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Cátedra “Doctores Galera y

Requena de Investigación en

Células Madre Canceŕıgenas”
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Glossary

back-end In web development, this is the term used to

refer to the server processing part of the software

(data access, calculations, etc)

CDS Coding sequence. Fragment of a gene sequence

that codes for a protein

cfDNA Cell-free DNA

circRNA Circular RNA

CTCs Circulating Tumor Cells

ctDNA Circulating tumor DNA

Django Web development framework based on Python

dPCR Digital PCR

EVs Extracellular vesicles

FDA United States Food and Drug Administration

FDR False discovery rate

front-end In web development, this is the term used to

refer to web browser processing part of the soft-

ware (layout, visualization, etc)

GWAS Genome wide association study. An observa-

tional study to find genomic variants associated

with traits such as diseases

lncRNA Long non-coding RNA

melanoma Type of skin cancer that originates from

melanocytes, the cells that produce pigmenta-

tion in hair or skin
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miRBase Primary database of miRNA sequences and an-

notations

miRGeneDB Database of manually curated microRNA genes

miRNA Endogenous small ncRNA molecules (∼22 nu-

cleotides) that mediate translational repression

of target mRNAs

mRNA messenger RNA

MySQL Open-source relational database management

system based on the SQL language

ncRNA Non-coding RNA

NGS Next Generation Sequencing

NIH National Institutes of Health. Federal agency of

the United States in charge of health research

NTA Non-templated addition. Nucleotides post-

transcriptionally added to a miRNA sequence

by nucleotidyl transferases

PCR Polymerase Chain Reaction

RC Read count

RPM Reads Per Million

rRNA Ribosomal RNA

RT-PCR Reverse transcription polymerase chain reaction

SNP Single Nucleotide Polymorphism

SRA Sequence Read Archive. NIH’s primary archive

of high-throughput sequencing data

TNM Staging system of malignant tumors that de-

scribes the size and spread of cancer
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TORQUE Resource and queue manager that allows job

scheduling and control

tRNA Transfer RNA

UMI Unique Molecular Identifier. Molecular bar-

codes used to tag DNA fragments in NGS se-

quencing

UR Unique Reads

UTR Untranslated region. In a strand of mRNA, se-

quences found at each end of the molecule that

surround the coding sequence and that are not

translated into protein

WGS Whole genome sequencing

WHO World Health Organization
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Abstract

Cancer is the leading cause of premature death (0-69) in Spain and in the

vast majority of countries in the European Union. Developing countries are

less affected but numbers are expected to rise over the next few decades

as a consequence of population aging and lifestyle changes. Besides the

human losses, cancer is responsible for large economic impact on healthcare

systems and companies. It will come as no surprise to learn that many

pharmaceutical companies and public funding agencies target cancer as

their most funded research topic.

Cancer is a complex set of diseases that are normally labeled using the

tissue and/or cell type from which they originate. Each type is associated

with very different prognosis and treatments but in most cases, patients

would benefit from early detection, diagnosis and treatment since tumors

tend to become more aggressive with time. In the United States, breast

and colon cancer mortality rates have dropped ∼40% in the last 25 years

in part as a consequence of achieving earlier diagnoses on average.

Traditionally, cancer was diagnosed using samples resected from tu-

mor tissue, a procedure known as biopsy. Biopsies, however, need to be

performed and assessed by specialized personnel, making it impractical to

repeat and almost impossible to use as screening strategy. In this con-

text, liquid biopsy, a testing approach that consists in sampling and explo-

ration of blood or other bodily fluids as a surrogate for regular biopsies, has

emerged as a viable alternative. Many different biological materials can be

explored from blood samples and several studies have already reported as-

sociations between the abundance of certain biomolecules and the presence

of tumors, cancer stage or prognosis. Particularly, there has been great in-
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terest in miRNAs because they are well-characterized molecules, abundant

in bodily fluids and relatively stable.

A common approach to propose new circulating miRNAs as disease

biomarkers is to rely on Next Generation Sequencing data from blood,

serum, plasma or extracellular vesicles. In this thesis, I developed and up-

dated tools that can be used to: 1) process miRNA-seq experiments and

obtain miRNA and isomiR profiles as well as tRNA properties; and 2) to

perform quality control of miRNA-seq experiments by comparison to over

30,000 publicly available samples uniformly processed using sRNAbench.

Finally, liquid biopsy miRNA-seq samples were compiled in a manually cu-

rated database to increase reproducibility and reusability of public datasets.

sRNAbench is one of the most used web-servers for analysis of miRNA-

seq experiments, with almost 50 thousand jobs launched since the latest

publication in 2019. Among other things, sRNAbench enables miRNA and

isomiR profiling, mapping to the genome and usage of several indexes. In

2019 we updated this service to include new library preparation protocols,

species and miRNA reference annotations. Since the original publication

of sRNAbench, the amount of miRNA-seq studies in GEO has more than

triplicated. In consequence, we adapted this service to allow fast process-

ing of multiple samples with the same protocol and automated download

from SRA. The differential expression tool, sRNAde, was also improved to

include more methods and an interactive experience.

Although liquid biopsy miRNA-seq studies have been on the rise for

some time already, articles and publicly available data are not always con-

sistently reported if at all. As a solution, we took the initiative to man-

ually curate and uniformly process 31 SRA studies containing over 1000

viii



miRNA-seq samples. We organized this dataset into a publicly available

database, liqDB, which can be queried to retrieve any subset of samples

and to generate or test hypothesis. Insights gained from this process were

very important to determine what we thought constituted a miRNA-seq

study of good quality.

Quality control of miRNA-seq experiments is a frequently overlooked

matter. Even if miRNA-seq is extensively used, most quality control met-

rics differ very little from those provided in regular RNA-seq studies. Tak-

ing advantage from the automated processing and quality control pipeline

developed to populate liqDB, we analyzed a corpus of over 36,000 miRNA-

seq samples. Using this corpus and our experience, we proposed 27 quality

features that are displayed in the context of the reference corpus by means

of percentiles. Users can also subset the reference to compare their sam-

ples to more tailored data that resembles their experiment. One of the

predefined subsets corresponds to bodily fluid experiments so liquid biopsy

samples can be assessed by comparison to those only. To our knowledge,

mirnaQC is the first bioinformatics tool especially conceived for miRNA-

seq quality control and the only NGS QC tool that relies on a background

set of samples for relative assessment.

Finally, to proof the usefulness of the methods presented here, we ap-

plied them to a set of serum samples from melanoma patients, a type of

skin cancer that originates in melanocytes, the cells that produce pigmenta-

tion. Potential melanoma sufferers could really benefit from early detection

strategies since survival rates display staggering differences between stages:

5-year survival rate in the United States is 99% for localized disease (Stages

0, I and II), 66% in the case of regional spread and only 27% for patients
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with distant spread.

In our exploration of the dataset using differential expression analysis

we found several miRNAs that were either significantly more abundant in

healthy controls or in patients of melanoma. We also found miRNAs that

displayed a stark difference between controls and patients in an early stage,

which indicates great potential as early detection biomarkers. Finally, we

found differences in the uridylation levels of several miRNAs that correlated

with disease progression.

Key words: miRNA, sequencing, liquid biopsy, cancer, melanoma, early

detection, metastasis
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Resumen

El cáncer es la principal causa de muerte prematura (0-69) en España y

en la mayoŕıa de páıses de la Unión Europea. Los páıses en desarrollo se

encuentran menos afectados, pero se espera que sus cifras aumenten en las

próximas décadas como consecuencia del envejecimiento de la población y

los cambios en el estilo de vida. Además de las pérdidas humanas, el cáncer

es responsable de un gran impacto económico en los sistemas de salud y en

las empresas. Por lo tanto, no es de sorprender que muchas farmacéuticas

y agencias de investigación hayan hecho del cáncer la enfermedad cuya

investigación mejor se financia.

El cáncer es en realidad un conjunto heterogéneo de enfermedades que

normalmente se denominan usando el tejido a partir del cual se originan.

El pronóstico vaŕıa mucho en función del tipo de cáncer pero en la inmensa

mayoŕıa de casos, los pacientes se ven beneficiados si se logra una detección

precoz, ya que esto facilita también un tratamiento y diagnóstico tempra-

nos, anticipándose aśı a una mayor progresión tumoral. En Estados Unidos,

la mortalidad de cáncer de mama y colon ha disminuido en torno a un 40%

en los últimos 25 años. Este descenso se ha logrado, entre otras cosas, como

consecuencia de un aumento en los diagnósticos tempranos.

Tradicionalmente, el diagnóstico en cáncer se realiza a partir de mues-

tras de tejido extráıdas del tumor, un procedimiento conocido como biopsia.

Las biopsias, sin embargo, necesitan ser realizadas y analizadas por per-

sonal especializado, lo que hace bastante complejo poder repetirlas, y casi

imposible usarlas como estrategia de cribado. En este contexto, y como al-

ternativa a las biopsias tradicionales, surgió el concepto de biopsia ĺıquida,

una técnica que consiste en el análisis de una muestra de sangre u otros
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fluidos en lugar de la extracción directa del tejido afectado. Se pueden ex-

plorar muchos tipos de materiales biológicos diferentes a través de la sangre,

y distintos estudios han asociado la mayor o menor abundancia de ciertas

biomoléculas con la presencia de tumores, el estadio del cáncer o su mejor

o peor pronóstico. Más concretamente, existe un gran interés en el caso

de los miRNAs circulantes, porque son moléculas muy bien caracterizadas,

abundantes en los fluidos corporales, y relativamente estables.

La secuenciación masiva es una estrategia común para proponer mar-

cadores circulantes basados en miRNA a partir de sangre, suero, plasma o

exosomas. En esta tesis, se han desarrollado y actualizado varias herramien-

tas útiles para: 1) el procesamiento de experimentos de miRNA-seq para

la obtención de perfiles de miRNA, patrones de expresión en los isomiRs

y otras propiedades de los tRNA; y 2) realizar controles de calidad a ex-

perimentos de miRNA-seq mediante su comparación con más de 30.000

muestras obtenidas de repositorios públicos y procesadas uniformemente

con sRNAbench. Finalmente, se desarrolló una base de datos curados a

mano para albergar experimentos de fluidos con el objetivo de incrementar

la reproducibilidad y reusabilidad de dichos datos.

sRNAbench es uno de los servidores web más utilizados para el análisis

de experimentos de secuenciación de miRNA, con casi 50 mil trabajos lan-

zados desde su última publicación en 2019. Entre otros análisis, permite la

obtención de perfiles de miRNA e isomiR, el mapeo a distintos genomas, y

el uso simultáneo de varios ı́ndices. En 2019 se actualizó este servicio para

incluir nuevos protocolos de preparación de libreŕıas, especies y referencias

de miRNA. Desde la publicación original de sRNAbench, la cantidad de

datos de secuenciación de miRNA en GEO se ha triplicado. Por ello, se ha
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adaptado el servidor para permitir la descarga automatizada desde SRA y

el procesamiento simultáneo de múltiples muestras cuando provengan de

un mismo protocolo. La herramienta de expresión diferencial, sRNAde,

también ha sido actualizada para incluir más métodos y mejorar su inter-

actividad.

Aunque el número de estudios de miRNA-seq en biopsia ĺıquida ha au-

mentado considerablemente en los últimos años, los art́ıculos y los datos

disponibles públicamente no siempre se anotan en los repositorios de forma

correcta ni uniforme. Como solución a esto, decidimos curar manualmente

y procesar uniformemente 31 estudios disponibles en SRA, con un total de

más de 1000 muestras de secuenciación de miRNA. Todo ello se organizó

en una base de datos públicamente disponible, liqDB, que puede ser in-

terrogada tanto para descargar cualquier conjunto de muestras como para

generar o testear hipótesis. El conocimiento ganado a través de este proceso

ha sido muy importante para desentrañar qué caracteŕısticas determinan

que una muestra de secuenciación de miRNA pueda ser considerada de

buena calidad.

Frecuentemente, el control de calidad en los experimentos de miRNA-

seq es un proceso que se pasa por alto. Aunque esta estrategia de secuen-

ciación es muy común, los análisis aplicados para controlar la calidad no di-

fieren mucho de los que normalmente se utilizan para un RNA-seq de RNA

mensajero. Por ello, implementamos mirnaQC, la primera herramienta

bioinformática especialmente diseñada para controlar la calidad de mues-

tras de miRNA-seq. Para su desarrollo se aprovechó un algoritmo autom-

atizado de detección y procesamiento de muestras, originalmente diseñado

con la finalidad de poblar la base de datos liqDB, para analizar un total de
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más de 36.000 experimentos de miRNA-seq. Basándonos en este corpus y

en nuestra experiencia, propusimos un conjunto de 27 parámetros de cal-

idad que se pueden explorar en su contexto mediante percentiles a través

de los cuales los usuarios pueden realizar un control de calidad relativo de

sus muestras. Además, el software permite seleccionar subconjuntos del

corpus de referencia para que la comparación se efectúe con muestras sim-

ilares a las de los usuarios. Uno de los conjuntos predefinidos lo forman

experimentos obtenidos de fluidos corporales que de este modo pueden ser

utilizadas como referencia para muestras de biopsia ĺıquida. Hasta donde

sabemos, mirnaQC es la primera herramienta bioinformática especialmente

diseñada para el control de calidad de muestras de miRNA-seq y la única

herramienta de control de calidad para datos de NGS que se basa en un

conjunto de muestras para otorgar una evaluación comparativa.

Finalmente, para demostrar la utilidad de los métodos aqúı presentados,

los hemos aplicado a un conjunto de experimentos de miRNA-seq generados

a partir de suero de pacientes con melanoma, un tipo de cáncer de piel que

se origina en los melanocitos, las células que producen la pigmentación. Los

potenciales pacientes de este tipo de cáncer se beneficiaŕıan tremendamente

de un diagnóstico temprano ya que las tasas de supervivencia vaŕıan mucho

según el estad́ıo de detección: la tasa de supervivencia a 5 años en los

Estados Unidos es de un 99% en el caso de lesión localizada (Estadios 0, I

y II), un 66% en el caso de metástasis ganglionar regional y solo un 27%

en pacientes con metástasis a distancia.

Tras comparar el conjunto de muestras de controles sanos con el de

los pacientes mediante varios métodos de expresión diferencial se encon-

traron una serie de miRNAs que aparećıan de forma significativamente más
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abundante en alguno de los dos grupos. También se encontraron miRNAs

diferencialmente expresados entre los controles y los pacientes en estadios

tempranos, lo que indica un gran potencial de los mismos como posibles

biomarcadores de detección temprana. Finalmente, encontramos diferen-

cias en los niveles de uridilización de algunos miRNA que correlacionan con

la progresión de la enfermedad.

Palabras clave: miRNA, secuenciación, biopsia ĺıquida, cáncer,

melanoma, detección temprana, metástasis
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Chapter 1

Introduction

1.1 Cancer

Despite the increasing amount of private and public funding entities in-

vesting in cancer research [1], there are many advances yet to be made in

cancer diagnoses and treatment. As of 2020, there were 19.2 million new

cancer diagnosis worldwide and 9.9 million deaths from all cancer types

combined [2]. The initial section of this introduction will cover the defini-

tion and some basic aspects of the disease, the global relevance of cancer

with a focus on Western countries and the importance of early detection

and diagnosis.

1.1.1 The importance of cancer to society : a global health

and economic issue

Trying to portray the importance of cancer to Western society may appear

unnecessary since almost everyone reading this introduction has experi-

enced, is experiencing or is going to experience some form of cancer during

their lifetime, either as their own illness or as that of somebody close to

them (35% of people now alive in Europe will be diagnosed with cancer by

the age of 75 [3]).

Cancer is the leading cause of premature death (0-69 years) in Spain and

in the vast majority of European Union (EU) countries and the second cause
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1.1. CANCER

for the remaining nations [2]. The same trend is observed in other Western

countries such as the United States, Mexico, Canada, Australia, Brazil,

Argentina, etc. and in further high or very high Human Development

Index (HDI) countries such as Russia and Japan. Developing countries

are less affected by cancer mainly because of a younger population and

lower prevalence of other risk factors such as smoking, unhealthy diet and

excessive body weight [4]. This is predicted to change by 2040, with rising

cancer rates in low and middle HDI countries but still far from figures

exhibited by high HDI nations today. In fact, 28.4 million new cases are

expected in 2040 worldwide, a 47% rise from 2020 (19 million, 282,421 of

which were in Spain), with higher increases in developing countries (64-

95%) than developed ones (32-56%) [2] (Figure 1). These predictions are

based on demographic transitions and risk factors that are expected to

increase in growing economies.

Figure 1: Estimated number of new cancer cases and deaths per year in
2020 versus 2040. Retrieved from https://gco.iarc.fr/, Global Cancer Observatory
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Besides the dramatic consequences it can have in lives of people touched

by the disease, there is also an economic burden on society as affected peo-

ple will need healthcare, relatives may be provided with derived welfare or

pensions and companies will have to temporarily or indefinitely replace ill

or deceased employees. Furthermore, some patients will have to rely on

family or friends for support during treatment or while they recover from

the disease since they may find themselves unable to continue working. In a

study from 2013 [5], Luengo-Fernandez et al. calculated that the economic

cost of cancer for EU countries was on average equivalent to 102 euros per

citizen every year, 4% of combined EU healthcare budget. They defined

economic cost as total expenditure on healthcare and drugs, unpaid infor-

mal care provided by relatives or friends, lost earnings by premature deaths

and costs of temporary or permanent cease of employment. Cost varied a

lot depending on the country and the type of cancer analyzed but it corre-

lated strongly with average income per citizen, which can be attributed to

an increased cost of living and access to more expensive drugs and treat-

ments. Similar countries in terms of GDP (Gross Domestic Product) per

citizen could still display strong differences in average expenditure. Such

was the case of Germany and the United Kingdom that had an almost two-

fold increase in cost, more expensive in Germany, despite a very similar

GDP. This fact highlights how public healthcare systems can be more af-

fordable to deliver cancer treatment, although overall effectiveness of each

system was not assessed in this work.

Cancer is also of great interest to the pharmaceutical and biotechnology

industry. In 2019, 23% of all new drugs approved by the FDA were can-

cer therapeutics [6]. The latest estimations [7] put clinical oncology drug
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development at the top of the list in terms of worldwide pharmaceutical in-

vestment in research and developement (R&D) with more than 92 billion of

United States Dollars (USD) despite the current Coronavirus disease 2019

(COVID-19) pandemic. According to the same work, Oncology is predicted

to remain on top by 2026, accounting for 22% of drug sales that year [7].

Companies justify this investment in two ways: first, most of the poten-

tial customers of their drugs live in wealthier countries so they can afford

high prices for a unique potentially life-saving product and gain returns

quickly; and second, new technologies and advancements initially made in

the field of cancer research will eventually transition to applications in other

diseases.

Such is the case of mRNA vaccines that have recently shown their

success in helping to cope with (and hopefully eradicate) the coronavirus

behind the ongoing pandemic. Several of the first approaches to achieve

mRNA vaccines were attempted on cancer models [8] and the first rela-

tively successful clinical trial of an mRNA vaccine displayed some effec-

tiveness to generate antibodies against prostate-specific antigen (PSA) in

metastatic prostate cancer patients [9]. In 2008 the first Phase I/II clinical

trial of an mRNA-based vaccine proved to generate anti-tumor antibodies

in melanoma patients, although it was not shown to be clinically effec-

tive [10]. Something similar happened with therapeutic monoclonal anti-

bodies: even if cancer was beaten in the race to be the first target of this

kind of therapy [11], many monoclonal antibodies to treat different types

of cancer successfully obtained FDA approval since then [12, 13]. Mistakes

and advances made during their development paved the way for a great

range of diseases that can now be treated with more than 100 monoclonal
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antibodies [14], though in the case of cancer they rarely are curative [15].

This gigantic research investment is coupled with great collaboration from

the cancer patient community (around 5% of patients enroll in clinical tri-

als [16] but 55% accept to participate when offered [17]) probably fueled

in many cases by the lack of an appropriate treatment that can provide

acceptable survival rates.

Interest in cancer research goes beyond the pharmaceutical industry.

Public and private research funding entities also provide increasing re-

sources to academic groups. In 2020, the National Institutes of Health

(NIH) allocated ∼7 billion USD [18], 17% of their total budget, to can-

cer related projects and clinical trials (33% increase since 2013). Besides

private, governmental, and academic funding, philanthropy has also arisen

as a source of investment for cancer research. Good examples of this are

several cancer projects, institutes and foundations started or financed by

the Chan Zuckerberg Initiative [19] and the Bill & Melinda Gates Founda-

tion [20] or Spanish counterparts like Amancio Ortega, who also donated

diagnostic equipment to national hospitals among great controversy [21].

Despite allegations that these contributions were not altruistic but rather

a campaign of reputation washing, they chose to fund cancer because of

its relevance to society. In fact, 8 out of 10 American citizens surveyed

in 2015 [22] supported medical cancer research and 74% were in favor of

increasing federal funding. Voters were also 5 times as likely to support a

president that prioritizes the fight against cancer, which doesn’t come as

a surprise since every age group surveyed put cancer as their top health

concern and almost 9 out of 10 had met someone who had cancer (47%

had a close friend or relative who currently has cancer). Richard Nixon
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used this widespread view to boost his support by promoting the National

Cancer Act of 1971 (although total NIH funding was decreased that year),

an effort that has received bipartisan backing since then.

In summary, cancer is the leading cause of death worldwide, 10 million

deaths in 2020, even amidst the current coronavirus outbreak (as of Novem-

ber 2021, 5 million reported deaths since the beginning of 2020), so there is

ground to consider it an ongoing pandemic [23]. Furthermore, these figures

are only expected to grow by 2040 [2] due to the world’s aging population.

This implies increasing challenges to healthcare systems around the globe,

especially in developing countries. Western societies are aware of this issue

and widely support current and even further public expenditure in cancer

research [24], which is already one of the best funded topics. Finally, phar-

maceutical companies make great investments in cancer research because

of the still relatively low survival rates, the increasing number of patients

worldwide (particularly in developed countries where new costly drugs can

be afforded) and the anticipation that new technologies and therapies de-

veloped will be useful in drugs or products beyond cancer.

1.1.2 What is Cancer?

Cancer is defined by the WHO [25] as a large set of heterogeneous diseases

that can arise by uncontrolled abnormal cell growth and multiplication of

almost any cell type in our body. Cells with such a behavior are known as

cancer cells and they tend to grow into a solid mass of tissue called tumor

(except in the case of lymphomas and leukemias, cancers of the blood and

bone marrow). So, contrary to the popular misconception, cancer is not a
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single disease originating in different locations but rather more than a 100

different diseases that share some traits [26]. This is why adjusted survival

rates 10 years after diagnosis can vary quite dramatically ranging from 1.1%

for pancreatic cancer to 98.2% in testicular cancer [27]. Naming the cancer

after the organ where it originated is common practice and can already

confer a good overview of what kind of prognosis can be expected, although

with some limitations. Perhaps one of the best examples of this limitation

is small cell lung cancer and non-small-cell lung carcinoma, two types of

cancers originating from the lung that have a 3.5 fold change in survival

rate [28] (7-25%, in favor of the latter). Naturally, many other factors play

an important role and some will also be covered in this introduction such

as stage at diagnosis.

Potentially, tumor cells can also migrate to close and distant organs in

a process known as metastasis, leading to major health problems beyond

their area of origin. If cancer is certainly one of the most feared diagnoses

by most patients, it is probably closely followed by metastasis. Metastasis

is in fact the most challenging clinical complication of most types of tumors

and the leading cause of death in cancer patients [29], at least when it comes

to solid tumors (66.7%). Metastasis occurs at later stages of cancer and

differences in survival rates described above can partially be explained by

how frequently each type of cancer becomes metastatic. This, in return,

is determined by several factors such as how fast this process happens in

that particular case, how early it is/can be diagnosed and the range of

treatments available for that type of tumor.

In their classic publication, The Hallmarks of Cancer [30], Hanahan and
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Weinberg proposed six essential traits that are shared by all cancer cells and

that are acquired through cancer development to induce malignant growth:

self-sufficiency in growth signals, insensitivity to inhibitory (antigrowth)

signals, evasion of programmed cell death (apoptosis), limitless replicative

potential, sustained angiogenesis, and tissue invasion and metastasis. Later

on [31], they updated their list with two more traits: reprogramming of

energy metabolism and evading immune destruction. Although different

cancer cells may rely on these acquired capabilities with varying degrees, it

is hypothesized that incipient cancer cells will progress towards a malignant

state by developing each of these features in a multistep process. This

would explain why cancer is more common in the elderly (about 60% of

cancers occur in people age 65 or older [32]) as cells have had more time

to accumulate these malignant features [30]. Additionally, this framework

can also explain why some cancer patients seem to initially respond to a

given treatment but end up showing drug resistance: the initial response is

a result of the “loss” of one or several targeted hallmarks by the cancerous

cell; however, since the remaining hallmarks are intact, it is only a matter

of time for the tumor to end up finding an alternative pathway to recover

all of its missing malignant features.

There is a great amount of scientific literature describing how tumor

cells from different types of cancer can acquire these alterations and even-

tually become malignant. In the following section some brief background

on this process is provided.
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1.1.2.1 Tumor initiation: mutations and other causes of cancer

Every organ in the human body is meant for a specific function. Therefore,

each organ is formed by millions of specialized cells that are programmed

and differentiated for a specific function in that particular organ or system.

Healthy cells are also programmed to undergo a planned death after a

number of cell cycles in a process called apoptosis. This is a normal healthy

process that ends the life of cells more than 50 billion times a day in an

adult body [33] (which only accounts for ∼0.5% of the total cell count) and

that can also be triggered by a series of factors including cell membrane

damage, mitochondrial damage [34] and viral infection [35] or by other

cells that recognize damaged cells as cancerous [36]. Evasion of planned

cell death is one of the cancer hallmarks mentioned above and malignant

cells can acquire this trait early on in their malignization process. Loss

of this mechanism eventually leads to uncontrolled proliferation and allows

the cell for accumulation of further hallmarks without dying. Evasion of

apoptosis is typically acquired through mutation of tumor suppressor genes,

a set of genes that regulate in different ways the appearance of defective

cells and their replication. Although the inactivation of a tumor suppressor

gene is not enough to onset a cancer cell, it is normally required that it

loses its function either by mutation or other mechanisms. It should be

noted that just this mutation won’t be enough to turn a cell malignant so

further mutations are required.

As mentioned above , cells typically acquire cancer hallmarks through

mutation. Mutation is a modification of the genomic sequence that can be

relatively small like replacing a nucleotide by a different one or affect larger

9



1.1. CANCER

portions of the genome such as whole genes or chromosome fragments. Mu-

tations happen randomly all the time as a result of DNA repair or imperfect

pairing of bases during DNA replication since DNA polymerase enzymes

add the wrong nucleotide an average of once every 100,000 times [37]. This

may not seem like much but it would translate into more than 100,000 mu-

tations per cell replication [38], and each of us has billions of cells. Luckily,

these errors are fixed in 99% of the cases by a series of different mecha-

nisms. Nevertheless after they escape this control and cell replication is

finished, they effectively become mutations since the “new” cell has no way

of telling which nucleotides are actually new (mutations) or belong to the

original sequence. Therefore, normal mutation rates are healthy and no

reason for concern as most mutations are neutral (i.e. not beneficial or

detrimental for the individual). However, they can still result in the acqui-

sition of cancer hallmarks and, eventually, in the arising of cancer. This is

also why mutations tend to accumulate with age and consequently so does

the rate of people suffering cancer [38]. If we consider this random process

a raffle with a very low success probability following a binomial distribu-

tion, chances of winning the prize (meaning getting a mutation that evolves

into developing cancer) increase with the number of times the individual

plays (i.e. number of years lived). Very fortunate gamblers may never get

diseased whereas unfortunate ones may get it as early as in their childhood

without a specific given reason.

Although mutations happen all the time and are part of the random

process already described, external agents can also increase the ratio of

mutation. Here, some relevant examples are listed:
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� Tobacco smoking: chemicals contained in tobacco such as ben-

zene lead to an increased number of mutations in lung cells either

by direct DNA damage or by preventing proper repair [39], even in

involuntary smokers [40]. Furthermore, risk of other types of cancer

like nasopharynx, stomach, liver or kidney is also increased as a result

of smoking [40].

� Exposure to chemicals: many other chemicals have carcinogenic

effects such as arsenic, asbestos or aromatics contained in gasoline

[41]. This risk mostly affects occupationally exposed people or people

exposed to low-quality construction materials.

� Exposure to radiation: high energy radiation such as ultraviolet

light can directly damage DNA if the exposure is long and frequent

enough. Melanoma and other skin cancers are commonly a result of

exposure to sunlight [42] but virtually any cell’s DNA can be damaged

if sufficiently exposed to X-rays or gamma radiation.

� Diet: Red and processed meat consumption increase risk of colorectal

cancer at least in part because they may contain N-nitroso compounds

and sometimes aromatic substances generated at high temperatures

[43], both of which are carcinogenic.

� Alcohol: many studies have highlighted the link between alcohol and

digestive tract (cavity, pharynx, esophagus, stomach, colon, rectum)

cancers [44]. Acetaldehyde, the first metabolite of ethanol (drinking

alcohol), induces DNA damage and therefore mutations by its repa-

ration [45].

11



1.1. CANCER

Other factors can cause cancer without creating mutations. These fac-

tors can alter gene expression in a way that will provide some cancerous

traits to the cell:

� Viral infections: different viruses can cause cancer including

Epstein-Barr virus, Kasposi’s sarcoma herpesvirus and HPV (human

papillomavirus). The latter is an example of genetic gain of cancer-

ous traits without mutation: this virus has two oncogenes and cervical

cells infected with it will start to progress towards cancer [46].

� Inflammation: several studies have provided evidence of the es-

sential role of inflammation in the tumor microenvironment for the

progression of solid tumors [47]. Cytokines released by immune cells

can trigger events of angiogenesis and proliferation among others [48].

Therefore, normal inflammation and inflammatory diseases also play

a role in cancer initiation and progression.

� Obesity: different mechanisms like inappropriate insulin levels or

hormones and inflammation are behind the well-established increased

risk of more than 10 types of cancer among obese people [49]. People

with excessive body weight also have worse prognosis in those same

types of cancer, in part because of the difficulty of dosing chemother-

apy [49].

� Lack of exercise: it has been epidemiologically established that low

physical activity increases the risk of cancer independently of its link

to obesity [50]. Risk to several cancer types is diminished [51, 52] by

following appropriate exercise guidelines [53].
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� Hormones: several hormones can promote cell proliferation and

therefore induce cancerous behavior [54]. Particularly, gynecological

cancers have been associated with abnormal levels of estrogens [55,56].

These external factors and mutagens rarely work in isolation, so the

initiation and progression of tumors is usually a contribution of several of

them. All of these events, however, work by altering gene expression in a

complex and continuously evolving interaction with environmental factors.

Consequently, cancer is a very complex disease and the same phenotype

can be achieved through different mutations or genetic alterations that are

generally obtained by one of the causes described above. Therefore, cancer

can be generally conceived as a genetic disease where mutations are not

inherited but rather acquired through life.

Nevertheless, different studies have shown an unneglectable inherited

genetic component that accounts for 10-15% of all cancers [57]. Identical

twins analyzed in this study [57] showed an increased risk of the same type

of cancer compared to dizygotic twins (11-18% to 3-9%), which implies the

existence of a major genetic component. Genome wide association stud-

ies (GWAS) have identified hundreds of single nucleotide polymorphisms

(SNPs) linked to an increased risk of cancer; however, the amount of her-

itable risk is still very limited and, therefore, cancer genetic inheritability

is largely unexplained [58]. An exception to this are hereditary cancer syn-

dromes, a set of cancers that “run in the family” and are caused by one or

very few mutations that, when inherited by an individual, can onset cancer.

The variants that cause many of these syndromes have already been identi-

fied and they account for about 5% of all cancers [58]. Still, most variation
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in cancer risk can be explained by factors that are not inherited [59].

1.1.2.2 Tumor progression

Through mutations, cells will start to proliferate beyond their normal rate

growing into tumors. Before these neoplastic cells have acquired malignant

properties (i.e. they cannot spread to close or distant organs) we still call

them benign tumors or neoplasms. Pre-malignant lesions, such as dysplasia

and hyperplasia, normally precede malignant invasive tumors [60]. Tradi-

tionally, it was generally accepted that cancer progression followed a linear

pattern where cells would first acquire unlimited replication capabilities

(tumor initiation). Then some of them would become malignant, meaning

they grow faster and gain the ability to spread to other tissues. Finally

some cells would migrate to other organs and start growing new tumors

labeled secondary tumors (metastases). Therefore we use the term “pro-

gression” to define this stepwise fashion of malignization of tumors [61],

even though some tumors may stay benign or never fully progress to a

metastatic phenotype.

Plenty of evidence suggests that most tumors arise from a single cell

which proliferates to form a neoplastic clone [62]. As neoplastic cells in the

clone accumulate more mutations in key regulatory genes, a variety of clone

sublines arise together with different phenotypes. This process is followed

by a continuous selection of the most malignant cells which proliferate more

and, therefore, outgrow other competing cells in a model termed “clonal

evolution” [63]. According to this model, most new clones that continuously

arise will be eliminated because of metabolic disadvantage or immunologic
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recognition but occasionally one will have some kind of selective advantage

and be established as the new dominant clone. As time passes, increasingly

more aggressive subclones are selected, which normally leads to a more

aggressive tumor.

Although tumors contain multiple subclones and consequently keep

some of their heterogeneity, which can account for future drug resistance,

with time a few clones that proliferate more rapidly take over most of the

tumor. As a result, tumors become more malignant as they progress. This

translates in cells displaying loss of differentiation, irregular shape and size

plus a large nucleus and in the tumor increasing its growth rate and break-

ing the basement membrane [64]. The tumor will also increase angiogenesis

to keep up with the growing population of cells and some will invade adja-

cent tissue.

Eventually, some cells will acquire a metastatic phenotype and migrate

out of the primary tumor. Not all malignant cells that migrate will succeed

in their effort to generate a secondary tumor but the ones that manage to

establish a metastatic niche will grow forming a new clone. As a conse-

quence, secondary tumors can have new properties compared to primary

tumors since the metastatic environment can push clonal evolution in a

different direction.

An schematic view of the described clonal evolution model is showed in

Figure 2.
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1.1.2.3 Cancer invasion and metastasis

A malignant tumor is defined by its capacity to invade close and/or distant

organs. Metastasis is the final and most challenging outcome of cancer and

responsible for most deaths in patients with solid tumors. Despite this,

metastasis remains poorly understood [66]. A distinction can be made be-

tween cancer invasion, where tumor cells penetrate adjacent tissues, and

metastasis where cells migrate to distant organs and establish secondary

tumors. The former usually precedes the latter since the progression tends

to proceed in an orderly fashion termed metastatic cascade [64]. This pro-

cess is divided into five steps [64]: invasion of the basement membrane

and cell migration; intravasation into the surrounding vasculature or lym-

phatic system; survival in the circulation; extravasation from vasculature

to secondary tissue; and finally, colonization at secondary tumor sites.

Before they can migrate from their tissue of origin, cancerous cells must

accumulate mutations that stop the expression of adhesion proteins such

as E-cadherin and integrins that maintain healthy cells tethered in place

[66, 67]. Once cells are detached from their adhesion to neighboring cells,

they can migrate to other tissues. This happens in three distinct ways:

� Invasion of adjacent areas: Cancerous cells resort to built-in ge-

netic programmes to invade and migrate surrounding areas. For in-

stance, leukocytes also migrate as part of the inflammation response,

a similar mechanism is used by cancer cells [67]. Groups of cells can

also migrate together in a mechanism known as collective migration

where a set of firmly interconnected tumor cells form local contacts
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among them and degrade the extracellular matrix to create space for

invasion. This type of migration recapitulates essential processes of

embryonic development and wound healing [67].

� Lymphatic system: The most commonly occurring cancers spread

first by lymphatic metastasis [66], where cancerous cells invade lym-

phatic nodes and ducts to migrate. This process occurs in stages:

premetastatic invasion, approach, penetration, translocation, intran-

odal settling, growth and destruction of the lymph node and metas-

tasis to further nodes [66]. As the tumor removal surgery happens it

is common medical practice to biopsy or remove lymph nodes near

the tumor in order to examine it for cancer spread. A node that

shows signs of storing cancerous cells is then called a “positive node”

and should be removed to prevent further progression. This form of

localized spread is still not conceived as metastasis but the patient’s

prognosis worsens. The lymphatic ducts eventually return the lym-

phatic fluid to the bloodstream, releasing metastatic cells into the

blood from where they can migrate further.

� Hematogenous dissemination: Metastatic cells can actively or

passively reach [66] the bloodstream by directly intravasating into

blood vessels around the tumor or via the lymphatic fluid in the fash-

ion described above. Once a cell has reached the circulatory system,

they need to survive long enough to eventually reach a distant site,

which they do by interacting with cytokines in their microenviron-

ment [66]. Cells can migrate alone or in clusters that also contain

stromal or immune cells from the original tumor and tumor-educated
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platelets. The latter arrangement has an increased advantage to sur-

vive circulation and establish a secondary tumor [68].

After reaching a new tissue through any of the routes described

above, the cancerous cell still needs to adapt to new cellular surroundings

(metabolism and angiogenesis) in the new tumor site and escape detection

by the immune system [66]. They can do so by using hypoxia-inducible fac-

tors (HIFs), which adapt the genetic expression of genes related to invasion,

metastasis and other cancer hallmarks [69].

Both ways of dissemination are not mutually exclusive. In fact, it is fre-

quently the case that a correlation between lymphatic and hematogenous

metastasis can be observed [70]. For instance, a study examining prostate

cancer patients described that 84% of patients with positive nodes also

showed some degree of hematogenous dissemination [71]. Similar observa-

tions have also been made in pancreatic cancer, ovarian cancer and head

and neck cancer [70].

It is also worth mentioning that there is a propensity for each cancer

type to seed in particular organs, as initially discussed by Paget after his

thorough postmortem examination of breast cancer patients [72]. His initial

suggestion has since been supported by a body of evidence, including exper-

iments that demonstrate that metastatic cells show preferential adherence

to their target tissue [72]. For instance, primary tumors from the kidney,

breast, colon, bladder, head and neck, plus melanoma have a preference to

metastasize to the lung [73]. The lung is the second most common target

organ of metastasis which does not come as a surprise considering the huge

vascularization of this tissue: 300 million capillaries with a cross-sectional
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area of 400 cm2 which represents 50% of the whole human body [73].

For the sake of simplicity, tumor progression has been described here

as a linear process where fully malignant cells raise out of a grown primary

tumor. However, current evidence suggests that tumor and metastases

progression can also occur in parallel, that is, independent progression of

metastatic tumors arising from early disseminated tumor cells prior or at

the same time as the growth of a primary tumor [74]. Many studies [75–78]

concluded that given their growth rate and their size at time of detection,

some metastases must be initiated before the primary tumor is diagnosed,

as they were too large to have spread from a late stage of the primary

tumor [76]. Additionally, 5-10% of all cancers detected in Europe and the

United States are metastases of unknown primary tumors [79, 80] and 5%

of breast cancer patients with small tumors (less than 2cm) also presented

metastasis at the time of diagnosis [81]. These facts can only be explained

if malignant cells migrated and established a metastases way before the

primary tumor had a detectable size.

Finally, although not explicitly mentioned here before, the metastatic

cascade can continue after a metastases has been founded, that is, multiple

metastatic events from the primary tumor and additional metastasis can

arise from previous metastases and grow independently [74]. According

to the clonal evolution model, cells acquire metastatic properties before

establishing a secondary tumor, so selection will maintain them at least as

able to keep doing so [74].
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1.1.3 Cancer staging

As it can be derived from this text so far, cancer is a very complex and

heterogeneous disease, even within each type of cancer. This means that at

time of diagnosis, cancer type is frequently not enough to accurately decide

a patient’s treatment or to assess their prognosis [82] and some information

about the extent of the spread can be critical in this effort. Furthermore, a

classification is also useful to stratify patients, which enables the comparison

of their response in clinical trials. Different staging systems exist but it

is standard practice to stage solid tumors using the TNM system [83],

which uses an alphanumeric notation to describe the extent of the spread

at diagnosis:

� T (which stands for tumor): this parameter describes the primary

tumor, increasing numbers correspond with larger and more spread

tumors. Therefore, T0 means no evidence of tumor, T1-4 refers to

the size and extension of the tumor (specific for each cancer type)

and Tx is used when the primary tumor cannot be assessed.

� N (which stands for node): this parameter describes the regional

lymphatic node(s) close to the tumor, increasing numbers correspond

with more positive nodes and further spread. Therefore, N0 means no

metastasis in nodes, N1-3 refers to how distant the positive nodes are

(where 1 is close regional nodes and 3 very distant nodes). Finally,

Nx is used when the nodes cannot be assessed.

� M (which stands for metastasis): this parameter describes the

presence of distant metastasis. M1 is used for metastasis to distant

21



1.1. CANCER

organs and M0 for absence of metastasis.

For instance, a breast cancer codified as T1N1M0 means the tumor has

a size between 0 and 2 cm, there are positive nodes close to the affected

breast and no sign of metastasis.

Most solid cancers can also be classified into not-so-detailed stages that

go from I to IV. This more general system can still give a good overview of

cancer progression and it varies from one type of cancer to other:

� Stage 0: Also known as carcinoma in situ (CIS) at this stage neo-

plastic cells are present in the tumor but they are not malignant and

they haven’t invaded adjacent tissue. This is not considered cancer

yet.

� Stage I-III: These stages already denote the existence of a malignant

tumor (i.e. cancer). Higher numbers are used for larger tumor sizes

and more spread, although the specific classification varies with cancer

type. For some cancer types, each stage can be furtherly divided by

adding letters after the stage number such as in IIIa, IIIb, and IIIc.

� Stage IV: At this stage there is distant metastasis so other organs

are affected.

Further information can be included as part of the classification process.

For instance, mutations on specific relevant genes can be included as part

of the diagnosis (e.g. RAS positive stage III melanoma). The mutational

profile has an impact on the response to treatment and a key determinant

of first line targeted therapies [83].
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1.1.4 The importance of early detection of cancer

As we have described so far, tumors tend to become more aggressive and

complex as they progress. Among other things, this potentially implies a

more challenging treatment because of the increased spread and hetero-

geneity, which may eventually lead to drug resistance. As a consequence,

late diagnosis is associated with lower chance of survival and higher costs of

care in most types of cancer where this factor has been studied [84–86]. In

fact, stage-at-diagnosis is one of the best predictors of outcome for many tu-

mors: one-year survival showed a major decrease when diagnoses happened

at stage IV in breast, prostate and colorectal cancers and decreased at ev-

ery stage for lung and ovarian cancer [86] (Figure 3). In the last 25 years,

the US has experienced a ∼40% mortality decrease in breast and colorectal

cancer in part as a consequence of achieving earlier diagnoses [84,87].

Healthcare systems have therefore great interest in implementing dif-

ferent strategies to detect, diagnose and treat cancer at its earlier stages in

order to increase survival rates and decrease the cost of treatment. Con-

servative estimates put the cost-savings at 17% of healthcare expenditure

in the US for all cancers combined after implementing already-available

effective screening solutions [88]. However, such approaches do not come

without limitations. Given the probabilistic nature of tests and screening

procedures, false positives and negatives are to be expected yet the posi-

tive predictive value needs to be relatively high for a successful test to be

established. Furthermore, testing for cancer can prove quite challenging

given the distribution of its probability of occurrence: chances of devel-

oping cancer over the course of a lifetime are relatively high but very low
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Figure 3: Five-year survival rate by stage at diagnosis for different types of
cancers. Data from SEER 2011–2017, All Races, Both Sexes by SEER Summary Stage
2000.

at each particular moment of life [89]. For massive testing to make sense,

these factors need to be taken into account. This is why most screening

strategies are designed for high risk populations such as older individuals

or those affected by comorbidities, where the prevalence is higher [89].

Despite the fact that these strategies have proved their efficacy in in-

creasing survival rates and reducing treatment costs, most of the cancer re-

search funding is allocated to late-stage treatments [88]. Nevertheless, new

and developing technologies are increasing the precision of genetics-based

screening tests which can revolutionize cancer diagnosis. Several compa-

nies such as Guardant Health [90] are integrating cheaper and more precise
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detection technologies with a big data approach to improve detection of

cancer in asymptomatic patients.

1.2 Liquid biopsy

Traditionally, extraction of tumor tissue is performed by surgeons in or-

der to apply a series of tests to assess the extent of cancer progression,

a process known as biopsy, a technique already described by medical en-

cyclopedias from the medieval period in al-Andalus [91]. This technique

allows histological definition and genetic characterization of the sample,

information that can be very relevant to predict disease progression and

response to therapy [92]. However, it does not come without limitations.

For instance, the process is invasive and uncomfortable to the patient plus

relatively expensive to the system (a highly trained specialist is required

and the patient should first be prepared by medical staff) and it normally

only allows for a single snap-shot sample of the tumor [92]. This inher-

ent sampling bias can lead to underestimation of the tumor heterogeneity,

among other shortcomings. Taking additional samples may not necessarily

help as this is an inherently risky process for the patient who always faces a

chance of having malignant cells metastasizing as a result of the procedure.

Routine processing of biopsy specimens is also relatively slow so there is an

inevitable delay between sampling time and start of the treatment.

These limitations motivated cancer researchers to look for new cheap

easy non-invasive sampling techniques that could be applied multiple times

without an increased risk for the patient.

25



1.2. LIQUID BIOPSY

1.2.1 The concept of liquid biopsy

Liquid biopsy is a medical testing approach that consists in sampling and

exploration of bodily fluids as a surrogate for traditional biopsies. In short,

the sampled fluid, most commonly blood, is tested for the presence of one

or several of the following: circulating tumor cells (CTCs), circulating tu-

mor DNA (ctDNA), exosomes, RNA or proteins [92] (Figure 4). Detection

of circulating tumor DNA correlates with tumor burden and specific mu-

tations can indicate the presence of drug resistant subpopulations that can

proliferate despite therapy [93,94]. Combined with –omics approaches, this

new testing paradigm has the potential to truly revolutionize cancer de-

tection and diagnosis, in part due to its many advantages over traditional

biopsies:

Figure 4: Circulating cells and substances that can be detected using liquid
biopsy strategies.
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� Non-invasive: a regular biopsy requires puncture or penetration of

the tissue to sample it, which involves more risks, pain and recovery

to the patient whereas sampling blood, urine or cerebrospinal fluid is

almost painless and no recovery time is needed. This can also be a

vital approach when the anatomical location is inaccessible or cannot

be sampled for some other reason.

� Early detection and diagnosis: CTCs or genetic material can be

detected before metastatic cells have established a secondary tumor.

Furthermore, genetic changes happen before they translate into mor-

phological changes, which means they can be detected before they

could be diagnosed by an anatomical pathology specialist.

� Inexpensive: sampling blood or urine can be done by any trained

nurse with very little equipment compared to regular biopsies that

are normally performed by surgeons.

� Easy: little training, staff and equipment is needed for the sampling

process, so it can be streamlined and incorporated in everyday prac-

tice more easily.

� Fast: sampling blood requires next to no preparation for the patient

and it can be performed in just a few minutes. This means that

the result is available faster and the test can happen shortly before

the start of their treatment which may bring on crucial information

considering how fast tumors can evolve.

� Liquid biopsy enables multiple testing: because blood sampling

is inexpensive, easy and fast it can be repeatedly performed, which
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could be highly impractical or sometimes impossible for a regular

biopsy. This opens the door to different simultaneous applications

like screening, monitoring or assessing the response to treatment. Re-

sampling is also much more feasible if the initial sample is degraded

or of insufficient quantity or quality.

� Objective and precise: morphological assessment of cancerous tis-

sue is a key component of diagnosis in the traditional biopsy. Al-

though necessary, these tests are harder to put in quantitative terms

and have to be assessed by specialized staff, which can lead to un-

wanted human-caused bias and delays. Detection and quantification

of genetic traits can be automatized and results have less room for

interpretation.

� Sensitive: whether deliberate or not, complete sampling of the

whole tumor is not always possible (it may even not be advisable).

Consequently, important subclones may be missed in this procedure

which leads to underestimation of the tumor heterogeneity. This can

potentially be overcome by liquid biopsy approaches.

Despite the many advantages of liquid biopsies, tissue sampling is still

more specific. Therefore, these two approaches would be most useful if used

in combination rather than one replacing the other. Genetic information

obtained on a first regular biopsy sample can be updated by several blood

tests performed to assess response to treatment.

Although the concept of liquid biopsies was originally conceived to sup-

port cancer diagnosis and all examples brought up here will be related to
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cancer, many other pathologies are being studied from this perspective in-

cluding inflammatory and autoimmune diseases. The list of fluids sampled

so far goes well beyond blood: urine, cerebrospinal fluid, amniotic fluid,

fetal blood, breast milk, saliva, vaginal secretion, seminal fluid, bile, per-

spiration and menstrual secretion [95].

1.2.2 Biological materials analyzed by liquid biopsies

Figure 5: Circulating omics in human blood. Different analysis can be performed
on cell free nucleic acids (ctDNA, ctRNA), Circulating Tumor Cells (CTC) or
extracelullar vesicles (EV). Adapted from [96].

1.2.2.1 Circulating tumor cells

As described in a previous section, tumor cells can actively or passively

shed from the primary or metastatic tumor and end up in the bloodstream

as part of the tumor progression process, receiving the name of circulating
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tumor cells (CTCs). CTCs can then “seed” at distant organs and initiate

metastases [97]. Compared to the rest of blood cells, CTCs are very rare

but their cancerous morphologic properties can be used to detect and iso-

late them from the bloodstream. Once cells are isolated using functional,

immunological or physical techniques [98], analysis can get as complicated

as required: from simply counting the cells, since the number of CTCs has

been described to increase with tumor burden [99], to single-cell sequencing

as a way to get a very detailed snap-shot of the mutational landscape or

genetic expression. Furthermore, some studies [100, 101] have shown that

CTCs reflect tumor heterogeneity, so characterizing them could be of great

help to stay ahead of drug resistance. Along the same lines, a decrease in

CTCs is associated with better response to chemotherapy in breast [102],

lung [103] and prostate [104] cancer. Number of CTCs also correlates with

progression-free survival and overall survival, so it seems a good predictor

of outcome and indicator of relapse [105,106].

Although not as developed as the analysis of CTCs, where the FDA

approved [107] a CTC-based test to detect circulating cells in order to

assess prognosis of breast, prostate and colorectal cancer patients; there are

also great promises in developing tumor organoids from CTCs [97]. Tumor

organoids are tiny models of tumors grown in a 3D semisolid matrix that

resemble some of the tumor properties and can be used to predict tumor

evolution and to perform drug screening [108]. CTC-derived organoids have

already been used to characterize molecular properties of metastases in

prostate cancer [109]. The resulting model maintained genomic alterations

very similar to the parent tumor even after months of culture. Models

derived from CTCs are more practical than regular tumor-derived organoids
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since they do not require a biopsy of the metastatic tissue.

1.2.2.2 Extracellular vesicles

Extracellular vesicles (EVs) are naturally occurring bilayer-delimited par-

ticles of nanometer scale [110] that are released by cells and that can be

found in several body fluids, which makes them perfect candidate targets

for liquid biopsy tests. According to their size and cellular origin, EVs can

be classified as exosomes, microvesicles or apoptotic bodies [110]. Because

of the cellular origin of exosomes (lysosome), some initially attributed to

EVs a waste disposal function. Nevertheless, their role in cell signaling

and antigen presentation has extensively been studied [110]. EVs can have

different cargo or contents, and their composition depends on the cell of

origin although it is not necessarily similar to the contents of the cell that

they come from [110]. Possible cargo includes proteins, nucleic acids such

as DNA or RNA, lipids and metabolites.

Exosomes have been reported to play a role in virus transmission, which

is relevant for certain types of cancer [111]. Furthermore, exosomes can

also promote tumorigenesis, metastasis [111], immunosuppression and an-

giogenesis and they do so by transferring bioactive materials that have the

intended effect in the recipient cell. Therefore, cancer cells can use this

mechanism to escape immune surveillance and induce immune tolerance by

manipulating the tumor microenvironment [112]. On the other hand, im-

mune cells can also use exosomes to inhibit tumor growth and metastasis.

The fact that they are used by both cancer cells and the immune system

makes it a very interesting target of analysis since their content can reveal
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mechanisms put in place by both sides of the fight.

Many studies have employed or are currently developing exosome detec-

tion strategies in liquid biopsy tests in saliva [113], urine [114], cerebrospinal

fluid and blood [115,116]. Clinical application of this liquid biopsy strategy

is only starting but some companies are already commercializing tests based

on circulating exosomes such as ExoDx Lung, which uses a specific protocol

based on qPCR to interrogate EGFR mutations in exosomal RNA [117].

Additionally, many clinical trials are currently evaluating different liquid

biopsy tests based on exosomes [112].

Exosomal miRNAs deserve especial mentioning in this section as they

are a particularly studied set of non-coding genes that are frequently pro-

posed as biomarkers [118–120], more so because the methods and data

developed, used and presented in this thesis are mostly centered around

miRNA expression (although not necessarily associated to exosomes).

1.2.2.3 Circulating tumor DNA

Tumor cells release DNA into the bloodstream as they die from necrosis or

apoptosis. Some have also proposed that this is a metastases development

mechanism that works by transfecting neighboring cells [121]. Circulat-

ing cell-free DNA (cfDNA) also comes from healthy cells, the amount of

tumor specific DNA (ctDNA) having been described to range from 0.01%

to more than 90% [122–125], and it can be identified by detecting tumor

specific mutations typically by whole genome sequencing (WGS). Neverthe-

less, cfDNA is frequently used as a surrogate for ctDNA and higher plasma

levels have been found in patients from different cancer types [126–128].
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Interestingly, ctDNA is detectable at early cancer stages but the size of

the tumor does not correlate with the detected DNA concentration [129].

As a consequence, ctDNA can be used for early detection of cancer but

progression should be assessed by other analysis including mutational pro-

filing. Still, there is a chance that DNA amounts can be used to confirm

disease-free status if ctDNA levels drop significantly after surgery [130].

A series of clinical studies have described successful applications in can-

cer detection, prognosis, recurrence prediction or progression assessment

by means of targeted or untargeted tests [131–135]. Targeted approaches

aim to interrogate specific genes that are known to mutate with cancer or

chromosomal regions that are frequently translocated in tumor cells [136].

Successful applications of this approach include a method to detect mutated

KRAS, a proto-oncogene, by digital PCR (dPCR) in colorectal cancer pa-

tients [135]. More sophisticated broader techniques allow for the sequencing

of targeted regions [133], which is advantageous compared to single gene

assessments since most tumors will actually not carry the most common

mutation or may only acquire it at a later stage [133].

Most widespread untargeted approaches include some form of the above-

mentioned WGS which can assess all possible mutations presented in the

sample without any prior knowledge at a competitive decreasing price. This

powerful technique comes at a cost though, as it requires proper bioinfor-

matics analysis to successfully process the sequencing files and call true

mutations. Once a mutational profile has been achieved, point mutations

must be tracked down in available databases or resources to decipher their

importance. It should be noted that the overwhelming majority of truly
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called mutations or SNPs will be meaningless or not related to cancer itself.

1.2.2.4 Circulating tumor RNA

Contrary to what happens with DNA, RNA is quite unstable and sus-

ceptible to RNase-catalyzed degradation [137], which would on paper dis-

card them as valid biomarker candidates. Nevertheless, circulating cell-free

RNAs (cfRNAs) seem to be protected inside microvesicles or ribonucle-

oprotein complexes in order to avoid degradation [138]. In fact, several

protein-coding and non-coding RNA (ncRNA) molecules have been con-

firmed to be detectable in blood and potentially appropriate liquid biopsy

biomarkers for different types of cancer [137,139–142].

Although virtually all RNA subtypes have been found in circulating

blood, including mitochondrial RNA, bacterial RNA and other foreign

RNA [143], most RNA-based liquid biopsy studies have overwhelmingly fo-

cused on analyzing circulating small ncRNAs, particularly miRNAs. This

is probably due to their well-characterized relatively high abundance and

stability in most bodily fluids [144]. Still, several studies have confirmed the

utility of detecting mRNA biomarkers for liquid biopsy tests [137,145] and

specific sequencing protocols allow for detection of mRNA fragments [146].

Different types of non-coding RNAs such as long non-coding RNAs

(lncRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), microRNA

(miRNA), circular RNAs (circRNA) and yRNA have also been detected

in several bodily fluids. Since most studies focus on miRNAs, the rest of

RNA species are normally co-detected as products of the small-RNA se-

quencing protocol, an adaptation of RNA-seq that targets RNAs in the
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range of mature miRNA nucleotide length [147] (this protocol is covered in

the next section of the introduction). MiRNA is often the preferred source

of circulating biomarkers because of their relative abundance and stability

in biofluids since they are resistant to endogenous RNases, low or high pH,

extended storage periods, boiling and several freeze-thaw cycles [148] and it

has long been established that changes in miRNA expression correlate with

progression in multiple types of cancers [149–151]. This outstanding resis-

tance can partially be explained by their binding to the Argonaute family

of proteins and to high density lipoprotein complexes [152,153].

Since circulating miRNA are gaining a lot of attention as potential

biomarkers, it is not surprising that many studies have already proposed or

even established blood-/serum-/plasma-based liquid biopsy tumor mark-

ers for the assessment of diagnosis, prognosis or response to treatment in

both solid and hematological tumors [154]. Several panels discovered us-

ing different high-throughput technologies have been developed for breast

cancer [155,156], colorectal cancer [157,158], glioblastoma [159], hepatocel-

lular carcinoma [160], lung cancer [161, 162], pancreatic cancer [163, 164],

ovarian cancer [165, 166] and melanoma [167–171] along with others [154].

Most shockingly perhaps, is the case of melanoma where no proper classical

tumor marker is available and disease can only be staged after a traditional

biopsy [172]. Researchers in a handful of studies [167–171] were able to

propose panels based on a small number of miRNAs to separate healthy

subjects from melanoma patients and stratify them according to cancer

progression.
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1.2.2.5 Other biological materials

Materials described until now have long benefited from untargeted high-

throughput detection technologies, which made them suitable choices for

the biomarker-discovery phase of studies. Nevertheless, evolving technolo-

gies have made it possible to include more –omics to the high-throughput

trend. Next, the use of proteomics and metabolomics in liquid biopsy tests

is briefly discussed.

Proteins are responsible for most cell functions and their expression

deregulates with cancer. As such, they can be very useful biomarkers. In

fact, most classic cancer biomarkers are proteins including estrogen recep-

tor (ER), prostate-specific antigen (PSA), alpha-fetoprotein (AFP), human

chorionic gonadotropin (HCG), CA 19-9 (cancer antigen 19-9), CA-125

(cancer antigen 125), CD30 and CD20. These and other proteins can be

measured in blood to help in diagnosis, monitor response to therapy or in

tissue samples to determine molecular subtypes. Traditionally, each protein

had to be individually assessed by measuring their activity or be targeted

by monoclonal antibodies. Until recently, this has delayed high-throughput

proteomics liquid biopsy studies as systematically measuring each target

was impractical. Nevertheless, studies based on panels of proteins have

been developed to assess different aspects of the disease from blood, urine

and saliva, sometimes in combination with other molecules [173–175]. Re-

cent technological developments in the field of proteomics, like mass spec-

trometry (MS)–based high-throughput proteomics [176] or direct protein

sequencing by nanopore [177], are making it possible to advance towards

higher throughput proteomics studies. Examples of successful applications
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of this approach include the use of circulating VEGF to predict response

to treatment and overall survival in advanced melanoma patients [178] and

a panel of biomarker proteins to detect bladder cancer from blood sam-

ples [179].

Regular blood and urine tests typically report single metabolites in

their panels including glucose, urea, uric acid and creatinine among others.

Metabolomics however, attempts to account for the whole set of metabo-

lites present in a sample, which can be done in a fast cost-effective way

by means of a nuclear magnetic resonance (NMR) spectrometer or mass

spectrometer (MS) [180]. The cancerous cell has to adapt its metabolism

to continue rapidly growing and replicating even in hypoxic or insufficient

nutrient conditions. Consequently, a great number of metabolites have

been reported to significantly change between tumors and corresponding

healthy tissue [180]. There are also numerous examples that successfully

implemented this approach in several biofluids such as blood [181] and

urine [182].

1.3 miRNAs (and other small non-coding RNAs)

miRNAs are endogenous small ncRNA molecules of ∼22 nucleotides that

mediate translational repression of target mRNAs through antisense base

pairing [183]. miRNAs have been detected in all bilaterian animal species

and many of them are evolutionarily conserved [184]. Their deep and

widespread presence in animal genomes hints an important regulatory influ-

ence in a wide variety of physiological processes. In fact, mice studies have

shown that disrupting miRNA genes often leads to defects in the develop-
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ment of individuals [183] and mutations or aberrant expression are associ-

ated with cancer, immune, cardiovascular and neurological disorders [185].

Additionally, as it has been described above, miRNAs are secreted into

extracellular fluids, potentially making them ideal biomarkers.

In the previous section the relevance of miRNA-based liquid biopsy ap-

proaches has already been highlighted. In the current section I will present

some facts about miRNA, their function and their biogenesis, together with

a next generation sequencing (NGS) approach, termed miRNA-seq, to de-

tect and quantify them. Because this sequencing protocol relies on size-

selection of inserts in the range of mature miRNAs, other small RNAs,

which I will also describe here, are normally co-detected. Finally, the

computational processing and quantification of miRNAs and their isoforms

(isomiRs) from sequencing data will be addressed.

1.3.1 miRNA discovery and function

MiRNAs were initially discovered by molecular geneticists in C. elegans

before the first draft of the human genome [186]. These researchers de-

scribed that a non-coding gene, lin-4, produced a short 22 nt RNA that

had partial imperfect complementarity to 3’UTRs (3’ Untranslated Re-

gions) creating a temporal decrease in the target protein. A similar gene

also discovered in C. elegans, let-7, was later described in human and fur-

ther animal species [187] where it conserved its function and expression

pattern. Since then, sequencing technologies have fueled the discovery of

many miRNA genes. The latest miRBase release [188], a database that

collects miRNA sequences and attempts to provide them with consistent
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naming, contains 48 860 mature miRNA annotations of which 2654 belong

to humans. There is good reason to believe that these numbers are an over-

estimation, especially in the case of human miRNAs [189]. Nevertheless,

conservative analysis still puts the number of human miRNA genes in well

over 500 [183] and preferentially conserved interactions with most mRNAs

have been described [190].

Most frequently, miRNA binding to specific complementary sequences

present in the 3’UTR of target mRNAs downregulates gene expression by

either promoting mRNA degradation or preventing the mRNA from be-

ing translated. However, interaction with other genomic regions including

promoter, 5’UTR or coding sequence (CDS) has also been described [191].

Additionally, there is increasing evidence that miRNAs can also posttran-

scriptionally stimulate gene expression by both direct and indirect mecha-

nisms [192].

A 6-8nt sequence that starts at the 2nd base from the 5’-end of the

mature miRNA transcript is the most important determinant of target

recognition [193]. This region is known as seed and base-pairing between the

miRNA and the mRNA needs to happen for downregulation of the target

[193]. miRNA genes that share a seed sequence are therefore expected

to have overlapping targets and consequently have similar effects in cell

physiology, which is why miRNA genes are grouped into families using

their seed region. Nevertheless, this information is not enough to reliably

predict all functional targets of a miRNA [194] and accurate miRNA target

prediction based on sequence composition still remains somewhat unsolved.
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1.3.2 miRNA biogenesis

MiRNAs first precursors, known as pri-miRNAs are transcribed by RNA

polymerase II, the same enzyme that transcribes mRNA transcripts [195].

The pri-miRNA then forms a hairpin with a loop domain, a structure that

is recognized by Drosha, an endonuclease in the nucleus of the cell [196].

Drosha cuts each stem of the hairpin with a 2bp offset to produce the pre-

miRNA, a ∼60nt hairpin. This hairpin is then exported to the cytoplasm by

Exportin 5 and subsequently processed by Dicer, another endonuclease that

cuts both strands of the pre-miRNA to generate the miRNA duplex [197].

The resulting miRNA duplex is a double stranded RNA formed by the

mature miRNA (or guide strand) and the passenger strand (miRNA∗) with

a characteristic ∼2 nt 3’ overhang on each strand end as a result of Drosha

and Dicer processing [197]. Finally, the duplex is loaded into a protein

from the Argonaute family and the passenger strand is ejected to allow the

recruitment of the rest of the RNA-induced silencing complex (RISC) [198].

Once formed, this complex is responsible for recognition of and binding to

targets [198]. Cleaving of the target RNA can happen if there is perfect

base-pairing but is rare [183].The miRNA biogenesis process is summarized

in Figure 6.

1.3.3 miRNAs role in cancer

Since miRNAs are involved in virtually all physiological processes, it is not

surprising that their dysregulation is associated with the development of

several pathologies including cancer. As a matter of fact, loss of or improper

expression of miRNAs has been described by many studies as a cause or
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Figure 6: Biogenesis and action of microRNAs.Adapted from [199].
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consequence of carcinogenesis [200]. An abnormal miRNA expression has

been shown to impact cancer hallmarks leading to increased growth rates,

proliferation, activation of invasion and metastasis and angiogenesis [200].

In that sense, some miRNAs behave like tumor suppressor genes or onco-

genes.

Already in 2002, researchers described that miR-15a and miR-16-1

were located in the 13q14 chromosome region, a DNA fragment frequently

deleted in B-cell chronic lymphocytic leukemia (B-CLL) cells [201]. Both

miRNAs were found to be downregulated in most B-CLL cases. Later on,

miR-16-1 was described to work as a tumor suppressor by repressing the

expression of Bcl-2, an anti-apoptotic protein overexpressed in some malig-

nant solid tumors [202]. In mice, experimental deletion of these two miR-

NAs provoked B-CLL-like phenotype, which demonstrated the role of these

in tumor suppression [203]. Deletion of tumor suppressor acting miRNAs

is one of the ways cells can acquire cancerous properties.

Similarly, miRNAs can also behave as (proto-)oncogenes, i.e. normal

genes involved in the promotion or regulation of proliferation or inhibi-

tion of apoptosis and that can increase their activity by means of different

genetic alterations [204]. The miR-17–92 cluster was observed to be am-

plified or translocated in B-cell lymphoma [205], lung cancer [206] and

T-cell acute lymphoblastic leukemia [207]. These genomic alterations led

to increased expression of the miRNA cluster and increased proliferation.

GWAS later revealed that many miRNAs are located in genomic hotspots

associated with cancer. This suggests that aberrant miRNA expression can

arise from deletion or amplification of specific chromosomal regions that

42



1.3. MIRNAS (AND OTHER SMALL NON-CODING RNAS)

contain miRNA genes, leading to carcinogenesis [200].

Many studies have since highlighted some role of specific miRNAs in

the development of different types of cancer and proposed biomarkers for

detection, diagnosis or prognosis as well as miRNAs as therapeutic targets

or tools [200].

1.3.4 miRNA sequencing (miRNA-seq)

Before the arrival of NGS technologies, identification and characterization

of miRNAs heavily relied on traditional molecular techniques to clone and

sequence individual small RNAs [208]. Compared to current approaches,

individual sequencing was slow, labor intensive, low-throughput and ex-

pensive. In 2007, Lu et al. [208] described their adaptation of an RNA-seq

(RNA sequencing) protocol to sequence small RNAs. This protocol was

initially developed with Arabidopsis samples but it worked just as well

with animal RNA. Together with improving bioinformatics analysis, this

method facilitated a boom in miRNA discovery and research. Today, more

than 36,000 miRNA-seq (also termed small RNA-seq since other small RNA

molecules are also generally sequenced) experiments are publicly available

on SRA (Sequence Read Archive) [209], the largest public repository of

sequencing data.

Although different variations and commercial kits of this protocol are

available, in the next paragraphs an overview of the basic wet-lab and bioin-

formatics methodology to analyze miRNA through sequencing is provided.

43



1.3. MIRNAS (AND OTHER SMALL NON-CODING RNAS)

1.3.4.1 Library preparation and sequencing

Although many small RNA-seq protocols based on different commercial

reagents are available, most rely on similar or equivalent processes that

result in cDNA libraries that are suitable to be sequenced by Illumina’s

machines. Here, I will describe a general protocol heavily based on Illu-

mina’s “TruSeq Small RNA Library Prep Kit”.

1. Total RNA isolation

Total RNA is the input material needed for this protocol but it is

not included as a step on it. Initial samples can be either tissue or

fluids which need different chemical treatments to isolate their RNA.

Tissue samples should be snap-frozen, grinded to powder and then

resuspended before application of TRIzol (a monophasic solution of

phenol and guanidinium isothiocyanate, the most widely used RNA

extraction chemical) [210]. For fluids, TRIzol can be directly applied

on the sampled volume. After mixing and solubilization of the chem-

ical and centrifugation, two phases will form. The upper phase will

contain the RNA and then after several steps of precipitation and

re-extraction the RNA is stored in purified ethanol at -20ºC [210].

Several commercial kits claimed to outperform TRIzol are available

for targeted extraction of miRNAs, particularly from fluids. These

methods rely on additional chemical properties of miRNAs (for in-

stance, miRNeasy uses a silica membrane column so that longer RNAs

get “trapped” and are removed from the solution). A similar ap-

proach is employed by mirVana Isolation Kit that uses a glass fiber

44



1.3. MIRNAS (AND OTHER SMALL NON-CODING RNAS)

Figure 7: Small RNA library preparation and sequencing from isolated total
RNA.
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filter to achieve similar effects. Modifications of these kits are also

commercially available to obtain miRNAs from exosomes and other

EVs. Several studies have compared the impact of using each protocol

on plasma samples [211–213]

2. Adapter ligation

Although more recent technologies can directly sequence RNA, NGS

works from DNA. Before a retrotranscription step to convert RNA

to DNA can be introduced, 3’ and 5’ adapters have to be ligated.

These will act as binding sites for reverse transcription and for PCR

primers for amplification. The adapters and protocol are designed to

take advantage of the 5’ phosphate group characteristic of miRNAs to

avoid sequencing degradation products. Normally, a T4 RNA Ligase

2 mutant, which shows some preference for given sequences, is used to

ligate the adapters. To avoid this potential source of bias, overnight

ligation (instead of 2h) has been proposed. Provided enough time,

the enzyme will exhaust all RNA available even if some fragments

tend to be ligated first.

3. Reverse transcription and PCR amplification

A reverse transcription step generates DNA molecules from adapter-

ligated RNAs. This is followed by PCR amplification, a process to

increase the amount of DNA that selectively enriches fragments with

adapters at both ends. This is achieved by annealing of two primers

specifically designed to bind sequences present in the adapters. Index

tags are introduced in this step. This allows for pool sequencing

of several samples, which makes the process higher-throughput and
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consequently cheaper.

PCR amplification however, seems to be a great source of bias in

sequencing-based miRNA quantification [214]. Different approaches

have been designed to reduce this unwanted effect like the use of ran-

dom adapters [215] or the introduction of unique molecular identifiers

(UMI), index-like tags that can be used to collapse reads generated

from the same RNA fragment avoiding overestimation.

4. Size selection

Because we are only interested in sequencing a specific range of RNA

lengths, a size selection step is needed. Originally, this step was per-

formed before reverse transcription and amplification to enrich for

desired RNAs but more recent protocols have moved it back to when

DNA is available since it is more stable to work with.

In this step, DNA libraries are run in a gel electrophoresis to sep-

arate them according to their lengths. Once separation has been

achieved, bands corresponding to 22 and 30nt (147 and 155nt after

amplification) should be cut out with a razor blade and kept. Which

small RNAs are sequenced and their coverage varies depending on

the band selection. The purified libraries can be recovered from the

cut-out bands by chemical treatment and resuspension in ultrapure

water.

5. Library check

Libraries can be run on a Bioanalyzer (Agilent Technologies) using

a DNA chip to check the amount and purity of RNA at different
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lengths. A distinct peak should be observed around 147-150nt, which

corresponds to the length of mature miRNAs. This step is performed

as a quality check of the libraries.

6. Library normalization

Libraries concentrations are normalized so they can be pooled to-

gether for sequencing. Samples can be stored after this step until

sequencing happens.

7. Sequencing

Several sequencing technologies are available but the most widespread

is Illumina’s sequencing by synthesis, which I will briefly describe.

Inside the sequencing machine, DNA fragments are captured by the

surface of the instrument, which is covered in oligos that are com-

plementary to the adapter sequence and subsequently amplified in a

process termed cluster generation. After clusters have been gener-

ated, the sequencing by synthesis step comes next. Using modified

nucleotides that include laser-detectable fluorescent tags, a comple-

mentary strand is generated from the cluster template. The process is

designed so that only one nucleotide can be added at a time, allowing

the laser in the instrument to measure the fluorescent dye at the end

of the cycle [216]. These measurements are recorded for each cluster

and stored by the machine as reads. This whole process results in

a data file (fastq) that contains the sequences of the reads, includ-

ing adapters and possibly unwanted artifacts plus quality parameters

derived from the fluorescence detected for each nucleotide in the read.
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1.3.4.2 Bioinformatics data analysis

After the sequencing process is completed, we are left with a fastq file

containing reads and a Phred score per nucleotide, a measure of the quality

that describes the probability of a base-calling error [217]. However, no

indication is available of miRNA sequences or abundance. In order to

achieve this, bioinformatics analysis have to be applied. In summary, reads

have to be preprocessed, aligned to a reference and subsequently quantified.

Several miRNA-seq analysis pipelines and tools are available but they

mostly rely on similar or equivalent steps with slight variations. Next, an

overview of the quantification processed, mainly based on sRNAbench [218]

is described.

1. Read pre-processing: trimming and collapsing

As mentioned above, RNA fragments are ligated to adapters in order

to allow sequencing, therefore these need to be removed from the read

for proper identification of the fragment sequence. Additionally, each

position of every read is checked for low quality nucleotides. Low

quality read endings are trimmed together with adapter sequences

and short reads are discarded.

Unlike regular RNA-seq, mature miRNAs tend to be sequenced in

their integrity or close. This means that a read is likely to capture the

whole miRNA sequence or at least most of it. Furthermore, consid-

ering the relatively short length of mature miRNAs and that shorter

reads are discarded, there is not a wide range of possible sequences

derived from the same miRNA that can be detected. Additionally,
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a few sequences tend to capture the majority of the sequenced reads

assigned to a miRNA, and a few miRNA genes will make up most of

the miRNA in a cell , sometimes up to 90% [219]. Typically, miRNA

tools take advantage of this fact by collapsing all identical reads to

dramatically reduce the number of alignments (Figure 8). The count

of reads must be kept though, so they can be considered in the quan-

tification step.

Figure 8: miRNA-seq preprocessing: Read collapsing. Identical trimmed reads
from the original file are collapsed before mapping to reduce the number of alignments
and speed up the process. Adapted from [219]

2. Alignment and quantification

Once identical reads have been combined, alignment can take place.

Alignment of the reads can be performed against the genome or

against miRNA libraries (or, more generally, several small RNA li-

braries). Alignment to miRNA sequences is faster as the query space

is greatly reduced and it will accurately quantify most miRNA reads

in most scenarios. Genome alignment can be useful for miRNA pre-

diction or discrimination between NTA nucleotides and longer than

expected mature transcripts. Regardless of mapping to the genome

or libraries, a miRNA reference has to be provided for miRNA quan-
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tification. The most used miRNA references are miRBase [188] and

MirGeneDB [189], a more conservative database that only lists highly

confident and properly annotated miRNAs.

A short read aligner such as bowtie is appropriate to deal with small

RNA read mapping. The alignment should allow for sequence vari-

ants, extensions of the canonical sequence, non-templated nucleotide

additions and other length variants as they have been described as

biological manifestations of the miRNA. The algorithm will try to re-

trieve all genomic locations or miRNA entries where the read matches.

Combining mapping information from the collapsed file we can get the

read count for each miRNA detected in the sample.

Read count can be useful for addressing a number of questions rel-

ative to individual samples such as which miRNAs are most highly

expressed. However, direct comparison among samples cannot be per-

formed from this data as different sequencing runs may yield a differ-

ent amount of reads. Different normalization approaches are available

for RNA-seq data but they normally take into account the length of

the mapping transcript, a negligible factor in the case of miRNAs.

In the case of small RNAs, Reads per Million (RPM) seems to be

appropriate.

3. Downstream analysis

After quantification has been completed several downstream analy-

ses can be performed, the most common being differential expression

analysis which allows to statistically determine if changes in expres-

sion or abundance of a given miRNA are greater than expected by
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random variation. In the context of liquid biopsy, it can be used to

discover biomarkers that are more or less abundant in patient samples

compared to controls.

Another application is miRNA discovery. Reads that are mapped to

the genome can form a distinct pattern typical of miRNAs. Machine

learning models can then be used to assess how likely a candidate is to

be a true novel miRNA [163, 220]. Further confirmation can include

conservation analysis in evolutionarily close species.

Other downstream analyses include miRNA target prediction [221]

and functional analysis of miRNA targets [222].

1.3.5 Other small RNAs detected by miRNA-seq

The size selection step in miRNA-seq is designed to enrich the fraction of

miRNAs that get sequenced. Nevertheless, this approach can only go so

far as other ncRNA of similar size or degradation products from longer

transcripts will also be co-sequenced. With the possible exception of tRNA

fragments, these molecules have received much less attention. Here, a brief

summary containing the most relevant small RNA types is provided.

Table 1: Summary of small non-coding RNA classes detectable by
miRNA-seq. Adapted from [223]

Class Size Function

Messenger RNA

(mRNA)

2–5 kb RNA that contains a coding region that

directs synthesis of a protein product.

Fragments can be detected
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PIWI-

associated RNA

(piRNA)

27 nt. RNA that directs the modification of

chromatin to repress transcription.

Transfer RNA

(yRNA)

100 nt. RNA adaptor connecting an mRNA

codon and the activated form of the

cognate amino acid during protein

synthesis on the ribosome. Normally

only halves or fragments are sequenced.

Ribosomal

RNA (rRNA)

120, 160,

1,868, 5,025 nt

in human

RNA component of the small or large

ribosomal subunit; the largest is a

ribozyme. Normally present in short

fragments (degradation products)

Small

interfering RNA

(siRNA)

22 nt. Product of Dicer cleavage of dsRNA;

when complexed with an AGO protein,

induces cleavage of a

perfectly-complementary target RNA

Long

non-coding

RNA (lncRNA)

>200 nt Long elements transcribed by RNA

polymerase II. Fragments can be

detected

Small nuclear

RNA (snRNA)

100-300 nt. RNA localized in the eukaryotic cell

nucleus

53



1.3. MIRNAS (AND OTHER SMALL NON-CODING RNAS)

Small nucleolar

RNA (snoRNA)

70 nt. Essential for pre-rRNA processing or

modification by serving as a guide RNA

to direct a bound enzyme to either

2’-O-methylate or pseudouridylate a

complementary sequence in rRNA.

Unless the protocol is adapted to select

longer reads, only fragments are

detected.

Y RNA ∼100 nt. RNAs that bind the Ro60 and La

proteins to form the Ro

ribonucleoprotein complex that

mediates, between other functions, in

DNA replication.

Vault RNA

(vRNA)

80-150 nt Small untranslated RNA molecules that

make part of the vault complex

1.3.6 miRNA isoforms: a potential new layer of information

Until not so long ago it was believed that each pre-miRNA hairpin could

generate two mature miRNAs: the 5’ and 3’ arms. With the arrival of

NGS techniques, researchers started detecting several miRNA sequences

that slightly differed from the canonical mature miRNA available in refer-

ences [224] but their biological relevance remained controversial [225]. Said

sequences varied in length (shorter or longer 3’ or 5’ end), sequence com-

position (different nucleotides in the read detected) or a combination of
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both [226] (Figure 9). Nevertheless, some studies shown that isomiRs are

not randomly distributed [225, 227] so much so that they could be used to

discriminate amongst cancer types [228]. These findings suggested that the

biogenesis of isomiRs might be regulated and therefore be functional. In

accordance with these assumptions, researchers reported that 5’ isomiR of

miR-9 changed targets compared to its canonical version [227].

Figure 9: Classification of isomiRs (miRNA variants) Adapted from [219]

Since then, the accumulated evidence strongly suggests that isomiRs

have unique molecular roles and that they can target different mRNAs than

their corresponding canonical miRNA both from shifting by 5’ alternative

cleavage [229] and from 3’ uridylation [230]. Together with their cell and

tissue specificity, this makes them good potential biomarkers of cancer and

other diseases.
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Chapter 2

Objectives

The aim of this Doctoral Thesis is to stablish a computational method-

ology to accurately detect and quantify potential small RNA biomarkers

from sequencing data, particularly in the context of liquid biopsy of cancer

patients. To this end, the following specific objectives will be addressed:

1. Improve and update sRNAbench to include more recent genome as-

semblies, bacterial and viral sequences, miRNA references and other

small RNA databases. Implement preprocessing of new library prepa-

ration protocols and automated protocol detection.

2. Develop an automated workflow to acquire and profile small RNA

sequencing samples from publicly available repositories.

3. Collect all publicly available miRNA-seq samples to build a reference

corpus of samples for reference and reuse of the data.

4. Manually curate and organize liquid biopsy miRNAseq samples into

a publicly available database that allows search of samples, studies

and comparisons.

5. Develop a quality control pipeline for miRNAseq experiments to pro-

vide relative assessment of quality parameters and features using the

reference corpus of miRNA-seq samples.

6. Apply the methodologies developed to miRNAseq data from a liquid

biopsy study of melanoma patients
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Chapter 3

Material and methods

Since this thesis is presented as a compilation of articles, the specific

methodology is described in each corresponding chapter. In this section, I

will present or expand methods that are cross-sectional or that were origi-

nally kept out of the articles included here because of word count limits or

other constraints.

3.1 Webserver Implementation

Three interactive web sites are described as part of this thesis: sRN-

Abench [218], liqDB [95] and mirnaQC [231]. Each of these services was

implemented and deployed in an independent containerized environment

using Docker 20.10.8 and run on an Ubuntu 18.06.6 machine. An Apache

server (version 2.4.29) redirects URL traffic from each site’s subdomain to

the corresponding service by means of mod rewrite and port-forwarding.

Web access is provided by the HTTPS protocol.

3.1.1 Framework

All three services are implemented in Django (liqDB and sRNAbench use

version 2.1, mirnaQC uses version 3.0) and Python3 (sRNAbench and liqDB

use Python 3.5.4, mirnaQC uses Python 3.7.2). Web server models were

stored in a MariaDB database (distrib. 10.4.6) run in an independent

docker container and connected to the main app using Django’s MySQL
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engine. Each website is served from an independent Apache server config-

ured with WSGI.

3.1.2 Back-end

Database lookups and other backend processing was performed using java

classes packaged in jar files and run using OpenJDK version 11.0.11.

Database queries are performed on the aforementioned MariaDB database.

Additionally, sRNAbench jobs are run using TORQUE, a queueing and

resource managing system.

3.1.3 Front-end

HTML templates are injected with pertinent variables using Django. To im-

prove functionality and interactability several JavaScript and jQuery scripts

were included. Further JavaScript libraries were used for graphing or up-

load including Plotly, Ajax, DataTables and Chart.js. CSS frameworks

used to provide style include Bootstrap and Font Awesome.

3.2 Automated miRNA-seq sample acquisition

workflow

To periodically update the corpus of publicly available miRNA-seq sam-

ples, a Python script was implemented to query the ”sra experiment”,

”sra study” and ”biosample” tables from OmicIDX API [232], a project

that parses and serves public genomics repository metadata. The script
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uses Google’s Python implementation of BigQuery, the data warehouse

where OmicIDX is stored, to retrieve and match study, experiment and

sample data by means of MySQL queries. The script is regularly executed

using cron jobs scheduled to happen every month.

Because there is little or no active validation from SRA on experiment

annotation, it is relatively frequent that some miRNA-seq experiments are

misclassified by authors as ncRNA-seq or simply RNA-seq, even though

they actually follow a small RNA-seq protocol. For this reason, experiments

annotated as any of those three library strategies were kept for potential

downstream processing after appropriate check-ups.

3.3 Automated sample processing and collection

into a database

SRA experiments were downloaded using fasterq-dump from SRA-tools

[233]. Once a file was downloaded, to decide whether the sequencing ex-

periment was effectively miRNAseq , the presence of at least 20 different

mature miRNA sequences was required. Samples sequenced with a differ-

ent protocol or of insufficient quality were discarded. After the sequencing

strategy was confirmed, a library preparation protocol detection algorithm

was applied, the following were considered: TruSeq RNA Library Prep

Kit v1 (Illumina), TruSeq RNA Library Prep Kit v2 (Illumina), NEBNext

Small RNA Library Prep Kit (New England Biolabs), NEXTFLEX Small

RNA-Seq Kit v3 (PerkinElmer), QIAseq miRNA Library Kit (QIAGEN)

and 4N random adapters.
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Each sample was preprocessed with sRNAbench using the appropri-

ate configuration for the previously detected protocol. Quality-checked

adapter-trimmed reads were collapsed and stored as fasta files. Reads were

aligned using sRNAbench and the following mapping libraries: miRNA

(miRBase release 22.1, MirGeneDB 2.0), tRNA (GtRNAdb 2.0), yRNA

(from RNAcentral), vRNA (from RNAcentral), remaining non-coding

RNAs (RNAcentral and ncRNA from Ensembl), mRNA (cDNA from En-

sembl) and a collection of vertebrate viral genomes (retrieved from NCBI).

A MariaDB database was implemented to store count data from all

libraries plus the metadata retrieved from SRA. Collapsed reads were also

stored for reanalysis.

3.4 Read count adjustments and normalizations

Converting mapped reads into read count would appear as a straight-

forward problem: each library sequence receiving a mapping should get one

count added. That’s indeed a possible solution, most frequently referred to

simply as read count (RC files).

Nevertheless, microRNAs are frequently members of broader families

that contain several genes with highly similar mature sequences. Given

also the short nature of miRNA-seq reads, multiple-mapping reads are to

be expected. To deal with this, sRNAbench implements a solution to ac-

count for this fact without discarding multiple-mapping reads. Adjusted

expression values are recalculated in the following way: each multi-mapping

count is divided by the number of reference sequences to which they map.
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This is termed multiple-mapping adjusted read count (RCadj files).

Another issue affects inter-sample data interpretation since different ex-

periments, even if performed in the same sequencing run, will yield varying

number of reads, i.e. read abundance is a relative variable. In practice this

translates into unfair comparisons if counts are not scaled or normalized,

as 1000 RC (read count) could be a lot for an experiment of 100.000 reads

but very little in a different experiment of 20 million reads. In sRNAbench,

this is solved by scaling all reads to 1 million, rendering samples compa-

rable. Reads per Million files are normally referred to as RPM. Please

note that RPKM or FPKM normalizations are not required for small RNA

sequencing experiments since transcript length range is negligible. Other

normalizations, like the one provided by edgeR, are also implemented.

Additionally, miRNA count data generated by sequencing platforms is a

composition of all the sequences in the file, which are only a random portion

of all the RNA actually present in the sample. This means that data can

only be interpreted in relative terms. Furthermore, absolute changes in one

particular RNA sequence or fraction in the sample will necessarily translate

into relative changes for the rest of them. For instance, we could be com-

paring two samples, A and B, where the concentration of hsa-miR-21-5p is

the same in both. However, sample B has an increased amount of Y RNA,

which gets co-sequenced in small RNA-seq. Since the Y RNA is “compet-

ing” to get sequenced, fewer hsa-miR-21-5p reads will make it to the final

count in sample B compared to A, even though both samples effectively

have the same concentration. Other artifacts can also affect the expression

in a similar way, such as an increased number of unmapped reads. This
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problem can potentially be mitigated by using library-normalized RPM.

Files using this normalization are denoted with RPMlib.

3.5 Differential expression analysis

The purpose of differential expression analysis (DE or DEA) is to statis-

tically test whether genes, or non-coding transcripts, display significantly

different expression levels between two groups or conditions (i.e. whether

the difference is greater than expected by random variation). This is use-

ful to discriminate between likely true and spurious changes. It should be

kept in mind that both the effect size and the significance, measured as

fold change and p-value respectively, are necessary to fully understand the

impact of a reported change.

Differential expression methods normally consist on some normalization

approach and a statistical test, both of which normally rely on assumptions

about the distribution of the expression or abundance of the counts. Here

I will briefly describe the differential expression methods that are used as

part of this thesis.

3.5.1 Student’s t-test

Student’s t-test [234] is one of the most used statistical tests. It is performed

to determine if the means of two groups are equal or not. This test assumes

that both samples come from a normally distributed variable and that

variances are equal. These assumptions probably don’t hold for miRNA

cellular expression but they might for circulating RNA. Normalized read
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counts (RPM) are used as input to avoid unfair comparisons caused by

different library size.

The test was carried out using the Commons Math java library, ho-

moscedasticTTest, a two-sample two-tail t-test that compares the means

of two input groups assuming homoscedasticity (i.e. both groups have the

same variance).

3.5.2 edgeR

edgeR is a Bioconductor package that can mainly be used for differential

expression analysis of sequencing data [235]. Read counts and sample/-

condition annotation are to be provided as input. EdgeR can deal with

complex study designs that take into account multiple factors to exclude

technical variation.

The scaling method used by edgeR is the trimmed mean of M-values

normalization method (TMM) [236]. This approach assumes that the ma-

jority of genes are not differentially expressed. To summarize the observed

M values, both ends of the distribution are trimmed and then weighed

using the inverse of the variance to account for larger variation at higher

expression levels [236]. Weighed values are then modeled using a negative

binomial distribution.

3.5.3 DESeq

DESeq works in a similar way to edgeR, it also requires a count matrix

and sample annotations as input. DESeq package normalizes the counts
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using size factors and models the data by means of a negative binomial

[237]. However, the algorithms and models still differ and so do the results:

edgeR has more false positives on low count but less false positives on high

counts [237].

DESeq was improved on a second version which better estimates dis-

persion on low-count genes. Nevertheless, we kept DESeq as part of sR-

NAtoolbox so users can replicate previous results or run methods used in

previous publications for reproducibility or comparison.

3.5.4 DESeq2

A newer version of DESeq was published in 2014 [238]. The current al-

gorithm differs from the previous version in the method to estimate the

dispersion: DESeq used the maximum of the fitted curve and the gene-

wise dispersion estimate as the final estimate, which it tended to overesti-

mate [238], whereas DESeq2 sequentially estimates a prior distribution for

the true dispersion values, and then provide the maximum a posteriori as

final estimate [238].

This latter approach is more powerful in general terms as it provides

recall rates similar to those reported by edgeR. However, this increased

statistical power comes at the cost of less precision [239] (i.e. more false

positives).
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3.5.5 NOISeq

NOISeq largely differs from previously described methods because it’s data-

adaptive and non-parametric, which was intended to deal with a raise in

false positives with increasing depth, a pitfall observed in other methods

[240]. NOISeq is more effective in controlling false positives and very useful

to account for low amount of replicates as well as genes at the low expression

range. It’s the only method here that can’t be assessed through a p-value

since it provides a DE probability instead.
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Chapter 4

sRNAbench and sRNAtoolbox

2019: intuitive fast small RNA

profiling and differential expres-

sion
Based on the manuscript published in Nucleic Acids Research, 2019 Jul 2; 47(W1):W530-

W535. doi:10.1093/nar/gkz415

Since the original publication of sRNAtoolbox in 2015, small RNA research

experienced notable advances in different directions. New protocols for

small RNA sequencing have become available to address important issues

such as adapter ligation bias, PCR amplification artefacts or to include

internal controls such as spike-in sequences. New microRNA reference

databases were developed with different foci, either prioritizing accuracy

(low number of false positives) or completeness (low number of false neg-

atives). Additionally, other small RNA molecules as well as microRNA

sequence and length variants (isomiRs) have continued to gain importance.

Finally, the number of microRNA sequencing studies deposited in GEO

nearly triplicated from 2014 (280) to 2018 (764). These developments im-

ply that fast and easy-to-use tools for expression profiling and subsequent

downstream analysis of miRNAseq data are essential to many researchers.

Key features in this sRNAtoolbox release include addition of all major RNA

library preparation protocols to sRNAbench and improvements in sRNAde,

a tool that summarizes several aspects of small RNA sequencing studies

including the detection of consensus differential expression. A special em-

phasis was put on the user-friendliness of the tools, for instance sRNAbench

now supports parallel launching of several jobs to improve reproducibility

and user time efficiency.
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4.1 INTRODUCTION

Small RNA profiling by means of miRNA-seq (or small RNA-seq) is a key

step in many study designs because it often precedes further downstream

analysis such as screening, prediction, identification and validation of miR-

NAtargets or biomarker detection [241,242]. Many different tools areavail-

able for the analysis of small RNA high-throughput sequencing data such

as miRDeep2 [243], miRge 2.0 [220], Short-Stack [244], SeqBuster [245],

sRNAbench [246] and miRTrace [247] which implements a new approach to

quality control. Generally, the tools focus on certain aspects of small RNAs

and are not integrated into independent pipelines for downstream analy-

sis. In 2015, we introduced sRNAtoolbox [248], a collection of small RNA

research tools built around sRNAbench, providing different downstream

analysis including consensus differential expression, target prediction and

analysis of unmapped reads by means of blast searches against general nu-

cleotide databases.

The last few years have witnessed a further drop in sequencing cost that

together with the advent of highly specialized service providers makes the

generation of this kind of data accessible to a larger number of research

groups. The increase in sequencing volume has been accompanied by the

publication of new library preparation protocols, each of which involves

specific pre-processing steps in the bioinformatics analysis. However, not

all research groups can count on specialized staff or bioinformatics equip-

ment, which is why flexible and user-friendly tools for small RNA research

became even more valuable over the last years. Here, we present the lat-
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est version of sRNAtoolbox, featuring key additions to sRNAbench and

sRNAde. Apart from customizable preprocessing, sRNAbench now imple-

ments automatic processing of the five most used library preparation proto-

cols including UMI-based (Unique Molecular Identifier) protocols and the

detection of putative sequence variants. The scope was notably increased

by including new reference genomes from Ensembl (release 91), bacteria

and virus collections from NCBI and microRNA reference sequences from

MirGeneDB. Additionally, in order to improve reproducibility and ease of

use, a batch mode was developed to allow profiling of several samples at

once using the same set of parameters. As for sRNAde, now consensus

results for five differential expression methods are calculated together with

improved visualizations of several quality and mapping statistics.

4.2 WHAT’S NEW?

Since sRNAtoolbox web-server has previously been described [248], we

briefly present main novelties and changes in this section. More detailed

descriptions can be found in the Data and methods section.

� sRNAbench batch mode: users can now provide an unlimited

number of reads files through upload, URLs or SRA Run accessions.

In this way, parameters only need to be specified once and are applied

to all input data.

� Reanalysis of provided files: All provided files can be reanalysed

without reuploading to the server.

� New sRNAbench features: Optional quality control of fastq input,
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detection of sequence variants, direct availability of 6 different library

preparation protocols, UMI (Unique Molecular Identifier) protocols

are supported, isomiR classification can be made hierarchical (each

read belongs to only one category) or fuzzy (each read can belong to

several categories), input format is automatically detected to prevent

inconsistent file extensions and improved feedback so most frequent

input errors can be corrected by the user.

� Visualization of genome mapped reads: The jBrowse instance

to visualize the genome mappings was replaced by links to UCSC

Genome Browser or Ensembl track hubs. Additionally, direct down-

loads to bedGraph, big-Wig and bed files are provided so they can

be analysed using specialized software like the Integrative Genome

Viewer [249].

� Differential expression: We added two additional methods to de-

tect differentially expressed microRNAs: a Student’s t-test and DE-

Seq2 [238] for a total of 5 different methods. Each method has its own

output page which includes interactive heatmaps [250], box-plots and

volcano plots to visualize differences in expression values between two

groups. The consensus differentially expressed microRNAs are visual-

ized by means of UpsetR [251], an alternative to Venn diagrams. By

default, adjusted read counts (to address multiple mapping) are used

to generate the expression matrixes, but matrixes for other multiple

mapping methods can be found in the downloadable results.

� Consensus target detection: The original miRconstarget was split

into two, one tool for animals and one for plants. A simple seed
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detection method several folds faster than the other three (miranda,

PITA and Target-Spy) was added to the animal tool.

� Scope: Genome sequences and annotations are automatically derived

from Ensembl [252]. Current version of sRNAtoolbox contains 90

genome assemblies and several virus and bacteria collections obtained

from NCBI [253].

� Reference sequences: microRNAs for all species included in miR-

Base [188] or MirGeneDB [254] can be profiled regardless of genome

availability.

� liqDB: sRNAbench is now connected to liqDB, a small RNA database

for liquid biopsy studies [95], i.e. sRNAbench output can be used to

compare against liqDB profiles.

4.3 DATA AND METHODS

Input data

Input files can be uploaded to our server, be provided as URLs or

as SRA Run IDs [209]. For URLs or SRA run identifiers,several files

can be merged together by joining them using colons (:). For example

SRR2105509:SRR2105510 would merge both SRA runs into a single job.

In the previous sRNAbench version, the input format was detected based

on the file extension only, i.e. *.fastq for fastq format, *.fa for fasta format

and *.rc for read count format. Because sRNAbench jobs could fail due

to an incorrect extension, we included now an automatic detection of the
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input format to prevent those errors. Automatic detection of most common

separators in read-count encoded fasta files has also been implemented.

Quality control

Two quality filters have been implemented in sRNAbench for fastq files.

The ‘mean’ method calculates the average PhredScore of the adapter-

trimmed read, filtering out those below a certain threshold. The ‘min’

method is stricter as it sorts out any read with at least one position below

the provided threshold.

MicroRNA profiling, genome and library mode

Expression values can be obtained either using genome or library mode.

In genome mode, reads are first mapped to the corresponding assembly

and genome annotations of the reference sequences are used to obtain the

expression values. In library mode, reads are mapped directly against the

reference sequences. Both methods are described in detail in the original

sRNAbench paper [246]. MicroRNA expression profiles can be obtained

for all species contained in miRBase or MirGeneDB by means of the li-

brary mode. It is important to note that expression files generated with

sRNAbench will list all copies of a microRNA, and therefore the name of

a mature microRNA can appear several times. However in an additional

column we specify the genome position or precursor name, which makes

each line unique.

Two different methods are provided for multiple mapping, (i) adjusting

the read count by the number of times the read maps to the genome or

reference sequences and (ii) assign each read only once to the reference
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sequence with the highest expression (single assignment) (see [246] for more

details). The prediction of novel microRNAswas described before in the

sRNAbench paper [246] and a more detailed description is available in the

manual as well.

Genome mapping, bedGraph, bigWig and bed files

Adapter trimmed and quality filtered reads are mapped to the genome

by means of bowtie1 [255]. By default, bowtie seed alignment is used in

order to detect isomiRs (with seed length of 20 nt) and reads are only

used if they have at most 10 mappings to the genome. The best mappings

are retained as explained before [256]. Both parameters can be changed

by the user. For the prediction of novel microRNAs, we recommend ‘full

read alignment’ and not allowing mismatches. Some putatively interesting

small RNAs like yRNAs have many copies in the genome, and therefore the

maximum number of allowed mappings might need to be increased in such

cases.

Reads with more mappings to the genome than specified by this thresh-

old are not used for expression profiling but will appear as a separate

category in the genome mapping plots. Those reads are labelled Highly

Redundant reads and are marked with the postfix (HR).

Downloadable bedGraph files are generated summing the reads that

map to a certain position. Note that in this way, each read counts fully

at each position it maps (full read assignment). In the standalone version,

the user can chose to adjust for multiple mappings. BedGraph files are

generated irrespectively of the strand and for both strands separately (three

files in total). Sometimes, it might be interesting to analyse the genome
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distribution as a function of the read length (20).Therefore, we provide the

bedGraph files for different length intervals: 19 nt–23 nt and all lengths

for animals and 19 nt–23 nt, 24 nt and all lengths for plants given that

24 nt long reads have a very well described function in plants [257]. The

bedGraph files are then converted to bigWig files using the UCSC tool

bedGraphToBigWig [258]. Finally, the bedGraph files are screened and

continuously mapped regions are merged together into a six-column bed

file. The provided score indicates the highest expression value of the region

as not all positions in a continuously mapped region will have the same

expression values.

Single nucleotide variants

Single nucleotide variants (SNV) are detected based on reported mis-

matches. They can be due to Single Nucleotide Polymorphisms (SNPs),

somatic mutations, RNA editing, sequencing or Taq polymerase errors.

Therefore,when those sequence variants are analysed, strict quality control

parameters should be used to control for the effect of sequencing errors and

other technical artefacts. As the quality scores (Phred Scores) are not used

for the detection of SNVs, this analysis can be performed for all accepted

input formats. The sequence variants are detected at the level of precursor

sequences, giving for each variant the precursor name, the variant type, the

position, the number of mapped reads and the number of reads containing

the variant.

isomiRs

The original sRNAbench version implemented only a hierarchical isomiR

classification, i.e. each read is classified as only one isomiR type: canon-
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ical sequence, canonical sequence with nucleotide changes, non-templated

additions, 5’ and 3’ length variants or multiple length variants (in this hi-

erarchical order). However, a read can have both, sequence and length

variation. Therefore, we now added the possibility to explore the im-

pact of a fuzzy classification. sRNAbench output files can be used to

convert the isomiR data into standardized formats as proposed by the

miRTop community (https://www.biorxiv.org/content/10.1101/505222v1,

https://github.com/miRTop/mirtop).

Differential expression

The differential expression program sRNAde has undergone profound

changes to provide both, an extensive summary of the whole study and

the detection of consensus differential expression applying edgeR [235], DE-

Seq [237], DESeq2 [238], NOISeq [240] and Student’s t-test. Additionally,

each method now has an individual page to explore the different results as

well as the consensus. The output page was separated into 5 sections:

� Results Summary: The number of differentially over and underex-

pressed microRNAs per method and visualizations for the distribution

of detectedRNAtypes like miRNAs, tRNAs, rRNAs etc.

� Preprocessing/QC: Summary of preprocessing (adapter trimmed

reads, filtered reads) and read length distribution which allows to

detect the presence of certain types of small RNAs (peak around 21nt

corresponding to miRNAs) or artefacts like the presence of adapter

dimers (reads with length 0).

� Mapping statistics: overview of the number of mapped and as-
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signed reads.

� miRNA and isomiR statistics: boxplots with number of detected

miRNAs, link to microRNA sequence variant analysis and isomiR

statistics.

� Differential expression: links to the individual output pages of the

five DE methods, consensus tables and its graphical representation by

means of UpSet plots (equivalent to Venn diagrams).

Furthermore, sRNAde provides now three different methods to address the

multiple mapping problem: (i) fullread count assignment (the full read

count is assigned to all reference sequences or genome positions), (ii) ad-

justed read counts (divide the read count by the number of mappings) and

(iii) single assignment, i.e. assign the read only once to the most expressed

reference sequence.

Working examples

To demonstrate the usefulness and functionality of the newly implemented

features we will concentrate on the sRNAbench (batch mode) and sRNAde

tools. The batch mode is a novel extension of sRNAbench which first

requests the upload of the sequencing data. We strongly recommend de-

positing sequencing data on an accessible server and providing the URLs

by means of the corresponding textbox. The sequencing data can also

be uploaded through the browser or specified by means of SRA run IDs.

To illustrate the analysis of data from the public SRA (Sequence Read

Archive) repository, we used the SRP046046 [259] study, which can be ac-

cessed through this page: . This study has 12 different biological samples
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and one run per sample. After downloading the samples annotations (Run-

Info Table), they can be imported into any spreadsheet program. In this

way, the column with the run names (starting with SRR) can be easily

copied and pasted into the sRNAbench (batch mode) interface (see Figure

10A). After this step, the user needs to provide information regarding the

species (human) and library preparation protocol (Illumina). For each se-

quencing data file, a separate sRNAbench job will be created. The current

state of the jobs will be shown to the user on the sRNAbench (batch mode)

output page (see Figure 10B). Once all jobs have finished, the results of

the individual sRNAbench jobs can be used as input for sRNAde (study

summarizing and differential expression tool). In order to use sRNAde, a

group label needs to be assigned to each sample to indicate the condition

(such as healthy, cancer, treated, etc). The output page includes a but-

ton that will take the user through this process. Note that input samples

and group information can be provided in other ways through the sRNAde

page. The general structure of the sRNAde output page was previously

described in the ‘Data and methods’ section, so here we will highlight some

of the newly implemented features that will help users to better inter-

pret their data. The read length distribution of adapter-trimmed reads (in

‘Preprocessing/QC’ section of sRNAde output page) contains valuable in-

formation to spot possible artefacts in the library preparation. By moving

the mouse cursor over the boxplots, the values of the extreme points are

depicted. Figure 10C shows that in general the number of adapter-dimer

reads (the adapters have ligated directly without a fragment in between)

are below 20%, however one sample (BJAB exosomes, SRR1563017) shows

nearly 60% of adapter-dimers, which can indicate some issues in the library
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preparation like low RNA input. In general, clear peaks corresponding to

the lengths of certain RNA types should be distinguishable: microRNAs

should form a narrow peak around 21– 22nt and tRNAs are known to gen-

erate fragments around 18 nt and between 32 and 33 nt. If no peaks are

distinguishable or if they are very smeared out, this can indicate low RNA

quality (high degradation). In Figure 10C we can observe the existence

of a broad peak around the length of microRNA precursor sequences or

full length tRNAs. Figure 10D shows the distribution of RNA types in

the study. This graphic enables the user to obtain information about the

relative quantities of miRNAs or other RNA molecules like yRNA tRNA,

snoRNA or rRNA. Furthermore, the dispersion of relative frequencies of a

given RNA type over the different samples can be observed. For example,

the percentage of microRNAs varies between 10% and 70% in this case.

Figure 10E shows the overlap of differentially expressed microRNA be-

tween the five methods and Figure 10F depicts the overlap of microRNAs

with a log2 fold-change higher than 1 or lower than -1. Note that to avoid

division by 0, we add the value of 1 to the expression values. This also

leads to the fact that microRNAs with extremely low expression values are

less likely to produce high fold-changes due to chance alone. It can be seen

that the overlap using the fold-change is very high (34 out of 49). No-

tice that the miRNA fold-change only depends on the normalized values of

the read count input matrix (same for all methods). Therefore, the high

overlap seems to imply that the normalization methods have a rather mod-

erate impact on the fold-changes. On the other hand, there is only 1 out

of 32 microRNA which shows statistically over-expression in all five meth-

ods mainly because Student’s t-test and NOISeq seem to be much stricter.

77



4.3. DATA AND METHODS

Figure 10: (A and B) The interface of the sRNAbench batch mode module and the
primary result table, (C) The read length distribution as box-plot, i.e. the distribution
of read fraction as a function of read length, (D) the distribution of different RNA types
in the study, (E) the intersection of up-regulated microRNAs between the different
methods and (F) the intersection of microRNAs with higher fold-changes than 2.
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DEseq, DESeq2 and edgeR are the methods with the highest overlap (11

out of 32). This shows that the way the P-values are calculated strongly

impacts the detection of differentially expressed microRNAs.

4.4 CONCLUSIONS AND OUTLOOK

Over the last years the user feedback was crucial for the evolution of sR-

NAtoolbox. Several of the new features and species were included upon

user request. We encourage users to send feedback of any type to con-

tinue improving this collection of small RNA research tools. Upcoming

improvements include, among other features, new annotations, support for

user-customizable synthetic spike-ins and improved prediction of novel mi-

croRNAs.

4.5 DATA AVAILABILITY

https://arn.ugr.es/srnatoolbox/
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Chapter 5

liqDB: a small-RNAseq knowledge

discovery database for liquid biopsy

studies
Based on the manuscript published in Nucleic Acids Research, 2019 Jan 8; 47(D1):D113-

D120. doi:10.1093/nar/gky981

MiRNAs are important regulators of gene expression and are frequently

deregulated under pathologic conditions. They are highly stable in bod-

ily fluids which makes them feasible candidates to become minimally in-

vasive biomarkers. In fact, several studies already proposed circulating

miRNA-based biomarkers for different types of neoplastic, cardiovascular

and degenerative diseases. However, many of these studies rely on small

RNA sequencing experiments that are based on different RNA extraction

and processing protocols, rendering results incomparable. We generated

liqDB, a database for liquid biopsy small RNA sequencing profiles that

provides users with meaningful information to guide their small RNA liq-

uid biopsy research and to overcome technical and conceptual problems.

By means of a user-friendly web interface, miRNA expression profiles from

1607 manually annotated samples can be queried and explored at different

levels. Result pages include downloadable expression matrices, differential

expression analysis, most stably expressed miRNAs, cluster analysis and

relevant visualizations by means of boxplots and heatmaps. We anticipate

that liqDB will be a useful tool in liquid biopsy research as it provides a

consistently annotated large compilation of experiments together with tools

for reproducible analysis, comparison and hypothesis generation. LiqDB is

available at http://bioinfo5.ugr.es/liqdb.
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5.1 INTRODUCTION

Despite the well-established usage of blood and urine in disease detection

and diagnosis, the term liquid biopsy does not appear in PubMed until

2011 in a work where breast cancer patients response to trastuzumab was

monitored using circulating epithelial tumour cells (CETC) [260]. Since

then, liquid biopsy has become a rapidly growing research field based on

the extraction of non-solid biological material such as blood, saliva, urine

or cerebrospinal fluid that can be sampled in a minimally invasive way.

From this material can then be extracted, among others: protein-bound

RNA molecules, vesicles such as exosomes, cell-free DNA (cfDNA), cir-

culating tumour cells (CTC) and platelets that can be used for clinical

purposes. More specifically, genotypes and methylation states of extracted

DNA molecules or the abundance of RNA molecules can be screened to

search for non-invasive biomarkers that allow for early diagnosis, treatment

monitoring, tumour staging, relapse risk assessment and prognosis [261].

Since microRNAs were discovered in humans in 2000, their functional

role as post-transcriptional repressors has been extensively studied. Mi-

croRNA expression levels are generally altered in several pathologies in-

cluding cancer [262], so they hold great potential as disease biomarkers at

tissue level. Furthermore, microRNAs have been detected in virtually all

bodily fluids either within exosomes [263] or bound to proteins that pro-

tect them from RNAse activity [153], both of which increase their stability

and therefore their detectability. If the release of most microRNAs is fairly

random [259], the assumption is that intracellular changes can be detected
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in the different biofluids as well, which allows for potential applicability as

diagnostic, prognostic and predictive biomarkers. In fact, several studies

have already used this approach to propose miRNA-based biomarkers for

different types of neoplastic [264,265], cardiovascular [266] and degenerative

disease [267]. Many of these studies rely on small RNA sequencing experi-

ments but differences in sample collection, extraction, storage, processing,

library preparation and sequencing method can have a strong impact on the

abundance of detected miRNAs [268]. Highly parametrized computational

tools used for data analysis are yet another source of fluctuation in the

obtained expression values. Note that most of these issues are not inher-

ent to sequencing approaches, as other methods such as qRT-PCR are also

affected by this panoply of possible confounding variables. Furthermore,

no endogenous small RNA has been established to normalize abundance

in plasma, although synthetic spike-in molecules have been proposed to

address this problem [269].

In order to help to overcome the problems described above we developed

liqDB, a database for small RNA expression profiles in bodily fluids. Unlike

other literature-based resources such as miRandola [270] or ExoCarta [271],

liqDB contains small RNA expression profiles of 1607 manually annotated

samples from SRA, generated by means of a reproducible bioinformatics

protocol. The database can be queried in different ways exploring 19 dif-

ferent biofluids or the impact of six variables like health state or RNA

extraction method. Users can perform customised queries or compare up-

loaded data to sample sets from the database. Most important results are:

downloadable expression matrixes, differentially expressed microRNAs and

most stably expressed microRNAs. Visualisation of the output includes
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interactive RNA distribution boxplots and heatmaps [250]. A strong in-

crease in liquid biopsy small RNA research is to be expected over the next

years and we are confident that liqDB can play a central role in organising,

classifying and offering this information to researchers in the field.

5.2 SCOPE AND WEB INTERFACE

Scope

Currently, the database contains a total of 1607 coherently annotated

sRNA-seq samples from 30 publically available SRA studies corresponding

to 19 different biofluids. The sample annotations provided by the original

authors were manually curated and unified to include relevant variables

such as biofluid, gender, health state (healthy/not healthy), RNA extrac-

tion protocol, exosome isolation (yes or no) and RNA library preparation

protocol, all of which can have an impact on the miRNA abundance acting

as confounding variables for the variable of interest, usually related to the

health state.

The database can be used and queried in five different ways:

� Browse studies: For each of the 30 SRA projects in the database, re-

sults were pre-calculated. Differential expression is calculated when-

ever possible for the relevant variables (mostly health state and gender

although RNA extraction, library preparation methods and different

biofluids were analysed for some studies). Additionally to the miRNA

expression profiles, other results are generated (see Result Page be-

low for more details). Frequently, users are interested in a particular
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project focused on a specific cancer or biofluid and this information

can be quickly accessed in this way.

� Search samples: Users can customize a set of samples by selecting

query values for 6 variables and a threshold number of miRNA-

mapping reads in order to improve confidence in the results. The

Basic statistics section can help users find the most adequate thresh-

old for their desired query. At a second stage, the preselected set of

samples can be manually refined. Most highly expressed, most fluctu-

ating and most stably expressed microRNAs can be obtained, among

other features. The downloadable expression matrix can be used for

further downstream analysis (see Result Page below for more details).

� Search miRNAs: Users interested in one particular miRNA can search

it and analyse its expression values as a function of the different vari-

ables.

� Compare two datasets: Similarly to the selection of one set, the user

can define two different sets of samples. Additionally to the general

output results, differentially expressed microRNAs between the two

sets will be calculated.

� Compare with user data: This tool allows comparison of a selected set

of samples from the database to user-provided samples. Users should

first profile their sequencing reads input file using sRNAbench from

the sRNAtoolbox server [248]. Subsequently, the job IDs can be used

as input as well as relevant query variables to generate a standard

result page including differential expression between database and

uploaded samples.
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Results pages

The standard results page includes the sections described below.

� Overview/query results: The full annotation of all selected samples.

� miRNA profiles: a sortable and searchable expression matrix with

adjusted RPM values (Reads Per Million), a boxplot of the 20 most

abundant microRNAs, a pie-chart showing the relative frequency of

the 10 most abundant microRNAs, the 20 microRNAs with high-

est coefficient of variation (CV) and the 20 microRNAs with lowest

CV. The CV is calculated as the standard deviation of the adjusted

RPM expression values divided by the mean value. It is a standard-

ized measure of the dispersion of RPM values which does not depend

on the magnitude and therefore allows to compare the dispersion of

highly and lowly abundant microRNAs. The expression of microR-

NAs with lowest CV is less affected by the different variables in the

analysis and could be used as reference microRNAs to normalize or

standardize qPCR validation experiments.

� sRNA types distribution: Proportions of reads assigned to each of the

different small RNA types (miRNA, tRNA, yRNA, ribosomal RNA,

etc) are shown in a table and the 10 most frequent categories are

depicted in boxplots. The category ‘Un-assigned’ contains genome

mapped reads which could not be assigned to any annotation.

� Species Distribution: A high number of reads that cannot be mapped

to the genome can indicate contamination or the presence of genetic

material from symbionts or parasites. In order to address this ques-
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tion, liqDB summarizes the mapping to the human genome, virus and

bacteria collections showing the relative frequencies of reads assigned

to the different species. If a read maps to more than 20 loci in the

genome, it will not be used for expression profiling. Those reads get

the label ‘HR’ for highly redundant. hsa-HR will therefore refer to

the relative frequency of reads that map more than 20 times to the

human genome. Furthermore, a read can map with the same quality

(number of mismatches and length) to different indexes. In this cases,

a new category is generated mentioning all genomes separated by ‘-’.

For example human-virus-hsawill refer to the number and percentage

of reads that map both to the human genome and the virus collection.

� Download: Expression matrices are available for download as well as

a zip file with the complete analysis.

� Differential Expression: if available, pre-calculated study specific

comparisons or generated from user-provided groups are displayed.

Differentially expressed microRNAs are calculated using two-sided t-

test on Reads Per Million values. Subsequently, p-values are corrected

for multiple testing applying the Bonferroni procedure. Boxplots of

the most abundant differentially expressed microRNAs are displayed

and a link to a heatmap is provided. Files for the complete anal-

ysis can be found in the download section. Note that the output

for ‘Compare two datasets’ (user selected sets) will always contain

one pairwise comparison, while the differential expression section in

‘Browse studies’ might contain several pairwise comparisons if more

than two groups exist for one variable (e.g. SRP061240 with three
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different cancer types and healthy controls).

The microRNA search generates one output page with several boxplots

depicting the expression of the microRNAs as a function of the different

variables.

5.3 DATA AND METHODS

Database construction

All expression values and metadata were uploaded to a MySQL database.

The interactive web interface was implemented using the Django frame-

work together with Bootstrap, javascript and the plotly package (Plotly

Technologies, 2015, Collaborative data science, https://plot.ly) for interac-

tive data visualization. A backend java program connected to the database

calculates and prepares the raw results files. Apache2 was chosen as HTTP

webserver.

Data collection and processing

Suitable data was searched using the NCBI based SRA (short read archive)

repository and publications included in PubMed. The data was downloaded

in sra format and converted with fastq-dump to standard fastq format. For

expression profiling, sRNAbench, the successor program of miRanalyzer

[256] was used. After removing adapter or barcode sequences, the obtained

clean reads are collapsed into unique reads (UR) assigning a read count

(RC) to each unique read sequence. By means of bowtie1 [253] the collapsed

reads are mapped simultaneously to the human genome (GRCh38, patch
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10), a collection of bacteria (Bacteria Ensembl, Release 39) as well as to

human virus sequences (Human virus from EnsemblGenomes) and only the

best mapping reads are retained as described before [256]. One mismatch

within the 19 nt seed region was allowed in the mapping process.

The genome mapped reads are then assigned successively to several

reference libraries in a hierarchical way in the exact order described below.

After each step, reads can only be assigned to one library in order to avoid

cross-library matches. For example, after mapping miRNA reads, those are

removed and cannot be assigned to tRNAs or other small RNA annotations.

� miRNAs: miRBase v22 [272] and miRGeneDB v.2 (Fromm et al.,

MirGeneDB2.0: the curated microRNA Gene Database. bioRxiv,

https://doi.org/10.1101/258749). We produced a merged annotation

using miRBase names adding miRGeneDB sequences if those are not

annotated in miRBase. Human and several virus annotations are used

for profiling.

� tRNAs: GtRNAdb, a genomic tRNA database [273]

� vault-RNA, yRNA and guide RNAs extracted from RefSeq [274]

� Non-coding RNAs from Ensembl [252]

� Non-coding RNAs from RNAcentral release 9 [275]

� RNA sequences of coding genes from Ensembl (Release 91) [252]

Please note that no further filtering of the miRBase reference sequences

was performed which implies that, very likely, false positive miRNAs exist
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in the database. An example of this is miR-1246, which turned out to be a

U2 small nuclear RNA (RNU2-1) fragment useful to discriminate tumours

from controls [276].

Expression values and relative frequencies

The microRNA expression values are calculated based on raw read counts

adjusted for multiple mapping. The expression matrixes in RPM or ad-

justed raw read counts can be downloaded. The latter is the required format

for most differential expression packages like DEseq [237] and edgeR [235].

5.4 WORKING EXAMPLES

The influence of library preparation protocols on the mi-

croRNA profiles

The influence of different library preparation protocols on plasma-derived

exosomal RNA frequencies was first studied in 2013 by Huang et al. [265].

These authors report that the five most abundant microRNAs account for

49% of all miRNA mapped reads. Since this study is available at liqDB,

we can replicate these results by simply clicking on Browse liqDB, Browse

studies, finding this study (SRP020486) and then navigating to the miRNA

Profiles tab. In the miRNA profiles table it can be confirmed that liqDB

lists the same five miRNAs as the most frequent to make up for 46% of

miRNA mapped reads. Small differences are likely due to different miR-

Base versions as well as the inclusion of miRGeneDB in liqDB. Figure 12A

shows the differentially expressed miRNAs detected for this study, i.e. the

miRNAs which are highly influenced by the library preparation protocol.
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Since there are only two Illumina samples, statistical significance can only

result from Bioo Scientific (NEXTflex) vs. NEBnext protocol comparisons.

Hsa-miR-128 is the most expressed microRNA that is highly affected by

the protocol. Figure 12A gives a median RPM for NEBnext protocol of

237 658 (243 837 in the original article) while NEXTflex only yields 4655

(4569) RPM, nearly 2 orders of magnitude below. RPM values from liqDB

and the original article are therefore nearly identical.

However, since many more samples are included in liqDB, we can ex-

tend this analysis to a larger query in order to increase confidence in the

results. For instance, we can select plasma from all healthy subjects that

used miRNeasy RNA extraction and compare the samples that applied Il-

lumina library preparation protocol to those that used NEBnext. To do so,

we go to Compare datasets > Compare two sets of samples and we set the

selectors (see Figure 11A) for both groups following the desired parameters.

We included a minimum threshold of 200,000 miRNA reads to increase the

robustness of the outcome and then proceeded with all samples. While this

comparison yields three out of six most abundant microRNAs in common

with the SRP020486 results, it also reveals that 11 out of the 20 most abun-

dant microRNAs are differentially expressed. This confirms again that the

miRNA abundance in plasma is strongly affected by the library preparation

protocol. The hierarchical clustering (see Figure 12C) shows as well that

samples are grouped mostly by library protocol, although there is also one

cluster with NEBnext and Illumina samples which indicates the existence

of other variables that influence the miRNA expression profiles.

Recently, the influence of sample processing in miRNA sequencing was
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Figure 11: A schematic overview of liqDB. (A) the database can be queried in
five different ways, either by browsing pre-calculated content or by instant processing of
user-defined sets of samples. (B) liqDB was populated with 1607 samples from 19
different biofluids. The profiling of the data is carried out by means of sRNAbench (16)
using both miRBase and miRGeneDB as annotations. (C) The general output consists
of several sections, including miRNA profiles, differential expression (only if applicable)
and download (shown in the figure).
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Figure 12: (A) Differentially expressed genes for three different library preparation
protocols. (B) Differentially expressed miRNAs between NEBnext and Illumina
protocol using all plasma samples in liqDB. (C) Most Illumina samples (bright blue)
cluster together except for two of them in the middle of the NEBnext cluster (dark
blue).
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evaluated on a large scale study among nine different laboratories [277]

confirming the strong impact of library preparation and other variables.

Finding least variable miRNAs in serum samples

For some downstream validation experiments such as qRT-PCR, it may be

relevant to know which miRNAs are most stably expressed in order to use

them as reference. In this case, we queried the database for serum samples

using the following workflow: Browse liqDB > Search samples; then a

series of selectors are displayed. For these, we chose serum for Fluid, Both

for Sex, True for Healthy Subjects, miRNeasy for RNA extraction Protocol

and NEBnext for RNA Library preparation and then clicked Filter. To

avoid effect of other confounding factors, we limited the analysis to only

one extraction and one library protocol. Subsequently, we kept all samples

for analysis by clicking on Proceed with all samples. In the results page, we

then navigate to the miRNA Profiles tab where the last graph will show

the miRNAs with the lowest variability for the specified query (Figure 13A).

Comparing two sets of samples: plasma of men versus plasma

of women

In order to compare two sets of samples in the most realistically possible

way, potential confounding variables should be controlled for both sets. In

this case we analysed differences in plasma between men and women. To do

so, we first navigated to Compare Datasets > Compare two sets of samples.

Similarly to the previous example, we will find two sets of selectors: one for

the first group of our comparison and another for the second (See Figure
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Figure 13: Examples from the web interface. (A) Boxplot of least variable
miRNAs, candidates to control downstream validation. (B) Example of differentially
expressed miRNAs boxplots. (C) Example of heatmap displaying clustering of plasma
samples using differentially expressed miRNAs. Men are marked in dark blue and
women in bright. Generated using heatmaply (15).
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11A). For both selectors, we set Fluid to plasma, Healthy subjects to True,

Extraction protocol to miRNeasy and Library protocol to NEBnext ; for

Group 1 Sex will be male and for Group 2 female. Once in the page of

results, we navigated to the Differential Expression tab.

The boxplots graph (see Figure 13B) displays the 10 differentially ex-

pressed miRNAs with the highest expression values and then individual

samples can be clustered and visualized in a heatmap (see Figure 13C).

5.5 CONCLUSIONS AND OUTLOOK

Given that miRNAs are highly stable and relatively detectable in most

biofluids, it is safe to assume that they will play important roles in the fast

growing field of liquid biopsy. Many projects use high-throughput sequenc-

ing approaches in the exploratory phase of biomarker discovery making the

data publicly available through repositories such as SRA or GEO. In order

to structure, organize and unify this vast amount of information into an

interactive database, major problems like incomplete or inconsistent sam-

ple annotations need to be solved. liqDB is the first database that provides

researchers from the liquid biopsy field with browse- and downloadable co-

herently annotated datasets generated using the same bioinformatics pro-

tocol. Furthermore the database allows the comparison to external data

therefore enabling the generation and testing of new hypothesis. We also

encourage researchers to share their data through SRA and submit the ac-

cession to liqDB or just to point out any overlooked SRA projects that

might be suitable for inclusion.
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In the short term, there are three main improvements planned. First,

other small RNA derived sequences like isomiRs or fragments of tRNA,

yRNA or vault-RNA molecules will be included in liqDB as they all might

have biomarker potential [278]. Secondly, we will add different quality

related flags to the sample annotations so the user can decide to exclude

lower quality samples [279]. And finally, since differential expression is one

of the key analysis for gene expression data, we will improve this feature by

adding online support for DEseq [237] and EdgeR [235]. These additions

will be useful for exploratory analysis of the data as well as for the analysis

of confounding variables.

In summary, we anticipate that liqDB will be a useful tool for liquid

biopsy researchers as it can help to develop standardized and stable proto-

cols opening the door to reproducible reanalysis, realistic comparison and

hypothesis generation, important tasks to avoid unnecessary validation of

defective biomarker candidates which could prevent the discovery of actu-

ally useful biomarkers.
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Chapter 6

mirnaQC: a webserver for compar-

ative quality control of miRNA-seq

data
Based on the manuscript published in Nucleic Acids Research, 2020 Jul 2; 48(W1):W262-

W267 doi:10.1093/nar/gkaa452

Although miRNA-seq is extensively used in many different fields, its qual-

ity control is frequently restricted to a PhredScore-based filter. Other im-

portant quality related aspects like microRNA yield, the fraction of pu-

tative degradation products (such as rRNA fragments) or the percentage

of adapter-dimers are hard to assess using absolute thresholds. Here we

present mirnaQC, a webserver that relies on 34 quality parameters to as-

sist in miRNA-seq quality control. To improve their interpretability, qual-

ity attributes are ranked using a reference distribution obtained from over

36 000 publicly available miRNA-seq datasets. Accepted input formats

include FASTQ and SRA accessions. The results page contains several sec-

tions that deal with putative technical artefacts related to library prepara-

tion, sequencing, contamination or yield. Different visualisations, including

PCA and heatmaps, are available to help users identify underlying issues.

Finally, we show the usefulness of this approach by analysing two publicly

available datasets and discussing the different quality issues that can be

detected using mirnaQC.
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6.1 INTRODUCTION

Different aspects of miRNA-seq such as RNA extraction, storage condi-

tions and sample processing together with the chosen library preparation

protocol have a great impact on the obtained sequencing results [280,281].

In any bioinformatics analysis of high-throughput sequencing data, quality

control (QC) is the key step to reveal the existence of technical artefacts.

Neglecting this step can lead to both false discoveries and failure to iden-

tify the existing biological signal. The processing of miRNA-seq data is no

exception, and QC approaches should focus on measurable sample features

that can be linked to quality aspects. Moreover, whenever possible, these

quality parameters should hint or point out specific technical artefacts.

This approach would offer the user the chance to take appropriate actions

like excluding low-quality samples from the analysis or applying statistical

models in order to correct for such technical variation when possible like in

the case of batch effects [282].

Several sample attributes are generally calculated in sequencing exper-

iments including the total number of sequenced reads, number of adapter-

trimmed and filtered reads, percentage of mapped/unmapped reads and

PhredScore to measure the quality of the sequencing. Besides these gen-

eral statistics, many pipelines such as sRNAbench [218], mirTrace [247]

or miRge [220] implement measurements that are specifically useful for

miRNA-seq analysis like number of unique reads, percentage of miRNA-

mapping reads, read length distribution and relative abundance of frag-

ments from other RNA types (mostly tRNA and rRNA). Many of these
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parameters are clearly relevant for quality. Some indicate good quality

samples when they hold high values (number of miRNA reads, total num-

ber of reads) while others (percentage of rRNA, adapter dimers) do it when

they are low. Some of these features can be directly linked to a particular

artefact, like a high percentage of adapter dimers which is normally caused

by issues with adapters and/or input RNA concentrations [283]. Other

measurements, like smeared out read length distributions, can also be at-

tributed to specific problems, in this case RNA degradation. However, most

of them can be affected by several different artefacts thus it is frequently

not possible to directly reveal specific technical issues when considering

each quality feature individually. For instance, the yield in microRNAs can

be influenced by any artefacts that impact the total read yield including

contamination.

Regardless of the values good quality measurements should take, the

context-free interpretation of sample features is generally not straightfor-

ward. For example, as an obvious source of unwanted fragments, rRNA

presence should be minimized, but it is difficult and arbitrary to establish

a specific threshold (5%, 10%, 20%) to discard samples. Therefore, rather

than working with predefined or user-provided values that are hard to jus-

tify, a more agnostic approach would rely on relative values calculated from

a background of comparable experiments (i.e. similar samples) which would

in turn simplify the interpretation of the QC outcome.

A vast amount of publicly available data exists that can be exploited for

purposes beyond their original goal [284]. To generate a reference corpus of

experiments that can be used to rank quality features, we downloaded over
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36 000 raw sequencing datasets from the Sequence Read Archive (SRA) cov-

ering most model species. Samples were first processed using sRNAbench

and then 34 quality features were extracted from each sample and subse-

quently organised into the reference set. Furthermore, sample metadata is

used to tailor comparisons to more relevant sets of experiments (i.e. samples

from the same species and/or processed with the same library preparation

protocol).

In contrast with previously available software [220, 247], mirnaQC cal-

culates absolute and relative values for several quality-related features for a

set of miRNA-seq samples. Input data can be uploaded as FASTQ files or

provided as SRA run accessions that will subsequently be ranked making

use of the reference corpus mentioned above. An apparent advantage of

this approach is that fixed thresholds are no longer needed and decisions

can be made based on background statistics. Users can explore mirnaQC

results by means of interactive plots and tables that hold both absolute and

relative values of the 34 quality attributes. The output report is structured

into several categories trying to relate the quality attributes to the different

possible technical artefacts. This approach can help to identify low qual-

ity samples or reveal issues in the sample processing which is extremely

important for protocol optimisation.
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6.2 mirnaQC SAMPLE FEATURES AND

QUALITY MEASURES

The success of a small RNA sequencing run depends on many different

factors including RNA quality, quantity and purity, an optimized library

processing protocol and the sequencing itself. However, it is not always easy

or even possible to directly relate features extracted from sequencing data

to any technical artefacts. mirnaQC calculates and ranks several quality

parameters conceived to hint problems in the different aspects involved in

the preparation of miRNA sequencing libraries. Below we describe the

different sections and, wherever possible, the putative artefacts or quality

issues that can be derived from them.

Sequencing yield

This section focuses on the amount of reads and the fraction that can

be assigned to known miRNAs. Generally, parameters in this category

(percentage of valid reads, detected microRNAs) indicate high quality when

they hold high values. Low numbers (especially for the percentage of valid

input reads) can be related to problems in RNA processing or low input

material. Some sources like exosomes extracted from bodily fluids however,

are known to hold low levels of miRNA, thus high numbers should not be

expected for all sample types even for high quality libraries.

Library quality

In this category we list the number of reads that are filtered out due

to minimum length (15nt), the percentage of ribosomal RNA and the per-
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centage of short reads (15–17 nt). Their presence may be attributed to

degradation products from longer RNA molecules as no small RNAs are

known in this length range.

High percentages of adapter-dimers (0, 1 or 2 nt fragments after trim-

ming) normally indicate issues with the ratio of adapter to input RNA

concentration. In practice, it is very difficult to completely avoid adapter-

dimers, especially in low input samples such as blood. Nevertheless the

percentile may still be useful as it might show potential for improvement.

Ultra-short reads are defined as fragments with lengths between 3nt and

14nt (both inclusive).

Library complexity

In general it is also interesting to assess the complexity of the sample

since low complexity libraries provide very little information, even for oth-

erwise high-quality datasets. Several measurements are provided to grasp

the complexity at two levels that should be interpreted together:

� Sequencing library complexity: This is calculated as the ratio of the

total number of reads to unique reads. Lower values suggest higher

RNA diversity but it can also be caused by degradation.

� miRNA complexity: Frequently most microRNA reads correspond

to few miRNA genes preventing lowly expressed miRNAs from be-

ing detected. Several measures are given to estimate complexity at

this level: (i) percentage of miRNA expression assigned to the first,

the first 5 and first 20 most expressed miRNAs, (ii) the number of

miRNAs required to reach 50%, 75% and 95% of the total miRNA
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expression.

Putative contamination

The percentage of reads that could not be mapped to the species’

genome is calculated. Contamination is subsequently estimated by mapping

against a collection of bacterial and viral genomes.

Read length distribution

A narrow peak around 22 nucleotides in the read length distribution in-

dicates good quality samples whereas degraded or poor RNA quality man-

ifests in a broader distribution. Furthermore, it is clear that the 22nt peak

should be present for miRNA assigned reads and RNA quality issues might

exist if samples deviate from this.

We summarise the miRNA read length distribution in several ways:

mean length, mode of the distribution, the fraction of reads with lengths

21, 22 or 23 nt, the standard deviation and the skewness of the distribution.

RNA composition

The relative abundance of other RNA molecules is automatically pro-

filed using the sRNAtoolbox database [248]. Most of these longer RNA

species (rRNA,mRNA, lincRNA) are not known to be processed into

smaller molecules that can be picked up by miRNA-seq. Their presence

is a symptom of RNA degradation since smaller fragments are randomly

generated and then sequenced. Among these, rRNA is typically used be-

cause it’s the most abundant one.

Sequencing quality
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Sequencing quality is calculated by means of FastQC [285]. We deter-

mine the mean values of the different percentiles provided by the program

over all positions of the read.

6.3 GENERATION OF THE miRNA-seq REF-

ERENCE CORPUS (BACKGROUND

KNOWLEDGE)

The vital part of the presented quality control tool mirnaQC is the com-

parison corpus of miRNA-seq data that is used to rank user’s samples.

Using OmicIDXR API we obtained a list of >3000 SRA studies that were

annotated as ‘miRNA-Seq’ or ‘ncRNA-Seq’ (several ‘RNA-Seq’ were also

included after checking they were in fact ‘miRNA-Seq’ datasets).

For each study we performed the following steps:

� Read the meta-data for a study generating one entry per experiment

(SRX level)

� Download all SRR files that correspond to this SRX by means of

fastq-dump (fastq.gz)

� Detect the library preparation protocol

� Analyse the small RNA sequencing data with sRNAbench using all

available annotations from sRNAtoolboxDB

� Upload sRNAbench results to a MySQL database
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In total we analysed 36 338 samples from 30 different species. We distin-

guish 8 different protocols: Illumina, Illumina-2 (3’ adapter sequence), Next

England Biolabs (NEBnext), Qiagen-UMI, NextFlex, adapter trimmed,

SoliD and all others (custom). Over 500 billion sequencing reads were

analysed.

6.4 mirnaQC WORKFLOW AND IMPLEMEN-

TATION

An overview of the mirnaQC workflow is displayed on Figure 14. The only

required input is sequencing data in FASTQ format (or SRR accessions)

although sample species and library protocol information is recommended

if known. If the protocol or species are not provided by the user an auto-

matic detection algorithm, trained with a set of manually curated samples

from liqDB [95], will find the right input parameters. Condition or group

information can also be provided (optional). All files belonging to a given

group should be compressed into a single .zip, tar.gz or .7z file and then

separately uploaded. The file names will be used as group labels, and this

information will appear in some of the plots.

Input data is subsequently processed by sRNAbench in two steps: First

reads are simultaneously mapped to the species genome and a collection

of virus and bacterial genomes from sRNAtoolboxDB [248] allowing one

mismatch. Preference is given to the reference genome in case of multiple

mapping reads. In the second step reads are mapped to microRNA refer-

ence libraries [188, 189], RNAcentral [275] and Ensembl annotations [252]
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Figure 14: A schema of the front end and workflow of mirnaQC. Some
features of the quality report are depicted at the bottom.

for ncRNA and mRNA. Note that although samples are mapped to both

reference libraries, miRBase and MirGeneDB, currently the miRNA related

figures are extracted from the miRBase mappings.

Out of both sRNAbench output folders we extract a total of 34 quality

attributes that are next compared to 5 different reference sets: (i) samples

from the same kingdom (animals and plants), (ii) samples from the same

species, (iii) samples from the same kingdom and protocol, (iv) samples

from the same species and protocol and (v) low-input samples (defined

as those obtained from bodily fluids). Each comparison can be browsed

separately on the output page.
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The processing pipeline is a java programme that includes sRNAbench,

Bowtie [255] and a MySQL client to query the reference corpus. The web

interface was developed using Python and Django and runs on Apache. The

results report includes the six sections described in the mirnaQC sample

features and quality measures with tables and styles from multiQC [286] and

Plotly visualisations. Both absolute values and percentiles are displayed

and highlighted using a quartile colour code (see Figure 15C).

6.5 WORKING EXAMPLE

To show the usefulness of this tool, we analysed two publically available

studies. Basic statistics from the first dataset, one of the earliest large

studies designed to detect cervical cancer [287], can be seen on Figure 15A.

To help users identify potential issues, the quality parameters and their

percentiles are displayed using a quartile-based colour code (from better

to worse values: green, yellow, orange and red). Using this guide, several

problems can be identified: with few exceptions, most parameters rank on

the third (orange, Q3) and fourth quartiles (red, Q4). More specifically,

miRNA ‘peak’ values show that a rather low percentage of microRNA reads

have lengths between 21 and 23nt in the majority of samples. This means

that although those reads can be assigned to miRNA reference sequences,

they do not correspond to the canonical miRNA lengths. This hints an

RNA processing issue that might still be tolerated if all samples are similarly

affected, which can indicate either systematic artefacts or biological reasons.

It may also happen that not all samples are equally affected by a quality

issue, which can be more problematic if two or more conditions are to
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Figure 15: Different examples of mirnaQC sections and visualisations.
(A–D) display different quality aspects of a cancer study. (E) shows the output of
different sample complexity measures for different tissue types and two columns from
Basic Statistics section at the right.

110



6.5. WORKING EXAMPLE

be compared. mirnaQC allows users to assign samples to conditions in

order to explore this possibility. Figure 15B shows a PCA plot of the

expression values of the 50 most expressed miRNAs. Users can decide

which quality attribute should be used to colour the markers, in this case

we used ‘% top miRNA’ (the percentage of reads assigned to the most

abundant microRNA). This graph shows that the two outlier samples are

much less complex than the rest. Furthermore, because conditions are

marked with different symbols (control-circles and carcinoma-squares), we

know that these two samples belong to the same group. Keeping such

samples in the analysis is not recommended since they will certainly bias

the results. Figure 15E displays the distribution of this feature for both

groups by means of boxplots. Here we can see that these two samples are

outliers but otherwise both conditions show reasonably similar distributions

for this parameter.

Users can also explore potential sources of contamination from reads

mapped to viral and bacterial genomes. Figure 15D shows that all samples

suffer from rather high percentages of contamination reads. All samples

have more bacterial/viral reads than 75% of all animal samples in the ref-

erence set. This range of values indicates serious contamination with the

possible exception of cervical cancer samples, where this might be caused

by sample extraction or even have a role in the disease [288].

Finally, Figure 15E shows the library complexity of different tissues from

Takifugu rubripes [289]. While the top expressed microRNA in intestine

picks up 47.1% of all reads (percentile 88.4), in ovary this figure drops to

8.3% which corresponds to percentile 2.6. In ovary, eight microRNA sum
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up over 50% of all miRNA expression while in intestine it takes only two to

reach the same percentage which indicates a higher complexity of miRNA

expression in germ cells. Furthermore, ovary and testis exhibit much lower

percentages of miRNAs. This might be related to their larger repertoire of

small RNAs in germ cells (21) which automatically would lead to a lower

relative fraction of microRNAs in those samples.

6.6 CONCLUSION

We present a user-friendly web server for the comparative quality control

of miRNA-seq data that can be useful in several scenarios: to identify

low-quality samples that should be excluded from downstream analysis; to

reveal systematic errors in order to improve the library preparation process,

something especially relevant for pilot studies; and finally, to provide ex-

ternal quality validation for datasets so it can be used as a standard proof

of quality.

mirnaQC provides several output tables and visualisations for a total

of 34 quality attributes which allow users to rank their results against a

large corpus of comparable samples. In this way, no absolute thresholds

need to be applied and the user can evaluate their sequencing data based

on percentiles. Future developments include new types of analysis and

improved visualisations intended to detect confounding variables related to

quality issues that can affect downstream steps. Additionally, a dockerized

version of the tool will be made available so the pipeline can be run locally

or in computing clusters.
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6.7 DATA AVAILABILITY

https://arn.ugr.es/mirnaqc/
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Chapter 7

An exploration of the circulating

miRNAs in melanoma patients to

propose candidate biomarkers for

early tumor detection

7.1 INTRODUCTION

Melanoma is a type of cancer that originates from melanocytes, the cells

that produce pigmentation. This type of cancer most typically occurs in

the skin but can also develop in other parts of the body such as the eyes

[290]. Globally, melanoma is only the 19th most frequent type of cancer

but its incidence is much higher in Australia and New Zealand [291], where

people of fair skin are exposed to UV (Ultraviolet) light, or in Northern

Europe where the population, also of fair skin, engages in winter or sun-

seeking holidays [292]. Since melanoma is a public health concern in those

countries, the increased diagnosis statistics may also be a result of improved

detection [292]. In fact, melanoma was the third most common cancer

diagnosis in Australia in 2020, only behind breast and prostate cancer, and

the most common among people between the ages 20-39 [293]. The risk is

also increased among the elderly, as there may be a lag of up to 40 years

between the exposure to UV and the onset of the disease [292].
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As it happens with virtually every type of cancer, early detection and

treatment of melanoma improves its prognosis. In line with this, survival

rates in melanoma display staggering differences between stages: 5-year

survival rate in the US is 99% for localized disease (Stages 0, I and II), 66%

in the case of regional spread and only 27% for patients with distant spread

[294]. Similar trends have been determined for 10-year survival. It should

be noted that survival rates at later stages have dramatically increased

over the past few years (they used to be 10-20%) thanks to newly available

therapies including immunotherapy [295] and targeted therapies [296] that

are most effective when applied early.

In this context, it becomes apparent that early diagnosis tools can be of

great help to improve melanoma management. Current melanoma diagnosis

is based on detection of suspicious moles or other skin lesions that are

resected and assessed by pathology specialists. This may be impractical in

people with many moles or people of darker skin where lesions are harder

to detect. Some tissue biomarkers are of clinical interest and can be used

to assess the prognosis but there are no established circulating biomarkers

since studied candidates are either of little specificity such as LDH (Lactate

dehydrogenase) or only useful to assess prognosis at late stages [297].

Liquid biopsy is among the most practical strategies [298] to introduce

and comply with screening programs and would dramatically decrease the

lag between detection and diagnosis in potential melanoma patients, which

currently need specialized sample processing and assessment. Previous

studies have identified potential circulating miRNA biomarker panels in

melanoma patients, but these efforts mostly relied on technologies like mi-
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croarray [299] or qPCR [167] which cannot be reanalyzed using new miRNA

references or additional RNA libraries and that cannot be used to assess

changes in isomiR frequencies or proportions.

In this work, we explored the miRNA profiles of 26 melanoma patients

of all stages by means of miRNA-seq. Several potential miRNA-based

biomarkers, which partially overlap with results from previous similar stud-

ies, were identified as good predictors of tumor presence or early stage. We

also explored the impact of uridylation to reveal some miRNAs with NTA-U

levels that correlate with disease progression. Further work should include

the validation of these biomarkers in a larger independent cohort.

7.2 MATERIAL AND METHODS

7.2.1 Sample collection

Blood samples were obtained from the Oncology Service at the Univer-

sity Hospital Virgen de las Nieves, Granada and University Hospital San

Cecilio, Granada (Spain). The study was approved by the ethics commit-

tee of both hospitals (register number: 32140085) and all clinical research

was conducted according to the principles reflected in the Declaration of

Helsinki (’Ethical Principles for Medical Research Involving Human Sub-

jects’). Written consent was obtained from all controls and patients prior

to their enrolment in the study [300]. In total, 31 samples were collected

from healthy subjects and melanoma stages 0, I, II, III and IV (See Table

2). Blood samples were collected in BD vacutainer SSTII advanced tubes

(Becton Dickinson, Franklin Lakes, NJ, USA), incubated at room temper-
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ature for 30 min and centrifuged for 10 min at 1400g. The resulting serum

was stored at −80◦C until submission to sequencing services.

Table 2: Summary of clinical details of patient recruited in the study.

Stage n Age (median) Sex (M/F)

Control 5 Unknown Unknown

Melanoma - 0 5 74 3/2

Melanoma - I 5 48 4/1

Melanoma - II 5 68 3/2

Melanoma - III 4 50 3/1

Melanoma - IV 7 63 4/3

7.2.2 Small RNA sequencing

Serum samples were submitted for sequencing to the Genomics Unit of

the Germans Trias i Pujol Research Institute (IGTP). The samples were

prepped with the TruSeq small RNA Illumina protocol (2014 version)

adapted to serum samples with automated pooled library size selection

using Pippin prep. DNA libraries were generated and indexed prior to size

selection. Quality control was performed after size selection using Bioana-

lyzer (Agilent) with DNA 1000 assay chip. Single read 50nt libraries were

sequenced on a cBOT-HiSeq-2500. The number of sequenced reads per

sample ranged from 7M to 59M (See Figure 16).
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Figure 16: Number of reads sequenced per experiment (dots) in the context
of all liquid biopsy samples in SRA (bars). The outlier in percentie 37 is MIII-1
(generated using mirnaQC ).

7.2.3 Quality control of FASTQ files

Prior to preprocessing and analysis of the reads, quality control of the

fastq files was carried out using mirnaQC [231]. Briefly, fastq files were

uploaded and processed using the mirnaQC webserver and the resulting

quality metrics were ranked using all liquid biopsy samples in the database

as background. Outliers were detected by checking basic quality features

presented in the overview of the tool and by further exploration of the

problematic features with PCA of expression values (50 most expressed

miRNAs) combined with color labels derived from the rank (see Figure17).

Outliers were removed from the downstream differential expression analysis.
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7.2.4 Pre-processing and mapping

Fastq files were preprocessed with sRNAbench [218] using parameter pro-

tocol=Illumina. Reads were aligned on library mode using the following

references hierarchically mapped in this order: miRNAs (miRBase release

22.1), tRNA (GtRNAdb 2.0), Y RNA (from RNA central), remaining ncR-

NAs from Ensembl, remaining ncRNAs from RNAcentral, mRNA frag-

ments (cDNA from Ensembl), vertebrates viral genomes (retrieved from

NCBI), bacterial genome collection (retrieved from NCBI). isomiRs were

also profiled and classified using sRNAbench’s hierarchy including adenyla-

tions and uridylations (NTA-A and NTA-U).

7.2.5 Differential expression

Differential expression analysis was performed using DESeq [237], DE-

Seq2 [238], edgeR [235], NOISeq and Student’s t-test [234] on RPM (Reads

Per Million). Different comparisons were performed with sRNAde and

then summarized using a python script. To correct for multiple testing,

Benjamini–Hochberg procedure was applied so adjusted p-value and FDR

(False Discovery Rate) are used interchangeably. Outlier samples were re-

moved from the analysis to avoid statistical power reduction.

7.2.6 Differential uridylation

Uridylation levels per miRNA were calculated using sRNAbench with pa-

rameter isoMiR=true. A one-way ANOVA test (ANalysis Of VAriance)

was performed on each miRNA to detect if differences in average group

119



7.2. MATERIAL AND METHODS

urydilation were significant. Samples were grouped according to clinical

cancer stage (Control, 0, I, II, III, IV).
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7.3. RESULTS

7.3 RESULTS

7.3.1 Quality Control of miRNA-seq libraries

Overview of the most relevant quality features using the heatmap tool re-

vealed 7 samples with high amounts of short fragments (Q4 compared to

human liquid samples in SRA). One of them was a clear outlier in terms

of quality (MIII-3) that displayed lower values in two extra features: Per-

centage of reads in miRNA peak (21-23nt) and a higher standard deviation

of the length distribution of miRNA reads. Upon further inspection in the

“Read length distribution” section of the tool we could confirm that the

skewness of the distribution was also lower (flatter) for this sample. Com-

bined, these signs indicate possible RNA degradation. Exploration of the

PCA from miRNA expression values revealed 3 further outliers: MIII-2,

MIV-7 and MIV-5. These samples displayed an increased amount of ul-

trashort fragments (discarded previous to the analysis) which may have

affected their expression pattern (see Figure 17). This artifact could also

be an indication of RNA degradation or, if present across all cDNA libraries

processed together, of imperfect size selection.
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7.3. RESULTS

Figure 17: PCA of the top50 most expressed miRNAs. Samples are colored
using the mirnaQC quartile for ”percentage of ultrashort reads”. Four outliers can be
observed.

7.3.2 RNA categories distribution

On average, mature miRNAs accounted for the largest fraction of small

RNAs present in each sample (∼33%), followed by Y RNA (∼23%). tRNA

fragments and bacterial sequences also accounted for a significant amount

of reads ∼14% and ∼5% respectively. The remaining categories were less

than 5% of reads each (See Figure 18). Some samples had a remarkably

smaller miRNA fraction than their counterparts: MI-1, MIII-2, MIII-3 and

MIV-5, three of which were already spotted as outliers in the quality control

step.
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7.3. RESULTS

7.3.3 miRNA expression

On average, 33% of mapping reads were assigned to different miRNAs

(range 3-60%). The number of mature miRNA references receiving map-

pings ranged from 421 to 1282 (average 1116). This did not seem to be

related to sequencing depth (see Figure 19A) and again, samples outside

the expected ranges overlapped with the outliers described before. A similar

trend can be observed when analyzing miRNA-mapping reads (see Figure

19B).

The most abundant miRNA took on average 25% of the mapping reads,

the top 5 took 49%, the top 10 63%, the top20 78% and the top 50 93%.

Some of the outliers show very different behavior in the most expressed

miRNAs (see Figure 20). For instance MI-1 only has 9% of reads mapping

to miR-486-5p and MIII-2, MIV-5 and MIV-7 have abnormally low miR-

92a-3p values.

All samples shared only two miRNAs among their 5 most expressed:

miR-486-50 and miR-22-3p (same for the top 10 most expressed). The

number of shared miRNAs rises to 5 among the top 20 and to 31 among

the top 50. Finally, all samples have 64 miRNAs in common among the top

100. This same analysis was replicated after removing the outliers detected

before, which increased the percentage of shared miRNAs among samples

(see Table 3).
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7.3. RESULTS

Figure 19: Number of mature miRNAs detected per sample compared to
total number of sequenced reads (A) and total number of miRNA mapping
reads.
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7.3. RESULTS

Table 3: Number of most expressed miRNAs (N) shared by all samples in
the study before and after removing the outliers.

N Shared

all

samples

All

samples

(%)

No

Outliers

No

Outliers

(%)

5 2 40% 4 80%

10 2 20% 4 40%

20 5 25% 8 40%

50 31 62% 38 76%

100 64 64% 78 78%

7.3.4 Differential expression

Controls versus cancer (melanoma stages 0, I, II, III, IV)

A total of 143 different miRNAs were differentially expressed between both

conditions according to at least one DE method (p-val < 0.05) and 21

were differentially expressed according to 4 out of 5 methods, some are

shown in Figure 21). If we consider FDR < 0.05, only 4 miRNAs meet the

requirement: hsa-miR-760, hsa-miR-658, hsa-miR-4508 (underexpressed,

called by DESeq2 ) and hsa-miR-664a-3p (overexpressed, called by t-test).
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7.3. RESULTS

Figure 21: Differentially expressed miRNAs (healthy control vs all cancer
stages) called by 4 out of the 5 DE methods. 21 miRNAs were differentially
expressed (p < 0.05) but only 6 were selected based on relative abundance (higher is
favored) and inter-group variability (more homogeneous cancer groups were favored)
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7.3. RESULTS

Control vs stages 0, I, II (Early detection)

164 miRNAs were differentially expressed between both groups, 41 of which

were predicted by 4 methods and 35 by 3 methods. After FDR correction,

22 miRNAs were still significantly DE by at least one method. Among

these, hsa-miR-664a-3p was detected by 3 different methods (also a marker

in the previous analysis) as well as has-miR-199b-5p, predicted by 2 meth-

ods and a candidate marker to discriminate between healthy and cancer.

Selected differentially expressed miRNAs are shown in Figure 22.
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7.3. RESULTS

Figure 22: Differentially expressed miRNAs (healthy control vs stages 0, 1
and 2) called by 4 out of the 5 DE methods. 41 miRNAs were differentially
expressed (p < 0.05) but only 6 were selected based on relative abundance (higher is
favored) and inter-group variability (more homogeneous cancer groups were favored
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7.3.5 isomiR analysis

For each sample, the fraction of each isomiR category was calculated to

study if the stage had any impact on miRNA processing (See Figure 23).

No effects can be appreciated that relate to progression of melanoma.

Figure 23: Fraction of different isomiR types. Samples are grouped according to
clinical cancer stage

Differential uridylation

Differences in uridylation at the level of single miRNAs were also explored

as a biomarker source. Those miRNAs that displayed some tendency cor-

relating to progression are shown in Figure 24. Among those, miR-127-3p

stood out (p-value < 0.002743016, ANOVA), a miRNA that has been de-
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scribed to play a role in melanoma progression [301, 302] and other types

of cancer [303,304]. miR-370 has actually been reported to increase its ex-

pression with melanoma progression [305], effectively working as an onco-

gene. miR-30e-3p is also of particular interest since it’s also differentially

expressed (3/5 methods) between control and cancer patients, although it

shows a very small difference (from slightly over 10% uridylation in earlier

stages to slightly under 10% in later stages).

Figure 24: Fraction of uridylated (NTA-U) reads for selected miRNAs.
Samples are grouped according to clinical cancer stage.

7.4 DISCUSSION

Liquid biopsy has emerged as a promising approach for early cancer detec-

tion. Types of cancer with a wide survival gap between early and late stages

such as melanoma, where stage I diagnoses are 4 times more likely to survive
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than stage IV patients, will benefit the most from these techniques since

they provide an opportunity of early treatment where chances of patient

survival are maximal. Additionally, the time delay between sampling and

diagnosis would dramatically decrease as a consequence of applying liquid

biopsy methods which merely require a simple blood extraction. Among the

circulating biological materials, cell-free miRNAs have gathered the most

attention [171] probably because of their relative stability in bodily fluids.

In this study we explored the abundance of circulating miRNAs cur-

rently annotated in miRBase in a dataset of 26 melanoma patients using

miRNA-seq. Melanoma patients were evenly distributed across all clinical

stages (0, I, II, III, IV) and 5 control samples were obtained from healthy

volunteers. After performing two differential expression comparisons, con-

trol vs cancer and control vs early stages, we identified 143 and 164 miR-

NAs, respectively, that were significantly over-/underexpressed according

to at least 4 out of 5 DE methods. We took this consensus-based approach

to identify DE miRNAs because we found that multiple testing correction

was too severe and close to zero miRNAs were detected as differentially

expressed after applying FDR. This way, however, we were able to increase

confidence on the analysis without losing much statistical power. An en-

richment analysis (Gene Set Enrichment Analysis) was performed using

miEAA2 [306] and the DE miRNAs as input. This analysis revealed that

many cancer terms were significantly enriched including medulloblastoma,

bladder cancer, NSCLC, rectum adenocarcinoma, lymphoma and, most im-

portantly, melanoma (it was the disease with the 11th lowest p-value). It

is also noteworthy that some of the miRNAs identified as DE had been

previously reported by similar studies. For instance, hsa-miR-664b-5p and
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hsa-miR-145-5p were also described as deregulated by a previous study

using microarrays [299]. Interestingly, loss or mutation of hsa-miR-664b-

5p has been linked to proliferation in the context of melanoma [307] and

other malignancies [308]. Nevertheless, conclusions drawn from this set

of molecules should be extremely cautious since the relative abundance of

each of these miRNAs was rather low: they were all below 50,000 RPM

(equivalent to 0.5%) and frequently below 10,000 or even 1,000 RPM. In

any case, these biomarkers or their combination into a melanoma diagno-

sis panel should be confirmed in a validation study using an independent

cohort.

We also explored the distribution of the isomiR repertoire across the

patients. Particularly, we focused on NTA-U (non-templated uridylation),

a type of post-transcriptional modification that has been linked to arm

switching [309], miRNA degradation [310] and alternative targeting [230].

miR-127-3p was the only miRNA with significant changes in the mean frac-

tion of uridylated reads per group (p-value < 0.0027, ANOVA) although

its levels were not differentially expressed in the comparisons explored.

miR-127-3p has been reported to behave as a tumor suppressor in several

types of cancer including epithelial ovarian cancer [311] , glioblastoma [312],

gastric cancer [313] and osteosarcoma [303]. More importantly, miR-127-

3p is underexpressed in melanoma cells [302] and serum of patients [314]

and its overexpression was reported to repress melanoma progression in in

vivo [302] and in vitro [301] experiments. Although the role of miR-127-3p

in the progression of melanoma is yet to be fully understood, it targets the

Protein delta homolog 1 (DLK1) which has been described to modulate

NOTCH1-dependent proliferation in melanoma cells [315] and miR-127-3p
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restoration reduces cell proliferation in melanoma models [302]. According

to our analysis, miR-127-3p uridylation decreases from around 50% in con-

trols and early stages of melanoma (0, I) to around 35% for later stages (III

and IV). This could hint an increase in the turnover of this mature miRNA

but it would be premature to link it to any physiological function since

cancer tissue miRNA profiles were not available. Finally, it is worth men-

tioning that miR-127-3p has been used in expression panels for the diagnosis

of melanoma [316] and other types of cancer such as lymphoma [317].

Although the biomarkers proposed here seem promising, it must be

admitted that this study is limited by the size of the cohort (n=31). As-

sessment of any kind of classification produced using this small dataset will

inevitably lead to an overestimation of its accuracy, a common problem

known as overfitting. To avoid such a pitfall, an independent validation

cohort is necessary. Ideally, this approach would allow to compose a panel

of biomarkers using this dataset that can correctly classify patients in the

validation cohort. Furthermore, we observed that very few miRNAs took

a large fraction of the miRNA reads in all samples which could be caused

by different artifacts and can lead to erroneous quantification. Validation

using a different technique that is prone to different bias, such as RT-PCR,

would consequently increase the confidence in the biomarkers proposed.

In summary, we have proposed several miRNA-based biomarkers for

detection of melanoma using NGS data from 26 patients. Many of the pro-

posed markers had been described to have a role either in the progression of

melanoma or of some other type of cancer. Furthermore, some of them have

even been proposed as biomarkers in several cancer diagnosis panels that
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are applied to either blood or tissue samples. Even though these biomark-

ers seem promising, validation in an independent cohort is still necessary.

This work provides a starting point for the development of miRNA-based

liquid biopsy panels for early detection of melanoma.
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Chapter 8

Conclusions

1. As part of this thesis, different bioinformatics methods were developed

and implemented into user-friendly tools in order to make analysis of

small RNA NGS data more reliable and reproducible. Special focus

was set on the quality control and analysis of samples from bodily flu-

ids which can be highly problematic, especially if their input is low.

These tools are: 1) sRNAbench, an updated pipeline and webserver

for the analysis of miRNA-seq profiles; 2) liqDB, a manually curated

database of liquid biopsy miRNA-seq profiles and 3) mirnaQC, a web-

server for comparative quality control of miRNA-seq data.

2. Some of the implemented methods required a large number of

miRNA-seq experiments and, in order to obtain and process suit-

able samples, some sort of workflow was needed. We developed a

pipeline that can retrieve updated metadata from SRA to select likely

miRNA-seq samples, including potentially misclassified experiments

that mention miRNA in their title or description. Once said samples

have been downloaded, the relevant information is derived from the

metadata or inferred from the sample reads.

3. Accurate inference of library preparation protocol can be achieved by

means of a multi-step iterative method. This information is crucial for

the appropriate preprocessing of miRNA-seq samples but often miss-

ing or poorly annotated in SRA metadata. A tool was implemented

to detect any commercially available small RNA protocol in addition
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to custom protocols containing random adapters and/or UMIs. The

algorithm is based on maximization of miRNA detection in a subset

of reads.

4. Quality control of miRNA-seq experiments is a nontrivial problem.

We analyzed over 30 quality parameters across more than 30,000 pub-

licly available miRNA-seq samples to determine how their distribution

affected the resulting miRNA profiles. We stored the distribution of

these parameters into a database and organized the quality features

into categories: sequencing yield, library complexity, library quality,

putative contamination, length distribution and sequencing quality.

The selected parameters are still to be jointly considered and they

only provide limited explanations for unwanted technical variability.

Documentation is provided to help users identify specific issues with

their samples.

5. Visualizations and quality features provided in mirnaQC enable iden-

tification of outliers and point to likely technical causes behind the

issues. Rather than arbitrarily decided thresholds, these features are

provided as percentiles so users can interpret them in the context of

a large corpus of uniformly processed samples. In the chapter that

describes mirnaQC, several examples of successful application of this

process are discussed.

6. Quality control of miRNA-seq data is context-dependent. We were

first struck by this fact when trying to identify outliers in our in-

house liquid biopsy data: when compared to the whole corpus of

experiments all of our samples seemed of very poor quality according
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to most parameters, which therefore appeared to be of little to no

use. This was remedied by implementing subset comparisons, which

allows to compare only to samples selected by the user. Subsets in-

clude samples from the same species, samples with the same library

preparation protocol and samples from bodily fluids.

7. Small RNA sequencing data from liquid biopsies can be affected by

multiple confounding variables including sequencing artifacts such as

ligation bias. Identification of such factors can only be achieved by

systematic comparison of large amounts of sequencing data covering

all those variables. In liqDB we compiled, processed and manually

curated the 31 liquid biopsy miRNA-seq studies publicly available

at the time into a freely accessible database for data download and

reanalysis.

8. Both liqDB and mirnaQC required data processing by sRNAbench.

To accommodate new protocols and integrate some improvements,

sRNAbench was reimplemented and dockerized, which allows easy

and quick portability between computers. New developments include

one-step launching of multiple samples, updated small RNA refer-

ences and protocols, the redesign of several result pages including

new visualizations and the possibility to process spike-in sequences.

9. Differential expression of miRNA transcripts is an understudied task

and most researchers rely on differential expression methods modeled

on mRNA sequencing data. Therefore, the differential expression

module of sRNAtoolbox was improved to incorporate the 5 most fre-

quently used methods together with a consensus set, a strategy that
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allows prioritization of candidate biomarkers. Additionally, the detec-

tion of significant differences in processing patterns among groups was

also implemented to take advantage of the extra layer of information

found in isomiRs and isomiR fractions.

10. To show the usefulness of this approach, we applied the methods de-

veloped in this thesis to a set of liquid biopsy samples from melanoma

patients. Several miRNAs were found to be differentially abundant

between healthy controls and melanoma patients according to differ-

ent DE methods. Furthermore, some miRNAs also exhibited poten-

tial as early melanoma biomarkers.

11. Finally, a few biomarkers were proposed based on their uridylation

pattern. Among these, miR-127-3p showed remarkable potential be-

cause of its relative abundance ( 3000 RPM), a consistently decreas-

ing pattern (from 50% uridylation in controls to 35% in stage IV)

and being statistically significant. Besides, miR-127-3p was also pre-

viously linked to melanoma and its overexpression has been reported

to repress cancer progression.
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Victor Barrera, Roderic Esṕın, Florian Thibord, Xavier Bofill-De Ros,

Eric Londin, Aristeidis G Telonis, Elisa Ficarra, Marc R Friedländer,

John H Postlethwait, Isidore Rigoutsos, Michael Hackenberg, Ioan-

nis S Vlachos, Marc K Halushka, Lorena Pantano Unification of

miRNA and isomiR research: the mirGFF3 format and

the mirtop API Bioinformatics, 2019, doi: 10.1093/bioinformat-

ics/btz675.

� Bastian Fromm, Diana Domanska, Eirik Høye, Vladimir Ovchinnikov,

Wenjing Kang, Ernesto Aparicio-Puerta, Morten Johansen, Kjersti

Flatmark, Anthony Mathelier, Eivind Hovig, Michael Hackenberg,

Marc R Friedländer, Kevin J Peterson MirGeneDB 2.0: the meta-

zoan microRNA complement Nucleic Acids Research, 2019, doi:

10.1093/nar/gkz885.

� Chantal Scheepbouwer, Kayla Borland, Ernesto Aparicio-Puerta,

Heleen Verschueren, Laurine Wedekind, Jip Ramaker, Branko Mis-

ovic, Mathilde CM Kouwenhoven, David Noske, Peter Vandertop,

Pieter Wesseling, Tom Wurdinger, Michael Hackenberg, Stefanie

Kellner, Danijela Koppers-Lalic The epitranscriptomic code in

LGG: Metabolically reprogrammed IDH-mutant gliomas al-

ter tRNA modification landscape Neuro-Oncology, 2019, doi:

10.1093/neuonc/noz175.462.

� Ernesto Aparicio-Puerta, Bastian Fromm, Michael Hackenberg, Marc

K. Halushka In Silico Analysis of Micro-RNA Sequencing

Data. Chapter 13 of RNA Bioinformatics Methods in Molecular

Biology, vol 2284. Humana, New York, NY, 2021, doi: 10.1007/978-

142



1-0716-1307-8 13.

� Fabian Kern, Lena Krammes, Karin Danz, Caroline Diener, Tim
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insostenible, no solo por la cantidad de trabajo que les supońıa a ellos,
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(cáspita, teńıamos muchos), algún cuatrimestre incluso alteró su ruta a la
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[8] U. Sahin, K. Karikó, and Ö. Türeci, “MRNA-based therapeutics-

developing a new class of drugs,” Nature Reviews Drug Discovery,

vol. 13, pp. 759–780, sep 2014.

[9] A. Heiser, D. Coleman, J. Dannull, D. Yancey, M. A. Maurice, C. D.

Lallas, P. Dahm, D. Niedzwiecki, E. Gilboa, and J. Vieweg, “Autol-

ogous dendritic cells transfected with prostate-specific antigen RNA

stimulate CTL responses against metastatic prostate tumors,” The

Journal of Clinical Investigation, vol. 109, pp. 409–417, feb 2002.

[10] B. Weide, J. P. Carralot, A. Reese, B. Scheel, T. K. Eigentler, I. Ho-

err, H. G. Rammensee, C. Garbe, and S. Pascolowz, “Results of

the first phase I/II clinical vaccination trial with direct injection of

mRNA,” Journal of Immunotherapy, vol. 31, pp. 180–188, feb 2008.

[11] K.Barnes, “The first monoclonal antibody therapy,” Nature, p. 2,

2018.

[12] J. Li and Z. Zhu, “Research and development of next generation of

antibody-based therapeutics,” Acta Pharmacologica Sinica 2010 31:9,

vol. 31, no. 9, pp. 1198–1207, 2010.

[13] J. M. Reichert, “Antibody therapeutics approved or in regulatory

review in the EU or US,” 2021.

[14] A. Mullard, “FDA approves 100th monoclonal antibody product,” jul

2021.

155



[15] J. K. Liu, “The history of monoclonal antibody development -

Progress, remaining challenges and future innovations,” Annals of

Medicine and Surgery, vol. 3, no. 4, pp. 113–116, 2014.

[16] J. M. Unger, E. Cook, E. Tai, and A. Bleyer, “The Role of Clini-

cal Trial Participation in Cancer Research: Barriers, Evidence, and

Strategies,” American Society of Clinical Oncology Educational Book,

vol. 36, pp. 185–198, jun 2016.

[17] J. M. Unger, D. L. Hershman, C. Till, L. M. Minasian, R. U. Osaro-

giagbon, M. E. Fleury, and R. Vaidya, “”When Offered to Partici-

pate”: A Systematic Review and Meta-Analysis of Patient Agreement

to Participate in Cancer Clinical Trials,” Journal of the National Can-

cer Institute, vol. 113, pp. 244–257, mar 2021.

[18] “Budget Appropriation for Fiscal Year 2020 - NIH: National Institute

of Allergy and Infectious Diseases.”

[19] “Chan Zuckerberg Initiative..”

[20] “Bill & Melinda Gates Foundation.”

[21] “Zara founder to spend $344 million on breast cancer-screening for

Spanish hospitals - Reuters.”

[22] R. Sengupta and K. Honey, “Aacr cancer progress report 2020: Turn-

ing science into lifesaving care,” Clinical Cancer Research, vol. 26,

no. 19, pp. 5055–5055, 2020.

[23] M. López-Gómez, E. Malmierca, M. de Górgolas, and E. Casado,

“Cancer in developing countries: The next most preventable pan-

156



demic. The global problem of cancer,” Critical Reviews in Oncolo-

gy/Hematology, vol. 88, pp. 117–122, oct 2013.

[24] J. Baselga, N. Bhardwaj, L. C. Cantley, R. DeMatteo, R. N. DuBois,

M. Foti, S. M. Gapstur, W. C. Hahn, L. J. Helman, R. A. Jensen,

E. D. Paskett, T. S. Lawrence, S. G. Lutzker, and E. Szabo, “AACR

Cancer Progress Report 2015,” 2015.

[25] World Health Organization, “Cancer,” 2021.

[26] “What Is Cancer? - National Cancer Institute,” 2021.

[27] M. Quaresma, M. P. Coleman, and B. Rachet, “40-year trends in an

index of survival for all cancers combined and survival adjusted for

age and sex for each cancer in England and Wales, 1971-2011: A

population-based study,” The Lancet, vol. 385, pp. 1206–1218, mar

2015.

[28] “Lung Cancer - Non-Small Cell: Statistics — Cancer.Net,” 2021.

[29] H. Dillek̊as, M. S. Rogers, and O. Straume, “Are 90% of deaths from

cancer caused by metastases?,” Cancer Medicine, vol. 8, pp. 5574–

5576, sep 2019.

[30] D. Hanahan and R. A. Weinberg, “The Hallmarks of Cancer,” Cell,

vol. 100, no. 1, pp. 57–70, 2000.

[31] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: The next

generation,” Cell, vol. 144, pp. 646–674, mar 2011.

[32] T. Estape, “Cancer in the elderly: Challenges and barriers,” Asia-

Pacific Journal of Oncology Nursing, vol. 5, no. 1, pp. 40–42, 2018.

157



[33] G. G. Chen and P. B. Lai, Apoptosis in carcinogenesis and chemother-

apy: Apoptosis in cancer. Springer Netherlands, 2009.

[34] C. Wang and R. J. Youle, “The Role of Mitochondria in Apoptosis,”

Annual review of genetics, vol. 43, p. 95, 2009.

[35] P. E. D. Costa, “Robbins’ pathologic basis of disease. R. S. Cotran,

V. Kumar and S. L. Robbins. W. B. Saunders, Philadelphia, 1989.

No. of pages: 1519. Price £37. ISBN:0 7216 2302 6,” The Journal of

Pathology, vol. 160, no. 1, p. 89, 1990.

[36] P. Jaime-Sanchez, I. Uranga-Murillo, N. Aguilo, S. C. Khouili, M. A.

Arias, D. Sancho, and J. Pardo, “Cell death induced by cytotoxic

CD8 + T cells is immunogenic and primes caspase-3-dependent

spread immunity against endogenous tumor antigens,” Journal for

ImmunoTherapy of Cancer, vol. 8, no. 1, p. e000528, 2020.

[37] Leslie A. Pray, “Errors in DNA Replication — Learn Science at Sc-

itable,” 2008.

[38] B. N. Ames, M. K. Shigenaga, and T. M. Hagen, “Oxidants, antiox-

idants, and the degenerative diseases of aging,” 1993.

[39] J. Fowles and E. Dybing, “Application of toxicological risk assessment

principles to the chemical constituents of cigarette smoke,” Tobacco

Control, vol. 12, no. 4, p. 424, 2003.

[40] A. J. Sasco, M. B. Secretan, and K. Straif, “Tobacco smoking and

cancer: A brief review of recent epidemiological evidence,” Lung Can-

cer, vol. 45, no. SUPPL. 2, pp. S3—-S9, 2004.

158



[41] A. Weston and C. C. Harris, “Chemical Carcinogenesis,” in Holland-

Frei Cancer Medicine (et al. ufe DW, Pollock RE, Weichselbaum RR,

ed.), ch. Chapter 17, Hamilton (ON): BC Decker; 2003., 6 ed., 2003.

[42] J. E. Cleaver and D. L. Mitchell, Ultraviolet Radiation Carcinogene-

sis. BC Decker, 2000.

[43] L. R. Ferguson, “Meat and cancer,” Meat Science, vol. 84, pp. 308–

313, feb 2010.

[44] V. Bagnardi, M. Blangiardo, C. L. Vecchia, and G. Corrao, “Alcohol

Consumption and the Risk of Cancer: A Meta-Analysis,” Alcohol

Research & Health, vol. 25, no. 4, p. 263, 2001.

[45] G. Obe and H. Ristow, “Mutagenic, cancerogenic and teratogenic

effects of alcohol,” Mutation Research/Reviews in Genetic Toxicology,

vol. 65, no. 4, pp. 229–259, 1979.

[46] K. Kabsch and A. Alonso, “The human papillomavirus type 16 (HPV-

16) E5 protein sensitizes human keratinocytes to apoptosis induced

by osmotic stress,” Oncogene, vol. 21, pp. 947–953, feb 2002.

[47] A. Mantovani, “Molecular Pathways Linking Inflammation and Can-

cer,” Current Molecular Medicine, vol. 10, pp. 369–373, may 2010.

[48] K. Taniguchi and M. Karin, “IL-6 and related cytokines as the critical

lynchpins between inflammation and cancer,” Seminars in Immunol-

ogy, vol. 26, pp. 54–74, feb 2014.

[49] W. KY, C. K, and C. GA, “Obesity and cancer,” The oncologist,

vol. 15, no. 6, pp. 197–204, 2010.

159



[50] J. Clague and L. Bernstein, “Physical activity and cancer,” Current

Oncology Reports, vol. 14, no. 6, pp. 550–558, 2012.

[51] H. Vainio, R. Kaaks, and F. Bianchini, “Weight control and physical

activity in cancer prevention: International evaluation of the evi-

dence,” European Journal of Cancer Prevention, vol. 11, no. SUPPL.

2, pp. S94—-100, 2002.

[52] C. M. Friedenreich and M. R. Orenstein, “Physical activity and cancer

prevention: Etiologic evidence and biological mechanisms,” Journal

of Nutrition, vol. 132, pp. 3456S—-3464S, nov 2002.

[53] L. H. Kushi, T. Byers, C. Doyle, E. V. Bandera, M. McCullough,

T. Gansler, K. S. Andrews, and M. J. Thun, “American Cancer Soci-

ety Guidelines on Nutrition and Physical Activity for Cancer Preven-

tion: Reducing the Risk of Cancer With Healthy Food Choices and

Physical Activity,” CA: A Cancer Journal for Clinicians, vol. 56,

pp. 254–281, sep 2006.

[54] B. L. Henderson BE, “Hormones and the Etiology of Cancer,” in

Holland-Frei Cancer Medicine, BC Decker, 2000.

[55] B. E. Henderson, R. K. Ross, M. C. Pike, and J. T. Casagrande,

“Endogenous Hormones as a Major Factor in Human Cancer,” Cancer

Research, vol. 42, no. 8, pp. 3232–3239, 1982.

[56] B. E. Henderson, R. Ross, and L. Bernstein, “Estrogens as a Cause

of Human Cancer: The Richard and Hinda Rosenthal Foundation

Award Lecture,” Cancer Research, vol. 48, no. 2, 1988.

160



[57] P. Lichtenstein, N. V. Holm, P. K. Verkasalo, A. Iliadou, J. Kaprio,

M. Koskenvuo, E. Pukkala, A. Skytthe, and K. Hemminki, “En-

vironmental and Heritable Factors in the Causation of Cancer —

Analyses of Cohorts of Twins from Sweden, Denmark, and Finland,”

http://dx.doi.org/10.1056/NEJM200007133430201, vol. 343, no. 2,

pp. 78–85, 2009.

[58] V. Fanfani, L. Citi, A. L. Harris, F. Pezzella, and G. Stracquadanio,

“The landscape of the heritable cancer genome,” Cancer Research,

vol. 81, pp. 2588–2599, may 2021.

[59] C. K, L. P, and H. K, “Environmental and heritable causes of can-

cer among 9.6 million individuals in the Swedish Family-Cancer

Database,” International journal of cancer, vol. 99, pp. 260–266, may

2002.

[60] J. Yokota, “Tumor progression and metastasis,” Carcinogenesis,

vol. 21, pp. 497–503, mar 2000.

[61] Editorial, “Tumor Progression,” Cancer Research, vol. 17, no. 5, 1957.

[62] P. J. Fialkow, “Clonal origin of human tumors.,” nov 1979.

[63] P. C. Nowell, “The clonal evolution of tumor cell populations,” Sci-

ence, vol. 194, no. 4260, pp. 23–28, 1976.

[64] M. C. van den Berg, L. MacCarthy-Morrogh, D. Carter, J. Morris,

I. Ribeiro Bravo, Y. Feng, and P. Martin, “Proteolytic and Oppor-

tunistic Breaching of the Basement Membrane Zone by Immune Cells

161



during Tumor Initiation,” Cell Reports, vol. 27, pp. 2837–2846.e4, jun

2019.

[65] M. Greaves and C. C. Maley, “Clonal evolution in cancer,” Nature,

vol. 481, no. 7381, pp. 306–313, 2012.

[66] I. Carr, “Lymphatic metastasis,” CANCER AND METASTASIS RE-

VIEW, vol. 2, no. 3, pp. 307–317, 1983.

[67] I. R. Beavon, “The E-cadherin-catenin complex in tumour metasta-

sisstructure, function and regulation,” European Journal of Cancer,

vol. 36, no. 13, pp. 1607–1620, 2000.

[68] K. Pantel and M. R. Speicher, “The biology of circulating tumor

cells,” Oncogene, vol. 35, pp. 1216–1224, mar 2016.

[69] J. Fares, M. Y. Fares, H. H. Khachfe, H. A. Salhab, and Y. Fares,

“Molecular principles of metastasis: a hallmark of cancer revisited,”

Signal Transduction and Targeted Therapy, vol. 5, pp. 1–17, mar 2020.

[70] S. Y. Wong and R. O. Hynes, “Lymphatic or Hematogenous Dis-

semination: How Does a Metastatic Tumor Cell Decide?,” Cell cycle

(Georgetown, Tex.), vol. 5, no. 8, p. 812, 2006.
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RNA-seq analysis of circulating miRNAs to identify phenotypic vari-

198



ability in Friedreich’s ataxia patients,” Scientific data, vol. 5, mar

2018.

[268] C. N. Correia, N. C. Nalpas, K. E. McLoughlin, J. A. Browne, S. V.

Gordon, D. E. MacHugh, and R. G. Shaughnessy, “Circulating mi-

croRNAs as Potential Biomarkers of Infectious Disease,” Frontiers in

immunology, vol. 8, feb 2017.

[269] E. M. Kroh, R. K. Parkin, P. S. Mitchell, and M. Tewari, “Analy-

sis of circulating microRNA biomarkers in plasma and serum using

quantitative reverse transcription-PCR (qRT-PCR),” Methods (San

Diego, Calif.), vol. 50, pp. 298–301, apr 2010.

[270] F. Russo, S. Di Bella, F. Vannini, G. Berti, F. Scoyni, H. V. Cook,

A. Santos, G. Nigita, V. Bonnici, A. Laganà, F. Geraci, A. Pulvirenti,
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H. Zöllner, A. Maghnouj, A. Wos, J. Mayerle, J. Munding, D. Kost,

A. Reinacher-Schick, S. Liffers, R. Schroers, A. M. Chromik, H. E.

Meyer, W. Uhl, S. Klein-Scory, F. U. Weiss, C. Stephan, I. Schwarte-

Waldhoff, M. M. Lerch, A. Tannapfel, W. Schmiegel, C. L. Andersen,

and S. A. Hahn, “Circulating U2 small nuclear RNA fragments as a

200



novel diagnostic biomarker for pancreatic and colorectal adenocarci-

noma,” International journal of cancer, vol. 132, jan 2013.

[277] M. D. Giraldez, R. M. Spengler, A. Etheridge, P. M. Godoy, A. J.

Barczak, S. Srinivasan, P. L. De Hoff, K. Tanriverdi, A. Courtright,

S. Lu, J. Khoory, R. Rubio, D. Baxter, T. A. Driedonks, H. P. Buer-

mans, E. N. Nolte-‘T Hoen, H. Jiang, K. Wang, I. Ghiran, Y. E.

Wang, K. Van Keuren-Jensen, J. E. Freedman, P. G. Woodruff, L. C.

Laurent, D. J. Erle, D. J. Galas, and M. Tewari, “Comprehensive

multi-center assessment of small RNA-seq methods for quantitative

miRNA profiling,” Nature biotechnology, vol. 36, pp. 746–757, sep

2018.

[278] V. Balatti, Y. Pekarsky, and C. M. Croce, “Role of the tRNA-Derived

Small RNAs in Cancer: New Potential Biomarkers and Target for

Therapy,” Advances in cancer research, vol. 135, pp. 173–187, 2017.

[279] D. Koppers-Lalic, M. Hackenberg, R. De Menezes, B. Misovic,

M. Wachalska, A. Geldof, N. Zini, T. De Reijke, T. Wurdinger,

A. Vis, J. Van Moorselaar, M. Pegtel, and I. Bijnsdorp, “Non-invasive

prostate cancer detection by measuring miRNA variants (isomiRs) in

urine extracellular vesicles,” Oncotarget, vol. 7, pp. 22566–22578, apr

2016.

[280] K. Sorefan, H. Pais, A. E. Hall, A. Kozomara, S. Griffiths-Jones,

V. Moulton, and T. Dalmay, “Reducing ligation bias of small RNAs

in libraries for next generation sequencing,” Silence, vol. 3, may 2012.

201



[281] P. Tiberio, M. Callari, V. Angeloni, M. G. Daidone, and V. Appierto,

“Challenges in Using Circulating miRNAs as Cancer Biomarkers,”

BioMed Research International, vol. 2015, p. 731479, 2015.

[282] D. Risso, J. Ngai, T. P. Speed, and S. Dudoit, “Normalization of

RNA-seq data using factor analysis of control genes or samples,” Na-

ture biotechnology, vol. 32, pp. 896–902, sep 2014.

[283] S. Shore, J. M. Henderson, A. Lebedev, M. P. Salcedo, G. Zon, A. P.

McCaffrey, N. Paul, and R. I. Hogrefe, “Small RNA Library Prepara-

tion Method for Next-Generation Sequencing Using Chemical Mod-

ifications to Prevent Adapter Dimer Formation,” PloS one, vol. 11,

nov 2016.

[284] A. M. Plocik and B. R. Graveley, “New insights from existing se-

quence data: generating breakthroughs without a pipette,” Molecular

cell, vol. 49, pp. 605–617, feb 2013.

[285] “Babraham Bioinformatics - FastQC A Quality Control tool for High

Throughput Sequence Data.”

[286] P. Ewels, M. Magnusson, S. Lundin, and M. Käller, “MultiQC: sum-
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