature selection (Kabir & Ludwig, 2019a; Al-Ahmad, 2018)
can be defined as a pre-processing operation in order to select the best subset of features
and to remove the redundant, noisy, and irrelevant ones.

Mainly, there are two mechanisms of feature section techniques, filter and wrapper
feature selection. The filtermechanism ismore about the relation or correlation between the
features without considering the class label, whereas the wrapper feature selection depends
entirely on the class label to select the most important features. The wrapper technique
can be employed using metaheuristic algorithms, such as Genetic Algorithm (GA) (Al-
Qudah et al., 2020a; Al-Qudah et al., 2020b), Particle swarm optimization(PSO) (Rostami
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et al., 2020), Multi-Verse Optimizer (MVO) (Sadiq et al., 2019), Salp Swarm Algorithm
(SSA) (Ala’M et al., 2020), Whale Optimization Algorithm (WOA) (Ala’M et al., 2018)
and Competitive Swarm Optimizer (CSO) (Ala’M et al., 2021). To accomplish the feature
selection task, Petkovic et al., (2014) and Petkovic et al. (2016) used GINI index whereas
Naseer, Zhang & Zhu (2020a) used information gain. In contrast, the proposed model
uses more effective feature selection (PSO), which helps to reduce the number of the
selected product and process features that improve the performance of early prediction for
low-expectation teams.

Particle swarm optimization
Particle Swarm Optimization is one of the most popular metaheuristic algorithms that
stimulated the natural behavior of flock birds (Kennedy & Eberhart, 1995). In other words,
PSO inspired the position of these birds to obtain the optimal solution. Particles, in PSO
known as the population, are a set of solutions denoted by the various individuals in
multidimensional space. The particles (population) gathered together to form a swarm
shape in charge of searching the space at a particular velocity for the optimal solution.

Furthermore, the population of PSO has the capability to remember and recall the
previous best solution (position). Such positions of the population can be modified and
determined the optimal solution from all suggested solutions based on the pbest, personal
best experience, and gbest, global best, of the PSO (Marini & Walczak, 2015). The historical
behavior of the population and their near particles assist in updating the velocity during
the searching phase. Hence, we can notice the improvement of the searching process in
every iteration as stated in Ghamisi & Benediktsson (2014). The PSO updates its position
based on the following equations:

Xi(t+1)=Xi(t )+Vi(t+1) (1)

where Xi denotes the particle position i, while t is the iteration number. The velocity
indicates with Vi of particle i.

Vi(t+1)=W ·Vi(t )+ r1 · c1 · [pBesti−Xi(t )]+ r2 · c2 · [gBesti−Xi(t )] (2)

where W , r1, and r2 is the inertia weight and the numbers between 0 and 1, respectively.
The constant coefficients are c1 and c2, while pBesti denotes the current best position at
particle i and the current global best position is gBesti of the particle’s neighbors.

In this study, the PSO is combined with one of the well-known classification model,
namely, K-Nearest Neighbors (KNN) to improve the prediction performance for low-
expectation teams at the earliest possible phases of SDLC. Moreover, the study attempts to
select the most relevant software product and process features that improve the prediction
performance for such teams.

Background about PSO-KNN
The KNN classifier is one of the most common used classifiers as it is simple and effective
non-parametric approach for classification (Gweon, Schonlau & Steiner, 2019). It has one
parameter (K) to identify the number of selected nearest neighbors (Quiros et al., 2017)
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to predict the class labels of the unknown samples. The value of this parameter has a
significant impact on classification performance (Zhang et al., 2018). However, searching
for the value of (K) is difficult, especially with high-dimensional data. Generally, the
K parameter in the KNN classifier is selected empirically. Depending on each problem
domain, various numbers of nearest neighbors are tested, and the parameter with the
best accuracy is chosen to define the classifier. Several studies (Tharwat et al., 2018; Bui et
al., 2019; Ni et al., 2012; Abidin et al., 2019b; Zyout, Abdel-Qader & Jacobs, 2011) utilized
the strength of combination between PSO and KNN to improve the prediction accuracy
in different problems domains. Tharwat et al., (2018) proposed the PSO-KNN model to
predict human activities in amobile crowd-sensing environment.Bui et al. (2019) proposed
a hybrid technique (PSO-KNN) for estimating blast-induced ground vibration. Another
study (Abidin et al., 2019b) proposed a PSO-KNN model for object position estimation
system in the room. Also,Ni et al. (2012) applied (PSO-KNN) approach to predict the cycle
time of wafer fab lots. Finally, Zyout, Abdel-Qader & Jacobs (2011) presented a (PSO-KNN)
approach to classify the micro-calcification clusters in mammography.

Likewise, this study utilizes the strength of combination between PSO and KNN. The
individual encoding of each solution uses PSO to search for the most relevant features by
employing binary evaluation. Before implementing any meta-heuristic algorithms, it is an
important to take into account two main issues, individual encoding and determining the
fitness function. In this study, the individual encoding consists of binary values 0 and 1,
describes the selection of the best subset of features. In other words, the solution (particles)
that is provided randomly by the PSO is represented by a one-dimensional vector that
portrayed the attributes (features) of the original dataset. The values of the vector are
rounded; if the value is equal to or over 0.5, it means that the feature was selected and
rounded to 1, otherwise the feature will not be selected and that vector rounded to 0. As
for the second issue, the fitness function is applied to evaluate the particles (solutions)
provided by the PSO algorithm. The assessment of each particle quality is performed by
the KNN. This paper used the accuracy measure as a fitness function that can be calculated
according to Eq. (3). Moreover, the PSO attempts to increase the accuracy value to obtain
the best possible results.

fitness(I ti )=
1
K

K∑
k=1

1
N

N∑
j=1

δ(c(xj),yj) (3)

where the accuracy outcome indicates by c(xj) and yj is the actual label of the jth instance,
while δ is the correlation between c(xj) and yj . Thus, when c(xj) equal yj , then δ= 1, if
not δ= 0. The number of instance denotes by N and K is the number of folds. shows the
PSO initialization process. The PSO is initialized with a population of random solutions
and searches for optima by updating generations as illustrated in Fig. 1. Moreover, PSO
achieves maximum performance when it is implemented in the low dimensional search
space as the data in SETAP project. The performance of PSO (Yang et al., 2013) extensively
depends on the initialization of the swarms. The overall methodology is depicted as in
Fig. 2.
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set times = 1 & i = 1

weight W & k initialization for each particle xi 

random[xi] = random[w1, w2,  ,wn, k]

Start

 calculate fitness ( xi) =  Di

update  pbesti  and gbest

i   population size

times   limit of iteration

[w1, w2,  ,wn, k]best = gbest 

End

i=1

times = 1

i=i+1

No

Yes

No

Yes

Figure 1 PSO initialization process.
Full-size DOI: 10.7717/peerjcs.857/fig-1

The proposed methodology
The swarm intelligence-based model is proposed to improve the prediction performance
for low expectation-teams at the earliest possible phases of SDLC. The PSO is applied
for feature selection, and the KNN is used for classification. The features selection is
implemented to identify the most relevant features of software product and process that
improve the prediction performance for the low-expectation teams. The classification
technique is used to predict the performance for low-expectation teams at the earliest
possible phases of SDLC.
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5-NN
7-NN
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Iteration

No

Best

Selected

Features

Figure 2 Overview of the proposed assessment model.
Full-size DOI: 10.7717/peerjcs.857/fig-2

The proposed model begins by splitting the datasets (software product and software
process) into training and testing subsets. The training set comprises several different
datasets from the two types, including T1, T2, T3, T4, and T5, while the testing set consists
of T11 only. In the training task, we generate the five phases (phase 1, phase 2, phase 3,
phase 4, and phase 5) from the trained data, namely, (T1), (T1 & T2), (T1, T2 & T3), (T1,
T2, T3 & T4), and (T1, T2, T3, T4 & T5). Each of which is tested against the phase 11 to
examine the performance prediction of every phase of SDLC. Then, during the training
stage, PSO will be implemented for feature selection.

This paper uses the PSO-KNN framework to reduce the feature space dimensions, select
the optimal subset of features, and tune the classifier parameters in order to improve the
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generalization ability of the classification process. Moreover, PSO-KNN optimizes the
performance of the KNN classifier by finding the best value of (K) that produces the best
classification performance. Among the population-based optimization algorithms, PSO is
extensively used to optimize parameters in pattern recognition tools as they do not suffer
from local minima problems as declared in Sasirekha & Thangavel (2019).

This research work justifies the implementing of combination between PSO and KNN
based on various reasons. First, the PSO is a well-regarded choice of algorithms for solving
hard-optimization problems in a reasonable amount of time. Second, the KNN is simple to
use and easy to understand as a nonparametric learning algorithm and it has very flexible
decision boundaries. Third, this paper followed the suggestions of many research works
as Wang et al. (2015) which utilized the KNN as a classifier because it is considered an
instance-based or memory-based learning techniques. Fourth, the whole computation of
KNN is executed during classification, and there is no need for training task to construct
the classifier. Thus, KNN is a very efficient and simple algorithm, it takes a O(1) as a time
complexity for training step. Moreover, the time complexity of O(mn + mlog2m) is given
to classify a new instance in the training set with (m) instances and (n) attributes, where
O(mn) represents the time needed to compute the distances between new instance and
each single instance in the training set, and O(mlog2m) indicates the time required to sort
all the distances between new instance and it’s k-nearest neighbors.

Selecting the optimal (K) is a common difficult task for variety of problems as pointed
in Song et al. (2007), Zhang et al. (2017b) and Zhang et al. (2017a). As the performance
of KNN classifier significantly differs when (K) is changed (Hassanat et al., 2014).
Nevertheless, it is shown in the literature (Latourrette, 2000) thatwhen the data is distributed
in a uniformal way, determining the value of (K) in advance becomes difficult.

In the light of this study, three different values of K (K = 1, 5, and 7) were selected based
on studying the literature and what most previous works used for the KNN classifier as
recommended in the literature (Baldini & Geneiatakis, 2019; Zhang et al., 2017b; Huang et
al., 2018; Zhang et al., 2018). Such selection is used to construct the three combinations
like (PSO-1NN, PSO-5NN, and PSO-7NN) which reflect the best optimal selection for the
performance predication based on our dataset distribution and experimental settings.

Evaluation measures
To measure the performance of the proposed model, several evaluation metrics were
used such as precision (Miao & Zhu, 2021), recall (Tharwat, 2020), F-measure (Soleymani,
Granger & Fumera, 2020), accuracy (Dinga et al., 2019), and Area Under Curve (AUC)
(Wang, Wong & Lu, 2020; Kabir & Ludwig, 2019b). These were derived from the confusion
matrix (Xu, Zhang & Miao, 2020; Markoulidakis et al., 2021) to calculate different
evaluations for the proposed model. Also, This study uses the TP Rate and FP Rate as
evaluation measures. The TP Rate is the ratio between the number of correctly classified
students teams who failed in the project (low-expectation teams) and the total number
of students that failed in the project per each team. The FP Rate is the ratio between the
number of false positives and the total number of false positives plus the false negatives.
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Table 1 PSO’s parameter settings.

Algorithm Parameter Value

PSO Acceleration constants [2.1, 2.1]
Inertia w [0.9, 0.6]
Swarm size 30
Number of itearions 100

EXPERIMENTS AND RESULTS
This section describes the conducted experiments and the obtained results of this study,
and it has two parts for each software product and softare process. The first part of our
results presents the performance of the proposedmodel (PSO-KNN) comparing with other
traditional ML classifiers, namely SMO, SLR, NB, MLP, and standard KNN. The second
part describes the key software features obtained from each investigated phase as in the
following subsections.

As PSO is randomized algorithm, it is an important to ensure the robustness of such
algorithm by executing several 30 runs. The PSO-1NN, PSO-5NN, and PSO-7NN were
constructed to report the best achieved results after comparing their performance values in
both software product and process experiments. In terms of PSO, we employed the default
values of PSO as suggested in the studies (He, Ma & Zhang, 2016; Boro & Bhattacharyya,
2017), the parameters setting of the PSO can be found in Table 1.

Software product results
This study aims to improve the prediction performance for low-expectation teams at the
earliest possible phases of SDLC. The software product captures various types of software
deliverable which should be submitted at each phase of SDLC. For the experiments on
software product, this study demonstrate the experiments on the first five phases as
training set incrementally, and the eleventh phase as testing set. This subsection compares
the performance of the proposed model with machine learning techniques and the best
results available so far in the literature.

The prediction outcomes of the investigated phases, starting from the first phase until
the fifth phase are described below. Tables 2–6 shows the best performance achieved by
the proposed model and other traditional ML models in the investigated phases.

Considering the investigated phases, the best recall values achieved by ML techniques
were reported as follows: 50%, 50%, 87.5%, 93.8%, and 93.8% in phase 1, phase 2, phase 3,
phase 4, and phase 5. Yet, the recall values which obtained by the proposed model are like
53.1%, 50%, 90.6%, 96.9%, and 96.9% at the same phases in the same order. Notably, the
proposed model provides better performance than the other ML techniques in the first,
third, fourth, and fifth phases, and an equal recall values at the second phase . Similarly,
in terms of AUC measure, the proposed model shows better performance than traditional
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Table 2 Performance of the classifiers in the first phase for software product.

Algorithm TP rate FP rate Precision Recall F-Measure AUC Accuracy

SMO 0.125 0.119 0.444 0.125 0.195 0.503 55.41
SLR 0.125 0.119 0.444 0.125 0.195 0.597 55.41
NB 0.063 0.095 0.333 0.063 0.105 0.442 54.05
MLP 0.375 0.238 0.545 0.375 0.444 0.641 59.46
Standard KNN 0.500 0.405 0.485 0.500 0.492 0.548 55.40
PSO-1NN 0.531 0.238 0.63 0.531 0.576 0.647 66.22
PSO-5NN 0.531 0.429 0.486 0.531 0.507 0.557 55.41
PSO-7NN 0.375 0.405 0.414 0.375 0.393 0.519 50

Notes.
Numbers in bold indicate the best values.

Table 3 Performance of the classifiers in the second phase for software product.

Algorithm TP rate FP rate Precision Recall F-Measure AUC Accuracy

SMO 0.438 0.167 0.667 0.438 0.528 0.635 66.2
SLR 0.5 0.214 0.64 0.5 0.561 0.755 66.2
NB 0.125 0.024 0.80 0.125 0.216 0.647 60.81
MLP 0.375 0.19 0.60 0.375 0.462 0.687 62.16
Standard KNN 0.438 0.262 0.560 0.438 0.491 0.588 60.81
PSO-1NN 0.375 0.143 0.667 0.375 0.48 0.6167 64.86
PSO-5NN 0.406 0.31 0.5 0.406 0.448 0.515 56.76
PSO-7NN 0.5 0.333 0.533 0.5 0.516 0.552 59.60

Notes.
Numbers in bold indicate the best values.

Table 4 Performance of the classifiers in the third phase for software product.

Algorithm TP rate FP rate Precision Recall F-Measure AUC Accuracy

SMO 0.719 0.095 0.52 0.719 0.78 0.734 82.43
SLR 0.781 0.119 0.833 0.781 0.806 0.888 83.08
NB 0.5 0.095 0.8 0.5 0.615 0.813 72.97
MLP 0.625 0.048 0.909 0.625 0.741 0.903 81.8
Standard KNN 0.875 0.119 0.848 0.875 0.862 0.878 87.83
PSO-1NN 0.906 0.071 0.906 0.906 0.906 0.917 91.89
PSO-5NN 0.656 0.143 0.778 0.656 0.712 0.841 77.03
PSO-7NN 0.625 0.143 0.769 0.625 0.69 0.826 75.68

Notes.
Numbers in bold indicate the best values.

ML techniques in the first, third, fourth, and fifth phases as shown in Fig. 3. However, in
the second phase, SLR model gave better AUC results rather than the proposed model.

Further, to validate the proposed model in software product experiments, we compared
the performance of the proposedmodel with the approach ofNaseer, Zhang & Zhu (2020a).
The related approach (Naseer, Zhang & Zhu, 2020a) demonstrated the same training and
testing set like the proposed model, it applied J48 decision tree as classification model and
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Table 5 Performance of the classifiers in the fourth phase for software product.

Algorithm TP rate FP rate Precision Recall F-Measure AUC Accuracy

SMO 0.438 0.095 0.778 0.438 0.56 0.792 70.27
SLR 0.813 0.71 0.897 0.813 0.852 0.918 87.84
NB 0.438 0.095 0.778 0.438 0.56 0.792 70.27
MLP 0.906 0.214 0.763 0.906 0.829 0.926 83.78
Standard KNN 0.938 0.143 0.833 0.938 0.882 0.897 89.18
PSO-1NN 0.969 0.071 0.912 0.969 0.939 0.949 94.59
PSO-5NN 0.875 0.143 0.824 0.875 0.848 0.952 86.49
PSO-7NN 0.781 0.167 0.781 0.781 0.781 0.911 81.08

Notes.
Numbers in bold indicate the best values.

Table 6 Performance of the classifiers in the fifth phase for software product.

Algorithm TP rate FP rate Precision Recall F-Measure AUC Accuracy

SMO 0.813 0.048 0.929 0.813 0.867 0.882 89.19
SLR 0.813 0.167 0.788 0.813 0.8 0.935 82.43
NB 0.813 0.214 0.743 0.813 0.776 0.905 79.73
MLP 0.813 0.048 0.929 0.813 0.867 0.95 89.19
Standard KNN 0.938 0.119 0.857 0.938 0.896 0.909 90.54
PSO-1NN 0.969 0.119 0.861 0.969 0.912 0.925 91.89
PSO-5NN 0.781 0.071 0.893 0.781 0.833 0.96 86.48
PSO-7NN 0.781 0.24 0.962 0.781 0.862 0.919 89.19

Notes.
Numbers in bold indicate the best values.

information gain as a feature selection technique at the first five phases of software product
development. The best recall values for their approach were 3.1%, 15.6%, 53.1%, 78.1%,
and 75% at phase 1, phase 2, phase 3, phase 4, and phase 5 correspondingly. On the other
hand, the best recall values for the proposed model are 53.1%, 50%, 90.6%, 96.9%, and
96.9% at phase 1, phase 2, phase 3, phase 4, and phase 5 respectively. Remarkably, the
results reflect significant improvement of prediction that achieved by the proposed model.

In respect of the AUC values that obtained by the technique (Naseer, Zhang & Zhu,
2020a), the reported values of the AUC were 47.4%, 44%, 70.7%, 87%, and 85.4% in
phase 1, phase 2, phase 3, phase 4, and phase 5. On the other side, the AUC values for the
proposed model are 64.7%, 61.6% , 91.7%, 95.2%, and 96% in the same ordered phases.

Further, the F-Measure values for their approach were 6.1%, 26.3%, 64.2%, 87.7%, and
85.7% in phase 1, phase 2, phase 3, phase 4, and phase 5 whereas the F-Measure values
of the proposed model are 57.6%, 51.6%, 90.6%, 93.9%, and 91.2% in the same phases.
Significantly, the proposed model provides more reliable outcomes than the study (Naseer,
Zhang & Zhu, 2020a) in terms of AUC and F-Measure.

Moreover, to compare TP rate and FP rate with the approach of Naseer, Zhang & Zhu
(2020a), the values of (TP rate and FP rate) which reported in their approach were as (3.1%
and 0%) at first phase, (15.6% and 2.4%) at second phase, (53.1% and 9.5%) at third phase,
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Figure 3 The AUC values obtained by the proposed model and the best values achieved byML tech-
niques for software product.

Full-size DOI: 10.7717/peerjcs.857/fig-3

(78.1% and 0%) at fourth phase, and (75% and 0%) at fifth phase. On the other hand, the
(TP rate and FP rate) values of the proposed model are reported as: (53.1% and 42.9%) at
first phase, (50% 33.3%) at second phase, (90.6% and 7.1%) at third phase, (96.9% and
7.1%) at fourth phase, and (96.9% and 11.9%) at fifth phase respectively. Obviously, the
proposed model shows an optimistic and superior predictability performance rather than
the approach (Naseer, Zhang & Zhu, 2020a) at the investigated phases of software product
development.

Features analysis for the software product
The software product features captured the final software deliverable metrics and were
collected from weekly time surveys, software tools logs, and instructor observation during
the software project. It is important to detect the essential software product features that
improve the overall success of software project. The SETAP dataset contains 115 product
features. Based on obtained results, the number of selected product features are 18, 26, 33,
30, and 36 in the first, second, third, fourth, and fifth phases respectively. Table 7 shows
the list of selected features at the first phase of software product development.

The proposed model presents a better performance with a reduced number of software
product features. For example, some of the key product features at the third phase
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Table 7 The most relevant features at the first phase of software product development.

Number of selected features 18

teamMemberCount
teamDistribution
helpHoursTotal
leadAdminHoursAverage
standardDeviationInPersonMeetingHoursTotalByWeek
averageInPersonMeetingHoursAverageByWeek
standardDeviationInPersonMeetingHoursAverageByWeek

Selected features standardDeviationHelpHoursAverageByWeek
averageGlobalLeadAdminHoursResponseCountByWeek
standardDeviationMeetingHoursTotalByStudent
averageHelpHoursAverageByStudent
uniqueCommitMessageCount
averageCommitCountByWeek
standardDeviationUniqueCommitMessageCountByWeek
averageUniqueCommitMessagePercentByWeek
standardDeviationUniqueCommitMessagePercentByWeek
averageCommitCountByStudent
standardDeviationCommitMessageLengthAverageByStudent

are identified as: averageUniqueCommitMessageCountByWeek, uniqueCommitMessage-
Count, commitMessageLengthStandardDeviation, and standardDeviationCodingDeliver-
ablesHoursAverageByWeek. The features averageUniqueCommitMessageCountByWeek,
uniqueCommitMessageCount, and commitMessageLengthStandardDeviation are used
to record statistics about average, total number, and length of the unique commit
comment messages that related to code submission in software repository. In other
words, high-expectation teams do proper commit messages which reflected by high
average length, while low-expectation teams do not use new commit messages in each
submission to the code repository instead they used non-unique messages. In addition,
the standardDeviationCodingDeliverablesHoursAverageByWeek is used to measure the time
taken for coding deliverable.

Comparing to the approach by Naseer, Zhang & Zhu (2020b), the mutual key
product features across all the five investigated phases are: FemaleTeamMembersPer-
cent, averageInPersonMeetingHoursTotalbyWeek, averageMeetingHoursTotalByWeek,
uniqueCommitMessageCount, averageGlobalLeadAdminHoursResponseCountByWeek,
globalLeadAdminHoursResponseCount, and teamDistribution.

The features like averageInPersonMeetingHoursTotalbyWeek and averageMeet-
ingHoursTotalByWeek represent average time spent on meetings of each single team
and for each single student which help to predict the coding progress for each
team. Also, The features like averageGlobalLeadAdminHoursResponseCountByWeek,
globalLeadAdminHoursResponseCount, and teamDistribution measure the progress for
each global team and allow the instructors to properly identify the differences in cultural
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Table 8 Performance of the classifiers in the first phase for software process.

Algorithm TP rate FP rate Precision Recall F-Measure AUC Accuracy

SMO 0 0 na 0 na 0.5 66.21
SLR 0 0 na 0 na 0.578 66.21
NB 0 0.041 0 0 na 0.499 63.51
MLP 0 0 na 0 na 0.579 66.21
Standard KNN 0.918 0.920 0.662 0.918 0.769 0.499 63.51
PSO-1NN 0.918 0.76 0.703 0.918 0.796 0.579 68.91
PSO-5NN 0 0.02 0 0 0 0.396 64.86
PSO-7NN 0 0.02 0 0 0 0.45 64.86

Notes.
Numbers in bold indicate the best values.

aspects, time zone, and physical distance as declared in Bello (2018) which might affect
their efforts and their responsiveness to instructors.

Such product features used to collect statistical information of students teams tomeasure
their performance. Such information capture different measurements like weekly meeting
time for each software team and for each single student, code commits, number and length
of commitmessages by eachweek, local/global teams distribution, female proportionwithin
a team, and total number of responses per each global team. Particularly, these features
are important as they detect the key characteristics of software functionality, design, code
deliverable, and effectiveness of final project delivery. Detecting such important product
features would enable the software engineering instructors to observe low-expectation
teams who deliver inconsistent software requirements, degraded design, poor code quality,
and late commit messages.

Software process results
The software process focuses on activities and practices perspectives of software team
during software development life cycle. Regarding the software process development
perspective. The previous studies used single phases of software process development in
their experiments rather than considering the continues phases which help to monitor
practices of low-expectation teams during the essential phases of SDLC.

This study aims to improve the performance prediction of low-expectation teams
in the investigated phases of software process development to capture their dynamic
behavior. Tables 8–12 exhibits the best performance achieved by PSO-1NN, PSO-5NN,
and PSO-7NN with other traditional ML models in the investigated phases.

By investigating the first phase of software development process, the proposed model
outperform the other traditional ML classifiers in terms of accuracy, AUC, F-measure, and
precision as presented in Table 8. In addition, standard KNN and the proposed model
presented an equal recall value as (91.8%). Examining the second phase, the standard
KNN mostly perform better than the proposed model as presented in Table 9. In the third
phase, the proposed model performs better than ML models in the metrics of precision,
recall, F-Measure, and AUC as shown in Table 10. As we proceed further, the proposed
model began to produce better predictive outcomes. Interestingly, in the fourth phase,
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Table 9 Performance of the classifiers in the second phase for software process.

Algorithm TP rate FP rate Precision Recall F-Measure AUC Accuracy

SMO 0.56 0.204 0.583 0.56 0.571 0.678 71.62
SLR 0.6 0.143 0.682 0.6 0.638 0.745 77.027
NB 0.2 0.082 0.556 0.2 0.294 0.712 67.57
MLP 0.28 0.082 0.636 0.28 0.389 0.769 70.27
Standard KNN 0.878 0.600 0.741 0.878 0.804 0.639 71.62
PSO-1NN 0.44 0.163 0.579 0.44 0.5 0.633 70.27
PSO-5NN 0.36 0.061 0.75 0.36 0.486 0.761 74.32
PSO-7NN 0.36 0.061 0.75 0.36 0.486 0.784 74.32

Notes.
Numbers in bold indicate the best values.

Table 10 Performance of the classifiers in the third phase for software process.

Algorithm TP rate FP rate Precision Recall F-Measure AUC Accuracy

SMO 0.52 0.082 0.765 0.52 0.619 0.719 78.38
SLR 0.44 0.061 0.786 0.44 0.564 0.764 77.027
NB 0.4 0.327 0.385 0.4 0.392 0.642 58.11
MLP 0.84 0.102 0.808 0.84 0.824 0.819 87.84
Standard KNN 0.755 0.240 0.860 0.755 0.804 0.758 75.67
PSO-1NN 0.939 0.28 0.868 0.939 0.902 0.829 86.48
PSO-5NN 0.28 0.082 0.636 0.28 0.389 0.761 70.27
PSO-7NN 0.16 0.041 0.667 0.16 0.258 0.739 68.92

Notes.
Numbers in bold indicate the best values.

Table 11 Performance of the classifiers in the fourth phase for software process.

Algorithm TP rate FP rate Precision Recall F-Measure AUC Accuracy

SMO 0.44 0.061 0.786 0.44 0.564 0.689 77.027
SLR 0.52 0.041 0.867 0.52 0.65 0.863 81.08
NB 0.24 0.122 0.5 0.24 0.324 0.53 66.22
MLP 0.56 0.061 0.824 0.56 0.667 0.794 81.08
Standard KNN 0.857 0.240 0.875 0.857 0.866 0.809 82.43
PSO-1NN 0.939 0.12 0.939 0.939 0.939 0.909 91.89
PSO-5NN 0.6 0.061 0.833 0.6 0.698 0.904 82.43
PSO-7NN 0.52 0.61 0.813 0.52 0.634 0.0.863 79.7297

Notes.
Numbers in bold indicate the best values.

the proposed model provides better performance for all the used evaluation metrics than
the other ML algorithms as shown in Table 11. Significantly, the trend also continues
for the fifth phase as shown in Table 12. Undoubtedly, this interesting findings reveals
that the proposed model provides better results as moving to further phases of software
process development. Such improvement is reasonable as the later phases convey a better
understanding of teamwork behaviors in comparing with the prior phases.
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Table 12 Performance of the classifiers in the fifth phase for software process.

Algorithm TP rate FP rate Precision Recall F-Measure AUC Accuracy

SMO 0.52 0.061 0.813 0.52 0.634 0.729 79.73
SLR 0.56 0.061 0.824 0.56 0.667 0.898 81.08
NB 0.44 0.163 0.579 0.44 0.5 0.754 70.27
MLP 0.8 0.204 0.667 0.8 0.727 0.837 79.73
Standard KNN 0.898 0.120 0.936 0.898 0.917 0.889 89.18
PSO-1NN 0.939 0.12 0.939 0.939 0.939 0.909 91.89
PSO-5NN 0.72 0.061 0.857 0.72 0.783 0.919 86.487
PSO-7NN 0.56 0.61 0.824 0.56 0.667 0.901 81.08

Notes.
Numbers in bold indicate the best values.

In terms of recall metric for the investigated phases of software process development. The
results reflect an equal performance in the first phase for both as achieved by standard KNN
and PSO-1NN. However, at the second phase, standard KNN classifier outperforms better
than the proposed model, this would be referred to the reason that low-expectation teams
hardly establish communication and coordination while they working on design phase.
Results indicated that later phases reflect much stronger communication skills comparing
to the prior phases as a better performance was achieved in the implementation, testing,
and maintenance phases. The best values for ML techniques and the proposed model were
reported as (91.8%, 91.8%) in phase 1, (75.5%, 93.9%) in phase 3, (85.7%, 93.9%) in
phase 4, and (89.8%, 93.9%) in phase 5. Obviously, the proposed model exhibited better
performance rather than the ML techniques at the third, fourth, and fifth phases, and an
equal performance at the first phase.

In particular to precision metric, the best precision values obtained by traditional ML
were 66.2%, 74.1%, 86%, 87.5%, and 93.6% at phase 1, phase 2, phase 3, phase 4, and phase
5. The best precision values achieved by the proposed model were reported as 70.3%, 75%,
86.8%, 93.9%, and 93.9% at the same phases in same order. Clearly, the proposed model
shows better precision values than the ML techniques across all the investigated phases.

In addition, with respect to AUCmeasure, the proposedmodel shows better performance
rather than traditional ML techniques in the all investigated phases as shown in Fig. 4.
Also, regarding to the accuracy metric, the best achieved accuracy values for ML models
and the proposed models were outlined as (66.2% and 68.9%) at phase 1, (82.4% and
91.8%) at phase 4, and (89.1% and 91.8%) at phase 5. The proposed model revealed better
performance than other ML classifiers at the first, fourth, and fifth phases of software
process development.

Generally, comparing with PSO-5NN and PSO-7NN, PSO-1NN achieved the best
performance results in the most investigated phases of software product and process
development. The accuracy average and standard deviation values of PSO-1NN model of
software product and process can be found in Tables 13 and 14.
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Figure 4 The AUC values obtained by the proposed model and the best values achieved byML tech-
niques for software process.

Full-size DOI: 10.7717/peerjcs.857/fig-4

Table 13 Accuracy average and standard deviation results of all investigated phases for software prod-
uct.

Datasets PSO-1NN

Avg Std

First phase (Product) 57.66 7.69
Second phase (Product) 60.81 4.05
Third phase (Product) 88.74 5.46
Fourth phase (Product) 93.69 1.56
Fifth phase (Product) 89.64 2.82

Features analysis for the software process
The software process features measure activities and practices of software team during
software project. The process features used to collect information about behavior
characteristics of software team during software development process. The SETAP dataset
contains 84 process features. Based on our results, the number of selected process features
are 16, 26, 34, 28, and 25 in phase 1, phase 2, phase 3, phase 4, and phase 5 correspondingly.
Table 15 shows the list of selected features at the first phase of software process development.
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Table 14 Accuracy average and standard deviation results of all investigated phases for software pro-
cess.

Datasets PSO-1NN

Avg Std

First phase (Process) 65.76 5.46
Second phase (Process) 70.72 0.78
Third phase (Process) 81.08 7.15
Fourth phase (Process) 90.54 1.36
Fifth phase (Process) 88.73 2.82

Table 15 The most relevant features at the first phase of software process development.

Number of selected features 16

teamMemberCount
femaleTeamMembersPercent
teamMemberResponseCount
meetingHoursAverage
meetingHoursStandardDeviation
nonCodingDeliverablesHoursAverage

Selected features averageMeetingHoursTotalByWeek
averageMeetingHoursAverageByWeek
standardDeviationMeetingHoursAverageByWeek
averageInPersonMeetingHoursTotalByWeek
averageResponsesByStudent
standardDeviationMeetingHoursAverageByStudent
averageInPersonMeetingHoursAverageByStudent
commitCount
commitMessageLengthTotal
averageCommitMessageLengthTotalByWeek

The proposed model attempts to select the most relevant process features. For example,
some of the key process features at the second phase are stated like: issueCount, lateIssue-
Count, helpHoursStandardDeviation, averageNonCodingDeliverablesHoursAverageByWeek,
and averageResponsesByWeek. Such features help to check behavior aspects of team activities
during a certain period of time. Time is one of the most critical process features to
evaluate the performance in the software project. The features meetingHoursTotal and
inPersonMeetingHoursAverage represents total and average for time spent on meetings for
each team to detect their participation/practices through meetings. The helpHoursTotal is
calculated by counting required time that spent for obtaining help for unclear issues or
other challenges, the averageNonCodingDeliverablesHoursAverageByWeekmeasures average
time taken for delivering non-coding parts as documentation. In addition, other features
like onTimeIssueCount and lateIssueCount used to measure the completeness/lateness
of submission to help the instructor observe software teams who have on time and late
delivery. Further, the averageResponsesByWeek is used to evaluate the ability of teams to
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response for instructor requests and deal with feedback constructively. Detecting such
key process features help to evaluate behavior of students teams by measuring different
activities aspects such as team participation, using of communication tools, and the time
needed to submit the software deliverables.

DISCUSSION
Software engineering is an important field that aims to apply software processes and
methodologies in education and industry environment to deliver software product.
Software Engineering education involves teaching software projects for students in
universities (Ahtee & Poranen, 2007). Students must work in teams in projects and should
obtain above-average grades in order to successfully pass the course. Software product and
process features are measures that outline the level of performance of each team in different
phases of SDLC. Each team is evaluated at theoretical and technical perspective based on
multiple phases of assessments to detect performance of students during different stages
of software project. The theoretical aspect reflects the software process aspects while the
technical aspect is relevant to the software product aspects. Teams should complete all the
required parts of the software deliverables but might have different grades between product
and process parts based on their knowledge levels and their practical skills, certain types
of teams may perform better in one part compared to the other one. Software teams are
either distributed globally or locally based on the project nature in software engineering
course. Software teams faced many challenges that caused to deliver improper project like
temporal, cultural, geographical distances, cooperation difficulties, communication issues,
assigning roles within team members, incorrect software deliverables, delay submission,
and adapting wrong practices. These challenges have significant effects on the project
progress and the final grade for each team. As a result, it is necessary to teach the students
about the proper methodologies of software development to get better grades.

Clearly, it is hard to predict the performance of software teams in software projects
due to the aforementioned challenges and difficulties (Chan et al., 2017). Predicting the
performance of students teams is one of the most important tasks for learning of software
projects in software engineering education. The early prediction of low-expectation
teams involves the implementing of ML classification models and focused essentially
on estimating the behaviors of teams at early stages of software project. In practice, the
influence of instructors and their teaching strategy could be resulted in a significant
performance variation among the software teams. Therefore, a special attention should
be paid to the performance of low-performing teams. This paper proposes an swarm
intelligence -based model which mainly aims to improve the prediction performance of
low-expectation teams at the earliest possible phases of SDLC by capturing both of product
and process perspectives of software project.

By using the proposed model, the software engineering instructors could detect
misunderstandings and challenges related to low-expectation teams at the earliest possible
phases of software project which helps to decrease the ratio for software project failure.
In terms of software process development, software engineering instructors can track
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the practical behavior and activities of teams during they work on software product
deliverables which enable to early detect any difficulties of project tasks in order to improve
cooperative learning among teams members. The swarm intelligence-based model would
help instructors better assess software teams’ performance by capturing the correctness
and time-completeness for the project parts. The correctness reflects the quality of the
submitted deliverables whereas the time-completeness is used to distinguish between the
on-time and late submission for these deliverables.

Software industry requires improvements in learning skills in the software engineering
education field (Ramirez-Mendoza et al., 2020; Cico et al., 2021). As the proposed model
captures both software and product perspectives to improve the prediction performance for
low-expectation teams at the earliest possible phases of SDLC to early avoid project failure.
Improving the learning practices and outcomes of software projects would encourage the
low-expectation teams to progress in more efficient manner and prepare them to better
move for software industry at their future careers. This model provides a good opportunity
to explore the mutual area between software industry and software engineering education
by increasing the possibilities of success for low-expectation teams in software projects.
The proposed model would be considered to have a significant implication at theoretical
(i.e., software product) and practical aspects (i.e., software process) of software project.

Experiments have been demonstrated on the SETAP dataset to validate the proposed
model, software product and process features in this dataset allow instructors to detect
the performance of software teams through different stages of assessments during the
academic semester. In terms of software product experiments, the proposed assessment
model outperforms the traditional ML techniques and the related studies at the first, third,
fourth, and fifth phases, and it shows a slightly acceptable performance at the second phase.
Similarly, with respect to software process experiments, the proposed model shows better
prediction at the first phase and provides an acceptable prediction in the second phase.
Interestingly, the proposed model reveals much better predictions at the third, fourth and
fifth phases comparing with the used traditional ML techniques.

Feature selection is an urgent task when there are a large number of features in the
training data as in the investigated dataset of SETAP project. Feature selection helps to
allow quick learning for ML classifier and increase the accuracy for the prediction model by
reducing the selected features aswell as itminimizes the cost ofML classifiers. Consequently,
the proposed assessment model attempts to reduce the total number of features to reach
higher accuracy with identifying less than 40 features of software product and process.
As the value of (K) parameter has a significant impact on classification performance.
Three different values of (K) were selected based on studying the most related literature
and the previous works to construct three combinations as PSO-1NN, PSO-5NN, and
PSO-7NN. Mostly, the PSO-1NN gave superior results for both software product and
process development as reported in our findings.

The software product features considers characteristics of each software deliverable at
each phase of SDLC. The software process features are relevant to the dynamic behavior of
teams and they reflect the collaboration and communication rate within the teammembers.
In the light of software product and process features, the selected software product and
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process features are used for model training while the target variable (i.e., grade) is used for
evaluating performance for low-expectation teams at each investigated phase of software
project. Obviously, using the (PSO) as a feature selection technique in the proposed model
leads to improve the prediction performance in the investigated phases. The findings
which obtained by implementing PSO show a significant improvement comparing with
the findings that applied only traditional ML classifiers.

LIMITATIONS
We acknowledge that this study has some limitations. First, It is difficult to generalize the
reported findings of the proposed model on one type of datasets, different types of dataset
were difficult to obtain in software engineering education. Second, the proposed model
demonstrated the experiments of software product and process parts separately, in case of
combining the product and process features together, the prediction performance of the
proposed model might be affected.

CONCLUSION AND FUTURE WORK
Software engineering is one of the most significant areas which extensively used for both
education and industry fields. Software project is considered as a core part of software
engineering course. Software project includes composition of software product and
process parts. The low-expectation teams face challenges during different stages of software
project. The early prediction of performance for these teams help instructors to identify the
difficulties and challenges at early phases of software project to avoid project failure. This
paper proposed an swarm intelligence -based model which aims to improve the prediction
performance for low-expectation teams at the earliest possible stages of software product
and process development. Experiments were demonstrated on the public SETAP project
dataset. The proposed model was compared with the state-of-the-art machine learning
(ML) classifiers: Sequential Minimal Optimization (SMO), Simple Linear Regression
(SLR), Naïve Bayes (NB), Multilayer Perceptron (MLP), standard KNN, and J48. Mostly,
the proposed model provides superior results compared to the traditional ML classifiers
and state-of-the-art studies. Besides, the proposed model attempts to reduce the total
number of features to reach higher accuracy with identifying less than 40 features instead
of considering all features of software product and process.

As a future work, the proposed model would open the doors for further researching
in the software process development. Another future direction is the possibility to apply
the proposed model on other types of dataset in software engineering education and
software industry. Future research would be valuable to study the ability to apply the
proposed model on combination of software product and process features. Besides using
the PSO-KNNmodel, there is a room for exploring the prediction accuracy of performance
for low-expectation teams by combining PSO with other classifiers such as NB, MLP, and
etc. Such efforts are best left to be done in the future. In addition, this study could be
extend to build software tool that would help instructors to automatically predict the
performance of software teams in both of software product and process development. Such
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an extension would be considerable for ease of comparison with the existing software tools
in the literature.
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