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Abstract

The Higgs boson is the most recently discovered particle in the Standard Model of particle physics. While

its presence is compatible with the fundamental principles of our description of Nature, such scalar, if

elementary, seems to make our Universe incredibly unnatural.

A plausible explanation to restore a natural Universe is therefore that the Higgs is composite, made out

of new fermions bound together by a new strong force. Composite Higgs models provide a consistent way

to incorporate this idea, while justifying why the new sector may have eluded the numerous searches for

these models conducted at particle experiments. Such searches can lose sensitivity to non-oversimplified

(non-minimal) composite Higgs models in which new electroweak particles arise along with the Higgs

boson but have not been searched for in conjunction with the latter.

Using such non-minimal realizations, we aim to answer the following questions: Can compositeness,

one of our traditional solutions for naturalness in the Higgs sector, still fulfill its purpose while shedding light

on other problems in particle physics? If so, where can the most interesting aspects of the phenomenology

arise?

Driven by these questions, we will construct several composite Higgs models with candidates to solve

long-standing questions, from the generation of the baryon asymmetry to the nature of dark matter, and

study their viability by collecting collider and astrophysical probes. On a complementary approach, we will

also build non-minimal effective field theories, independent of the details of the physics at the ultraviolet,

to explore new signatures of the lightest composite particles, as well as to compute the energy evolution of

the parameters in the theory, required for a meaningful interpretation of the bounds collected by different

experiments across several energy scales.
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Resumo

O bosão de Higgs é a partícula mais recentemente descoberta no Modelo Padrão da física de partículas.

Embora a sua existência seja compatível com os princípios fundamentais da nossa descrição da Natureza,

este escalar, sendo elementar, parece fazer do nosso Universo um lugar extraordinariamente antinatural.

Uma explicação plausível para restaurar um Universo natural é, portanto, que o Higgs seja uma par-

tícula composta, constituída por fermiões ainda desconhecidos, de um novo sector de interações fortes.

Os modelos de Higgs composto providenciam uma maneira consistente de incorporar esta ideia justifi-

cando, ao mesmo tempo, por que razão este sector poderia ter iludido as várias pesquisas experimentais,

conduzidas no intuito de descobrir estes modelos, em aceleradores de partículas. Estas pesquisas podem

perder sensibilidade a modelos de Higgs composto complexos (não-mínimos), em que, para além do bo-

são de Higgs, surgem novas partículas à escala eletrofraca, que não foram procuradas em conjunto com

o primeiro.

Usando estas realizações não-mínimas, pretendemos responder às seguintes questões: Podem ainda

estas teorias compostas, sendo uma das nossas soluções tradicionais para a naturalidade no sector do

Higgs, atingir os seus objetivos, bem como oferecer soluções para outros problemas da física de partículas?

Se sim, onde poderão ser esperados os aspetos mais interessantes da fenomenologia destes modelos?

Motivados por estas questões, construiremos vários modelos de Higgs composto com candidatos para

resolver questões colocadas há várias decadas, desde a geração da assimetria entre bariões e anti-bariões

até à natureza da matéria escura, estudando a sua viabilidade através da recolha de dados de experiên-

cias astrofísicas e em colisionadores. Numa abordagem complementar, construiremos também teorias

efetivas não-mínimas, independentes dos detalhes da física no ultravioleta, com os objetivos de investigar

novas assinaturas das partículas compostas mais leves e calcular a evolução dos parâmetros da teoria

com a energia, o que é necessário para uma interpretação correta dos constrangimentos experimentais

recolhidos por diferentes experiências a diversas escalas de energia.
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Resumen

El bosón de Higgs es la partícula del modelo estándar descubierta más recientemente. Aunque su existen-

cia es compatible con los principios fundamentales de nuestra descripción de la naturaleza, este escalar,

si es elemental, parece hacer de nuestro Universo un lugar extraordinariamente antinatural.

Una explicación plausible para restaurar un Universo natural es, por tanto, que el Higgs sea una partí-

cula compuesta, formada por fermiones aún desconocidos, de un nuevo sector de interacciones fuertes.

Los modelos de Higgs compuesto proporcionan una forma consistente de incorporar esta idea, al tiempo

que justifican por qué este sector podría haber eludido las diversas búsquedas experimentales realiza-

das para descubrir las nuevas partículas en aceleradores. Estas búsquedas pueden perder sensibilidad a

modelos de Higgs compuesto complejos (no mínimos), en los que, además del Higgs, emergen nuevas

partículas a la escala electrodébil, pero que no se han buscado junto con el primero.

Utilizando estos modelos no mínimos, tenemos la intención de responder las siguientes preguntas:

¿Pueden estas teorías de Higgs compuesto, siendo parte de nuestras soluciones tradicionales para la

naturalidad en el sector de Higgs, aún lograr sus objetivos, así como brindar soluciones a otros problemas

en la física de partículas? Si es así, ¿dónde cabe buscar los aspectos más interesantes de la fenomenología

de estos modelos?

Motivados por estas preguntas, construiremos varios modelos de Higgs compuesto con candidatos

para resolver misterios cuyo origen se remonta décadas atrás, desde la generación de asimetría entre

bariones y antibariones hasta la naturaleza de la materia oscura, estudiando su viabilidad mediante la

recopilación de datos de experimentos astrofísicos y en colisionadores. En un enfoque complementario,

también construiremos teorías efectivas no mínimas, independientes de los detalles de la física en el

ultravioleta, con el fin de investigar nuevas señales de las partículas compuestas más ligeras y de calcular

la evolución de los parametros de las teorías según cambia la energía, lo cual es necesario para una

correcta interpretación de los datos experimentales recopilados por diferentes experimentos a distintas

escalas.
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Introduction

In his letter to students at the start of their scientific careers, Prof. Steven Weinberg advises them to “aim

for rough water”, that is to pursue an area in which the path forward is not clear and where creative work

can still be done. This is the defining paradigm of particle physics today. However, when the Large Hadron

Collider (LHC) started operating, more than a decade ago, it was not expected that waters would not have

calmed by now.

By that time, hopes abounded that a plethora of new particles would be discovered, leading the way into

a new Golden Age. Instead, only the Higgs boson was found in 2012, establishing that our current theory

of fundamental particles and their interactions, the Standard Model (SM), is mathematically consistent up

to very high energies. Since then, all data being produced in countless experiments across several energy

scales seem to agree with the SM predictions.

While the possibility that future experiments will only further confirm the SM seems nothing like “rough

water”, some scientists have referred to this situation as the nightmare scenario. This stems from the lack

of explanations to several observations in the Universe, such as the existence of dark matter (DM) (whose

first evidence dates back from 1933 [1]) and the absence of a symmetry between matter and antimatter

(which requires three conditions already proposed in 1967 [2]). These, together with other unexplained

phenomena, show that the SM cannot be the ultimate theory.

Not only must there be extra ingredients that we do not know how to add to the SM, but theoretical

calculations in the current theory indicate that the existence of the Higgs boson, while very well compatible

with fundamental principles, makes the Universe extremely unnatural.

Such puzzling situation is not itself the nightmare, because the existence of problems is the ground

zero for new solutions and the path into a more fundamental theory. What makes this period so critical is

that all efforts to replace the SM have been persistently ruled out by data, and we have no clear theoretical

1



indication (like the one which anticipated the Higgs discovery) that new physics should show up anytime

soon.

In this regard, the problem related to the Higgs boson is particularly interesting since the most com-

pelling solutions to it require new physics close to the energy we can currently probe. It all lies on the

Higgs mass: unlike the other particles we know, the scalar Higgs boson could have any mass, but we have

measured it to be very small in comparison to the largest scale up until which the SM is valid (which, to

the best of our knowledge, could be close to the Planck scale). So, although this hierarchy problem (HP)

does not make the theory inconsistent in such a way that would demand the existence of new physics, it

makes us unable to understand the nature of the Higgs scalar.

While it might seem there is less motivation to build new models and experiments today, because no

new physics needs to pop up at twice (or ten, or hundred times) the energy we have access to, the urge

to understand the Higgs particle demands that such energies are crossed. That provides a way to test if

the Higgs interactions to itself and other particles are point-like and, consequently, find out if there exists

indeed an elementary scalar in Nature.

Together with supersymmetry (SUSY), compositeness is one of the most popular solutions to the

problem affecting the Higgs mass. The former postulates that all bosons have a fermionic partner which

can cancel large corrections to their masses; while the latter proposes that the Higgs is made out of new

fermions bound together by a new strong force. While SUSY could be realized in Nature, compositeness

has been already observed in the strong sector of the SM. These two solutions are the most searched for

at particle experiments and therefore the ones subject to more constraints.

Compositeness would show in deviations from the SM couplings of the Higgs boson, together with the

presence of new composite particles, which have been probed at current accelerators. The data collected

so far seem to point out that, if the Higgs is indeed composite, it must be lighter than the corresponding

compositeness scale. In turn, the idea of the Higgs boson being a pseudo Nambu-Goldstone boson (pNGB)

of an extended symmetry, that is spontaneously broken at low-energy, has become more and more popular

in recent years. This is the basis of composite Higgs models (CHMs), which we will study thoroughly in

this work.

In the first part of the thesis, we will choose particular realizations of these models and study their

low-energy consequences. This is the so-called top-down approach, which is suitable to probe new physics

assuming that it manifests close to the energies we can currently probe. In such approach, the particles

predicted by a model can be produced and decay at colliders and therefore be searched for directly. If

instead the scale of the unknown physics is much larger than the electroweak (EW) scale, this new physics

can be integrated out, giving rise to an expansion in effective operators. By measuring the corresponding

coefficients, we could therefore obtain indirect information about the underlying ultraviolet (UV) theory.

This is the so-called bottom-up approach. Following this approach, in the second part of the thesis, we

will build non-minimal effective field theories (EFTs) by extending the SM with new degrees of freedom
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(𝑑.𝑜.𝑓 .) which are expected to be the lightest composite states and which have gathered strong theoretical

evidence.

Altogether, we aim to use the richness of CHMs to motivate new regions of signal which are compatible

with the experimental data but might be hidden in the vast region of phase space. A subsequent goal is to

propose the experimental strategies which could probe such regions and hopefully be part of the process

of preparing the next generation experiments.

Our theoretical and experimental goals can be summed up in two questions, which will drive the

development of this work:

1: Can CHMs, one of our traditional solutions to the HP, still fulfill their purpose while shedding

light on other problems in particle physics?

2: If so, where can the most interesting aspects of the phenomenology arise?

To put the ideas into context and set the basis for these questions, we start with a brief overview of

the SM and some of its shortcomings in chapter 2. We assume that the reader is comfortable with the

essential ideas and tools of quantum field theory (QFT), such as Feynman diagrams, loop calculations,

renormalization and group theory. In chapter 3, we give a short introduction to collider physics, defining

the most typical collider objects and observables. We use this chapter to set the stage of the experimental

analyses performed in subsequent chapters, describing the computational tools we use to simulate a

virtual collider. In these first chapters, we do not aim to write a careful review of the topics, but rather focus

on the key aspects which are more relevant to the discussion that follows. On the other hand, in chapter 4,

we funnel the discussion into the focus of this thesis, by introducing in detail the features of CHMs and

discussing their experimental constraints.

The novel works published in the development of this thesis [3–8] are presented in chapters 5 and 6.

In chapter 5, we follow the top-down approach and construct several non-minimal CHMs. Based on these

setups, we study particular aspects of their phenomenology, from flavour physics to DM, assessing the

interplay between collider and astrophysical probes. On the other hand, in chapter 6, we adopt the bottom-

up approach and construct two different EFTs of the SM, one extended with a vector-like fermion, the other

with a pseudoscalar singlet. Such particles are common to a variety of CHMs and therefore the top-down

and bottom-up approaches are very complementary to one another.

While we present individual conclusions for each of the independent works cited above, in chapter 7

we discuss the overarching goals of the thesis and the answers to the two questions posed above. Note

that several appendices are presented after the conclusions, providing auxiliary material and detailed

calculations, as well as extending the topics which are discussed more straightforwardly in the main text.
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2
A brief description of the Standard Model

The SM of particle physics is the theory of fundamental particles and their interactions. The SM Lagrangian,

LSM, is fixed by principles of symmetry, the field content and its representations, the requirement of

renormalizability and the pattern of spontaneous symmetry breaking. We describe briefly each of these

building blocks below.

To begin with, the SM must respect the symmetries of spacetime, so all operators in the Lagrangian

are Lorentz invariant. Furthermore, gauge symmetry, albeit non-physical, is an important tool to have a

local description of massless vector fields. The SM is built on the gauge group

𝑆𝑈 (3)𝑐 ⊗ 𝑆𝑈 (2)𝐿 ⊗ 𝑈 (1)𝑌 . (1)

The first is called the color group and describes the theory of the strong interactions, quantum chromody-

namics (QCD), while the second and the third define the EW group GEW ≡ 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 , a unified
description of the weak and the hypercharge (𝑌 ) interactions. The corresponding gauge bosons, transform-

ing in the adjoint representations of each group, are the gluon𝐺𝐴𝜇 (𝐴 = 1, . . . , 8), the𝑊 𝐼
𝜇 (𝐼 = 1, 2, 3) and

the 𝐵𝜇 , respectively. They mediate the interactions between matter fields: the quarks, which carry color,

and the leptons, which are colorless. In what concerns 𝑆𝑈 (2)𝐿 , the subscript itself indicates that only the
left-handed (LH) components of the matter fields transform non-trivially. Hence, it is useful to project their

chiralities1 and write LSM in terms of Weyl spinors:

𝑙𝐿 =
©«
𝜈𝑒𝐿

𝑒−𝐿

ª®¬ , 𝑞𝐿 =
©«
𝑢𝐿

𝑑𝐿

ª®¬ , 𝑢𝑅 , 𝑑𝑅 , 𝑒−𝑅 ; (2)

the first two transforming in the (1/2, 0) representation of the Lorentz group, and the last three on the

(0, 1/2). The corresponding charges under the SM gauge group are defined in table 1; note that there is
1We denote the corresponding chirality projectors by 𝑃𝐿 (for LH fields) and 𝑃𝑅 (for the right-handed (RH) ones).
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Field 𝑆𝑈 (3)𝑐 𝑆𝑈 (2)𝐿 𝑈 (1)𝑌

Ga
ug
e

(s
pi
n
1)

𝐺𝐴𝜇 8 1 0

𝑊 𝐼
𝜇 1 3 0

𝐵𝜇 1 1 0

Q
ua
rk
s

(s
pi
n
1/
2) 𝑞𝐿 3 2 1/6

𝑢𝑅 3 1 2/3
𝑑𝑅 3 1 −1/3

Le
pt
on
s

(s
pi
n
1/
2) 𝑙𝐿 1 2 −1/2

𝑒𝑅 1 1 −1

H
ig
gs

(s
pi
n
0) 𝐻 1 2 1/2

Table 1: The SM field representations under the gauge group.

no RH neutrino field. There are three replicas of each fermion family, only distinguishable by the mass;

see table 2. The different fermions with equal gauge charges are said to be of different flavour.

Given this content, there is an infinite number of symmetry invariants that we could build. Imposing

renormalizability, that is, the requirement that all divergences generated at any order in perturbation theory

can be absorbed by a finite set of parameters, only operators with mass dimension ≤ 4 are however

included in LSM. Together with the previous symmetries, this greatly restricts the form of the Lagrangian.

The last ingredient that characterizes the SM is the spontaneous breaking GEW → 𝑈 (1)em, the last
being the electromagnetic group. It explains why we do not observe the full EW symmetry, but only electro-

magnetism with a massless photon and massive fermions, plus three heavy gauge bosons. This is achieved

by the vacuum expectation value (VEV) of a colorless spin-0 doublet, the Higgs boson (see table 1):

𝐻 =
©«
ℎ+

ℎ0

ª®¬ . (3)

Its conjugate is 𝐻 = 𝜖𝐻∗ = i𝜎2𝐻∗, with 𝜎𝐼 being the Pauli matrices.
Gathering all these features, the most generic Lagrangian that we can write is

LSM = − 1
4
𝐺𝐴𝜇𝜈𝐺

𝜇𝜈
𝐴
− 1
4
𝑊 𝑎
𝜇𝜈𝑊

𝜇𝜈
𝑎 −

1
4
𝐵𝜇𝜈𝐵

𝜇𝜈 + 𝜃𝐺𝐴𝜇𝜈𝐺
𝜇𝜈
𝐴

(4)

+ 𝑞𝛼
𝐿
i /𝐷𝑞𝛼𝐿 + 𝑙

𝛼
𝐿
i /𝐷𝑙𝛼𝐿 + 𝑢

𝛼
𝑅
i /𝐷𝑢𝛼𝑅 + 𝑑

𝛼
𝑅
i /𝐷𝑑𝛼𝑅 + 𝑒

𝛼
𝑅
i /𝐷𝑒𝛼𝑅

+
(
𝐷𝜇𝐻

)† (
𝐷𝜇𝐻

)
− 𝜇2𝐻 |𝐻 |

2 − 𝜆𝐻 |𝐻 |4 −
[
𝑦𝑢𝛼𝛽𝑞

𝛼
𝐿
𝐻𝑢

𝛽
𝑅
+ 𝑦𝑑𝛼𝛽𝑞

𝛼
𝐿
𝐻𝑑

𝛽
𝑅
+ 𝑦𝑒𝛼𝛽𝑙

𝛼
𝐿
𝐻𝑒

𝛽
𝑅
+ h.c.

]
,
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(𝜓↑, 𝜓↓) (𝜈𝑒 , 𝑒−) (𝜈𝜇, 𝜇−) (𝜈𝜏 , 𝜏−) (𝑢, 𝑑) (𝑐, 𝑠) (𝑡, 𝑏)

𝑚𝜓 [GeV] (0, 0.0005) (0, 0.1) (0, 1.8) (0.002, 0.005) (1.3, 0.009) (173, 4.2)

Table 2: The three generations of leptons and quarks and the approximate value of their masses [9].
Particles in the same cell belong to the same EW doublet. From left to right, they are called the electron-
neutrino and the electron; the muon-neutrino and the muon; the tau-neutrino and the tau-lepton; the
up-quark and the down-quark; the charm and the strange; and finally the top and the bottom quarks.

where 𝛼 and 𝛽 are flavour indices. The different field strength tensors are given by 𝐵𝜇𝜈 = 𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇 ,
𝑊 𝐼
𝜇𝜈 = 𝜕𝜇𝑊 𝐼

𝜈 − 𝜕𝜈𝑊 𝐼
𝜇 + 𝑔2𝜖𝐼𝐽𝐾𝑊

𝐽
𝜇𝑊

𝐾
𝜈 and𝐺𝐴𝜇𝜈 = 𝜕𝜇𝐺𝐴𝜈 − 𝜕𝜈𝐺𝐴𝜇 + 𝑔3𝑓𝐴𝐵𝐶𝐺

𝐵
𝜇𝐺

𝐶
𝜈 . We have also de-

fined /𝐷 ≡ 𝛾𝜇𝐷𝜇 and

𝐷𝜇 = 𝜕𝜇 − i𝑔3
𝜆𝐴
2
𝐺𝐴𝜇 − i𝑔2𝜏𝐼𝑊 𝐼

𝜇 − i𝑔1𝑌𝐵𝜇 , (5)

𝜆𝐴 being the Gell-Mann matrices and 𝜏𝐼 = 𝜎𝐼 /2.
Finally, note the presence of the last term in the first line of LSM, the so-called QCD 𝜃 -term, where

𝐺𝐴𝜇𝜈 ≡ 𝜖𝜇𝜈𝜎𝜌𝐺𝐴𝜎𝜌/2 and 𝜖𝜇𝜈𝜎𝜌 is the totally antisymmetric Levi-Civita tensor. In spite of being a total

derivative, this term is topological (characterizing the non-trivial homotopic map between the gauge and

coordinate spaces) and therefore cannot be consistently set to zero.

2.1 Higgs-bosonic interactions

Let us focus on the Higgs sector. Following the last line in equation 4, we find that the Higgs potential has

a non-trivial minimum for 𝜇2𝐻 < 0. By performing a suitable rotation, we can choose to align this VEV

along the real direction of the neutral component of the doublet, so that

𝐻 =
1
√
2

©«
0

ℎ + 𝑣
ª®¬ , with 𝑣 =

√√
−𝜇2
𝐻

𝜆𝐻
, (6)

in the unitary gauge. The other𝑑.𝑜.𝑓 . in the Higgs doublet, corresponding toℎ± and the imaginary compo-
nent of ℎ0, are the Nambu-Goldstone bosons (NGBs) associated with the electroweak symmetry breaking

(EWSB). They endow the𝑊 𝐼
𝜇 and the 𝐵𝜇 with a longitudinal polarization that characterizes massive vector

fields [10–12].

To obtain such masses, we must expand the Higgs covariant derivative. Reading off the 𝑣2 term, we

find that the 𝐵𝜇 and the𝑊 3
𝜇 actually mix; therefore, the physical fields of the theory after EWSB are not

those present in equation 5 but linear combinations of the latter:

𝑍𝜇 = 𝑐𝜔𝑊
3
𝜇 − 𝑠𝜔𝐵𝜇 and 𝐴𝜇 = 𝑠𝜔𝑊

3
𝜇 + 𝑐𝜔𝐵𝜇 , (7)
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together with

𝑊 ±𝜇 =
1
√
2

(
𝑊 1
𝜇 ∓ i𝑊 2

𝜇

)
. (8)

In the equations above, 𝑠𝜔 and 𝑐𝜔 stand for the sine and cosine of the rotation angle, the so-called

Weinberg angle 𝜃𝜔 = tan−1 (𝑔1/𝑔2). In turn, the EW covariant derivative in equation 5 can be rewritten

as

𝐷𝜇 = 𝜕𝜇 − i𝑔2𝜏±𝑊 ±𝜇 − i
𝑔1
𝑐𝜔

[
𝜏3 − 𝑠2𝜔𝑄

]
𝑍𝜇 − i𝑔1𝑠𝜔𝑄𝐴𝜇 , (9)

with 𝜏± = (𝜏1 ± i𝜏2)/
√
2 and 𝑄 = 𝜏3 + 𝑌 .

After rotating to the mass basis and in the unitary gauge, we find at last:

(𝐷𝜇𝜙)†(𝐷𝜇𝜙) =
1
2
𝜕𝜇ℎ𝜕

𝜇ℎ + 𝑔2
4
𝑣2

(
1 + 2ℎ

𝑣
+ ℎ

2

𝑣2

) [
𝑊 +𝜇𝑊 𝜇− + 1

2𝑐2𝜔
𝑍𝜇𝑍

𝜇
]
. (10)

Hence, the masses of the physical gauge bosons read𝑚𝑊 = 𝑔2𝑣/2 and𝑚𝑍 = 𝑔2𝑣/(2𝑐𝜔 ). On the other
hand, 𝐴𝜇 remains massless and can be identified with the photon field; consequently, 𝑄 is the electric

charge and 𝑒 ≡ 𝑔1𝑠𝜔 = 𝑔2𝑐𝜔 the electromagnetic coupling strength.

The Higgs mechanism also predicts that

𝜌 ≡
𝑚2
𝑊

𝑚2
𝑍
𝑐2𝜔

= 1 . (11)

This is a remnant of custodial symmetry. Neglecting the hypercharge and the Yukawa interactions, the

Higgs Lagrangian is invariant under a larger global 𝑆𝑂 (4) rotation, under which the Higgs field transforms
as a fourplet. After EWSB, only the custodial group 𝑆𝑂 (3)𝑉 is preserved. Such symmetry protects the

gauge boson masses and explains that 𝜌 = 1 + Δ𝜌SM ≈ 1, where Δ𝜌SM comes from hypercharge and

Yukawa corrections [13]. We will turn to this topic in section 4.5.1.

2.2 Flavour structure and additional symmetries

After the Higgs develops a VEV, the different fermion flavors mix:

LSM ⊃ −
1
√
2
(𝑣 + ℎ)

[
𝑦𝑢𝛼𝛽𝑢

𝛼
𝐿
𝑢
𝛽
𝑅
+ 𝑦𝑑𝛼𝛽𝑑

𝛼
𝐿
𝑑
𝛽
𝑅
+ 𝑦𝑒𝛼𝛽𝑒

𝛼
𝐿
𝑒
𝛽
𝑅
+ h.c.

]
. (12)

To turn to the physical basis, we have to diagonalize the Yukawa matrices 𝑦𝜓 . With this aim, we rotate

independently the chiral fermions, 𝜓𝛼
𝐿
→ (𝑉𝜓𝐿)𝛼𝜎𝜓𝜎𝐿 and 𝜓𝛼

𝑅
→ (𝑉𝜓𝑅)𝛼𝜎𝜓𝜎𝑅 , so that 𝑉 †

𝜓𝐿
𝑦𝜓𝑉𝜓𝑅

becomes a diagonal matrix in flavour space, with real and positive entries, 𝑦𝜓 . The mass of each fermion

is therefore determined by the strength of its couplings to the Higgs boson,𝑚𝜓 = 𝑣/
√
2𝑦𝜓 . This is another

crucial prediction of the Higgs mechanism.
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The rotations into the mass basis change the gauge interactions with the𝑊 boson,

Lkin ⊃
𝑔2√
2
𝑢𝐿𝛾

𝜇𝑑𝐿𝑊
+
𝜇 + h.c.→

𝑔2√
2
𝑢𝐿𝛾

𝜇
[
𝑉𝑢𝐿
†𝑉𝑑𝐿

]
𝑑𝐿𝑊

+
𝜇 + h.c. , (13)

where the matrix within the brackets is the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix:

𝑉CKM ≡
©«
𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏

𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏

𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

ª®®®®¬
=

©«
1 − 𝜆2/2 𝜆 𝐴𝜆3(𝜌 − i𝜂)

−𝜆 1 − 𝜆2/2 𝐴𝜆2

𝐴𝜆3(1 − 𝜌 − i𝜂) −𝐴𝜆2 1

ª®®®®¬
+ O(𝜆4) . (14)

In the second equality, we have used the Wolfenstein parameterization [14], where the four physical param-

eters of the CKM (three mixing angles plus a phase) are explicit. The interactions in equation 13 therefore

induce flavour-changing charged currents (FCCCs). They are unsuppressed in the quark sector of the SM2.

On the contrary, flavour-changing neutral currents (FCNCs) are extremely suppressed. They are absent

at tree level, because all neutral bosons in the SM couple diagonally in the mass basis. Indeed, the

Higgs couplings are automatically aligned with the mass matrices, while the photon and the gluon couple

universally, as required by gauge invariance. There are also no FCNCs mediated by the 𝑍 boson, since it

couples to each type of fermions with strength ∝ 𝑉𝜓𝐿†𝑉𝜓𝐿 = 1 (similarly for𝜓𝑅 ).
At the loop level, FCNC processes are also suppressed. The corresponding one-loop amplitudes are

parametrically of the form M1-loop ∝
(
𝑉CKM

)∗
𝑖𝑎

(
𝑉CKM

)
𝑖𝑏 𝑓 (𝑚2

𝑖 /𝑚
2
𝑊 )/(4𝜋)

2 [15], where the sum

over internal quarks 𝑖 is implicit and𝑎,𝑏 are external quarks, e.g. 𝑠 and𝑑 in the case of𝐾0
𝑆
→ 𝜇+𝜇−. (Note

that if the only flavour dependence of the amplitude were the CKM factors, it would vanish due to unitarity.)

The mass suppression in the amplitude is the so-called Glashow, Iliopoulos and Maiani (GIM) factor [16],

which was proposed to control the quadratic divergences found in different FCNC amplitudes [17]. This

led to the prediction of the charm quark mass, four years later [18]. At present, the impressive limits set

on these rare processes, B(𝐾0
𝑆
→ 𝜇+𝜇−) < 10−9 versus the unsuppressed B(𝐾+ → 𝜇+𝜈) = 0.64

[13], are an outstanding probe of the SM.

Let us also remark that, as illustrated in equation 13, the𝑊 boson couples only to the LH fermions;

since a parity (𝑃 ) transformation takes 𝑃𝐿 ↔ 𝑃𝑅 , this symmetry is violated maximally by the weak

interactions. The 𝑍 boson also distinguishes between LH and RH fermions through their weak isospin;

see equation 9. Hence, its couplings also violate this discrete symmetry. On the other hand, fermions are

vector-like with respect to electromagnetism, which therefore preserves 𝑃 .

Charge conjugation and parity (𝐶𝑃 ) or time reversal (𝑇 ) violation is related to the presence of complex

phases in the Lagrangian. Due to the presence of 𝜂 in equation 14,𝑉 ∗CKM ≠ 𝑉CKM in general. Up to date

fits for the CKM parameters3 give 𝐴 ≈ 0.83, 𝜌 ≈ 0.15, 𝜂 ≈ 0.36 and 𝜆 ≈ 0.22. This proves that𝐶𝑃 is
2There are no FCCCs in the lepton sector. Since neutrinos are massless in the SM, we can choose 𝑉𝜈𝐿 = 𝑉𝑒𝐿 such that

the equivalent to interaction 13 in the lepton sector becomes diagonal.
3See http://www.utfit.org/UTfit/.
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violated in the quark sector. Furthermore, in the Wolfenstein parameterization, 𝜆 works as an expansion

parameter that demonstrates the CKM hierarchical structure: at zero order in 𝜆, it is just a diagonal matrix;

only at next-to-leading order (NLO), the first two generations communicate with the third.

Another 𝐶𝑃 violating phase exists in the strong sector of the SM, due to the presence of the 𝜃 -angle.

This term violates both 𝑃 and 𝑇 symmetries, which implies by the CPT theorem [19] that 𝜃 also breaks

𝐶𝑃 . We could try to rotate away this term by making axial rotations on the fermion fields,𝜓 → 𝑒−i𝛼5𝛾
5
𝜓 .

Given the axial symmetry anomaly [20], such changes produce a variation in the quarks Lagrangian which

is of the same form as the 𝜃 -term [21],

𝛿LQCD = 𝛼5𝜕𝜇 𝐽
𝜇5 = −

𝑛𝐺𝑔
2
3

16𝜋2
𝛼5𝐺

𝐴
𝜇𝜈𝐺

𝜇𝜈
𝐴
+ 2i𝛼5𝑞𝑚𝑞𝛾5𝑞 , (15)

with 𝑛𝐺 the number of fermion generations involved and 𝐽 𝜇5 ≡ 𝜓𝛾𝜇𝛾5𝜓 . For non-zero quark masses,
the axial symmetry is also explicitly broken at tree level leading to the second term in the equation above.

Therefore, by performing this change of basis, we would only accomplish to transfer 𝜃 to the quarks mass

matrix. The QCD 𝜃 -angle is consequently physical. The non-observation of𝐶𝑃 -violating interactions in QCD

sets however a stringent limit on |𝜃 | < 10−11 [22].
More generically, in any four-dimensional Yang-Mills theory based on a symmetry 𝐺 with a non-trivial

homotopy group 𝜋3(𝐺), additional vacuum angles are expected [23]. In particular, a weak 𝜃 -angle can

arise too in the SM which could provide additional sources of 𝐶𝑃 violation. This term can be analogously

adjusted if there are currents sensitive to𝑊𝑊 which are classically conserved but broken at the quantum

level. In this case, we can perform vector 𝑈 (1) rotations, 𝑞 → 𝑒−i𝛼𝐵/3𝑞 and 𝑙 → 𝑒−i𝛼𝐿𝑙 , leading
to [24]

𝛿LEW = 𝛼𝐵𝜕𝜇 𝐽
𝜇
𝐵
+ 𝛼𝐿𝜕𝜇 𝐽

𝜇
𝐿
= −

𝑛𝐺𝑔
2
2

32𝜋2
(𝛼𝐵 + 𝛼𝐿)𝑊 𝐼

𝜇𝜈𝑊
𝜇𝜈
𝐼

, (16)

with 𝐽 𝜇 ≡ 𝜓𝛾𝜇𝜓 . Therefore, we can choose the rotation phases in order to cancel entirely the contribution
from the 𝑆𝑈 (2) 𝜃 -term, that is consequently non-physical.

Finally, let us note that, turning off the Yukawa interactions, the SM Lagrangian enjoys a larger (flavour)

symmetry𝐺flavour = 𝑈 (3)5, since the gauge interactions are flavour blind [15]. The Yukawa term breaks

𝐺flavour → 𝑈 (1)𝐿𝑒 ⊗𝑈 (1)𝐿𝜇 ⊗𝑈 (1)𝐿𝜏 ⊗𝑈 (1)B, with𝑈 (1)𝐿 being the lepton number and𝑈 (1)𝐵 the

baryon number symmetries that were used above. The charge assignement is by convention 𝑞𝐵 = 1/3 for
baryons and𝑞𝐿 = 1 for each family of leptons, all other particles being uncharged. Such symmetries do not
arise from first principles, but are accidental features of the tree level Lagrangian. The 𝐵 + 𝐿 combination

is in fact anomalous, as demonstrated by equation 16; it is however known that the effects sourced by the

anomaly are of non-perturbative nature [25]. The 𝐵 − 𝐿 current is, on the other hand, exactly preserved.
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2.3 Reasons to go beyond the Standard Model

To sum up, there are nineteen physical parameters in the SM: three gauge couplings; three real parameters

from the lepton Yukawa sector (the charged lepton masses); nine real parameters from the quark Yukawa

sector (the quark masses and mixing angles) plus one complex phase; the 𝜃 -angle; the Higgs mass and its

VEV. This small set of parameters has been over-constrained by countless experiments, probing different

processes over a wide range of energies4.

While we do not aim to exhaust the huge experimental scrutiny the SM has been under, we would

like to highlight some important probes of the Higgs mechanism, the last piece needed to render the SM

as a self-consistent QFT. In particular, the linear dependence of the Yukawa couplings on the fermion

masses has been checked in several channels, including the rare ℎ → 𝜇+𝜇− [26]. Knowing the masses

of fermions (see table 2), we can readily check that such measurements are consistent with the Higgs

VEV 𝑣 ∼ 246 GeV. In conjunction with the measured Higgs mass𝑚𝐻 ∼ 125 GeV, such VEV implies a

Higgs self-coupling 𝜆𝐻 ≈ 0.13 [9] which is compatible with measurements from direct searches, namely

in multi-Higgs production (the corresponding cross sections are however too small to allow a precise

measurement; significantly improved prospects are expected at the next luminosity phase of the LHC [27,

28]). Plugging in the Weinberg angle and the weak coupling constant, we can verify that the predictions

for the gauge boson masses in equation 10 are also in perfect agreement with the experimental values,

𝑚𝑊 ≈ 80.4 GeV and𝑚𝑍 ≈ 91.2 GeV [9]. The Higgs-vector couplings present in this equation have all

been tested as well, for instance through vector boson fusion production or the Higgs decay into 𝑉𝑉 ∗5.
Finally, the 𝜌 -parameter has been also measured with high precision, 𝜌 = 1.00039 ± 0.00019 at the

95% confidence level (CL) [9], in agreement with equation 11.

With the current experimental accuracy, other theory calculations have been also pushed to several

loops. For example, the magnetic dipole moment of the electron is known up to five loops in quantum

electrodynamics (QED) [29], showing an agreement with the experimental result up to nine significant

digits. The fight gets harder but the SM seems to keep winning on all fronts.

Nevertheless, there are some (long-lasting) observations that cannot be accounted by the SM 𝑑.𝑜.𝑓 .

alone, therefore showing that it cannot be the ultimate theory6:

1. In the presence of an UV scale, the Higgs boson mass receives large quantum corrections; there-

fore, we would naively expect it to be as large as the UV scale itself, contrarily to what we have found

experimentally. This is the essence of the EW HP.
4For a summary plot of LHC measurements, see https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/

CombinedSummaryPlots/SM/ATLAS_c_SMSummary_TotalXsect_rotated/ATLAS_c_SMSummary_TotalXsect_
rotated.png.

5Hereafter, we use 𝑉 to denote the𝑊 or 𝑍 bosons. The star refers to off-shell particles.
6We leave aside other SM problems which are less relevant for this thesis, such as the absence of a candidate for inflation,

dark energy, or the huge mismatch between the theoretical and observed values associated to the cosmological constant.
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2. We have no explanation for the hierarchy of fermion masses, which expand around six orders of

magnitude.

3. There is very strong evidence of DM, a stable and electrically neutral component that makes ∼ 27%
of the energy density in the Universe [9], which cannot be accounted for by any of the SM particles.

4. The observed matter in the Universe is dominantly baryons, with only a tiny amount of antibaryons

being observed in cosmic ray data [30]. Although the SM discriminates between particles and antipar-

ticles due to 𝐶𝑃 violating interactions, such breaking is not sufficient to explain the asymmetry that we

observe [31].

5. Neutrino oscillations have been observed, which implies that neutrinos are massive 7 [9]. However,

there is no mechanism to generate their masses in the SM.

6. We have no explanation either for the smallness of the QCD 𝜃 -angle, which leads to the so-called

strong 𝐶𝑃 problem.

7. The SM does not incorporate a complete description of gravity.

We start by noting that the last item in this list implies that the SM cannot give predictions above the

Planck scale𝑀𝑃 . Indeed, the Einstein-Hilbert action admits a perturbative expansion around a flat space

in powers of 1/𝑀𝑃 [32]; above this scale, we cannot estimate the effects of new physics nor rely on the

SM predictions. Hence, the SM is at most valid up to ΛSM ≤ 𝑀𝑃 and it can be therefore regarded as an

EFT.

The basic idea of EFTs is that any interaction mediated by internal propagating 𝑑.𝑜.𝑓 ., at much lower

energies 𝐸 than the scale of the virtual particles 𝑀 , can be described by a contact interaction that is

independent of the physics model in the UV. Therefore, we can rely on a systematic expansion in (𝐸/𝑀)
of all allowed operators, constructed with the relevant 𝑑.𝑜.𝑓 ., to describe low-energy phenomena. As an

example, the Fermi theory, obtained by integrating out the heavy gauge bosons in LSM, can perfectly

account for the muon decay [33].

Such EFT approach is furthermore remarkably efficient [34] since (1) it can be applicable to any theory;

(2) it provides the broadest and an unbiased view on the nature of new physics; (3) it greatly simplifies the

calculations by allowing us to deal with one scale at a time; (4) it allows us to break large logarithms, which

can spoil a perturbative analysis, and to sum them using renormalization group equations (RGEs); (5) it

keeps power-counting manifest (with an appropriate choice for the regulator of the theory). In particular, the

last point allows us to systematically improve the accuracy of any EFT computation, by including additional

terms in the (𝐸/𝑀) expansion.
7This consequently implies that there can be also FCCCs in the leptonic sector, where the analogous to the CKM is called

the Pontecorvo-Maki-Nakagawa-Sakata matrix. In this case, seven new parameters are introduced in the theory, assuming
neutrinos are Dirac fermions.
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Extending this approach to the SM itself leads to the Standard Model effective field theory (SMEFT)

Lagrangian:

LSMEFT = L (𝑑=4) +
𝑐5
ΛSM
L (𝑑=5) +

𝑐6
Λ2SM
L (𝑑=6) + . . . , (17)

where the dots encode operators with mass dimension 𝑑 > 6. Such parameterization has become one

of the most preferred tools to describe particle physics at current energies [35], given the absence of

direct discoveries in the last years and our lack of knowledge about the UV. So far, the independent bases

of operators in the SMEFT are available up to dimension 𝑑 = 9 [36–42]. The corresponding Wilson

coefficients are unknown8.

From observations, we can however set limits on these coefficients and therefore on the size of the cut-

off scale. The SM-only picture is recovered by takingΛSM →∞. In this way, the renormalizable part of the
SMEFT Lagrangian basically accounts for everything we observe, besides the open questions enumerated

above. Let us then explore whether they could be explained by the non-renormalizable interactions.

There is only one five-dimensional operator in the SMEFT, the Weinberg operator (with Δ𝐿 = 2) [36]:

L𝑊 =
𝑐5
ΛSM
(ℓ𝐿𝐻 ) (𝐶ℓ𝐿𝐻 ) , (18)

where 𝐶 = i𝛾2𝛾0 is the charge conjugation matrix. This operator gives Majorana neutrinos masses of

required size𝑚𝜈 ∼ 𝑐5𝑣2/ΛSM ≲ 0.1 eV [44] for ΛSM ∼ 1015 GeV and 𝑐5 ∼ O(1).
At dimension six, other operators of the form 𝑞𝑞𝑞ℓ (Δ𝐵 = Δ𝐿 = ±1) can mediate proton decay

𝑝 → 𝑀ℓ ,𝑀 denoting a meson. The corresponding decay width is naively given by

Γ (𝑝 → 𝑀ℓ)
𝑚𝑝

∼
𝑐26 𝑓

2
𝑝

(2𝜋)2

(
𝑚𝑝

ΛSM

)4
< 10−66 , (19)

where𝑚𝑝 is the proton mass, (2𝜋)2 is a phase space factor and 𝑓𝑝 is a form factor encoding the 𝑝 → 𝑀

transition. On the right-hand side (r.h.s.), we have used the bound on the proton lifetime 𝜏𝑝 > 1034 yrs

from 𝑝 → 𝑒+𝜋0 searches [45]. Assuming 𝑐6𝑓𝑝 ∼ O(0.01), it may even be that the same cutoff scale
for which neutrino masses can be explained is compatible with this bound, which would hint towards a

promising unification of the new physics.

Six- and eight-dimensional pure Higgs operators can, on the other hand, lead to a strong first order

phase transition (PT) at the EW scale [46, 47]. Such PT occurs out-of-equilibrium, which provides one of

the necessary conditions for baryogenesis; see appendix D.

This SMEFT picture makes it very plausible that new physics could be encountered only at very large

energies (if other issues, such as dark matter, do not introduce a new scale below ΛSM). The glaring

problem that challenges this picture is encoded in operators of the Lagrangian with mass dimension

𝑑 < 4.
8Interestingly, some LHC datasets seem to favor non-vanishing values of these Wilson coefficients [43]; additional data is

however required to make a precise claim.
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Had we continued the EFT analysis for such operators, the Higgs mass term would expectedly be

𝑐2Λ
2
SM𝐻

†𝐻 . The huge mismatch between this expectation and the observed value of the Higgs mass

makes it very unlikely that ΛSM ≳ 1015 GeV. Instead, we are led to expect new physics9 to lie close to

the EW scale.

Let us suppose we knew a more fundamental theory comprising a heavy fermion Ψ, with Lagrangian

LUV ⊃ LSM + Ψ
(
𝑀Ψ − 𝑖/𝜕

)
Ψ + 𝑌ΨΨ𝐻Ψ . (20)

Upon integrating the heavy fermion out, the Higgs mass would receive the following correction at one-loop:

(𝛿𝜇2𝐻 )UV ∼
3𝑌2Ψ
16𝜋2

𝑀2
Ψ . (21)

Matching the UV and the infrared (IR) theories, we would therefore obtain:

(𝜇2𝐻 )IR = (𝜇2𝐻 )
0
UV + (𝛿𝜇

2
𝐻 )UV ; (22)

with the left-hand side (l.h.s.) corresponding to the Higgs mass parameter that we have measured. The

r.h.s. shows that, in the presence of very heavy new physics, we would have to find in the UV a bare value

(𝜇2𝐻 )
0
UV ≈ −(𝛿𝜇

2
𝐻 )UV. The HP is therefore a fine-tuning problem. The amount of fine-tuning can be, in

turn, characterized by [49]

Δ ≡
����𝜕 logO𝜕 log𝑥

���� = ���� 𝑥O 𝜕O𝜕𝑥 ���� ∼ 3𝑌2Ψ
16𝜋2

(
𝑀Ψ
𝑚𝐻

)2
, (23)

which encodes the sensitivity of the measured observable O = 𝑚2
𝐻 to variations in the UV parameter

𝑥 = 𝑀2
Ψ, related to any heavy physics coupled to the Higgs boson. This formula also gives a quantitative

meaning to the HP: if indeed there was an equation like 22 and the UV parameters were huge, their

difference would still be of the same order unless the two numbers were equal up to several significant

digits. Such terms would have to bemeasured with incredible accuracy, whichmight be beyond the capacity

of any of our experimental tools. In this sense, a large fine-tuning could become a predictability issue as

well.

Why should, however, Nature care about our predictability issues? Or the fact that we do not like fine-

tuning? Indeed, naturalness can be an important guide into new physics, but the limitations in following

this approach should be clarified.

First, note that if there is no 𝑥 , there is no HP. Indeed, if the SMEFT describes only the EW scale,

all particles in the theory must have a mass ≲ 𝑣 ; otherwise, the construction of such EFT would be
9In this work, we will assume that the new physics corresponds to a high-energy sector where new particles should be

encountered. Another interesting approach is to consider that the new physics scale is associated with field values rather than
new particles, in analogy with Fermi’s findings that 𝐺𝐹 ∼ 1/𝑣2. In this case, new particles could appear only at much larger
energies than those of current experiments [48].
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invalid. Nevertheless, we know that the Higgs boson interacts at least gravitationally. At one-loop, scattering

processes involving the graviton are expected to scale as [50]

M2→2 ∼
𝑁

(4𝜋)2
𝐸2

𝑀2
𝑃

, (24)

with 𝑁 denoting the number of particles in the loop. Consequently, we expect some new behavior to be

manifest at 𝐸 ∼ 4𝜋𝑀𝑃/
√
𝑁 . In order not to introduce another scale, we should match 𝐸 ∼ 𝑣 , which

requires the presence of a huge number 𝑁 in the UV. Since these new particles presumably couple to the

Higgs boson, we end up reintroducing the HP.

Second, we argued that two huge parameters in the UV are unlikely to give a small value in the IR;

how likely that is depends however on the prior distribution functions we assume for those parameters.

Naturalness assumes priors peaked at O(1), with no fundamental reason. Given our ignorance about the
UV, that is an assumption we can make, although we should not use it to undermine theories with are

viable beyond naturalness. Such assumption allows us to search for an underlying theory for the Higgs

mass and has been very useful in the past, namely anticipating the discoveries of the 𝜌 -meson and the

charm quark [51]. (Even not allowing us to predict exact values, naturalness has been a good indicator of

where to expect qualitatively new phenomena.) It is also worth noting that our best theories to solve the HP

also offer some of the most compelling candidates for other unexplained observations, such as DM [52,

53].

Third, we should note that even if our naive assumption on the priors was true, Nature could just be fine-

tuned. Although possible, this is like any other explanation for a given data which brings more complexity

and input parameters than the theory we have actually accepted. Therefore, even if such hypothesis were

true, this should not stop our attempts for a simpler theory from which the Higgs mass emerges as an

output.

Altogether, we aim to argue that the moderate naturalness position [54] is the most useful, which is

based on the idea that theories should be natural, without however rejecting regions of the parameter

space where the level of tuning is large, “just as the rare case of a 𝐵-meson decaying to a strange meson

does not eliminate the understanding that a 𝐵-meson decays much more often to a charm meson”.

To define which level of tuning is or is not acceptable, we are again led to some subjectivity. Not

only in the final numbers, but in the measure of fine-tuning itself. For instance, if we want to evaluate

equation 23 in a non-renormalizable UV theory, we should be aware that different parameterizations are

possible. Consequently, a value of 𝑥 which is sizable in a given basis of operators can vanish in another

one, which would lead to an artificial large Δ. Furthermore, this measure quantifies the fine-tuning at a

single point. Under the Barbieri-Guidice criteria, a model which can explain certain phenomena throughout

the entire parameter space is thus considered as favorable as another which does it at a single point, with

all others already ruled out by data. Other measures have been suggested in the literature to surpass this

limitation [55].
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In this work, we assume the form of equation 23 and focus on models leading to Δ ≲ 103, as it is
conventionally accepted. These values are not too narrow, but sufficiently small to assume that the Higgs

mass could be predicted from the UV theory. More importantly, the existence of such natural theory is

falsifiable. By exploring the SM in the multi-TeV range, we will eventually have access to the region in the

phase space where the fine-tuning becomes too large, in which case new approaches beyond naturalness

should be considered. For now, there are still motivated and natural (non-minimal) theories that remain

untested and large amounts of data to test their viability.

Before ending this chapter, it is also worth clarifying why the HP is connected to the Higgs boson and

no other elementary particle in the SM. We understand that the other particles are light, because in the

limit of𝑚 → 0 the SM recovers a symmetry (chiral or gauge symmetries, in the case of massless fermions

or gauge bosons). Any physical parameter satisfying this (t’Hooft) criteria is technically natural [56]; and

the Higgs mass is not. Since quantum corrections respect the symmetries of the QFT, they must be

proportional to the symmetry violation parameter, in this case the mass. Therefore, provided𝑚 is small,

these effects are small as well. While in this Higgs case, there is nothing special about 𝜇𝐻 = 0.
The last statement holds for any scalar. Therefore, we might wonder why the other spin-0 bosons we

have previously observed in Nature, the QCD hadrons, did not stir up a similar interest. The answer is that

their masses are generated dynamically by confinement, which in turn arises from the renormalization

group evolution of the strong coupling constant:

𝜕𝛼3
𝜕 log 𝜇

= − 7
2𝜋
𝛼23 , (25)

at one-loop (see, for example, equation 142 in Ref. [8]). We define 𝛼 = 𝑔2/(4𝜋). Using the coupling

strength value at 𝑀𝑃 as the boundary condition on this RGE, we can run it down to some lower scale 𝜇,

obtaining:
1

𝛼3(𝜇)
=

1
𝛼3(𝑀𝑃 )

− 7
2𝜋

log
(
𝑀𝑃
𝜇

)
, (26)

which eventually diverges in the IR. At this point, it is rather a dimensionfull parameter that characterizes

the QCD interactions, ΛQCD, which is found by setting the r.h.s. of this equation to zero:

ΛQCD = 𝑀𝑃𝑒
−2𝜋7

1
𝛼3 (𝑀𝑃 ) . (27)

The exponential suppression in this result gives an explanation for the huge separation between the proton

mass and the fundamental scale. Furthermore, it is clear that no HP arises because QCD has no scales

in the UV; instead, a natural strong coupling can generate the proton mass due to this mechanism of

dimensional transmutation.
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3
Collider physics and statistical tools

A common prediction of models targeting the HP is the presence of new heavy particles in the spectrum.

They can be produced and decay at high-energy colliders which in turn provide a powerful way to test these

scenarios.

We therefore dedicate this chapter to describe the general features of the detectors where the physics

we want to probe takes place, namely at the LHC; see section 3.1. We define the main collider objects

and observables in section 3.2.

To understand the evolution of the parton collision up to the formation of stable detector objects,

we have to rely on evolved computational programs, which have been developed by experts over several

decades. These programs are based on Monte Carlo (MC) simulations, which reproduce the events we

are interested in according to their probability to occur in Nature. The different stages of these simulations

are discussed in section 3.3.

Finally, in section 3.4, we present the statistical tools we use to determine if a given model signal is

compatible with the data (and how sure we are that it in fact is).

3.1 The Large Hadron Collider

The LHC [57–59], located at CERN (Geneva, Switzerland), is the most energetic and largest collider ever

built. This experiment collides beams of protons at nearly the speed of light, with a center of mass energy

(c.m.e.)
√
𝑠 = 13 TeV. This energy is then converted into mass, therefore forming the SM and possibly

beyond the SM particles.

There are four big detectors located in different collision points at the LHC: ATLAS [60, 61], CMS [62,

63], LHCb [64, 65] and ALICE [66]. The first two are multipurpose detectors, designed to study physics
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from the Higgs boson to SUSY scenarios, capturing particles that fly in all directions from the collision point.

The last two detectors above are, on the other hand, specialized to test particular phenomena. LHCb is a

forward detector whose main goal is to study the properties of heavy flavour particles, containing a 𝑏 or

a 𝑐 quark. Finally, ALICE is dedicated to explore heavy-ion physics, to provide insight on the properties of

the QCD plasma at extreme conditions; it is outside the scope of this thesis.

While ATLAS and CMS are particularly suitable for searching new heavy particles, LHCb is dedicated to

explore the precision frontier where light and long-lived particles might lie. To tag the heavy flavour mesons

(which typically fly a few cm), this detector is specially designed to select forward displaced decays with soft

final states. The unique particle identification ability and the outstanding mass resolution of the detector

are furthermore key features to search for the hidden particles with masses and lifetimes similar to those of

the heavy mesons. Other 𝐵-factories around the world perform complementary studies on stealth physics,

namely Belle [67] (at SuperKEKB, Japan) and BaBar [68] (at SLAC, USA).

Moreover, the results from previously active facilities can constrain large regions of the parameter

space of new physics models, two of the most iconic being the Tevatron [69] (Fermilab, USA) and LEP [70]

(CERN, Geneva). Tevatron was the highest energy particle collider before the LHC; it was where the top

quark was discovered [71, 72]. It reached
√
𝑠 ∼ 1 TeV in proton-proton (𝑝𝑝) collisions and collected more

than 10 fb−1 of data. LEP, on the other hand, was a circular 𝑒+𝑒− collider that reached
√
𝑠 = 209 GeV;

its tunnel was reused to build later on the LHC.

3.2 Colliders language and geometry

The number of collisions at the detector, that is, the number of events 𝑁 is given by the cross section 𝜎

times the integrated luminosity 𝐿. The latter is obtained by integrating over time the instantaneous lumi-

nosity ∼ 1034cm−2s−1 up to date, at the LHC. Multiplying by the 𝑝𝑝 cross section 𝜎𝑝𝑝 ∼ 𝜋 (1 fm)2 ∼
O(10) mb, this corresponds to ∼ 108 collisions per second, which is obviously a huge number of events
to record.

This number can be further reduced with a triggering system, which gives the necessary conditions

for an event to be recorded. This system is usually comprised by a hardware and a software trigger: the

former can demand, for instance, a minimum momentum for all tracks; while the latter handles more

complex requirements and can process the full event with detail, being able to use tracking information to

keep events with specific numbers of electrons or muons.

To be able to test particular models, specific data analyses need to be designed, in order to keep the

majority of signal events while losing large portions of the background, that is all the other SM processes not

contributing to the interaction we want to probe. This is very challenging in two ways: first, the interactions of

interest are usually very rare; second, they look similar to the backgrounds which are much more common.
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Figure 1: The geometry of a detector (taken from Ref. [73]). The pseudorapidity is a function of the polar
angle: it goes from 𝜂 → −∞ (𝜃 = 𝜋 ) to 𝜂 → +∞ (𝜃 = 0) along the beam line, that we define as the
𝑧-axis. The azimuthal angle 𝜙 goes around the beam, with 𝜙 = 0 corresponding to the 𝑥 -axis. Note that
particles with |𝜂 | ≳ 4 are already very close to the beam line.

For these reasons, we study different selection cuts on collider observables which can optimize the

chance to see the signal at particular regions of the phase space. These observables are functions of the

four-momentum 𝑝𝜇 = (𝐸, 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧) of the particles that reach the detector. In first approximation, 𝑝𝜇

can be reconstructed from the deposits of energy in the calorimeters and their flight directions, param-

eterized by the polar and azimuthal angles (𝜃, 𝜙) that describe the cylinder centered around the beam
line; see figure 1. Some of the typical kinematic observables at colliders are:

• The rapidity, 𝑦 ≡ 1
2 ln

𝐸+𝑝𝑧
𝐸−𝑝𝑧 ;

• The pseudorapidity,𝜂 ≡ ln cot 𝜃2 ≈
𝜋
2−𝜃 , which coincides with the rapidity in the limit of massless

particles;

• The angular separation between two tracks, Δ𝑅 ≡
√
(Δ𝜙)2 + (Δ𝑦)2;

• The missing transverse momentum,
(
𝑝miss
𝑇

)𝜇
≡ −∑

𝑖

(
𝑝
𝜇
𝑇

)𝑖
, where 𝑖 runs over all visible tracks

and 𝑝𝑇 =
√
𝑝2𝑥 + 𝑝2𝑦 ;

• The missing transverse energy (MET), 𝐸miss
𝑇

=
���𝑝miss𝑇

���;
• The invariant mass of 𝑛 objects,𝑚2 ≡

���∑𝑛𝑖=1 𝑝𝜇𝑖 ���2;
• The transverse mass, 𝑚2

𝑇 ≡
���∑𝑛𝑖=1 𝑝𝑇 𝜇𝑖 ���2, which is particularly relevant when the longitudinal

momentum of a particle is unknown.
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The ATLAS and CMS detectors have a coverage as close to 4𝜋 as possible over the collision point and

typically identify charged particles in a pseudorapidity volume |𝜂 | < 2.5. On the other hand, the LHCb

detector is designed to cover the interval 2.0 < 𝜂 < 5.0.
Inside the detector, the heavy particles typically decay promptly so we can never actually see them.

Instead, we find indications of their existence by looking into the subsequent products of their decay. These

final particles can be identified as they leave specific signatures in different layers of the detector.

The innermost layer measures the tracks of charged particles. Their trajectories are bent by magnetic

fields, the radius and orientation of the curvature allowing the extraction of the particle momentum and

electric charge. Electrons, as well as photons (producing 𝑒+𝑒− pairs), lose all their energy in the electro-

magnetic calorimeter, while hadrons get into the subsequent layer, the hadronic calorimeter. Muons, on

the other hand, reach the farthest regions of the detector, the small curvatures of the most energetic muon

tracks being one of the reasons the detector needs to be so big. Neutrinos leave the detector having rarely

interacted at all, typically leading to events with large MET. Their existence can be inferred from the fact

that the total momentum in an event is conserved.

Quarks and gluons, on the other hand, can only be found inside of hadrons1. Therefore, at the detector

level, it makes no sense to talk about these particles, but to define a collection of closed objects that

originate from short-distance quarks and gluons, that is a jet [74].

Jet definitions are ambiguous, but typical clustering algorithms operate iteratively by calculating the

distance 𝑑𝑖 𝑗 between any two protojets 𝑖 and 𝑗 and their distance to the beam 𝑑𝑖𝐵 . If the smallest of

these distances is 𝑑𝑖 𝑗 , 𝑖 and 𝑗 are merged; if it is 𝑑𝑖𝐵 instead, 𝑖 is removed from the list of objects

and it is called a jet; this goes on until there are no other protojet pairs within a cone of arbitrary radius

𝑅 =
√
(Δ𝜃 )2 + (Δ𝜙)2. (Objects in this cone can be hadrons, but also e.g. electrons which are surrounded

by a large hadronic activity.) In all works described in this thesis, we will use the anti-𝑘𝑇 algorithm [75], in

which

𝑑𝑖 𝑗 = min
©« 1
𝑝𝑇

2
𝑖

,
1
𝑝𝑇

2
𝑗

ª®¬ (Δ𝑅)
2

𝑅2
and 𝑑𝑖𝐵 =

1
𝑝𝑇

2
𝑖

. (28)

Furthermore, algorithms have been also developed to discriminate the jet flavour, namely to distinguish

jets produced by a 𝑏 -quark2. 𝐵-tagging relies on the defined flight distance of the 𝐵-meson, 𝑐𝜏 ∼ 0.5𝛾
mm (where 𝛾 ∼ 𝑝/𝑚 represents the boost factor), and involves typically three steps: (1) searching for a

displaced vertex a few mm away from the primary interaction point; (2) constructing the invariant mass of

the particles emerging from such vertex; (3) selecting the candidates whose invariant mass is closest to the

𝐵- meson mass. Current algorithms, also relying on maching learning to construct higher-level observables,

typically achieve 𝑏 -tagging efficiencies around 70%. (The mis-tagging probability to wrongly identify a 𝑐 -

or a light-flavour jet as a 𝑏 -jet is typically O(1/10) and O(1/100), respectively [76].)
1With the exception of the top quark, whose lifetime is so small that it decays before hadronization.
2The identification of a 𝑏 -jet can be subsequently used to tag the top, since the branching ratio B (𝑡 →𝑊𝑏) ≈ 1 [13].
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3.3 Event generation

In order to study the collider phenomenology of a theoretical model, we resort to MC simulators. This

proceeds in three main steps.

First, we obtain the parton-level particles resulting from the 𝑝𝑝 (or other) collision. They include leptons,

photons, gluons or quarks. The calculations at this level involve matrix elements evaluated up to a certain

order in the SM or the new physics coupling. In all works described in this thesis, the parton-level events

are produced with MadGraph [77]. This step is model dependent and requires the implementation of the

Lagrangian in an UFO model, that we generate with FeynRules [78].

Second, we must describe the showering and hadronization of the partons. This involves mainly QCD

calculations and is model-independent. However, matrix elements involving the emission of gluons show

both collinear and soft divergences; furthermore, a large number of particles can be radiated which makes

these calculations computationally expensive. To complement this approach, we rely on parton showering

algorithms, such as those implemented in Pythia [79], which takes into account the successive splitting

of partons. Still, for hard processes with well separated objects, matrix elements give the most reliable

predictions. Therefore, the two approaches are combined in MadGraph to generate multi-jet processes,

each description being assumed in different regions of the phase space. In order to avoid overlapping

and consequently double-counting of jets, we need to find the optimized scale to switch between the

approaches, the so-called matching scale. This scale can in turn be found by studying the smoothness

of the differential jet rate distributions3. The objects resulting from the showering must be subsequently

collected into hadrons due to QCD confinement. This hadronization process is also simulated with Pythia.

The last step is to simulate the detector response. With this aim, we can follow standard experimental

analyses, assuming the typical momenta thresholds to detect the particles, as well as average values

for the reconstruction efficiencies. However, to include the largest available set of real detector effects,

we rely on Delphes [80]. This tool includes parameterizations of the effects of the detector geometry,

as for example momenta smearing due to the calorimeter response. The efficiencies to reconstruct and

identify the tracks in Delphes are functions of kinematic variables, typically (𝑝𝑇 , 𝜂), that reproduce the
experimental probability of a particular configuration, as seen in the actual detector. The same for heavy

flavour tagging efficiencies, as well as the trigger simulation. Note, however, that when proposing new

analyses for future collider runs, the first approach described is a good approximation, since we do not

actually know the improvements on the trigger or tracking performance at future facilities.
3See https://indico.cern.ch/event/656211/attachments/1498666/2333189/TASI_feynrules_

madgraph_tutorial.pdf
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3.4 Data analysis and statistical tools

After generating the detector objects, we can perform an analysis. The output from Delphes can be read

by ROOT [81], which provides tools for combining variables, histogramming, fitting and computing limits,

among others. That is our ultimate goal: to understand if the signal we are interested in is or could be

excluded by experiments, and inherently quantify the potential to discover new physics.

To turn to this point, let us suppose we make an 𝑁 -bin experiment (or equivalently 𝑁 independent

counting experiments). The distribution of the number of selected events per bin 𝑛𝑖 is well modeled by a

Poissonian distribution with an expected number of events: 𝑠+𝑏, in the presence of signal plus background;
or 𝑏, for background only. The basis of the CL𝑠 method [82], that we use in the following to compute limits,

is the ratio

𝑄 ≡
𝐿𝑠+𝑏 (𝑛)
𝐿𝑏 (𝑛)

= Π𝑁𝑖=1
(𝑠𝑖 + 𝑏𝑖 )𝑛𝑖𝑒−(𝑠𝑖+𝑏𝑖 )

𝑏𝑖
𝑛𝑖𝑒−𝑏𝑖

, (29)

where the likelihood function 𝐿𝑥 (𝑛) ≡ 𝑃 (𝑛 |𝑥) is defined as the conditional probability for the observed
data 𝑛, given that a set of model parameters 𝑥 occurred (in this case, the expectation value).

Such 𝑄 is used to distinguish between the hypothesis 𝑠 + 𝑏 or 𝑏: it takes large values if the former is

true; or small values if the latter is true instead. To evaluate which of these hypotheses is more compatible

with the data, we define the probability, in each ansatz, that the test statistic is at least as probable as the

actual measurement 𝑄obs:

CL𝑠+𝑏 ≡ 𝑃𝑠+𝑏
(
𝑄 ≤ 𝑄obs

)
and CL𝑏 ≡ 𝑃𝑏

(
𝑄 ≤ 𝑄obs

)
. (30)

In this way, if CL𝑠+𝑏 ≤ 𝛼 = 0.05, the signal is excluded at a CL = 1 − 𝛼 = 95%. Given a model, we

can therefore find a maximum number of expected signal events, 𝑠max, such that cross sections above

𝜎max ≡ 𝜖𝑠max𝐿, 𝜖 being the selection efficiency and 𝐿 the collected luminosity, are excluded at this CL.

It is however well known that using CL𝑠+𝑏 to derive upper limits is problematic when the two distribu-

tions 𝑃𝑠+𝑏 and 𝑃𝑏 almost overlap, that is, when 𝑠 � 𝑏. In this limit, the method can artificially exclude

models it has no sensitivity to. To avoid this case, in the CL𝑠 method, we normalize CL𝑠+𝑏 by a quantity

that increases as the 𝑠 + 𝑏 hypothesis becomes less plausible, therefore penalizing CL𝑠+𝑏 ; such quantity
can be CL𝑏 itself. In this modified approach [83], a signal is considered excluded if:

CL𝑠 ≡
CL𝑠+𝑏
CL𝑏

≤ 𝛼 = 0.05 . (31)

For a single-bin experiment, equation 29 reads:

𝑄 = 𝑒−𝑠
[
1 + 𝑠

𝑏

]𝑛
. (32)

or equivalently,

ln𝑄 = −𝑠 + 𝑛 ln
[
1 + 𝑠

𝑏

]
. (33)
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The test variable has therefore the same distribution as 𝑛. In this limit, equation 31 becomes:

CL𝑠 =
𝑃𝑠+𝑏 (𝑛 ≤ 𝑛obs)
𝑃𝑏 (𝑛 ≤ 𝑛obs)

=

∑𝑛obs
𝑛=0 (𝑠 + 𝑏)

𝑛𝑒−(𝑠+𝑏)∑𝑛obs
𝑛=0 𝑏

𝑛𝑒−𝑏
. (34)

If zero background events are expected and zero events are observed, we can consequently exclude models

predicting

CL𝑠 = 𝑒−𝑠max < 0.05→ 𝑠max ≳ 2.99 . (35)

For more elaborate multi-bin analyses, we can use automatized tools to compute the expected upper

limits. Given the signal, background and observed yields, as well as the systematic uncertainties under

which they are allowed to fluctuate, the TLimit class in ROOT runs a set of pseudo-experiments in or-

der to compute the CL parameters. Alternatively, we can pass the distribution of a discriminant variable

to OpTHyLiC [84] which outputs an expected upper limit on the signal strength 𝜎max/𝜎th, assuming
Poissonian statistical uncertainties. The signal cross section 𝜎th is computed with MadGraph.

Finally, we remark that the expected background CL can be converted into an expected Gaussian

significance 𝑍𝜎 , by finding a 𝑍 such that

CL𝑏 =
∫ +∞
𝑍

1
√
2𝜋
𝑒−𝑥

2/2𝑑𝑥 . (36)

If no signal events are observed, all the theoretical points leading to 𝑍 ≥ 2 can be excluded at 95% CL.

If, instead, an excess is observed relatively to the SM predictions, it is claimed as evidence if 𝑍 ≥ 3
(corresponding to a 3𝜎 deviation from the expected limit); or a discovery if 𝑍 ≥ 5 (5𝜎 deviation)4. In the

last case, the data would have less than 10−7 probability to occur if the background only hypothesis was
true [87].

Considering a single bin, the statistical significance is given by [88]:

𝑍 =

√
2
[
(𝑠 + 𝑏) ln

(
1 + 𝑠

𝑏

)
− 𝑠

]
≈ 𝑠
√
𝑏

[
1 + O

( 𝑠
𝑏

) ]
. (37)

This formula provides a straightforward way to evaluate the experimental sensitivity to a given model. It

is obtained in the limit where 𝜏 ≡ LMC/Ldata → ∞, with LMC (Ldata) referring to the generated

(actual) luminosity. This is difficult to attain in a simulation; however, it is known [89] that for 𝜏 > 5 the

improvement in the sensitivity is only slight.

4These requirements were agreed upon as conventions, in particular to avoid the “look-elsewhere effect”. This describes
phenomena where an apparent statistically significant observation is actually the result of random and flat data (if, for instance,
the data sample is not sufficiently large). It was not long ago when ATLAS [85] and CMS [86] observed the famous 750 GeV
di-photon excess, with a local significance of 3.8 and 3.4𝜎 , respectively. When more data was collected, the anomaly went away
and was eventually considered just a statistical fluctuation.
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4
The composite Higgs idea

Compositeness is, in some way, the most plausible strategy to address the HP as it is one trick we already

know Nature has. Indeed, in the strong sector of the SM, we find composite scalar particles which are

protected from large quantum corrections due to their finite size; they are just not at the same scale as

the Higgs boson.

CHMs therefore propose a new strongly interacting sector that confines at𝑚∗ ≳ 𝑣 , in order to generate
a natural Higgs mass. Such theories were first proposed in early attempts to parameterize EWSB in the

80’s [90–92], but have received increased attention in recent years [53, 93–110] in light of the theoretical

progress on the construction of realist UV completions and, to some extent, the null results of substantial

searches for SUSY1.

Since they introduce another scale, plenty of other resonances are also expected to arise from these

models which have been searched for at colliders. In particular, the bounds covered so far for exotic spin-1
and spin-1/2 particles have pushed𝑚∗ ≳ few TeV which is already quite large in comparison to the Higgs

scale. The little hierarchy 𝑚𝐻 � 𝑚∗ can be however explained if the Higgs is a NGB associated with

the spontaneous breaking of an extended global symmetry of the strong sector, at a scale 𝑓 ≲ 𝑚∗. This
same mechanism explains why the mass of the pion is 𝑚𝜋 ∼ 140 � 𝑚𝜌 ∼ 775 MeV [9]: since it is

massless in the limit where the (chiral) symmetry is exact, the pion can be naturally lighter than other

QCD resonances, such as the 𝜌 -meson.

Unlike previous theories of Technicolor [111], CHMs provide also a mechanism by which the elementary

Higgs is recovered, that is, a way to make the Higgs couplings very close to the SM values. This is achieved

through the vacuum misalignment, a mechanism that we start exploring in section 4.1.
1See https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-019/fig_23.

pdf and https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS/barplot_Squark.png for some
examples.
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Although the presence of a strong coupling signals our inability to compute at low energies, the dy-

namics of the NGB Higgs can be described by an EFT completely determined by the symmetry group of

the new sector. To construct such theory, we employ the Callan-Coleman-Wess-Zumino (CCWZ) formalism

that is described in section 4.2. We therefore need a rule of power-counting (PC) to systematically rank the

size of the effective operators, as well as to estimate the size of the interactions among the heavy sector

of the theory; see section 4.3.

The rest of the SM is assumed to be elementary. However, since the composite sector must necessarily

carry EW charges (as the Higgs does), the two sectors are coupled by gauging:

L /G ⊃ 𝑔𝑒𝐵𝜇 𝐽
𝜇
𝐶
, (38)

with 𝑔𝑒 being an elementary charge and 𝐽
𝜇
𝐶
a global current of the composite sector. Through this inter-

action, the Higgs boson can develop radiatively a mass and become a pNGB.

Moreover, some hypothesis must be taken on how the elementary fermions communicate with the

composite sector. This is inevitable to generate the Yukawa couplings to the Higgs boson. Furthermore, this

is the main source of explicit symmetry breaking in generic models, due to the large Yukawa coupling of the

top quark. In CHMs, the hypothesis of partial compositeness is taken, under which the physical fermions

are a superposition of composite and elementary states. We explore the predictions of this mechanism in

section 4.4.

Finally, in section 4.5, we construct the minimal composite Higgs model (MCHM) and review the

current experimental constraints on its parameter space.

4.1 Vacuum misalignment

Let us consider the spontaneous symmetry breaking pattern of G → H . We split the generators of the

global group in terms of unbroken 𝑇𝑎 and broken 𝑋𝑎 generators:

𝑇𝐴 =
{
𝑇𝑎, 𝑋𝑎

}
, (39)

the first (second) of which spanH (G/H ). The generators of the EW group are part of the first set,

𝑇EW = 𝑐𝑎𝑇
𝑎 . (40)

We also define a reference vacuum Σ0 that leaves the EW group unchanged, that is

𝑇𝑎Σ0 = 0 while 𝑋𝑎Σ0 ≠ 0 . (41)
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Figure 2: Illustration of the mechanism of vacuum misalignment (taken from Ref. [112]), in the case of
G = 𝑆𝑂 (3) andH = 𝑆𝑂 (2). We identify ®𝐹 = ®Σ0 and 𝜃 = Π.

We can now act on the reference vacuum with a symmetry transformation to obtain a different field

configuration,

Σ = 𝑒
−i
√
2
𝑓
Π𝑎 (𝑥)𝑋𝑎

Σ0 , (42)

where Π𝑎 are the NGB modes. In the absence of an explicit breaking of the global symmetry, any non-

vanishing 〈Π〉 can be set to zero, by using the defining shift-symmetry of the Goldstones. In this case,

the vacuum of the Σ-field becomes aligned with Σ0 and no EWSB occurs (because Σ0 only breaks the

generators which are orthogonal to the EW group). It is only when the NGBs acquire a potential, in particular

a physical VEV, that the EW group is broken; hence,
−→
Π behaves exactly as the Higgs boson of the SM.

This physical misalignment defines the true vacuum of the theory, 𝑣 = 𝑓 sin (〈Π〉 /𝑓 ). It corresponds
to the projection of the reference vacuum onto theH -plane; see figure 2. Therefore, the amount of breaking

is not fixed, but depends on the free parameter

𝜉 ≡ 𝑣
2

𝑓 2
= sin2

〈Π〉
𝑓

. (43)

For 𝜉 = 1, this breaking is maximal. It corresponds to the scenario in which G → GEW directly, as

enforced in Technicolor theories [111]. For 𝜉 → 0, on the other hand, the “SM only” picture is attained,

since the new physics becomes too heavy.

In CHMs, the interesting case is when there is some gap between 𝑣 and 𝑓 , such that 𝜉 ≠ 0 � 1. In
any successful beyond the SM extension (given the precise agreement of the SM with experimental data),

the EW couplings need to be as in the SM, up to small corrections:

𝑔CHM = 𝑔SM

[
1 + O(𝜉)

]
. (44)
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4.2 Callan-Coleman-Wess-Zumino formalism

In equation 42, the exponential of the Goldstone fields is called the Goldstone matrix:

𝑈 [Π] ≡ 𝑒
−i
√
2
𝑓
Π𝑎 (𝑥)𝑋𝑎

. (45)

Using this parameterization, the spontaneously broken symmetry acting on the Σ-field becomes non-

linearly realized on the Goldstone modes. We can find this transformation implicitly, by considering [112]

Π(𝑥) → Π(𝑔)(𝑥) is such that 𝑈 [Π(𝑔)] = 𝑔 ·𝑈 [Π] · ℎ−1 [Π;𝑔] , (46)

where 𝑔 and ℎ are, respectively, elements of the broken and unbroken symmetry groups. Indeed, by acting

with this transformation on the fundamental field, we find:

Σ→ 𝑔 ·𝑈 [Π] · ℎ−1 · Σ0 = 𝑔 · Σ , (47)

leaving the theory invariant.

The simple action of the global group on the Goldstone matrix is the reason why the latter is the

building block to construct symmetry invariants, according to the CCWZ formalism [113, 114]. Taking the

Maurer-Cartan one-form,

𝜔𝜇 ≡ i𝑈 † · 𝜕𝜇𝑈 = 𝑑𝑎𝜇 (Π)𝑋𝑎 + 𝑒𝑎𝜇 (Π)𝑇𝑎 ≡ 𝑑𝜇 + 𝑒𝜇 , (48)

which we have decomposed along the group generators as any other element of the Lie algebra, we find

that

i𝑈 † · 𝜕𝜇𝑈 → ℎ · (i𝑈 † · 𝜕𝜇𝑈 ) · ℎ−1 + iℎ · 𝜕𝜇ℎ−1 , (49)

under a local G-transformation. (Note that ℎ depends on spacetime coordinates through the Goldstone

fields.) The second term in the equation above is a Maurer-Cartan form of theH -group itself and therefore

does not have components along the broken generators. This shows that the 𝑑𝜇 -symbol transforms only

into the first term, and hence linearly inH :

𝑑𝜇 → ℎ · 𝑑𝜇 · ℎ−1 . (50)

On the other hand, 𝑒𝜇 transforms like a gauge field of the local unbroken symmetry. As such, it can be

employed to construct the covariant derivatives of the composite fields.

Moreover, equation 49 implies that, using the Maurer-Cartan form, we just need to find H -invariants

to build our EFT, from which the full G-invariance follows automatically. At the level of two derivatives in
Goldstone fields, the shift-symmetric Lagrangian is therefore given by:

Lkin =
𝑓 2

4
Tr[𝑑𝜇𝑑𝜇] ≈

1
2

(
𝜕𝜇Π𝑎

)2 + . . . (51)

The couplings to the gauge fields are obtained by replacing 𝜕𝜇 → 𝐷𝜇 in equation 48.
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4.3 Power-counting

CHMs are assumed to be one-scale one-coupling (1S1C) theories, which can be described completely in

terms of the typical composite resonance mass𝑚∗ and its coupling 𝑔∗ ≥ 1. Therefore, the Lagrangian of
the composite theory can be parameterized as [115]

L =
𝑚4∗
𝑔2∗
L′

[
𝜕

𝑚∗
,
𝑔∗Π
𝑚∗

,
𝑔∗𝜎
𝑚∗

]
, (52)

where we use 𝜎 to denote generically any heavy composite resonance. To check the consistency of this

hypothesis, let us work out the EFT of the NGBs from integrating 𝜎 out:

LEFT(Π) = L (2) + L (4) + L (6) + . . . , (53)

where the superscript denotes the number of derivatives in each term. In particular,L (2) includes the term
in equation 51. The𝜎 resonance can couple to the NGBs via such term, producing an operator inL (4) . Us-
ing equation 52, we can estimate the size of this term,L (4) ∼ 𝑔2∗/𝑚4∗ [L (2)]2 = (𝑔2∗/𝑚4∗)(𝑚8∗/𝑔4∗)L′

(where one power of𝑚2∗ comes from a heavy propagator), which remains consistent with PC rule. Similar

arguments could be carried out for the higher derivative terms in the NGBs EFT.

The places where 𝑔∗ arises in the PC formula can be understood from dimensional analysis, plug-

ging in ℏ ≠ 1. Since ℏ has the same dimensions as the action 𝑆 =
∫
𝑑4𝑥L, then [L] = [ℏ]/𝐿4.

Consequently, the canonical spin-0 (Π), spin-1/2 (𝜓 ) and spin-1 (𝐴) fields have mass dimensions

[Π] = [𝐴𝜇] = [ℏ]1/2/𝐿 and [𝜓 ] = [ℏ]1/2/𝐿3/2. Computing, for example, a gauge interaction involv-
ing two fermions (elementary or composite), we find that [𝑔𝑒 ] = [𝑔∗] = [ℏ]−1/2; similarly, [𝑚∗] = 𝐿−1.
Therefore, the prefactor in equation 52 gives correctly the dimensions of a Lagrangian. All terms within

parenthesis are in turn adimensional.

Operators that arise at the loop level carry an extra adimensional factor ℏ𝑔2∗/(4𝜋)2 [112]. Includ-

ing such operators, together with the composite fermions Ψ, and restoring natural units, we obtain the

complete EFT Lagrangian:

LEFT =
𝑚4∗
𝑔2∗
L′tree

[
𝜕

𝑚∗
,
𝑔∗Π
𝑚∗

,
𝑔∗𝜎
𝑚∗

,
𝑔∗Ψ

𝑚
3/2
∗

,
𝑔𝑒𝐴𝜇

𝑚∗
,
𝜆𝜓𝜓

𝑚
3/2
∗

]
(54)

+
𝑔2∗
(4𝜋)2

𝑚4∗
𝑔2∗
L′1-loop

[
𝜕

𝑚∗
,
𝑔∗Π
𝑚∗

,
𝑔∗𝜎
𝑚∗

,
𝑔∗Ψ

𝑚
3/2
∗

,
𝑔𝑒𝐴𝜇

𝑚∗
,
𝜆𝜓𝜓

𝑚
3/2
∗

]
.

This formula is valid in the regime of perturbativity, i.e. for 𝑔∗ ≲ 4𝜋 ; otherwise, we cannot distinguish
between tree and loop level operators. (Note that 𝑔𝑒𝐴 and 𝜕 are multiplied by the same dimensionfull

factor, as required by the structure of the covariant derivative.)

Importantly, the PC rule also allows us to identify the scale of spontaneous symmetry breaking with

the 1S1C parameters. Noting that the Goldstone fields enter in the Lagrangian only through the Goldstone
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matrix 𝑈 [Π/𝑓 ], we find by comparing with the equation above that

𝑚∗ = 𝑔∗𝑓 . (55)

Having checked that PC remains consistent upon integrating the composite resonances out, it remains

to be seen that integrating out the elementary fields does not spoil this consistency. Furthermore, the

scalar potential is generated at the loop level by one-particle irreducible (1PI) mixed diagrams where both

composite and elementary particles run internally. (Otherwise, the Higgs shift-symmetry would not be

broken.)

Since the potential is one term in the one-loop Lagrangian, the prefactor in equation 54 gives us already

the correct mass dimensions. Consequently, the presence of an elementary coupling must be balanced

by another object with the same dimensions which, in the 1S1C hypothesis, can only be 𝑔∗. Therefore, in
natural units, the potential takes the following form:

𝑉 =
𝑁𝐶𝑚

4∗
(4𝜋)2

𝑉 ′
[ (
𝑔𝑒
𝑔∗

)2 ℎ2
𝑓 2

]
, (56)

where we have included the color factor for quarks running in the loops.

4.4 Partial Compositeness

In this section, we describe the hypothesis of partial compositeness, sourcing the main contributions to

equation 56. According to this hypothesis, the fermions of the elementary and composite sectors couple

linearly [116]:

Lint =
𝜆𝑡𝐿

Λ
UV𝑑𝐿−

5
2

𝑞𝐿O
𝑡𝐿
𝐹
+

𝜆𝑡𝑅
Λ
UV𝑑𝑅−

5
2

𝑡𝑅O
𝑡𝑅
𝐹
, (57)

where 𝜆𝑡𝐿,𝑡𝑅 are the unknown UV couplings and the corresponding composite operators O𝐹 have mass

dimensions𝑑𝐿,𝑅 . Furthermore, it is assumed that, above the confining scale, the strong sector approaches

a fixed point, such that the Wilson coefficients 𝜆 run just because of the different normalizations of the

operators in the IR, which are set by𝑚∗ rather than the UV cutoff. In this case, the evolution of the coupling
is given by [112]:

𝜆𝑡 (𝑚∗) =
(
𝑚∗
ΛUV

)𝑑𝐿−52
𝜆𝑡 (ΛUV) . (58)

Such fixed point can be regarded as a free theory of techniquarks — the new fermions that constitute the

Higgs and other composite particles in the model. These techniquarks are not in the strongly-coupled EFT

and their interactions emerge in a more fundamental theory ΛUV �𝑚∗. Given this hierarchy of scales, to
reproduce the sizable Yukawa coupling of the top quark, fermionic operators with 𝑑𝐿 ≈ 5/2 are required.
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Note that, unlike other hypotheses, there is no risk of reintroducing the HP in partial compositeness2,

since the mass dimensions of the fermionic operators squared are [O2𝐹 ] > 4.
Unlike bilinear interactions to elementary quarks, where the color index could be contracted among

the elementary species, partial compositeness implies the existence of colored composite resonances.

Hence, the composite symmetry group should be extended to G × 𝑆𝑈 (3)𝐶 (with the color group being

considered unbroken).

Furthermore, each elementary quark 𝑖 can couple to the composite sector through its own set of

operators, with 𝑑𝑖𝐿,𝑅 ≠ 𝑑
𝑗
𝐿,𝑅

. According to equation 58, these can lead to different fermion masses at

low-energy, even if there is no coupling hierarchy present in the UV. The partial compositeness scenario

therefore sheds some light on the flavour puzzle. Nevertheless, the construction of a realist UV theory for

CHMs providing these features is challenging and still a work on progress [117].

Once the strong sector confines, each operator O𝐹 is expected to excite a heavy SM partner from the

vacuum with the same quantum numbers as the SM fermion present in the effective interaction. Such

composite partners have a Dirac mass before EWSB, so the two chiralities transform equally under the SM

gauge group. This feature has important consequences both at the theoretical and experimental levels:

being vector-like, their contributions to quantum anomalies are exactly canceled, so the gauge symmetry

is not spoiled; furthermore, other (fourth generation) fermions that only gain mass after EWSB have been

already excluded by Higgs precision data [118].

For example, an operator coupled to 𝑞𝐿 can excite from the vacuum a vector-like quark (VLQ) trans-

forming in the fundamental representations of 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (3)𝐶 , 𝑄 ∼ (21/6, 3), with the following

Lagrangian:

L𝑄 = (𝑞𝐿 𝑄𝐿)
©«
0 𝜆𝑡𝐿 𝑓

0 𝑚∗

ª®¬ ©«
𝑞𝑅

𝑄𝑅

ª®¬ + h.c. (59)

After diagonalizing the mass matrix, we find that the physical states are partially composite:���𝑞′𝐿〉 = cos𝜃𝐿
��𝑞𝐿〉 + sin𝜃𝐿 ��𝑄𝐿〉 , where sin𝜃𝐿 =

𝜆𝑡𝐿
𝑔∗

. (60)

The elementary fermions therefore couple to the composite sector, namely to the Higgs boson, only by

mixing with the fermionic resonances 𝑄 and𝑇 (the latter being the partner of the RH top). Consequently,

the Yukawa interactions in CHMs are generated at tree level with strength proportional to the mixing angles,

𝑦𝑡 ∼ 𝑔∗ sin𝜃𝐿 sin𝜃𝑅 ≈
1
𝑔∗
𝜆𝑡𝐿𝜆𝑡𝑅 ; (61)

see the left panel of figure 3. In particular, due to its large Yukawa coupling, the top quark is the most com-

posite fermion and thus the main source of explicit symmetry breaking. For completeness, we represent
2This would not hold, for instance, in the case of bilinear couplings of the form 𝜆𝑡

Λ[O𝑠 ]−1UV

𝑞𝐿O𝑠𝑡𝑅 , in which the composite

operator has the same quantum numbers as the Higgs boson. Even if [O𝑠 ] = 1+𝜖 to reproduce the large top Yukawa coupling,
[O2

𝑠 ] = 2 + O(𝜖) would reintroduce the HP.
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Figure 3: (Left) Generation of the Higgs boson Yukawa interactions in partial compositeness. Double lines
represent composite objects: either the vector-like fermions (straight line) or the Higgs boson (dashed line).
The gray dot illustrates a strong coupling. (Right) Generation of the NGB Higgs potential at one-loop. The
same notation is taken.

in the right panel of the same figure a contribution to the Higgs potential, that is generated analogously

but at the loop level.

4.5 The minimal composite Higgs model

Altogether, the previous considerations set the basis to construct the MCHM [93]. It is based on the coset

G/H = 𝑆𝑂 (5)/𝑆𝑂 (4) which produces exactly four NGBs to be identified with the Higgs doublet 𝑑.𝑜.𝑓 .
(the adjoint representation of G decomposes as 10 = 6 ⊕ 4 underH , the latter being the representation

where the broken generators, and thus the NGBs fields, transform). Importantly, H not only contains

GEW, but also a residual custodial symmetry 𝑆𝑂 (4). As we explore in the next section, this requirement
is necessary to make the model experimentally viable.

4.5.1 Embedding the SM gauge group

Consider an arbitrary field in the fundamental representation of the chiral group, Σ ∈ (2, 2). It transforms
as

Σ→ 𝑔𝐿 · Σ · 𝑔
†
𝑅
, (62)

where 𝑔𝐿 and 𝑔𝑅 are, respectively, 𝑆𝑈 (2)𝐿 and 𝑆𝑈 (2)𝑅 transformations. Adopting the following param-

eterization

Σ =
1
√
2

(
i𝜎𝐼Π

𝐼 + Π4
)
, (63)

and using that Tr
[
𝜎𝐼𝜎𝐽

]
= 2𝛿𝐼 𝐽 , we further obtain the trace

Tr[Σ†Σ] = |−→Π |2 , (64)

which is preserved by the chiral transformations. Hence, the norm of
−→
Π is identically preserved. Since

𝑆𝑂 (4) is the most general group of norm-preserving transformations that act on the fourplet, this result
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implies that 𝑆𝑂 (4) ⊃ 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅 . The two groups have in fact the same number of generators
and the same algebra, so they are locally isomorphic (see the appendix 2.A in Ref. [112]). The generators

of 𝑆𝑂 (4) can be therefore split into two subsets, 𝑇𝑎 = {𝑇 𝐼𝐿, 𝑇
𝐼
𝑅} (𝐼 = 1, 2, 3), that span each of the

𝑆𝑈 (2) algebras. In this way, we can identify the generators of the SM gauge group 𝑆𝑈 (2)𝐿 with𝑇𝛼
𝐿
, and

choose one of the others, 𝑒.𝑔. 𝑇 3
𝑅
= 𝑒𝑖𝜎3/2, as the SM hypercharge generator.

Having figured out the embedding of the SM gauge group, we can study the quantum numbers of

the composite fermions that couple to the SM directly. They arise at a scale well above the one at which

the explicit breaking of the Goldstone symmetry occurs; therefore, they transform in complete representa-

tions of 𝑆𝑂 (5). For the fundamental and spinorial representations, we have the following decomposition
branching rules:

52/3
𝑆𝑈 (2)×𝑆𝑈 (2)
−−−−−−−−−−−−−→ (2, 2) ⊕ (1, 1)

GEW−−−−→ 21/2+2/3 ⊕ 2−1/2+2/3 ⊕ 10+2/3 ;

41/6
𝑆𝑈 (2)×𝑆𝑈 (2)
−−−−−−−−−−−−−→ (2, 1) ⊕ (1, 2)

GEW−−−−→ 20+1/6 ⊕ 11/2+1/6 ⊕ 1−1/2+1/6 .

Neither of these cases can therefore account for the quantum numbers of the SM quarks. One solution to

this problem is simply extending the global group to 𝑆𝑂 (5) ×𝑈 (1)𝑋 → 𝑆𝑂 (4) ×𝑈 (1)𝑋 . Correspond-
ingly, the hypercharge is redefined as

𝑌 = 𝑇 3𝑅 + 𝑋 , (65)

leading to the charges in gray in the decomposition rules above. With this extension, we do find the quantum

numbers of the fermionic resonances that couple to the 𝑞𝐿 and 𝑡𝑅 fields. (In particular, the spinorial

representation could also accommodate the resonance coupling to 𝑏𝑅 .)

On the contrary, the Higgs field is not charged under 𝑈 (1)𝑋 . This is because the 4 = (2, 2) repre-
sentation of 𝑆𝑂 (4) includes already the 21/2. Equivalently, any real fourplet, or chiral bi-doublet, can be
rewritten in terms of a complex doublet with the same quantum numbers as the Higgs boson3:

Σ =
(
𝐻, 𝐻

)
. (66)

After EWSB and in the unitary gauge,

Σ→ 𝑣
√
2
𝟙 , (67)

which is preserved by transformations in the vector subgroup, with 𝑔𝐿 = 𝑔𝑅 ≡ 𝑔𝑉 . This corresponds to
the custodial symmetry 𝑆𝑈 (2)𝑉 ≈ 𝑆𝑂 (3)𝐶 .

The important remark to make is that the couplings of the𝑊 boson do not break this symmetry, since

it transforms as a triplet of 𝑆𝑂 (3)𝐶 . This can be seen by setting 𝑔1 → 0 in the mass Lagrangian,

L
𝑊 2 = 𝑓 2𝐴(𝜉)

[
𝑔22

(
𝑊 1
𝜇

)2
+ 𝑔22

(
𝑊 2
𝜇

)2
+

(
𝑔2𝑊

3
𝜇 − 𝑔1𝐵𝜇

)2 ]
; (68)

3Note that the transformation in equation 62 leads to 𝐻 ↔ 𝐻 , matching the expected transformation in GEW.
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the compositeness function 𝐴(𝜉) is determined later on, in equation 75. Rotating to the physical basis,

L
𝑊 2 = 𝑓 2𝐴′(𝜉)𝑔22

[
|𝑊 |2 + 1

2𝑐2𝜔
𝑍2

]
. (69)

Custodial symmetry therefore requires that 𝑚2
𝑊 /𝑚

2
𝑍 = 1. Turning on the hypercharge interactions, we

obtain 𝜌 = 1 exactly, at tree level, in the MCHM.
The choice of an unbroken group H ⊃ 𝑆𝑂 (3)𝐶 is therefore of extreme importance to make the

model compatible with electroweak precision data (EWPD) constraints. As a counterexample, working out

the 𝑆𝑈 (3) → 𝑆𝑈 (2) ×𝑈 (1) breaking pattern, which gives rise to the same number of NGB fields, we

obtain 𝜌 = 1 + 𝜉 + O(𝜉2). The precise measurement of this parameter sets a lower bound on 𝑓 ≳ 10
TeV, which results in a large fine-tuning in the theory of the order of Δ ≳ 103.

4.5.2 Scalar interactions

We use the following representation for the 𝑆𝑂 (5) generators:

𝑇𝑚𝑛𝑖 𝑗 = − i
√
2

(
𝛿𝑚𝑖 𝛿

𝑛
𝑗 − 𝛿

𝑛
𝑖 𝛿
𝑚
𝑗

)
, 𝑚 < 𝑛 ∈ [1, 4] ; (70)

𝑋𝑚5
𝑖 𝑗 = − i

√
2

(
𝛿𝑚𝑖 𝛿

5
𝑗 − 𝛿

5
𝑖 𝛿
𝑚
𝑗

)
, 𝑚 ∈ [1, 4] .

According to the discussion of the last section, we identify the generators of GEW with

𝑇 1𝐿 =
1
√
2
(𝑇 14 +𝑇23) , 𝑇2𝐿 =

1
√
2
(𝑇24 −𝑇 13) , 𝑇 3𝐿 =

1
√
2
(𝑇 12 +𝑇 34) (71)

and

𝑇 3𝑅 =
1
√
2
(𝑇 12 −𝑇 34) . (72)

In the unitary gauge, it is always possible to align the physical Higgs field along 𝑋35, so that the

Goldstone matrix reads:

𝑈 = 𝑒
−i
√
2ℎ
𝑓
𝑋45

=

©«

1 0 0 0 0

0 1 0 0 0

0 0 cos ℎ
𝑓

0 − sin ℎ
𝑓

0 0 0 1 0

0 0 sin ℎ
𝑓

0 cos ℎ
𝑓

ª®®®®®®®®®®®¬
. (73)

Using this parameterization in equation 51, we obtain the kinetic interactions:

Lkin =
𝑓 2

4
Tr

[
(𝑈 †𝐷𝜇𝑈 )𝑋 (𝑈 †𝐷𝜇𝑈 )

†
𝑋

]
+ O(𝜕4)

=
1
2

(
𝜕𝜇ℎ

)2 + 𝑓 2
8
sin2

ℎ

𝑓

[
𝑔22

(
𝑊 1
𝜇

)2
+ 𝑔22

(
𝑊 2
𝜇

)2
+

(
𝑔2𝑊

3
𝜇 − 𝑔1𝐵𝜇

)2 ]
, (74)
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where the notation ()𝑋 refers to the projection along the broken generators. After EWSB, this Lagrangian

becomes

Lkin =
1
2

(
𝜕𝜇ℎ

)2 + 𝑓 2
4

sin2
ℎ +𝑉
𝑓

𝑔22

[
𝑊 +𝜇𝑊 −𝜇 +

1
2𝑐2𝜔

𝑍2𝜇

]
. (75)

It is apparent that in the absence of gauge interactions the VEV produces no effect. In this shift-symmetry

preserving limit, we only obtain the kinetic term for the Higgs, with no source to generate its mass. Other-

wise, the gauge fields also develop a mass, given by

𝑚𝑊 ∼ 𝑔𝑓 sin
𝑉

𝑓
≡ 𝑔𝑣 , (76)

to make the analogy with the SM. The argument of the sine is thus the misalignment angle; see figure 2.

Expanding around ℎ = 0 in the vector mass term, we can check that the composite Higgs corrections are

indeed all O(𝜉):

Lkin ⊃
𝑔22
4
𝑣2

(
1 + 2𝑘𝑉

ℎ

𝑣
+ 𝑐𝑉

ℎ2

𝑣2
+ . . .

) [
𝑊 +𝜇𝑊 −𝜇 +

1
2𝑐2𝜔

𝑍2𝜇

]
, (77)

where

𝑘𝑉 ≡
𝑔CH
𝑉𝑉ℎ

𝑔SM
𝑉𝑉ℎ

=
√
1 − 𝜉 and 𝑐𝑉 = (1 − 2𝜉) . (78)

The composite nature is encoded in these multiplication factors, which are equal to 1 in the SM; check

equation 10.

Let us now compute the Yukawa interactions, by embedding the SM fields in equation 57 into fiveplets

of 𝑆𝑂 (5):
Lint = 𝜆𝑡𝐿𝑄

𝑖
𝑡𝐿
O𝑡𝐿
𝐹𝑖
+ 𝜆𝑡𝑅𝑇𝑅

𝑖O𝑡𝑅
𝐹𝑖
, (79)

where

𝑄𝐿 =
1
√
2

(
𝑏𝐿, − i𝑏𝐿, 𝑡𝐿, i𝑡𝐿, 0

)𝑇 and 𝑇𝑅 =
1
√
2

(
0, 0, 0, 0, 𝑡𝑅

)𝑇 . (80)

Since not all components in the embeddings above transform under the global group, the linear interaction

with O𝐹 breaks explicitly the global symmetry. However, in order to calculate an amplitude with several

SM fermions and Higgs fields, we can uplift 𝑄 and 𝑇 to spurions that transform fully in the G-group, that
is

𝑄 → 𝑔 ·𝑄 and 𝑇 → 𝑔 ·𝑇 , (81)

and use their physical values only after the computation (assuming that the original spurions take some

VEV). To employ the CCWZ method, we then dress these spurions with the Goldstone matrix:

𝑄𝐿,𝐷 ≡ 𝑈−1𝑄𝐿 → ℎ ·𝑈−1 · 𝑔−1 · 𝑔 ·𝑄𝑡𝐿 = ℎ · (𝑈−1𝑄𝑡𝐿 ) , (82)

so that an index transforming with 𝑔 is turned into one transforming with ℎ. In this way, we can form

H -invariants by simply contracting the objects in equation 82.
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With that aim, it is useful to decompose the dressed spurions into components that transform in

irreducible representations of 𝑆𝑂 (4):

𝑈−1𝑄𝐿 =


𝑄4
𝐿,𝐷

𝑄1𝐿,𝐷

 . (83)

To compute the Yukawa interactions, two invariants could be build a priori by contracting the singlet in

this vector with the other from 𝑇𝑅 (1𝐿 × 1𝑅 ), as well as the fourplets (4𝐿 × 4𝑅 ). However, the two are

not independent, since their combination gives a full 𝑆𝑂 (5) singlet [112]. At zero order in derivatives, the
generalized Yukawa Lagrangian of two fermions and several Higgs fields is therefore:

L𝑡yuk = −𝑐𝑡
𝜆𝑡𝐿𝜆𝑡𝑅

𝑔2∗
𝑚∗𝑄1𝐿,𝐷𝑇

1
𝑅,𝐷 + h.c. (84)

= −𝑐𝑡
𝜆𝑡𝐿𝜆𝑡𝑅

𝑔2∗
𝑚∗

1
2
√
2
sin

[
2ℎ
𝑓

]
𝑡𝐿𝑡𝑅 + h.c. ,

where the coefficient shows the source of each field and is determined by PC, and 𝑐𝑡 ∼ O(1) is an
unknown UV coefficient. After the Higgs takes a VEV, we can subsequently identify the top quark mass as

𝑚𝑡 = 𝑐
𝑡 𝜆𝑡𝐿𝜆𝑡𝑅

𝑔2∗
𝑚∗

√
𝜉 (1 − 𝜉)
√
2

. (85)

Writing the Lagrangian in terms of this parameter and expanding around ℎ = 0, we obtain:

L𝑡yuk = −𝑚𝑡 𝑡𝐿𝑡𝑅
[
1 + 𝑘𝑡

ℎ

𝑣
+ 𝑐2

ℎ2

𝑣2
+ . . .

]
, (86)

where

𝑘5𝑡 ≡
𝑔CH
ℎ𝑡𝑡

𝑔SM
ℎ𝑡𝑡

=
1 − 2𝜉√
1 − 𝜉

and 𝑐52 = −2𝜉 , (87)

the superscript denoting the 𝑆𝑂 (5) representation where the SM fermions are embedded. The interactions

with the lighter fermions are obtained analogously.

The dressed spurions can be similarly employed in the CCWZ construction of the potential; we just

have to factorize out the SM fermions to obtain constant spurion fields, Λ𝑅 and
(
Λ𝐿

)𝐼 , where 𝐼 = 𝑡, 𝑏

originates from the unfolding of 𝑄𝐿 in equation 80. As the spurions of the SM fermions are accompanied

by the mixing coefficients 𝜆𝐿,𝑅 , the latter can take the role of an expansion parameter in this analysis. At

leading order (LO), twoH -invariant terms can be built, such that

𝑉 5⊕5(ℎ) = 𝜆2𝐿 𝑓
4
(
Λ1∗𝐿,𝐷

)𝐼 (
Λ1𝐿,𝐷

)
𝐼
+ 𝜆2𝑅 𝑓

4
(
Λ1∗𝑅,𝐷

) (
Λ1𝑅,𝐷

)
= 𝑐1𝑓

4 sin2
[
ℎ

𝑓

]
+ 𝑐2𝑓 4 cos2

[
ℎ

𝑓

]
. (88)
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Therefore, the potential in the fundamental representation cannot account for EWSB; to realize it, NLO

terms are mandatory.

If, instead, we embed the SM fermions in larger representations of the global group, EWSB can be

successfully described. For example, let us assume that the LH top transforms in the symmetric represen-

tation, while the RH top is a full singlet of the global group, that is 𝑞𝐿 ⊕ 𝑡𝑅 = 14 ⊕ 1. In this case:

𝑄𝐿 =
1
2

©«
04×4 v𝑇

v 0

ª®¬ , (89)

where v = (i𝑏𝐿, 𝑏𝐿, i𝑡𝐿,−𝑡𝐿). Note that the 14 = 9 ⊕ 4 ⊕ 1 under the unbroken group, so there are now
two independent LH invariants arising in the potential:

𝑉 14⊕1(ℎ) = 𝜆(1)
𝐿

2
𝑓 4

[ (
Λ∗1𝐿,𝐷

)𝐼 (
Λ1𝐿,𝐷

)
𝐼

]
+ 𝜆(2)

𝐿

2
𝑓 4

[ (
Λ4∗𝐿,𝐷

)𝐼
𝑚

(
Λ4𝐿,𝐷

)𝑚
𝐼

]
= 𝑐1𝑓

4 sin2
[
ℎ

𝑓

]
+ 𝑐2𝑓 4 sin4

[
ℎ

𝑓

]
, (90)

where𝑚 sums over the generators transforming in the representation 4. In this case, EWSB can indeed

be achieved at LO. In particular, the two unknown constants in the potential can be traded by two EW

parameters, such as the Higgs mass and its VEV.

4.5.3 Heavy fermion interactions

In the previous sections, we have showed how the linear coupling between heavy-light fermions triggers

the Higgs potential and Yukawa interactions, and how the choice for the embeddings of the SM fermions

determines their structure. This choice has important consequences too for the VLQ phenomenology; it

determines, in particular, which composite resonances are expected to be the lightest and their branching

ratios.

To see an example, we focus on a multiplet of VLQs transforming in the representation 5𝑋=2/3 of

𝑆𝑂 (5),

Ψ = 1√
2

(
𝐵 − 𝑋5/3, − i(𝐵 + 𝑋5/3), 𝑇 + i𝑋2/3, 𝑋2/3 + i𝑇,

√
2𝑇

)𝑇
≡

(
Ψ4, Ψ1

)𝑇 , (91)

which contains two 𝑆𝑈 (2)𝐿 doublets,𝑄 = (𝑇, 𝐵)𝑇 and 𝑋 = (𝑋5/3, 𝑋2/3)𝑇 , plus a singlet𝑇 . Since𝑄
and𝑇 have the same quantum numbers as the SM quarks (see table 3), they naturally mix. The complete

Lagrangian of the fermion sector is therefore

LΨ = iΨ /𝐷Ψ + i𝑞𝐿 /𝐷𝑞𝐿 + i𝑡𝑅 /𝐷𝑡𝑅 −
[
𝑀ΨΨ𝐿Ψ𝑅 + 𝑦Ψ 𝑓

(
Ψ𝐿Σ

) (
Σ𝑇Ψ𝑅

)
+ h.c.

]
(92)

− 𝜆𝐿𝑄𝐿Ψ𝑅 − 𝜆𝑅Ψ𝐿𝑇𝑅 + h.c. ,
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Ψ𝑖 𝑇 3
𝐿

𝑇 3
𝑅

𝑌 𝑄

𝑋5/3
1
2

1
2

7
6

5
3

𝑋2/3 − 12
1
2

7
6

2
3

𝑇 1
2 − 12

1
6

2
3

𝐵 − 12 − 12
1
6 − 13

𝑇 0 0 2
6

2
3

Table 3: The SM quantum numbers of the fields in the Ψ-multiplet defined in equation 91. The explicit
expressions of the 𝑆𝑈 (2) generators are written in equations 71 and 72. The third and forth columns refer
to the generalized hyper- and electric charges.

where the first line includes the proto-Yukawa interactions of the VLQs with the NGBs, which arise in

the composite sector. Equivalently, we can make a field redefinition Ψ𝐿,𝑅 → 𝑈Ψ𝐿,𝑅 , so that the VLQ

interactions become:

LΨ → iΨ
( /𝐷 − i𝛾𝜇𝑒𝜇 ) Ψ − [

𝑀ΨΨ𝐿Ψ𝑅 + 𝑦Ψ 𝑓
(
Ψ𝐿Σ0

) (
Σ𝑇0Ψ𝑅

)
+ h.c.

]
(93)

− 𝜆𝐿𝑄𝐿𝑈Ψ𝑅 − 𝜆𝑅Ψ𝐿𝑈 †𝑇𝑅 + h.c.

Such Lagrangian is more commonly found in the literature [119]. Here, the pNGB nature of the Higgs

boson is explicit: for 𝜆𝐿,𝑅 = 0, the latter has only derivative interactions with the VLQs (encoded in the

first term).

The mass terms in this Lagrangian become diagonal after rotating the LH and the RH fields:

𝑞𝐿 → 𝑐𝐿𝑞𝐿 + 𝑠𝐿𝑄𝐿 and 𝑄𝐿 → −𝑠𝐿𝑞𝐿 + 𝑐𝐿𝑄𝐿 ; (94)

𝑡𝑅 → 𝑐𝑅𝑡𝑅 + 𝑠𝑅𝑇𝑅 and 𝑇𝑅 → −𝑠𝑅𝑡𝑅 + 𝑐𝑅𝑇𝑅 , (95)

with tan𝜙𝑡𝐿 ≡ 𝑠𝐿/𝑐𝐿 = 𝜆𝐿/𝑀Ψ and tan𝜙𝑡𝑅 ≡ 𝑠𝑅/𝑐𝑅 = 𝜆𝑅/(𝑀Ψ + 𝑓 𝑦Ψ). Accordingly, the VLQ

physical masses in the unbroken phase read:

𝑚𝑄 =
𝑚𝑋
𝑐𝐿

, 𝑚𝑋 = 𝑀Ψ and 𝑚
𝑇
=
𝑀Ψ + 𝑓 𝑦Ψ

𝑐𝑅
, (96)

while the SM top remains massless. In this representation, the exotic doublet is therefore expected to be

lighter than𝑄 . After EWSB, all these parameters get corrections of O(
√
𝜉); in particular, the components

in the EW doublets get split, but not sufficiently to decay into one another plus a SM boson.

To depict the top partner phenomenology at energies 𝐸 � 𝑣 , we can make use of the Equivalence

Theorem [120]. The longitudinal components of the𝑊 ± and 𝑍 bosons are then well approximated by the

NGBs in the Higgs doublet. (On the other hand, the interactions with their transverse components can be

36



typically neglected [121]. They are determined by the covariant derivative, hence they are suppressed by

the gauge coupling 𝑔 � 𝑦Ψ. Furthermore, such interactions are flavour-diagonal, so they cannot mediate

flavour-changing interactions at zero order in 𝜉 .) Computing the proto-Yukawa interaction in equation 92,

with4

Σ =

(
ℎ+ + ℎ−
√
2𝑓

, i
ℎ+ − ℎ−
√
2𝑓

,
ℎ

𝑓
,
ℎ0
𝑓
, 1

)𝑇
, (97)

we can therefore obtain the physical top partner couplings to a SM fermion and a SM boson:

LΨ ⊃
𝑦Ψ√
2
𝑐𝐿𝑠𝑅𝑇𝐿 (ℎ − iℎ0)𝑡𝑅 + 𝑦Ψ𝑐𝐿𝑠𝑅𝐵𝐿ℎ−𝑡𝑅 (98)

− 𝑦Ψ√
2
𝑠𝑅𝑋2/3𝐿 (iℎ − ℎ0)𝑡𝑅 − 𝑦Ψ𝑠𝑅𝑋5/3𝐿ℎ

+𝑡𝑅

+ 𝑦Ψ𝑠𝐿𝑐𝑅𝑇𝑅
[
1
√
2
(ℎ + iℎ0)𝑡𝐿 + ℎ+𝑏𝐿

]
+ h.c.

The corresponding branching ratios are:

B(𝑇 → ℎ𝑡) = B(𝑇 → 𝑍𝑡) = 0.5 ; B(𝐵 →𝑊𝑡) = 1.0 ; (99)

B(𝑋5/3 →𝑊𝑏) = 1.0 ; B(𝑋2/3 → ℎ𝑡) = B(𝑋2/3 → 𝑍𝑡) = 0.5 ; (100)

B(𝑇 → ℎ𝑡) = B(𝑇 → 𝑍𝑡) = 1
2
B(𝑇 →𝑊𝑏) = 0.5 , (101)

in agreement with Refs. [112, 122].

4.5.4 Heavy vector interactions

As in the case of fermions, the interaction in equation 38 implies that the elementary and composite vector

bosons mix and therefore the physical states are partially composite; the SM gauge bosons being identified

with the massless eigenstates. Since each elementary gauge boson mixes with a composite resonance,

we expect a set of spin-1 resonances transforming in the adjoint representation of the global group:

10
𝑆𝑈 (2)×𝑆𝑈 (2)
−−−−−−−−−−−−−→ (3, 1) ⊕ (1, 3) ⊕ (2, 2) . (102)

Furthermore, a singlet vector resonance associated with the 𝑈 (1)𝑋 symmetry, as well as new heavy

gluons, are expected to be part of the composite spectrum. These cannot couple directly to the NGBs,

since they are not charged under 𝑆𝑂 (4).
To learn the phenomenological implications, let us focus on a vector field in the (3, 1) representation

and with zero hypercharge, 𝜌𝜇 ≡ 𝜌𝜇𝑎𝑇𝑎𝐿 . PC dictates that this vector has a mass𝑚𝜌 ∼ 𝑚∗, as well as
the overall strength of the operators in the relevant Lagrangian

L𝜌 = − 1
4
𝜌𝑎𝜇𝜈𝜌

𝑎𝜇𝜈 + 1
2
𝑚2∗
𝑔2∗

(
𝑔∗𝜌𝜇 − 𝑔𝑒𝑊 𝜇

𝑒

)
+ |𝐷𝜇𝐻 |2 +𝑄𝐿

(
i/𝜕 + 𝑔∗/𝜌 −𝑀𝑄

)
𝑄𝐿 , (103)

4With a slight abuse of notation, we identify ℎ0 = ℎ + iℎ0, ℎ being the physical Higgs particle.
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where 𝜌𝑎𝜇𝜈 = 𝜕𝜇𝜌𝑎𝜈 − 𝜕𝜈𝜌𝑎𝜇 + 𝜖𝑎𝑏𝑐𝜌𝑏𝜇𝜌𝑐𝜈 and 𝐷𝜇𝐻 =
(
𝜕𝜇 − i𝑔∗𝜌𝜇 + . . .

)
𝐻 . As before, this Lagrangian

can alternatively be set by employing the 𝑒𝜇 symbol [112]:

L𝜌 = − 1
4
𝜌𝑎𝜇𝜈𝜌

𝑎𝜇𝜈 +
𝑚2∗
2𝑔2∗

(
𝑔∗𝜌𝑎𝜇 − 𝑒𝑎𝜇

)2
+ Ψ4𝛾𝜇

(
𝑔∗𝜌𝑎𝜇 − 𝑒𝑎𝜇

)
𝑇𝑎𝐿 Ψ4 , (104)

where Ψ4 is made out of the first four components in equation 91. Note that the combination (𝑔∗𝜌𝜇 −𝑒𝜇)
appears as one single field, since both vectors transform exactly in the same way; see equation 49. Given

that 𝑒𝜇 ≡ Tr[𝜔𝜇 · 𝑋𝑎] ≈ Tr[i𝐷𝜇𝟙 · 𝑋𝑎], the mass term induces the mixing that is explicitly shown in

equation 104.

The physical vector states are found by rotating 𝜌𝜇 → 𝑐𝜃𝜌
𝜇 + 𝑠𝜃𝑊

𝜇
𝑒 and𝑊

𝜇
𝑒 → −𝑠𝜃𝜌𝜇 + 𝑐𝜃𝑊

𝜇
𝑒 .

After diagonalizing both bosonic and fermionic interactions, the Lagrangian takes the following form:

L𝜌 ⊃
1
2
𝑚2∗
𝑐2
𝜃

𝜌𝜇𝜌
𝜇 − 𝑔2 cot𝜃𝜌𝜇𝐻†i

←→
𝜕𝜇 𝐻 +𝑄

(
i/𝜕 −

𝑀𝑄

𝑐𝐿

)
𝑄 − 𝑔2

[
𝑞𝐿

(
𝑠𝐿𝑐𝐿
𝑠𝜃𝑐𝜃

)
/𝜌𝑄𝐿 + h.c.

]
(105)

− 𝑔2
[
𝑞𝐿

(
𝑠2𝐿 cot𝜃 − 𝑐

2
𝐿 tan𝜃

)
/𝜌𝑞𝐿 +𝑄𝐿

(
𝑐2𝐿 cot𝜃 − 𝑠

2
𝐿 tan𝜃

)
/𝜌𝑄𝐿 + h.c.

]
+ . . . ,

where

tan𝜃 =
𝑔𝑒
𝑔∗
, 𝑔2 = 𝑔𝑒𝑐𝜃 = 𝑔∗𝑠𝜃 , (106)

and 𝑠𝐿, 𝑐𝐿 are the mixing angles obtained after equations 94-95. Similar results can be derived for other

fermions.

In the expected limit 𝑔∗ � 𝑔𝑒 , the mixing between the composite and elementary vectors is small;

hence, cot𝜃 is large. Since the largest tan𝜙𝑡𝐿 corresponds to the heaviest fermions, we can draw the fol-

lowing conclusions: (1) the exotic vector coupling to first generation fermions is 𝑔𝑢𝑢 ∼ 𝑔2 tan𝜃 ∼ 𝑔2𝑒 /𝑔∗,
which is suppressed by a factor of 𝑔𝑒/𝑔∗ relatively to the coupling of an elementary 𝜌 ; (2) the cou-

pling to quarks of the third generation is in turn large, 𝑔𝑡𝑡 ∼ 𝑔2 cot𝜃𝑠2𝐿 = 𝑔∗𝑠2𝐿 ; (3) the coupling to

the Higgs (and similarly to the gauge bosons, by virtue of the Equivalence Theorem) is identically large,

𝑔ℎℎ ∼ 𝑔2𝑔∗/𝑔𝑒 ∼ 𝑔∗.
Concerning point (3), plugging all the Higgs doublet 𝑑.𝑜.𝑓 . in the Goldstone matrix, and trading for the

charged vector components, 𝜌1 = (𝜌+ + 𝜌−)/
√
2, 𝜌− = i(𝜌− − 𝜌+)/

√
2 and 𝜌0 = 𝜌3, we explicitly

obtain:

L𝜌,ℎ,𝑊 ,𝑍 = 𝑔 cot𝜃𝜌0𝜇

[
𝑊 +𝐿
←→
i𝜕𝜇𝑊 −𝐿 −ℎ𝜕

𝜇𝑍𝐿 +𝑍𝐿𝜕𝜇ℎ
]
+𝑔 cot𝜃𝜌+𝜇

(
ℎ − i𝑍𝐿

)←→
i𝜕𝜇𝑊 −𝐿 + h.c. (107)

Therefore, 𝜌0 decays mostly into 𝑊 +𝑊 −, 𝑍ℎ and 𝑡𝑡 ; while the charged component has the largest

branching fractions into 𝑡𝑏, 𝑍𝑊 + and ℎ𝑊 + (or the conjugated) final states. These conclusions agree

with Ref. [112].
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4.6 Experimental constraints

Having studied the predictions of the MCHM, we dedicate this section to discuss how they are constrained

by experiment.

4.6.1 Collider phenomenology

4.6.1.1 Higgs couplings

The pNGB nature of the Higgs boson modifies its couplings to the SM, as we have found in equations 78

and 87. In particular, the Higgs couplings to the gauge bosons, arising from the CCWZ kinetic term, are

generic to all CHMs (with the same coset structure) and the corresponding bound on 𝑘𝑉 is therefore

universal. The latter is directly constrained by measurements of the Higgs production cross section; for

example, the following vector boson fusion channel 𝑝𝑝 → 𝑞𝑞𝐻, 𝐻 → 𝑉𝑉 ∗ is sensitive to 𝑘4
𝑉
.

Contrarily, the corrections to the Higgs Yukawa couplings depend on the G-representation under which
the SM fermions transform. We have found that, if 𝑞𝐿 ⊕ 𝑡𝑅 = 5⊕ 5, then 𝑘5𝑡 ≈ 1 − 3𝜉/2 ≡ 𝑘𝐴𝐹 . However,
if e.g. 𝑞𝐿 ⊕ 𝑡𝑅 = 10 ⊕ 5 instead, we obtain 𝑘10𝑡 =

√
1 − 𝜉 ≈ 1 − 𝜉/2 ≡ 𝑘𝐵𝐹 . The couplings to

lighter fermions are generated in a complete analogous way and, in full generality, the SM fermions can be

embedded into different multiplets of the global group. Consequently, the bounds on 𝑘𝐹 can, with enough

precision, flavour some CHMs over others.

Furthermore, composite couplings to gluons 𝑘𝑔 and photons 𝑘𝛾 can be induced at loop level as a

function of (𝑘𝑡 , 𝑘𝑏 , 𝑘𝑉 ). Therefore, LHC searches sensitive to these couplings, such as 𝑝𝑝 → 𝐻𝑡𝑡 ,

𝐻 → 𝛾𝛾 , can be also used to constrain the CHM.

Taking the structures of the Higgs couplings from different CHMs into account, Ref. [123] performed

a global fit to the Run 1 (at
√
𝑠 = 7 and 8 TeV) and Run 2 (at

√
𝑠 = 13 TeV) LHC data released by the

ATLAS and CMS collaborations. The most constrained model is the one with 𝑘𝑡 = 𝑘𝐴𝐹 and 𝑘𝑏 = 𝑘𝜏 = 𝑘𝐵𝐹 .

The combined analysis sets an upper bound on 𝜉 ≲ 0.17 at the 95% CL (an improvement of around

30% relatively to Run 1 results). This corresponds to a lower bound on the new physics scale of around

𝑓 ≳ 600 GeV.

4.6.1.2 Vector-like quarks

On top of these effects, CHMs predict a large spectrum of new particles around the TeV scale. In particular,

the vector-like fermions have a determinant role if they are pushed by experiment to very large scales, the

pNGB Higgs cannot get a natural mass.

The VLQs can be pair or singly produced in 𝑝𝑝 collisions. Most searches up to date have, however,

focused on pair-production of top partners, since the dominant (QCD) contribution is model-independent,

as well as decays into third generation quarks. Regarding this last assumption, it should be noted that,
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as the largest mixings 𝑠𝐿 ∼ 𝜆𝐿/𝑀 correspond to the heaviest SM quarks in partial compositeness, their

partners are indeed expected to be the lightest. Moreover, the experimental analyses typically assume that

the VLQ branching ratios into the SM bosons all add to one, which makes different searches [124–128]

complementary to one another.

To discuss an example, we focus on the 𝐻𝑡 +𝑋 topology, namely the search presented in Ref. [125],

where the𝐻 → 𝑏𝑏 channel is explored. The final state is expected to comprise at least a boosted isolated

lepton (from a𝑊 decay) or large MET (from non-reconstructed leptons or the decay of a 𝑍 ) , plus multiple

jets. This search is therefore also sensitive to𝑇𝑇 → 𝑍𝑡 +𝑋, 𝑍 → 𝜈𝜈 . Only events passing a single-lepton

or MET trigger are considered. Among themost important cuts in the 1- (0-)lepton channel, at least 5 (6) jets

are required, among which at least 2 must be 𝑏 -tagged, and the MET is required to be 𝐸miss
𝑇

> 20 (200)
GeV. After this selection, the effective mass of the total system is used as discriminating variable between

signal and background (mostly from 𝑡𝑡+jets production), to set exclusion limits. Using 36.1 fb−1 of data
at
√
𝑠 = 13 TeV, VLQ masses below 1.43 TeV and 1.17 TeV have been excluded at the 95% CL assuming

that B(𝑇 → 𝐻𝑡) = 1 and B(𝑇 → 𝑍𝑡) = 1, respectively. If the assumption is made, instead, on the

weak-isospin nature of the top partner, these limits are at 1.31 (1.19) TeV for doublets (singlets).
Recently, the ATLAS collaboration has presented a combined analysis of VLQ searches in different

final states [129], being able to exclude slightly larger masses,𝑚𝑇 ≲ 1.37 (1.31) TeV, for a weak doublet
(singlet) top partner. In comparison, masses𝑚𝐵 ≳ 1.22 TeV are allowed for a singlet bottom partner. By

naively rescaling these limits with the luminosity, we can expect that in the next high luminosity (HL)-phase

of the LHC, with a collected luminosity of 3 ab−1, masses as large as ∼ 4 TeV could be probed.

For such large values of the mass, pair-production of top partners becomes however phase space

suppressed and single-production through the EW interaction starts dominating. This brings the additional

complication of the VLQ couplings to EW gauge bosons being dependent on the mixing angles and subject

to indirect constraints.

The singly produced top partner typically yields cleaner topologies, characterized by the presence of

one large-𝑅 jet, 𝐽 , and at least one forward jet [130–136]. As an example, the monotop analysis presented

in Ref. [133] constrains top partners that decay into 𝑍𝑡 , with 𝑍 → 𝜈𝜈 . Among the most important

selection cuts, it is required that the 𝑝𝑇 (𝐽 ) > 250 GeV and 𝐸miss
𝑇

> 200 GeV; the presence of at least

one 𝑏 -tagged jet; and that ΔΦ(𝐸miss
𝑇

, 𝐽 ) > 𝜋/2, since signal events are likely to be produced back-to-

back. The transverse mass 𝑚𝑇 (𝐸miss𝑇
, 𝐽 ) is finally used as the discriminating variable between signal

and background (mostly from 𝑡𝑡 production). The 95% CL lower limit on the top partner mass, obtained

with a collected luminosity of 36.1 fb−1, is ∼ 1.5 TeV for mixing angles 𝑠𝐿 ≳ 0.5.

4.6.1.3 Vector-like leptons

Direct searches for vector-like leptons (VLLs) have been carried out too at the LHC [137–141], mostly in

pair-production and assuming VLL decays into SM gauge bosons only. (A recast of current searches to
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probe decays into an exotic stable particle is presented in Ref. [142].) In comparison to the case of VLQs,

the smaller production cross section of the VLLs, mostly via Drell-Yann, makes the sensitivity reach of the

experimental analyses quite limited.

For example, Ref. [139] presented a search for multi-lepton signals of a VLL 𝐸 → 𝑍ℓ at
√
𝑠 = 8

TeV. Among the most important selection cuts, two opposite sign same flavour leptons are required to

reconstruct a 𝑍 boson, as well as a third one to be found within an angular separation Δ𝑅 < 3 relatively

to the 𝑍 boson candidate. Several signal regions are defined regarding the presence of additional leptons

and di-jet pairs. The mass difference Δ𝑚 ≡ 𝑚3ℓ −𝑚ℓ+ℓ− , obtained by subtracting the invariant mass

of the two leptons that reconstruct the 𝑍 from the trilepton invariant mass, is used as the discriminating

variable between the signal and the dominant backgrounds (𝑍𝑍 and 𝑊𝑍 ) to set upper limits on the

VLL mass. Using 20.3 fb−1 of data, VLL masses below ≲ 170 GeV (in either the muon or the electron

channels) are correspondingly excluded, assuming the branching ratios of an EW singlet.

On the other hand, VLLs charged under 𝑆𝑈 (2) have a larger production cross section and are in turn
subject to more stringent bounds. In the case of a doublet, the search presented in Ref. [140] at

√
𝑠 = 13

TeV and using 77.4 fb−1 of data excludes VLL masses below ∼ 790 GeV at the 95% CL, considering

couplings to third generation leptons only.

4.6.1.4 Vector resonances

Among the spin-1 resonances, EW singlet states 𝑉 with sizable couplings to the SM leptons are specially

motivated since they can explain the apparent anomalies observed in lepton flavour universality (LFU)

tests; we discuss this later on, in section 5.3.2. As these vectors have a small coupling to the lightest

quarks (see equation 105), Drell-Yann production is very suppressed, being mostly triggered by 𝑏 quarks.

This coupling is, moreover, strongly constrained by 𝐵0 − 𝐵0 mixing, implying that 𝑔𝑞𝑞 ≲ O(0.05) for
𝑚𝑉 < 6 TeV [143].

Such 𝑉 can subsequently decay into the SM leptons. Ref. [106] recast the ATLAS search based on

36.1 fb−1 of
√
𝑠 = 13 TeV data presented in Ref. [144] which, although sensitive to this scenario, was

designed to probe SUSY models. The authors show that vector masses 𝑚𝑉 ≲ 1.8 TeV are excluded at

the 95% CL in the muon channel. However, when kinematically allowed, the composite 𝑉 can also decay

into ℓ𝐸, the corresponding decay width being a factor of 𝑔𝑒/𝑔∗ larger than Γ(𝑉 → ℓℓ). In such case,

the aforementioned limit gets reduced by ∼ 30%. Therefore, in Ref. [106], a new dedicated analysis is

proposed to test this composite channel which could reach𝑚𝑉 ∼ 3 TeV at the HL-LHC.

Other uncolored resonances, such as the EW triplet considered in equation 107, can couple directly to

the Higgs and to the longitudinal components of the gauge bosons. Since all these particles are composite,

these channels easily dominate the vector decay width. Furthermore, vector boson fusion processes could

potentially dominate the production cross section of the vector triplets, as well; they are however suppressed

by the EW gauge couplings that arise along with the virtual gauge bosons. The production cross section of
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the EW resonances at 𝑝𝑝 colliders is therefore small. The most stringent limits are, as expected, obtained

in channels involving the SM gauge bosons and exclude𝑚𝜌 ≲ 3.7 TeV at the 95% CL, using
√
𝑠 = 13

TeV LHC data and a luminosity of 137 fb−1 [145].
Finally, let us also comment the prospects regarding gluon partners, whose production cross section is

mediated by the strong, rather than the weak, coupling and can therefore give rise to significant effects at

colliders. The current lower bounds from LHC searches using Run 1 data on the mass of these resonances

lie close to 2–3 TeV [146–151]. No dedicated search up to date has however probed the composite gluon

in final states with top partners. In Ref. [152], the authors study the implications of this decay on heavy

gluon searches, by recasting the ATLAS results presented in Ref. [151] and exploring the reach of the

corresponding analysis at
√
𝑠 = 14 TeV. The authors find that the expected upper limits on the mass of

the composite gluon, ∼ 6 TeV in the absence of decays into top partners and for a luminosity of 300 fb−1,
could be weakened by more than 1 TeV if such decays are instead prominent. Similar prospects assuming
a broader decay width of the composite gluon are discussed in Ref. [153]. The complementary approach,

that is, the implications of heavy gluon production on top partner searches, was considered for example

in Ref. [154].

4.6.2 EW precision tests

Loops of fermionic resonances contribute to electroweak precision observables (EWPOs), such as the

Peskin and Takeuchi (𝑆 and 𝑇 ) parameters [155], which measure the corrections to the EW gauge boson

propagators, and the 𝑍𝑏𝑏 effective vertex, both being severely constrained by LEP. The corresponding

limits can be significantly stronger than those from direct searches [156] if the model is not protected by

additional symmetries; however, they cannot be taken at face value since they always require important

assumptions about the UV.

The MCHM, by incorporating custodial symmetry, can protect the 𝑇 -parameter from large tree level

corrections. Furthermore, by embedding 𝑞𝐿 = 42/3 ∼ (2, 2)2/3, the theory becomes invariant under
a 𝐿 ↔ 𝑅 symmetry that protects the model against tree level corrections to the 𝑍𝑏𝑏 coupling [157]. For

this reason, the spinorial representation is disfavored by experimental data; in turn, the exotic doublet 𝑋

in equation 92 becomes strongly motivated. As shown in equation 100, 𝑋 can only decay into𝑊𝑡 . Under

this assumption, the CMS search for 𝑝𝑝 → 𝑋5/3𝑋5/3 → 𝑊𝑡𝑊𝑡 [158], using 35.9 fb−1 of data at
√
𝑠 = 13 TeV, has excluded masses𝑚𝑋 ≲ 1.3 TeV.

In Ref. [159], a detailed analysis of the corrections to EWPOs in the MCHM was presented, taking

into account the interplay between the most low-lying spin-1/2 and spin-1 resonances (and assuming

the decoupling of heavier new physics). The authors report that the contribution of a fermionic fourplet

alone implies a 95% CL lower limit on 𝑓 ≳ 1700 GeV. However, other contributions arise which can

cancel the large one-loop contributions from heavy top partners: (1) the non-linear dynamics of the pNGB
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Higgs boson modifies the scalar–vectors coupling, resulting in shifts to the EWPOs; (2) composite vector

resonances lead to additional tree level (through mass mixing with the elementary gauge bosons) and one-

loop effects. Taking all these contributions into consideration, by performing matching at the scale of the

heavy resonances followed by the RGE evolution to the weak scale, the authors show that compositeness

scales as small as 𝑓 ∼ 500 GeV can still be compatible with the data. For purposes of comparison, the

contribution from (1) alone excludes 𝑓 ≲ 900 GeV at the 95% CL.

4.6.3 Flavour bounds

Another important requirement for new TeV physics is that it complies with the most stringent flavour

bounds [160]. In the case of CHMs, partial compositeness is an important ingredient to face this challenge,

as it implies that the flavour structure at low-energy is identical to that of the SM, therefore evading many

of the constraints.

In section 4.4, we discussed the scenario in which the strong sector is assumed to be anarchic,

such that the different masses and mixing of the SM fermions arise from the mixings with the composite

operators, all assumed to be O(1) in the UV. Due to the renormalization group running, the hierarchical
Yukawa couplings at low-energy can be generated, provided that the different fermions couple to different

sets of composite operators with different mass dimensions. This scenario naturally suppresses Higgs

FCNCs, because in the low-energy theory the only sources of flavour violation are the SM Yukawamatrices5.

In this way, partial compositeness moderately incorporates Minimal Flavour Violation (MFV) [161].

Still, higher-order operators involving the Higgs boson can be generated which could mediate these

rare processes6. Similarly, four-fermion operators with generic flavour structure can be triggered upon

integrating out the heavy resonances of the composite sector. However, since any elementary insertion

must be weighted by the corresponding degree of compositeness, operators involving light quarks (which

are the most constrained experimentally [162]) can only induce very small flavour-violating effects.

In spite of this efficient suppression, the constraints on flavour observables are so severe that a small

tension with the data might be unavoidable. Furthermore, the anarchic scenario faces strong constraints

from electric dipole moments (EDMs) because new O(1) complex phases are expected to arise [112]. An
additional problem is that FCNCs in the 𝑍 sector are usually unprotected.

A common approach to protect the model against these flavour-breaking effects is to rather assume

that the strong sector is flavour symmetric. Different symmetries to accomplish MFV have been considered

in the literature, sharing the prediction that at least some of the light quarks must have a large degree of

compositeness, being related by the flavour symmetry with that of the top quark. Consequently, composite
5Departures from this scenario can arise if, for example, more than one zero-momentum invariant is present in equation 84.
6An example being O ∼ 𝑣

𝑓 2
(𝜕𝜇ℎ)𝑢𝑅�̃�𝛾𝜇𝑢𝑅 + h.c. [112] which, upon the use of integration by parts (IBP) and the 𝑢𝑅

equation of motion (EOM), gives O ∼ 𝑣
𝑓 2
ℎ𝑢𝑅 (𝑦𝑢†�̃�)𝑢𝑅 + h.c. Since the �̃� flavour matrix does not need to be aligned with 𝑦𝑢 ,

these interactions can give rise to FCNCs.

43



MFV is strongly constrained by EWPD except in the case of RH compositeness [163]. Together with the

requirement of minimal 𝐶𝑃 violation, which can be attained if the leading breaking originates from the

mixing with third generation quarks (which are also the least constrained by the EDM bounds [112]), or

that the strong sector is 𝐶𝑃 invariant, such scenario can assure flavour protection in generic CHMs.

44



C
h
a
p
te

r

5
Non-minimal composite Higgs models

As we have seen, there is no evidence of the MCHM yet, and if no new physics shows up with more data,

the minimal model will eventually become too fine-tuned to give a natural explanation for the Higgs mass.

The requirement of minimality though, in spite of being a good starting point to establish the experi-

mental searches for the model, has no intrinsic value. We do not know what the breaking structure is, so all

CHMs are on equal footing (restricting the discussion to custodial symmetric groups); besides, larger coset

spaces do not necessarily imply more free parameters in the theory. There are furthermore compelling

reasons to explore non-minimal composite Higgs models (NMCHMs):

1. They are more common: there are infinite possibilities in which the Higgs plus other NGBs arise,

but only one where exactly 4 𝑑.𝑜.𝑓 . are produced.

2. They can evade more easily the experimental constraints [102, 103, 164]: for example, new de-

cay channels open for the heavy resonances of the composite sector, therefore reducing their branching

ratios into the SM. This possibility is completely unprobed and could render the bounds from current col-

lider searches significantly weaker, still allowing top partner masses as light as ∼ 400 GeV [165]. The

implications for naturalness are obvious.

3. They can admit four-dimensional UV completions, one example being the 𝑆𝑈 (5)/𝑆𝑂 (5) NMCHM
[166].

4. They can be anomalous [96]: since the anomaly coefficients depend on the fermionic content of

the UV theory, there is the possibility of measuring them in some LHC process and obtain qualitative

information about the underlying UV theory.

5. They produce additional pNGBs which can help addressing the long-standing problems in particle
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physics, providing a protected DM candidate [53, 101, 104, 107–110, 167–179], the necessary conditions

for EW baryogenesis [98, 105], etc.

6. They lead to new signatures at several experiments, with significant implications for Higgs and

flavour physics, as will be demonstrated in the following discussion.

We remark that the non-minimality of CHMs can refer either to the dimension of the global symmetry

group or to the number of NGBs that arise. Under the first criteria only, 𝑆𝑂 (6)/𝑆𝑂 (4) and 𝑆𝑂 (6)/𝑆𝑂 (5)
are identical, but the latter produces the 𝐻 plus one extra NGB, so 4 + 1 𝑑.𝑜.𝑓 .; while the former leads to
4 + 5. Other cosets, such as 𝑆𝑂 (7)/𝑆𝑂 (6), 𝑆𝑂 (8)/𝑆𝑂 (7) and 𝑆𝑂 (7)/𝐺2, produce an even smaller

number of NGBs. The features of the most common coset groups explored in the literature are summarized

in Ref. [103].

Let us denote the pNGBs emerging from a NMCHM by 𝜑 = {ℎ𝑖 , 𝜅 𝑗 , 𝜂}, where 𝑗 runs over all extra
singlets on top of 𝜂 or the components of a new weak-isospin multiplet. After performing the replacements

in Ref. [96] to make the physical parameters easier to read, the Goldstone matrix becomes a two-block

matrix:

𝑈 =



𝟙3×3

1 − ℎ2/(𝑓 2 + Ξ) −ℎ𝜂/(𝑓 2 + Ξ) −ℎ𝜅1/(𝑓 2 + Ξ) −ℎ𝜅2/(𝑓 2 + Ξ) . . . ℎ/𝑓

−ℎ𝜂/(𝑓 2 + Ξ) 1 − 𝜂2/(𝑓 2 + Ξ) −𝜂𝜅1/(𝑓 2 + Ξ) −𝜂𝜅2/(𝑓 2 + Ξ) . . . 𝜂/𝑓

−ℎ𝜅1/(𝑓 2 + Ξ) −𝜂𝜅1/(𝑓 2 + Ξ) 1 − 𝜅21 /(𝑓
2 + Ξ) −𝜅1𝜅2/(𝑓 2 + Ξ) . . . 𝜅1/𝑓

. . . . . . . . . . . . . . . . . .

−ℎ/𝑓 −𝜂/𝑓 −𝜅1/𝑓 −𝜅2/𝑓 . . . Ξ/𝑓 2



, (108)

with Ξ = 𝑓 2(1 − ℎ2/𝑓 2 − 𝜂2/𝑓 2 − 𝜅2𝑖 /𝑓
2)1/2 and ℎ the rotated field that sets the EWSB (the sine

factor has been absorbed in its definition).

The shift-symmetric Lagrangian, obtained from the CCWZ prescription, is

Lkin =
1
2
𝜕𝜇𝜑

𝑖𝜕𝜇𝜑𝑖 +
(𝜑𝑖𝜕𝜇𝜑𝑖 )(𝜑𝑖𝜕𝜇𝜑𝑖 )
2(𝑓 2 − 𝜑𝑖𝜑𝑖 )

(109)

=
1
2
𝜕𝜇ℎ

𝑖𝜕𝜇ℎ𝑖 +
1
2
𝜕𝜇𝜅

𝑖𝜕𝜇𝜅𝑖 +
1
2
𝜕𝜇𝜂𝜕

𝜇𝜂 + 1
𝑓 2

[
(𝜂𝜕𝜇𝜂)(ℎ𝑖𝜕𝜇ℎ𝑖 + 𝜅𝑖𝜕𝜇𝜅𝑖 )

]
+ . . . ,

where the ellipsis stand for interactions not involving 𝜂 at an order smaller than O(1/𝑓 2).
On the other hand, the shift-breaking part is sourced by the Yukawa couplings of the SM fermions

which generate an effective one-loop potential for the NGBs. This potential can be further expanded in
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powers of 𝜆𝜓 /𝑔∗, according to equation 56:

𝑉 (ℎ𝑖 , 𝜅𝑖 , 𝜂) =𝑚4∗
𝑁𝑐

(4𝜋)2

{ (
𝜆𝜓

𝑔∗

)2
V(2)

[
ℎ𝑖
𝑓
,
𝜅 𝑗

𝑓
,
𝜂

𝑓

]
+

(
𝜆𝜓

𝑔∗

)4
V(4)

[
ℎ𝑖
𝑓
,
𝜅 𝑗

𝑓
,
𝜂

𝑓

]
+ · · ·

}
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= 𝑔2∗𝜆
2
𝜓

𝑁𝑐

(4𝜋)2
𝑓 4

[
𝛼
ℎ2
ℎ2𝑖
𝑓 2
+ 𝛼

𝜅2
𝜅2𝑖
𝑓 2
+ 𝛼

𝜂2
𝜂2

𝑓 2
+ 𝛽ℎ𝜅ℎ

(ℎ𝜅)𝑖ℎ𝑖

𝑓 2
+ 𝛽

ℎ2𝜂ℎ
2
𝑖 𝜂 + 𝛽𝜅2𝜂𝜅

2
𝑖 𝜂

+ 𝛽
𝜂3𝜂

3 + 𝛽
ℎ2𝜂2

ℎ2𝑖 𝜂
2

𝑓 4
+ 𝛽

ℎ2𝜅2
ℎ2𝑖 𝜅

2
𝑗

𝑓 4
+ 𝛽

𝜂2𝜅2
𝜅2𝑖 𝜂

2

𝑓 4
+ 𝛽

ℎ4
ℎ4𝑖
𝑓 4
+ 𝛽

𝜂4
𝜂4

𝑓 4
+ 𝛽

𝜅4
𝜅4

𝑓 4
+ · · ·

]
,

where the dots encode interactions not determinant for the following discussion as well as higher-dimensional

terms. The 𝛼 and 𝛽 couplings are O(1) coefficients. Their particular values depend on how the SM

fermions are embedded in G. Moreover, 𝛽ℎ𝜅ℎ ≠ 0 only if −→𝜅 transforms in a representation 𝑥 of 𝑆𝑈 (2)𝐿
such that 𝑥 ⊗ 2 ⊗ 2 contains a group singlet; this is trivially obtained if 𝜅𝑖 = 𝜅 is one-component. (We

have not included tadpole terms, which can be removed via field redefinitions.)

The integration of the composite fermions triggers also the Yukawa interactions. In the unitary gauge,

and after EWSB, they read:

Lyuk = −
1
√
2
𝜓𝐿ℎ

[
𝑦 − 𝑐𝜂

𝜂

𝑓
− 𝑐𝜅

𝜅

𝑓
+ 𝑐
𝜂2

𝜂2

2𝑓 2
+ ...

]
𝜓𝑅 + h.c. , (111)

where the coefficients are matrices in flavour space1. Both 𝑐𝜂 and 𝑐𝜅 take real (imaginary) values for

scalars with 𝐶𝑃 -even (-odd) charges.

Finally, the non-minimal scalar spectrum implies also non-minimal interactions with the heavy reso-

nances of the composite sector, such as the VLQs and vector states. They can be parameterized as:

Lheavy = −𝑔∗
[
Ψ𝐿ℎ

(
1 −𝐶𝜂

𝜂

𝑓
−𝐶𝜅

𝜅

𝑓
+𝐶

𝜂2
𝜂2

2𝑓 2
+ . . .

)
𝑡𝑅 + h.c.

]
− 𝑔∗

𝐶𝑉√
2
𝑉𝜇𝜂𝜕

𝜇𝜂 + . . . , (112)

where only the singlet components of 𝑉𝜇 couple to 𝜂 directly; otherwise, the coupling is suppressed by

additional 𝜉 factors. Interactions with other flavours arise analogously.

Using this generic parameterization, we can anticipate the phenomenological signatures that are ex-

pected to arise from different models; see table 4 for a summary. We focus our analysis in next-to-minimal

models, in particular those based on the 𝑆𝑂 (6) and 𝑆𝑂 (7) groups.
We start by noting that equation 111 can give rise to FCNCs mediated by the exotic particles. Since

they are so suppressed in the SM, these processes are an ideal place to search for new physics, as we

explore in section 5.1.

However, if each SM fermion mixes with a single composite resonance, the Yukawa-like couplings

become 𝑐𝑖 ∝ 𝑦, such that the exotic pNGBs couple to the SM fermions with Higgs-like strength. Further-

more, for pseudoscalars, the renormalizable interactions with the Higgs boson, e.g. 𝛽ℎ𝜅ℎ , are strongly
1We have dropped the 𝑆𝑈 (2) indices, for simplicity.
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G/H r𝑆𝑈 (2)×𝑆𝑈 (2) 𝜇 [GeV] 𝑞𝐿 ⊕ 𝑡𝑅 couplings signals

𝑆𝑂 (6)/𝑆𝑂 (5) 𝑆 ∼ (1, 1) 100 6 ⊕ (6 ⊕ 15) 𝑐𝜂 top FCNCs 5.1

𝑆𝑂 (7)/𝐺2 Φ ∼ (1, 3) 100 35 ⊕ 1 𝛽
𝜅4, 𝑐

𝑞
𝜅 collider and GWs 5.2

𝑆𝑂 (7)/𝑆𝑂 (6)

𝑎1, 𝑎2 ∼ (1, 1) 1 27 ⊕ 1 𝛽
𝜅2𝜂, 𝑐

ℓ
𝜂,𝜅 , 𝐶𝑉 𝐵-decays 5.3

𝜂, 𝜅 ∼ (1, 1) 100
6 ⊕ 6 𝛽

𝜂2𝜅2, 𝑐𝜅 , 𝐶𝜅
dark sector 5.4

27 ⊕ 1 𝛽
ℎ2𝜂2, 𝑐𝜅 , 𝐶𝜅

Table 4: Summary of the non-minimal setups that will be discussed in this work. From the left to the right
column, we present (1) the coset groups under study; (2) the nomenclature adopted in each section, as
well as the quantum numbers of the exotic pNGBs under the chiral group; (3) the scale 𝜇 at which the new
phenomenology is expected; (4) the different embeddings for the SM fermions which are considered; (5)
the most relevant couplings triggering the phenomenology we are interested in probing (the superscript in
𝑐𝑖 refers to lepto- or hadro-philic regimes); and finally (6) the section in which each case is discussed. The
mass terms for each field (𝛼

𝜂2 and 𝛼
𝜅2 ) are implicitly assumed in the fifth column.

constrained by EDM measurements [180, 181]; therefore, the corresponding phenomenology is mainly

driven by the effective interactions. These facts together strongly motivate searches for EW scalars decaying

into third generation quarks,that we study in section 5.2 assuming that 𝜅 is an 𝑆𝑈 (2)𝐿 triplet. Moreover,

extended scalar sectors can modify the EW PT. In particular, first order PTs are characterized by a stochas-

tic spectrum of gravitational waves (GWs) that could be detected by future space-based observatories. We

study the interplay between collider and GW probes of the triplet model also in this section.

On another front, the coupling between light and heavy resonances of the strong sector, in particular

𝐶𝑉 , triggers rare decays of mesons into the exotic particles, in the low scalar mass regime. We propose

dedicated analyses to study these channels at the LHCb in section 5.3.

Finally, in section 5.4, we explore the scenario in which one of the pNGBs is stable and a potential

DM candidate (for instance 𝜂, provided that 𝛽
ℎ2𝜂 = 𝛽

𝜅2𝜂 = 𝛽
𝜂3 = 𝑐𝜂 = 𝐶𝜂 = 0). Composite scalar

DM is strongly motivated by several reasons: (1) it can be naturally at the EW scale, in agreement with

the weakly-interacting massive particle (WIMP) paradigm (see appendix E); (2) it becomes automatically

protected from the HP; (3) the portal coupling 𝛽
ℎ2𝜂2 can be small, as required by current low-energy con-

straints, while the derivative interactions in equation 109 are O(𝑚2
𝜂/𝑓 2) at the annihilation scale. These

interactions can therefore accommodate the DM relic density per se, which sets an important difference

between the composite and elementary DM scenarios, as in the latter the requirement 𝛽
ℎ2𝜂2 � 1 is

typically in tension with a thermal 𝜂 being all the DM we observe.
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Furthermore, if there are additional pNGB below the DM scale, the DM phenomenology can be dras-

tically different. To probe this case, bounds from DM experiments need to be rescaled and reinterpreted

accordingly. Likewise, it is not sufficient to study VLQ decays into the DM particle, triggered by 𝐶𝜂 , but

searches for Ψ → 𝜅𝑖𝜓 , triggered by 𝐶𝜅 instead, are mandatory to establish the non-minimality of the

model. Thereofore, in section 5.4, we perform a sensitivity study of such decay in ΨΨ production at a

future circular collider reaching energies of
√
𝑠 = 100 TeV.

5.1 Flavour-changing neutral currents in the top sector

5.1.1 The SO(6)/SO(5) model

The 𝑆𝑂 (6)/𝑆𝑂 (5) symmetry breaking pattern of the strong sector can be achieved by the VEV of a

fundamental field transforming in the representation 6 of 𝑆𝑂 (6) ≈ 𝑆𝑈 (4) [96]. The model construction
and the embedding of the SM are obtained in complete analogy with the MCHM. (This holds for any

𝑆𝑂 (𝑛 + 1)/𝑆𝑂 (𝑛) construction.) This particular breaking produces five NGBs transforming as a 5 of

𝑆𝑂 (5), which decomposes as 1 ⊕ 4 = (1, 1) ⊕ (2, 2) under 𝑆𝑂 (4) ≈ 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅 . The chiral
bi-doublet is therefore identified with the Higgs boson while the extra singlet is denoted by 𝑆 .

The exact values of the parameters in the shift-breaking Lagrangian depend on the representations

under which 𝑞𝐿 and 𝑡𝑅 transform. Among others, there are the 6 ⊕ 6, 6 ⊕ 15, 15 ⊕ 15 or the 20 ⊕ 1.
In the first case, both quarks break the global symmetry. The fundamental representation decomposes as

6 = 5 ⊕ 1 = 4 ⊕ 1 ⊕ 1, under 𝑆𝑂 (5) and 𝑆𝑂 (4), respectively. Therefore, the RH quark can couple to

the two singlets in this decomposition and equation 80 should be generalized to

𝑇𝑅 =
(
0 , 0 , 0 , 0 , i𝛾𝑡𝑅, 𝑡𝑅

)𝑇 ; (113)

with 𝛾 being a free parameter. By contracting the LH and RH singlet components, 1𝐿 × 1𝑅 , we obtain

the Yukawa Lagrangian in equation 111, with 𝑐𝜂 = i𝛾𝑦. Two interesting limits are worth mentioning: (1)

if 𝛾 → 0, the singlet becomes stable; (2) if 𝛾 → 1, its shift-symmetry remains unbroken (it is an exact

NGB).

On the other hand, the LO potential is obtained by combining two H -invariants, 1𝐿,𝑅 × 1𝐿,𝑅 . As in
the MCHM, this potential has a minimum at ℎ = 0 and therefore NLO terms are mandatory to achieve

the form of 𝑉 (𝐻 ), which increases the number of the UV parameters, not allowing us to make precise

predictions. The same holds for the other representations smaller than the 20. When 𝑡𝑅 ∼ 15, the shift
symmetry of the singlet remains furthermore unbroken.

Nevertheless, we can use PC to estimate the singlet mass. Following equation 110,

𝑚2
𝑆 ∼ 𝑁𝑐

𝑦2
𝜓
𝑚2∗

(4𝜋)2
, (114)
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where we have traded 𝜆𝜓 by the Yukawa coupling that is subsequently generated at low-energy. Therefore,

𝑆 can be naturally at or below the Higgs scale, depending on which type of quarks breaks its shift-symmetry.

For instance, if all SM fermions but the top (bottom) quark are embedded in a representation with 𝛾 = 1,
the singlet can be heavier (lighter, with 𝑚𝑆 ∼ O(10) GeV) than the Higgs boson. This scenario can

be actually predicted if the fermions transform in the 20 representation of the global group, leading to

𝑚2
𝑆 ∼ 𝜆𝐻 𝑓

2 [1 + O(𝜉)].
Note also that, in spite of being imposed classically by forcing 𝛾 = 0, the stability limit cannot be

assured at the quantum level, since the global group 𝑆𝑂 (6) is anomalous. A Wess-Zumino-Witten (WZW)
term can therefore arise in the Lagrangian [96],

L ⊃ 𝑐𝑊

(4𝜋)2
𝑆

(
𝑔22𝑊

𝐴
𝜇𝜈𝑊

𝐴𝜇𝜈 − 𝑔21𝐵𝜇𝜈𝐵
𝜇𝜈

)
, (115)

where 𝑛𝑊 is an integer that is fixed by the UV content of the CHM completion.

In order to avoid this term, we can extend the symmetry to𝑂 (6)/𝑂 (5), so that the parity transforma-
tion

𝑃DM = diag(1, 1, 1, 1,−1, 1) ∈ 𝑂 (5) , (116)

leading to 𝑃−1DM𝑈 (ℎ, 𝑆)𝑃DM = 𝑈 (ℎ,−𝑆), is respected at all orders in derivatives.
This model therefore provides a potential DM candidate at the EW scale. The corresponding composite

phenomenology was first explored in Ref. [53]; current bounds from DM experiments have already excluded

𝑚𝑆 ≲ 500 GeV considering the (most predictive) 20 ⊕ 1 model.
Dropping the requirement of stability, many other phenomenological consequences arise, particularly

in the case of a 𝐶𝑃 -odd singlet, for which 𝛾 ∈ ℝ in equation 113. For example, such particle can be an

axion of the Peccei-Quinn solution for the strong 𝐶𝑃 problem [182, 183]. Instead of trying to explain an

extremely small value for the QCD 𝜃 -term, this model considers a dynamical field coupled to 𝐺𝐺 whose

VEV could precisely cancel an a priori sizable 𝜃 . This requires in turn a particular relation between the axion

mass and its decay constant, which controls the size of its couplings to the SM. Many experiments have

been and are currently searching for the QCD axion, from energies at the sub-eV up to the TeV range [184].

Evading this dependence, a generic axion-like particle (ALP) has been considered in plenty other mod-

els in the literature, namely as a relaxion which takes the role of 𝜇2𝐻 and slowly rolls down its potential

until stabilizing at a small negative value, therefore providing a dynamical explanation for the HP [185];

as a ma-xion [186] responsible for generating neutrino Majorana masses; or an axiflavon which, taking a

VEV, can generate the hierarchical fermion masses according to the Forggatt-Nielsen mechanism [187].

Furthermore, an ALP is a promising candidate to solve some of the apparent anomalies observed in differ-

ent experiments, such as the galactic center (GC) excess [188] and the deviations from the SM prediction

of the anomalous magnetic moments of charged leptons [189, 190]. In this last case, the pseudoscalar

singlet can contribute at tree or loop level to the 𝐴ℓ+ℓ− effective vertex, and hence be responsible for
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an extra contribution that fits the (𝑔 − 2) anomalies2, the 𝐶𝑃 -charge of the new scalar being important

to explain the correct sign of the observed deviations. Such pseudoscalar can also provide the necessary

conditions for EW baryogenesis, namely providing extra sources of 𝐶𝑃 violation during the EW PT [98].

In spite of stirring up such great theoretical interest, pseudoscalar singlets at the EW scale are very

difficult to detect: first, because they do not have renormalizable interactions with the gauge bosons and

the production cross section via an off-shell Higgs boson is too small (being out of reach even of future

100 TeV colliders [110, 192]); second, because any sizable scalar mixing is excluded by measurements

of EDMs. As such, finding alternative production mechanisms for such particle is an ongoing subject of

great activity. Since the LHC is a factory of top quarks (even before the next luminosity phase starts), a

promising possibility is the production of EW pseudoscalars via top decays.

To study this possibility, let us consider the regime in which the LH quarks are embedded in the

representation 6, while RH up quarks transform in both the 6 and the 15:

𝑄𝛼𝐿 =
1
√
2
(i𝑑𝛼𝐿 , 𝑑

𝛼
𝐿 , i𝑢

𝛼
𝐿 ,−𝑢

𝛼
𝐿 , 0, 0) ; (117)

𝑈𝛼𝑅1
= (0, 0, 0, 0, i𝛾𝑞𝑢𝛼𝑅 , 𝑢

𝛼
𝑅 ) and 𝑈𝛼𝑅2

= i(𝑇 12 −𝑇 34)𝑢𝛼𝑅 . (118)

The LO Yukawa Lagrangian is obtained from the contraction of two 𝑆𝑂 (5) invariants, 1𝐿 × 1𝑅1 and

5𝐿 × 5𝑅2 , obtained in the decomposition of the 6 = 1 ⊕ 5 and the 15 = 5 ⊕ 10 under the unbroken

group. Keeping the same notation as section 4.5,

Lyuk = 𝑓 𝑦
(1)
𝛼𝛽
𝑞𝐿
𝛼
𝐼

(
Λ𝐼𝐿,𝐷

)†
6

(
Λ𝐿,𝑅1

)
6
𝑢
𝛽
𝑅
+ 𝑦 (2)

𝛼𝛽
𝑓 𝑞𝐿

𝛼
𝐼

(
Λ𝐼𝐿,𝐷

)†
𝑚

(
Λ𝐿,𝑅2

)
𝑚6
𝑢
𝛽
𝑅
+ h.c.

=
1
√
2
𝑢𝛼
𝐿
ℎ𝑢
𝛽
𝑅

[
𝑦
(1)
𝛼𝛽

(
−1 + i𝛾𝑞 𝑆

𝑓
+ ℎ2

2𝑓 2
+ 𝑆2

2𝑓 2

)
+ 𝑦 (2)

𝛼𝛽
+ · · ·

]
+ h.c. , (119)

with𝑚 = 1, . . . , 5 being associated to the components along the broken generators and the ellipsis repre-
senting terms further suppressed by powers of 1/𝑓 . The dressed spurions are defined asΛ𝐼𝐿,𝐷 = 𝑈−1Λ𝐼𝐿 ;
Λ𝑅1,𝐷 = 𝑈−1Λ𝑅1 ; and Λ𝑅2,𝐷 = 𝑈−1𝑈𝑅2𝑈 . (We work in the approximation that the CKM matrix is

diagonal.)

This construction shows explicitly that the singlet Yukawa matrix, ∼ 𝛾𝑞𝑦 (1) , is not aligned with the

Higgs Yukawa matrix, ∼ 𝑦 (1) − 𝑦 (2) , in general. The singlet can therefore mediate FCNCs in the quark

sector. We assume that no FCNCs arise in the leptonic one. This is realized, for instance, if the leptons are

embedded in the fundamental representation, such that the singlet leptonic Yukawa matrix is automatically

diagonal in the physical basis: Y𝑙𝛼𝛼 ∼ 𝛾𝑙𝑦𝑒𝛼𝛼 .
2The magnetic moment of charged leptons is given by 𝑔ℓ𝑒/(2𝑚ℓ ), with 𝑔ℓ = 2 [21]. The deviation from this value is

predicted in the SM at the loop level, the dominant contribution coming from the exchange of virtual photons. The anomaly
refers to Δ𝑎ℓ = 𝑎

exp
ℓ − 𝑎SMℓ , where 𝑎ℓ ≡ (𝑔ℓ − 2)/2. The largest discrepancy between the SM predictions and experiment is

found in the muon channel and is currently at the 4.2𝜎 level, after combining the Brookhaven and Fermilab results [191].
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Such FCNCs have been studied previously in Ref. [193] assuming that 𝑆 → 𝑏𝑏,𝛾𝛾 . (For𝑚𝑆 > 𝑚𝑡 , the

scalar singlet can instead mediate four fermion interactions making the top quark decay non-resonantly. A

sensitivity study for this process was subsequently presented in Ref. [194].) We complement the discussion

therein by studying the collider signals of a leptophilic 𝑆 . This regime is specially motivated if the embed-

dings of quarks preserve a 𝑆 → −𝑆 symmetry, making the scalar decay into leptons the only possibility to
probe the model. This scenario triggers rare top decays into two singlets instead of one, 𝑡 → 𝑆𝑆 𝑗 , which

were not previously considered in the literature. Searches for these processes might additionally provide

constraints in models with DM.

5.1.2 Collider signatures

Both the derivative and non-derivative pNGB interactions enter the Higgs width as follows:

Γ(ℎ → 𝑆𝑆) = 1
32𝜋𝑚ℎ

√√√√
1 −

4𝑚2
𝑆

𝑚2
ℎ

𝜆𝐻𝑆 +
(
𝑚2
ℎ
− 2𝑚2

𝑆

)
2𝑓 2

+ O
(
𝑣2

𝑓 2

)
2

, (120)

where 𝜆𝐻𝑆 ∼ 𝑔2∗𝑦2𝜓𝑁𝐶/(4𝜋)
2, according to equation 110, and the second coefficient is fixed by the

kinetic Lagrangian in equation 109. Therefore, values of𝑚𝑆 < 𝑚ℎ/2 are a priori constrained by the Higgs

decay width, Γ𝐻 ≲ 10 MeV [195]. This bound can be evaded provided that the combined contribution

of the coefficients within the brackets is ≲ 0.5. (Studying the effect of each contribution separately, this

bound translates into 𝑔∗ ≲ 5 if 𝜆𝐻𝑆 dominates over the derivative interactions; and 1/𝑓 2 ≲ 5 TeV−2,
for𝑚𝑆 ∼ 50 GeV, in the inverse case.)

Furthermore, the Yukawa matrices in equation 119 are subject to several constraints. In the following,

we denote the 𝑆 and 𝑆2 Yukawa matrices by Y𝑞
𝛼𝛽
∼ 𝛾𝑞𝑦 (1)

𝛼𝛽
and Ỹ𝑞

𝛼𝛽
∼ 𝑦 (1)

𝛼𝛽
. The relevant entries

for this study are the 3𝛼 and 𝛼3 for which we have found no direct limits. Indirect constraints from

flavour experiments, namely contributions to the𝐷0 − 𝐷0 (𝐷0 ≡ 𝑐𝑢) oscillation amplitude, involve always
products of two Yukawas,Y𝑢𝑡 andY𝑐𝑡 [196]; they are therefore negligible if one of these entries vanishes.

The singlet Yukawa matrices can be instead tested in the following rare top decays:

Γ(𝑡 → 𝑞𝛼𝑆) = 𝑣2

64𝜋 𝑓 2

[
(Y𝑞
𝛼3)

2 + (Y𝑞3𝛼 )
2
]
𝑚𝑡

(
1 − 𝑥2

)2
; (121)

Γ(𝑡 → 𝑞𝛼𝑆𝑆) = 𝑣2

512𝜋3𝑓 4

[
(Ỹ𝑞
𝛼3)

2 + (Ỹ𝑞3𝛼 )
2
]
𝑚3
𝑡

[
1
3

√
1 − 4𝑥2

(
1 + 5𝑥2 − 6𝑥4

)
+ 2

(
𝑥2 − 2𝑥4 + 2𝑥6

)
log

2𝑥2

1 − 2𝑥2 +
√
1 − 4𝑥2

]
, (122)
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Figure 4: (Left) Exotic branching ratios of the top quark as a function of the singlet mass. We assumed
Y𝑞
𝑖3 = Ỹ𝑞

𝑖3 = 1, the same for the transposed entries, and 𝑓 = 1 TeV. (Right) Singlet branching ratios into
muons (in blue) and tau leptons (in black) as a function of𝛾 , for𝑚𝑆 = 100 GeV. We assumed𝛾ℓ = 𝛾𝜏 = 1
and 𝛾𝑞 = 𝛾 in the solid lines; while 𝛾ℓ = 1 and 𝛾𝜏 = 𝛾𝑞 = 𝛾 in the dashed lines.

where we have defined 𝑥 =𝑚𝑆/𝑚𝑡 . The branching ratio of the top quark into 𝑆𝑞 and 𝑆𝑆𝑞 is represented
in the left panel of figure 4, setting the relevant Yukawa entries to 1 and 𝑓 = 1 TeV. We take the top decay
width to be Γ𝑡 ∼ 1.4 GeV [9].

The singlet can subsequently decay into fermions. Since quarks and leptons can transform differently

under the global symmetry (which is primary motivated by their different masses and mixings), we show,

in the right panel of figure 4, the branching ratio of 𝑆 to taus and muons for different assumptions on the

ℤ2 breaking parameter3. We verify that, even for 𝛾𝑞 = 𝛾𝜏 , the branching ratio into tau leptons is sizable

∼ 0.1. In the leptophilic scenario (𝛾𝑞 = 0), it is clearly the dominant mode. Moreover, in spite of the decay
into muons being a factor of𝑚2

𝜇/𝑚2
𝜏 ∼ 10−3 smaller, it can be enlarged if the tau lepton transforms in a

representation that breaks only softly (or not at all, in the case of the 15) the singlet ℤ2 symmetry. If the

latter applies also to quarks, the top can only decay via 𝑡 → 𝑆𝑆 𝑗 .

Current multileptonic analyses could potentially be sensitive to this scenario. One example is the ATLAS

search for 𝑡 → 𝑍𝑞 [197] which defines the control region “CR1”, where three light leptons are required.

In addition, the ℓ+ℓ− pair with invariant mass closest to𝑚𝑍 must satisfy |𝑚ℓ+ℓ−−15 GeV| > 𝑚𝑍 ; which
makes the analysis sensitive to generic EW resonances in the leptophilic regime. However, the sensitivity

to Y𝑞 is only marginal [6].

We therefore propose three new dedicated analyses to test the parameter space of this model at the

LHC: 𝑝𝑝 → 𝑡𝑆 + 𝑗 , in both 𝑆 → 𝜇+𝜇− and 𝑆 → 𝜏+𝜏− channels; and 𝑝𝑝 → 𝑡𝑆𝑆 + 𝑗 , with 𝑆 → 𝜇+𝜇−.
In our signal definition, we consider that the FCNC vertex can be present either in the production or the

decay of the top quark; see figure 5. To subsequently study the reach of the different analyses, we define
3Hereafter, we denote any lepton by 𝑙 and light leptons 𝑖 .𝑒 . the muon and the electron by ℓ .
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Figure 5: Production mechanisms of the top quark relevant for this work. On the left, the FCNC vertex is
present in the production; on the right, the FCNC vertex is considered on the decay of the top quark.

the following benchmark points (BPs):

BP1 : Y𝛼3 = Y3𝛼 = 0.01 , 𝑓 = 5 TeV =⇒ B(𝑡 → 𝑆𝑞) ∼ 10−8 − 10−7 ,

BP2 : Y𝛼3 = Y3𝛼 = 0.10 , 𝑓 = 5 TeV =⇒ B(𝑡 → 𝑆𝑞) ∼ 10−6 − 10−5 ,

BP3 : Y𝛼3 = Y3𝛼 = 0.10 , 𝑓 = 1 TeV =⇒ B(𝑡 → 𝑆𝑞) ∼ 10−4 − 10−3 ,

BP4 : Ỹ𝛼3 = Ỹ3𝛼 = 1.00 , 𝑓 = 5 TeV =⇒ B(𝑡 → 𝑆𝑆𝑞) ∼ 10−11 − 10−8 ,

BP5 : Ỹ𝛼3 = Ỹ3𝛼 = 0.20 , 𝑓 = 1 TeV =⇒ B(𝑡 → 𝑆𝑆𝑞) ∼ 10−10 − 10−7 ,

BP6 : Ỹ𝛼3 = Ỹ3𝛼 = 1.00 , 𝑓 = 1 TeV =⇒ B(𝑡 → 𝑆𝑆𝑞) ∼ 10−8 − 10−5 ,

with 𝑖 = 1, 2. The range in the branching ratio follows from the values of𝑚𝑆 ∈ [20, 150] GeV that are
considered in this study.

5.1.3 New analyses at the LHC

In this section, we describe our proposed searches for the scalar particle triggering both two and four

muon final states. We discuss the results from the top-up quark transition, which is the one leading to the

most stringent upper limits on the scalar mass. This is mainly a parton distribution function effect: the

probability to find a charm-quark in a proton that carries a sizable fraction of the initial energy is much

smaller than for the up-quark [9]. In turn, while both processes in figure 5 are important for 𝑡 → 𝑆𝑢, only

the one on the right contributes sizably if Y13 = Y31 = 0. (The signal efficiencies are comparable in the
two channels.)

Signal and background samples are generated as described in section 3.3. At the reconstruction level,

we assume the default CMS detector card in Delphes, which in particular requires electrons (muons) to

have 𝑝𝑇 > 15 GeV and |𝜂 | < 2.5 (2.4). We additionally demand that the transverse momentum of the

hardest lepton is above 25 GeV. Jets are defined using the anti-𝑘𝑇 algorithm with 𝑅 = 0.5 and required

to have 𝑝𝑇 > 25 GeV and |𝜂 | < 2.5. On top of these, the selection cuts particular to each search are

described below.
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Figure 6: (Left) The reconstructed scalar mass distribution in the analysis proposed for
𝑡 → 𝑆𝑢, 𝑆 → 𝜇+𝜇−, immediately after the cut on particle multiplicity. Two signal BPs are con-
fronted with the two major background components. The latter are generated EXClusively, i.e. only the
gauge boson decays into muons are considered. (Right) The same for the reconstructed SM top quark
mass.

5.1.3.1 Di-muon final states

In the 𝑆 → 𝜇+𝜇− search, we consider only leptonic decays of the𝑊 boson. Hence, at the detector

level, we expect three charged leptons, multiple jets and MET. Among the set of events produced after

running Delphes, we keep those with exactly three isolated leptons (two of them being necessarily opposite

charged muons), at least one jet and exactly one 𝑏 -tagged jet.

The scalar resonance is reconstructed from the hardest 𝜇+𝜇− pair; its invariant mass being denoted

𝑚rec
𝑆

. The corresponding normalized distribution is shown on the left panel of figure 6, for two signal BPs

and the most dominant backgrounds originating from 𝑡𝑍 and 𝑡𝑡 production. The transverse momentum

of the neutrino is identified by knowing the transverse momenta of all visible particles in the final state.

On the other hand, the longitudinal component is obtained by requiring that (𝑝ℓ + 𝑝𝜈 ) =𝑚2
𝑊 , where 𝑝ℓ

(𝑝𝜈 ) is the four-momentum of the lepton not coming from the scalar decay (neutrino). The smallest value

solution is chosen and𝑚𝑊 = 81.2 GeV is used as the reference mass. Both 𝑝ℓ and 𝑝𝜈 are then added to
the four-momentum of the 𝑏 -jet to reconstruct the SM top quark; its invariant mass being denoted𝑚rec

𝑡 .

The corresponding distribution for two signal BPs and the dominant backgrounds is shown on the right

panel of figure 6. We require that all events satisfy |𝑚rec
𝑡 −𝑚𝑡 | < 50 GeV, taking the reference top mass

to be𝑚𝑡 = 172.5 GeV.
An additional cut must be imposed to guarantee the validity of the EFT, making sure no energy bin

sensitive to the UV resonance is used. We therefore require that 𝑚total < 1 TeV, with 𝑚total being the

invariant mass of the total system (that is, the reconstructed top, the reconstructed singlet and the MET).

The effect of this last cut is minor: for𝑚𝑆 = 50 GeV, ≳ 98% of the signal events are kept. The complete

cut-flow tables for other signal mass points and background samples are presented in Ref. [6].

It is clear from the reconstructed scalar mass distribution in figure 6 that the signal peaks sharply
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Figure 7: (Left) The 95% CL upper limits on the top branching ratio that can be tested in the 𝑆 → 𝜇+𝜇−
channel, in the analysis proposed for 𝑡 → 𝑆𝑢. Such limits are obtained for a collected luminosity
𝐿 = 150 fb−1. The green and yellow bands assume, respectively, ±1𝜎 and ±2𝜎 level uncertainties on
the limits. (Right) The same for the case in which 𝑡 → 𝑆𝑆𝑢.

around the input scalar mass, while the background does not (with the exception of 𝑡𝑍 , producing two

muons with an invariant mass distribution that peaks around𝑚𝑍 ). For the final selection cut, we therefore

impose that |𝑚rec
𝑆
−𝑚𝑆 | < 30 GeV (losing sensitivity to𝑚𝑆 ∼ 𝑚𝑍 ). The corresponding signal, 𝑡𝑡 and

𝑡𝑍 efficiencies are ≈ 70, 40 and 15%, respectively, for𝑚𝑆 = 50 GeV.

The distribution of the reconstructed scalar mass is used as discriminant variable to set the upper

limits, which are derived using the OpTHyLic tool assuming the background-only hypothesis. For an inte-

grated luminosity 𝐿 = 150 fb−1, we find that production cross sections 𝜎 ≳ 10−3 pb could be excluded

at the 95% CL at the LHC; the highest sensitivity being attained for𝑚𝑆 ∼ 150 GeV. The exclusion limits

on the cross section can be translated into a maximum allowed coupling, by rescaling the theoretical cross

section until the upper limit is reached; this coupling is subsequently used in equation 121 to obtain the

limits on the exotic branching ratio of the top quark. (We assume that corrections to the top decay width

from the new physics are negligible.)

The expected 95% CL limits, as well as the ±1𝜎 and ±2𝜎 level bands, resulting from this procedure

are presented in the left panel of figure 7. Assuming B(𝑆 → 𝜇+𝜇−) = 1, this search could exclude

models where the new physics coupling and scale are (Y𝑢13, 𝑓 ) = (0.1, 5 TeV), corresponding to the BP
2. For O(1) couplings in the UV, the highest sensitivity reach implies a lower bound on 𝑓 ≳ 90 TeV.

5.1.3.2 Four muon final states

In comparison to single production, the double production of the pseudoscalar is phase space suppressed.

We therefore expect to obtain weaker constraints in this case. Such constraints can be, however, the only

way to probe the model in the limit where 𝑆 → −𝑆 is preserved by the quark sector.

Only hadronic decays of the𝑊 boson are considered this time. Hence, at the detector level, we require

four isolated leptons and at least three jets, one of which must be 𝑏 -tagged.
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Figure 8: The two reconstructed scalar mass distributions in the analysis proposed for
𝑡 → 𝑆𝑆𝑢, 𝑆 → 𝜇+𝜇−, immediately after the cut on particle multiplicities. The labels are as in
figure 6.

The top quark decaying into the SM is reconstructed from a𝑊 candidate and the 𝑏 -jet; the𝑊 being

reconstructed from the two light jets whose invariant mass is closest to 𝑚𝑊 . The corresponding mass

distributions are label as before and the same mass window cuts are applied, including the one on the

invariant mass of the total system, composed by the top quark and the two scalars 𝑆1 and 𝑆2.

In this case, however, we need to decide which 𝜇+𝜇− pair, among the two, is assigned to each scalar

resonance. To do so, we compute all combinations and choose the one that minimizes |𝑚rec
𝑆1
−𝑚rec

𝑆2
|, with

𝑚rec
𝑆1,2

being the invariant mass of each pair of opposite sign muons. The corresponding distributions are

represented in figure 8; it is apparent that the algorithm can differentiate correctly the leptons coming from

each scalar. After the initial cut on the multiplicity of particles, the backgrounds are reduced to negligible

levels, therefore no such distributions are shown in these plots.

The invariant mass distributions of the reconstructed scalars are finally used as discriminant variables

to set the upper limits. For an integrated luminosity 𝐿 = 150 fb−1, we find that production cross sec-

tions 𝜎 ≳ 10−3 pb could be excluded at the 95% CL at LHC; the highest sensitivity being attained for

𝑚𝑆 ∼ 80 GeV. The results, translated into the maximum allowed branching ratios of the top quark, are

presented in the right panel of figure 7. Assuming B(𝑆 → 𝜇+𝜇−) = 1, this search could potentially

exclude models where the new physics coupling and scale are (Ỹ𝑢13, 𝑓 ) = (1.0, 1 TeV), corresponding
to the BP 6. For O(1) couplings in the UV, the strongest limits translate into a lower bound on 𝑓 ≳ 2 TeV.

5.1.4 Outlook

We have demonstrated that pseudoscalar singlet FCNCs in the top sector can arise in the next-to-minimal

CHM and lead to sizable effects at the LHC. This contrasts with those mediated by the Higgs boson, which

are typically very small because (1) they arise at higher-orders in the pNGBs EFT; (2) the signal peaks in

regions of the phase space where the SM background is more prominent; (3) the Higgs branching ratios

into the cleanest final states are overly small. On the other hand, if the heaviest fermions are embedded
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in representations of 𝑆𝑂 (6) that break only softly the singlet shift-symmetry, 𝑆 can decay mainly into a

pair of muons. Under this assumption, new physics scales as large as 𝑓 ∼ O(100) TeV could potentially
be probed with a collected luminosity 𝐿 = 150 fb−1.

If opened, the 𝜏 -channel will however dominate the dynamics of a leptophilic singlet. In such case,

the fact that tau leptons decay into hadrons before being detected renders the analysis more involved and

dirtier than the previous one. This in conjunction with the smaller tau-tagging reconstruction efficiency,

≲ 60%, lead to weaker limits on the model parameter space. In particular, for B(𝑆 → 𝜏+𝜏−) = 1, new
physics scales 𝑓 ∼ 75 TeV could be probed (∼ 20% smaller than the ones we found in the muonphilic

scenario). Note also that, as both the leptonic𝑊 and the tau-jets decay into MET, we cannot reconstruct

the top invariant mass in this case. To guarantee the validity of the EFT, we have therefore imposed a

maximum value (500 GeV) for the transverse, rather than the invariant, mass of the total system.

Finally, using the results in figure 7, we can make a naive rescaling of the statistical significance with

the luminosity S′/S =
√
𝐿′/𝐿 (assuming the same systematic uncertainties on the event samples),

to estimate the sensitivity prospects at the HL-LHC. With 𝐿′ = 3 ab−1, we can therefore expect that

compositeness scales as large as 𝑓 ≳ 200 (3) TeV could be probed in 𝑝𝑝 → 𝑡𝑆 + 𝑗 (𝑝𝑝 → 𝑡𝑆𝑆 + 𝑗 )
searches, assuming that the pseudoscalar decays mainly into muons. Such flavour searches could provide

a powerful constraint on the parameter space of the EW ALP.

5.2 EW phase transition at colliders and astrophysical

observatories

5.2.1 The 𝑆𝑂 (7)/𝐺2 model

In the next sections, we turn the discussion into the 𝑆𝑂 (7) global group. To start, we focus on the sym-
metry pattern 𝑆𝑂 (7)/𝐺2, which can be accomplished if a fundamental field transforming in the spinorial
representation 8 of 𝑆𝑂 (7) develops a VEV [101]. An eight-dimensional representation of the 21 𝑆𝑂 (7)
generators, as well as the embedding of the𝐺2 subgroup, has been constructed in the work cited above.

The generators that span the coset manifold (and so the corresponding NGBs) transform in the represen-

tation 7 of 𝐺2, which decomposes as (2, 2) ⊕ (3, 1) under the chiral group. Therefore, the physical

spectrum of the model comprises a Higgs doublet and three extra states that, depending on which of the

two 𝑆𝑈 (2) groups is gauged, can transform as a triplet or three singlets under GEW. The former consti-
tutes a version of the inert triplet model [198]; we will focus on this case hereafter, denoting the EW triplet

by Φ.

Among the smallest representations where 𝑞𝐿 and 𝑡𝑅 can transform, we find the 8⊕ 8 and the 35⊕ 1.
In the last case, the relevant shift-symmetry breaking interactions of equation 110 can be generated at

LO. The potential is constructed out of two H -invariants, the 1𝐿 × 1𝐿 and the 7𝐿 × 7𝐿 arising from the
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decomposition of the 35 = 1 ⊕ 7 ⊕ 27 under 𝐺2. Under 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅 , the 7 = (2, 2) ⊕ (3, 1),
while the 27 = (5, 1) ⊕ (4, 2) ⊕ (3, 3) ⊕ (2, 2) ⊕ (1, 1). The LH quark can therefore mix with both

doublets in these representations, the degree of mixing being denoted 𝛾 (following the notation of the last

section). An explicit construction of such embedding Λ𝐿 can be found in Ref. [171].

As before, we have freedom to choose 𝛾 such that Φ is 𝐶𝑃 -odd. In this case, the trilinear coupling to

the Higgs boson in equation 110 automatically vanishes (assuming 𝐶𝑃 is preserved in the Higgs sector)

and the renormalizable potential becomes accidentally ℤ2 symmetric:

𝑉 35⊕1 = 𝑐1𝑓
4
���(Λ𝐼𝐿,𝐷 )

88

���2 + 𝑐2𝑓 4 ���(Λ𝐼𝐿,𝐷 )
𝑚8

���2
= 𝜇2𝐻 |𝐻 |

2 + 𝜆𝐻 |𝐻 |4 +
1
2
𝜇2Φ |Φ|

2 + 1
4
𝜆Φ |Φ|4 + 𝜆𝐻Φ |𝐻 |2 |Φ|2 , (123)

where the dressed spurion is Λ𝐼𝐿,𝐷 = 𝑈−1Λ𝐼𝐿𝑈 ,𝑚 = 1, . . . , 7 and we have traded the two UV constants
𝑐1,2 by the Higgs mass and its quartic coupling. Therefore,𝑉 (Φ) can be entirely determined up to (𝛾, 𝑓 ).
In particular, for 𝛾 → 0, the triplet mass reads 𝜇2Φ ≈

2
3 𝑓

2𝜆𝐻 which can be naturally at the EW scale;

moreover, 𝜇2Φ > 0 and 𝜆𝐻Φ > 0 guarantee that the triplet VEV is 〈Φ〉 = 0.
In this limit, the neutral component of the triplet is stable and hence a potential DM candidate. Since

it is charged, the DM in this scenario annihilates sizably into the EW gauge bosons; to account for the relic

abundance, a large new physics scale is therefore required, 𝑓 ∼ 9 TeV [171].

The accidental ℤ2 symmetry in the renormalizable Lagrangian is the reason why the triplet model

is basically inert. On the other hand, the effective operators — arising from integrating the composite

resonances out — change drastically the phenomenology. To clarify this point, we compute the Yukawa

Lagrangian

Lyuk = 𝑓 𝑦𝛼𝛽𝑞𝐿𝛼𝐼
(
Λ𝐼𝐿,𝐷

)†
88
𝑢
𝛽
𝑅
+ h.c. = 𝑦𝑞

𝛼𝛽
𝑞𝐿
𝛼�̃�

[
− 1 + i𝛾 Φ

𝑓
+ . . .

]
𝑢
𝛽
𝑅
+ h.c. ; (124)

analogously for the down sector. This matches equation 111 with 𝑐𝜅 = i𝛾𝑦. The product of the doublet
with the triplet 2−1/2 × 30 = 2−1/2 ⊕ 4−1/2 under𝐺EW. Therefore, identifying the triplet components

with Φ = (𝜙+,−𝜙0, 𝜙−)𝑇 , we can write the resulting doublet as

�̃�Φ =

(
𝜙0ℎ
∗
0 −
√
2𝜙+ℎ−

𝜙0ℎ
− −
√
2𝜙−ℎ∗0

)
. (125)

(In the down sector, 𝐻Φ reads as above upon the replacements ℎ∗0 → ℎ+ and ℎ− → −ℎ0.) As such, in
the unitary gauge after EWSB, we obtain:

Lyuk ⊃
𝑣
√
2
𝛾

𝑓

{
i𝑦𝑡𝜙0𝑡𝛾5𝑡 − i𝑦𝑏𝜙0𝑏𝛾5𝑏 −

[√
2i𝜙−𝑏 (𝑦𝑡𝑃𝑅 + 𝑦𝑏𝑃𝐿)𝑡 + h.c.

]}
. (126)

The triplet components can therefore decay promptly at colliders, for natural values of the new physics

scale.
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Figure 9: Partial decay widths of the different heavy particles in the triplet model. We set 𝑓 = 1 TeV.

5.2.2 Collider signatures

The renormalizable Lagrangian of the triplet model is subject to several constraints. Bounds from LEP,

using
√
𝑠 = 209 GeV data, have excluded triplet masses ≲ 100 GeV [199]; we therefore restrict our

analysis to the ]100, 500] GeV mass range.
The quartic interaction between the triplet and the Higgs boson triggers ℎ → 𝛾𝛾 at the loop level. The

corresponding decay width reads:

Γ(ℎ → 𝛾𝛾) =
𝛼2em𝑚

3
𝐻

1024𝜋3

{
2
𝑣

[
𝐴1(𝜏𝑊 ) +

4
3
𝐴1/2(𝜏𝑡 )

]
+ 𝜆𝐻Φ

𝑣

𝑚2
Φ

𝐴0(𝜏Φ)
}2
, (127)

with 𝛼em = 𝑒2/4𝜋 and 𝜏𝑖 = 4𝑚2
𝑖 /𝑚

2
𝐻 . The loop functions, as well as the explicit calculation of the scalar

contribution, are detailed in appendix B. We denote by𝑚Φ the triplet mass which is𝑚2
Φ = 𝜇2Φ + 𝜆𝐻Φ𝑣

2/2
at tree level. The last combined measurement of this decay performed by the ATLAS and the CMS collabo-

rations gives Γ(ℎ → 𝛾𝛾)/Γ(ℎ → 𝛾𝛾)SM = 1.14+0.19−0.18 [200]. Values of 𝜆𝐻Φ ≳ 2 (6) are consequently
excluded for𝑚Φ ∼ 200 (300) GeV.

Furthermore, equation 126 triggers triplet decays into 𝑞𝑞 final states. Likewise, for𝑚𝑡 > 𝑚Φ, the top

quark can decay into the triplet and a 𝑏 quark. The corresponding decay widths read:

Γ
(
𝜙0 → 𝑞𝑞

)
=
3(𝑦𝑞)2𝑣2

16𝜋
𝛾2

𝑓 2
𝑚𝜙

√√√√
1 −

4𝑚2
𝑞

𝑚2
𝜙

; (128)

Γ
(
𝜙+ → 𝑞′𝑞

)
= 3
(𝑦𝑞)2 + (𝑦𝑞′)2

16𝜋
𝛾2𝑣2

𝑓 2
𝑚𝜙

1 −
𝑚2
𝑞

𝑚2
𝜙


2

; (129)

Γ
(
𝑡 → 𝜙+𝑏

)
=
(𝑦𝑏)2 + (𝑦𝑡 )2

32𝜋
𝛾2𝑣2

𝑓 2
𝑚𝑡

1 −
𝑚2
𝜙

𝑚2
𝑡


2

. (130)
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Figure 10: Single and pair-production cross section of the scalar triplet at 𝑝𝑝 colliders, in different produc-
tion modes, as obtained with MadGraph. The different lines in the plots refer to different c.m.e., assuming
𝛾/𝑓 = 1 TeV−1. The production cross section of 𝜙0 via gluon fusion was obtained by rescaling the re-
sults in Ref. [201], at

√
𝑠 = 13 TeV. To estimate the cross sections for other c.m.e., we computed the

corresponding ratio by implementing the ggHFullLoop model in MadGraph.

In the second equation, we assumed 𝑚𝑞 � 𝑚𝑞′, which holds if the former is a 𝑐 or 𝑡 quark and the

latter a 𝑠 or a 𝑏 quark. Partial widths as a function of 𝑚Φ are depicted in figure 9. Had we assumed

also 𝐶𝑃 violation interactions, the trilinear coupling ∼ 𝜅𝐻†Φ𝐻 would allow the triplet to gain a VEV

𝑣′ ∼ 𝜅𝑣2/𝑚2
Φ. The latter modifies the 𝜌 -parameter and is therefore constrained to be 𝑣

′ ≲ GeV [202].

Therefore, Γ(𝜙0 → ℎℎ) ∼ 𝜅2/𝑚Φ would still be subdominant with respect to Γ(𝜙 → 𝑞𝑞) even for

𝑓 ∼ 10 TeV.
The effective couplings, entering in the expressions above, are constrained by several searches at 𝑝𝑝

colliders. To recast such constraints, we have obtained the signal cross section at
√
𝑠 = 8 and 13 TeV for

different triplet masses; for purposes of illustration and future sensitivity studies, we also plot in figure 10

the results for
√
𝑠 = 27 and 100 TeV. The leading diagrams contributing to the triplet production are

represented in figure 11.

The list below summarizes the main searches which constrain the parameter space of this model,

defining each colored region in figure 12:
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Figure 11: Representative diagrams of the main production mechanisms of the triplet at 𝑝𝑝 colliders. The
diagrams from left to right correspond to: pair production via EW currents; single production via gluon
fusion; production in association with 𝑡𝑏 (𝑡𝑏); and prodcution from the decay of a top quark.

• In blue: Searches looking for 𝑏𝑏 or 𝑡𝑡 resonances constrain the 𝜙0 interaction. The production

cross section of the neutral component is dominated by gluon fusion processes, since the Drell-

Yann production is suppressed by the small
(
𝑦𝑞𝑣/𝑓

)2 factor. For𝑚Φ < 2𝑚𝑡 , the most constrain-
ing search up to date was performed by the CMS collaboration [203]. The limits obtained with

𝐿 = 35.9 fb−1 of data at
√
𝑠 = 13 TeV exclude the region enclosed by the solid blue line. At the

HL-LHC, it is expected that such limits become a factor of
√
𝐿′/𝐿 =

√
3 fb/35.9 ab ∼ 9 stronger.

In this case, the region enclosed by the dashed blue line could be excluded. There are no resonant

searches probing directly the𝑚Φ > 2𝑚𝑡 regime.

• In green: Searches for an EW resonance produced in association with a top and a bottom quarks

are sensitive to 𝜙±. For𝑚Φ > 𝑚𝑡 , the most constraining and recent study was published by the

ATLAS collaboration [204], using 𝐿 = 36.1 fb−1 of data collected at
√
𝑠 = 13 TeV. The correspond-

ing limits on 𝜎 (𝑝𝑝 → 𝑡𝑏𝜙±) × B(𝜙± → 𝑡𝑏) constrain the region enclosed by the solid green

line. With the enhancement of the luminosity, cross sections ∼ 0.1 times smaller could be tested
at the HL-LHC; the region delimited by the dashed green line could be correspondingly excluded if

no deviations from the SM are observed.

• In red: Searches for exotic decays of the top quark also constrain the model for 𝑚Φ < 𝑚𝑡 . In

particular, CMS carried a search for 𝑡𝑡 production with 𝑡 → 𝜙±𝑏, 𝜙± → 𝑞′𝑞 at
√
𝑠 = 8 TeV

and with 𝐿 = 19.7 fb−1 [205], setting an upper bound on B(𝑡 → 𝜙±𝑏, 𝜙± → 𝑗 𝑗) ≲ 0.01–0.02
for 𝑚Φ ∼ 100–160 GeV. Using equation 128, we converted this constraint into a bound on the

(𝑚Φ, 𝛾/𝑓 ) plane. The region enclosed by the solid red line is consequently excluded. The dashed
red line delimits the parameter space that could be tested at the HL-LHC.

The scalar triplet can be also pair-produced via EW charged currents (CCs), 𝑝𝑝 →𝑊 ±(∗) → 𝜙±𝜙0,
as well as via neutral currents (NCs), 𝑝𝑝 → 𝑍/𝛾 → 𝜙+𝜙−. Provided that Φ decays promptly, the cross

section of these processes is independent of 𝛾/𝑓 in good approximation.
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Figure 12: Current (solid) and future (dashed) collider bounds on the triplet Yukawa coupling, as a function
of the triplet mass; see the text for details. The vertical orange band could be tested at the HL-LHC using
our proposed analysis.

For𝑚Φ < 𝑚𝑡 , the charged and neutral triplet components decay mainly into 𝑞′𝑞 and 𝑏𝑏 final states,

respectively. Searches for di-jet resonances could therefore be sensitive to this regime, the most con-

straining one being presented in Ref. [206]. The pair of quarks from each resonance is typically very

collimated and can be reconstructed as a single jet. As such, both two- and four-jet signatures were con-

sidered in the analysis, the latter relying on advanced techniques to explore the sub-structure of jets. The

upper limits on the cross section, obtained with 35.9 fb−1 of data collected at
√
𝑠 = 13 TeV, range from

∼ 170 pb (100 GeV) to ∼ 20 pb (170 GeV). No parameter space of the model is therefore constrained

by this search; see figure 10. At the HL-LHC, cross sections ∼ 0.1 times smaller could be probed; still,

this analysis would be basically insensitive to our model.

For𝑚𝑡 < 𝑚Φ < 2𝑚𝑡 , the NC process produces more commonly a 𝑡𝑏𝑡𝑏 final state. The CMS search

at
√
𝑠 = 8 TeV presented in Ref. [207] could potentially probe this channel. Knowing the enhancement of

the signal and background cross sections with the c.m.e., we projected these limits for the current run of

the LHC. Again, we found that no region of the parameter space is or could be constrained at the HL-LHC.

Likewise, the CC produces a 𝑏𝑏𝑡𝑏 (𝑡𝑏) final state; to the best of our knowledge, there are however no

dedicated searches for this process.

For𝑚Φ > 2𝑚𝑡 , the CC leads to 𝑡𝑡𝑡𝑏 (𝑡𝑏) instead, which no dedicated search currently available can
probe. The lack of sensitivity to these final states has been also pointed out in Ref. [208]. The uncolored

pair production of new physics that decays back into the SM is specially difficult for the LHC due to the

small signal cross section and similarity with the backgrounds. Furthermore, as discussed by the authors,

13 TeV model-specific searches are set towards more massive resonances, making generic searches for

multiple fermions with no beyond the SM source of large 𝑝𝑇 or MET rarer at the present LHC run, in

comparison to similar studies performed at 8 TeV.
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Figure 13: The mass distribution of the reconstructed neutral component of the triplet in the analysis
proposed for 𝑝𝑝 → 𝜙±𝜙0 → 𝑡𝑏 (𝑡𝑏)𝑏𝑏. The solid red and blue lines correspond, respectively, to the
signal for𝑚Φ = 185 and 310 GeV; in comparsion, the main background distribution is represented by
the dashed black line.

We therefore propose a new dedicated analysis to test the triplet model at the LHC, aiming to overcome

the large gap on the parameter space left by the experimental searches. We focus on pair production

sourced by the EW CCs, leading to 𝑝𝑝 → 𝜙±𝜙0 → 𝑡𝑏 (𝑡𝑏)𝑏𝑏, and consider only leptonic decays of the
top quark.

5.2.3 New analysis at the LHC

Signal and background events are generated following the procedure described in section 3.3. The main

backgrounds are 𝑡𝑡 + jets, 𝑡𝑡𝑏𝑏, 𝑡 (𝑡) + 3𝑏 and𝑊 + 4𝑏. Jets are defined using the anti-𝑘𝑇 algorithm with

𝑅 = 0.4. At the reconstruction level, a lepton is considered isolated if the hadronic energy within a cone
of radius 𝑅 = 0.3 is smaller than 10 % of the lepton 𝑝𝑇 .

We require exactly one isolated lepton with |𝑦 | < 2.5 and 𝑝𝑇 > 15 GeV, as well as at least four jets

with 𝑝𝑇 > 30 GeV. The longitudinal component of the missing neutrino is reconstructed as described in

section 5.1.3. The neutrino and lepton four-momenta are then added to the jet which gives a total invariant

mass closest to𝑚𝑡 ; the invariant mass of the reconstructed top being denoted𝑚rec
𝑡 . The latter is required

to be within |𝑚rec
𝑡 −𝑚𝑡 | < 50 GeV. Three 𝑏 -tagged jets are also required to be found among those not

coming from the leptonic top. To assign these jets to 𝜙0 and 𝜙±, all combinations are computed and that
minimizing |𝑚rec

𝜙0
−𝑚rec

𝜙± | is chosen; with𝑚
rec
𝜙

denoting the invariant mass of the scalar candidates. The

normalized distribution of𝑚rec
𝜙0

in the main background and two signal BPs is depicted in figure 13. The

reconstructed masses of 𝜙0 and 𝜙± are subsequently required to be no more than 50 GeV away from

each other. Finally, all events must satisfy |𝑚rec
𝜙0
−𝑚𝜙0 | < 30 GeV and |𝑚rec

𝜙± −𝑚𝜙± | < 40 GeV.

The cut-flows for the signal and background are given in Ref. [3]. Knowing the final number of events

that survived the selection cuts, the experimental sensitivity can be estimated following equation 37. We
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have obtained that S ranges from 2.7 − 4.3, for 𝑚Φ ∈ [185, 340] GeV, at the HL-LHC. These values
are conservative, as the reconstruction relies on inclusive cuts with large mass windows and no matching

procedure in the generation of the background sample is applied. Still, by performing this dedicated anal-

ysis, the entire mass interval𝑚𝑡 < 𝑚Φ ≲ 2𝑚𝑡 could be probed at the next luminosity phase of the LHC.
This corresponds to the region enclosed by the dashed orange line in figure 12.

5.2.4 The electroweak phase transition

In this section, we focus on the implications of the presence of the exotic triplet in the past high-temperature

history of our Universe. In particular, the renormalizable interactions between this scalar and the Higgs

boson introduce significant corrections to the one-loop effective potential:

𝑉 (ℎ, 𝜙0) = 𝑉tree + Δ𝑉CW + Δ𝑉𝑇 +𝐶 , (131)

where 𝐶 is a constant that cancels 𝑉 (0, 0) and 𝑉tree stands for the tree level potential. The one-loop

correction to 𝑉tree at zero temperature, Δ𝑉CW, is explicitly computed in appendix C.1 for a scalar field

theory. Generalizing equation 379 to include loops of other types of fields leads to [209]:

Δ𝑉CW =
1

64𝜋2
∑
𝑖

(±)𝑛𝑖𝑚4
𝑖

[
log

𝑚2
𝑖

𝑣2
− 𝑐𝑖

]
, (132)

where 𝑖 runs over all bosons (+) and fermions (-). The 𝑛𝑖 factor denotes the 𝑑.𝑜.𝑓 . of each field, while 𝑐𝑖
is 5/6 for gauge bosons and 3/2 otherwise. On the other hand, the finite temperature corrections Δ𝑉𝑇
read:

Δ𝑉𝑇 =
𝑇4

2𝜋2
∑
𝑖

(±)𝑛𝑖
∫ ∞
0

𝑦2 log
[
1 ∓ 𝑒

−

√
𝑚2
𝑖

𝑇2
+𝑦2]

. (133)

Similarly to the previous case, we derive the contribution from only scalar fields in appendix C.2. The

field-dependent masses entering in the equations above are:

𝑚2
𝑊 =

1
4
𝑔2(ℎ2 + 4𝜙20) , (134)

𝑚2
𝑍 =

1
4
(𝑔2 + 𝑔′2)ℎ2 , (135)

𝑚2
𝐺0,±

= −𝜇2𝐻 + 𝜆𝐻ℎ
2 + 1

2
𝜆𝐻Φ𝜙

2
0 , (136)

𝑚2
𝜙± = 𝜇2Φ +

1
2
𝜆𝐻Φℎ

2 + 𝜆Φ𝜙20 , (137)

𝑚2
𝑡 =

1
2
𝑦2𝑡 ℎ

2 , (138)
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Figure 14: (Left) The scalar VEV as a function of the temperature, for a given point in the parameter space.
At high temperatures, the potential is EW symmetric. At𝑇 = 115 GeV, the Higgs field develops a VEV, while
〈𝜙0〉 vanishes for all 𝑇 . This illustrates a one–step EW PT. In the small window, the shape of the scalar
potential at this specific temperature is also shown. (Right) The same as before, for a parameter space point
leading to a two–step EW PT. The first symmetry breaking transition (〈ℎ〉〈𝜙0〉) = (0, 0) → (0, 10) GeV
occurs at 𝑇 ∼ 160 GeV, evolving until 𝑇 ∼ 85 GeV. At this point, the second PT takes place, with
(0, 120) → (220, 0) GeV.

in addition to the physical scalar masses, obtained from diagonalizing the mixing matrix

M2 =

[ −𝜇2𝐻 + 3𝜆𝐻ℎ2 + 1
2𝜆𝐻Φ𝜙

2
0 𝜆𝐻Φℎ𝜙0

𝜆𝐻Φℎ𝜙0 𝜇2Φ + 3𝜆Φ𝜙
2
0 +

1
2𝜆𝐻Φℎ

2

]
. (139)

In the following computation of the potential, we take 𝑚Φ, 𝜆𝐻Φ and 𝜆Φ as input parameters. The

remaining ones, namely 𝜇2𝐻 , 𝜇
2
Φ and 𝜆𝐻 , are obtained numerically after requiring that the𝑇 = 0 potential

has a minimum

𝜕𝑉

𝜕ℎ

���(𝑣,0) = 0 , where
𝜕2𝑉

𝜕ℎ2

���(𝑣,0) =𝑚2
𝐻 and

𝜕2𝑉

𝜕𝜙20

���(𝑣,0) =𝑚2
Φ .

At tree level, (𝑣, 0) is guaranteed to be an extreme provided that 𝜆Φ, 𝜆𝐻Φ > 0 and 𝜇2Φ > −1/2𝑣2𝜆𝐻Φ.
At high temperatures, the effective potential is EW symmetric. As the Universe cools down, a PT occurs

as the potential develops a new minimum which becomes energetically more favorable. In the SM, the EW

PT occurs smoothly, through a crossover. (The classification of PTs is discussed in appendix C.3.) However,

the new 𝑑.𝑜.𝑓 . modify the transition of 〈ℎ〉 = 0→ 〈ℎ〉 = 𝑣𝑐 which can become first order, producing a
barrier between the symmetric and non-symmetric vacuum states. We denote by𝑇𝑐 the critical temperature

at which the Higgs first order PT occurs, that is when these two minima are degenerate; correspondingly,

𝑣𝑐 ≡ 𝑣 (𝑇 = 𝑇𝑐 ). One example of such transition is given in the left panel of figure 14.
Furthermore, if the EW triplet also develops a VEV, the first order PT can proceed in two-steps:(
〈ℎ〉 ,

〈
𝜙0

〉)
= (0, 0)

𝑇1−−−−−→
(
〈ℎ〉 ,

〈
𝜙0

〉)
= (0, 𝑣′𝑐 )

𝑇2<𝑇1−−−−−−→
(
〈ℎ〉 ,

〈
𝜙0

〉)
= (𝑣𝑐 , 0) , (140)
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Figure 15: Complementarity between collider and GW searches in the (𝑚Φ, 𝜆𝐻Φ) plane. In the region
enclosed by the two dashed green lines, the EW PT is strongly first order; the nature of the strongest PT
is also labeled. Within this region, the dotted line delimits the area which could be potentially tested at
Laser Interferometer Space Antenna (LISA). On the other hand, the region enclosed by the solid (dashed)
orange line is (could be) excluded by current (future) measurements of the partial decay width of the Higgs
to di-photons; see equation 127.

as depicted in the right panel of figure 14.

Phenomenologically, it is of interest when such first order PT is strong, that is, when 𝑣𝑐/𝑇𝑐 > 1.
This condition is fulfilled in the region enclosed by the dashed green line in figure 15. The nature of the

strongest PT is also labeled. Superimposed in orange is the region which can be excluded at the 95% CL

by the measurement of ℎ → 𝛾𝛾 ; see equation 127. The expectation at the HL-LHC is that ratios outside

the range Γ(ℎ → 𝛾𝛾)/Γ(ℎ → 𝛾𝛾)SM = 1.0± 0.1 will be excluded [210]. Translating this bound into the
(𝑚Φ, 𝜆𝐻Φ) plane, we find that the region enclosed by the dashed orange line could be entirely probed.

In figure 15, we find a non-negligible region where a strong two-step EW PT can occur. Its curved

shape is mostly due to two facts. First, the triplet squared-term is ∼ 𝜇2Φ +𝑇
2, which cannot be negative

for 𝜇2Φ > 0; therefore, the two-step PT can only occur if the triplet minimum exists already at 𝑇 = 0.
For a fixed𝑚Φ, this is realized above 𝜆min𝐻Φ = 2𝑚2

Φ/𝑣
2 at tree level. Second, the potential at the triplet

minimum, 𝑉 (0,
〈
𝜙0

〉
) ∼ −|𝜇Φ |4/𝜆Φ, cannot be deeper than the Higgs one. This requirement can be

translated into a 𝜆max
𝐻Φ

above which the theory is unstable.

5.2.5 Astrophysical signatures

During a first order PT, the Universe evolves from the false to the true vacuum via thermal tunneling at

finite 𝑇 . This process can be understood in terms of the formation of spherical bubbles of the broken

phase in the sea of the old vacuum which eventually spread throughout the whole Universe. The tunneling
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probability per unit time per unit volume is given by [211]

P ∼ 𝑇4𝑒−𝑆3/𝑇 , (141)

where 𝑆3 is the three-dimensional euclidean action of the field that describes the bubble solution. In

the thin-wall bubble limit, the spherically symmetric configuration has a well defined interior of radius 𝑅,

separated from the exterior by a wall of thickness 𝐿 � 𝑅, such that it can be divided in three regions: the

inside, the outside and the bubble wall. Within this approximation [212],

𝑆3 ∼ 4𝜋𝜎𝑅2 − 4𝜋
3
𝜖𝑅3 , (142)

where 𝜎 and 𝜖 are, respectively, the surface tension and the potential energy difference between the

outside and the inside of the bubble, i.e. between the metastable and true minima. There is therefore a

critical radius 𝑅𝑐 = 2𝜎/𝜖, obtained by extremizing the action, below which the surface tension dominates

and the bubble shrinks. Therefore, only bubbles with 𝑅 > 𝑅𝑐 are large enough to grow after formation.

The onset of the phase transition at 𝑇 = 𝑇𝑛 is characterized by the nucleation of one bubble per horizon

volume on average, which corresponds to [213]

𝑆3
𝑇𝑛
∼ O(100) , (143)

for EW-scale PTs.

There are two parameters constructed out of the quantities presented above which characterize the

PT: the normalized vacuum energy density (𝛼 ) that is released, and its duration time (𝛽−1) . They are
defined as:

𝛼 ≡ 𝜌vac
𝜌rad
∼ 𝜖 (𝑇𝑛)

35𝑇4𝑛
and

𝛽

𝐻 (𝑇𝑛)
= 𝑇𝑛

𝜕

𝜕𝑇

𝑆3
𝑇

���
𝑇𝑛
, (144)

where 𝜌rad = 𝜋2𝑔∗𝑇4/30 is the energy density during radiation era, with 𝑔∗ denoting the number of
effective 𝑑.𝑜.𝑓 ., and 𝐻 ∼ √𝑔∗𝑇2/𝑀𝑃 is the Hubble parameter. The larger 𝛼 and 𝛽−1 are, the stronger
the PT.

It is a well known result that the collision of the bubbles (destroying their spherical symmetry) and the

effects in the cosmic fluid resulting from its propagation (leading, for instance, to turbulence in the plasma)

produce a stochastic GW spectrum [214]. This signal can be observed by long-baseline experiments using

interferometry, such as LIGO [215] or the future LISA [216]. The spectrum of GWs from EW first order PTs

typically peaks at the milliHertz range [217] and is therefore only accessible by the latter.

LISA is planned to start operating in about ten years, so technical details have not yet been final-

ized; as such, the predictions for detecting a given new physics model are not ultimately robust. LISA

Pathfinder [218] was launched to space in 2015 as a proof-of-concept to test the signal to background ra-

tio; the mission was successfully completed two years later, finding that the noise levels were even smaller

than the required to achieve the experimental goals. The most promising configuration properties of the
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apparatus is called “C1”, consisting on a five million km arm length, an exposure of five years and noise

levels corresponding to what was expected to be found by the LISA Pathfinder [217]. We will study the

sensitivity of the triplet model considering this configuration definitions.

The PT parameters 𝛼 and 𝛽 can be computed using CosmoTransitions [219], which takes as input

the tree level potential and the field-dependent particle spectrum. Knowing these parameters, we have

used appendix A in Ref. [217] to check which (𝛼, 𝛽) points, for 𝑇𝑛 ∼ 100 GeV, could be constrained by

LISA under the assumptions that the wall velocity is close to 1 (in good approximation for strong PTs) and
that the effects of long-lasting waves are negligible. Under these criteria, the region of the parameter space

that could be potentially probed by this experiment lies above the green dotted line in figure 15.

5.2.6 Baryogenesis at the electroweak scale

In a significant region of the testable parameter space, the triplet model fulfills the necessary conditions

for baryogenesis, which became known as the three Sakharov conditions [2]. We summarize them below,

focusing on the ingredients which are insufficient in the SM but can be supplied by the new interactions

with the exotic field.

1. Baryon number violation: Interactions violating baryon number exist in the SM, since 𝐵 and 𝐿

are anomalously violated in weak interactions; see equation 16.

2. 𝐶 and 𝐶𝑃 violation: These symmetries are also violated in the EW theory, due to the presence

of the complex phase in the CKM matrix. This effect is too small to explain the observed baryon asymme-

try [31]. However, extra 𝐶𝑃 violation can be attained while the 𝐶𝑃 -odd triplet develops a VEV.

3. Departure from thermal equilibrium: This condition is absent in the SM, since the EW PT

occurs through a crossover. In the SM extended with Φ, this PT can become first order, so that the baryon

number violating interactions are out-of-equilibrium in the bubble walls.

In appendix D, we discuss the need for each of these conditions in detail. In particular, we discuss the

nature of the SM solutions that violate baryon number. Altough they are completely negligible at present,

they could have been sizable at high temperature as shown in equations 391 and 392, describing the rate

of 𝐵-violating interactions by sphaleron fields. In the presence of these fields, baryogenesis during a first

order PT might have proceeded as follows.

According to equation 391, Δ𝐵 ≠ 0 processes are unsuppressed at high 𝑇 and occur instantly in

the symmetric phase of the Universe, therefore being able to create a net of baryon charge. If there are

interactions violating𝐶𝑃 at the bubble wall, this excess can migrate to the interior of the bubble. There, the

rate of sphaleron transitions can be strongly suppressed, which avoids the washing out of this asymmetry.

Using equation 392, this requires 𝑣𝑐/𝑇𝑐 � 1, which is exactly the condition we used before to define a

strong PT.
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In our model,𝐶𝑃 is indeed violated spontaneously during the second transition in the two–step case,

where both 𝜙0 and ℎ change VEV, generating a complex phase in the quarks mass:

𝑚𝑡 =
𝑣
√
2
𝑦𝑡

[
1 + i𝛾 𝑣

′

𝑓

]
≡ |𝑚𝑡 |𝑒𝑖𝜃 (𝑡) . (145)

At 𝑇 = 0, this phase can be removed by a redefinition of the top quark and is therefore unphysical.

However, during the PT, 𝜃 changes with time and therefore cannot be rotated away. The variation of this

parameter is fixed by the the baryon-to-entropy ratio that we observe today [220],

𝜂𝑠 ≡
𝑛𝐵
𝑠𝐸
∼ 10−10 , (146)

where 𝑠𝐸 is the entropy density. Since the total entropy 𝑆𝐸 = 𝑎3𝑠𝐸 is conserved in the expanding

Universe, 𝑎 denoting the scale factor, the number of baryons in a comoving volume can be written as

𝑁𝐵 = 𝑎3𝑛𝐵 ∝ 𝑛𝐵/𝑠𝐸 . Therefore, after particle freeze-out, this ratio remains constant.
In relatedmodels [98], it was found that the variationΔ𝜃 (𝑡) needed to reproduce equation 146 requires

that 𝛾Δ𝑣/𝑓 ≳ 0.1, where Δ𝑣 is the change in VEV during the EW PT. In our framework, Δ𝑣 can be easily

≳ 100 GeV (see figure 14); therefore, baryogenesis can be explained with 𝛾/𝑓 ∼ 1 TeV−1.
There is just one complication left to deal with: while the triplet has a non-vanishing VEV, the ℤ2

symmetry of the potential is broken spontaneously; consequently, causally disconnected regions in the

Universe can end up in either the +𝑣′ or −𝑣′ vacuum. To go across these regions, the field must take

the value of zero somewhere, which is not a minimum of the potential. Since this solution cannot be

continuously deformed into the true vacuum, a topological defect is formed. The type of defect that is

formed is determined by the vacuum manifold; In this case, it has a two-fold degeneracy, so a domain wall

is produced.

Domain walls are problematic because, if existent, they dominate the energy density of the Universe.

Since this is not observed, new physics models producing such defects face strong bounds. However,

the temperature at which domain walls start dominating is well below the typical temperatures of the EW

PT [98], after which the symmetry along theΦ direction is restored. Still, if different patches of the Universe

end up lying in oppositely charged vacua ±𝑣′, some regions could produce an excess of baryons, while

others an excess of anti-baryons, resulting in an overall zero baryon charge.

This can be avoided if there exists a small 𝐶𝑃 -breaking term in the potential ∼ 𝜅𝐻†Φ𝐻 which can

generate, via loop effects, a shifting between the two minima of the order Δ𝑉 ∼ 𝜅𝑇 3/(4𝜋)2. As a result,
there will be a pressure acting on the critical bubbles characterizing the triplet PT to collapse the regions

where the field develops the higher-energy value. A sufficient condition for these regions to vanish at the

time of the EW PT is Δ𝑉 /𝑇4𝑛 � 𝐻/𝑇𝑛 ∼ 10−16 [98], where 1/𝐻 is the Hubble radius. This is satisfied

for a very small 𝜅 ≳ 10−12 GeV.

70



Figure 16: The main contributions to the EDMs of the electron (on the right) and of the neutron (on the
left), arising in our model.

5.2.7 CP violation constraints

In spite of being very small, the 𝐶𝑃 violating coefficient is strongly constrained by measurements of the

neutron and electron EDMs. They arise due to the mixing between 𝐻 and Φ after EWSB.

Indeed, when the Higgs boson gains a VEV, the physical Yukawa couplings develop a small imaginary

component:

𝑦𝜓
[
ℎ𝜓𝜓 + i𝑣 𝛾

𝑓
𝜙0𝜓𝛾

5𝜓
]
−→ 𝑦𝜓ℎphy

[
𝑐𝜃𝜓𝜓 − i𝑠𝜃𝑣

𝛾

𝑓
𝜓𝛾5𝜓

]
+ . . . , (147)

where the dots include other interactions of the triplet in the mass basis and 𝑠𝜃 ∼ 𝜅𝑣/𝑚2
Φ is the sine of

the scalar mixing angle. The latter is small, so 𝑐𝜃 ∼ 1 in good approximation.
The main contribution to the electron EDM is a two-loop process, as that depicted in the left panel of

figure 16. Plugging the relevant parameters in equation 16 of Ref. [221], we obtain:����𝑑𝑒𝑒 ���� ∼ 𝛼em𝑣2𝛾

6𝜋3𝑚𝑡 𝑓
𝑦𝑡
𝜅𝑦𝑒

𝑚2
Φ

[
𝑓 (𝑚2

𝑡 /𝑚
2
𝐻 ) + 𝑔(𝑚

2
𝑡 /𝑚

2
𝐻 )

]
, (148)

with

𝑓 (𝑧) = 1
2
𝑧

∫ 1

0

1 − 2𝑥 (1 − 𝑥)
𝑥 (1 − 𝑥) − 𝑧 log

𝑥 (1 − 𝑥)
𝑧

𝑑𝑥 ; (149)

𝑔(𝑧) = 1
2
𝑧

∫ 1

0

1
𝑥 (1 − 𝑥) − 𝑧 log

𝑥 (1 − 𝑥)
𝑧

𝑑𝑥 . (150)

For the values of (𝛾/𝑓 , 𝜅) compatible with baryogenesis, the model prediction is much smaller than the

latest bound, |𝑑𝑒 | ∼ 10−42 e cm versus |𝑑𝑒 | < 1.1 × 10−29 e cm [181].

On the other hand, the neutron EDM arises mainly from the running of the diagram on the right panel

of figure 16. Using equation 29 in Ref. [222], we find:����𝑑𝑛𝑒 ���� ∼ 20 MeV
𝑔33
(4𝜋)4

𝑦2𝑡 𝑣
2

𝑚2
𝑡𝑚

2
Φ

𝛾𝜅

𝑓
ℎ(𝑚2

𝑡 /𝑚
2
𝐻 ) , (151)

with

ℎ(𝑧) = 𝑧2
∫ 1

0
𝑑𝑥

∫ 1

0
𝑑𝑦

𝑥3𝑦3(1 − 𝑥)
[𝑧𝑥 (1 − 𝑥𝑦) + (1 − 𝑥)(1 − 𝑦)]2

. (152)
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Similarly to the previous case, for 𝑔3 evaluated at ∼ 1 GeV, we obtain that |𝑑𝑛 | ∼ 10−38 e cm, more than
ten orders of magnitude smaller the current bound ∼ 10−26 e cm [180].

5.2.8 Outlook

We have studied the interplay between the Higgs boson and a triplet pseudoscalar in the 𝑆𝑂 (7)/𝐺2
NMCHM. Being a pNGB, the triplet phenomenology is mainly dictated by the effective Yukawa operators

leading to a significantly different phenomenology at colliders, relatively to what is expected from the

renormalizable Lagrangian. In particular, the only relevant interaction allowing the triplet to decay into ℎℎ

is so suppressed by EWPD that decays mediated by the dimension five operators actually dominate the

decay width.

Surprisingly, we have found that in the mass range𝑚𝑡 < 𝑚Φ ≲ 2𝑚𝑡 no single search constrains the
parameter space of the model; see figure 12. It turns out that this is exactly where a (strong) two–step EW

PT can occur (see figure 15), and therefore where EW baryogenesis can be explained. Given this holdback,

we have proposed an analysis to test the 𝑝𝑝 → 𝜙±𝜙0 → 𝑡𝑏 (𝑡𝑏), 𝑏𝑏 channel, showing that this whole

interval of masses could be tested at the HL-LHC. We have furthermore studied the complementarity

between the collider and astrophysical probes. In particular, if no departure from the SM prediction on

the Higgs to di-photon rate is observed, only single peak GW signatures of the model are expected to be

detected by LISA; see figure 15.

Finally, note that in this minimal setup one can actually link the phenomenology at low- and high-

energies: if a signal of the pseudoscalar triplet was indeed observed at the LHC, it could be traced back

to the mechanism of baryogenesis, since the same operator that triggers the triplet decays is the source

of spontaneous 𝐶𝑃 violation at large temperature.

5.3 Testing lepton flavour universality at the precision

frontier

5.3.1 The 𝑆𝑂 (7)/𝑆𝑂 (6) model

In this section, we explore the breaking pattern 𝑆𝑂 (7)/𝑆𝑂 (6), which can be achieved by the VEV of a

field transforming in the fundamental vector representation of 𝑆𝑂 (7). In this case, two extra NGBs are

produced, on top of the Higgs doublet, which transform as singlets of the SM gauge group. We denote

them by 𝑎1 (-) and 𝑎2 (+) and give them different𝐶𝑃 charges (in parenthesis). This is the minimal setup

where we can study the interplay among the exotic scalar particles and the consequent implications to

the phenomenology at different experiments. In this regard, we will consider two regimes, characterized
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by small and large scalar masses. We explore the former in the following; while the latter will be the focus

of the next section.

The smallest representations of 𝑆𝑂 (7) under which the composite resonances can transform are the

1, 7, 21 and 27. The most general embedding of the LH fields in the latter is:

𝐿𝐿 =
1
2

©«

04×4 𝜃v1𝑇 𝛾v2𝑇 v2𝑇

𝜃v1 0 0 0

𝛾v2 0 0 0

v2𝑇 0 0 0

ª®®®®®®®®¬
, (153)

where the field vectors read v1 = (𝑒𝐿,−i𝑒𝐿, 𝜈𝐿, i𝜈𝐿) and v2 = (i𝑒𝐿, 𝑒𝐿, i𝜈𝐿,−𝜈𝐿), for leptons. A similar
embedding is obtained for quarks, after replacing 𝑒𝐿 → 𝑏𝐿 and 𝜈𝐿 → 𝑡𝐿 . Under 𝑆𝑂 (6), the symmetric
representation decomposes as 27 = 1 ⊕ 6 ⊕ 20; with the 6 = 1 ⊕ 5 = 1 ⊕ 1 ⊕ 4 under 𝑆𝑂 (5) and
𝑆𝑂 (4), respectively, and the 20 = 14 ⊕ 5 ⊕ 1 = 9 ⊕ 4 ⊕ 1 ⊕ 4 ⊕ 1. Therefore, the LH fields can couple

to three doublets in this decomposition, 𝜃,𝛾 ∈ ℝ being the corresponding degrees of mixing.

Writing explicitly the one-loop induced potential, we find (assuming 𝐶𝑃 conserving interactions):

𝑉 27⊕1 = 𝑐1𝑓
4
���(Λ𝐼𝐿,𝐷 )

77

���2 + 𝑐2𝑓 4 ���(Λ𝐼𝐿,𝐷 )
𝑚7

���2 (154)

= 4𝑓 3𝑐2𝛾Σ𝑎2 + 2𝑓
(
𝑐1 − 2𝑐2

)
𝛾Σ𝑎2ℎ

2 +
(
𝑐1 − 2𝑐2

) [ (
𝜃2 − 1

)
𝑎21 +

(
𝛾2 − 1

)
𝑎22 − ℎ

2
]
ℎ2

+ 1
2
𝑐2𝑓

2
[ (
𝛾2 + 𝜃2 − 7 + 2𝑐1

𝑐2

)
ℎ2 + 4

(
𝜃2 − 1

)
𝑎21 + 4

(
𝛾2 − 1

)
𝑎22

]
,

where we have used the same notation as in the previous sections and the sum over 𝛼 and𝑚 = 1, . . . , 6
is implicit. We further expand this expression in powers of 1/𝑓 , keeping terms up to dimension four. The
resulting potential reads:

𝑉 ∼ 4𝑓 3𝑐2𝛾𝑎2 + 𝑓 2𝑐1ℎ2 + 2𝑓 2𝑐2
[ (
𝛾2 − 1

)
𝑎22 +

(
𝜃2 − 1

)
𝑎21 +

1
4

(
𝜃2 − 7

)
ℎ2

]
(155)

+ 2𝑓 𝛾
[ (
𝑐1 − 3𝑐2

)
𝑎2ℎ

2 − 𝑐2
(
𝑎21 + 𝑎

2
2

)
𝑎2

]
+ (𝑐1 − 2𝑐2)

[ (
𝜃2 − 1

)
𝑎21 +

(
𝛾2 − 1

)
𝑎22 − ℎ

2
]
ℎ2 .

We focus in scenarios where only the leptons break the shift-symmetry of the singlet pNGBs. They lead

to small scalar masses which can be well below the EW scale, according to the PC rule. Such leptophilic

regimes are obtained if, for example, 𝑞𝐿 ⊕ 𝑢𝑅 = 7 ⊕ 21; with the corresponding embeddings given by

𝑄𝐿 =
1
√
2
(i𝑑𝐿, 𝑑𝐿, i𝑢𝐿,−𝑢𝐿, 0, 0) and 𝑈𝑅 = i(𝑇 12 −𝑇 34)𝑢𝑅 . (156)

The LO potential constructed from these spurions is 𝑉 = 𝑐1𝑓
2ℎ2, while NLO terms produce the quartic

coupling of the Higgs boson. No shift-breaking terms for 𝑎1,2 are generated.
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Figure 17: 𝜃 -dependence of the lightest scalar mass, obtained from the embedding of the LH leptons in
the symmetric representation of 𝑆𝑂 (7). We fixed 𝑓 = 1 TeV.

Therefore, if 𝑙𝐿 ⊕ 𝑒𝑅 = 27 ⊕ 1 while 𝑞𝐿 ⊕ 𝑢𝑅 = 7 ⊕ 21, the scalar potential can be split as

𝑉 (ℎ, 𝑎1, 𝑎2) = 𝑉𝑞 (ℎ) +𝑉𝑙 (ℎ, 𝑎1, 𝑎2) , (157)

where the first and second contributions come from loops of quarks and leptons, respectively. In such

case,𝑉𝑞 is completely fixed by the measurements of the Higgs mass and its VEV, whereas𝑉𝑙 is identified

with equation 155.

After EWSB, the interactions between ℎ and 𝑎2 in equation 155 lead to scalar mixing. In order to

avoid bounds from Higgs searches, we choose 𝑐1 ∼ 3𝑐2 and 𝛾 ∼ 1 to make these interactions very

small. The tadpole can be subsequently removed by the field redefinition 𝑎2 → 𝑎2 +
√
2/3𝑓 . After these

replacements, the scalar potential reads

𝑉 (𝑎1, 𝑎2) =
1
2
𝑚2
1𝑎

2
1 +

1
2
𝑚2
2𝑎

2
2 +𝑚12𝑎2𝑎

2
1 , (158)

up to terms involving the Higgs boson. Without loss of generality, we assume 𝑚2 > 𝑚1. Furthermore,

fixing 𝑐2 ∼ 𝑔2∗𝑦2𝑙 /(4𝜋)
2 ∼ 10−6, as expected by PC, as well as 𝑓 ∼ 1 TeV and 𝑔∗ ≳ 3, we find

𝑚2 ≈ 3.1 GeV and 𝑚12 ≈ 0.002 GeV , (159)

while𝑚1 depends solely on 𝜃 . We represent this dependence in figure 17. Scalar masses of O(1) GeV
are therefore very likely in this setup. (Note that, in spite of finding motivation in this explicit realization, we

do not aim to probe this model in particular; therefore, departures from the previous assumptions will be

considered too in the following, which can be accommodated in smaller representations than the 27.)
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Figure 18: Tree level Feynman diagrams for the decays 𝐵0𝑠 → 𝑎1𝑎2 (on the left) and 𝐵
+ → 𝐾+𝑎1𝑎2 (on

the right).

On another front, the Yukawa Lagrangian to dimension five reads:

Lyuk = 𝑦𝑒𝛼𝛽 𝑓 𝑙𝐿
𝛼
𝐼

(
Λ𝐼𝐿,𝐷

)†
77
𝑒
𝛽
𝑅
+ h.c. (160)

= 𝑦𝑒𝛼𝛽𝑙𝐿
𝛼
𝐻

[
− 1 + 1

𝑓

(
i𝜃𝑎1 − 𝛾𝑎2

)
+ . . .

]
𝑒
𝛽
𝑅
+ h.c. ,

which matches equation 111 with 𝑐𝜅 = i𝜃𝑦 and 𝑐𝜂 = −𝑦 for 𝛾 = 1.
Finally, heavy-light state couplings naturally arise in the composite model, since the pNGBs belong to

the same sector as the heavy vector and fermionic resonances. We focus on interactions with the former,

which are entirely fixed by the CCWZ construction. The vector resonance is assumed to transform in the

adjoint representation of the global group. Expanding the second term in equation 104, we obtain:

L𝑉 =
√
2𝑔∗

𝑉𝜇𝑎2
←→
𝜕𝜇 𝑎1

1 + Ξ/𝑓 2
∼ 𝑔∗√

2
𝑉𝜇𝑎2

←→
𝜕𝜇 𝑎1 + O

(
𝑎21
𝑓 2
,
𝑎22
𝑓 2

)
, (161)

withΞ = 𝑓 2(1−ℎ2/𝑓 2−𝑎21/𝑓
2−𝑎22/𝑓

2)1/2. We identify𝑉 with the component of the vector resonance

associated to the generator 𝑇 56 (which is the one that transforms as a singlet of 𝑆𝑂 (4)). Such 𝑉 can

couple directly to the RH quarks4, but not to the LH ones. The couplings to the latter are triggered by

insertions of the Higgs field; hence, 𝑔𝑞𝑞 ∼ 𝜉𝑔∗ ≲ 0.1.
At energies well below its mass,𝑉 can be integrated out, giving rise to effective operators of the form

𝑞𝑞𝑎1𝑎2. Provided that 𝑉 has flavour-violating couplings to quarks, such operators trigger rare decays of

bottom mesons into multiple leptons; see figure 18. Such couplings are strongly motivated by the LFU

anomalies, as we discuss in the next section.

5.3.2 On flavour anomalies and model building

Let us revisit the two main flavour problems in the SMEFT. First, there is the SM flavour problem associ-

ated with the fact that 𝑦𝑒 � 𝑦𝑡 . Second, the so-called “new physics flavour problem” ensues from the
4Note that not even the coupling to the RH quarks arises if 𝑢𝑅 is embedded in a single 𝑆𝑂 (4) irreducible representation

contained in the 21, such as the (1, 3). Indeed, in appendix C of Ref. [175], it is showed that, in this case, there is a discrete
parity 𝑃6 ∈ 𝑂 (7) under which𝑉 is odd while the SM quarks are even. Only if𝑢𝑅 is embedded in a linear combination of 𝑃 -even
and 𝑃 -odd spurions, as the ones transforming in the (1, 3) ⊕ (1, 1), can such coupling arise.
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experimental bounds on higher dimensional four-fermion operators with a generic flavour structure, which

imply5 Λ ≳ 102−5 TeV. This rendered the belief that new sizable flavour-violating physics should be at

very large scales, in contrast to what is expected from the EW HP. For this reason, an approach that was

thoroughly considered in the recent past was to separate these tuning problems in the SMEFT and assume

that the new physics which is responsible for stabilizing the Higgs mass would most likely be flavour-blind,

or that the sources of flavour breaking would be minimal [160].

However, not only we have found no evidence of new physics so far (pushing the solutions to the EW

HP itself to larger scales), but large deviations from the SM have been observed in tests of LFU. These

deviations seem to point towards new flavour-violating dynamics around the TeV scale coupled mainly to

the third generation, exactly as expected from the pattern of the Yukawa couplings in the SM. (Note that

bounds on the cutoff of flavour-violating operators made out of third generation quarks can be nearly one

order of magnitude less severe than those involving lighter generations6.) This motivates the possibility of

the two tuning problems being actually connected [162, 223] and is the first hint that the SM quantum

numbers of the different generations might just be an accidental property of the low-energy physics, as

signaled by their different masses.

Indeed, several 𝐵-factories around the world have been observing a different behavior of the lepton

flavours in both charged and neutral currents that manifests in the ratios of

𝑅
𝐷 (∗) =

Γ
(
𝐵 → 𝐷 (∗)𝜏𝜈𝜏

)
Γ

(
𝐵 → 𝐷 (∗)ℓ𝜈ℓ

) and 𝑅
𝐾 (∗) =

Γ
(
𝐵 → 𝐾 (∗)𝜇+𝜇−

)
Γ

(
𝐵 → 𝐾 (∗)𝑒+𝑒−

) , (162)

which deviate significantly from unity. The first encodes a 𝑏 → 𝑐 transition, while the second a 𝑏 → 𝑠

one. (It is convenient to express these quantities as ratios to cancel uncertainties in the SM, coming from

QCD and the CKM factors.) The latest result from the LHCb collaboration, after collecting 9 fb−1 of data,
shows a 3.1𝜎 level tension with the SM from the measurement of𝑅𝐾 alone [224]. This increased statistical

significance in the FCNC channel makes the chance of it being a pure statistical fluctuation less and less

probable. In comparison, the combined results by BaBar, Belle and LHCb show ≳ 3𝜎 deviations from the

SM prediction on the 𝑅𝐷 and 𝑅𝐷∗ observables
7.

Taken together, these anomalies are the largest coherent set of deviations observed so far of beyond

the SM physics, since the observation of neutrino masses. Focusing on 𝑏 → 𝑠ℓ+ℓ− transitions, fits to the
LFU ratio (as well as to other anomalies in the muon sector, namely the smallness of the 𝐵0𝑠 → 𝜇+𝜇−

branching ratio) [225] strongly favor LH current–current operators of the form

O𝑞𝑞ℓℓ =
𝑐𝑖 𝑗𝑘𝑚

Λ2
𝑞𝑖
𝐿
𝛾𝜇𝑞

𝑗
𝐿
ℓ𝑘
𝐿
𝛾𝜇ℓ

𝑚
𝐿 , with 𝑐𝑖 𝑗𝑘𝑚 ∼ 𝛿𝑖3𝛿 𝑗3𝛿𝑘2𝛿𝑚2 , (163)

5See https://indico.cern.ch/event/1019282/attachments/2230204/3780852/FlavourEFTLecture3.
pdf.

6See footnote 5.
7See https://hflav-eos.web.cern.ch/hflav-eos/semi/spring19/html/RDsDsstar/RDRDs.html.
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to explain the pattern of the observations. (To describe the FCCC channel, sizable interactions with the tau

leptons are required too.)

Heavy colorless vectors such as our 𝑉 are promising candidates to mediate these interactions; in

particular, provided that

𝑔𝑞𝑞 ∼ 0.05
(𝑚𝑉
TeV

)2
(164)

and the vector coupling to the SM leptons is large, 𝑔ℓℓ ∼ 1, the 𝑅𝐾 (∗) anomalies can be explained at

1𝜎 level [143]. Such vectors are constrained by other observables, including four-quark and four-lepton

processes to which they contribute at tree level, as well as multi-lepton searches at the LHC (see sec-

tion 4.6.1). Bounds on composite vectors are however weakened given that new decay channels open, for

example 𝑉 → 𝑎1𝑎2 can easily dominate over other modes since the corresponding width involves the

strong (rather than the elementary) coupling.

In leptophilic scenarios, the light scalars can subsequently decay into muons. This is accomplished if

all leptons break the shift-symmetry of the singlet, but the decay into the third generation is kinematically

closed; or if only muons break this symmetry. In the next sections, we study the collider probes of these

scenarios, in particular to test the parameter space where equation 164 is satisfied.

We remark that combined explanations for the two LFU anomalies have been also considered in the

literature. In this case, the leptoquark solution [226] is particularly motivated since the fit to 𝑅
𝐷 (∗) requires

large couplings of the effective operators which in turn imply smaller masses of the mediator. This is less

problematic for a leptoquark than𝑉 , since the former can more easily evade collider and flavour bounds,

contributing to meson mixing only at the loop level.

5.3.3 Collider signatures

Under the assumptions discussed in section 5.3.1, the relevant Lagrangian for our study is

L =
1
2
𝑚2
𝑉 +

1
2
𝑚2
1𝑎

2
1 +

1
2
𝑎22𝑚

2
2 +𝑚12𝑎2𝑎

2
1 +𝑉

𝜇
[
𝑔12𝑎1

←→
𝜕𝜇 𝑎2 + 𝑔𝑞𝑞

(
𝑞𝐿𝛾𝜇𝑞𝐿 + h.c.

) ]
, (165)

where all parameters are free but their natural range is fixed by the composite model predictions. Assuming

that 𝑔𝑞𝑞 complies with equation 163, then after EWSB, the last term in the Lagrangian becomes

L𝑉 ⊃ 𝑔𝑞𝑞𝑉𝜇
(
𝑠𝐿 𝑏𝐿

)𝑇
𝛾𝜇𝑉 †

𝑑𝐿
©«
0 0

0 1

ª®¬𝑉𝑑𝐿
(
𝑠𝐿 𝑏𝐿

)
, (166)

where we have considered just two fermion generations, for illustration purposes. Therefore,𝑉 can couple

not only to 𝑏𝐿𝑏𝐿 , but also to 𝑏𝐿𝑠𝐿 + 𝑠𝐿𝑏𝐿 . In the basis where the up-quark Yukawa matrix is already

diagonal, we can identify 𝑉𝑑𝐿 ≡ 𝑉CKM; hence, the flavour-violating coupling reads:

𝑔𝑠𝑏 = 𝑔𝑞𝑞
(
𝑉𝑑𝐿

)∗
21

(
𝑉𝑑𝐿

)
22 = 𝑔𝑞𝑞

(
𝑉CKM

)
𝑡𝑠

(
𝑉CKM

)
𝑡𝑏 ∼ 0.04 𝑔𝑞𝑞 . (167)
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Figure 19: (Left) The dominant decays in each kinematic region considered in this analysis, repre-
sented in the plane (𝑚1,𝑚2). The gray areas are not studied. (Right) In the same plane, we represent
Γ(𝐵0𝑠 → 𝑎1𝑎2)/Γ(𝐵+ → 𝐾+𝑎1𝑎2). This ratio vanishes along the line𝑚1 =𝑚2.

The 𝐵-meson decays depend on this physical coupling and on the kinematic regions defined by the

light scalar masses, see the left panel in figure 19:

• If𝑚
𝐵0𝑠

> 𝑚1 +𝑚2, the two-body decay 𝐵
0
𝑠 → 𝑎1𝑎2 is kinematically opened;

• If𝑚
𝐵0𝑠

< 𝑚1+𝑚2 and𝑚𝐵0𝑠
> 3𝑚1, the decaymode𝐵 → 𝑎1𝑎1𝑎1 opens instead, the correspond-

ing width being unsuppressed by the lepton Yukawa coupling, contrarily to Γ(𝐵0𝑠 → 𝑎1ℓ
+ℓ−);

• If𝑚+𝐵 > 𝑚1 +𝑚2 +𝑚+𝐾 , the decay mode 𝐵
+ → 𝐾+𝑎1𝑎2 can dominate the dynamics. This is

true for any other meson satisfying this relation.

The decay widths of all processes enumerated above are computed in appendix F. All calculations

take into account the meson form factors, that describe the quark–antiquark transition into a bound state;

from Lorentz invariance, we know that such form factors are functions of momenta, whose constants are

determined from experiment. Summarizing the results, we have:

Γ(𝐵0𝑠 → 𝑎1𝑎2) ∼
(
𝑔𝑠𝑏𝑔12

)2
16𝜋𝑚4

𝑉

(
𝑚2
1 −𝑚

2
2

)2
𝑚𝐵

; (168)

Γ(𝐵0 → 𝑎1𝑎1𝑎1) ∼
3
(
𝑔𝑠𝑏𝑔12

)2
256𝜋3

𝑓 2𝐵𝑚
2
12

𝑚4
𝑉

𝑚𝐵 ; (169)

Γ(𝐵+ → 𝐾+𝑎1𝑎2) ∼
(
𝑔𝑠𝑏𝑔12

)2
3072𝜋3𝑚4

𝑉

𝑚5
𝐵 , (170)

in the limit where all masses of the final state particles are taken to zero (except in equation 168, which

vanishes in this limit) and the form factors 𝑓𝐵, 𝑓+(𝑞2), 𝑓−(𝑞2) → 1. In the right panel of figure 19,
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we represent the ratio between the first and the third of these widths. It is clear that the three-body dom-

inates over the two-body decay when𝑚1 ∼ 𝑚2. This can be understood from the fact that, in this limit,

the two degenerate scalars transform as a complex scalar field Φ = 𝑎1 + i𝑎2. At the same time, the

model Lagrangian becomes invariant under Φ→ 𝑒i𝛼Φ rotations, up to spurion effects of O(𝑚12) which
explicitly break the symmetry. Upon integrating 𝑉 out, the effective interaction between Φ and the SM

quarks can be written as ∼ (𝑞𝛾𝜇𝑞) (Φ𝜕𝜇Φ† − Φ†𝜕𝜇Φ) ≡ (𝑞𝛾𝜇𝑞) 𝐽 𝜇 , with 𝐽 𝜇 being the Noether current
associated with the𝑈 (1) global symmetry. Employing the 𝐵-meson form factor, this interaction becomes

∼ (𝜕𝜇𝐵) 𝐽 𝜇
IBP
= 𝐵(𝜕𝜇 𝐽 𝜇) → 0 in this limit.

We assume that each scalar decays subsequently to muons. Therefore, the exotic decay 𝐵𝑠0 → 𝑎1𝑎2
can produce four muons in the final state. The LHCb collaboration has performed dedicated analyses to

probe this process, the most stringent limit being [227]

B(𝐵𝑠0 → 2𝜇+2𝜇−) < 2.5 × 10−9 . (171)

There are however compelling reasons to look for alternative decays.

First, provided that𝑚2 > 2𝑚1, the scalar decay width of the heaviest singlet,

Γ(𝑎2 → 𝑎1𝑎1) =
𝑚2
12

8𝜋𝑚2

(
1 −

4𝑚2
1

𝑚2
2

)1/2
, (172)

can dominate over the leptonic one,

Γ(𝑎2 → ℓ+ℓ−) =
𝑦2ℓ 𝛾

2

8𝜋

(
𝑣
√
2𝑓

)2 (
1 −

4𝑚2
ℓ

𝑚2
2

)3/2
𝑚2 . (173)

This is true whenever𝑚12/𝑚2 � 𝑦ℓ𝛾𝑣/𝑓 ; we make this assumption hereafter. Note that, from PC, we

expect𝑚12 ∼𝑚2, so that this inequality holds trivially. (The 27⊕ 1model we have worked out in previous
sections renders smaller values for𝑚12; see equation 159. The Yukawa together with the 𝜉 suppression

can make the leptonic width sub-leading even in this case.)

If instead𝑚2 < 2𝑚1, 𝑎2 can either decay into a lepton pair, or 𝑎1ℓ
+ℓ− with width

Γ(𝑎2 → 𝑎1ℓ
+ℓ−) ≈

𝑦2ℓ 𝜃
2

64𝜋3𝑚3
2

(
𝑣
√
2𝑓

)2
𝑚2
12𝑚

2
1

(
1 + 𝑚2

𝑚1

) (
𝑚2
𝑚1
− 1

)5
, (174)

where we have worked in the𝑚2/𝑚1 ∼ 1 limit. This decay mode dominates provided that 𝜃 ≳ 100𝛾 . We
assume 𝜃

√
𝜉 ∼ 1 and 𝛾

√
𝜉 ∼ 0.01 in the following. In this case, 𝑎2 decays into four leptons, mediated by

𝑎1 which can be either on- or off-shell. For the previous choice of parameters, the two scalars have decay

widths smaller than 10 MeV and lifetimes shorter than 10 fs. Consequently, both 𝑎1,2 would appear not

to have any experimentally measurable flight distance8 and would appear to have zero width.
8Departures from this assumption are also plausible: while the values of𝑚12 ∼𝑚1,2 make 𝑎2 very likely short-lived; if e.g.

𝜃 ∼ 0.1 and 𝑓 ∼ 5 TeV, still compatible with Γ(𝑎2 → 𝑎1ℓ
+ℓ−) > Γ(𝑎2 → ℓ+ℓ−), the 𝑎1 flight distance could be measured

experimentally at the LHCb.
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𝑚𝑋 ≥ 𝑚1 +𝑚2 𝑚𝑋 < 𝑚1 +𝑚2

𝑚2 ≥ 2𝑚1 𝑚2 < 2𝑚1 𝑚𝑋 ≥ 3𝑚1
𝐵0𝑠 → 3𝜇+3𝜇− [0.02,0.03] [0.01,0.02] [0.02,0.03]

limit (×10−9) [6.7, 11.6] [7.9, 18.2] [6.0, 11.9]
𝐵+ → 𝐾+3𝜇+3𝜇− [0.007,0.009] [0.003,0.009] four-body

limit (×10−9) [5.9, 8.0] [6.0, 16.6] four-body

Table 5: In the first and third rows, we present the maximum and minimum efficiencies for selecting signal
events in the channels 𝐵0𝑠 → 3𝜇+3𝜇− (𝑚𝑋 =𝑚

𝐵0𝑠
) and 𝐵+ → 𝐾+3𝜇+3𝜇− (𝑚𝑋 =𝑚𝐵+ −𝑚𝐾+ ), for

the different kinematic regions defined in figure 19. These results are used to obtained the upper limits
on the branching ratios, for 3 fb−1 of data, as shown in the second and fourth rows. We have used values
of𝑚2 < 10 GeV and𝑚1 ≥ 1.1 GeV, the efficiency being negligible for smaller values of𝑚1.

Several precision experiments, such as Belle and BaBar, have set bounds on the parameter space

of light leptophilic scalars. The Yukawa suppression in the equations above makes our model basically

insensitive to such bounds, even taken into account the projected limits at future facilities [189]. We

conclude that, if indeed 𝑎2 decays mostly according to equations 172 and 174, six (rather than four) muon

final states are expected. There are no dedicated searches which can probe these processes.

Second, in the limit of degenerate scalars, searches for 𝐵 decays into only muons cannot constrain

the model; the tagging of extra mesons is required instead. No analysis exists either to probe this kind of

channels, e.g. 𝐵+ → 𝐾+3𝜇−3𝜇−. Remarkably, not even channels with a smaller multiplicity of leptons,
in particular 𝐵+ → 𝐾+2𝜇+2𝜇−, have been tested so far. A sensitivity study of this process is presented

in Ref. [228].

In the next section, we therefore present the first proposed analyses to study the aforementioned

processes at the LHCb.

5.3.4 New analyses at the LHCb

The largest backgrounds to six muon processes come from the resonant productions of 𝐽/Ψ and𝜑 mesons

that subsequently decay into muons. These backgrounds can be removed by vetoing all reconstructed 𝑎1
particles with an invariant mass close to where these SM resonances peak. After this cut, the analyses

become essentially background-free (as in the case of the four muons search [227]). Therefore, we can

estimate the upper limit on B(𝐵𝑠0 → 3𝜇+3𝜇−) using the result obtained for B(𝐵𝑠0 → 2𝜇+2𝜇−), after
normalizing the efficiency 𝜖 with respect to the four muons case9. With that aim, we follow the analysis

9In both cases, the maximum number of signal events which can be excluded is the same (see equation 35); hence,
𝜖2𝜇+2𝜇−𝜎

2𝜇+2𝜇−
max 𝐿 ∼ 𝜖3𝜇+3𝜇−𝜎3𝜇

+3𝜇−
max 𝐿′, where 𝜎max is given by the 𝐵-production cross section times the maximum allowed

branching ratio.
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Figure 20: (Left) Normalized distribution of the transverse momentum of the hardest muon for𝐵0𝑠 → 𝑎1𝑎2
and 𝐵+ → 𝐾+𝑎1𝑎2. These distributions are compared with that of 𝐵𝑠0 → 2𝜇+2𝜇−. We fixed𝑚1 = 1
GeV and𝑚2 = 2.5 GeV. (Right) The same for the softest track.

strategy presented in Ref. [227], requiring that all events have:

1. Six muons with vanishing total charge;

2. At least one muon with 𝑝𝑇 > 1.7 GeV, to simulate the same hardware trigger as the one used at
√
𝑠 = 8 TeV;

3. All tracks with 𝑝𝑇 > 0.5 GeV and within a pseudorapidity volume defined by 2.5 < 𝜂 < 5.0;

4. All muons with a total momentum larger than 2.5 GeV, to simulate the threshold for positive muon
identification at the LHCb detector;

5. No pairs of zero charge muons with an invariant mass in the range [0.95, 1.09]⋃[3.0, 3.2] GeV.
The efficiencies after these selection cuts are presented in table 5. For comparison, in the four muons

channel, we obtain 𝜖2𝜇+2𝜇− ≈ 0.14. Below, we detail the effects of these cuts in the analyses with and
without the tagging of an extra meson.

5.3.4.1 Six muon final states

The efficiencies obtained in the 𝐵0𝑠 → 3𝜇+3𝜇− channel are nearly one order of magnitude smaller than

in the four muons case. The reason for this is two-fold. Due to the larger muons multiplicity, there are more

events in which no single muon has 𝑝𝑇 > 1.7 GeV; see the left panel of figure 20. In the same way, the
probability to find a muon with 𝑝𝑇 < 0.5 GeV is larger; see the right panel in figure 20.

Given the previous discussion, we can estimate the upper limit on the branching ratio of the new
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process at
√
𝑠 = 14 TeV and luminosity 𝐿′ as

B3𝜇
+3𝜇−

max ∼
B2𝜇

+2𝜇−
max × 𝜀2𝜇+2𝜇−
1.8 × 𝜀3𝜇+3𝜇−

× 𝐿

𝐿′
, (175)

where B2𝜇
+2𝜇−

max , given by equation 171, was obtained with 𝐿 = 3 fb−1 and
√
𝑠 = 8 TeV. The factor

1.8 stands for the enhancement of the 𝐵0𝑠 production cross section from
√
𝑠 = 8 TeV to

√
𝑠 = 14 TeV.

The results on the maximum branching ratio are presented in table 5, for the different kinematic regions

analysed in this work.

5.3.4.2 Six muons+meson final states

In the analysis for 𝐵+ → 𝐾+3𝜇+3𝜇−, on top of the selection criteria above, we require the presence of an
additional charged track. Practically, no additional requirement to identify the charged kaon is necessary,

since the particle identification system of the LHCb detector is optimized for the momentum range of the

heavy meson decay products (the efficiency for positive kaon identification being ≳ 95% in the momentum

range 10–40 GeV and for pion mis-tagging probability below 1% [229]).

Due to the occurrence of the extra track, the selection efficiencies for this process are smaller in

comparison to the previous case; they are presented in table 5. The limit on the branching ratio can be

again obtained as

B3𝜇
+3𝜇−𝐾+

max ∼
B2𝜇

+2𝜇−
max × 𝜀2𝜇+2𝜇−

1.8 × 3.7 × 𝜀3𝜇+3𝜇−𝐾+
× 𝐿

𝐿′
, (176)

where the additional factor 3.7 is due to the larger production cross section of 𝐵+ in comparison to 𝐵0𝑠 .
The corresponding upper limits on branching ratio are presented in table 5. As can be seen, the growth in

the production cross section compensates the smaller efficiencies in this channel, actually leading to the

most stringent bounds. This fact, together with the theoretical observation that this decay mode dominates

for𝑚1 ∼𝑚2, strongly motivates searches for 𝐵
+ → 𝐾+3𝜇+3𝜇−.

Finally, we note that if a signal is observed in these six muon channels, the mass of the light scalars

could be reconstructed at the LHCb. To show that this is the case, let us first assume𝑚2 > 2𝑚1, so that

𝑎2 decays mainly into 𝑎1𝑎1. We start by computing the difference 𝛿 = |𝑚rec
𝑖 −𝑚

rec
𝑗 | + |𝑚

rec
𝑗 −𝑚

rec
𝑘
|;

with𝑚rec
𝑖 being the invariant mass of any combination of two opposite-sign muons. Those that minimize 𝛿

are then assigned to the three 𝑎1 particles involved. The two 𝑎1 candidates that subsequently reconstruct

𝑎2 are the ones with a minimum Δ𝑅 between themselves; see the left panel in figure 21.

If instead𝑚2 < 2𝑚1, 𝑎2 decays mostly into 𝑎1𝜇
+𝜇−. In this case, we reconstruct the two 𝑎1 particles

by minimizing the difference |𝑚rec
𝑖 −𝑚

rec
𝑗 |. The heavier scalar is subsequently reconstructed by combining

the two muons which were left unassigned, plus the 𝑎1 candidate which is closest in Δ𝑅 to the former.

The corresponding mass distributions are plotted in the right panel of figure 21, for a given BP.
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Figure 21: (Left) Normalized distribution of the reconstructed𝑚1 (solid) and𝑚2 (dashed) for𝑚2 > 2𝑚1.
(Right) The same for𝑚2 < 2𝑚1.

5.3.5 Outlook

We have studied the signatures of light leptophilic scalars coupled to a flavour-violating heavy vector boson,

all assumed to be part of the same non-minimal composite sector. Such vector boson mediates rare decays

of 𝐵-mesons which can in turn explain the anomalies observed in tests of LFU by several experiments.

In the low-mass regime, the scalars can decay into muons, triggering the processes 𝐵0𝑠 → 3𝜇+3𝜇−

and 𝐵+ → 𝐾+3𝜇+3𝜇−, none of which has been yet explored experimentally. By performing new ded-

icated analyses to test these channels at the LHCb, we have found that branching ratios as small as

6.0× 10−9 and 5.9× 10−9 could be probed, respectively, at the current run of this facility. In particular,

the three-body decay can not only lead to the strongest bounds on the model but is also the key signature

when the two pNGBs are approximately degenerate.

For illustration, we translated the (weakest) upper bounds on these processes to the (𝑔𝑠𝑏 , 𝑚𝑉 )
plane; see the top panel in figure 22. It is clear that, for certain points of the parameter space where

(𝑚2 −𝑚1) ≲ 1 GeV, the stringent bounds on the vector mass are obtained in the 𝐵+ → 𝐾+𝑎1𝑎2
channel. Notably, after Upgrade II of the LHCb detector, where 300 fb−1 of data are expected to be

collected, branching ratios a hundred times smaller could be probed; consequently, vector masses as large

as𝑚𝑉 ∼ 15 TeV could be excluded if no signal is observed in these channels. Therefore, our proposed

analyses could potentially outperform the bounds frommesonmixing onΔ𝑀𝑠 ≡ 𝑀𝑠𝐻−𝑀
𝑠
𝐿 , corresponding

to the mass difference between the heavy (𝐻 ) and light (𝐿) eigenstates of the 𝐵0𝑠 − 𝐵
0
𝑠 system. (We did

not include in the plot the latest SM prediction for Δ𝑀𝑠 , as reported in Ref. [143], because the inputs

from lattice calculations are still to be confirmed). Finally, the dotted-dashed line in this plot represents the

combination of mass and coupling for which the heavy vector can explain the anomalies in 𝑅(∗)
𝐾

at 1𝜎
level, according to equation 164. Our analyses can entirely probe this region as well.

In the bottom panel of figure 22, we plotted instead the obtained bounds on the (𝑚1, 𝑚2) plane,
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the upper left region). The sensitivity is negligible in the slashed region.
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fixing 𝑔𝑠𝑏 = 0.04 and 𝑚𝑉 = 4 TeV; such values are not yet excluded by measurements of Δ𝑀𝑠 . We

conclude that almost the entire low-mass parameter space could be probed at Upgrade II of the LHCb

detector. Currently, the region where 𝑚2 < 2𝑚1 cannot be excluded for the particular BP we chose,

since the decay 𝐵0𝑠 → 𝑎1𝑎2 is very suppressed close to the line𝑚1 = 𝑚2. Moreover, the upper limit

obtained in this region is weaker than for𝑚2 > 2𝑚1. (Note that our analyses lead to negligible sensitivity

for𝑚1,2 ∼ 1 GeV, due to the veto on the invariant mass of muon pairs close to𝑚𝜑 .)
The heavy vector can trigger also 𝑏–𝑑 transitions, in which case we expect new rare decays, such as

𝐵0 → 3𝜇+3𝜇−. Given the growth in production cross section of 𝐵0 in comparison to 𝐵0𝑠 , we estimate

that B(𝐵0 → 3𝜇+3𝜇−) ≳ 1.6 × 10−9 could be probed with 3 fb−1 of data at the current run of the

LHCb. This channel vanishes for𝑚1 ∼ 𝑚2. In this limit, we propose searching for 𝐵
0
𝑠 → 𝐾∗03𝜇−3𝜇+

instead. Assuming the𝐾∗0 → 𝐾+𝜋− mode for the reconstruction of the unstable kaon, with a branching
ratio ∼ 2/3 [9], we obtain efficiencies around two times smaller than for 𝐵0𝑠 → 3𝜇+3𝜇−, upon per-

forming the analysis described in section 5.3.4. Consequently, we estimate that the LHCb could reach

B(𝐵0𝑠 → 𝐾∗03𝜇−3𝜇+) ≳ 1.8 × 10−8, with 𝐿 = 3 fb−1. Testing different flavour transitions is specially
relevant to probe different flavour structures of SMEFT operators extended with light scalars, e.g. 𝑞𝑞𝑞𝑞𝑎2.

Such EFT formulation has become one of the favorite tools to interpret the bounds on ALPs [184, 230].

Finally, we remark that, at the next update of the LHCb detector, it is expected that the hardware trigger

is completely removed and that the threshold for muon identification can be lowered, so that muon tracks

with 𝑝𝑇 ≲ 0.25 GeV could be detected. In this way, efficiencies ≳ 3 times larger could be attained. The

results presented in table 5 are therefore conservative.

5.4 Composite dark sectors

5.4.1 Still the 𝑆𝑂 (7)/𝑆𝑂 (6) model

In this section, we consider the same realization of the CHM presented in section 5.3.1, but assume

instead the large mass regime for the pNGBs. This is accomplished when the main breaking of the shift-

symmetry comes from integrating out the quarks mixing with the composite sector. In this case, the two

singlet particles, 𝜂 (+) and 𝜅 (-), can naturally be at the EW scale. (We assign them the 𝐶𝑃 -charges in

parenthesis.) We aim to study the conditions under which 𝜂 is a DM candidate. If the CHM is to explain

other problems in particles physics beyond DM, for example EW baryogenesis, extra pNGBs such as 𝜅

must also be present. Since the latter is part of the same composite sector as the DM candidate, this

setup provides not only a Higgs portal to the SM, but also an exotic mediator between the dark and visible

sectors which can affect the phenomenology non-trivially.

Contrary to the minimal composite DM model, the 𝑆𝑂 (7) global group does not admit a WZW term.

Therefore, assuming that the stabilizing DM symmetry is respected at the classical level, it is automatically
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preserved at the quantum level as well10. It follows that the minimal non-anomalous composite DM model

necessarily contains additional pNGB states.

Several NMCHMs with DM have been considered in the literature but, in most constructions, it is

assumed that the unstable exotic pNGBs are heavier than the DM and therefore decoupled from its phe-

nomenology. This is the case if the fermions which break the shift-symmetry of the unstable pNGBs are

heavier than those that break the DM’s. There is however no theoretical motivation to prefer this over the

inverse hierarchy; and, in fact, the latter can be favored experimentally. Indeed, if the DM can annihilate

sizably into the additional pNGBs, it can freeze out even in the absence of couplings to the SM, in which

case the current very strong constraints from DM experiments can be avoided.

To probe both the Higgs and the exotic portal couplings in this scenario, we make two different choices

for the embeddings of the elementary fermions: in Regime I (RegI), we assume that 𝑞𝐿 ⊕ 𝑡𝑅 = 27 ⊕ 1;
while in Regime II (RegII), 𝑞𝐿 ⊕ 𝑡𝑅 = 7⊕7. Below, we study the predictions emerging from these regimes.

5.4.1.1 Regime I

In this regime, the radiatively induced potential is obtained as in equation 155, with 𝛾 → 0 to assure the

DM stability. Trading 𝑐1 and 𝑐2 by the Higgs mass and its quartic coupling, we obtain:

𝑉RegI =
𝜇2𝐻
2
ℎ2 + 𝜆𝐻

4
ℎ4 +

[𝜆𝐻 𝑓 2 + 2𝜇2𝐻
3 − 𝜃2

]
𝜂2 + 1

4
𝜆𝐻𝜂

2ℎ2 (177)

+
[ (𝜆𝐻 𝑓 2 + 2𝜇2𝐻 )(𝜃2 − 1)

𝜃2 − 3

]
𝜅2 + 1

4
𝜆𝐻 (1 − 𝜃2)ℎ2𝜅2 .

Therefore,𝑚𝜅 ≤ 𝑚𝜂 for all values of 𝜃 ∈]0, 1]. For example, for 𝜃 ∼ 0.5, the physical scalar masses
read𝑚phys

𝜂 ≈ 210 GeV and𝑚phys
𝜅 ≈ 170 GeV.

On another front, the Yukawa Lagrangian to dimension six reads:

Lyuk = 𝑦𝑓 𝑞𝐿𝐼
(
Λ𝐼𝐷

)†
77
𝑢𝑅 + h.c. (178)

= −𝑦𝑞
ℎ
√
2
𝑢𝐿𝑢𝑅

[√
1 − ℎ

2

𝑓 2
− 𝜂

2

𝑓 2
− 𝜅

2

𝑓 2
+ i𝜃 𝜅

𝑓

]
+ h.c.

= −𝑦𝑞
ℎ
√
2
𝑢𝐿𝑢𝑅

[
1 + i𝜃 𝜅

𝑓
− 𝜂

2 + 𝜅2 + ℎ2

2𝑓 2

]
+ O

(
1
𝑓 4

)
+ h.c. ,

which matches equation 111 with 𝑐𝜅 = −𝜃𝑦, 𝑐𝜂 = 0 and 𝑐
𝜂2 = −𝑦.

10We are assuming that the UV does not break the DM parity symmetry at higher order in derivatives than that corresponding
to the WZW term. This is not guaranteed in the CHM under study since the parity symmetry is not part of the global group
𝑆𝑂 (7). Instead, we could uplift 𝑆𝑂 (7) → 𝑂 (7), in which case the kinetic Lagrangian would preserve the parity symmetry
exactly. Still, the absence of the WZW term (that arises already at dimension five in the 𝑆𝑂 (6)/𝑆𝑂 (5) CHM), together with the
fact that such breaking terms could appear at much higher orders in 1/𝑓 , is an important motivation to go beyond minimality.
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For 𝜃 = 0, the singlet𝜅 becomes also stable. In this case, (𝜂, 𝜅) transforms as a complex scalar under
𝑆𝑂 (2) � 𝑈 (1) that belongs to the unbroken 𝑆𝑂 (6) symmetry group. The corresponding phenomenology
is studied in Ref. [175]. For 𝜃 = 1, 𝜅 becomes massless; its shift-symmetry remains unbroken. These

values are therefore stable under radiative corrections and hence technically natural. In this range of

values, 〈𝜂〉 = 〈𝜅〉 = 0. However, for 1 < 𝜃 <
√
3, we can also have 〈𝜅〉 ≠ 0, leading to spontaneous𝐶𝑃

violation. Since this is very constrained experimentally (see section 5.2.7), in the following we consider only

𝜃 -values that satisfy 〈𝜅〉 = 0. On the other hand, for 𝜃 >
√
3, 𝜂 can gain a VEV and becomes unstable.

Requiring that both 𝐶𝑃 and the ℤ2 DM symmetries are not broken spontaneously therefore assures that

the hierarchy𝑚𝜅 ≤ 𝑚𝜂 is always respected. We restrict to this case hereafter.

In equation 177, we can further trade (𝑓 , 𝜃 ) for (𝑚𝜂, 𝑚𝜅 ), to make the physical parameters more
apparent in the potential:

𝑉RegI =
𝜇2𝐻
2
ℎ2 + 𝜆𝐻

4
ℎ4 + 1

2
𝑚2
𝜂𝜂

2 + 1
4
𝜆𝐻𝜂

2ℎ2 + 1
2
𝑚2
𝜅𝜅

2 + 1
4
𝜆𝐻

(
𝑚𝜅
𝑚𝜂

)2
ℎ2𝜅2 , (179)

with

𝑓 ∼
𝑚𝜂√
𝜆𝐻

[
1 + 𝑚2

𝜅

2𝑚2
𝜂

]1/2
. (180)

In this framework, the compositeness scale can therefore be constrained by DM observables.

5.4.1.2 Regime II

In the second regime, we use the following embeddings for fields in the fundamental representation of

𝑆𝑂 (7):
T𝑅 =

(
0, 0, 0, 0, 0, i𝜃𝑡𝑅, 𝑡𝑅

)
and Q𝐿 =

1
√
2

(
−i𝑏𝐿, 𝑏𝐿, i𝑡𝐿, 𝑡𝐿, 0, 0, 0

)
. (181)

Under 𝑆𝑂 (6), the 7 = 6 ⊕ 1; therefore, only one independent invariant can be built at LO in the spurions

expansion for each field, leading to:

𝑉 = 𝑐1𝑓
2
[
ℎ2 + (1 − 𝜃2)𝜅2 + 𝜂2

]
+ 𝑐2

2
𝑓 2ℎ2 . (182)

The 𝑚𝜅 ≤ 𝑚𝜂 hierarchy, for 𝜃 ∈]0, 1], is also attained. Nevertheless, NLO terms are mandatory to

obtain the complete renormalizable potential. There are eight non-redundant invariants that we can build,

including the two used in the equation above:

𝐼1 ≡
[ (
Λ1∗𝐷,𝑅

) (
Λ1𝐷,𝑅

) ]
= 𝑓 2

[
𝑓 2 − ℎ2 − 𝜂2 − 𝜅2

(
1 − 𝜃2

) ]
,

𝐼2 ≡
[ (
Λ1∗𝐷,𝐿

)𝐼 (
Λ1𝐷,𝐿

)𝐼 ]
=
1
2
ℎ2𝑓 2 ,

𝐼3 ≡
[ (
Λ1∗𝐷,𝑅

) (
Λ1𝐷,𝑅

) ]2
=

[
ℎ2 + 𝜅2

(
1 − 𝜃2

)
+ 𝜂2 − 𝑓 2

]2
,
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𝐼4 ≡
[ (
Λ6∗𝐷,𝑅

)𝑚 (
Λ6𝐷,𝑅

)
𝑚

]2
=

[
ℎ2 + 𝜅2

(
1 − 𝜃2

)
+ 𝜂2 + 𝜃2𝑓 2

]2
,

𝐼5 ≡
[ (
Λ1∗𝐷,𝐿

)𝐼 (
Λ1𝐷,𝐿

)
𝐼

]2
=
1
4
ℎ4 ,

𝐼6 ≡
[ (
Λ6∗𝐷,𝐿

)𝐼
𝑚

(
Λ6𝐷,𝐿

)𝑚
𝐼

]2
=
1
4

(
ℎ2 − 4𝑓 2

)2
,

𝐼7 ≡
(
Λ1∗𝐷,𝑅

) (
Λ1𝐷,𝑅

) (
Λ1∗𝐷,𝐿

)𝐼 (
Λ1𝐷,𝐿

)
𝐼
=
1
2
ℎ2

[
𝑓 2 − ℎ2 − 𝜂2 − 𝜅2

(
1 − 𝜃2

) ]
,

𝐼8 ≡
(
Λ6∗𝐷,𝑅

)𝑚 (
Λ6𝐷,𝑅

)
𝑚

(
Λ1∗𝐷,𝐿

)𝐼 (
Λ1𝐷,𝐿

)
𝐼
=
1
2
ℎ2

[
ℎ2 + 𝜂2 + 𝜅2

(
1 − 𝜃2

)
+ 𝜃2𝑓 2

]
.

It is clear from the form of 𝐼1–𝐼8 that the naive counting of nine operators constructed out of {ℎ2, 𝜂2, 𝜅2}
is reduced to only five, by combining the two operators in {ℎ2, 𝜂2 + (1 − 𝜃2)𝜅2}. The corresponding

coefficients together with 𝜃 can be traded by the Higgs mass and its quartic coupling, plus the two sin-

glet masses and two of their couplings. The new physics scale 𝑓 remains a free parameter. After this

replacement, we finally obtain:

𝑉RegII =
𝜇2𝐻
2
ℎ2 + 𝜆𝐻

4
ℎ4 + 1

2
𝑚2
𝜂𝜂

2 + 1
8
𝜆𝜂𝜅

(
𝑚𝜂

𝑚𝜅

)2
𝜂4 + 1

2
𝑚2
𝜅𝜅

2 + 1
8
𝜆𝜂𝜅

(
𝑚𝜅
𝑚𝜂

)2
𝜅4 (183)

+ 1
4
𝜆𝜂𝐻𝜂

2ℎ2 + 1
4
𝜆𝜂𝜅𝜂

2𝜅2 + 1
4
𝜆𝜂𝐻

(
𝑚𝜅
𝑚𝜂

)2
𝜅2ℎ2 .

Although less predictive than the previous case, this regime shows important consequences: for instance,

the choice for the masses and 𝜆𝜂𝐻 determines the interaction between the Higgs and the pseudoscalar

singlet. More importantly, the DM couplings to the singlet and to the Higgs boson can be chosen in-

dependently. Contrary to the previous case, they are both generated at O(𝜆4
𝐿,𝑅
). In order to study a

complementary phenomenology to that of RegI, we assume 𝜆𝜂𝐻 � 𝜆𝜂𝜅 ∼ 𝜆𝐻 . This suppression can be
achieved as a result of ∼ 1% level of tuning in the model parameters11. Note that such levels of tuning are

not uncommon in the composite framework [172]; they are actually required in all models where EWSB is

not attained at LO, such as the 7⊕ 7 MCHM. Such model requires a double tuning in the scalar potential,

which can be of the same order as the one required in this setup: the first tuning is used to make the

couplings of ℎ2 and ℎ4, 𝛼
ℎ2 and 𝛽

ℎ4 , comparable and so overcome the different orders in the spurions

expansion at which they are generated; whereas the second one is necessary to make 𝛼
ℎ2/𝛽ℎ4 ∼ 𝜉 � 1,

in agreement with the SM values.

Finally, the Yukawa Lagrangian reads exactly as in equation 178.
11To obtain this value, we use the known coefficient of the ℎ4 operator to find the order of magnitude of the NLO UV

constants. To this aim, we assume that all 𝑐𝑖 ∼ 𝑐 (𝑖 = 3, . . . , 8) and solve for 𝜆𝐻 , obtaining 𝑐 ∼ 𝜆𝐻/10. We then scan over
the range [0.1𝑐, 10𝑐 [, assuming an uniform distribution, to find the region where 𝜆𝜂𝐻 < 0.1𝜆𝜂𝜅 . We finally study the stability
of this region, by producing small changes in single parameters (up to 10%) and verify that they do not reintroduce the naive
scaling. We can consequently quantify the level of tuning we are requiring as ∼ 𝑐min/𝜆 ∼ 10−2.
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5.4.2 On dark matter models and constraints

Since DM has escaped detection so far (beyond gravitational), model builders have been prompted to think

about newmechanisms to explain it, as well as more ways to search for it. Some proposals include very rich

dark sectors, such as co-annihilation scenarios [231] or hypothetical dark gauge groups [232], enlarging

the exotic spectrum associated to the DM problem and consequently predicting new phenomenological

results.

WIMPs are, on the other hand, one of the oldest and simplest candidates for this problem. The defining

feature of a WIMP is that the observed relic abundance12 [233],

Ωobsℎ
2 = 0.1200 ± 0.0012 , (184)

is naturally explained within the standard cosmology with a weak-scale cross section; see appendix E. It is

not of little importance that this simple solution for DM points to new physics exactly at the same scale as

the HP. These coincidence of scales is actually a prediction of CHMs, where additional pNGBs at the EW

scale naturally arise, which can play the role of a WIMP if endowed with a stabilizing symmetry. We focus

on this DM candidate from here on.

At large cosmological scales, the WIMP candidate behaves as cold, collisionless, weakly interacting DM

which is in very good agreement with all observations [234]. Some discrepancies are however observed

at scales smaller than O(Mpc) [235], which are more sensitive to baryon interactions. At these small

scales, structure formation is a complicated problem that has been taken care of using DM-only 𝑁 -body

simulations. The magnitude of these small scale effects is therefore still unclear and could be significantly

reduced by including baryonic processes in the simulations [236]; we ignore these effects in the following

analysis.

Not only must WIMPs (as any other DM candidate) respect the relic density bound in equation 184, but

they are also severely constrained by collider searches, as well as direct and indirect detection searches

for DM. At colliders, the DM particles are stable, so they are typically searched for in final states with large

MET and at least an additional hard jet to trigger the event. On the other hand, direct detection experiments

search for signs of DM in the recoils of atomic nucleus when scattered off by DM particles. These are Earth-

based ultra-sensitive laboratories with low-backgrounds which provide the strongest bounds on the WIMP

parameter space up to date. They are limited to the target size and the amount of DM particles available

∼ 𝜌DM/𝑚DM, hence they are typically sensitive to the mass range 1 GeV ≲ 𝑚DM ≲ few TeV [237].

Sub-GeV DM can be instead tested when scattering off electrons. This detection strategy has been recently

proposed in the literature and studied intensively by both theory and experimental groups [238, 239].

Finally, in indirect detection, the stable products resulting from the DM annihilation into the SM particles

are collected in large telescopes. In comparison to direct detection, these searches face larger backgrounds
12The density parameter Ω is defined as the ratio between the observed energy density of a given component and the critical

density of the Universe today, 𝜌0𝑐 = 3𝐻2
0/8𝜋𝐺 . In addition, ℎ ∼ 0.7 in equation 184 is the reduced Hubble parameter [9].
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from different astrophysical environments. For instance, the cosmic rays resulting from the DM annihilation

diffuse through the magnetic fields in the Galaxy, which leads to significant changes in their spectrum

from the source up until the collection point. To trace back their origin, we therefore need to rely on

numerical simulation of their propagation and the modeling of the galactic magnetic field, which is quite

non-trivial [240]. In comparison, the gamma-ray spectrum is much more reliable given that photons reach

the detector in close to straight lines.

Although strong limits have been obtained on WIMP scattering and production at these facilities, the

corresponding bounds do not show model-independent sensitivity to generic WIMP models. Instead, they

assume specific annihilation fractions into the SM and other signal features which can only probe particular

scenarios. Therefore, the lack of observations definitely does not rule out all WIMP candidates. There can

be, for example, momentum suppression, or loop suppression, in the direct detection cross section that

makes the experimental bounds much weaker while leaving the total annihilation cross section unchanged.

Another possibility is the presence of a new mediator which can affect the direct and indirect detection

processes non-trivially, specially if it lies below the DM scale, which is the hypothesis we take in this work.

In such case, it is not straightforward to quantify when the WIMP hypothesis is excluded using existent

data. The experimental collaborations present bounds on 2DM→ 2 SM processes, whereas the presence

of the intermediate step in the annihilation chain, 2DM → 2𝜅 → 4 SM, doubles the number of SM

particles in the final state. Consequently, the showering process is altered in this last case, leading to

changes in the spectrum of stable particles and their fluxes at telescopes. Therefore, we cannot simply

rescale the bounds presented by the collaborations to constrain our model, but have to simulate all steps in

the annihilation process up until detection. Likewise, collider searches for WIMPs alone are not sufficient

to probe the model, but searches for the visible scalar are necessary as well. In the next sections, the

signatures of our model at these facilities are explored in detail.

5.4.3 Relic density

The DM annihilation cross section into Higgs bosons in the limit of small DM velocity 𝑣13 reads

𝜎𝑣 (𝜂𝜂 → ℎℎ) ' 1
64𝜋𝑚2

𝜂

[
𝜆𝜂𝐻 −

4𝑚2
𝜂

𝑓 2

]2 [
1 −

𝑚2
𝐻

𝑚2
𝜂

]1/2
, (185)

where the second term in the effective vertex comes from the derivative interactions in equation 109. This

expression holds similarly for the EW gauge bosons by virtue of the Equivalence Theorem, provided that

𝑚𝜂 �𝑚𝑊 ; and for 𝜂𝜂 → 𝜅𝜅 upon the replacements𝑚𝐻 , 𝜆𝜂𝐻 →𝑚𝜅 , 𝜆𝜂𝜅 . In RegI, there is a partial

cancellation between the portal coupling to the Higgs boson and the effective coupling, in the first bracket

of equation 185. The extra scalar can therefore dominate the DM annihilation. In RegII, this cancellation
13We use the same letter to denote the velocity and the Higgs VEV in this section; the right meaning is obvious from the

context.
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Figure 23: The parameter space excluded by the relic density constraint (in green) assuming that the DM
is a thermal relic. The dotted (dashed) black lines correspond to an annihilation fraction into 𝜅𝜅 equal to
0.2 (0.3). The area enclosed by the solid gray line is theoretically forbidden. The upper left panel and
the upper right, bottom left and bottom right panels stand for RegI and RegII with 𝑓 = 2.5, 3 and 4 TeV,
respectively. In RegI, the slashed area is ruled out by EWPD.

occurs instead in 𝜎𝑣 (𝜂𝜂 → 𝜅𝜅). After EWSB, there are additional contributions from a Higgs particle

exchange in the 𝑠 -channel, which are further suppressed by a factor of 𝜇2𝐻 /𝑚
2
𝜂 .

To clarify this behavior, we determine the region of the plane (𝑚𝜂,𝑚𝜅 ) for which the relic density

is above the measured value; see equation 184. With this aim, we use micrOmegas [241] with a model

implemented in Feynrules [78] (we cross-checked the limits using MadDM [242] and found perfect agree-

ment). The corresponding area is enclosed by the solid green line in figure 23 for RegI and for RegII with

𝑓 = 2.5, 3, 4 TeV (the parameter space for 𝑓 = 1 TeV is unconstrained). Contour lines of constant annihi-
lation fraction into 𝜅𝜅 are also plotted. In RegI, the slashed gray area corresponds to values of 𝑓 excluded

by EWPD; see section 4.6.2. We assume that the leading contribution to these observables is the modifi-

cation of the scalar-vectors coupling due to the pNGB nature of the Higgs boson; in turn, scales 𝑓 ≲ 900
GeV [159] are excluded.

Let us first focus on RegII and analyse the results for 𝑓 = 2.5 TeV. It is clear that the behavior of the

relic density can be described in three regions of increasing𝑚𝜂 :

1.𝑚2
𝜂/𝑓 2 � 1: the annihilation cross section 𝜎𝑣 (𝜂𝜂 → 𝜅𝜅) grows quadratically with 𝜆𝜂𝜅 ∼ 𝜆𝐻 ,
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being large enough to make Ω𝜂ℎ2 < Ωobsℎ
2;

2.𝑚2
𝜂/𝑓 2 ∼ 𝜆𝜂𝜅 : in this regime, there is destructive interference between the two terms in equation

185, leading to overabundance of the DM;

3. 𝑚2
𝜂/𝑓 2 � 1: the derivative term dominates the dynamics and the DM abundance decreases

again.

Note that, during the last transition, the observed relic abundance is attained quite independently from

𝑚𝜅 . For a given 𝑓 , the value of𝑚𝜂 at which this transition takes place matches the one from equation 12

in Ref. [175]. Furthermore, note that, for𝑚𝜂 ∼ 200 GeV, a thermal 𝜂 can be all the DM in our Universe

while annihilating sizably into the exotic pNGB; it can therefore freeze out even in the absence of couplings

to the SM.

This three-phase picture is modified in RegI where 𝑓 ∝𝑚𝜂 (see equation 180), making the derivative

interactions already significant at small𝑚𝜂 . Explicitly,

𝜎 (𝜂𝜂 → ℎℎ) ∝
𝜆2𝐻
𝑚2
𝜂

©«
1 − 4

1 + 𝑚2
𝜅

2𝑚2
𝜂

ª®®®®¬
2

while 𝜎 (𝜂𝜂 → 𝜅𝜅) ∝
𝜆2𝐻
𝑚2
𝜂

©«
4

1 + 𝑚2
𝜅

2𝑚2
𝜂

ª®®®®¬
2

. (186)

Therefore, by increasing 𝑚𝜅 while keeping 𝑚𝜂 fixed (i.e. increasing 𝑓 ), the effective couplings become

smaller and 𝜂 becomes overabundant. Increasing𝑚𝜂 instead while keeping𝑚𝜅 fixed leads to the opposite

effect; however, as the cross sections scale with𝑚−2𝜂 , this will eventually lead to overabundance as well.

Altogether, the previous arguments explain the shape of the upper left panel in figure 23.

Let us further note that the requirement Ω𝜂ℎ2 = Ωobsℎ
2 establishes a relation between 𝑚𝜂 and

𝑚𝜅 , effectively removing one free parameter. (This conclusion fails if the DM is non-thermal.) In RegI, the

corresponding relation reads approximately

𝑚𝜅
(
𝑚𝜂

)
≈
[
− 5461.99 + 21.002

(
𝑚𝜂/GeV

)
− 2.6313 × 10−2

(
𝑚𝜂/GeV

)2
+ 1.4988 × 10−5

(
𝑚𝜂/GeV

)3 − 3.3382 × 10−9 (
𝑚𝜂/GeV

)4 ]
GeV, (187)

for 𝑚𝜂 ∈ [800, 1500] GeV. This relation implies a bound on 2.8 ≲ 𝑓 ≲ 3.3 TeV. This contrasts with

CHMs without DM, in which this upper bound relies on naturalness arguments, rather than on actual

observables. Interestingly, for WIMPs, the relic density constraint favors natural new physics scales, not

yet excluded by other data.

5.4.4 Direct Detection

The spin-independent (SI) elastic scattering cross section of 𝜂 on a nucleus reads [53]:

𝜎SI =
1
𝜋

(
𝑚𝜂𝑚𝑛

𝑚𝜂 +𝑚𝑛

)2 [
𝑍 𝑓𝑝 + (𝐴 − 𝑍 ) 𝑓𝑛

]2
𝐴2

, (188)
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Figure 24: Contributions to the 𝜂2𝑞𝑞 effective operator at low energies from the contact interaction (left),
the exchange of a Higgs particle (center) and a loop induced by interactions with 𝜅 (right).
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Figure 25: Spin independent cross section for direct detection as a function of the DM mass, in RegI
(upper left panel) and RegII with 𝑓 = 1, 2.5 and 4 TeV (upper right, bottom left and bottom right panels,
respectively). The black dashed and dotted lines stand for the scalar mediated and contact interaction
contributions in each regime, whereas the blue line represents the sum of all contributions. The solid
red and dashed curves are for the XENON1T and LZ exclusion limits, respectively. Across all masses, we
assume that 𝜂 makes up all the DM in the Universe. In particular, 𝜂 is a thermal relic in the orange region,
where𝑚𝜅 is fixed by equation 187.

where𝑚𝑛 ∼ 1 GeV is the neutron mass; 𝑍 and 𝐴 − 𝑍 are the numbers of protons and neutrons in the

nucleus, respectively; and the form factors are defined as

𝑓𝑛,𝑝 =
∑

𝑞=𝑢,𝑑,𝑠

𝑓
(𝑛,𝑝)
𝑇𝑞

𝑎𝑞
𝑚𝑛,𝑝

𝑚𝑞
+ 2
27
𝑓
(𝑛,𝑝)
𝑇𝐺

∑
𝑞=𝑐,𝑏,𝑡

𝑎𝑞
𝑚𝑛,𝑝

𝑚𝑞
. (189)
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The matrix elements 𝑓𝑇𝑞 parameterize the quark content of the nucleon; we take them from Ref. [53].

The DM coupling to gluons, via loops of heavy quarks, is encoded in 𝑓𝑇𝐺 = 1 −∑
𝑞=𝑢,𝑑,𝑠 𝑓𝑇𝑞 . Finally, 𝑎𝑞

stands for the coefficient of the effective operator𝑚𝑞𝜂2𝑞𝑞 at low energies. In our model, it is generated

at tree level by the left and central diagrams in figure 24, and at the loop level by the diagram on the right:

𝑎𝑞 =
𝑚𝑞

𝑚𝜂

[
𝑐𝜂

2𝑓 2
+
𝜆𝜂𝐻

2𝑚2
ℎ

+
𝜆𝜂𝜅𝑐

2
𝜅

32𝜋2

(
𝑚𝑞

𝑚𝜅 𝑓

)2 ]
. (190)

We assumed that𝑚𝜅 is the largest scale involved in the nuclear interaction to obtain the third term in the

equation above. In figure 25, we represent each of these contributions to the SI scattering cross section

as a function of the DM mass. The scalar couplings are defined according to section 5.4.1; we fixed

𝜃 = 1, to explore the flavour universal scenario. The total SI scattering cross section is plotted in blue.

Superimposed are the current (in solid red) and future (in dashed red) bounds from the XENON1T [243,

244] and the LZ [245] experiments. They both use liquid xenon as the target for direct detection, which is

very efficient in converting the nuclear recoils into scintillation and ionization signals and very sensitive to

the DM interactions due to its large 𝐴. In the orange region, we used the relation in equation 187 to study

the scenario where a thermal 𝜂 is all the observed DM in the Universe. To probe the non-minimal setup,

we fixed𝑚𝜅 = 10 GeV outside this region.

While RegI is partially ruled out by XENON1T, RegII leads to theoretical cross sections which are

typically two (four) orders of magnitude below the LZ projected limit for a non-zero (zero) 𝑐𝜂 . Moreover, in

the region where Ω𝜂ℎ
2 = Ωobsℎ

2, the cross section is much more suppressed. This regime therefore

evades all direct detection constraints, even at future facilities. Complementary probes are therefore of

extreme importance.

5.4.5 Indirect Detection

To predict the indirect detection signals of our model, we resort to MadDM [242], where we can compute the

spectra resulting from the DM annihilating into an arbitrary number of exotic final states. The simulation

(in the precisemode; see the manual for details) proceeds in three steps: (1) the annihilation cross section

is computed at parton level with MadGraph; (2) the subsequent decay, showering and hadronization of the

final state particles is performed by Pythia; (3) the energy spectrum 𝑑𝑁 /𝑑𝐸 of a given stable particle

species is generated at the source. Examples of the prompt gamma ray spectra produced in different DM

annihilation channels are provided in figure 26. The presence of the exotic 𝜅 leads to a shift effect in the

resulting spectra to the left, due to the larger multiplicity of SM particles which are produced in the final

state.

The results in figure 26 can be subsequently used to obtain the gamma ray flux from DM annihilation
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Figure 26: Energy spectra of prompt gamma rays at the production point. The blue line corresponds to
𝜂𝜂 → ℎℎ +𝑊 +𝑊 − +𝑍𝑍 (no intermediate step). The other curves stand for the annihilation into 𝜅𝜅, in
different decay modes. (The gamma-ray spectrum from 𝜅 → 𝑒+𝑒− is very similar to that of 𝜅 → 𝜇+𝜇−;
we therefore do not show it.) These plots correspond to a BP with𝑚𝜂 = 2𝑚𝜅 along the line where the
DM thermal abundance equals the observed value; see figure 23. The left (right) panel refers to RegI, with
𝑚𝜂 ∼ 1.3 TeV (RegII, with 𝑓 = 2.5 TeV and𝑚𝜂 ∼ 180 GeV).

at different facilities:

Φ (ΔΩ, 𝐸min, 𝐸max) ∝
〈𝜎𝑣〉
𝑚2
𝜂

∫ 𝐸max

𝐸min

𝑑𝑁𝛾

𝑑𝐸𝛾
𝑑𝐸𝛾 ×

∫
ΔΩ

∫
Δ𝑙
𝜌2DM(®𝑟 (𝑙))𝑑𝑙𝑑Ω , (191)

where 〈𝜎𝑣〉 is the velocity averaged DM annihilation cross section and 𝑁𝛾 (𝐸𝛾 ) is the number (kinetic

energy) of prompt photons in the final state. The second term in this equation is the so-called “J-factor”,

a geometric function that depends on the integration of the DM density over the solid angle (ΔΩ) and the

line of sight (Δ𝑙 ).

To be finally able to constrain the model, MadDM includes the Fermi-LAT likelihoods for gamma rays

from dwarf spheroidal galaxies [246]. These satellite galaxies are the most reliable sources for indirect

detection due to their proximity, large DM density and the fact that they are nearly free from other gamma-

ray emission. In contrast, the GC, in spite of being the brightest DM source in the sky, has also bright

astrophysical backgrounds with large uncertainties which vary significantly with the DM density profile [247,

248]. For these reasons, we do not consider the bounds from the H.E.S.S. [249] experiment, for example,

which can be the strongest for𝑚𝜂 ≳ 1 TeV.
Instead, we focus on the combined analysis performed by Fermi-LAT involving 45 stellar systems,

among which 28 confirmed DM–dominated dwarfs (Pass 8 data), with a sensitivity window between

500 MeV < 𝐸𝛾 < 500 GeV [246]. No significant global excess was observed and therefore strong bounds

can be set on the gamma ray flux predicted from this model, which can be reinterpreted in terms of cross

section constraints, for a given DM mass. The expected upper limits at the 95 % CL are plotted in figure 27,

for the different regimes. We set 𝑚𝜅 = 𝑚𝜂 and 𝑚𝜅 = 20 GeV outside the orange region for RegI and

RegII, respectively. For comparison, we also plot the bounds on the DM annihilation cross section into the
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Figure 27: The new Fermi-LAT upper bounds in the plane (𝑚𝜂, 〈𝜎𝑣〉), for different decay channels of the
exotic particle. The solid blue line stands for 𝜂𝜂 → ℎℎ +𝑊 +𝑊 − +𝑍𝑍 , giving the dominant contribution
to the DM→ SM annihilation in the limit of large masses. In the orange area,𝑚𝜅 is a function of𝑚𝜂 to fit

Ωobsℎ
2. The results for RegI and RegII (𝑓 = 2.5 TeV) are shown in the left and right panels, respectively.

SM bosons ,with no intermediate exotic step. To the best of our knowledge, the results of this dedicated

simulation are new in the literature; they can be furthermore used to constrain other DM models with new

𝑑.𝑜.𝑓 . below the DM scale.

From figure 27, it is clear that the exotic decays into the light leptons are the most weakly constrained.

On the other hand, final states with quarks produce hadrons, namely neutral pions that decay ∼ 100% [9]

into low-energy photons, making the gamma spectrum much larger. Moreover, after running identical

simulations for 𝜂𝜂 → 𝜓𝜓 , we found that the light lepton channels are also the most affected by the

inclusion of the intermediate step in the annihilation chain 𝜂𝜂 → 𝜅𝜅 → 𝜓𝜓𝜓𝜓 , particularly muons,

whose photon spectrum originates mainly from final state radiation and becomes very flat; see figure 26.

Generically, the impact of the exotic step in the indirect detection bounds can lead to two opposite effects:

on one side, the shift of the spectrum peak to the left leads to a larger number of photons in the lowest

energy bins, where the noise levels are typically larger, therefore weakening the bounds; on the other

side, for large DM masses, the intermediate step might rather strengthen the constraints by moving the

spectrum that is above the 500 GeV threshold back to the Fermi window.

Let us also remark that if a thermal 𝜂 explains the totality of the DM abundance, its annihilation cross

section should be of the order 〈𝜎𝑣〉 ∼ 3 × 10−26cm3 s−1 (just using the parameters in equation 399).

This cross section is unconstrained by the Fermi data in both regimes. Next-generation Cherenkov tele-

scopes, with an improved capability to discriminate the GC radiation components, such as CTA [250],

might strengthen the Fermi bound by one-to-two orders of magnitude [248]. In this case, the all DM sce-

nario could be excluded if 𝜂 annihilates entirely into the SM or into 𝜅𝜅, with 𝜅 → 𝑞𝑞. The leptophilic

scenario would still be, on the other hand, entirely unconstrained. Note that there is freedom in the CHM

to make 𝜅 leptophilic, as 𝑐𝜅 ∝ 𝜃 (this is not the case for the DM coupling to the SM fermions; see
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Figure 28: Combined constraints from the different DM searches. The green region is excluded by the
observed relic density. The red and yellow regions are excluded by direct and indirect detection searches,
respectively; while the red light region could be potentially tested at the future LZ experiment. In the slashed
region, 𝑓 is ruled out by EWPD. The upper left (right) panel corresponds to the thermal (non-thermal)
scenario in RegI. The same holds for the bottom left and right panels in RegII, for 𝑓 = 1 TeV.

equation 178). In particular, if all quarks are embedded in 𝑆𝑂 (7) representations that do not break the
shift-symmetry of 𝜅, we are led to 𝜃𝑞 = 0 ≠ 𝜃 ℓ .

Assuming instead 𝜃 = 1 for all the fermions14 (universal scenario), we gathered in figure 28 all

the DM constraints obtained for each regime. The green region is excluded by the relic density; while

the red and yellow regions are excluded by the current direct and indirect searches, respectively. The

future LZ experiment could additionally probe the light red region. The left and right panels correspond,

respectively, to the case of thermal and non-thermal DM. In the thermal scenario, if 𝜂 is under-abundant,

we take into account the possibility that the missing fraction of the relic density might arise from other

species (such as primordial black holes) and therefore rescale all fluxes for direct and indirect detection

by 𝑟 = (Ω𝜂ℎ2)/(Ωobsℎ
2) and 𝑟2, respectively. In the non-thermal scenario, no rescaling is applied;

see Ref. [251] for an explicit realization. As can be seen, some regimes could be entirely probed at future

direct detection facilities, or even by the new bounds we derived for indirect detection. In contrast, RegII
14Note that, for the heaviest fermions which give the leading contribution to the scalar potential, we have traded this

parameter for the scalar masses, that is 𝜃 ≈ 1 −𝑚2
𝜅/2𝑚2

𝜂 . In the present discussion, we keep only the LO term for purposes
of illustration.
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with thermal DM escapes all constraints. Together with the leptophilic scenario, this strongly motivates

other searches, such as those at colliders.

5.4.6 Collider signals

We focus on LHC probes of the pNGB particles produced in the decay of heavy VLQs, which are the

smoking gun prediction of compositeness. (Moreover, other production mechanisms for these scalars in

the SM are suppressed, as they are singlets of the gauge group.)

We focus on scenarios with light singlet top partners [119, 252]. In the 27 ⊕ 1 model, such partners
can transform in the 1, 6 or 20 representations of the 𝑆𝑂 (6) group. We denote the full singlet by 𝑇 , and
the other 𝑆𝑂 (5) and 𝑆𝑂 (4) singlets in the 6 = 5 ⊕ 1 = 4 ⊕ 1 ⊕ 1 by 𝑇 ′ and 𝑇 ′′, respectively. (We
ignore the largest representation of theH -group in the following discussion.) The relevant phenomenology

of these top partners is determined from the linear couplings to the SM:

L1 = · · · + 𝑓 𝑈 𝑖7𝑈
𝑗
7

(
𝑄27
𝐿

)
𝑖 𝑗
𝑇 1𝑅 + h.c. =

[
... − ℎ𝑡𝐿 − i𝜃

𝑣

𝑓
𝜅𝑡𝐿

]
𝑇𝑅 + h.c. ; (192)

L6 = · · · + 𝑓 𝑈 𝑖7𝑈
𝑗
𝑘

(
𝑄27
𝐿

)
𝑖 𝑗

(
𝑇 6𝑅

)𝑘
+ h.c.

=
3
4
𝑣

𝑓
𝜂𝑡𝐿𝑇

′
𝑅 +

[
3
4
𝑣

𝑓
𝜅𝑡𝐿 − i𝜃

1
2
ℎ𝑡𝐿

]
𝑇 ′′𝑅 + h.c. (193)

The same equations hold for bottom partners.

We explore the pair-production of these VLQs in𝑝𝑝 collisions, which is dominated bymodel-independent

QCD processes. The corresponding cross section drops sharply with the mass 𝑀 and therefore VLQ

searches in this context are more adequate for future colliders [176]. In particular, the QCD production of

𝑇 ′ typically yields a 𝑡𝑡 +𝐸miss
𝑇

final state. This signal is equivalent to that of pair-produced stops decaying

into stable neutralinos in SUSY; the prospects to test this process at a future 100 TeV collider have been

studied in Ref. [253]. By rescaling the results with the VLQ production cross section, to account for the dif-

ferent spin of particles in the initial state, the authors of Ref. [176] have set bounds on the plane (𝑀,𝑚𝜂).
For a collected luminosity of 1 ab−1 and assuming B

(
𝑇 ′→ 𝜂𝑡

)
= 1, the authors found that masses

𝑀 ≲ 9 TeV and𝑚𝜂 ≲ 3 TeV could be excluded, if no deviation from the SM predictions is observed.

Nonetheless, the non-minimal structure of the model can be only established if, together with the

process above, decays of the VLQs into 𝜅 are observed. No specific searches for this channel have been

proposed for 100 TeV colliders and only limits in a narrow mass range have been obtained using LHC re-

sults [165, 254–263]. Thus, we provide dedicated searches for this case. We focus on 𝑝𝑝 → 𝐵𝐵 → 𝜅𝜅𝑏𝑏,

assuming a hierarchical parameter space where 𝑀 ∈ [1000, 9000] GeV and𝑚𝜅 ∈ [50, 400] GeV.
There are, in fact, additional reasons to concentrate mostly on this channel: (1) if �̃� is the lightest

resonance, the DM channel is absent, while decays into 𝜅 will be in general present, providing the only
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Figure 29: Normalized distributions of𝑚rec
𝜅1 (upper left),𝑚rec

𝜅2 (upper right),𝑚rec
𝐵1

(bottom left) and𝑚rec
𝐵2

(bottom right) in the signal for 𝑀 = 5 TeV and 𝑚𝜅 = 300 GeV (solid red) and in the SM background
(dashed blue), in the analysis proposed for 𝑝𝑝 → 𝐵𝐵 → 𝜅𝜅𝑏𝑏, 𝜅𝜅 → 𝛾𝛾𝑏𝑏. Subsequent cuts are
imposed to make the different variables lie within the light red regions.

insight into the composite structure of the model; (2) if the sextuplet is the lightest one, 𝐵′′ will decay
mainly into 𝜅𝑏15 under our previous assumption that 𝜃 ≤ 1; (3) after the decay of 𝜅, this channel gives
rise to a very clean signature, allowing to reconstruct the masses of 𝜅 and 𝐵 relatively easily. Another

advantage of this channel is that it can be used to constrain other CHMs not necessarily having DM, such

as the 𝑆𝑂 (6)/𝑆𝑂 (5) model.
Regarding the decays of the unstable singlet, we study three possibilities:

1. 𝜅𝜅 → 𝑏𝑏𝛾𝛾 : this combines the large branching ratio of the singlet decay into third generation

quarks (in the universal scenario) with the good mass resolution and low backgrounds of the photon

channel. Such final state has been considered in many other studies; see, for example, Refs. [264, 265].

2. 𝜅𝜅 → 𝑏𝑏𝑏𝑏: in this case, both singlets decay via the dominant mode, for the mass range consid-

ered in this study.

3. 𝜅𝜅 → 𝜇+𝜇−𝜇+𝜇−: finally, this channel is intended to complement the very weak bounds from
15This contrasts with the results from Ref. [119], which were obtained under the assumption that the derivative interactions

𝑐𝑅𝑇𝑅𝑑𝜇𝛾
𝜇𝑡𝑅 dominate over those in equation 193. Our statement in (2) is therefore applicable only if 𝑐𝑅 � 1.
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Figure 30: Normalized distributions of𝑚rec
𝜅1 (upper left),𝑚rec

𝜅2 (upper right),𝑚rec
𝐵1

(bottom left) and𝑚rec
𝐵2

(bottom right) in the signal for 𝑀 = 5 TeV and 𝑚𝜅 = 300 GeV (solid red) and in the SM background
(dashed blue), in the analysis proposed for 𝑝𝑝 → 𝐵𝐵 → 𝜅𝜅𝑏𝑏, 𝜅𝜅 → 𝑏𝑏𝑏𝑏.

DM detection experiments we have obtained in the leptophilic scenario.

Below, we describe our proposed searches for each of these processes. Signal and background events

are generated at
√
𝑠 = 100 TeV using MadGraph. The signal sample is produced with no parton level

cuts. Both samples are subsequently showered and hadronized according to the procedure described in

section 3.3. For the data analyses, we use dedicated routines based on ROOT and Fasjet [266] with no

detector simulation.

In all cases, a lepton is considered isolated at the reconstruction level if the hadronic activity deposited

in a cone of radius Δ𝑅 = 0.2 is smaller than 10% of its 𝑝𝑇 . Likewise for the photons. Furthermore,

leptons (photons) are required to have 𝑝𝑇 > 20 GeV and |𝜂 | < 2.47 (|𝜂 | < 2.5). We define jets using
the anti-k𝑡 algorithm with 𝑅 = 0.4. A jet is considered to be 𝑏 -tagged if the angular separation between

itself and a 𝐵-meson is Δ𝑅 < 0.2, the tagging efficiency being fixed to 0.7.
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Figure 31: Normalized distributions of𝑚rec
𝜅1 (upper left),𝑚rec

𝜅2 (upper right),𝑚rec
𝐵1

(bottom left) and𝑚rec
𝐵2

(bottom right) in the signal for a top partner with 𝑀 = 5 TeV and𝑚𝜅 = 300 GeV (solid green) and in the
SM background (dashed blue), in the analysis proposed for 𝑝𝑝 → 𝐵𝐵 → 𝜅𝜅𝑏𝑏, 𝜅𝜅 → 𝑏𝑏𝑏𝑏.

5.4.6.1 𝑏𝑏𝛾𝛾 final states

For the background, we consider the irreducible 𝑝𝑝 → 𝑏𝑏𝑏𝑏𝛾𝛾 , with 𝑝
𝑏1
𝑇

> 500 GeV and 𝑝𝛾
𝑇
> 20 GeV,

where𝑏1 stands for the hardest𝑏 -quark. The cross section in this region of the phase space is∼ 0.006 pb.
We require exactly two isolated photons and at least four 𝑏 -tagged jets with 𝑝𝑇 > 20 GeV. We also veto all
events with a non-vanishing number of isolated leptons.

The invariant mass of the two photon system is denoted by𝑚rec
𝜅1 . The momentum of the hadronically

decaying scalar is considered to be the sum of the momenta of the two 𝑏 -tagged jets with invariant mass

closest to 𝑚rec
𝜅1 ; its invariant mass being denoted 𝑚rec

𝜅2 . There is a two-fold ambiguity in assigning the

remaining two hardest 𝑏 -jets to either 𝜅1 or 𝜅2 to reconstruct the two vector-like 𝐵-quarks. In order to

solve it, we choose the combination that minimizes |𝑚rec
𝐵1
−𝑚rec

𝐵2
|, with𝑚rec

𝐵𝑖
the invariant mass of the

corresponding three-particle system.

In figure 29, we plot the normalized distributions of all these reconstructed masses, in both the signal

and the background, for a BP defined by𝑀 = 5 TeV and𝑚𝜅 = 300 GeV. The discriminating power of the
observables is apparent. Thus, we select events fulfilling |𝑚rec

𝜅1 −𝑚𝜅 | < 10 GeV, |𝑚rec
𝜅2 −𝑚𝜅 | < 100 GeV,

|𝑚rec
𝐵1
−𝑚𝐵 | < 500 GeV and |𝑚rec

𝐵2
−𝑚𝐵 | < 500 GeV. After such requirements, the analysis becomes
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Figure 32: Normalized distributions of𝑚rec
𝜅1 (upper left),𝑚rec

𝜅2 (upper right),𝑚rec
𝐵1

(bottom left) and𝑚rec
𝐵2

(bottom right) in the signal for 𝑀 = 5 TeV and 𝑚𝜅 = 300 GeV (solid red) and in the SM background
(dashed blue), in the analysis proposed for 𝑝𝑝 → 𝐵𝐵 → 𝜅𝜅𝑏𝑏, 𝜅𝜅 → 𝜇+𝜇−𝜇+𝜇−.

essentially background-free.

We make use of the CL𝑠 method in ROOT to calculate exclusion limits; see section 3.4. (We use a

linear interpolation of the CL𝑠 results to cover the mass points that were not simulated.) The signal region

which could be probed at the 95% CL is shown in the left panel of figure 33 for an integrated luminosity

𝐿 = 100 fb−1. The colored lines assume different values of B(𝜅 → 𝑏𝑏): 1, in orange; 0.8, in green; 0.4,
in blue; and 0.1, in red. We have fixed16 B(𝜅 → 𝛾𝛾) = 10−3.

5.4.6.2 𝑏𝑏𝑏𝑏 final states

For the background, we consider 𝑝𝑝 → 𝑏𝑏𝑏𝑏, with 𝑝
𝑏1
𝑇

> 500 GeV; the extra two 𝑏 -jets required to

match the signal are to be found among the products of the Pythia shower. We checked explicitly that

both 𝑝𝑝 → 𝑏𝑏𝑏𝑏 and 𝑝𝑝 → 𝑏𝑏𝑏𝑏𝑏𝑏 have very similar distributions, validating the use of the former

as the background sample17. This sample is normalized to the cross section of the actual background as
16We can naively estimate the decay widths of 𝜅 into the relevant final states, to obtain the branching ratio into di-photons:

Γ(𝜅 → 𝛾𝛾) ∼ 𝛼2em/(4𝜋)2 (𝑣/𝑓 )2𝑚2
𝜅/𝑣 while Γ(𝜅 → 𝜓𝜓 ) ∼ 𝑦2

𝜓
(𝑣/𝑓 )2𝑚𝜅 . Hence, B(𝜅 → 𝛾𝛾) ∼ 𝛼2em/(𝑦𝜓4𝜋)2𝑚𝜅/𝑣 .

17We will further assume systematic uncertainties in the background in the computation of the exclusion limits, to infer the
impact of this assumption.
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Figure 33: Exclusion lines at 95% CL in the plane (𝑀,𝑚𝜅 ) for the first two analyses: 𝑝𝑝 → 𝐵𝐵 → 𝜅𝜅𝑏𝑏,
with𝜅𝜅 → 𝑏𝑏𝛾𝛾 (left) and𝜅𝜅 → 𝑏𝑏𝑏𝑏 (right). We assume that the bottom partner decays 100% into this
final state. The results are presented for a future 100 TeV collider with a collected luminosity of 100 fb−1.
The colored area enclosed by the orange solid, green dashed, blue dashed and red dashed lines could
be excluded assuming that B(𝜅 → 𝑏𝑏) = 1, 0.8, 0.4 and 0.1, respectively. In the left panel, we have
set B(𝜅 → 𝛾𝛾) = 10−3. In the right one, the dashed and solid (dotted) lines are obtained assuming a
systematic uncertainty of 20% (50%) in the computation of the limits.

computed with MadGraph, roughly ∼ 13 pb in this region of the phase space.

We require no isolated leptons and at least six 𝑏 -tagged jets. The 𝑏 -tagged jets reconstructing the two

𝜅’s are those minimizing |𝑚rec
𝜅1 −𝑚

rec
𝜅2 | among the four with smallest 𝑝𝑇 , where 𝑚

rec
𝜅 stands now for

the invariant mass of two 𝑏 -jets. The ambiguity in assigning the two hardest jets to any of the two heavy

quarks is solved in the same way as before.

The normalized distributions of 𝑚rec
𝜅1 , 𝑚

rec
𝜅2 , 𝑚

rec
𝐵1

and 𝑚rec
𝐵2

are shown in figure 30, for the same

BP used in the previous analysis. All events are finally required to satisfy |𝑚rec
𝜅1 − 𝑚𝜅 | < 100 GeV,

|𝑚rec
𝜅2 −𝑚𝜅 | < 100 GeV, |𝑚rec

𝐵1
−𝑚𝐵 | < 500 GeV and |𝑚rec

𝐵2
−𝑚𝐵 | < 500 GeV. Note that this search

is also sensitive to the channel 𝑝𝑝 → 𝑇𝑇 → 𝜅𝜅𝑡𝑡 ; see figure 31.

Performing a statistical analysis equivalent to the one used in the last subsection, we obtain the plot in

the right panel of figure 33. The dashed (dotted) lines are obtained assuming a systematic uncertainty of

20% (50%) in the number of background events. Given that the analysis becomes nearly background-free

for𝑀 ≳ 3 TeV, such levels of uncertainty have a minor impact on the results.

5.4.6.3 𝜇+𝜇−𝜇+𝜇− final states

For the background, we consider 𝑝𝑝 → 𝑏𝑏𝜇+𝜇−𝜇+𝜇−, with 𝑝𝑏1
𝑇

> 500 GeV. The corresponding cross

section is ∼ 10−5 pb. We require no isolated electrons, two pairs of muons with vanishing electric charge
and exactly two 𝑏 -tagged jets.

The muon pairs reconstructing the two 𝜅’s are those minimizing |𝑚rec
𝜅1 −𝑚

rec
𝜅2 |, where𝑚

rec
𝜅 stands

for the invariant mass of two oppositely charged muons. To decide which 𝑏 -jet is assigned to each 𝜅, we
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choose again the combination that gives the minimum difference between the reconstructed heavy quark

masses.

The normalized mass distributions in both the signal and the background are plotted in figure 32

for the BP considered in the previous cases. We require all events to have |𝑚rec
𝜅1 − 𝑚𝜅 | < 20 GeV,

|𝑚rec
𝜅2 −𝑚𝜅 | < 20 GeV, |𝑚rec

𝐵1
−𝑚𝐵 | < 500 GeV and |𝑚rec

𝐵2
−𝑚𝐵 | < 500 GeV. After this last cut, the

analysis becomes essentially background-free.

For the VLQ masses considered in this study, the signal efficiency is nearly constant (≈ 0.1–0.2);
therefore, the exclusion lines in the (𝑀,𝑚𝜅 ) plane are close to vertical. We find that all masses up to

𝑀 ∼ 5 (8) TeV could be excluded at the 95% CL at a future 100 TeV collider with 𝐿 = 1 ab−1, assuming
that B(𝜅 → 𝜇+𝜇−) = 0.1 (0.4).

5.4.7 Outlook

We have studied the DM phenomenology in a NMCHM where extra 𝑑.𝑜.𝑓 . are present below the DM

scale. Not only this hierarchy is theoretically plausible, as we have shown in explicit realizations of the

𝑆𝑂 (7)/𝑆𝑂 (6) model, but also experimentally driven as strong bounds from DM searches can be eluded

in this case.

We showed that in large regions of the phase space, namely for O(100) GeV masses, the DM can

annihilate sizably into the lighter pNGB and therefore freeze out in the absence of couplings to the SM.

This is due to the destructive interference between the portal coupling and derivative interactions char-

acteristic of the Goldstone nature, which suppresses (enhances) effectively the annihilation cross section

(relic abundance).

In the scenario where the LH fermions couple to VLQs in the symmetric representation of 𝑆𝑂 (7), we
found that the relic density constraint excludes compositeness scales 𝑓 ≳ 3.3 TeV. This contrasts with

other models where the bound on 𝑓 originates solely from fine-tuning arguments. Furthermore, in this

scenario, the portal coupling to the Higgs boson is predicted to be O(𝜆𝐻 ). Consequently, all DM masses

up to 1.5 TeV could be potentially probed at the future LZ experiment.

On the other hand, if the SM fermions couple to composite operators in smaller representations of

the global group, the portal coupling to the Higgs boson can be instead marginal and the dominant scalar

contribution to the DM-nucleon cross section becomes (one-loop) suppressed, with no chance of being

probed even at future direct detection facilities.

To further test the model, we have recast indirect detection constraints from the Fermi-LAT experiment

taking into account the presence of the exotic step, 𝜂𝜂 → 𝜅𝜅, in the annihilation. To obtain such con-

straints, we performed dedicated simulations to include the new showering effects due to the decay of 𝜅

into the SM, assuming different decay modes. The new Fermi-LAT limits obtained in this procedure are

presented in figure 27, for particular choices of the scalar masses. The leptophilic regime is very weakly
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constrained by this experiment, while searches at other indirect detection facilities are still dominated by

large uncertainties. Even if the Fermi bounds could be strengthen by an order of magnitude in the future,

a thermal relic that decays mainly into a muonphilic 𝜅 would still be able to explain all the DM in the

Universe.

Finally, we developed dedicated collider analyses for a future 100 TeV 𝑝𝑝 collider to probe these

regimes. We focused on pair-production of VLQs that decay into their SM partner and the extra singlet,

therefore providing an insight both into the compositeness and the non-minimal nature of the model. We

found that in the 𝑏𝑏𝛾𝛾 and 𝑏𝑏𝑏𝑏 channels, VLQ masses as large as ∼ 3 and 6 TeV could be probed,

respectively, with a collected luminosity of 100 fb−1. In the four muons channel, all masses up to ∼ 9 TeV
could be probed with ten times larger luminosities. These searches could therefore have an important

complementary role and probe regions of the parameter space that escape entirely the constraints from

DM experiments.

Altogether, in spite of the growing efforts to build alternative models of DM, this study shows that

by dropping the requirement of minimality (which, in the context of CHMs, is equivalent to demand that

the model is anomaly-free), the familiar WIMP can still be a compelling and natural DM candidate in the

composite framework. (Similar conclusions have been drawn in model-independent studies playing with

different annihilation fractions of the DM into the SM [267].)
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6
Non-minimal EFT analysis

In the last chapter, we have considered different quantum numbers for the composite resonances in the

UV, namely VLQs transforming in the fundamental, adjoint and symmetric representations of the global

group of the strong sector, and integrated them out to obtain the low-energy interactions. Formally, we

were therefore matching the UV onto the SMEFT Lagrangian extended with the lightest exotic 𝑑.𝑜.𝑓 . and

studying only the reduced set of operators which arose in this procedure.

In this chapter, we consider a complementary approach in which we are ignorant about the UV and

consider instead all the interactions which can arise at low-energy, up to a given order in the new physics

scale and in the number of exotic 𝑑.𝑜.𝑓 . We focus on the minimal setup, extending the SMEFT with only

one exotic particle at a time.

To find out the most promising candidates to include, we must figure out which resonances of the

composite sector are expected to be the lightest; and find a sufficiently large separation of scales such

that heavier resonances are decoupled from the low-energy phenomenology.

As argued in previous chapters, a very plausible mass hierarchy between composite particles is

𝑚Π �𝑚Ψ �𝑚𝑉 ∼𝑚∗ , (194)

given both theoretical and experimental considerations. Indeed, the pNGBs are expected to be much lighter

than𝑚∗, due to their approximate shift-symmetry. Such scalars must lie at a scale not far from the heavy

fermion masses, since the latter are directly responsible for the generation of 𝑚Π. On the other side,

some composite vectors (in contrast with what is found in QCD) have been pushed to scales ∼ 3 − 4 TeV,
significantly larger than those allowed for VLQs, which might have masses ∼ 1 TeV; revisit the discussion in
section 4.6.1. Furthermore, the heavy vectors do not influence the Higgs mass directly, so this hierarchy is

expected even theoretically. Regarding the fermionic sector itself, we remark that VLLs are experimentally
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Figure 34: Plausible mass hierarchy between the composite resonances; see the text for details. The arrow
points in the direction of increasing mass. Each square demarks the composite 𝑑.𝑜.𝑓 . that will make up
the EFTs of interest.

allowed to be significantly lighter than the VLQs, as masses ∼ 200 GeV are compatible with the data. At
the theoretical level, the type of vector-like fermion that is considered to be the most low-lying depends on

the particle physics problem we aim to solve.

Given these considerations, we will assume the mass scheme plotted in figure 34 and study the

following two EFTs:

1. The EFT of the SM+VLL, the latter being denoted by 𝐸 (see section 6.1): this is a suitable

description of the MCHM at energies 𝜇 ∼ 𝑣 , as well as NMCHMs where the extra pNGBs are decoupled
from the EW scale. Even in the first case, we go beyond minimality by considering non-renormalizable

interactions which can trigger the single production 𝑝𝑝 → 𝐸ℓ . To the best of our knowledge, this is the

first time such EFT is studied. Furthermore, the contribution of renormalizable interactions to this process

is very suppressed and constrained by other data, which strongly motivates the inclusion of operators

beyond the LO. The corresponding cross section grows with the energy and can therefore dominate the

large
√
𝑠 region of the phase space.

2. The EFT of the SM+ALP, the latter being denoted by 𝑆 (see section 6.2): singlets are one

of the most common types of NGBs arising in NMCHMs, CP-odd ones being specially promising from a

phenomenological point of view (as supported by basically all studies presented in the last chapter). In turn,

the ALP EFT has been thoroughly studied in the literature [184, 230]. However, the corresponding bases

of operators usually assume the case of a shift-symmetric particle, so e.g. its renormalizable coupling to

the Higgs boson is often dismissed. Moreover, we will argue that the most common shift-symmetric basis

involves redundancies and might not even be the most accurate to describe the pure axion field. On the

other hand, we construct a minimal basis for a generic pseudoscalar singlet and compute the RGEs of all

Wilson coefficients in the EFT, both before and after EWSB. The latter is discussed for the first time in the

context of this work.
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6.1 The SM extended with a vector-like lepton

We extend the SM with a singlet VLL 𝐸 with𝑌 = −1. The relevant Lagrangian for our study, up to dimension
six, reads1:

L𝐸 = 𝐸
(
𝑖 /𝐷 −𝑀𝐸

)
𝐸 −

(
𝑦𝑙𝐿𝐻𝐸 + h.c.

)
(195)

+
[
𝑓𝑢𝑒

(
𝑢𝑅𝛾

𝜇𝑢𝑅
) (
𝑒𝑅𝛾𝜇𝐸

)
+ 𝑓𝑑𝑒

(
𝑑𝑅𝛾

𝜇𝑑𝑅

) (
𝑒𝑅𝛾𝜇𝐸

)
+ 𝑓𝑞𝑒

(
𝑞𝐿𝛾

𝜇𝑞𝐿
) (
𝑒𝑅𝛾𝜇𝐸

)
+ 𝑓𝑞𝑑𝑙

(
𝑞𝐿𝑑𝑅

) (
𝐸𝑙𝐿

)
+ 𝑓𝑞𝑢𝑙

(
𝑞𝐿𝑢𝑅

)
𝜖
(
𝑙𝐿
𝑇
𝐸
)
+ 𝑓𝑙𝑢𝑞

(
𝑙𝐿𝑢𝑅

)
𝜖
(
𝑞𝐿
𝑇 𝐸

)
+ h.c.

]
,

where 𝑓𝑖 = 𝑐𝑖/Λ2 is dimensionfull. After EWSB, 𝐸 and ℓ can therefore mix. (We assume that the SM lepton

Yukawa matrix is already diagonalized.) The mass terms become diagonal after the following rotations:

©«
𝑒𝑅,𝐿

𝐸𝑅,𝐿

ª®¬ =
©«
𝑐𝑅,𝐿 𝑠𝑅,𝐿

−𝑠𝑅,𝐿 𝑐𝑅,𝐿

ª®¬ ©«
𝑒𝑅,𝐿

𝐸𝑅,𝐿

ª®¬ ≡ 𝑉𝑅,𝐿𝑒′ , (196)

where 𝑠𝑅,𝐿 and 𝑐𝑅,𝐿 are, respectively, the sine and cosine of the rotation angles which are

𝑠𝐿 →
𝑦𝑣
√
2𝑚𝐸

and 𝑠𝑅 → 0 , (197)

in the limit of 𝑦 → 0. In this limit, the electron is massless whereas the mass of the VLL is

𝑚𝐸 =

√
𝑀2
𝐸
+ 𝑦

2𝑣2

2
. (198)

The renormalizable interactions in L𝐸 modify the lepton couplings to gauge bosons. To see how, let

us denote the extended vector of leptons, in equation 196, by 𝑒′𝑎 , with 𝑎 = 𝑒, 𝐸 (for purposes of the

discussion, we ignore the two other lepton flavours in the SM). Since the components in 𝑒′𝐿 have different

isospin charges, lepton FCNCs can arise in the LH sector of the model. (In contrast, the couplings to the

photon remain diagonal.) Explicitly,

Lkin ⊃
𝑔1
𝑐𝜔
𝑍𝜇𝑒′𝐿𝛾

𝜇
[
𝑉 †
𝐿
G𝐿𝑉𝐿

]
𝑒′𝐿 , where G𝐿 =

©«
− 12 + 𝑠

2
𝜔 0

0 𝑠2𝜔

ª®¬ . (199)

This leads to:

Lkin ⊃
𝑔1
2𝑐𝜔
(−1 + 2𝑠2𝜔︸    ︷︷    ︸

SM

+𝑠2𝐿)𝑍𝜇𝑒𝐿𝛾
𝜇𝑒𝐿 −

𝑔1
2𝑐𝜔

𝑠𝐿𝑐𝐿𝑍𝜇

[
𝑒𝐿𝛾

𝜇𝐸𝐿 + h.c.
]
+ . . . , (200)

where the dots include 𝑍 -boson interactions triggering pair production of the VLL. We will ignore the latter

production mechanism in this work, for two main reasons: (1) it is phase space suppressed; (2) it is not
1Note that derivative terms such as 𝐸i /𝐷𝑒𝑅 can be removed upon suitable field redefinitions.
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significantly enhanced by the effective interactions. On the other hand, single production of the VLL is

negligible before EWSB and severely constrained in the broken phase, allowing the EFT interactions to play

the leading role.

Indeed, the beyond the SM coupling in the first term of the equation above is strongly constrained by

EWPD, requiring that [268]

|𝑠𝐿 | < 0.021⇒ |𝑦 | < 0.06 , (201)

at the 95% CL, for𝑚𝐸 = 0.5 TeV; slightly larger values are found if 𝐸 couples instead to the muon. We

therefore assume 𝑦 � 1 in the following.
To leading order in 𝜃𝜔 and neglecting𝑚𝑍 �

√
𝑠, the (differential) single production cross sections

read:

𝑑𝜎

𝑑𝜃
(𝑢𝑢 → 𝐸ℓ) = sin𝜃

32𝜋𝑠

(
1 −

𝑚2
𝐸
𝑠

) {
−
𝜋2𝛼2em
3𝑠4𝜔𝑠2

𝑠2𝐿 (𝑠 + 𝑡)
(
𝑚2
𝐸 − 𝑠 − 𝑡

)
(202)

+ 1
3Λ4

[
𝑠
(
𝑠 −𝑚2

𝐸

) ©«
𝑐2
𝑞𝑢𝑙

4
+ 𝑐2𝑢𝑒

ª®¬ + 𝑡
(
𝑡 −𝑚2

𝐸

) ©«
𝑐2
𝑙𝑢𝑞

4
+ 𝑐2𝑢𝑒 + 𝑐2𝑞𝑒

ª®¬ + 𝑠𝑡
(
2𝑐2𝑢𝑒 −

1
2
𝑐𝑞𝑢𝑙𝑐𝑙𝑢𝑞

) ]}
,

for 𝑢𝑢 initiated processes; and

𝑑𝜎

𝑑𝜃
(𝑑𝑑 → 𝐸ℓ) = sin𝜃

32𝜋𝑠

(
1 −

𝑚2
𝐸
𝑠

) {
−
𝜋2𝛼2em
3𝑠4𝜔𝑠2

𝑠2𝐿 (𝑠 + 𝑡)
(
𝑚2
𝐸 − 𝑠 − 𝑡

)
(203)

+ 1
3Λ4

[
𝑠
(
𝑠 −𝑚2

𝐸

) ©«
𝑐2
𝑞𝑑𝑙

4
+ 𝑐2𝑑𝑒

ª®¬ + 𝑡
(
𝑡 −𝑚2

𝐸

) (
𝑐2𝑞𝑒 + 𝑐2𝑑𝑒

)
+ 2𝑠𝑡𝑐2𝑑𝑒

]}
,

for those triggered by 𝑑𝑑 . In these expressions, 𝜃 is the angle between initial 𝑝𝑖 =
√
𝑠/2 and final

𝑝 𝑓 =
(
𝑠 −𝑚2

𝐸

)
/
(
2
√
𝑠
)
momenta, in the center-of-mass frame; accordingly, the Mandelstam variable

𝑡 =𝑚2
𝐸 − 2𝑝𝑖

(√
𝑚2
𝐸
+ 𝑝2

𝑓
− 𝑝 𝑓 cos𝜃

)
.

To compare the purely SM and EFT contributions, we plot in figure 35 the total single 𝐸 production

cross section, for fixed values of 𝑓𝑞𝑒 and the maximum allowed value for𝑦. The SM contribution is obtained

by making Λ → ∞ in the equations above. It is apparent that the effective interactions dominate even

for Wilson coefficients 𝑓 ∼ 10−2 TeV−2. The corresponding contribution grows with 𝜎 ∼ 𝑠/Λ4 while the

SM one is dumped by the 𝑍 boson propagator, 𝜎 ∼ 1/𝑠. This, together with the 𝑦 suppression, makes

the EFT interactions dominate the dynamics of production at large
√
𝑠.

Having showed their leading role in the production, let us see if the effective interactions can also

dominate the subsequent decay of the VLL. The Yukawa coupling 𝑦 triggers not only 𝐸 → 𝑍/ℎℓ , but also
𝐸 →𝑊𝜈 decays, since the interaction

𝑔2√
2
𝑊 +𝜇 𝜈′𝐿𝛾

𝜇 ©«
1 0

0 0

ª®¬𝑉𝐿𝑒′𝐿 + h.c. (204)
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Figure 35: Single 𝐸 production cross section as a function of
√
𝑠, for𝑚𝐸 = 500 GeV and 𝑦 = 0.1. In the

black lines, 𝑐𝑞𝑒 takes different values while Λ = 1 TeV. All other Wilson coefficients are set to zero. The
red line shows the contribution from the SM mediated process.

is not flavour-diagonal in the mass basis. The corresponding decay widths read:

Γ(𝐸 → 𝑍ℓ) = 𝑦2 𝛼

16𝑠2𝜔𝑐2𝜔

(
𝑣

𝑚𝑍

)2
𝑚𝐸 , (205)

in the same limit where 𝑦 → 0 and𝑚𝑍 � 𝑚𝐸 . This equation holds for all EW bosons, by virtue of the

Equivalence Theorem.

Regarding the three-body decay of the VLL, we focus on 𝐸 → ℓ𝑞𝑞. The latter is triggered by the

effective operators which are already in our basis. This channel is expected to dominate over the leptonic

one, in either the flavour universal (where 𝐸 couples equally to all fermions) or the hierarchical scenario

(where 𝐸 couples to all fermions according to their masses). In the first case, because there are 𝑁𝐶 = 3
copies of each quark; in the second case, due to the smallness of the lepton Yukawa couplings which we

assume to be the only source of flavour-breaking.

The differential decay widths for 𝐸 → ℓ𝑢𝑢 and 𝐸 → ℓ𝑑𝑑 read, respectively,

𝑑Γ′

𝑑𝐸1𝑑𝐸2
=

3
128𝜋3𝑚𝐸

[
2𝐸1𝑚𝐸

(
𝑚2
𝐸 − 2𝐸1𝑚𝐸

) (
𝑓 2𝑙𝑢𝑞 + 4𝑓

2
𝑞𝑒

)
+ 8𝐸2𝑓 2𝑢𝑒𝑚𝐸

(
𝑚2
𝐸 − 2𝐸2𝑚𝐸

)
+ 2𝑓𝑙𝑢𝑞 𝑓𝑞𝑢𝑙

(
𝑚2
𝐸 − 2𝐸1𝑚𝐸

) (
𝑚2
𝐸 − 2𝐸3𝑚𝐸

)
+ 2𝐸3𝑓 2𝑞𝑢𝑙𝑚𝐸

(
𝑚2
𝐸 − 2𝐸3𝑚𝐸

) ]
; (206)

and

𝑑Γ′

𝑑𝐸1𝑑𝐸2
=

3
128𝜋3𝑚𝐸

[
8𝐸1𝑓

2
𝑞𝑒𝑚𝐸

(
𝑚2
𝐸 − 2𝐸1𝑚𝐸

)
+ 8𝐸2𝑓 2𝑑𝑒𝑚𝐸

(
𝑚2
𝐸 − 2𝐸2𝑚𝐸

)
+ 2𝐸3𝑓 2𝑞𝑑𝑙𝑚𝐸

(
𝑚2
𝐸 − 2𝐸3𝑚𝐸

) ]
, (207)
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where 𝐸1, 𝐸2 and 𝐸3 are the energies of 𝑢 (𝑑), 𝑢 (𝑑) and ℓ , respectively. Upon integration over the phase
space, we obtain:

Γ′ =
𝑚5
𝐸

2048𝜋3

[
𝑓 2𝑙𝑢𝑞 + 𝑓𝑙𝑢𝑞 𝑓𝑞𝑢𝑙 + 𝑓

2
𝑞𝑢𝑙 + 𝑓

2
𝑞𝑑𝑙 + 4

(
2𝑓 2𝑞𝑒 + 𝑓 2𝑢𝑒 + 𝑓 2𝑑𝑒

) ]
. (208)

By comparing equations 205 and 208, we finally find that

Γ′ > Γ for 𝑦 ≲ 0.2
(𝑚𝐸
Λ

)2
, (209)

considering O(1) couplings and including all types of quarks. For example, for𝑚𝐸 = (0.5, 0.3 , 0.25) Λ,
the hierarchy above requires that 𝑦 ≲ (0.05, 0.02, 0.008). These values are very close to the bound

from EWPD in equation 201, so it is very likely that 𝐸 decays mainly via the EFT operators indeed.

6.1.1 Recast of LHC searches

From the previous analysis, we expect that the single production of 𝐸 gives rise to a final state comprised

of two light leptons and several jets at colliders (focusing on hadronic decays of the top quark). The ex-

perimental analysis presented in Ref. [269] can therefore constrain this scenario, although it is specially

suitable to probe the VLL decays into light quarks.

Among the most relevant cuts, an electron (muon) is assumed to be isolated if the sum of the 𝑝𝑇 of all

tracks within a cone of radius Δ𝑅 = 0.3 around its direction is less than 3 (10)% of the electron (muon)

𝑝𝑇 . Electrons (muons) are furthermore required to have 𝑝𝑇 > 35 (25) GeV and to lie in a pseudorapidity
volume defined by |𝜂 | < 1.44 and 1.56 < |𝜂 | < 2.50 (|𝜂 | < 2.4). Furthermore, the leading lepton must
have 𝑝𝑇 > 230 GeV (electron) or 53 GeV (muon) to trigger the event. Jets are clustered using the anti-𝑘𝑇
algorithm with 𝑅 = 0.4 and required to have 𝑝𝑇 > 50 GeV. The two hardest same-flavour leptons are

selected, along with the two hardest jets. Finally, the invariant mass of the two leptons is required to be

𝑚ℓℓ > 500 GeV, to suppress the majority of the Drell-Yann background.

Subsequently, the invariant mass of the total system 𝑚ℓℓ 𝑗 𝑗 is used as the discriminating variable

between signal and background and split in several energy bins: [0.5, 1.5], [1.5, 2.5], [2.5, 3.5],
[3.5, 4.5] and [4.5, 10] TeV. In order to set limits on the Wilson coefficients, we will restrict the analysis
to the second one and consider ℓ = 𝜇. In this case, even Wilson coefficients as large as 𝑓 ∼ O(1) TeV−2

are allowed by perturbative unitarity constraints (see the appendix in the original paper [7]).

From equations 202 and 203, it is clear that the EFT operators contribute to only six different sig-

nal regions. Therefore, the full cross section, or equivalently the number of events in each bin, can be
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process 𝐼𝑢1 𝐼𝑢2 𝐼𝑢3 𝐼𝑑1 𝐼𝑑2 𝐼𝑑3

pr
od
.

𝑞𝑞 → 𝜇𝐸 𝑐𝑞𝑢𝑙 𝑐𝑙𝑢𝑞 𝑐𝑢𝑒 𝑐𝑞𝑑𝑙 𝑐𝑞𝑒 𝑐𝑑𝑒

de
ca
y 𝐸 → 𝜇𝑢𝑢 — — — 𝑐𝑢𝑒 — 𝑐𝑢𝑒

𝐸 → 𝜇𝑑𝑑 𝑐𝑑𝑒 𝑐𝑑𝑒 𝑐𝑑𝑒 — — —

Table 6: Cumulative set of EFT parameters which were turned on to fix the kinematic coefficients used in
the master equation 210. The null entry means that only the Wilson coefficient in the first line was used.
In the decay process, 𝑢 and 𝑑 refer to any type of up- or down-quarks.

parameterized by

𝑁 =
1
Λ4

[
I𝑢1

©«
𝑐2
𝑞𝑢𝑙

4
+ 𝑐2𝑢𝑒

ª®¬ + I𝑢2 ©«
𝑐2
𝑙𝑢𝑞

4
+ 𝑐2𝑢𝑒 + 𝑐2𝑞𝑒

ª®¬ + I𝑢3
(
2𝑐2𝑢𝑒 −

1
2
𝑐𝑞𝑢𝑙𝑐𝑙𝑢𝑞

)
+ I𝑑1

©«
𝑐2
𝑞𝑑𝑙

4
+ 𝑐2𝑑𝑒

ª®¬ + I𝑑2
(
𝑐2𝑑𝑒 + 𝑐

2
𝑞𝑒

)
+ 2I𝑑3 𝑐

2
𝑑𝑒

]
, (210)

where the 𝐼𝑖 coefficients can be obtained from simulation. With this aim, we have generated the signal

events with MadGraph and Pythia, for different masses of the VLL and three possible decay channels:

𝐸 → ℓ𝑞𝑞, 𝐸 → ℓ𝑏𝑏 and 𝐸 → ℓ𝑡𝑡 . To obtain each 𝐼𝑖 , we have set different Wilson coefficients to non-zero

values; see table 6. For example, 𝐼𝑢1 was fixed by 𝑐𝑞𝑢𝑙 ≠ 0 in the case where 𝐸 decays to up-type quarks.

To realize the decay into the down-type, a second coefficient was given a non-zero value, namely 𝑐𝑑𝑒 ≠ 0.
The events obtained in this way were subsequently filtered to match the analysis we have described

following Ref. [269]. The latter was recast using dedicated routines based on Fastjet and ROOT. No

detector simulation was included. (A validity test was performed by generating and applying the analysis to

the dominant background, that is Drell-Yann production, finding good agreement with the number of events

reported in Ref. [269].) The results from the simulation are presented in table 7, assuming𝑚𝐸 = 500 GeV.

6.1.2 Global constraints

Comparing the prediction for the number of signal events using this table with what was actually obtained

in the simulation, we have found deviations of at most ±15%. We have taken this as a systematic error

to obtain the maximum number of signal events allowed by the data analysed in Ref. [269]. The results,
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Bins in 2ℓ2 𝑗 mass [TeV]

0.5 − 1.5 1.5 − 2.5 2.5 − 3.5 3.5 − 4.5 4.5 − 10

𝐸
→

𝜇𝑑
𝑑 I

𝑞
1 /10

2 390 (150) 530 (240) 220 (96) 62 (19) 22 (5.5)

I𝑞2 /10
2 140 (88) 180 (100) 74 (35) 19 (9.2) 8.4 (2.9)

I𝑞3 /10
2 −190 (−73) −260 (−120) −110 (−49) −29 (−9.1) −11 (−2.8)

𝐸
→

𝜇𝑏
𝑏 I

𝑞
1 /10

2 380 (150) 480 (210) 210 (88) 55 (22) 18 (3.5)

I𝑞2 /10
2 140 (85) 170 (97) 68 (33) 22 (7.4) 5.5 (2.1)

I𝑞3 /10
2 −190 (−79) −240 (−110) −100 (−44) −29 (−11) −9.2 (−1.7)

𝐸
→

𝜇𝑡
𝑡 I

𝑞
1 /10

2 170 (160) 200 (120) 73 (27) 20 (5.7) 4.3 (1.4)

I𝑞2 /10
2 93 (57) 85 (48) 24 (9.6) 5.3 (1.4) 1.0 (0.36)

I𝑞3 /10
2 −82 (−79) −110 (−64) −37 (−13) −11 (−2.5) −2.1 (−0.53)

SM 949 ± 115 161 ± 25 13.7 ± 3.7 1.2 ± 0.6 0.48 ± 0.32

Data 949 151 11 0 1

smax 291 60 14 4 5

Table 7: Kinematic coefficients 𝐼
𝑞
𝑖 [TeV

4], with 𝑞 = 𝑢 (𝑑), for the process 𝑝𝑝 → 𝜇+𝜇−𝑞𝑞 obtained upon
recasting the analysis in Ref. [269]. The results are presented for

√
𝑠 = 13 TeV and 𝐿 = 77.4 fb−1. We

have assumed B(𝐸 → 𝜇𝑑𝑑) = 1, B(𝐸 → 𝜇𝑏𝑏) = 1 and B(𝐸 → 𝜇𝑡𝑡) = 1 in the upper, middle
and bottom panels, respectively. The number of SM expected events, the data and the maximum allowed
signal 𝑠max at 95% CL are also displayed; see the text for details.

obtained with the CL𝑠 method, are reported in table 7. In this table, the uncertainties on the background

which were included in the computations are also displayed.

Note that, since no 𝑏 -tagging was applied in the analysis, the results reported in table 7 for light and

bottom quarks are very similar. As such, we derived bounds on the Wilson coefficients as a function of

B(𝐸 → ℓ 𝑗 𝑗) ≡ B(𝐸 → ℓ𝑑𝑑) + B(𝐸 → ℓ𝑏𝑏) = 1 − B(𝐸 → ℓ𝑡𝑡) . (211)

The results are plotted in the left panel of figure 36, for𝑚𝐸 = 500 GeV. (Studies for other masses are

presented in the original Ref. [7].) For setting bounds on 𝑓𝑙𝑢𝑞 , we marginalized over 𝑓𝑞𝑢𝑙 ; and vice-versa.

(These are the only two coefficients in the EFT that interfere.) The final results can be interpreted as global

limits on the EFT since turning on other operators would increase the signal. On that account, the upper

bounds in figure 36 show the largest value each Wilson coefficient is allowed to take.
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Figure 36: The global limits at 95% CL on the Wilson coefficients, 𝑓 , obtained for𝑚𝐸 = 0.5 TeV and using
the second (left) and the third (right) energy bins defined in table 7.

For comparison, we also plotted in the right panel of figure 36 the results obtained using the third

energy bin defined in table 7, which are very similar to the previous ones. In fact, we do not expect drastic

changes in the cross section unless we get close to the unitarity bound2. For the Wilson coefficients

𝑓 ∼ O(0.1) TeV−2 that we can probe, such bound is at
√
𝑠 ∼ 20 TeV (

√
𝑠 denoting the partonic c.m.e.),

very far from the energies considered even in the fourth bin. This would not be the case if we could probe

𝑓 ∼ O(1) TeV−2 instead, for which the cross section explodes at
√
𝑠 ∼ 5 TeV [7].

Note also that the worst limits are in the region where B(𝐸 → ℓ 𝑗 𝑗) � 1. This is expected, since the
analysis is not sensitive to the top quark. This point, in particular, has motivated us to extend the previous

analysis with relevant cuts on new observables, which can make it more sensitive to the SM+𝐸 EFT. One of

these observables is the invariant mass of the reconstructed VLL, its four-momentum being reconstructed

as the sum of the momenta of the softest lepton and the two hardest jets in an event.

Additional modifications should be employed to gain sensitivity in the case B(𝐸 → ℓ𝑏𝑏) ≈ 1 or

B(𝐸 → ℓ𝑡𝑡) ≈ 1. In the bottom channel, we have therefore applied a 𝑏 -tagging algorithm, following

the same lines described in section 5.4.6, and required the presence of exactly two of such 𝑏 -jets. In

the top channel, in addition to the latter, at least three light jets were required. Making optimized mass

cut windows for each channel, we have found that Wilson coefficients ∼ 50% smaller could be probed

with this improved analysis. (The selection efficiencies for signal and background were found to be, in

good approximation, bin and operator independent. The corresponding values, as well as the maximum

number of signal events obtained for each case, are reported in Ref. [7], assuming the same uncertainties

as before and that no deviation from the SM is observed.)
2Using the unitarity of the 𝑆 -matrix in QFT and expanding a given amplitude in terms of partial waves, it is possible to derive

bounds on the corresponding coefficients; these are the so-called unitarity bounds [21]. In particular, if an EFT amplitude has
no angular dependence, the unitarity bound is violated for

√
𝑠 >
√
16𝜋Λ, assuming 𝑐 = 1.
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6.1.3 Phenomenological applications

In this section, we give concrete examples to illustrate the usefulness of themaster formula in equation 210.

Let us consider the SM+𝐸 extended with a heavy colored scalar Π7 ∼ (3, 2)7/6 under the SM gauge

group. The relevant Lagrangian to match onto our EFT is

LΠ7+𝐸 = −Π†7

[
𝑦𝐸𝐸𝑞𝐿 + 𝑦𝑙𝑢𝜖𝑙𝐿

𝑇
𝑢𝑅 + 𝑦𝑒𝑞𝑒𝑅𝑞𝐿

]
+ h.c. (212)

Integrating out the UV particle at tree level, we obtain3:

𝑓𝑙𝑢𝑞 =
−𝑦𝑙𝑢𝑦𝐸

𝑚2
Π

and 𝑓𝑞𝑒 = −
𝑦𝑒𝑞𝑦𝐸

2𝑚2 . (213)

Assuming𝑚𝐸 = 500 GeV, we can use equation 210 and table 7 to derive bounds on the UV couplings

taking both operators into account. The results are plotted in figure 37, for the current and improved

analyses. Superimposed are also the expected limits at the HL-LHC. In black, we plot the expected limit if

only O𝑙𝑢𝑞 (giving the strongest bounds) is included; the corresponding results are ∼ 24% less accurate.

For other single-field extensions of the SM+𝐸 [7], the discrepancy might be even larger. This fact, together

with its functional form, makes equation 210 not only adequate but really the correct approach to interpret

the experimental results. For comparison, we also show in figure 37 the bounds on the new scalar from

𝑝𝑝 → 𝑗 𝑗 LHC searches [270]. For 𝑦𝐸 ≳ 3, the bound on 𝑦𝑙𝑢 = 𝑦𝑒𝑞 from our study is more than four

times stronger than that from other data.

Furthermore, our results can be extended to four-fermion operators involving the second and the third

generations of quarks. This contrasts with those presented in Ref. [269] which used all bins up to 10 TeV

to derive limits. Since the single 𝐸 production cross section initiated by bottom quarks is around two orders

of magnitude smaller than that initiated by light quarks, the bounds on the EFT operators involving bottom

quarks are expected to be ∼ 10 times weaker. In turn, the unitarity bound is at
√
𝑠 ∼ 5 TeV [7]. The use of

energy bins above this threshold is therefore completely wrong. On the other hand, the bounds from our

study (restricted to
√
𝑠 ≲ 2.5 TeV) are compatible with the validity of the EFT.

In particular, such bounds can be used to constrain the model presented in section 5.3. The heavy

vector𝑉 in this model, whose Lagrangian is defined in equation 165, can also couple to 𝐸𝜇 (with strength

𝑔𝐸ℓ ), as both 𝑉 and 𝐸 are part of the composite sector. Upon integrating 𝑉 out at tree level, a single

effective operator in our basis is generated:

𝑓𝑞𝑒 = −
𝑔𝑞𝑞𝑔𝐸ℓ

𝑚2
𝑉

∼ −0.05𝑔𝐸ℓ TeV−2 , (214)

where we employed equation 164 to account for the possibility that𝑉 explains the LFU anomalies in𝑅
𝐾 (∗) .

Within the current analysis, values of 𝑓𝑞𝑒 ∼ 0.05 ×
√
3000/77.4 ≈ 0.3 TeV−2 (see figure 36) could be

3To match onto the EFT, we have to reorder some operators using Fierz identities, for example
(𝑞𝐿𝛾𝜇𝑞𝐿) (𝑒𝑅𝛾𝜇𝐸𝑅) = −2(𝑞𝐿𝐸𝑅)(𝑒𝑅𝑞𝐿).
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Figure 37: Constraints on the UV completion of the SM+𝐸 EFT presented in equation 212; see the text
for details. We assumed that all couplings to the SM fields are equal. The current, improved and future
results refer to the LHC analyses proposed in this study, assuming the 𝐸 → 𝜇𝑞𝑞 channel and the second
energy bin. The masses of the VLL and the heavy mediator were set to𝑚𝐸 = 500 GeV and𝑚Π7 = 5 TeV,
respectively. The light blue region is excluded from di-jet searches at the LHC.

probed at the HL-LHC. Consequently, all vectors with𝑚𝑉 > 2.5 TeV and 𝑔𝐸ℓ > 6 4 could be excluded.

This analysis, together with the direct search for 𝑉 → 𝐸ℓ , 𝐸 → 𝑍/ℎℓ described in Ref. [106], could

potentially probe a significant region of the parameter space where the LFU anomalies can be explained.

Finally, we remark that, in spite of having matched these UV models onto the EFT relevant for single 𝐸

production, other SMEFT operators could arise which can be better constrained by other data. Since such

operators are functions of the same UV couplings as the operators in our basis, it is worth checking that

a composite completion exists such that bounds on the SMEFT operators do not spoil the dominance of

the 𝐸ℓ𝑞𝑞 contact interactions at large
√
𝑠. The example provided in appendix G fulfills this goal.

6.1.4 Outlook

We have constructed the most generic EFT involving the SM and a single 𝐸 to dimension six, assuming

only Δ𝐿 = 0 interactions. The corresponding operators trigger 𝑝𝑝 → 𝐸ℓ followed by 𝐸 → ℓ𝑞𝑞 (with

no intermediate SM state) which can dominate the dynamics of the VLL at large
√
𝑠. This hints towards a

different signal region than those assumed by standard experimental analyses, where the VLL (as other

resonances) is commonly searched for in 𝐸 → 𝑍ℓ and 𝐸 →𝑊𝜈 final states [137–141].

We have shown that there are other searches sensitive to our scenario, although very limited in scope.

For example, Ref. [269] presents limits for a single EFT operator and cannot be straightforwardly recast to

set bounds on the whole EFT basis. Furthermore, there is no rigorous treatment of the EFT validity in that
4Such large values are likely in the composite framework, as𝑔𝐸ℓ is enhanced by𝑔∗/𝑔𝑒 with respect to𝑔ℓℓ ; see equation 105.
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analysis, since energy bins up to 10 TeV are used to derive upper limits. Therefore, such limits cannot be

translated to any model predicting new particles below this large cutoff, or even couplings to sea quarks.

In this way, not only we aim to motivate different searches for the VLLs, but to provide a meaningful way

to organize the results from experimental searches, in order to make them more useful for the theoretical

community. (Similar efforts were also pursued in the analysis of Ref. [271], in the context of neutrino

physics). Indeed, equation 210, together with the kinematic coefficients obtained upon simulation, can be

used to constrain any UV model taking into account all operators which are generated in the IR. We have

obtained such coefficients for light, bottom and top quarks separately, thereby extending the applicability

of the previous analysis.

Globally, we have found that Wilson coefficients as small as ∼ 0.05 TeV−2 are already ruled out in the
muon channel. Although not explicitly shown, the results in the electron channel are very similar, being

typically ∼ 4% weaker. Considering single-field UV completions of the SM+𝐸 EFT and translating such

bounds into limits on the couplings to purely SM currents, we have found that our analysis can outperform

bounds from di-jet searches by almost an order of magnitude.

6.2 The SM extended with an axion-like particle

We extend the SM with a singlet pseudoscalar 𝑆 with 𝑌 = 0. The most general renormalizable Lagrangian
for such ALP is5

L𝑆 =
1
2

(
𝜕𝜇𝑆

) (
𝜕𝜇𝑆

)
− 1
2
𝑚2
𝑆𝑆

2 − 𝜅𝑆
3!
𝑆3 − 𝜆𝑆

4!
𝑆4 − 𝜅𝑆𝐻𝑆 |𝐻 |2 −

𝜆𝑆𝐻
2
𝑆2 |𝐻 |2 , (215)

with all coefficients real.

The first tower of effective operators arises at dimension five. In table 8, we provide a Green basis of

such set of operators, independent under algebraic or IBP identities. The operators labeled by O constitute

the minimal basis which is non-redundant on-shell.

(The choice of the on-shell basis is not unique. In particular, we could work with an effective Lagrangian

where the Yukawa-like operators, rather than the derivative ones, have been removed. Therefore, it might

seem surprising that, in our basis, 𝑆 (𝑝1)𝐻 (𝑝2) → 𝐻 (𝑝3)𝑍 (𝑝4) cannot be induced at tree level; while,
in the derivative basis, the R𝑆𝐻2 operator could trigger this process. However, an explicit calculation

shows that the corresponding amplitude squared is |𝑖M|2 ∼ 𝑟2𝑆𝐻2𝑝24 = 0 when evaluated on-shell.)

In the following, we compute the energy evolution of the ALP EFT parameters in the unbroken EW

phase, assuming only that the new physics does not violate𝐶𝑃 . This amounts to take 𝜅𝑆 and 𝜅𝑆𝐻 in the

renormalizable Lagrangian, as well as the Wilson coefficients of all the scalar operators in table 8 together

with O𝑆𝐺 , O𝑆𝑊 and O𝑆𝐵 , to zero. Under this assumption, contributions to𝐶𝑃 -odd operators only arise if
5Our broad definition of this particle is not the most commonly used in the literature, where it is often assumed that the

only term breaking the ALP shift-symmetry is the mass.
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Scalar Yukawa Derivative Gauge

O
𝑆5 = 𝑆5 O𝛼𝛽𝑆𝐻𝑢 = 𝑆𝑞𝛼

𝐿
𝐻𝑢

𝛽
𝑅

R𝑆2 = 𝑆2𝜕2𝑆 O𝑆𝐺 = 𝑆𝐺𝐴𝜇𝜈𝐺
𝜇𝜈
𝐴

O
𝑆3 = 𝑆3 |𝐻 |2 O𝛼𝛽

𝑆𝐻𝑑
= 𝑆𝑞𝛼

𝐿
𝐻𝑑

𝛽
𝑅
R𝑆𝐻2 = 𝑆𝐻†𝐷2𝐻 O

𝑆𝐺
= 𝑆𝐺𝐴𝜇𝜈𝐺

𝜇𝜈
𝐴

O𝑆 = 𝑆 |𝐻 |4 O𝛼𝛽𝑆𝐻𝑒 = 𝑆𝑙
𝛼
𝐿
𝐻𝑒

𝛽
𝑅
R𝐻𝑆2 = |𝐻 |2𝜕2𝑆 O𝑆𝑊 = 𝑆𝑊 𝑎

𝜇𝜈𝑊
𝜇𝜈
𝑎

R𝛼𝛽𝑆𝑞 = 𝑆𝑞𝛼
𝐿
i /𝐷𝑞𝛽

𝐿
O
𝑆𝑊

= 𝑆𝑊 𝑎
𝜇𝜈𝑊

𝜇𝜈
𝑎

R𝛼𝛽
𝑆𝑙

= 𝑆𝑙𝛼
𝐿
i /𝐷𝑙𝛽

𝐿
O𝑆𝐵 = 𝑆𝐵𝜇𝜈𝐵𝜇𝜈

R𝛼𝛽𝑆𝑢 = 𝑆𝑢𝛼
𝑅
i /𝐷𝑢𝛽

𝑅
O
𝑆𝐵

= 𝑆𝐵𝜇𝜈𝐵𝜇𝜈

R𝛼𝛽
𝑆𝑑

= 𝑆𝑑𝛼
𝑅
i /𝐷𝑑𝛽

𝑅

R𝛼𝛽𝑆𝑒 = 𝑆𝑒𝛼
𝑅
i /𝐷𝑒𝛽

𝑅

Table 8: The Green basis of dimension five operators of the SM+ALP EFT. The h.c. counterpart is implicit
for all the operators in the Yukawa class, R𝑆𝐻2 and R5−9.

the remaining𝐶𝑃 -even ones are dressed with the SM complex phases in the quark sector. The goal of this

work is to study the 𝐶𝑃 -even sector in isolation, ignoring this effect. Nevertheless, we present the results

for arbitrary Yukawa couplings, so that the mixing with the𝐶𝑃 -odd sector via the imaginary part of 𝑦𝑞 can

be easily obtained.

Under these considerations, the 𝐶𝑃 -even effective Lagrangian relevant to our study is

LCP-even ⊃
∑

𝜓=𝑢,𝑑,𝑒

[
i𝑎𝛼𝛽
𝑆𝐻𝜓
O𝛼𝛽
𝑆𝐻𝜓
+ h.c.

]
+

∑
𝑋=𝐵,𝑊 ,𝐺

𝑎
𝑆𝑋
O
𝑆𝑋

+
[
i𝑟𝑆𝐻2R𝑆𝐻2 + h.c.

]
+

∑
𝜓=𝑞,𝑙,𝑢,𝑑,𝑒

[
i𝑟𝑆𝜓R𝑆𝜓 + h.c.

]
, (216)

with all the Wilson coefficients being real or real matrices in flavour space.

6.2.1 One-loop divergences in the ALP SMEFT

In appendix H.1, we compute the divergences generated by 1PI diagrams at one-loop with off-shell mo-

menta and to order O(1/Λ), Λ being the cutoff scale of the SM+ALP EFT. We use the background field

method (BFM) [272] and work in the Feynman gauge in dimensional regularization with spacetime di-

mensions d = 4 − 2𝜖. All counterterms obtained in this way are gauge invariant. We implemented the

model in Feynrules and evaluated by hand the Yukawa and scalar pieces of each of the Feynman dia-

grams obtained with QGRAF [273]. We used FeynArts [274] and FormCalc [275] to compute the gauge

corrections, as well as to cross-check the previous calculations.
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The divergences, produced in the processes enumerated below, are absorbed by the following EFT

couplings:

• 𝑆𝐻 † → 𝑞𝐿𝑢𝑅:

𝑎′𝑆𝐻𝑢 =
1

(4𝜋)2𝜖

[
𝜆𝑆𝐻𝑎𝑆𝐻𝑢 − 𝑦𝑑𝑦𝑑†𝑎𝑆𝐻𝑢 − 𝑎𝑆𝐻𝑑𝑦𝑑†𝑦𝑢 + 𝑦𝑑𝑎

†
𝑆𝐻𝑑

𝑦𝑢 (217)

− 𝑎𝑆𝐻𝑢

(
25𝑔21
36
+
3𝑔22
4
+
16𝑔23
3

) ]
.

• 𝑆𝐻 → 𝑞𝐿𝑑𝑅:

𝑎′
𝑆𝐻𝑑 =

1
(4𝜋)2𝜖

[
𝜆𝑆𝐻𝑎𝑆𝐻𝑑 − 𝑦𝑢𝑦𝑢†𝑎𝑆𝐻𝑑 (218)

− 𝑎𝑆𝐻𝑢𝑦𝑢†𝑦𝑑 + 𝑦𝑢𝑎†𝑆𝐻𝑢𝑦
𝑑 − 𝑎𝑆𝐻𝑑

(
𝑔21
36
+
3𝑔22
4
+
16𝑔23
3

) ]
.

• 𝑆𝐻 → 𝑙𝐿𝑒𝑅:

𝑎′𝑆𝐻𝑒 =
1

(4𝜋)2𝜖
𝑎𝑆𝐻𝑒

[
𝑎7 −

(
9𝑔21
4
+
3𝑔22
4

) ]
. (219)

• 𝑆 → 𝐻𝐻 †:

𝑟𝑆𝐻2 =
1

16𝜋2𝜖

{
Tr

[
𝑦𝑒𝑎†𝑆𝐻𝑒

]
+ 3Tr

[
𝑦𝑑𝑎†

𝑆𝐻𝑑
− 𝑎𝑆𝐻𝑢𝑦𝑢†

]}
. (220)

• 𝑆 → 𝜓𝜓 :

𝑟𝑆𝑞 =
1

32𝜋2𝜖

[
𝑎𝑐𝑑𝑆𝐻𝑢𝑦

𝑢† + 𝑎𝑆𝐻𝑑𝑦𝑑† −
1
3

(
𝑎
𝑆𝐵
𝑔21 + 27𝑎𝑆𝑊 𝑔22 + 48𝑎𝑆𝐺𝑔

2
3

) ]
, (221)

𝑟𝑆𝑙 =
1

32𝜋2𝜖

[
𝑎𝑆𝐻𝑒𝑦

𝑙† − 3
(
𝑎
𝑆𝐵
𝑔21 + 3𝑎𝑆𝑊 𝑔22

) ]
, (222)

𝑟𝑆𝑢 =
−1

16𝜋2𝜖

[
𝑎†𝑆𝐻𝑢𝑦

𝑢 − 8
3

(
𝑎
𝑆𝐵
𝑔21 + 3𝑎𝑆𝐺𝑔

2
3

) ]
, (223)

𝑟𝑆𝑑 =
−1

16𝜋2𝜖

[
𝑎†
𝑆𝐻𝑑

𝑦𝑑 − 2
3

(
𝑎
𝑆𝐵
𝑔21 + 12𝑎𝑆𝐺𝑔

2
3

) ]
, (224)

𝑟𝑆𝑒 =
−1

16𝜋2𝜖

[
𝑎†𝑆𝐻𝑒𝑦

𝑙 − 6𝑎
𝑆𝐵
𝑔21

]
. (225)

All other coefficients vanish. Regarding the gauge operators in table 8, no diagram exists for the process

𝑆 → 𝐵𝐵. On the other hand, some of the amplitudes corresponding to 𝑆 → 𝑊𝑊 and 𝑆 → 𝐺𝐺 are
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divergent; see equations 474–478. However, all the divergent contributions cancel out upon summation.

Furthermore, note that the𝐶𝑃 -even renormalizable couplings do not get contributions from the dimension

five operators at one-loop. Indeed, the former are even under 𝑆 → −𝑆 while the latter are odd, and

therefore no corrections to the renormalizable Lagrangian are generated.

We partially checked the consistency of the previous results by computing some amplitudes which

could possibly generate𝐶𝑃 -odd operators or which are related to the ones above by gauge invariance. In the

first case, we have for example checked that all divergences coming from the (box) diagrams contributing

to 𝑆 → 𝐻𝐻†𝐻𝐻† cancel out. In the second case, we computed 𝑆𝑉 → 𝜓𝜓 and therefore cross-checked

the anti-symmetric part of 𝑟𝑆𝜓 .

6.2.2 Anomalous dimensions in the ALP SMEFT

Having matched all possible divergences into the Green basis, we can redefine the redundant operators

into the minimal set. Such procedure is described in appendix H.3. Using equations 526–528, we can

therefore determine the on-shell divergent Lagrangian,

− Ldiv = O𝑖𝑎′𝑖 ≡
1

32𝜋2𝜖
O𝑖𝛼𝑖 𝑗𝑎 𝑗 , (226)

where 𝑖, 𝑗 run over all operators (including those of different flavour) and 𝛼 includes all renormalizable

couplings. The divergences in Ldiv are absorbed through renormalization, which amounts to redefine the
bare coefficients and fields of the dimension five Lagrangian as

O (0)𝑖 𝑎
(0)
𝑖 → O𝑖𝑍𝐹𝑖 𝑍𝑖 𝑗𝑎 𝑗 = O𝑖𝑎𝑖 + O𝑖

(
𝑍𝐹𝑖 𝑍𝑖 𝑗 − 𝛿𝑖 𝑗

)
𝑎 𝑗 , (227)

where the 𝑍𝐹 -factor collects the wave function renormalization (WFR) constants of all fields in O𝑖 . Let us
also define, following the nomenclature and the approach of Ref. [276],

𝑍 = 1 + 𝜅

32𝜋2𝜖
and 𝑍𝐹 = 1 + 𝜅𝐹

32𝜋2𝜖
, (228)

with

𝜅 = 𝛼 − 𝜅𝐹 , (229)

in order to cancel the divergences in Ldiv.
Next, we add the tree level anomalous dimension 𝑛𝑖 of 𝑐

0
𝑖 (in 𝑎 ≡ 𝑐/Λ), by making 𝑍𝑖 𝑗 → 𝜇𝑛𝑖𝜖𝑍𝑖 𝑗 .

In dimensional regularization, such parameter is required to maintain the coupling dimensionless. Differ-

entiating the bare coupling with respect to 𝑡 ≡ log 𝜇 and requiring that it does not depend on the energy,
we obtain:

𝑑𝑐

𝑑𝑡
= −𝜖𝑍−1 · 𝑛 · 𝑍 · 𝑐 − 𝑍−1 · 𝑑𝑍

𝑑𝑡
· 𝑐 = 1

32𝜋2

[
(𝜅 · 𝑛 − 𝑛 · 𝜅) 𝑐 − 𝑑𝜅

𝜖𝑑𝑡
· 𝑐

]
, (230)
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in matrix notation and up to one-loop. This matches equation 35 in Ref. [276]. Furthermore, note that 𝜅

— being adimensional — can only depend on couplings, so:

𝜅 = 𝐶𝑔𝑛𝑔𝑦𝑛𝑦 (
√
𝜆)𝑛
√
𝜆 , (231)

where𝐶 is some constant and the superscripts refer to the number of gauge (𝑔), Yukawa (𝑦) and square-

root scalar (
√
𝜆) couplings involved. In this way, working out for example the contribution from the gauge

coupling, we can derive the general form of the second term in equation 230, as

𝜅 = 𝐶 (𝑔0𝜇−𝜖𝑍−1𝑔 )𝑛𝑔 = 𝐶 (𝑔0𝜇−𝜖 + . . . )𝑛𝑔 ⇒ 𝑑𝜅

𝑑𝑡
= −𝜖𝑛𝑔𝐶𝑔𝑛𝑔 = −𝜖𝑛𝑔𝜅 , (232)

with the dots including one-loop terms which multiplied by the other factors in equation 230 would become

of higher order.

Finally, taking into account that the tree level anomalous dimension associated with a given operator

O = 𝑋
𝑁𝑋
𝜇𝜈 𝐻𝑁𝑆𝐷𝑁𝐷𝜓𝑁𝐹 is

𝑛O = 𝑁𝑋 + 𝑁𝑆 + 𝑁𝐹 − 2 , (233)

we obtain the master formula for one-loop renormalization:

𝛽𝑎𝑖 = 16𝜋2𝜇
𝑑𝑎𝑖
𝑑𝜇

=
1
2

[
(𝑛 𝑗 − 𝑛𝑖 ) + 𝑛coupl𝑖 𝑗

]
𝑘𝑖 𝑗𝑎 𝑗 ≡ 𝛾𝑖 𝑗𝑎 𝑗 , (234)

where 𝛾 is the anomalous dimension matrix and 𝑛coupl𝑖 𝑗 counts the number of couplings
6 (𝑔,𝑦,

√
𝜆) in

𝑘𝑖 𝑗 .

The WFR factors of each field present in the EFT are obtained from the divergences associated to the

kinetic Lagrangian, which can be parameterized as

Lkin = 𝜓𝐿 (1 + 𝛿𝑍𝜓𝐿)i /𝐷𝜓𝐿 +𝜓𝑅 (1 + 𝛿𝑍𝜓𝑅)i /𝐷𝜓𝑅 +
1
2
(1 + 𝛿𝑍𝑆 )(𝜕𝜇𝑆)2 + (1 + 𝛿𝑍𝐻 )(𝜕𝜇𝐻 )2

− 1
4
(1 + 𝛿𝑍𝐵)𝐵𝜇𝜈𝐵𝜇𝜈 −

1
4
(1 + 𝛿𝑍𝑊 )𝑊𝐼 𝜇𝜈𝑊 𝐼 𝜇𝜈 − 1

4
(1 + 𝛿𝑍𝐺 )𝐺𝐴𝜇𝜈𝐺𝐴 𝜇𝜈 , (235)

after rescaling the bare fields 𝜓0 →
√
𝑍𝜓 = (1 + 𝛿𝑍/2 + . . . )𝜓 . In this way, the extra contributions

𝛿𝑍 ≡ 𝑍 − 1 can be used to cancel the divergences contributing to this Lagrangian, that are computed in
appendix H.2. The final results read:

𝑍𝑙𝐿
= 1 − 1

64𝜋2𝜖

[
𝑔21 + 3𝑔

2
2 + 2𝑦

𝑒𝑦𝑒†
]
; (236)

𝑍𝑒𝑅 = 1 − 1
16𝜋2𝜖

[
𝑔21 + 𝑦

𝑒†𝑦𝑒
]
; (237)

𝑍𝑑𝑅
= 1 − 1

48𝜋2𝜖

[
1
3
𝑔21 + 4𝑔

2
3 + 3𝑦

𝑑†𝑦𝑑
]
; (238)

6We will drop the subscript in 𝑛coupl from here on.
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𝑍𝑢𝑅 = 1 − 1
48𝜋2𝜖

[
4
3
𝑔21 + 4𝑔

2
3 + 3𝑦

𝑢†𝑦𝑢
]
; (239)

𝑍𝑞𝐿 = 1 − 1
96𝜋2𝜖

[
1
6
𝑔21 +

9
2
𝑔22 + 8𝑔

2
3 + 3𝑦

𝑢𝑦𝑢† + 3𝑦𝑑𝑦𝑑†
]
; (240)

𝑍𝐻 = 1 + 1
32𝜋2𝜖

[
𝑔21 + 3𝑔

2
2 − 2𝛾

(𝑌 )
𝐻

]
; (241)

𝑍𝐵 = 1 −
𝑔21

32𝜋2𝜖

[
1
3
+ 𝑛𝐺

(
2 + 22𝑁𝐶

27

)]
= 1 −

41𝑔21
96𝜋2𝜖

; (242)

𝑍𝑊 = 1 +
𝑔22

32𝜋2𝜖

[
43
3
− 2
3
𝑛𝐺

(
1 + 𝑁𝐶

) ]
= 1 +

19𝑔22
96𝜋2𝜖

; (243)

𝑍𝐺 = 1 +
𝑔23

32𝜋2𝜖

[
22
3
𝑁𝐶 −

8
3
𝑛𝐺

]
= 1 +

14𝑔23
32𝜋2𝜖

, (244)

having defined

𝛾
(𝑌 )
𝐻
≡ Tr

[
𝑦𝑒𝑦𝑒† + 3

(
𝑦𝑑𝑦𝑑† + 𝑦𝑢𝑦𝑢†

)]
, (245)

and leaving the number of colors 𝑁𝐶 and generations 𝑛𝐺 unreplaced, in the first equality, to make these

expressions generic.

These expressions can be subsequently employed to obtain the renormalization factors of each oper-

ator in our minimal basis:

𝑍𝐹O𝑆𝐻𝑢 =
√
𝑍𝑞𝐿𝑍𝐻𝑍𝑢𝑅 , 𝑍𝐹O

𝑆𝐺
= 𝑍𝐺 , (246)

𝑍𝐹O𝑆𝐻𝑑
=

√
𝑍𝑞𝐿𝑍𝐻𝑍𝑑𝑅

, 𝑍𝐹O
𝑆𝑊

= 𝑍𝑊 , (247)

𝑍𝐹O𝑆𝐻𝑒 =
√
𝑍𝑙𝐿

𝑍𝐻𝑍𝑒𝑅 , 𝑍𝐹O
𝑆𝐵

= 𝑍𝐵 . (248)

Together with the previous results, this fixes 𝜅 in equation 229. We now have all ingredients to compute

the RGEs.

6.2.2.1 Yukawa-like operators

Let us take, for example, the operator 𝑖 = O𝑆𝐻𝑢 . Then, Δ𝑛 ≡ 𝑛 𝑗 −𝑛𝑖 = 0 in equation 234, whenever 𝑗 is
associated with another operator of the same class. (This term vanishes trivially for the WFR contribution.)

The corresponding counterterms in the physical basis are functions of one 𝜆𝑆𝐻 or two Yukawa couplings,

hence 𝑛𝑖 𝑗 = 2. For the mixing with the gauge operators, from equation 526, we have instead Δ𝑛 = −1
and 𝑛𝑖 𝑗 = 3 since the corresponding counterterm expressions involve a Yukawa and two gauge couplings.

Therefore, every term in the RGE has the same weight after summing the two contributions in equation 234.

Similar considerations are taken for the RGEs of the other Yukawa-like operators.

122



Altogether, we have:

𝛽𝑎𝑆𝐻𝑢 = 2
[(
𝜆𝑆𝐻 −

17𝑔21
24
−
9𝑔22
8
− 4𝑔23 +

1
2
𝛾
(𝑌 )
𝐻

)
𝑎𝑆𝐻𝑢 (249)

− 3
4
𝑦𝑑𝑦𝑑†𝑎𝑆𝐻𝑢 +

5
4
𝑦𝑢𝑦𝑢†𝑎𝑆𝐻𝑢 + 𝑎𝑆𝐻𝑢𝑦𝑢†𝑦𝑢 + 𝑦𝑑𝑎†𝑆𝐻𝑑𝑦

𝑢 − 1
2
𝑎𝑆𝐻𝑑𝑦

𝑑†𝑦𝑢

−
(17𝑔21

6
𝑎
𝑆𝐵
+
9𝑔22
2
𝑎
𝑆𝑊
+ 16𝑔23𝑎𝑆𝐺 + Tr

[
𝑦𝑒𝑎†𝑆𝐻𝑒 + 3𝑦

𝑑𝑎†
𝑆𝐻𝑑
− 3𝑎𝑆𝐻𝑢𝑦𝑢†)

] )
𝑦𝑢

]
;

𝛽𝑎𝑆𝐻𝑑 = 2
[(
𝜆𝑆𝐻 −

5𝑔21
24
−
9𝑔22
8
− 4𝑔23 +

1
2
𝛾
(𝑌 )
𝐻

)
𝑎𝑆𝐻𝑑 (250)

− 3
4
𝑦𝑢𝑦𝑢†𝑎𝑆𝐻𝑑 +

5
4
𝑦𝑑𝑦𝑑†𝑎𝑆𝐻𝑑 + 𝑎𝑆𝐻𝑑𝑦𝑑†𝑦𝑑 + 𝑦𝑢𝑎

†
𝑆𝐻𝑢𝑦

𝑑 − 1
2
𝑎𝑆𝐻𝑢𝑦

𝑢†𝑦𝑑

−
(5𝑔21
6
𝑎
𝑆𝐵
+
9𝑔22
2
𝑎
𝑆𝑊
+ 16𝑔23𝑎𝑆𝐺 − Tr

[
𝑦𝑒𝑎†𝑆𝐻𝑒 + 3𝑦

𝑑𝑎†
𝑆𝐻𝑑
− 3𝑎𝑆𝐻𝑢𝑦𝑢†)

] )
𝑦𝑑

]
;

𝛽𝑎𝑆𝐻𝑒 = 2
[
𝑎𝑆𝐻𝑒

(
𝜆𝑆𝐻 −

15𝑔21
8
−
9𝑔22
8
+ 1
2
𝛾
(𝑌 )
𝐻

)
+ 5
4
𝑦𝑒𝑦𝑒†𝑎𝑆𝐻𝑒 + 𝑎𝑆𝐻𝑒𝑦𝑒†𝑦𝑒 (251)

−
(15𝑔21

2
𝑎
𝑆𝐵
+
9𝑔22
2
𝑎
𝑆𝑊
− Tr

[
𝑦𝑒𝑎†𝑆𝐻𝑒 + 3𝑦

𝑑𝑎†
𝑆𝐻𝑑
− 3𝑎𝑆𝐻𝑢𝑦𝑢†)

] )
𝑦𝑒

]
;

6.2.2.2 Gauge operators

No divergences are mapped into these operators; therefore, they run only due to the non-trivial WFR of the

gauge bosons:

𝛽
𝑆𝐺

= −14𝑔23𝑎𝑆𝐺 ; (252)

𝛽
𝑆𝑊

= −19
3
𝑔22𝑎𝑆𝑊 ; (253)

𝛽
𝑆𝐵

=
41
3
𝑔21𝑎𝑆𝐵 . (254)

A more graphic picture of the operator mixing can be obtained in the limit in which the different fermion

families factorize, so that all dimension five Wilson coefficients are flavour-diagonal 𝑎𝛼𝛽 = 𝛿𝛼𝛽𝑎𝛼 (and

neglecting also off-diagonal entries in the Yukawa matrices). Using the notation of equation 234, where 𝑖

runs over O𝛼𝑆𝐻𝑢 , O
𝛼
𝑆𝐻𝑑

, O𝛼𝑆𝐻𝑒 ,O𝑆𝐺 , O𝑆𝑊 and O
𝑆𝐵

, and 𝑗 over the same operators but with flavour
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index 𝜌 , we can write the anomalous dimension matrix in the following form:

𝛾 =

©«

𝛾11 + 6𝑦𝑢𝛼𝑦𝑢𝜌 𝑦𝑑𝛼𝑦
𝑢
𝛼 − 6𝑦𝑢𝛼𝑦𝑑𝜌 −2𝑦𝑢𝛼𝑦𝑒𝜌 −32𝑔23𝑦

𝑢
𝛼 −9𝑔22𝑦

𝑢
𝛼 −173 𝑔

2
1𝑦
𝑢
𝛼

𝑦𝑢𝛼𝑦
𝑑
𝛼 − 6𝑦𝑑𝛼𝑦𝑢𝜌 𝛾22 + 6𝑦𝑑𝛼𝑦𝑑𝜌 2𝑦𝑑𝛼𝑦𝑒𝜌 −32𝑔23𝑦

𝑑
𝛼 −9𝑔22𝑦

𝑑
𝛼 −53𝑔

2
1𝑦
𝑑
𝛼

−6𝑦𝑒𝛼𝑦𝑢𝜌 6𝑦𝑒𝛼𝑦𝑑𝜌 𝛾33 + 2𝑦𝑒𝛼𝑦𝑒𝜌 0 −9𝑔22𝑦
𝑒
𝛼 −15𝑔21𝑦

𝑒
𝛼

0 0 0 −14𝑔23 0 0

0 0 0 0 −193 𝑔
2
2 0

0 0 0 0 0 41
3 𝑔

2
1

ª®®®®®®®®®®®®®®¬
, (255)

where 𝛿𝛼𝜌 is implicit in every entry where the 𝜌 -index does not appear, and we have defined:

𝛾11 = 2𝜆𝑆𝐻 −
3
2

(
𝑦𝑑𝛼

)2
+ 9
2

(
𝑦𝑢𝛼

)2 − 17
12
𝑔21 −

9
4
𝑔22 − 8𝑔

2
3 + 𝛾

(𝑌 )
𝐻

;

𝛾22 = 2𝜆𝑆𝐻 −
3
2

(
𝑦𝑢𝛼

)2 + 9
2

(
𝑦𝑑𝛼

)2
− 5
12
𝑔21 −

9
4
𝑔22 − 8𝑔

2
3 + 𝛾

(𝑌 )
𝐻

;

𝛾33 = 2𝜆𝑆𝐻 +
9
2

(
𝑦𝑒𝛼

)2 − 15
4
𝑔21 −

9
4
𝑔22 + 𝛾

(𝑌 )
𝐻

.

Based on the structure of the RGE matrix, we can draw the following conclusions:

1. The Yukawa-like operators are renormalized by all the others in our basis (the only zero in the third

line is trivial given that leptons are not 𝑆𝑈 (3) charged);

2. Even in the limit where the different families factorize, there is inter-generation mixing due to the

trace contributions in the redundant operator R𝑆𝐻2, that is redefined into O𝑆𝐻𝑢,𝑆𝐻𝑑,𝑆𝐻𝑒 upon the use

of the EOMs.

3. The bottom part matrix is block-diagonal. This is in agreement with the non-renormalization theo-

rems provided in Refs. [277, 278].

In appendix H.4, we translate these results into a basis more commonly found in the literature, whose

operators take the form (𝜕𝜇𝑆)𝜓𝛾𝜇𝜓 . We show that such basis is over-complete and derive the RGEs in

a new minimal shift-symmetric basis. A comparison between our results and partial computations of the

anomalous dimension matrix found in the literature is also presented in this appendix.

One of the main reasons such derivative basis is adopted is to describe the case of a pure axion (not

necessarily the QCD one) which is a periodic field. We remark that, even in this case and in full generality,

the Lagrangian should also include the term [190]

L ⊃
∑
𝑛∈ℤ

𝜓𝐿𝑐𝑛𝑒
i𝑛𝑆/Λ𝐻𝜓𝑅 + h.c. , (256)

which is invariant under 𝑆 → 𝑆 + 2𝜋Λ. Upon expansion of the exponential, we obtain the Yukawa-like

operators in our basis. These must be therefore included to describe correctly the phenomenology of the
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axion up to a certain order in the EFT expansion (although the truncation itself makes us unable to visualize

the full periodicity of the interaction). Moreover, such operators emerge naturally from the CCWZ Lagrangian

of spontaneously broken theories, therefore making the non-derivative basis a convenient choice to match

the EFT onto e.g. CHMs.

6.2.3 Matching and running below the electroweak scale

At energies below the EW scale, the ALP phenomenology can be described by a low-energy effective field

theory (LEFT), where the massive SM bosons and the top quark are no longer present, that is valid up to

𝜇 ≈ 𝑣 . Assuming still 𝐶𝑃 invariance, the most generic ALP LEFT Lagrangian up to dimension five is

LLEFT =
1
2
𝜕𝜇𝑆𝜕

𝜇𝑆 − 1
2
�̃�2
𝑆𝑆

2 − 1
4!
𝜆𝑆𝑆

4 − 1
4
𝐴𝜇𝜈𝐴

𝜇𝜈 − 1
4
𝐺𝐴𝜇𝜈𝐺

𝐴𝜇𝜈 (257)

+
∑

𝜓=𝑢,𝑑,𝑒

{
𝜓𝛼 i /𝐷𝜓𝛼 −

[
(�̃�𝜓 )𝛼𝛽𝜓𝛼𝐿𝜓

𝛽
𝑅
− i𝑆 (𝑐𝜓 )𝛼𝛽𝜓𝛼𝐿𝜓

𝛽
𝑅
+ h.c.

]}
+ 𝑎

𝑆𝐺
𝑆𝐺𝐴𝜇𝜈𝐺

𝐴𝜇𝜈 + 𝑎
𝑆𝐴
𝑆𝐴𝜇𝜈�̃�

𝜇𝜈

+
∑

𝜓=𝑢,𝑑,𝑒

{
𝑆2(𝑎𝜓 )𝛼𝛽𝜓𝛼𝐿𝜓

𝛽
𝑅
+ (𝑎𝜓𝐴)𝛼𝛽𝜓𝛼𝐿 𝜎

𝜇𝜈𝜓
𝛽
𝑅
𝐴𝜇𝜈 + (𝑎𝜓𝐺 )𝛼𝛽𝜓𝛼𝐿 𝜎

𝜇𝜈𝑇𝐴𝑢
𝛽
𝑅
𝐺𝐴𝜇𝜈 + h.c.

}
,

where the Wilson coefficients can be fixed at the Higgs scale by demanding that both theories before and

after EWSB describe the same physics. Performing this procedure at tree level, we obtain:

𝑒 = 𝑔2𝑠𝜔 = 𝑔1𝑐𝜔 , 𝑔3 = 𝑔3 , (258)

�̃�2
𝑆 =𝑚2

𝑆 +
𝜆𝑆𝐻
2
𝑣2 , 𝜆𝑆 = 𝜆𝑆 − 3

𝑣2

𝑚2
𝐻

𝜆2𝑆𝐻 , (259)

�̃�𝑢 =
𝑣
√
2
𝑦𝑢 , �̃�𝑑 =

𝑣
√
2
𝑦𝑑 , (260)

�̃�𝑒 =
𝑣
√
2
𝑦𝑒 , 𝑐𝑢 =

𝑣
√
2
𝑎𝑆𝐻𝑢 , (261)

𝑐𝑑 =
𝑣
√
2
𝑎𝑆𝐻𝑑 , 𝑐𝑒 =

𝑣
√
2
𝑎𝑆𝐻𝑒 , (262)

𝑎
𝑆𝐺

= 𝑎
𝑆𝐺
, 𝑎

𝑆𝐴
= 𝑎

𝑆𝑊
𝑠2𝜔 + 𝑎𝑆𝐵𝑐

2
𝜔 . (263)

Given that the heavy particle generating 𝑎𝜓 = 𝑦𝜓𝜆𝑆𝐻 𝑣/(2
√
2𝑚2

𝐻 ) is the SM Higgs boson which sets

the scale of light masses, i.e. because 𝑦𝜓 ∼ 𝑚𝜓 /𝑣 , the coefficient 𝑎𝜓 is of order 1/𝑣2 and therefore

negligible in the LEFT. All coefficients not explicitly shown vanish identically.

It is also clear from the matching conditions that the integration of the massive particles, with the

exception of the Higgs boson, produces no effect. This can be cross-checked with the power counting

derived in Ref. [279]. Generically, a tree level graph with heavy internal particles generates operators with
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mass dimension

𝐷 − 4 =
∑
𝑖

(𝑑𝑖 − 4) +
𝐹𝑖
2
+ 𝐵𝑖 ≡

∑
𝑖

𝜔𝑖 , (264)

with 𝑑, 𝐹 and 𝐵 being, respectively, the operator dimension in the high-energy EFT, the number of heavy

fermions and the number of heavy bosons. The 𝑖 sums over the vertices in any tree level graph. To construct

the ALP LEFT up to dimension five, we therefore need
∑
𝑖 𝜔𝑖 ≤ 1. The operators containing at least one

heavy field7 which satisfy this requirement are:

𝜔 = 0 : ℎ𝑆2 ; 𝜔 =
1
2
: 𝜓𝑡𝐴, 𝜓𝑡𝐺, 𝜓𝑡𝑆 ; (265)

𝜔 = 1 : 𝑡2𝐴, 𝑡2𝐺, 𝑡2𝑆, ℎ𝜓2, 𝑍𝜓2, 𝑊𝜓2 . (266)

For tree level matching, there are at least two vertices per graph. Therefore, to comply with the maximum

weight, we can either (1) combine two vertices with 𝜔 = 1/2; (2) combine one vertex with 𝜔 = 1 and
another with𝜔 = 0; and (3) combine a vertex with𝜔 = 0 with others of the same weight or in conjunction
with the previous cases. In case (1), there is actually just one possibility, given that the photon and the

gluon couple diagonally to the fermions. By integrating the top at tree level, we generate 𝑐𝜓2𝑆2, with

𝑐 ∼ 𝑣/Λ2 which is parametrically of the same order as the dimension six terms we have neglected. In

case (2), there is no possibility to use the vertices involving two top quarks internally in a tree graph, but

we can combine ℎ𝜓2 with ℎ𝑆2. The remaining case (3) allows us to combine the ℎ𝑆2 vertex with itself,

producing a contribution to 𝑆4. All these cases have been accounted for along equations 258–263.

Nonetheless, in the following, we adopt a more general approach in which we are ignorant about the

LEFT completion in the UV and therefore consider all the operators in equation 257, namely 𝑆2𝜓𝜓 . In

such approach, we need to include also the purely SMEFT dimension five operators in the last line of

equation 257, the so-called dipole operators; in particular, these can be induced by the 𝑆𝑉𝑉 couplings,

so it would be inconsistent to ignore them in this analysis. The RGEs obtained this way can be used to

describe phenomena at any energy 𝜇 < 𝑣 , excluding confinement effects below the QCD scale. Once

we reach a light fermion threshold, we simply have to remove the index referring to the particle being

integrated out and keep calculating in the EFT with generic Wilson coefficients. To be able to capture these

effects, we leave the flavour number unreplaced.

On top of the minimal basis in equation 257, the following redundant operators must be included to

absorb all possible off-shell divergences that arise at dimension five:

L𝑅 =
∑

𝜓=𝑢,𝑑,𝑒

[ (
𝑟𝜓2

)
𝛼𝛽
𝜓𝛼
𝐿
𝐷2𝜓𝛽

𝑅
+ i

(
𝑟𝑆𝜓𝐿

)
𝛼𝛽
𝑆𝜓𝛼
𝐿
i /𝐷𝜓𝛽

𝐿
+ i

(
𝑟𝑆𝜓𝑅

)
𝛼𝛽
𝑆𝜓𝛼
𝑅
i /𝐷𝜓𝛽

𝑅
+ h.c.

]
, (267)

where again the flavour matrices are taken to be real for 𝐶𝑃 -even operators.
7Operators with no heavy fields match directly into the LEFT.
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Furthermore, to absorb contributions from non-diagonal𝜓 → 𝜓 processes, we will work with generic

fermion masses. In order to do so, we consider a spurion background field (BF) 𝜑 coupled to massless

fermions:

LBF = − (�̃�𝑢)𝛼𝛽 𝜑𝑢𝛼𝐿𝑢
𝛽
𝑅
−

(
�̃�𝑑

)
𝛼𝛽 𝜑𝑑

𝛼
𝐿𝑑
𝛽
𝑅
− (�̃�𝑒 )𝛼𝛽 𝜑𝑒𝛼𝐿𝑒

𝛽
𝑅
+ h.c. , (268)

and assume that it develops a VEV 〈𝜑〉 = 1 by the end of the computations. In this way, we can calculate
any process involving 𝑛 external 𝜑 -fields to account for 𝑛 insertions of the fermions mass.

6.2.4 One-loop divergences in the ALP LEFT

Similarly to section 6.2.1, we fix the counterterm Lagrangian of the ALP LEFT by computing the 1/𝑣 term
of all 1PI one-loop divergent amplitudes in the off-shell basis. (The running of the dimension four couplings

with other dimension four ones can be obtained with automatized tools, namely Pyr@te [280]; we will

retain some of these contributions in the final results, written in gray, as a manual cross-check.)

We use directly the FormCalc output, after having verified most of the results in the unbroken theory

and fixed small typos in the conversion of the FeynRules model to FeynArts in terms involving the

Levi-Civita tensor; see footnote 1. Still, some amplitudes of the considered processes need to be reduced

further in order to match onto our LEFT. The identities used in this procedure, as well as the diagrams

generated in each process, are presented in appendix I.1.

Matching the divergences onto the Green basis consisting of the operators in equations 257 and 267,

we obtain:

• 𝑆 → 𝑆 :

�̃�′2𝑆 =
3

4𝜋2𝜖

(
Tr

[
�̃�†
𝑑
𝑎𝑑�̃�
†
𝑑
�̃�𝑑 + �̃�

†
𝑑
�̃�𝑑𝑎
†
𝑑
�̃�𝑑

]
+ Tr

[
�̃�†𝑢𝑎𝑢�̃�

†
𝑢�̃�𝑢 + �̃�

†
𝑢�̃�𝑢𝑎

†
𝑢�̃�𝑢

] )
(269)

+ 1
4𝜋2𝜖

Tr
[
�̃�†𝑒𝑎𝑒�̃�

†
𝑒�̃�𝑒 + �̃�

†
𝑒�̃�𝑒𝑎

†
𝑒�̃�𝑒

]
.

• 𝜓 → 𝜓 :

�̃�′𝑒 =
3

8𝜋2𝜖
𝑒
(
�̃�𝑒�̃�

†
𝑒𝑎𝑒𝐴 + 𝑎𝑒𝐴�̃�

†
𝑒�̃�𝑒

)
− 1
16𝜋2𝜖

�̃�2
𝑆𝑎𝑒 , (270)

�̃�′𝑢 = − 2
8𝜋2𝜖

𝑒
(
�̃�𝑢�̃�

†
𝑢𝑎𝑢𝐴 + 𝑎𝑢𝐴�̃�

†
𝑢�̃�𝑢

)
− 1
2𝜋2𝜖

𝑔3
(
�̃�𝑢�̃�

†
𝑢𝑎𝑢𝐺 + 𝑎𝑢𝐺�̃�

†
𝑢�̃�𝑢

)
(271)

− 1
16𝜋2𝜖

�̃�2
𝑆𝑎𝑢 ,

�̃�′𝑑 =
1

8𝜋2𝜖
𝑒
(
�̃�𝑑�̃�

†
𝑑
𝑎𝑑𝐴 + 𝑎𝑑𝐴�̃�

†
𝑑
�̃�𝑑

)
− 1
2𝜋2𝜖

𝑔3
(
�̃�𝑑�̃�

†
𝑑
𝑎𝑑𝐺 + 𝑎𝑑𝐺�̃�

†
𝑑
�̃�𝑑

)
(272)

− 1
16𝜋2𝜖

�̃�2
𝑆𝑎𝑑 .
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• 𝑆𝑆 → 𝑆𝑆 :

𝜆′𝑆 =
3
𝜋2𝜖

[
Tr𝜆𝑒 + 3

(
Tr𝜆𝑢 + Tr𝜆𝑑

) ]
, (273)

with

Tr𝜆
𝜓
≡ Tr

[
𝑎𝜓𝑐
†
𝜓
𝑐𝜓�̃�
†
𝜓
+𝑎𝜓�̃�

†
𝜓
𝑐𝜓𝑐
†
𝜓
−𝑎†
𝜓
𝑐𝜓�̃�
†
𝜓
𝑐𝜓 −𝑎𝜓𝑐

†
𝜓
�̃�𝜓𝑐
†
𝜓
+𝑎†
𝜓
𝑐𝜓𝑐
†
𝜓
�̃�𝜓 +𝑎

†
𝜓
�̃�𝜓𝑐
†
𝜓
𝑐𝜓

]
.

• 𝑆 → 𝜓𝜓 :

𝑐′𝑒 =
−1
8𝜋2𝜖

(
𝑎𝑒�̃�
†
𝑒 𝑐𝑒 + 𝑐𝑒�̃�

†
𝑒𝑎𝑒

)
− 3𝑒
8𝜋2𝜖

(
�̃�𝑒𝑐
†
𝑒 𝑎𝑒𝐴 + 𝑎𝑒𝐴𝑐

†
𝑒�̃�𝑒 (274)

−𝑐𝑒�̃�†𝑒𝑎𝑒𝐴 − 𝑎𝑒𝐴�̃�
†
𝑒 𝑐𝑒

)
,

𝑐′𝑢 =
2𝑒

8𝜋2𝜖

(
�̃�𝑢𝑐
†
𝑢𝑎𝑢𝐴 + 𝑎𝑢𝐴𝑐

†
𝑢�̃�𝑢 − 𝑐𝑢�̃�

†
𝑢𝑎𝑢𝐴 − 𝑎𝑢𝐴�̃�

†
𝑢𝑐𝑢

)
(275)

− 1
8𝜋2𝜖

(
𝑎𝑢�̃�
†
𝑢𝑐𝑢 + 𝑐𝑢�̃�

†
𝑢𝑎𝑢

)
+

𝑔3
2𝜋2𝜖

(
�̃�𝑢𝑐
†
𝑢𝑎𝑢𝐺 + 𝑎𝑢𝐺𝑐

†
𝑢�̃�𝑢 − 𝑐𝑢�̃�

†
𝑢𝑎𝑢𝐺 − 𝑎𝑢𝐺�̃�

†
𝑢𝑐𝑢

)
,

𝑐′𝑑 = − 𝑒

8𝜋2𝜖

(
�̃�𝑑𝑐
†
𝑑
𝑎𝑑𝐴 + 𝑎𝑑𝐴𝑐

†
𝑑
�̃�𝑑 − 𝑐𝑑�̃�

†
𝑑
𝑎𝑑𝐴 − 𝑎𝑑𝐴�̃�

†
𝑑
𝑐𝑑

)
(276)

− 1
8𝜋2𝜖

(
𝑎𝑑�̃�
†
𝑑
𝑐𝑑 + 𝑐𝑑�̃�

†
𝑑
𝑎𝑑

)
+

𝑔3
2𝜋2𝜖

(
�̃�𝑑𝑐
†
𝑑
𝑎𝑑𝐺 + 𝑎𝑑𝐺𝑐

†
𝑑
�̃�𝑑 − 𝑐𝑑�̃�

†
𝑑
𝑎𝑑𝐺 − 𝑎𝑑𝐺�̃�

†
𝑑
𝑐𝑑

)
.

These processes fix also the following non-renormalizable couplings:

𝑟′𝑆𝑒𝐿 =
1

16𝜋2𝜖
𝑎𝑒𝑐
†
𝑒 −

3
2𝜋𝜖

𝛼em𝑎𝑆𝐴 +
3𝑒

16𝜋2𝜖
𝑐𝑒𝑎
†
𝑒𝐴
, (277)

𝑟′𝑆𝑒𝑅 =
−1

16𝜋2𝜖
𝑎†𝑒 𝑐𝑒 +

3
2𝜋𝜖

𝛼em𝑎𝑆𝐴 −
3𝑒

16𝜋2𝜖
𝑐†𝑒 𝑎𝑒𝐴 , (278)

𝑟′𝑆𝑢𝐿 =
1

16𝜋2𝜖
𝑎𝑢𝑐
†
𝑢 −

2
𝜋𝜖

(
𝛼em
3
𝑎
𝑆𝐴
+ 𝛼3𝑎𝑆𝐺

)
− 2𝑒
16𝜋2𝜖

𝑐𝑢𝑎
†
𝑢𝐴
− 1
4𝜋2𝜖

𝑔3𝑐𝑢𝑎
†
𝑢𝐺

, (279)

𝑟′𝑆𝑢𝑅 =
−1

16𝜋2𝜖
𝑎†𝑢𝑐𝑢 +

2
𝜋𝜖

(
𝛼em
3
𝑎
𝑆𝐴
+ 𝛼3𝑎𝑆𝐺

)
+ 2𝑒
16𝜋2𝜖

𝑐†𝑢𝑎𝑢𝐴 −
1

4𝜋2𝜖
𝑔3𝑐
†
𝑢𝑎𝑢𝐺 , (280)

𝑟′
𝑆𝑑𝐿

=
1

16𝜋2𝜖
𝑎𝑑𝑐
†
𝑑
− 2
𝜋𝜖

(
𝛼em
12

𝑎
𝑆𝐴
+ 𝛼3𝑎𝑆𝐺

)
+ 𝑒

16𝜋2𝜖
𝑐𝑑𝑎
†
𝑑𝐴
− 1
4𝜋2𝜖

𝑔3𝑐𝑑𝑎
†
𝑑𝐺

, (281)

𝑟′
𝑆𝑑𝑅

=
−1

16𝜋2𝜖
𝑎†
𝑑
𝑐𝑑 +

2
𝜋𝜖

(
𝛼em
12

𝑎
𝑆𝐴
+ 𝛼3𝑎𝑆𝐺

)
− 𝑒

16𝜋2𝜖
𝑐†
𝑑
𝑎𝑑𝐴 −

1
4𝜋2𝜖

𝑔3𝑐
†
𝑑
𝑎𝑑𝐺 . (282)

• 𝑉 → 𝜓𝜓 :

𝑎′𝑒𝐴 =
𝑒

16𝜋2𝜖

(
𝑒𝑎𝑒𝐴 + 2𝑐𝑒𝑎𝑆𝐴

)
, (283)

𝑎′𝑢𝐴 =
𝑒

12𝜋2𝜖

(
1
3
𝑒𝑎𝑢𝐴 + 𝑐𝑢𝑎𝑆𝐴

)
− 𝑒

18𝜋2𝜖
𝑔3𝑎𝑢𝐺 , (284)
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𝑎′𝑑𝐴 =
𝑒

24𝜋2𝜖

(
1
6
𝑒𝑎𝑑𝐴 − 𝑐𝑑𝑎𝑆𝐴

)
+ 𝑒

36𝜋2𝜖
𝑔3𝑎𝑑𝐺 , (285)

𝑟′𝑒□ = − 3
8𝜋2𝜖

𝑒𝑎𝑒𝐴 , (286)

𝑟′𝑢□ =
1

4𝜋2𝜖
𝑒𝑎𝑢𝐴 +

1
2𝜋2𝜖

𝑔3𝑎𝑢𝐺 , (287)

𝑟′𝑑□ = − 1
8𝜋2𝜖

𝑒𝑎𝑑𝐴 +
1

2𝜋2𝜖
𝑔3𝑎𝑑𝐺 , (288)

𝑎′𝑢𝐺 = − 1
8𝜋2𝜖

𝑔3𝑐𝑢𝑎𝑆𝐺 −
7

6𝜋𝜖
𝛼3𝑎𝑢𝐺 +

1
24𝜋2𝜖

𝑒𝑔3𝑎𝑢𝐴 , (289)

𝑎′𝑑𝐺 = − 1
8𝜋2𝜖

𝑔3𝑐𝑑𝑎𝑆𝐺 −
7

6𝜋𝜖
𝛼3𝑎𝑑𝐺 −

1
48𝜋2𝜖

𝑒𝑔3𝑎𝑑𝐴 . (290)

These processes also contribute to the redundant operators in the previous item and can therefore

be used as a cross-check.

• 𝑆𝑆 → 𝜓𝜓 :

𝑎′𝑒 = −
[
1
𝜋𝜖
𝛼em −

𝜆𝑆

32𝜋2𝜖

]
𝑎𝑒 −

1
16𝜋2𝜖

(
𝑐𝑒𝑎
†
𝑒 𝑐𝑒 − 2𝑎𝑒𝑐

†
𝑒 𝑐𝑒 − 2𝑐𝑒𝑐

†
𝑒 𝑎𝑒

)
− 3𝑒
8𝜋2𝜖

(
𝑐𝑒𝑐
†
𝑒 𝑎𝑒𝐴 + 𝑎𝑒𝐴𝑐

†
𝑒 𝑐𝑒

)
, (291)

𝑎′𝑢 = −
[
4

3𝜋𝜖

(
1
3
𝛼em + 𝛼3

)
− 𝜆𝑆

32𝜋2𝜖

]
𝑎𝑢 −

1
16𝜋2𝜖

(
𝑐𝑢𝑎
†
𝑢𝑐𝑢 − 2𝑎𝑢𝑐

†
𝑢𝑐𝑢 − 2𝑐𝑢𝑐

†
𝑢𝑎𝑢

)
+ 𝑒

4𝜋2𝜖

(
𝑐𝑢𝑐
†
𝑢𝑎𝑢𝐴 + 𝑎𝑢𝐴𝑐

†
𝑢𝑐𝑢

)
+

𝑔3
2𝜋2𝜖

(
𝑐𝑢𝑐
†
𝑢𝑎𝑢𝐺 + 𝑎𝑢𝐺𝑐

†
𝑢𝑐𝑢

)
, (292)

𝑎′𝑑 = −
[
1

3𝜋𝜖

(
1
3
𝛼em + 4𝛼3

)
− 𝜆𝑆

32𝜋2𝜖

]
𝑎𝑑 −

1
16𝜋2𝜖

(
𝑐𝑑𝑎
†
𝑑
𝑐𝑑 − 2𝑎𝑑𝑐

†
𝑑
𝑐𝑑 − 2𝑐𝑑𝑐

†
𝑑
𝑎𝑑

)
− 𝑒

8𝜋2𝜖

(
𝑐𝑑𝑐
†
𝑑
𝑎𝑑𝐴 + 𝑎𝑑𝐴𝑐

†
𝑑
𝑐𝑑

)
+

𝑔3
2𝜋2𝜖

(
𝑐𝑑𝑐
†
𝑑
𝑎𝑑𝐺 + 𝑎𝑑𝐺𝑐

†
𝑑
𝑐𝑑

)
. (293)

• 𝑆 → 𝑉𝑉 :

𝑎
𝑆𝐴

=
𝑒

8𝜋2𝜖
Tr

[ (
𝑐𝑒𝑎
†
𝑒𝐴
+ 𝑐†𝑒 𝑎𝑒𝐴

)
+

(
𝑐𝑑𝑎
†
𝑑𝐴
+ 𝑐†
𝑑
𝑎𝑑𝐴

)
− 2

(
𝑐𝑢𝑎
†
𝑢𝐴
+ 𝑐†𝑢𝑎𝑢𝐴

) ]
, (294)

𝑎
𝑆𝐺

=
−𝑔3
16𝜋2𝜖

Tr
[
𝑐𝑑𝑎
†
𝑑𝐺
+ 𝑐†
𝑑
𝑎𝑑𝐺 + 𝑐𝑢𝑎

†
𝑢𝐺
+ 𝑐†𝑢𝑎𝑢𝐺

]
. (295)

All other coefficients vanish. The processes 𝑉 → 𝜓𝜓 , as well as 𝜓 → 𝜓 , give also contributions

to the fermion kinetic terms; see equation 546. We use them to cross-check the WFR factors which are

presented in the next section.
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6.2.5 Anomalous dimensions in the ALP LEFT

The WFR factors of light fields, required to compute the 𝛽 -functions in the ALP LEFT, are obtained analo-

gously to what was done in appendix H.2. They read8:

𝑍𝑒𝐿 = 1 − 𝛼em
4𝜋𝜖
−

𝑐𝑒𝑐
†
𝑒

32𝜋2𝜖
− 3𝑒
16𝜋2𝜖

(
𝑚𝑒𝑎
†
𝑒𝐴
+ 𝑎𝑒𝐴𝑚

†
𝑒

)
, (296)

𝑍𝑒𝑅 = 1 − 𝛼em
4𝜋𝜖
−

𝑐†𝑒 𝑐𝑒
32𝜋2𝜖

− 3𝑒
16𝜋2𝜖

(
𝑎†
𝑒𝐴
𝑚𝑒 +𝑚†𝑒𝑎𝑒𝐴

)
, (297)

𝑍𝑑𝐿
= 1 − 1

3𝜋𝜖

[
1
12
𝛼em + 𝛼3

]
−

𝑐𝑑𝑐
†
𝑑

32𝜋2𝜖

− 𝑒

16𝜋2𝜖

(
𝑚𝑑𝑎
†
𝑑𝐴
+ 𝑎𝑑𝐴𝑚

†
𝑑

)
+

𝑔3
4𝜋2𝜖

(
𝑚𝑑𝑎
†
𝑑𝐺
+ 𝑎𝑑𝐺𝑚

†
𝑑

)
, (298)

𝑍𝑑𝑅
= 1 − 1

3𝜋𝜖

[
1
12
𝛼em + 𝛼3

]
−

𝑐†
𝑑
𝑐𝑑

32𝜋2𝜖

− 𝑒

16𝜋2𝜖

(
𝑎†
𝑑𝐴
𝑚𝑑 +𝑚

†
𝑑
𝑎𝑑𝐴

)
+

𝑔3
4𝜋2𝜖

(
𝑎†
𝑑𝐺
𝑚𝑑 +𝑚

†
𝑑
𝑎𝑑𝐺

)
, (299)

𝑍𝑢𝐿 = 1 − 1
3𝜋𝜖

[
1
3
𝛼em + 𝛼3

]
−

𝑐𝑢𝑐
†
𝑢

32𝜋2𝜖

+ 2𝑒
16𝜋2𝜖

(
𝑚𝑢𝑎
†
𝑢𝐴
+ 𝑎𝑢𝐴𝑚

†
𝑢

)
+

𝑔3
4𝜋2𝜖

(
𝑚𝑢𝑎
†
𝑢𝐺
+ 𝑎𝑢𝐺𝑚

†
𝑢

)
, (300)

𝑍𝑢𝑅 = 1 − 1
3𝜋𝜖

[
1
3
𝛼em + 𝛼3

]
−

𝑐†𝑢𝑐𝑢
32𝜋2𝜖

+ 2𝑒
16𝜋2𝜖

(
𝑎†
𝑢𝐴
𝑚𝑢 +𝑚†𝑢𝑎𝑢𝐴

)
+

𝑔3
4𝜋2𝜖

(
𝑎†
𝑢𝐺
𝑚𝑢 +𝑚†𝑢𝑎𝑢𝐺

)
, (301)

𝑍𝐴 = 1 − 𝛼em
3𝜋𝜖

[
𝑛ℓ +

1
3
𝑛𝑑 +

4
3
𝑛𝑢

]
+ 𝑒

2𝜋2𝜖
Tr

[
(𝑎†
𝑒𝐴
𝑚𝑒 +𝑚†𝑒𝑎𝑒𝐴) − 2(𝑎

†
𝑢𝐴
𝑚𝑢 +𝑚†𝑢𝑎𝑢𝐴) + (𝑎

†
𝑑𝐴
𝑚𝑑 +𝑚

†
𝑑
𝑎𝑑𝐴)

]
, (302)

𝑍𝐺 = 1 +
𝛼3
4𝜋𝜖

[
11 − 2

3
(𝑛𝑢 + 𝑛𝑑 )

]
−

𝑔3
4𝜋2𝜖

Tr
[
𝑎†
𝑑𝐺
𝑚𝑑 +𝑚

†
𝑑
𝑎𝑑𝐺 + 𝑎

†
𝑢𝐺
𝑚𝑢 +𝑚†𝑢𝑎𝑢𝐺

]
, (303)

𝑍𝑆 = 1 − 1
8𝜋2𝜖

Tr
[
𝑐𝑒𝑐
†
𝑒 + 3

(
𝑐𝑑𝑐
†
𝑑
+ 𝑐𝑢𝑐†𝑢

)]
. (304)

We can now move to the physical basis by using the redundancy relations in equations 580–585. All

contributions from effective operators to the fermion kinetic terms are precisely canceled on-shell. The

other WFR factors remain the same in the minimal basis.

Following the procedure9 described in section 6.2.2, we can finally obtain the 𝛽 -functions of the dif-

ferent parameters in the ALP LEFT (up to renormalizable contributions computed with Pyr@te).
8Although we are interested in computing only the 1/𝑣 term of the RGEs, we must keep the dimension four terms in the

WFR factors, which will be multiplied by 1/𝑣 coefficients in the final equations.
9In the deduction of the master formula in section 6.2.2, we have factorized out the dimension five couplings, so that 𝛼
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6.2.5.1 Fermionic masses

Let us first consider the pure SM LEFT limit. The contribution from effective operators to the running of

the fermion masses comes, not only from the mixing with dipole operators, but also from the WFR of the

fermion fields. Since the last contribution vanishes on-shell,

𝛽�̃�𝑒 =
1
2
𝑘�̃�𝑒 ,𝑐𝑒𝐴𝑐𝑒𝐴

(
𝑛�̃�𝑒 ,𝑎𝑒𝐴 + Δ𝑛𝑎𝑒𝐴,�̃�𝑒

)
. (305)

The mass counterterm 𝑘�̃�𝑒 ,𝑎𝑒𝐴𝑎𝑒𝐴 can be directly read from equation 270, as well as the input param-

eters for the master formula 𝑛�̃�𝑒 ,𝑎𝑒𝐴 = Δ𝑛𝑎𝑒𝐴,�̃�𝑒 = 1, where we used that the tree level anomalous

dimension of 𝑎𝑒𝐴 is 1. Hence,

𝛽�̃�𝑒 = 12𝑒
(
�̃�𝑒�̃�

†
𝑒𝑎𝑒𝐴 + 𝑎𝑒𝐴�̃�

†
𝑒�̃�𝑒

)
. (306)

This result agrees exactly with equation C.2 in Ref. [281].

Including also the contribution from dimension five operators involving the ALP, which adds

1
2
𝑘�̃�𝑒 ,𝑎𝑒𝑎𝑒

(
𝑛�̃�𝑒 ,𝑎𝑒 + Δ𝑛𝑎𝑒 ,�̃�𝑒

)
= −2�̃�2

𝑆𝑎𝑒 (307)

to the previous 𝛽 -function, where 𝑛�̃�𝑒 ,𝑎𝑒 = 0 and Δ𝑛𝑎𝑒 ,�̃�𝑒 = 2, we obtain the final result:

𝛽�̃�𝑒 = 12𝑒
(
�̃�𝑒�̃�

†
𝑒𝑎𝑒𝐴 + 𝑎𝑒𝐴�̃�

†
𝑒�̃�𝑒

)
− 2�̃�2

𝑆𝑎𝑒 . (308)

Similarly to the case of the electron, the contribution from chromomagnetic operators to the WFR of

quarks is canceled on-shell. Therefore, we have:

𝛽�̃�𝑞 = − 12𝑒𝑄𝑞
(
�̃�𝑞�̃�

†
𝑞𝑎𝑞𝐴 + 𝑎𝑞𝐴�̃�

†
𝑞�̃�𝑞

)
− 16𝑔3

(
�̃�𝑞�̃�

†
𝑞𝑎𝑞𝐺 + 𝑎𝑞𝐺�̃�

†
𝑞�̃�𝑞

)
− 2�̃�2

𝑆𝑎𝑞 , (309)

where 𝑄𝑢 = 2/3 and 𝑄𝑑 = −1/3. Again, the pure SM LEFT terms agree with equations C.3 and C.4 in

Ref. [281].

6.2.5.2 Gauge couplings

Because explicit gauge invariance is retained in the BFM, the renormalization factors of the gauge couplings

and the corresponding gauge bosons are related [272]: 𝑍𝑔 = 𝑍−1/2
𝑉

. Hence, the 𝛽 -functions of the gauge

couplings can be determined from the WFR factors of the respective gauge bosons.

Let us quickly sketch the proof. First, as always, we require the bare coupling, 𝑔0 = 𝑍𝑔𝜇𝜖𝑔, to be

independent of the energy:

16𝜋2𝜇
𝜕𝑔0
𝜕𝜇

= 0 = 16𝜋2𝑍𝑔𝜇𝜖
[
𝑔𝜖 + 𝑔𝜇

𝜕 log𝑍𝑔
𝜕𝜇

+ 𝜇 𝜕𝑔
𝜇

]
, (310)

in equation 226 was made of renormalizable couplings only. Any other factorization, namely the inverse, is valid too. In case 𝛼
is instead made of dimension five couplings, the knowledge of their tree level anomalous dimensions is required, which can be
trivially obtained from equation 233.
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which leads to

𝛽𝑔 = −16𝜋2𝑔
[
𝜖 + 𝜇

𝜕 log𝑍𝑔
𝜕𝜇

]
= −16𝜋2𝑔

[
𝜖 − 1

2
𝜇
𝜕 log𝑍𝑉
𝜕𝜇

]
. (311)

Given that 𝑍𝑉 = 𝑍𝑉
(
𝑔, �̃�𝜓 , �̃�

†
𝜓
, 𝑎𝜓𝑉 , 𝑎

†
𝜓𝑉

)
in the LEFT, we can use the chain rule

16𝜋2𝜇
𝜕

𝜕𝜇
= 𝛽𝑔

𝜕

𝜕𝑔
+ 𝛽

𝑎
𝛼𝛽
𝜓𝑉

𝜕

𝜕𝑎
𝛼𝛽
𝜓𝑉

+ 𝛽
𝑎
†𝛼𝛽
𝜓𝑉

𝜕

𝜕𝑎
†𝛼𝛽
𝜓𝑉

, (312)

to simplify the result above. We obtain:

𝛽𝑔 = −𝑔
[
16𝜋2𝜖 − 1

2
𝛽𝑖
𝜕 log𝑍𝑉

𝜕𝑖

]
. (313)

Now,𝑍𝑉 = 1+∑𝑍
(1)
𝑉
/𝜖𝑛 . Since the 𝛽 -function needs to be finite, the various powers of 1/𝜖 must cancel.

In particular, the first power is canceled by the O(𝜖) term in 𝛽𝑖 , with 𝑖 representing all the parameters in

𝑍𝑉 . (Such term is absent in the RGEs of �̃�𝜓 and �̃�†
𝜓
.) Therefore, taking 𝜖 → 0, the generalized BFM

formula for the LEFT is

𝛽𝑔 = −8𝜋2𝑔
[
𝑔
𝜕

𝜕𝑔
+ 𝑎𝛼𝛽

𝑞𝑉
𝜕

𝜕𝑎
𝛼𝛽
𝜓𝑉

+ 𝑎†𝛼𝛽
𝜓𝑉

𝜕

𝜕𝑎
†𝛼𝛽
𝜓𝑉

]
𝑍
(1)
𝑉

. (314)

Using equations 302 and 303, we find:

𝛽𝑒 =
80𝑒3

9
+ 8𝑒2Tr

[
− (𝑎†

𝑒𝐴
�̃�𝑒 + �̃�†𝑒𝑎𝑒𝐴) + 2(𝑎

†
𝑢𝐴
�̃�𝑢 + �̃�†𝑢𝑎𝑢𝐴) − (𝑎

†
𝑑𝐴
�̃�𝑑 + �̃�

†
𝑑
𝑎𝑑𝐴)

]
(315)

and

𝛽𝑔3 = −𝑔33
23
3
+ 4𝑔32Tr

[
𝑎†
𝑑𝐺
�̃�𝑑 + �̃�

†
𝑑
𝑎𝑑𝐺 + 𝑎

†
𝑢𝐺
�̃�𝑢 + �̃�†𝑢𝑎𝑢𝐺

]
, (316)

in agreement with equations C.5 and C.610 in Ref. [281].

6.2.5.3 Dipole operators

The WFR factor contributing to the RGEs of the dipole operators is:

𝑍𝐹𝑎𝜓𝑉 = 1 +
𝛿𝑍†
𝜓𝐿

2
𝑎𝜓𝑉 + 𝑎𝜓𝑉

𝛿𝑍𝜓𝑅

2
+ 𝑎𝜓𝑉

𝛿𝑍𝑉
2

, (317)

where 𝛿𝑍𝜓𝐿 and 𝛿𝑍𝜓𝑅 are matrices in flavour space. Their renormalizable pieces can be read from

equations 296–301. Including the contributions from the counterterms in the on-shell basis, in the photon

case, we obtain:

𝛽𝑎𝑒𝐴 = 8𝑒2𝑎𝑒𝐴 + 4𝑒𝑐𝑒𝑎𝑆𝐴 + 2𝑒
2𝑐𝑒𝐴 +

1
2

(
𝑐𝑒𝑐
†
𝑒 𝑎𝑒𝐴 + 𝑎𝑒𝐴𝑐

†
𝑒 𝑐𝑒

)
+ 80

9
𝑒2𝑎𝑒𝐴 (318)

=
170
9
𝑒2𝑎𝑒𝐴 + 4𝑒𝑐𝑒𝑎𝑆𝐴 +

1
2

(
𝑐𝑒𝑐
†
𝑒 𝑎𝑒𝐴 + 𝑐𝑒𝐴𝑐

†
𝑒 𝑐𝑒

)
,

10To match the notation of Ref. [281] to ours, we have to replace 𝑔→ −𝑔 and �̃�𝜓 → �̃�†
𝜓
.
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where the first term agrees with equation C.10 in Ref. [281]. Likewise,

𝛽𝑎𝑞𝐴 = 10𝑄2𝑞𝑒
2𝑎𝑞𝐴 − 4𝑄𝑞𝑒𝑐𝑞𝑎𝑆𝐴 +

32𝑄𝑞𝑒
3

𝑔3𝑎𝑞𝐺 (319)

+ 8
3
𝑔23𝑎𝑞𝐴 +

1
2

(
𝑐𝑞𝑐
†
𝑞𝑎𝑞𝐴 + 𝑎𝑞𝐴𝑐

†
𝑞𝑐𝑞

)
+ 80

9
𝑒2𝑎𝑞𝐴 ,

in agreement with equations C.11 and C.12 in Ref. [281].

Finally, the dipole operators involving the gluon have the following RGE:

𝛽𝑎𝑞𝐺 = 8𝑔3𝑄𝑞𝑒𝑐𝑞𝐴 − 4𝑔3𝑐𝑞𝑎𝑆𝐺 (320)

+ 2𝑄2𝑞𝑒2𝑎𝑞𝐺 +
1
2

(
𝑐𝑞𝑐
†
𝑞𝑎𝑞𝐺 + 𝑎𝑞𝐺𝑐

†
𝑞𝑐𝑞

)
− 19

3
𝑔23𝑎𝑞𝐺 ,

which also matches equations C.13 and C.14 in the aforementioned work.

6.2.5.4 Singlet mass

Factorizing 𝑗 = 𝑎𝜓 in equation 269, we obtain 𝑛𝑖 𝑗 = 0 and Δ𝑛 𝑗𝑖 = 2 (𝑖 = �̃�2
𝑆 ) which can be employed

in the master formula. Moreover, since there are no effective contributions in 𝑍𝑆 , 𝛽𝑖 = 𝑘𝑖 𝑗𝑎 𝑗 . Explicitly:

𝛽
�̃�2
𝑆
= 8

{
3Tr

[
�̃�†
𝑑
𝑎𝑑�̃�
†
𝑑
�̃�𝑑 + �̃�

†
𝑑
�̃�𝑑𝑎
†
𝑑
�̃�𝑑

]
+ 3Tr

[
�̃�†𝑢𝑎𝑢�̃�

†
𝑢�̃�𝑢 + �̃�

†
𝑢�̃�𝑢𝑎

†
𝑢�̃�𝑢

]
+ Tr

[
�̃�†𝑒𝑎𝑒�̃�

†
𝑒�̃�𝑒 + �̃�

†
𝑒�̃�𝑒𝑎

†
𝑒�̃�𝑒

] }
. (321)

6.2.5.5 Single self-interaction

In this case, factorizing 𝑗 = 𝑎𝜓 in equation 273 leads to 𝑛𝑖 𝑗 = 2 and Δ𝑛 𝑗𝑖 = 0 (𝑖 = 𝜆𝑆 ), so that

𝛽𝑖 = 𝑘𝑖 𝑗𝑎 𝑗 . Hence:

𝛽
𝜆𝑆

= 96
[
Tr𝜆𝑒 + 3

(
Tr𝜆𝑢 + Tr𝜆𝑑

) ]
+ 8Tr

[
𝑐𝑒𝑐
†
𝑒 + 3

(
𝑐𝑑𝑐
†
𝑑
+ 𝑐𝑢𝑐†𝑢

)]
𝜆𝑆 . (322)

(Note that we can partially cross-check the contributions from the renormalizable couplings to this running,

written explicitly in the original Ref. [8], by keeping the four-dimensional terms that contribute to the WFR

of the 𝑆4 operator. We have added these terms in the equation above, for an example.)

6.2.5.6 Renormalizable Yukawa operators

The mixing parameters required for the master formula can be obtained from equations 274–276, together

with the additional terms that arise upon reduction of the redundant operators. Altogether, the renormal-

izable Yukawa operators involving the ALP mix with three dimension five operators leading to the following
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parameters: (1) 𝑛𝑐𝜓 ,𝑎𝜓 = Δ𝑛
𝑎𝜓 ,𝑐

1
𝜓

= 1; (2) 𝑛𝑐𝜓 ,𝑎𝜓𝑉 = 2 and Δ𝑛𝑎𝜓𝑉 ,𝑐𝜓
= 0; (3) 𝑛𝑎𝑆𝑉 ,𝑐𝜓 = 2 and

Δ𝑛𝑎𝑆𝑉 ,𝑐𝜓
= 0. Employing them in the master formula, we obtain:

𝛽𝑐𝑒 = − 24𝑒
2𝑎

𝑆𝐴
�̃�𝑒 + 2

(
�̃�𝑒𝑐
†
𝑒 𝑎𝑒 + 𝑎𝑒𝑐

†
𝑒�̃�𝑒 − 2𝑎𝑒�̃�

†
𝑒 𝑐𝑒 − 2𝑐𝑒�̃�

†
𝑒𝑎𝑒

)
(323)

− 12𝑒
[
�̃�𝑒𝑐
†
𝑒 𝑎𝑒𝐴 + 𝑎𝑒𝐴𝑐

†
𝑒�̃�𝑒 − 𝑐𝑒�̃�

†
𝑒𝑎𝑒𝐴 − 𝑎𝑒𝐴�̃�

†
𝑒 𝑐𝑒

]
−6𝑒2𝑐𝑒 + 3𝑐𝑒𝑐†𝑒 𝑐𝑒 + 2Tr

[
𝑐𝑒𝑐
†
𝑒 + 3

(
𝑐𝑑𝑐
†
𝑑
+ 𝑐𝑢𝑐†𝑢

)]
𝑐𝑒 ,

𝛽𝑐𝑞 = − 8
[
3𝑒2𝑄2𝑞𝑎𝑆𝐴 + 4𝑔

2
3𝑎𝑆𝐺

]
�̃�𝑞 + 2

(
�̃�𝑞𝑐
†
𝑞𝑎𝑞 + 𝑎𝑞𝑐†�̃�𝑞 − 2𝑎𝑞�̃�

†
𝑞𝑐𝑞 − 2𝑐𝑞�̃�

†
𝑞𝑎𝑞

)
+ 12𝑄𝑞𝑒

[
�̃�𝑞𝑐
†
𝑞𝑎𝑞𝐴 + 𝑎𝑞𝐴𝑐

†
𝑞�̃�𝑞 − 𝑐𝑞�̃�

†
𝑞𝑎𝑞𝐴 − 𝑎𝑞𝐴�̃�

†
𝑞𝑐𝑞

]
+ 16𝑔3

[
�̃�𝑞𝑐
†
𝑞𝑎𝑞𝐺 + 𝑎𝑞𝐺𝑐

†
𝑞�̃�𝑞 − 𝑐𝑞�̃�

†
𝑞𝑎𝑞𝐺 − 𝑎𝑞𝐺�̃�

†
𝑞𝑐𝑞

]
. (324)

Identifying 𝑐𝜓 = −�̃�𝜓𝑐 𝑓 𝑓 and 𝑎
𝑆𝑉 = 𝑔2𝐶𝑉𝑉 , where the couplings in the r.h.s. are defined in the basis

of Ref. [184], we can exactly reproduce the log 𝑣/𝑚𝜓 piece of the ALP–fermion couplings induced by the

ALP-gauge boson operators, in equations 26 and 31 of the aforementioned work.

(We have added to the first RGE the contributions from renormalizable couplings, as a further cross-

check of the Pyr@te results [8]. Such contributions can be easily included by adding the WFR factors and

the dimension four contributions in equations 551 and 552.)

6.2.5.7 Non-renormalizable Yukawa operators

The WFR factors of these operators can be read from the relevant Lagrangian written in terms of the

renormalized fields,

(𝑎𝜓 )𝛼𝛽𝜓
𝛼
𝐿𝜓

𝛽
𝑅
𝑆2 → (𝑎𝜓 )𝛼𝛽𝜓

𝑖
𝐿

[
𝛿𝑖𝛼 +

(
𝛿𝑍†
𝜓𝐿

)
𝑖𝛼

2

] [
𝛿𝛽 𝑗 +

(
𝛿𝑍𝜓𝑅

)
𝛽 𝑗

2

]
𝜓
𝑗
𝑅

[
1 + 𝛿𝑍𝑆

]
𝑆2 (325)

⊃ (𝑎𝜓 )𝛼𝛽𝜓
𝑖
𝐿𝜓

𝑗
𝑅
𝑆2

(
−1
32𝜋𝜖

) {
2
(
𝑄2𝜓𝑒

2 + 4
3
𝑔23

)
𝛿𝑖𝛼𝛿𝛽 𝑗 +

(
𝑐𝜓𝑐
†
𝜓

)
𝑖𝛼

2
𝛿𝛽 𝑗 + 𝛿𝑖𝛼

(
𝑐†
𝜓
𝑐𝜓

)
𝛽 𝑗

2

+ 4Tr
[
𝑐𝑒𝑐
†
𝑒 + 3𝑐𝑑𝑐

†
𝑑
+ 3𝑐𝑢𝑐†𝑢

]
𝛿𝑖𝛼𝛿𝛽 𝑗

}
=

(
−1
32𝜋𝜖

)
𝜓𝐿

[
2
(
𝑄2𝜓𝑒

2 + 4
3
𝑔23 + 2Tr

[
𝑐𝑒𝑐
†
𝑒 + 3𝑐𝑑𝑐

†
𝑑
+ 3𝑐𝑢𝑐†𝑢

] )
𝑐𝜓 + 𝑐𝜓𝑐

†
𝜓
𝑐𝜓

]
𝜓𝑅𝑆

2 .

Moreover, the non-renormalizable Yukawa operators involving the ALP mix with two different operators

in the LEFT, leading to the following mixing parameters: (1) 𝑛𝑎𝜓 ,𝑎𝜓𝑉 = 3 and Δ𝑛𝑎𝜓𝑉 ,𝑎𝜓
= −1; (2)

𝑛𝑎𝜓 ,𝑎𝑆𝑉
= 3 and Δ𝑛

𝑆𝑉 ,𝑎𝜓
= −1.
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The final RGEs are in turn given by:

𝛽𝑎𝑒 =

(
− 6𝑒2 + 𝜆𝑆

)
𝑎𝑞 −

(
24𝑒2𝑎

𝑆𝐴

)
𝑐𝑞 + 2

(
− 𝑐𝑒𝑎†𝑒 𝑐𝑒 +

13
4
𝑎𝑒𝑐
†
𝑒 𝑐𝑒 +

13
4
𝑐𝑒𝑐
†
𝑒 𝑎𝑒

)
(326)

+ 4Tr
[
𝑐𝑒𝑐
†
𝑒 + 3

(
𝑐𝑑𝑐
†
𝑑
+ 𝑐𝑢𝑐†𝑢

)]
𝑎𝑒 − 12𝑒

(
𝑐𝑒𝑐
†
𝑒 𝑎𝑒𝐴 + 𝑎𝑒𝐴𝑐

†
𝑒 𝑐𝑒

)
,

𝛽𝑎𝑞 =

(
− 6𝑄2𝑞𝑒2 − 8𝑔23 + 𝜆𝑆

)
𝑎𝑞 −

(
24𝑒2𝑄2𝑞𝑎𝑆𝐴 + 32𝑔

2
3𝑎𝑆𝐺

)
𝑐𝑞 (327)

+ 2
(
− 𝑐𝑞𝑎†𝑞𝑐𝑞 +

13
4
𝑎𝑞𝑐
†
𝑞𝑐𝑞 +

13
4
𝑐𝑞𝑐
†
𝑞𝑎𝑞

)
+ 4Tr

[
𝑐𝑒𝑐
†
𝑒 + 3

(
𝑐𝑑𝑐
†
𝑑
+ 𝑐𝑢𝑐†𝑢

)]
𝑎𝑞

+ 12𝑄𝑞𝑒
(
𝑐𝑞𝑐
†
𝑞𝑎𝑞𝐴 + 𝑎𝑞𝐴𝑐

†
𝑞𝑐𝑞

)
+ 16𝑔3

(
𝑐𝑞𝑐
†
𝑞𝑎𝑞𝐺 + 𝑎𝑞𝐺𝑐

†
𝑞𝑐𝑞

)
.

6.2.5.8 Gauge operators

Finally, the WFR of the photon field can be obtained from

𝑆𝐴𝜇𝜈𝐴
𝜇𝜈 →

[
1 + 𝛿𝑍𝑆

2

] [
1 + 𝛿𝑍𝐴

]
𝑆𝐴𝜇𝜈𝐴

𝜇𝜈 (328)

⊃ − 1
32𝜋2𝜖

(
2Tr

[
𝑐𝑒𝑐
†
𝑒 + 3𝑐𝑑𝑐

†
𝑑
+ 3𝑐𝑢𝑐†𝑢

]
+ 160

9
𝑒2

)
𝑆𝐴𝜇𝜈𝐴

𝜇𝜈 .

Furthermore, equation 294 leads to the following identification of the mixing parameters: 𝑛𝑎
𝑆𝐴
,𝑎𝜓𝐴

= 2
and Δ𝑛𝑎𝜓𝐴,𝑎𝑆𝐴

= 0. Therefore,

𝛽𝑎
𝑆𝐴

= − 4𝑒Tr
[
−

(
𝑐𝑒𝑎
†
𝑒𝐴
+ 𝑐†𝑒 𝑎𝑒𝐴

)
−

(
𝑐𝑑𝑎
†
𝑑𝐴
+ 𝑐†
𝑑
𝑎𝑑𝐴

)
+ 2

(
𝑐𝑢𝑎
†
𝑢𝐴
+ 𝑐†𝑢𝑎𝑢𝐴

) ]
(329)

+ 2Tr
[
𝑐𝑒𝑐
†
𝑒 + 3𝑐𝑑𝑐

†
𝑑
+ 3𝑐𝑢𝑐†𝑢

]
𝑎
𝑆𝐴
+ 160

9
𝑒2𝑎

𝑆𝐴
.

In a complete analogous way,

𝛽𝑎
𝑆𝐺

= − 2Tr
[
𝑐𝑑𝑎
†
𝑑𝐺
+ 𝑐†
𝑑
𝑎𝑑𝐺 + 𝑐𝑢𝑎

†
𝑢𝐺
+ 𝑐†𝑢𝑎𝑢𝐺

]
(330)

+ 2Tr
[
𝑐𝑒𝑐
†
𝑒 + 3𝑐𝑑𝑐

†
𝑑
+ 3𝑐𝑢𝑐†𝑢

]
𝑎
𝑆𝐺
− 46

3
𝑔23𝑎𝑠𝐺 .

These results are fully generic, not assuming that the EFT in the UV is the SM+ALP. Altogether, they

show that the running in the LEFT can introduce two new important effects. First, dimension five operators

can now contribute to the renormalizable couplings, in particular the fermion and ALP masses:

𝛿�̃�𝜓 ∼ �̃�2
𝑆𝑎𝜓 , 𝛿�̃�2

𝑆 ∼ �̃�
3
𝜓
𝑎𝜓 . (331)

(Such contributions are however absent if the UV completion is the SM+ALP EFT producing vanishing 𝑎𝜓
at all scales.) Second, the gauge operators are no longer scale invariant; instead, they can mix with the

dipole operators. (Again, this effect cannot be obtained from the SM+ALP EFT since no dipole operator is

generated up to dimension five.)
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6.2.6 A comment on the non-renormalization results

A comment is in order regarding the non-renormalization of the ALP–gauge boson interactions in the EFT

before EWSB and their breaking in the LEFT. With this aim, it is useful to consider the case of the 𝜃 -angles

in the SMEFT and try to apply the same reasoning to the axion, which can be regarded as a dynamical 𝜃 .

It is a well known result that the 𝐶𝑃 -odd anomalous couplings in the SM cannot be multiplica-

tively renormalized at any order in perturbation theory [282, 283]. Since the corresponding operators

𝛼𝑋 /(8𝜋)𝑋𝑋 ≡ 𝛼𝑋 /(8𝜋)𝜕𝜇𝐾𝜇 are total derivatives, the corresponding Feynman rules are ∝
∑
𝑝𝜇 = 0

in each vertex. Therefore, such terms alone will always give vanishing contributions to any perturbative

calculation. Furthermore, because the 𝜃 -angle terms are topological (see equation 389), they have a 2𝜋
periodicity which leaves the path integral, and therefore the respective topological charge, well defined.

In the case of the axion which is, by definition, identified with a discrete symmetry 𝑆 → 𝑆 + 2𝜋Λ,
compatibility with the 𝜃 -angle period requires that in any operator of the form

𝑎
𝛼𝑋
8𝜋Λ

𝑆𝑋𝜇𝜈𝑋
𝜇𝜈 , (332)

the coupling 𝑎 is an integer. Therefore, the latter should not run under the continuous evolution of the

renormalization group. We have confirmed this in the case of the ALP EFT, but not in the case of the ALP

LEFT. While such quantization (and its implications for the running) holds when we consider the anomalous

operators in isolation, it can be altered by the presence of fermions [284]. For example, if the fermions

couple to the axion, we can make chiral rotations, 𝜓𝐿 → 𝑒i𝑥𝑆𝜓𝐿 and 𝜓𝑅 → 𝑒−i𝑥𝑆𝜓𝑅 , that change
𝑎 → 𝑎 + 2𝑥 (due to the chiral anomaly). In this case, it is rather a combination of several couplings in

the theory that is quantized and it is no longer correct to require 𝑎 ∈ ℤ [284].

Therefore, even in the theory above EWSB, the anomalous couplings need not to be quantized and

could potentially mix with other operators under renormalization. However, since no other operator in the

EFT basis gives corrections to these couplings, at one-loop, the corresponding RGEs remain scale invariant

after factorizing out the gauge couplings; see appendix H.4.

On the other hand, below the EW scale, we see that the anomalous operators can indeed mix with the

dipole ones. (Furthermore, assuming that the axion takes some VEV such that 𝑎
𝑆𝑉 𝑆 is as an effective angle

and 𝑐𝜓𝑆 is an effective fermion mass, the corresponding RGEs in equations 329 and 330 are functions

of the same SM LEFT parameters as the 𝜃 -term RGEs in Ref. [281].)

6.2.7 Phenomenological applications

The energy dependence of the different parameters in the ALP EFTs has a profound impact on the phe-

nomenology of these particles. Consider a UV theory where only a reduced set of couplings is present.

We might be tempted to think that there is enough freedom to play with these couplings if they are loosely

constrained by high-energy experiments. However, the running in the renormalization group can lead to
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significant contributions which are not necessarily small, as there are O(1) numbers in the anomalous

dimension matrix, in equation 255, which will become log enhanced. Moreover, the mixing with different

operators in the RGEs can produce at smaller energies couplings which are much more constrained by

low-energy experiments than those present in the UV.

To exemplify this point, let us consider the following Lagrangian, defined at the scale Λ = 10 TeV:

LUV = LSM +
1
2
𝜕𝜇𝑆𝜕

𝜇𝑆 + 1
2
�̃�2
𝑆𝑆

2 +
𝑎
𝑆𝑍

𝑐2𝜔 − 𝑠2𝜔
𝑆

(
𝑐2𝜔𝑊𝜇𝜈𝑊

𝜇𝜈 − 𝑠2𝜔𝐵𝜇𝜈𝐵𝜇𝜈
)
, (333)

where the relation between the gauge couplings is chosen to make 𝑆 photophobic. Such construction

arises, for instance, in the 𝑆𝑂 (6)/𝑆𝑂 (5) NMCHM; see equation 115. Since the ALP–gauge boson cou-
plings are scale independent, 𝑎

𝑆𝐴
remains vanishing at all scales (neglecting finite contributions). This

holds in this particular model below the EW scale, because dipole operators are not generated by the

Lagrangian in equation 333 up to O(1/Λ). The photophobic condition is therefore stable.
The coupling 𝑎

𝑆𝑍
can be directly constrained at colliders, namely in 𝑝𝑝 → 𝑍𝑆 searches. The corre-

sponding bounds are weak, allowing couplings ∼ 0.2 (0.04) TeV−1 at the current run (HL phase) of the
LHC [230]. However, 𝑎

𝑆𝑍
generates, through mixing via the RGEs, other couplings such as 𝑎𝑆𝐻𝑒 which

is much more constrained experimentally. Considering the physical ALP mass to be O(KeV), the most

stringent bound on the parameter space comes from the absence of extra cooling of Red Giants due to

the emission of ALP radiation, implying [285]

𝑐𝑒 ≲ 3 × 10−13 , for a typical core temperature of 𝑇 ≈ 108 K . (334)

To translate this constraint into a bound on 𝑎
𝑆𝑍

, we run this coupling up to the EW scale using equa-

tion 323. (Assuming that there are no beyond the SM particles on top of the ALP, 𝛽𝑐𝑒 ∝ 𝑐𝑒 .) Resumming
equations (315) and (323), up to O(1/Λ) effects, we obtain:

𝑐𝑒 (𝑣) ≲ 2.8 × 10−13 , (335)

which corresponds to

𝑎𝑆𝐻𝑒 (𝑣) ≲ 1.6 × 10−12 TeV−1 . (336)

Solving numerically equations (249)-(254), for 𝜆𝑆𝐻 = 0, as well as the RGEs of the gauge and Yukawa

couplings above the EW scale (in appendix C of Ref. [8]), we find that the maximum allowed value for 𝑎
𝑆𝑍

is

𝑎
𝑆𝑍
(10 TeV) ≲ 4.8 × 10−6 TeV−1 . (337)

This bound is four orders of magnitude stronger than that expected from future direct searches, which

shows the potential of our results to study the ALP phenomenology across several energy scales. The

running solely in the LEFT corrects the result in equation 334 by∼ 6%, which can be taken as a systematic

error when working in the SM+ALP EFT.
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Another interesting case is that of a top-philic ALP at Λ = 10 TeV, with Lagrangian

LUV = LSM +
1
2
𝜕𝜇𝑆𝜕

𝜇𝑆 + 1
2
�̃�2
𝑆𝑆

2 + 𝑎𝑡𝑆
(
i𝑞𝐿𝐻𝑡𝑅 + h.c.

)
; (338)

in our notation, 𝑎𝑡 = (𝑎𝑆𝐻𝑢)33. The experimental bounds on such coupling are also very weak. To the

best of our knowledge, no dedicated searches for 𝑝𝑝 → 𝑆𝑡𝑡 have been carried out and only indirect limits

have been set on 𝑎𝑡 ≲ TeV−1 [286].
Such coupling generates, via renormalization mixing, a non-vanishing 𝑎𝑆𝐻𝑒 . Therefore, we can proceed

in the same way as before, to translate the low-energy bound in equation 334 into constraints on the UV

coupling, 𝑎𝑡 . Solving numerically the relevant RGEs, we obtain

𝑎𝑡 (10 TeV) ≲ 4.3 × 10−6 TeV−1 , (339)

for an ALP at the KeV scale. This bound is six orders of magnitude stronger than that from other stud-

ies. Again, it becomes clear the importance of considering the RGE effects when setting constraints on a

particular model (such constraints hardly replace direct searches, but they can have an important com-

plementary role in probing the model parameter space).

6.2.8 Outlook

We have constructed the most generic 𝐶𝑃 -even EFT involving the SM and an ALP, up to dimension five,

and have subsequently obtained the one-loop RGEs of the different couplings in the theory above and

below the EW scale.

In the unbroken phase, partial computations of the RGEs have been previously obtained in several

works assuming shift-symmetric operators only (apart from the ALP mass). Therefore, such works have

dismissed, for example, the marginal coupling of the ALP to the Higgs boson as well as its self-interaction,

which we have included in our computations. Furthermore, we have pointed out some redundancies that

appear in the commonly used shift-symmetric basis and obtained conditions on the corresponding coef-

ficients under which the operators form an irreducible set; see appendix H.4. Such conditions make the

coefficients in this shift-symmetric and our bases unequivocally related which allowed us to obtain the

RGEs in the former and therefore cross-check several results in the literature [184, 287, 288]. Subsequent

independent works also found exact agreement with our results [289, 290].

It is worth noting that we have matched all the UV divergences onto an independent off-shell basis and

wrote explicitly these results, to enlarge their applicability. In this way, the RGEs of extensions of our EFTs,

with either new particles or higher-dimensional operators, can be built on our results.

In the ALP LEFT, relevant at low energies, in which the SM massive bosons, as well as the top quark,

have been integrated out, we have computed the evolution of all parameters in the theory irrespective of

the UV completion above the EW scale. To the best of our knowledge, the RGEs in this EFT were computed
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for the first time in the context of our work11. We have found that, in general, effective interactions can

renormalize dimension four ones and operators involving the ALP can mix with purely SMEFT operators.

In this regard, it is interesting to note that even a theory photophobic in the UV might generate the ALP

coupling to photons in the LEFT by mixing with dipole operators under renormalization. Although the

running in this EFT is expected to produce small effects, the ALP–photon coupling is so constrained [184]

that important bounds could be derived on UV models that generate the dipole operators.

Finally, let us emphasize the importance of these studies for the correct interpretation of the experi-

mental results on the ALP parameter space. We have shown that, even for UV models poorly constrained

by collider experiments, the RGE evolution can generate other couplings which can be severely constrained

in astrophysical events, as the case of the ALP–electron coupling. In turn, the knowledge of the RGEs al-

lows us to translate such bounds into upper limits on the relevant UV parameters. This provides a useful

method to study the interplay between collider and astrophysical probes of NMCHMs, collected in vari-

ous experiments at very different energy scales. As an example, we studied an explicit realization of the

𝑆𝑂 (6)/𝑆𝑂 (5) CHM, where the exotic pNGB — identified with the ALP — was assumed to couple only

to gauge bosons, via the WZW term. The corresponding RGE constraint we have obtained, running up

the bound on the ALP–electron coupling from Red Giants cooling, is more than four orders of magnitude

stronger than that from direct searches at the LHC.

11Days after the publication of our work, Ref. [289] appeared which also computed the RGEs in the ALP LEFT, up to two-loop
order in the gauge couplings, but assuming that the UV completion of the LEFT is the SM+ALP EFT.
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Conclusions

Ending as we started, we hold the idea that the paradigm in particle physics today is one of “rough water”.

The SM does not give us a complete understanding of Nature andmysteries that date back several decades,

such as DM, are left unsolved.

The Higgs boson remains one of the most interesting directions we have to delve into these unknowns

and one of the main motivations to cross the high-energy frontier. Indeed, in popular theories to embed

the Higgs boson in a more fundamental framework, new particles arise which are promising candidates

for many of our opened questions. This is the case of NMCHMs.

In such setups, we have shown that compositeness is an experimentally viable solution to the HP while

addressing smoothly other issues that remain unsolved in the SM and which could re-enforce the demand

for new physics next to the TeV scale. For example:

1. In the 𝑆𝑂 (6)/𝑆𝑂 (5) NMCHM, an EW pseudoscalar singlet 𝑆 arises in FCNC decays of the top

quark. Such ALP can provide a dynamical solution to the strong𝐶𝑃 problem; serve as DM; help generating

the matter-antimatter asymmetry; etc. The ALP FCNCs arise at dimension five in the pNGBs EFT and could

potentially be observable in the decays 𝑡 → 𝑆𝑞 and 𝑡 → 𝑆𝑆𝑞 leading, respectively, to branching ratios

of the order 10−4 and 10−10, for a new physics scale 𝑓 ∼ 1 TeV and couplings 𝑐 ∼ O(0.1). Analyses
currently performed at the LHC are not significantly sensitive to any of these interactions, which could

provide a remarkable insight into the nature of the ALP and on the problems that it can solve.

2. In the 𝑆𝑂 (7)/𝐺2 NMCHM, an EW pseudoscalar triplet Φ arises along with the Higgs boson,

changing drastically the nature of the EW PT, which can become first order. In such case, we found that

baryogenesis can be explained for 𝑐/𝑓 ∼ 1 TeV−1 and triplet masses ∼𝑚𝑡 − 2𝑚𝑡 . In this region, the

triplet components can be pair-produced by EW currents and decay promptly into third generation quarks.
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However, we have found no collider searches which can currently constrain this region.

3. In the low-mass regime of the 𝑆𝑂 (7)/𝑆𝑂 (6) NMCHM, leptophilic scalars with masses of

O(1) GeV can couple to heavy flavour-violating vector bosons, triggering rare decays of 𝐵-mesons into

multiple muons at the LHCb. Such vectors are promising candidates to explain the LFU anomalies, their

composite nature being crucial to evade bounds from high-energy searches. (If such composite chan-

nels are opened, vector masses ≳ 1.3 TeV are not yet excluded.) Although the decay 𝐵 → 2𝜇+2𝜇−

has been probed experimentally, we found compelling reasons to test the channels 𝐵 → 3𝜇+3𝜇− and

𝐵 → 3𝜇+3𝜇−𝐾 , mediated by the light pNGBs, which have not been searched for directly. One reason is
that the tagging of extra mesons is required in the limit where the light scalars are degenerate, in which

case the 𝐵 decay into only muons vanishes. Moreover, other precision experiments cannot constrain this

model.

4. In the high-mass regime of the 𝑆𝑂 (7)/𝑆𝑂 (6) NMCHM, we showed that composite DM nat-

urally arises at the EW scale, with the right properties to explain the relic abundance in the Universe; while

the presence of a lighter pNGB 𝜅 can weaken significantly the low-energy bounds. If the DM annihilates

sizably into this exotic DM-SM mediator and the latter is𝐶𝑃 -odd, the direct detection cross section is loop

suppressed, being out of reach even of future facilities. In leptophilic regimes, future indirect detection

facilities could also leave the possibility that our candidate is all the DM completely unprobed. At colliders,

we focused on decays of pair-produced VLQs into the EW pNGBs, which constitutes a double smoking gun

evidence of compositeness. The branching ratios in these channels can be larger than those into the SM

bosons, rendering the current direct searches mostly insensitive to these scenarios. Furthermore, for our

DM candidate to explain the totality of relic abundance, new physics scales ∼ 3 TeV are typically required,
which makes searches for the heavy quarks more suitable for future colliders. Although the reach of a 100

TeV collider has been explored for the DM channel, no specific searches for the visible one have been

developed.

All the models above, built on low cutoff scales, justify our positive answer to the first question posed

in the Introduction, extending the purpose of composite theories to well beyond the HP. Not only NMCHMs

provide motivated solutions to problems from flavour anomalies to DM, but by addressing these solutions

we were led to radically new and unexplored signatures, unlike the ones which have been persistently

explored by the experimental collaborations. This last point answers directly the second question posed

also in chapter 1.

We have therefore proposed new dedicated analyses to probe the non-standard signatures:

1. To test the ALP FCNCs, we have proposed an inclusive search for 𝑝𝑝 → 𝑡𝑆 (𝑆) + 𝑗 . In the muon
channel, we have shown that, for O(1) couplings in the UV and an integrated luminosity 𝐿 = 150 fb−1,
the LHC could probe 𝑓 ∼ 90 (3) TeV in single (pair) production.
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2. To study the triplet model in the region where EW baryogenesis can be explained, we have proposed

to search for 𝑝𝑝 → 𝜙±𝜙0 → 𝑡𝑏 (𝑏𝑡)𝑏𝑏, showing that this entire region could be tested at the HL-LHC.
Moreover, we have demonstrated that a certain region of the parameter space that could be left untested

by Higgs to di-photon measurements could be probed at the future GW observatory LISA. In this region,

the strongest PT proceeds mainly in one–step and, therefore, only one peak signal structures might be

expected.

3. To probe the signatures of light leptophilic scalars coupled to a heavy vector, we proposed ded-

icated LHCb searches for 𝐵0𝑠 → 3𝜇+3𝜇− and 𝐵+ → 𝐾+3𝜇+3𝜇−, as well as 𝐵0 → 3𝜇+3𝜇− and

𝐵0𝑠 → 𝐾0∗3𝜇+3𝜇−, to test other flavour transitions. We found that, at Upgrade II of the LHCb detec-

tor, our proposed analyses could outperform bounds from meson mixing, as well as probe the region in

which the anomalies in LFU can be explained. It is also worth mentioning that such searches have been

considered one of the benchmark interests of the LHCb collaboration [229].

4. To explore the non-minimal nature of the DM model, we have developed new analyses to be per-

formed at a future 100 TeV collider based on the search for 𝑝𝑝 → 𝐵𝐵 → 𝜅𝜅𝑏𝑏. In the muonphilic

scenario, that could elude the constraints from future DM searches, we found that all bottom partner

masses up to ∼ 9 TeV could be probed, with 𝐿 = 1 ab−1.

In spite of the powerful constraints these numerous searches could set on the parameter space of

NMCHMs, they are only sensitive to particular scenarios in the UV. With the aim of describing a wider

parameter space of some CHMs, we rely on EFTs which include all effective operators that can be present

at low energies. We constructed two of such EFTs, one in which we extended the SM with a VLL and

another where we extended the SM with an ALP. Both these exotic particles are allowed to be close to the

EW scale by current data and are common to the majority of CHMs.

In the SM+VLL EFT, we have considered all operators up to dimension six which could trigger the single

production 𝑝𝑝 → 𝐸ℓ . We argued that such interactions can dominate the production and decay of the

VLL 𝐸 in the large
√
𝑠 region of the parameter space. Again, this contrasts with the topology in which these

particles are usually searched for at the LHC. By recasting a search for excited leptons, we derived global

bounds on the Wilson coefficients, the most constrained one being ∼ 0.05 TeV−2. We also provided a

master formula to constrain any UV model taking into account all operators which are generated in the IR,

extending the scope of previous analyses.

In the SM+ALP EFT, we have computed the full one-loop RGEs of all parameters in the theory up

to dimension five, above and below the EW scale, assuming only that the new physics preserves 𝐶𝑃 .

The knowledge of such equations is required for a consistent analysis of the constraints, collected by

different experiments across a huge range of energies, that have been set on the parameter space of the

ALP. As an example of the potential of our results, we explored the possibility of probing indirectly the

ALP-𝑍 interaction, that is predicted for example in the 𝑆𝑂 (6)/𝑆𝑂 (5) NMCHM, via its contribution to the
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ALP-electron coupling, which is bounded by astrophysical signals. The corresponding RGE constraint on

the UV coupling is four orders of magnitude stronger than that expected from future direct searches e.g.

𝑝𝑝 → 𝑆𝑍 , providing an important complementarity between collider and astrophysical probes.

In a time where model building and the search for alternative mechanisms to probe new physics are

so intense, the conclusion of this thesis is particularly relevant: there are traditional solutions to the HP

and other mysteries in particle physics which, in their realistic versions, are not ruled out by current data

and which require significant experimental advances in upcoming facilities to be possibly refuted.
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A
Mathematical relations

We use the following master integrals thoroughly in this work:∫
dd𝑘

(2𝜋)d
1(

𝑘2 −𝑀2
)𝑛 =

(−1)𝑛i
(4𝜋)d/2

Γ(𝑛 − d/2)
Γ(𝑛)

1

𝑀2𝑛−d
≡ 𝐴𝑛 , (340)

∫
dd𝑘

(2𝜋)d
𝑘𝜇𝑘𝜈(

𝑘2 −𝑀2
)𝑛 =

1
2
(−1)𝑛−1i
(4𝜋)d/2

Γ(𝑛 − d/2 − 1)
Γ(𝑛)

1

𝑀2𝑛−d−2
𝑔𝜇𝜈 ≡ 𝐵𝑛𝑔𝜇𝜈 , (341)

∫
dd𝑘

(2𝜋)d
𝑘𝜇𝑘𝜈𝑘𝜌𝑘𝜎(
𝑘2 −𝑀2

)𝑛 =
1
4
(−1)𝑛i
(4𝜋)d/2

Γ(𝑛 − d/2 − 2)
Γ(𝑛)

1

𝑀2𝑛−d−4
(
𝑔𝜇𝜈𝑔𝜌𝜎 + 𝑔𝜇𝜌𝑔𝜈𝜎 + 𝑔𝜇𝜎𝑔𝜈𝜌

)
≡ 𝐶𝑛

(
𝑔𝜇𝜈𝑔𝜌𝜎 + 𝑔𝜇𝜌𝑔𝜈𝜎 + 𝑔𝜇𝜎𝑔𝜈𝜌

)
, (342)

where d = 4 − 2𝜖 is the number of spacetime dimensions and we use the metric sign convention

𝑔𝜇𝜈 = diag (1,−1,−1,−1). At O(1/𝜖), these integrals lead to:

𝐴2 =
i

16𝜋2𝜖
+ (finite) , (343)

𝐵3 =
i

64𝜋2𝜖
+ (finite) , (344)

𝐶4 =
i

384𝜋2𝜖
+ (finite) . (345)

For expanding in external momentum, we use:

1
(𝑘 + 𝑝)2 −𝑀2 =

1
𝑘2 −𝑀2

[
1 − 2𝑘 · 𝑝 + 𝑝2

𝑘2 −𝑀2 +
4(𝑘 · 𝑝)2

(𝑘2 −𝑀2)2

]
+ O(𝑝3) . (346)
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The following relations involving the generators of 𝑆𝑈 (𝑁 ) are also employed in several results:

Tr
[
𝑇𝑎𝑇𝑏

]
= 𝑇 (𝑁 )

𝐹
𝛿𝑎𝑏 , (347)∑

𝑎

(
𝑇𝑎𝑇𝑎

)
𝑖 𝑗 = 𝐶

(𝑁 )
𝐹

𝛿𝑖 𝑗 , (348)∑
𝑐,𝑑

𝑓𝑎𝑐𝑑 𝑓𝑏𝑐𝑑 = 𝐶 (𝑁 )
𝐴

𝛿𝑎𝑏 , (349)

∑
𝑎
𝑇𝑎𝑖 𝑗𝑇

𝑎
𝑘ℓ =

1
2

(
𝛿𝑖ℓ𝛿 𝑗𝑘 −

1
𝑁
𝛿𝑖 𝑗𝛿𝑘ℓ

)
, (350)

where 𝑇 (𝑁 )
𝐹

= 1
2 , 𝐶
(𝑁 )
𝐴

= 𝑁 and 𝐶 (𝑁 )
𝐹

= 𝑁 2−1
2𝑁 .

Finally, in identities involving the Levi-Civita tensor, we use the convention 𝜖0123 = 1. The following
relations hold, in four dimensions1:

Tr
[
𝛾𝛼𝛾𝛽𝛾𝜎𝛾𝛿𝛾5

]
= −4i𝜖𝛼𝛽𝜎𝛿 , (351)

𝜖𝛼𝛽𝛾𝛿𝛾𝛽𝛾𝛾𝛾𝛿 = 6i𝛾𝛼𝛾5 , (352)

𝜖𝛼𝛽𝛾𝛿𝜖
𝜇
𝛽𝛾𝛿

= −6i𝑔𝛼𝜇 , (353)

𝜖𝛼𝛽𝛾𝛿𝛾𝛾𝛾𝛿 = −i[𝛾𝛼 , 𝛾𝛽 ]𝛾5 . (354)

The last of these relations furthermore implies:

𝜎𝛼𝛽𝛾5 =
i
2
𝜖𝛼𝛽𝛾𝛿𝜎𝛾𝛿 , (355)

where 𝜎𝜇𝜈 ≡ i[𝛾𝜇, 𝛾𝜈 ]/2 = i(𝛾𝜇𝛾𝜈 − 𝑔𝜇𝜈 ) and {𝛾𝜇, 𝛾𝜈 } = 2𝑔𝜇𝜈 .

1Extensions to other dimensions can be found, for example, in Ref. [184].
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B
One loop functions

The loop functions contributing to the Higgs to di-photon partial decay width, that we use in section 5.2 in

the context of the triplet model, read [291]:

𝐴0(𝑥) = −𝑥2
[
𝑥−1 − 𝑓 (𝑥−1)

]
, (356)

𝐴1/2(𝑥) = 2𝑥2
[
𝑥−1 + (𝑥−1 − 1) 𝑓 (𝑥−1)

]
, (357)

𝐴1(𝑥) = −𝑥2
[
2𝑥−2 + 3𝑥−1 + 3(2𝑥−1 − 1) 𝑓 (𝑥−1)

]
, (358)

for spin-0 (the EW triplet that we denote by Φ), spin-1 (the𝑊 boson) and spin-1/2 (the top quark) particles.
In the case we are interested, where𝑚𝐻 < 2𝑚𝑖 (𝑖 =𝑚𝑊 , 𝑚𝑡 , 𝑚Φ),

𝑓 (𝑥) = arcsin2
√
𝑥 . (359)

In the remaining of this section, we compute explicitly the new physics contribution triggered by 𝜆𝐻Φ,

defined in equation 123, to ℎ → 𝛾𝛾 . There are two diagrams contributing to this process; see figure 38.

The corresponding amplitude reads:

iM = 𝜖𝜇 (𝑝1)𝜖𝜈 (𝑝2) (−i𝜆𝐻Φ𝑣)
∫

𝑑4𝑞

(2𝜋)4


i2

(
2i𝑒2𝑔𝜇𝜈

)[
(𝑞 + 𝑝1 + 𝑝2)2 −𝑚2

Φ

] [
𝑞2 −𝑚2

Φ

]
+2

i3 (−i𝑒)2
(
2𝑞 + 𝑝1

)𝜇 (
2𝑞 − 𝑝2

)𝜈[
(𝑞 + 𝑝1)2 −𝑚2

Φ

] [
(𝑞 − 𝑝2)2 −𝑚2

Φ

] [
𝑞2 −𝑚2

Φ

]  .

(360)

This expression can be further simplified to

iM = 2𝜆𝐻Φ𝑣𝑒
2 [
𝐼1 + 𝐼2

]
, (361)
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Figure 38: Scalar contributions to ℎ → 𝛾𝛾 . The momenta of the outgoing photons are labeled as 𝑝1 and
𝑝2. The double line denotes 𝜙

±.

where

𝐼2 ≡
∫

𝑑4𝑞

(2𝜋)4
−𝑔𝜇𝜈[

(𝑞 + 𝑝1 + 𝑝2)2 −𝑚2
Φ

] [
𝑞2 −𝑚2

Φ

] , (362)

𝐼3 ≡
∫

𝑑4𝑞

(2𝜋)4
4𝑞𝜇𝑞𝜈[

(𝑞 + 𝑝1)2 −𝑚2
Φ

] [
(𝑞 − 𝑝2)2 −𝑚2

Φ

] [
𝑞2 −𝑚2

Φ

] . (363)

Next, we use the Passarino-Veltman Reduction [292] to simplify these tensor integrals, in particular to

write 𝐼3 (with 𝑟 = 2 powers of the loop momentum in the numerator) as a linear combination of scalar

functions (with 𝑟 = 0). The former admits a generic expansion of the form:

𝐶𝜇𝜈 = 𝐶00𝑔𝜇𝜈 +𝐶11(𝑝𝜇1𝑝
𝜈
1 ) +𝐶

12(𝑝𝜇1𝑝
𝜈
2 + 𝑝

𝜈
1𝑝
𝜇
2) +𝐶

22(𝑝𝜇2𝑝
𝜈
2) . (364)

A similar expansion exists for 𝐼2, the scalar functions being denoted by 𝐵 in this case. Using this reduction,

we find:

𝐼2 = −𝑔𝜇𝜈
i𝐵0(Δ2)
16𝜋2

and 𝐼3 = 4
i
[
𝐶00(Δ3)𝑔𝜇𝜈 +𝐶12(Δ3)𝑝

𝜇
2𝑝
𝜈
1

]
16𝜋2

, (365)

using the same notation as in here1. The Δ-parameters are functions of the new variables of integration

𝑥 and 𝑦: Δ2 = (𝑥2 − 𝑥)𝑚2
𝐻 +𝑚

2
Φ, while Δ3 ≡ −𝑥𝑦𝑚2

𝐻 +𝑚
2
Φ. Note that all other components in

equation 364 vanish due to the Ward identity. Plugging these expressions into the amplitude, we obtain:

iM =
2i𝜆𝐻Φ𝑣𝑒2

16𝜋2

[
− 𝑔𝜇𝜈𝐵0 + 4𝐶00𝑔𝜇𝜈 + 4𝐶12𝑝𝜈1𝑝

𝜇
2

]
(366)

=
2i𝜆𝐻Φ𝑣𝑒2

16𝜋2

[
𝑔𝜇𝜈

(
Δ𝜖 −

∫ 1

0
𝑑𝑥 log

Δ2
𝜇2

)
+ 𝑔𝜇𝜈

(
Δ𝜖 − 2

∫ 1

0

∫ 1−𝑥

0
𝑑𝑥𝑑𝑦 log

Δ3
𝜇2

)
+ 4𝑝𝜈1𝑝

𝜇
2

(
−

∫ 1

0

∫ 1−𝑥

0
𝑑𝑥𝑑𝑦

𝑥𝑦

Δ3

) ]
,

1https://www.ugr.es/~jillana/SM/sm1.pdf.
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where the divergences (parameterized by Δ𝜖 ) and the 𝜇-scale dependence cancel out. Therefore, we end

up with

iM =
2i𝜆𝐻Φ𝑣𝑒2

16𝜋2

[
𝑔𝜇𝜈 (𝑋 − 2𝑌 ) + 4𝑝𝜈1𝑝

𝜇
2𝑍

]
, (367)

where

𝑋 ≡
∫

𝑑𝑥 logΔ2 , 𝑌 ≡
∫ ∫

𝑑𝑥𝑑𝑦 logΔ3 and 𝑍 ≡
∫ ∫

𝑑𝑥𝑑𝑦
𝑥𝑦

Δ3
. (368)

In turn, the squared amplitude reads:

|iM|2 =

(
2𝜆𝐻Φ𝑣𝑒2

16𝜋2

)2 [
𝑔𝜇𝜈𝑔𝜇𝜈 (𝑋 − 2𝑌 )2 + 8𝑝1 · 𝑝2(𝑋 − 2𝑌 )𝑍

]
=

(
2𝜆𝐻Φ𝑣𝑒2

16𝜋2

)2
4

[
(𝑋 − 2𝑌 )(𝑋 − 2𝑌 +𝑚2

𝐻𝑍 )
]

=

(
2𝜆𝐻Φ𝑣𝑒2

16𝜋2

)2
4A2

0(𝜏) . (369)

In the last line, we wrote the 𝑋,𝑌, 𝑍 integrals as a function of 𝜏 = 4𝑚2
Φ/𝑚

2
𝐻 and

A0(𝜏) ≡
1
√
2

{
1 − 𝜏

2
[
Li2(𝑧) + Li2(𝑧)

]}
, where 𝑧 =

2
(
1 + i
√
𝜏 − 1

)
𝜏

. (370)

The decay width in the rest frame of the Higgs particle is given by

Γ(ℎ → 𝛾𝛾) = 1
8𝜋
|−→𝑝1 |
𝑚2
𝐻

1
2
|iM|2 , (371)

where |−→𝑝1 | =𝑚𝐻 /2. Plugging in equation 369, we finally obtain:

Γ (ℎ → 𝛾𝛾) =
(
𝜆𝐻Φ𝑣

)2 𝛼2em
32𝜋3𝑚𝐻

A2
0(𝜏) , (372)

which (although not apparently) agrees with the scalar contribution in equation 127.

174



A
p
p
e
n
d
ix

C
Effective potential

C.1 At zero temperature

Let us consider a self-interacting ℤ2-symmetric scalar field theory, for simplicity. The effective potential at

one-loop can be computed as

𝑉 = 𝑉tree + Δ𝑉CW , (373)

where the first piece is the tree level potential

𝑉tree =
1
2
𝑚2𝜙2 + 𝜆

4!
𝜙4 , (374)

while the second one denotes the one-loop correction to 𝑉tree, at zero temperature, as computed by

Coleman and Weinberg [293]. The latter corresponds to an infinite series of 1PI diagrams evaluated at

zero external momenta. An arbitrary diagram in this series contributes to Δ𝑉CW with

(−i𝜆)𝑛︸ ︷︷ ︸
𝑛 vertices

× i𝑛 (𝑝2 −𝑚2)−𝑛︸             ︷︷             ︸
𝑛 propagators

× 𝜙2𝑛︸︷︷︸
2𝑛 external legs

× (1/2)𝑛︸ ︷︷ ︸
Bose statistics

× 1/2𝑛︸︷︷︸
symmetry factor

. (375)

Above, the Bose-Einstein statistics factor takes into account that the exchange of two external lines in the

same vertex does not produce a new graph; the symmetry factor comes from reflection andℤ𝑛 symmetries

that act on the 𝑛-polygon in the 1PI expansion.

To study the form of the effective potential, we split the scalar field into a background plus a quantum

fluctuation 𝜙 = 𝜙 + 𝜙𝑞 , so that only the latter propagates internally. Making this replacement in equa-

tion 374, we obtain an effective mass for the quantum modes,𝑚2
eff =𝑚

2+𝜆𝜙2/2. Using the background
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field and gathering the factors in equation 375, we find that

Δ𝑉CW = i
∞∑
𝑛=1

∫
𝑑4𝑝

(2𝜋)4
1
2𝑛

[
𝜆𝜙2/2
𝑝2 −𝑚2

]𝑛
= − i

2

∫
𝑑4𝑝

(2𝜋)4
log

[
1 − 𝜆𝜙2/2

𝑝2 −𝑚2

]
= − i

2

∫
𝑑4𝑝

(2𝜋)4
log

[
𝑝2 −𝑚2

eff

]
, (376)

neglecting a field independent term (the second one in the expansion log𝑥1/𝑥2 = log𝑥1 − log𝑥2).
Our final potential is however UV divergent [209]. To see this clearly, we can compute the first derivative

of the potential with respect to the effective mass using dimensional regularization in d = 4−2𝜖 spacetime
dimensions:

𝜕Δ𝑉CW

𝜕𝑚2
eff

=
i
2
𝜇2𝜖

∫
𝑑d𝑝

(2𝜋)d
1

𝑝2 −𝑚2
eff

(377)

= − 1
32𝜋2

𝑚2(𝜙)
[
1
𝜖
+ 1 − 𝛾𝐸 + log 4𝜋 + 2 log

𝑚eff
𝜇

]
+ O(𝜖) ,

where the 𝜇-scale was introduced to make the effective coupling adimensional for any d, that is 𝜆 → 𝜇2𝜖𝜆.

In the last line, we have expanded equation 340 around 𝜖 ≈ 0, 𝛾𝐸 being the Euler-Mascheroni constant.

Integrating equation 377 with respect to the mass, we obtain:

Δ𝑉CW =
𝑚4
eff

64𝜋2

[
−

(
1
𝜖
+ 3
2
− 𝛾𝐸 + log 4𝜋

)
+ log

𝑚2
eff

𝜇2

]
. (378)

Finally, in the MS renormalization scheme, we can drop all the terms in parenthesis which are absorbed

by the relevant counterterms. Therefore, the final expression for the full one-loop renormalized potential is

Δ𝑉CW =
𝑚4
eff

64𝜋2

[
− 3
2
+ log

𝑚2
eff

𝜇2

]
. (379)

C.2 At finite temperature

To derive the finite temperate corrections to the effective potential, let us start by considering the harmonic

oscillator whose Hamiltonian is �̂� = 𝜖 (𝑎†𝑎 + 1/2), with 𝜖 ≡ ℏ𝜔 being (twice) the ground state energy.

To describe the statistics of this system in thermal equilibrium with a heat bath, the most fundamental

quantity to compute is the partition function [294]

𝑍 ≡ Tr
[
𝑒−𝛽�̂�

]
=
∞∑
𝑛=0

〈
𝑛 |𝑒−𝛽�̂� |𝑛

〉
=
∞∑
𝑛=0

𝑒
−𝛽𝜖

(
𝑛+ 12

)
=
𝑒−𝛽𝜖/2

1 − 𝑒−𝛽𝜖
, (380)
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where 𝛽 ≡ 1
𝑇 . It follows that the free energy of the system is

𝐹 ≡ −𝑇 log𝑍 =
𝜖

2
+𝑇 log

(
1 − 𝑒−𝛽𝜖

)
. (381)

To study the scalar field dynamics in a thermal bath, we can simply extend the previous analysis for a

collection of harmonic oscillators, by replacing 𝜖 → 𝜖𝑘 ≡
√
𝑘2 +𝑚2

eff. In this case, the partition function

reads:

𝑍𝜙 = Π𝑘𝑍
𝑘 = Π𝑘 exp

{
− 1
𝑇

[
𝜖𝑘
2
+𝑇 log

(
1 − 𝑒−𝛽𝜖𝑘

)]}
; (382)

while the free energy density is

𝑓𝜙 = lim𝑉→∞
𝐹𝜙

𝑉
= lim𝑉→∞

1
𝑉

∑
𝑘

[
𝜖𝑘
2
+𝑇 log

(
1 − 𝑒−𝛽𝜖𝑘

)]
(383)

=
∫

𝑑d𝑠 ®𝑘
(2𝜋)d𝑠

[
𝜖𝑘
2
+𝑇 log

(
1 − 𝑒−𝛽𝜖𝑘

)]
.

The first term in the equation above is UV divergent and can be absorbed by a proper counterterm.

The interesting phenomena are determined by the temperature-dependent term, that we denote by Δ𝑉𝑇 .

Defining 𝑦 = 𝑘/𝑇 , we can write it (in 𝑑𝑠 = 3 spatial dimensions) as

Δ𝑉𝑇 =
𝑇4

2𝜋2

∫ ∞
0

d𝑦 𝑦2 log
©«
1 − 𝑒

−

√
𝑦2+

𝑚2
eff
𝑇2

ª®®®®¬
, (384)

which admits the following high-temperature expansion [294]:

Δ𝑉𝑇 (𝑚) = −
𝜋2𝑇4

90
+
𝑚2
eff𝑇

2

24
−
𝑚3
eff𝑇

12𝜋
+ O(𝑚4

eff) . (385)

Using the expression for the effective mass, it becomes clear that at 𝑇 � 𝑚, the zero-temperature

masses get replaced by the thermal ones, ∼
√
𝜆𝑇 .

C.3 Phase transitions

Let us now study the implications of the evolution of the scalar potential in equation 374, which is invariant

under aℤ2 symmetry. At sufficiently high temperatures, the O(𝑇2) corrections that we derived in the last
section dominate, making the 𝜙2 term positive. In this case, the minima of the potential are all vanishing

and therefore the potential is symmetric. As the temperature goes down, the main contribution to the

potential arises instead from the Coleman-Weinberg corrections, which can make𝑚2
eff < 0. Computing

the minima for this case, we find that 〈𝜙〉 ≡ 𝑣 = ±
√
−6𝑚2

eff/𝜆. Therefore, the symmetry is spontaneously
broken by the choice of the new vacuum.
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Figure 39: (Left) Example of a potential leading to a second order PT (taken from Ref. [295]). The evolution
of the temperature should be read from the top to the bottom. (Right) The same for a first order PT. The
second minimum is developed at 𝑇 ≈ 𝑇0; it becomes degenerate with the origin at 𝑇 ≈ 𝑇𝑐 . When the
tunneling rate is larger than the Hubble rate, at 𝑇 ≈ 𝑇𝑁 , the unbroken phase is effectively converted into
the broken one. The PT is completed at𝑇𝑓 , when the volume fraction of the symmetric phase is negligible.

Whenever a new ground state becomes energetically favored, the Universe undergoes a PT. The cor-

responding properties are dependent on the details of the effective potential, in particular the interplay

between each term in equation 385. The LO term in this equation (neglecting field-independent contribu-

tions) corrects the potential as follows:

𝑉 ∼ 1
2

(
𝑚2 + 𝜆

24
𝑇2

)
𝜙2 + 𝜆

4!
𝜙4 . (386)

Therefore, the vacuum is symmetric only at temperatures above 𝑇𝑐 ∼
√
−24𝑚2/𝜆. Below this critical

value, the field changes the VEV smoothly: it rolls down continuously to the new minimum, maintaining

thermal equilibrium. This scenario describes a second order PT; see the left panel of figure 39.

The NLO term in the high-temperature expansion, on the other hand, leads to:

𝑉 ∼ 𝑇
2

2
𝜆

4!
𝜙2 − 𝑇

6𝜋

(
𝜆

2

)3/2
𝜙3 + 𝜆

4!
𝜙4 , (387)

where we considered the limit𝑚 → 0. Here, the cubic term produces a secondary minimum besides the

one at 𝜙 = 0, which induces a first order PT. This scenario is represented in the right panel of figure 39,
where it can be seen that the evolution of the potential creates a barrier between the unbroken and broken

phases. This PT is abrupt and happens out-of-equilibrium.

In this last case, the new minimum occurs when the cubic and quartic terms become comparable,

that is for 𝜙 ∼
√
𝜆𝑇 /𝜋 . It is, however, well known that the loop expansion parameter at finite temperature

is [294]
𝜆𝑇

𝜋𝑚eff
∼ 𝜆𝑇

𝜋
√
𝜆𝜙
∼ O(1) , (388)

at this transition point. Therefore, perturbative methods are not reliable and we cannot trust that such

first order PT had actually occurred. (To integrate light modes, non-perturbative methods are usually em-

ployed [209].)
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Similarly, in the SM, the observed Higgs mass is such that a perturbative analysis is not reliable.

From lattice calculations, we know that the EW PT is actually a crossover [296], leading to a radical but

continuous change of the ground state of the theory.
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D
Sakharov conditions for baryogenesis

In this section, we discuss the requirement of the three conditions, proposed by A.D. Sakharov [2], to

generate a matter-antimatter asymmetry in the Universe.

D.1 Baryon number violation

Our Universe is assumed to have started as a neutral and symmetric system, free of any excess of charges.

(Even if there were some unbalanced net, it would have been completely washout during inflation). Since we

observe a baryon asymmetry, baryon number must have been violated at some point in the cosmological

history.

In the SM, there are field configurations violating this 𝐵-number. They are called instantons (at tem-

perature𝑇 = 0) and sphalerons (at𝑇 ≠ 0). To see how they arise, let us explore the connection between

the chiral anomaly and the topological nature of the EW vacua.

Consider a volume in d = 4 euclidean dimensions, with the corresponding border 𝜕𝑉 4 ∼ 𝑆3. A pure
vacuum is𝑊 𝐼

𝜇 = 0 on the border and everywhere in 𝑉 4. However, taking a gauge-rotated vacuum as the

boundary condition instead, it was found that there are non-trivial solutions inside the sphere [297]:

𝑔22
32𝜋2

∫
𝑉 4

𝑊 𝐼
𝜇𝜈𝑊

𝜇𝜈𝐼 d4𝑥 = Δ𝑞 ; (389)

with Δ𝑞 being a topological quantum charge. Such charge characterizes the homotopic map between

the gauge group 𝑆𝑈 (2) ≈ 𝑆3 and the coordinate space at the border which, in this case, is non-trivial;

explicitly, 𝜋3(𝑆3) = ℤ. These integers cannot be deformed into one another, particularly a non-vanishing

𝑞 cannot be set to zero. In this way, it was found that the EW ground state is infinitely degenerate and
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made out of topologically distinct vacua, separated by potential barriers [25]. The instanton is the field

configuration that connects two vacua differing by a unit of topological charge.

The connection to the chiral anomaly and the consequent impact on fermion interactions was discov-

ered by Gerard ‘t Hooft [298]. It relies on the Bell-Jackiw anomaly equation [20],

𝜕𝜇 𝐽
𝜇5 =

𝑛𝐺𝑔
2
2

16𝜋2
𝑊 𝐼
𝜇𝜈𝑊

𝜇𝜈𝐼 . (390)

Note that the baryon current can be expanded in terms of LH and RH currents, 𝐽
𝜇
𝐵
∼ 𝐽

𝜇
𝐿
+ 𝐽 𝜇

𝑅
, each

including a vector and an axial part. Since the𝑊 interacts only with the LH fermions, the axial divergence

in 𝐽𝐿 is not canceled, which implies that the baryon current is anomalous as well; in fact,Δ𝑄
5 = Δ𝐵 [299].

This argument, together with equations 389 and 390, shows that the instanton mediates processes leading

to Δ𝐵 ∝ 𝑛𝐺 . We cannot calculate such processes perturbatively, as signaled by the presence of the gauge
coupling in the numerator of equation 389, which appears in the instanton action as 𝑆 = −8𝜋2/𝑔22 [25].

The (tunneling) probability to evolve between adjacent vacua is correspondingly ∼ 𝑒−8𝜋
2/𝑔22 . Therefore,

the Δ𝐵 ≠ 0 processes are extremely suppressed. This is compatible with the non-observation of proton

decay.

At finite temperature, however, the field can surpass the high-energy barrier even classically, due to

thermal fluctuations. The field configuration at the top of the barrier is the so-called sphaleron. The rate of

𝐵-violation per unit time per unit volume is given by [209]:

Γ0 ∼ (𝛼2𝑇 )4 , at 𝑇 > 𝑇𝑐 ; (391)

Γ ∼ Γ0𝑒
−𝐸sph(𝑇 )/𝑇 , at 𝑇 < 𝑇𝑐 , (392)

where the sphaleron energy, corresponding to the height of the barrier between the degenerate minima,

is 𝐸sph/𝑇𝑐 ∼ 𝑣𝑐/𝑇𝑐 . (We adopt the same nomenclature used in the previous chapter, namely 𝑇𝑐 is the

critical temperature for the EW PT.) Detailed calculations comparing the Boltzmann suppression rate with

the expansion rate of the Universe show that sphaleron processes switch off after the EW PT, at𝑇 ∼ 100
GeV [300].

D.2 C and CP violation

These discrete symmetries interchange matter with antimatter. Therefore, their violation is also a require-

ment to generate a baryon asymmetry in the early Universe.

Assume baryon number violation and that there is, for example, an exotic particle 𝑋 decaying into the

SM fermions in the following processes:

𝑋 → 𝑞𝑞 and 𝑋 → 𝑞𝑙 ; (393)
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and that such particle exists in equal number as the corresponding antiparticle (𝑛𝑋 = 𝑛
𝑋
). The fact

that the final states in equation 393 have different baryon charges makes it clear that 𝑋 violates baryon

number. If charge conjugation (𝐶) is a symmetry of the theory, the rates of these and the conjugated

processes are equal, namely

Γ(𝑋 → 𝑞𝐿𝑞𝐿) = Γ(𝑋 → 𝑞𝐿𝑞𝐿) . (394)

So, baryon number is being created at the same rate it is destroyed and the Universe remains baryon

symmetric.

Suppose now 𝐶 is no longer a symmetry, but 𝐶𝑃 is. Then, although equation 394 no longer holds,

the following

Γ(𝑋 → 𝑞𝐿𝑞𝐿) + Γ(𝑋 → 𝑞𝑅𝑞𝑅) = Γ(𝑋 → 𝑞𝐿𝑞𝐿) + Γ(𝑋 → 𝑞𝑅𝑞𝑅) (395)

does. While a left-right asymmetry might be created, we will end up with the same number of quarks and

antiquarks, with no possibility to generate a baryon excess.

This shows that breaking one of these discrete symmetries is not enough. Both 𝐶 and 𝐶𝑃 must be

violated together in any successful model for baryogenesis.

D.3 Departure from thermal equilibrium

Finally, a departure from thermal equilibrium is also necessary. This can be seen by acting with the charge

conjugation, parity and time reversal (𝐶𝑃𝑇 ) symmetries on the thermal average net of baryon number

produced (assuming that the two conditions D.1 and D.2 hold):

〈𝐵〉𝑇 = Tr
[
𝑒−𝛽𝐻𝐵

]
= Tr

[
(𝐶𝑃𝑇 )(𝐶𝑃𝑇 )−1𝑒−𝛽𝐻𝐵

]
= Tr

[
𝑒−𝛽𝐻 (𝐶𝑃𝑇 )−1𝐵(𝐶𝑃𝑇 )

]
= − 〈𝐵〉𝑇 , (396)

where we used the fact that any 𝐶𝑃𝑇 transformation commutes with the Hamiltonian 𝐻 describing our

Universe. Therefore, any excess of baryons that survives must have been generated out-of-equilibrium.

(We remark that this requirement can be evaded in string theories leading to the spontaneous breaking

of 𝐶𝑃𝑇 in the very primordial Universe [301] or non-standard cosmologies where gravity is coupled to a

𝐶𝑃𝑇 -violating baryon current [302].)
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E
The WIMP and other miracles

In this section, we briefly review the WIMP paradigm [303], the most common mechanism of DM produc-

tion explored in the literature and in the present work.

The relic abundance of WIMPs is set thermally by 2 → 2 annihilations, which, at some point in the

Universe history, freeze out [304], making the DM decouple from the thermal bath. The onset condition

for this decoupling is:

Γ2→2 ∼ 𝑛DM 〈𝜎𝑣〉 ∼ 𝐻 ≈
√
𝑔∗
𝑇2

𝑀𝑃
, (397)

during the radiation era. At the temperature of the matter-radiation equality,𝑇eq, the thermal energy density

of matter is 𝜌matter ≈ 𝜌DM = 𝜌𝛾 ∼ 𝑇4eq, where 𝜌𝛾 is the energy density of photons in thermal equilibrium
and we neglected that of baryons, since 𝜌𝑏 ≡ 𝜌DM/𝜁 ≈ 𝜌DM/5. Using this relation, we can obtain the
particle number density of DM at the freeze out temperature, 𝑇F, as

𝑛DM(𝑇F) ∼ 𝑛DM(𝑇eq)
(
𝑇F
𝑇eq

)3
∼
𝜌DM(𝑇eq)
𝑚DM

(
𝑇F
𝑇eq

)3
∼
𝑚2
DM

𝑥3
𝐹

𝑇eq , (398)

where we assumed, in the first (second) equality, that the DM behaves as radiation (matter) [305]. We

have furthermore defined 𝑥 ≡ 𝑚DM/𝑇 . Plugging this expression into equation 397 and parameterizing

the annihilation cross section as 〈𝜎𝑣〉 ≡ 𝜆2ann/𝑚2
DM, we find:

𝑚DM ∼ 𝜆ann
√
𝑇eq𝑀𝑃 ∼ 𝜆ann(30 TeV) , (399)

using that 𝑇eq = 𝜁𝑚𝑝𝜂/𝑐 ≈ 0.8 eV [306], with 𝑐 ≡ (𝜁 /1 + 𝜁 ) 34 (𝑔∗,eq/𝑔∗𝑆,eq) ≈ 5/8. Here,𝑚𝑝 is

the proton mass, 𝜂 is the baryon-to-entropy ratio, and 𝑔∗(𝑆) is the energy (entropy) effective number of
relativistic 𝑑.𝑜.𝑓 . The emergence of the weak scale in the DM problem, taking the effective coupling to be
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of order weak, 𝜆ann ∼ 1/30, is the so-called “WIMP miracle”. It is an alternative motivation, besides the

HP, for new physics around the TeV scale.

We should remark that other “miracles” also occur for different DM candidates: for example, if they

scatter via 2 → 3 processes, the strong rather than the weak scale emerges; in this case, strongly-

interacting massive particles (SIMPs) with 𝜆ann ≲ 1 and𝑚DM ∼ 𝑚𝑝 are expected instead [306]. The

value of 𝑥𝐹 — which can be obtained by inserting the particle density distribution of a cold species,

𝑛2 ∝
(
𝑚DM

)3 𝑒−2𝑥𝐹 , in equation 397 — depends logarithmically on the model parameters, so it typically

takes similar values for several models including this and the WIMP case, 𝑥𝐹 ∼ 20.
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F
𝐵-meson decay widths

In the present section, we compute the full decay widths of the 𝐵-meson relevant for the discussion in

section 5.3; we follow the notation therein.

The process 𝐵0𝑠 → 𝑎1𝑎2 is depicted in the left panel of figure 18. Using the partial decay rate formula

for two-body decays in Ref. [13], assuming that the 𝐵 is in its rest frame, we obtain:

Γ =
𝑓 2𝐵

16𝜋𝑚4
𝑉

(
𝑔𝑠𝑏𝑔12

)2 (
𝑚2
1 −𝑚

2
2

)2
𝑚𝐵

K
(
𝑚1
𝑚𝐵

,
𝑚2
𝑚𝐵

)
, (400)

with

K(𝑥,𝑦) =
[
𝑥4 + (1 − 𝑦2)2 − 2𝑥2(1 + 𝑦2)

]1/2
(401)

and 𝑓𝐵 ∼ 0.23 GeV [307]. All other parameters are defined in equation 165 and in the text that follows it.
On the other hand, the amplitude for 𝐵0𝑠 → 𝑎1𝑎1𝑎1 reads:

M = 2𝑔𝑠𝑏𝑔12
𝑓𝐵𝑚12
𝑚2
𝑉

[
𝑞212 −𝑚

2
1

𝑞212 −𝑚
2
2
+
𝑞223 −𝑚

2
1

𝑞223 −𝑚
2
2
+
𝑞213 −𝑚

2
1

𝑞213 −𝑚
2
2

]
, (402)

where 𝑞212 = (𝑝1 + 𝑝2)2, 𝑞223 = (𝑝2 + 𝑝3)2 and 𝑞213 = (𝑝1 + 𝑝3)2 = 3𝑚2
1 +𝑚

2
𝐵 − 𝑞

2
12 − 𝑞

2
23. Here,

𝑝1 and 𝑝2 are the momenta of the two 𝑎1 particles connected to 𝑎2, which is assumed to be off-shell,

and 𝑝3 is the momentum of the remaining 𝑎1. Using the partial decay rate formula for three-body decays

in Ref. [13] and integrating over 𝑞223, we obtain:

𝑑Γ

𝑑𝑞212
=

(
𝑔𝑠𝑏𝑔12

)2𝑚2
2

384𝜋3𝑚3
𝐵

(
𝑓𝐵𝑚12
𝑚2
𝑉

)2
𝐹

[
𝑚1
𝑚2

,
𝑚𝐵
𝑚2

,
𝑞12
𝑚2

,
𝑞23
𝑚2

] (𝑞223)max
(𝑞223)

min
; (403)
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with

𝐹 (𝑥,𝑦,𝑤, 𝑣) =
(
1 − 𝑥2

)2 [
1

1 − 𝑣2
+ 1
3𝑥2 + 𝑦2 −𝑤2 − 𝑣2 − 1

]
+
𝑣2

(
2 + 𝑥2 − 3𝑤2

)2
(𝑤2 − 1)2

(404)

+ 2(𝑥2 − 1)
{
3𝑥4 + 𝑥2(3 + 𝑦2 − 9𝑤2) + 𝑦2(2 − 3𝑤2) + 3(𝑤4 +𝑤2 − 1)

(𝑤2 − 1)(3𝑥2 + 𝑦2 −𝑤2 − 2)

}
×

[
log

(
𝑣2 − 1

)
− log

(
1 +𝑤2 + 𝑣2 − 3𝑥2 − 𝑦2

)]
,

which should be evaluated at(
𝑞223

)max
=

(
𝐸∗2 + 𝐸

∗
3

)2
−

(√
𝐸∗22 −𝑚

2
1 −

√
𝐸∗23 −𝑚

2
1

)2
,(

𝑞223

)min
=

(
𝐸∗2 + 𝐸

∗
3

)2
−

(√
𝐸∗22 −𝑚

2
1 +

√
𝐸∗23 −𝑚

2
1

)2
,

(405)

where 𝐸∗2 ≡ 𝑞12/2 and 𝐸∗3 ≡
(
𝑚2
𝐵 − 𝑞

2
12 −𝑚

2
1

)
/(2𝑞12). The final decay width is obtained after

integrating over 𝑞212, between 4𝑚
2
1 and (𝑚𝐵 −𝑚1)2. The result is lengthy and it poses no advantage to

present it in here.

In the limit𝑚1,𝑚2 → 0, the integrated width is much simpler and given by:

Γ ∼
3
(
𝑔𝑠𝑏𝑔12

)2
256𝜋3

𝑓 2𝐵𝑚
2
12

𝑚4
𝑉

𝑚𝐵 . (406)

Finally, the process 𝐵+ → 𝐾+𝑎1𝑎2 is depicted in the right panel of figure 18. The corresponding

amplitude reads:

M = −
𝑔𝑠𝑏𝑔12
𝑚2
𝑉

〈
𝐾 (𝑝3) |𝑠𝛾𝜇𝑏 |𝐵(𝑝)

〉
(𝑝2 − 𝑝1)𝜇 , (407)

where 〈
𝐾 (𝑝3) |𝑠𝛾𝜇𝑏 |𝐵(𝑝)

〉
=𝑓+(𝑞2)

[
(𝑝 + 𝑝3)𝜇 −

𝑚2
𝐵 −𝑚

2
𝐾

𝑞2
𝑞𝜇

]
+ 𝑓0(𝑞2)

𝑚2
𝐵 −𝑚

2
𝐾

𝑞2
𝑞𝜇 , (408)

and 𝑞2 = (𝑝 − 𝑝3)2 = (𝑝1 + 𝑝2)2 is the transferred momentum, ranging from (𝑚1 +𝑚2)2 to

(𝑚𝐵 −𝑚𝐾 )2. In this case, 𝑝1 and 𝑝2 refer to the momenta of the 𝑎1 and 𝑎2 particles; while 𝑝3 is

the momentum of the additional kaon. The initial momentum of the 𝐵-meson is labeled as 𝑝. The con-

traction of this matrix element with (𝑝2 − 𝑝1) in equation 407 leads to

M = −
𝑔𝑠𝑏𝑔12
𝑚2
𝑉

{ (
𝑚2
𝐵 −𝑚

2
𝐾

) (
𝑚2
2 −𝑚

2
1

)
𝑞2

[
𝑓0(𝑞2) − 𝑓+(𝑞2)

]
+

[
2
(
𝑝2 + 𝑝3

)2 + 𝑞2 −𝑚2
1 −𝑚

2
2 −𝑚

2
𝐵 −𝑚

2
𝐾

]
𝑓+(𝑞2)

}
. (409)
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For convenience, we trade these variables for𝑀2
12 ≡𝑚

2
2 −𝑚

2
1 and𝑀2

𝐵𝐾 ≡𝑚
2
𝐵 −𝑚

2
𝐾 , obtaining

𝑑Γ

𝑑𝑞2
=

(
𝑔𝑠𝑏𝑔12

)2
768𝜋3𝑚4

𝑉
𝑚3
𝐵

𝐹 (𝑞2) , (410)

with

𝐹 (𝑞2) = 1
𝑞2

[
(𝑀2
𝐵𝐾 + 𝑞

2)2

𝑞4
− 4

𝑚2
𝐵

𝑞2

]1/2 [
(𝑀2

12 + 𝑞
2)2

𝑞4
− 4

𝑚2
2

𝑞2

]1/2 {
3𝑀4

𝐵𝐾𝑀
4
12 |𝑓0(𝑞

2) |2

+
[
𝑞4 + 2𝑞2

(
𝑀2
𝐵𝐾 − 2𝑚

2
𝐵

)
+𝑀4

𝐵𝐾

] [
𝑞4 + 2𝑞2

(
𝑀2
12 − 2𝑚

2
2

)
+𝑀4

12

]
|𝑓+(𝑞2) |2

}
. (411)

Following Ref. [308], we parameterize the form factor 𝑓+ as

𝑓+(𝑞2) =
𝑟1

(1 − 𝑞2/𝑚2)
+ 𝑟2
(1 − 𝑞2/𝑚2)2

, (412)

with 𝑟1 = 0.162, 𝑟2 = 0.173 and𝑚2 = 5.412 GeV2. Similarly,

𝑓0(𝑞2) =
𝑟2

(1 − 𝑞2/𝑚2
fit)

(413)

with 𝑟2 = 0.330 and𝑚2
fit = 37.46 GeV2.

Again, in the approximation𝑚1,𝑚2,𝑚𝐾 → 0 and 𝑓0, 𝑓+(𝑞2) → 1, we obtain:

Γ ∼
(
𝑔𝑠𝑏𝑔12

)2
3072𝜋3𝑚4

𝑉

𝑚5
𝐵 . (414)
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Composite completion of the SM+𝐸 EFT

The purpose of this appendix is to show that there exists a (composite) completion of the SM+𝐸 EFT,

described in section 6.1, where purely SMEFT operators are generated but can be suppressed relatively to

those involving the heavy lepton 𝐸. With this aim, we consider the MCHM and assume MFV. In turn, the

LH fermions are required to be mostly elementary.

For the mediator of the effective interactions, we consider a heavy vector 𝑉 that couples to the RH

fermions according to equation 105. After rewriting the renormalizable Lagrangian in the mass basis and

integrating 𝑉 out, we obtain the operators in the EFT basis, with Wilson coefficients

𝑓(𝑞𝑞)(𝐸𝑒) ∼
𝑔21
𝑚2
𝑉

sin2 𝜙𝑞𝑅 sin𝜙𝑞𝑅 cos𝜙𝑒𝑅
sin2 𝜃

, (415)

not referring to any Lorentz structure in particular. Note that the renormalizable interaction 𝑦𝑙𝐿𝐻𝐸 is

automatically turned off due to the MFV requirement, since 𝑦 ∼ sin𝜙𝑞𝐿 � 1. On top of these operators,
the purely SMEFT ones that also arise are:

𝑓(𝑞𝑞)(𝑒𝑒) ∼
𝑔21
𝑚2
𝑉

sin2 𝜙𝑞𝑅 sin
2 𝜙𝑒𝑅 cot

2 𝜃 ; (416)

𝑓(𝑞𝑞)(𝑞𝑞) ∼
𝑔21
𝑚2
𝑉

sin4 𝜙𝑞𝑅 cot
2 𝜃 ; (417)

𝑓(𝑢𝑢)(𝑑𝑑) ∼
𝑔21
𝑚2
𝑉

sin2 𝜙𝑢𝑅 sin
2 𝜙𝑑𝑅 cot

2 𝜃 ; (418)

𝑓(𝑒𝑒)(𝑒𝑒) ∼
𝑔21
𝑚2
𝑉

sin4 𝜙𝑒𝑅 cot
2 𝜃 . (419)
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The experimental bounds on the (𝑞𝑞) (𝑒𝑒) operators [309] allow values of 𝑓(𝑞𝑞)(𝐸𝑒) ≳ O(0.1) TeV
−2,

assuming that sin𝜙𝑒𝑅 ∼ O(0.1). Bounds on the (𝑞𝑞) (𝑞𝑞) operators [310] are compatible with even

larger values, 𝑓(𝑞𝑞)(𝐸𝑒) ∼ O(1), taking the light quarks composite fractions to be sin𝜙𝑞𝑅 ∼ sin𝜙𝑒𝑅 .
We therefore conclude that the effective operators relevant for the production and decay of the VLL can be

sizable while compatible with other data.

In the previous discussion, we neglected operators involving the Higgs boson, e.g. (𝐻←→𝐷 𝜇𝐻 ) (𝑒𝛾𝜇𝑒),
which might also arise from the UV model. This operator contributes to the 𝑍𝑒𝑒 effective vertex and could

therefore enhance Γ(𝐸 → ℓ𝑍 ). Such corrections are however negligible if, for example, 𝑉 is associated

with the𝑈 (1)𝑋 symmetry of the MCHM.
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e
n
d
ix

H
Computations in the ALP SMEFT

H.1 Divergences at one-loop

In this section, we enumerate the different processes and amplitudes we computed to match the UV

divergences onto the 𝐶𝑃 -even Green basis given by the operators in table 8. We work consistently up to

dimension five, therefore considering a single insertion of an effective operator per loop. (All diagrams

which are depicted in the figures below but not explicitly mentioned are either finite or do not contribute

to the counterterms of interest.)

H.1.1 𝑆 (𝑝1)𝐻 †𝑖 (𝑝3) → 𝑞𝛼𝐿𝑗 (𝑝2)𝑢𝑅
𝛽 (𝑝4)

The one-loop diagrams which contribute to this process are depicted in figure 40. The amplitudes corre-

sponding to diagrams with insertions of the Yukawa-like operators read:

iM𝑌
1 =

1
(4𝜋)2𝜖

𝜆𝑆𝐻 (𝑎𝑆𝐻𝑢)𝛼𝛽𝜖 𝑗𝑖𝑢2𝑃𝑅𝑣4 ; (420)

iM𝑌
4 =

1
(4𝜋)2𝜖

[
𝑦𝑑𝛼𝜌 (𝑦𝑑 )∗𝜎𝜌 (𝑎𝑆𝐻𝑢)𝜎𝛽

]
𝜖𝑖 𝑗𝑢2𝑃𝑅𝑣4 , (421)

iM𝑌
6 =

1
(4𝜋)2𝜖

[
(𝑎𝑆𝐻𝑑 )𝛼𝜌 (𝑦𝑑 )∗𝜎𝜌𝑦𝑢𝜎𝛽

]
𝜖𝑖 𝑗𝑢2𝑃𝑅𝑣4 , (422)

iM𝑌
9 =

−1
(4𝜋)2𝜖

[
𝑦𝑑𝛼𝜌 (𝑎𝑆𝐻𝑑 )∗𝜎𝜌𝑦𝑢𝜎𝛽

]
𝜖𝑖 𝑗𝑢2𝑃𝑅𝑣4 . (423)

The diagrams where the gauge bosons run in the loop contribute with

iM𝑉 =
−(𝑎𝑆𝐻𝑢)𝛼𝛽
(4𝜋)2𝜖

[
𝑔21

25
36
+ 𝑔22

3
4
+ 𝑔23

16
3

]
𝜖 𝑗𝑖𝑢2𝑃𝑅𝑣4 . (424)
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Figure 40: Diagrams contributing to the renormalization of 2 scalar–2 quark interactions.

In turn, the following counterterm 𝑎′𝑆𝐻𝑢 in the tree level EFT amplitude,

𝑖MEFT = −(𝑎𝑆𝐻𝑢)′𝛼𝛽𝜖 𝑗𝑖𝑢2𝑃𝑅𝑣4 , (425)

is used to cancel the sum of the divergent UV amplitudes calculated above.

H.1.2 𝑆 (𝑝1)𝐻𝑖 (𝑝3) → 𝑞𝛼𝐿𝑗 (𝑝2)𝑑𝑅
𝛽 (𝑝4)

The same topologies as before are generated. The corresponding one-loop amplitudes read:

iM𝑌
1 =

1
(4𝜋)2𝜖

𝜆𝑆𝐻 (𝑎𝑆𝐻𝑑 )𝛼𝛽𝛿𝑖 𝑗𝑢2𝑃𝑅𝑣4 ; (426)

iM𝑌
4 =

−1
(4𝜋)2𝜖

[
𝑦𝑢𝛼𝜌 (𝑦𝑢)∗𝜎𝜌 (𝑎𝑆𝐻𝑑 )𝜎𝛽

]
𝛿𝑖 𝑗𝑢2𝑃𝑅𝑣4 , (427)

iM𝑌
6 =

−1
(4𝜋)2𝜖

[
(𝑎𝑆𝐻𝑢)𝛼𝜌 (𝑦𝑢)∗𝜎𝜌𝑦𝑑𝜎𝛽

]
𝛿𝑖 𝑗𝑢2𝑃𝑅𝑣4 , (428)

iM𝑌
9 =

1
(4𝜋)2𝜖

[
𝑦𝑢𝛼𝜌 (𝑎𝑆𝐻𝑢)∗𝜎𝜌𝑦𝑑𝜎𝛽

]
𝛿𝑖 𝑗𝑢2𝑃𝑅𝑣4 , (429)

191



1 p1

p3p2

2 p1

p3p2

3

p3

p1p2 4

p3

p1p2 5 p3

p1p2

6 p2

p1p3

7

p2

p1p3 8 p2

p1p3

9 p1

p3

p2

10 p1

p3

p2

Figure 41: Diagrams contributing to the renormalization of 3 scalar interactions.

and

iM𝑉 =
−(𝑎𝑆𝐻𝑑 )𝛼𝛽
(4𝜋)2𝜖

[
𝑔21

1
36
+ 𝑔22

3
4
+ 𝑔23

16
3

]
𝛿𝑖 𝑗𝑢2𝑃𝑅𝑣4 . (430)

On the other hand, the tree level one is given by

iMEFT = −(𝑎𝑆𝐻𝑑 )′𝛼𝛽𝛿𝑖 𝑗𝑢2𝑃𝑅𝑣4 . (431)

H.1.3 𝑆 (𝑝1)𝐻𝑖 (𝑝3) → 𝑙𝛼𝐿𝑗 (𝑝2)𝑒𝑅
𝛽 (𝑝4)

Considering the leptons case and turning off gauge interactions, only the first diagram in figure 40 exists

(the triangle diagrams are absent because they do not conserve internally the hypercharge):

iM𝑌
1 =

1
(4𝜋)2𝜖

𝜆𝑆𝐻 (𝑎𝑆𝐻𝑒 )𝛼𝛽𝛿𝑖 𝑗𝑢2𝑃𝑅𝑣4 , (432)

while

iM𝑉 =
−(𝑎𝑆𝐻𝑒 )𝛼𝛽
(4𝜋)2𝜖

[
9𝑔21
4
+
3𝑔22
4

]
𝛿𝑖 𝑗𝑢2𝑃𝑅𝑣4 . (433)

At tree level in the EFT, we get:

iMEFT = −(𝑎𝑆𝐻𝑒 )′𝛼𝛽𝛿𝑖 𝑗𝑢2𝑃𝑅𝑣4 . (434)

H.1.4 𝑆 (𝑝1) → 𝐻𝑖 (𝑝2)𝐻 †𝑗 (𝑝3)

The one-loop diagrams contributing to this process are depicted in figure 41. Starting by the amplitudes

involving the Yukawa-like operators, the leptonic loop labeled by the number 6 gives:

iMℓ
6 = −i(𝑎𝑆𝐻𝑒 )∗𝛼𝛽𝑦

𝑒
𝛼𝛽𝛿𝑖 𝑗 𝐼 , (435)
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where a (−1) factor comes from the closed fermionic loop and

𝐼 =
∫

𝑑d𝑘

(2𝜋)d
Tr

[
/𝑘
𝑘2
𝑃𝐿
/𝑘 + /𝑝2
(𝑘 + 𝑝2)2

𝑃𝑅

]
=
1
2

∫
𝑑d𝑘

(2𝜋)d
Tr

[
/𝑘
𝑘2
/𝑘 + /𝑝2
(𝑘 + 𝑝2)2

]
=
d
2

∫
𝑑d𝑘

(2𝜋)d
𝑘2 + 𝑘 · 𝑝2
𝑘2(𝑘2 + 𝑝22)

≡ d
2
(𝐼1 + 𝐼2) . (436)

The two integrals above read:

𝐼1 =
∫

𝑑d𝑘

(2𝜋)d
1
𝑘2

{
1 −

𝑝22
𝑘2
+ 4 (𝑘 · 𝑝2)

2

𝑘4

}
= 𝐴1 − 𝑝22𝐴2 + 4𝑝

2
2𝐵3 , (437)

where the master integrals are defined in appendix A; and

𝐼2 =
∫

𝑑d𝑘

(2𝜋)d
𝑘 · 𝑝2
𝑘4

(−2𝑘 · 𝑝2
𝑘2

)
= −2𝑝𝜇2𝑝

𝜈
2

∫
𝑑d𝑘

(2𝜋)d
𝑘𝜇𝑘𝜈

𝑘6
= −2𝑝22𝐵3 , (438)

up to second order in external momenta (and dropping from the beginning the 𝑘 -odd contributions). There-

fore, we obtain:

𝐼 = 2𝑝22
(
−𝐴2 + 2𝐵3

)
= 2𝑝22

(
−i

16𝜋2𝜖
+ i
32𝜋2𝜖

)
=
−i

16𝜋2𝜖
𝑝22 , (439)

using the mathematical relations in appendix A. Consequently,

iMℓ
6 =

−1
16𝜋2𝜖

(𝑎𝑆𝐻𝑒 )∗𝛼𝛽𝑦
𝑒
𝛼𝛽𝛿𝑖 𝑗𝑝

2
2 . (440)

The integral in equation 439 is the same for all fermionic loops in figure 41. The evaluation of the

second type of diagram, namely the number 3, is hence straightforward:

iMℓ
3 = i(𝑎𝑆𝐻𝑒 )𝛼𝛽 (𝑦𝑒 )∗𝛼𝛽𝛿𝑖 𝑗 𝐼 (𝑝2 → −𝑝3) =

1
16𝜋2𝜖

(𝑎𝑆𝐻𝑒 )𝛼𝛽 (𝑦𝑒 )∗𝛼𝛽𝛿𝑖 𝑗𝑝
2
3 . (441)

When the up-quark runs in the loops, the amplitudes of the two conjugated diagrams read instead:

iM𝑢
6 =

3
16𝜋2𝜖

(𝑎𝑆𝐻𝑢)𝛼𝛽 (𝑦𝑢)∗𝛼𝛽𝛿𝑖 𝑗𝑝
2
2 , (442)

iM𝑢
3 =

−3
16𝜋2𝜖

(𝑎𝑆𝐻𝑢)∗𝛼𝛽𝑦
𝑢
𝛼𝛽𝛿𝑖 𝑗𝑝

2
3 , (443)

where we have summed over colors and contracted 𝜖𝑚𝑖𝜖𝑚𝑗 = 𝛿𝑖 𝑗 , with 𝜖𝑚𝑖 = −𝜖𝑖𝑚 .

For the down-quark case, we have:

iM𝑑
6 =

−3
16𝜋2𝜖

(𝑎𝑆𝐻𝑑 )∗𝛼𝛽𝑦
𝑑
𝛼𝛽𝛿𝑖 𝑗𝑝

2
2 , (444)

iM𝑑
3 =

3
16𝜋2𝜖

(𝑎𝑆𝐻𝑑 )𝛼𝛽 (𝑦𝑑 )∗𝛼𝛽𝛿𝑖 𝑗𝑝
2
3 . (445)
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Figure 42: Diagrams contributing to the renormalization of 1 scalar–2 fermion interactions.

On the other front, the EFT amplitude is

iMEFT = 𝛿𝑖 𝑗

[
− i𝑟𝐻𝑆2𝑝21 + 𝑟𝑆𝐻2(𝑝22 − 𝑝23)

]
, (446)

from which we obtain that 𝑟𝐻𝑆2 = 0 by matching.

All the amplitudes involving gauge bosons vanish. Considering, for instance, the first diagram in figure

41,

iM𝑉
1 ∝

[
𝑎
𝑆𝐵
𝜖𝜇𝜌𝜂𝜆𝑝

𝜂
1𝑝
𝜆
2

]
𝑔𝜇𝜈𝑔𝜌𝜎

[
𝑔21𝑔𝜈𝜎

]
= 0 . (447)

Finally, note that there are two different flavour structures arising in the amplitudes, Tr
[
𝑎𝑆𝐻𝑢𝑦

†
𝑢

]
≠

Tr
[
𝑦𝑢𝑎
†
𝑆𝐻𝑢

]
. These are only equivalent in the 𝐶𝑃 conserving limit, which is the one we take. (The imag-

inary part in these structures gives divergent contributions to the 𝐶𝑃 -odd operator with the same field

content as R𝑆𝐻2; check the original Ref. [8].)

H.1.5 𝑆 (𝑝1) → 𝜓𝛼𝑖 (𝑝2)𝜓
𝛽

𝑗 (𝑝3)

The first two diagrams in figure 42 exist for each fermion in the theory that runs within the loop. Starting

by computing the amplitude for𝜓 = 𝑒𝑅 , we get:

iM𝑒𝑅
1 = −i(𝑎𝑆𝐻𝑒 )𝜌𝛽 (𝑦𝑒 )∗𝜌𝛼𝛿𝑚𝑚𝑢2𝐼′𝑃𝑅𝑣3 , (448)

where

𝐼′ =
∫

𝑑d𝑘

(2𝜋)d
/𝑘
𝑘2

1
(𝑘 − 𝑝2)2

=
∫

𝑑d𝑘

(2𝜋)d
/𝑘
𝑘4

(
2𝑘 · 𝑝2
𝑘2

)
= 2/𝑝2𝐵3 =

i
32𝜋2𝜖

/𝑝2 . (449)

Therefore:

iM𝑒𝑅
1 =

1
16𝜋2𝜖

(𝑎𝑆𝐻𝑒 )𝜌𝛽 (𝑦𝑒 )∗𝜌𝛼𝑢2/𝑝2𝑃𝑅𝑣3 . (450)

Regarding the second diagram, the same integral appears with 𝑝2 → −𝑝3; therefore:

iM𝑒𝑅
2 =

1
16𝜋2𝜖

𝑦𝑒𝜌𝛽 (𝑎𝑆𝐻𝑒 )
∗
𝜌𝛼𝑢2/𝑝3𝑃𝑅𝑣3 . (451)
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On the other hand, the amplitude from the diagrams involving the gauge bosons (in this case, 𝐵𝜇 ) read:

iM𝑒𝑅
𝑉

= (2i𝑎
𝑆𝐵
)
∫

𝑑d𝑘

(2𝜋)d
𝜖𝜇𝜈𝜎𝜌

[
𝑘𝜌

(
𝑘 − 𝑝1

)𝜎 − 𝑘𝜎 (
𝑘 − 𝑝1

)𝜌 ] (−i)2

𝑘2(𝑘 − 𝑝1)2

×
[
𝑢2

(
−i𝑔1𝛾𝜈𝑃𝑅

) i (/𝑘 − /𝑝2)(
𝑘 − 𝑝2

)2 (
−i𝑔1𝛾𝜇𝑃𝑅

)
𝑣3

]
𝛿𝛽𝛼

= −4𝑎
𝑆𝐵
𝑔21𝛿𝛽𝛼𝜖𝜇𝜈𝜎𝜌

[
𝑢2𝑃𝐿𝛾

𝜈𝛾𝜒𝛾
𝜇𝑣3

]
𝐼𝜌𝜎𝜒 , (452)

where

𝐼𝜌𝜎𝜒 ≡
∫

𝑑d𝑘

(2𝜋)d
𝑘𝜌

(
𝑘 − 𝑝1

)𝜎 (
𝑘 − 𝑝2

) 𝜒
𝑘2(𝑘 − 𝑝1)2(𝑘 − 𝑝2)2

→ −𝑝𝜎1𝑔
𝜌𝜒𝐵3 . (453)

In the above integral, we neglected the symmetric contributions under the interchange 𝜎 ↔ 𝜌 (to be

contracted with the Levi-Civita tensor) and the ones with more than one power of external momentum

(since we are matching to an operator of the form𝜓 /𝐷𝜓 ). After these simplifications1,

iM𝑒𝑅
𝑉

=
i

(4𝜋)2𝜖
𝑎
𝑆𝐵
𝑔21𝛿𝛽𝛼𝜖𝜇𝜈𝜎𝜌

[
𝑢2𝑃𝐿𝛾

𝜈𝛾𝜌𝛾𝜇𝑣3
]
𝑝𝜎1 (454)

=
−i
(4𝜋)2𝜖

𝑎
𝑆𝐵
𝑔21𝛿𝛽𝛼𝜖𝜇𝜈𝜌𝜎

[
𝑢2𝑃𝐿𝛾

𝜇𝛾𝜈𝛾𝜌𝑣3
]
𝑝𝜎1

=
𝛿𝛽𝛼

(4𝜋)2𝜖
𝑎
𝑆𝐵
𝑔21

(
−i𝜖𝜇𝜈𝜌𝜎

) (
−i𝜖𝜒𝜇𝜈𝜌

) [
𝑢2𝑃𝐿𝛾𝜒𝛾

5𝑣3
]
𝑝𝜎1

=
𝛿𝛽𝛼

(4𝜋)2𝜖
𝑎
𝑆𝐵
𝑔21

(
−6𝛿 𝜒𝜎

) [
𝑢2𝑃𝐿𝛾𝜒𝛾

5𝑣3
]
𝑝𝜎1

= − 3
8𝜋2𝜖

𝛿𝛽𝛼𝑎𝑆𝐵𝑔
2
1

[
𝑢2𝑃𝐿/𝑝1𝛾

5𝑣3
]

= − 3
8𝜋2𝜖

𝛿𝛽𝛼𝑎𝑆𝐵𝑔
2
1

[
𝑢2/𝑝1𝑃𝑅𝑣3

]
.

The contraction of the Levi-Civita tensor with the Dirac matrices (in the third line) is computed according

to appendix A, with 𝜖0123 = 1 (the same convention is used in FormCalc).
The amplitudes for the 𝑆 → 𝑙𝐿𝑙𝐿 , 𝑆 → 𝑢𝑅𝑢𝑅 and 𝑆 → 𝑑𝑅𝑑𝑅 processes are obtained analogously:

iM𝑙𝐿
1 =

−1
32𝜋2𝜖

(𝑎𝑆𝐻𝑒 )∗𝛽𝜌𝑦
𝑒
𝛼𝜌𝛿𝑖 𝑗𝑢2/𝑝2𝑃𝐿𝑣3 , (455)

iM𝑙𝐿
2 =

−1
32𝜋2𝜖

(𝑦𝑒 )∗𝛽𝜌 (𝑎𝑆𝐻𝑒 )𝛼𝜌𝛿𝑖 𝑗𝑢2/𝑝3𝑃𝐿𝑣3 , (456)

iM𝑙𝐿
𝑉

=
3

32𝜋2𝜖
𝛿𝛽𝛼𝛿𝑖 𝑗

(
𝑎
𝑆𝐵
𝑔21 + 3𝑎𝑆𝑊 𝑔22

)
𝑢2/𝑝1𝑃𝐿𝑣3 , (457)

1We remark that the FormCalc one-loop amplitude agrees exactly with the result in equation 454. This should not be the
case, given the information in the manual that the “Eps” definition carries a factor of (−i). This seems to be a problem only
when the Levi-Civita tensor appears directly in the vertex, such that — when converting the FeynRules model into a FeynArts
output — this replacement is not done. Computing at tree level 𝑆 → 𝑉𝑉 , we confirm that this is indeed the case.
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where the minus sign, in comparison to the last line in equation 454, comes from the interchange

𝑃𝐿 ↔ 𝑃𝑅 . In addition,

iM𝑢𝑅
1 =

1
16𝜋2𝜖

(𝑎𝑆𝐻𝑢)𝜌𝛽 (𝑦𝑢)∗𝜌𝛼𝑢2/𝑝2𝑃𝑅𝑣3 , (458)

iM𝑢𝑅
2 =

1
16𝜋2𝜖

𝑦𝑢𝜌𝛽 (𝑎𝑆𝐻𝑢)
∗
𝜌𝛼𝑢2/𝑝4𝑃𝑅𝑣3 , (459)

iM𝑢𝑅
𝑉

=
1

6𝜋2𝜖
𝛿𝛽𝛼

(
𝑎
𝑆𝐵
𝑔21 + 3𝑎𝑆𝐺𝑔

2
3

)
𝑢2/𝑝1𝑃𝑅𝑣3 . (460)

iM𝑑𝑅
1 =

1
16𝜋2𝜖

(𝑎𝑆𝐻𝑑 )𝜌𝛽 (𝑦𝑑 )∗𝜌𝛼𝑢2/𝑝2𝑃𝑅𝑣3 , (461)

iM𝑑𝑅
2 =

1
16𝜋2𝜖

𝑦𝑑𝜌𝛽 (𝑎𝑆𝐻𝑑 )
∗
𝜌𝛼𝑢2/𝑝3𝑃𝑅𝑣4 , (462)

iM𝑑𝑅
𝑉

=
−1

24𝜋2𝜖
𝛿𝛽𝛼

(
𝑎
𝑆𝐵
𝑔21 + 12𝑎𝑆𝐺𝑔

2
3

)
𝑢2/𝑝1𝑃𝑅𝑣3 . (463)

Finally, for 𝑆 → 𝑞𝐿𝑞𝐿 , there are two additional diagrams with Yukawa insertions, from having both 𝑢 and

𝑑 quarks running in the loop:

iM𝑞𝐿
1,𝑢 =

−1
32𝜋2𝜖

(𝑎𝑆𝐻𝑢)∗𝛽𝜌𝑦
𝑢
𝛼𝜌𝛿𝑖 𝑗𝑢2/𝑝2𝑃𝐿𝑣3 , (464)

iM𝑞𝐿
2,𝑢 =

−1
32𝜋2𝜖

(𝑦𝑢)∗𝛽𝜌 (𝑎𝑆𝐻𝑢)𝛼𝜌𝛿𝑖 𝑗𝑢2/𝑝4𝑃𝐿𝑣3 , (465)

iM𝑞𝐿
1,𝑑 =

−1
32𝜋2𝜖

(𝑎𝑆𝐻𝑑 )∗𝛽𝜌𝑦
𝑑
𝛼𝜌𝛿𝑖 𝑗𝑢2/𝑝2𝑃𝐿𝑣3 , (466)

iM𝑞𝐿
2,𝑑 =

−1
32𝜋2𝜖

(𝑦𝑑 )∗𝛽𝜌 (𝑎𝑆𝐻𝑑 )𝛼𝜌𝛿𝑖 𝑗𝑢2/𝑝4𝑃𝐿𝑣3 . (467)

Regarding the contributions with gauge bosons, we have:

iM𝑞𝐿
𝑉

=
3

8𝜋2𝜖
𝛿𝛽𝛼𝛿𝑖 𝑗

(
𝑎
𝑆𝐵

𝑔21
36
+ 𝑎

𝑆𝑊

3𝑔22
4
+ 𝑎

𝑆𝐺

4𝑔23
3

)
𝑢2/𝑝1𝑃𝐿𝑣3 . (468)

The EFT amplitudes, with the counterterms required to absorb the previous divergences, are:

iMEFT(𝑆 → 𝑒𝑅𝑒𝑅) = 𝑢2
[
(𝑟𝑆𝑒 )∗𝛽𝛼 /𝑝2 + (𝑟𝑆𝑒 )𝛼𝛽 /𝑝4

]
𝑃𝑅𝑣3 , (469)

iMEFT(𝑆 → 𝑙𝐿𝑙𝐿) = 𝛿𝑖 𝑗𝑢2
[
(𝑟𝑆𝑙 )∗𝛽𝛼 /𝑝2 + (𝑟𝑆𝑙 )𝛼𝛽 /𝑝4

]
𝑃𝐿𝑣3 , (470)

iMEFT(𝑆 → 𝑢𝑅𝑢𝑅) = 𝑢2
[
(𝑟𝑆𝑢)∗𝛽𝛼 /𝑝2 + (𝑟𝑆𝑢)𝛼𝛽 /𝑝4

]
𝑃𝑅𝑣3 , (471)

iMEFT(𝑆 → 𝑑𝑅𝑑𝑅) = 𝑢2
[
(𝑟𝑆𝑑 )∗𝛽𝛼 /𝑝2 + (𝑟𝑆𝑑 )𝛼𝛽 /𝑝4

]
𝑃𝑅𝑣3 , (472)

iMEFT(𝑆 → 𝑞𝐿𝑞𝐿) = 𝛿𝑖 𝑗𝑢2
[
(𝑟𝑆𝑞)∗𝛽𝛼 /𝑝2 + (𝑟𝑆𝑞)𝛼𝛽 /𝑝4

]
𝑃𝐿𝑣3 . (473)
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Figure 43: Diagrams contributing to the renormalization of 1 scalar–2 gluon interactions.

H.1.6 𝑆 (𝑝1) → 𝑉 𝑎𝜇 (𝑝2)𝑉 𝑏𝜈 (𝑝3)

Let us consider in detail the case with gluons, to understand why the divergent amplitudes in these pro-

cesses cancel exactly. To start, we can easily verify that the contributions from the diagrams 1 and 2 in

figure 43 are zero (we leave the external polarization vectors implicit):

iM1 = 4i𝑎
𝑆𝐺
𝑔23𝜖𝜇𝜈𝜌𝜎

(
𝑓𝑎𝑑𝑒 𝑓𝑏𝑐𝑒 − 𝑓𝑎𝑐𝑒 𝑓𝑏𝑑𝑒 + 𝑓𝑎𝑏𝑒 𝑓𝑐𝑑𝑒

) ∫ 𝑑d𝑘

(2𝜋)d
−i𝑔𝜌𝜎

𝑘2
𝛿𝑐𝑑 = 0 ; (474)

while

iM2 = −2i𝑎
𝑆𝐺
𝛿𝑐𝑑𝜖𝜌𝜎𝛾𝜂

∫
𝑑d𝑘

(2𝜋)d

{[
(−𝑘)𝜂 (𝑘 − 𝑝1)𝛾 + (−𝑘)𝛾 (𝑘 − 𝑝1)𝜂

]
−i
𝑘2

(475)

× (−i𝑔23)
[
(𝑓𝑎𝑑𝑒 𝑓𝑏𝑐𝑒 − 𝑓𝑎𝑐𝑒 𝑓𝑏𝑑𝑒 + 𝑓𝑎𝑏𝑒 𝑓𝑐𝑑𝑒 )𝑔𝜇𝜌𝑔𝜈𝜎 + (−𝑓𝑎𝑑𝑒 𝑓𝑏𝑐𝑒 + 𝑓𝑎𝑐𝑒 𝑓𝑏𝑑𝑒 + 𝑓𝑎𝑏𝑒 𝑓𝑐𝑑𝑒 )𝑔𝜇𝜎𝑔𝜈𝜌

+ (𝑓𝑎𝑑𝑒 𝑓𝑏𝑐𝑒 + 𝑓𝑎𝑐𝑒 𝑓𝑏𝑑𝑒 )𝑔𝜇𝜈𝑔𝜌𝜎
]
−i

(𝑘 − 𝑝1)2

}
= 0 ,

due to the contraction of the group structure constants in the second line with 𝛿𝑐𝑑 , and the contraction of

the Levi-Civita with the metric tensor in the third line of the equation above.

Regarding the non-vanishing diagrams, we have:

iM3 = 2𝑎
𝑆𝐺
𝑔3𝜖𝜎𝜇𝜌𝜒𝑝

𝜒
1 𝑓𝑐𝑎𝑑

∫
𝑑d𝑘

(2𝜋)d
−2𝑔3𝑓𝑐𝑏𝑑
𝑘2(𝑘 − 𝑝3)2

[
𝑝
𝜌
3𝑔
𝜈𝜎 − 𝑝𝜎3𝑔

𝜈𝜌 − 𝑘𝜈𝑔𝜎𝜌 +
𝑝𝜈3
2
𝑔𝜎𝜌

]
= 8𝑎

𝑆𝐺
𝑔23𝐶
(3)
𝐴
𝛿𝑎𝑏𝜖𝜎𝜇𝜌𝜒𝑝

𝜒
1 𝑝
𝜎
3𝑔
𝜈𝜌

∫
𝑑d𝑘

(2𝜋)d
1
𝑘4

= − 2i
𝜋𝜖
𝑎
𝑆𝐺
𝛼3𝐶
(3)
𝐴
𝛿𝑎𝑏𝜖𝜇𝜈 𝜒𝜎𝑝

𝜒
2𝑝
𝜎
3 , (476)

197



where we have kept only the LO term in the expansion of the denominator in the first line, according

to equation 346, because we are interested in two powers of momenta only (to match onto the EFT).

Furthermore,

M4 =M3 ; (477)

and

iM5 = −2i𝑎
𝑆𝐵
𝜖𝜌𝜒𝛾𝜂𝛿𝑐𝑒

∫
𝑑d𝑘

(2𝜋)d

{[
− 𝑘𝜂 (𝑘 − 𝑝1)𝛾 + 𝑘𝛾 (𝑘 − 𝑝1)𝜂

]
−i
𝑘2
𝑔3𝑓𝑐𝑎𝑑 (478)

×
[
2𝑝𝜎2𝑔

𝜇𝜌 − 2𝑝𝜌2𝑔
𝜇𝜎 − 2𝑘𝜇𝑔𝜌𝜎 + 𝑝𝜇2𝑔

𝜌𝜎
]

(−i)2

(𝑘 − 𝑝2)2(𝑘 − 𝑝3)2
𝑔3𝑓𝑑𝑏𝑒

×
[
2𝑝𝜒3𝑔

𝜈𝜎 − 2𝑝𝜎3𝑔
𝜈 𝜒 − 2𝑘𝜈𝑔𝜎𝜒 + (𝑝2 + 𝑝1)𝜈𝑔𝜎𝜒

]}
= 32𝑎

𝑆𝐺
𝑔23𝜖𝜌𝜒𝛾𝜂𝐶

(3)
𝐴
𝛿𝑎𝑏𝐵3𝑝

𝛾
1

[
𝑝𝜎2𝑔

𝜂𝜈𝑔𝜇𝜌𝑔𝜎𝜒 + 𝑝𝜒3𝑔
𝜂𝜇𝑔𝜌𝜎𝑔𝜈𝜎

]
=

2i
𝜋𝜖
𝑎
𝑆𝐺
𝛼3𝐶
(3)
𝐴
𝛿𝑎𝑏

[
𝜖𝜇𝜎𝛾𝜈𝑝

𝛾
3𝑝
𝜎
2 + 𝜖𝜈 𝜒𝛾𝜇𝑝

𝛾
2𝑝
𝜒
3

]
=

4i
𝜋𝜖
𝑎
𝑆𝐺
𝛼3𝐶
(3)
𝐴
𝛿𝑎𝑏𝜖𝜇𝜈𝛾𝜎𝑝

𝛾
2𝑝
𝜎
3 ,

where the 𝐶𝐴 constants are defined in appendix A.

We conclude thatM3 +M4 +M5 = 0. Note that the diagram with number 6 in figure 43 involves

two powers of the new physics scale and therefore does not contribute to the EFT of interest. Similar

cancellations are obtained for processes involving the gauge boson of 𝑆𝑈 (2).

H.2 Wave function renormalization factors

In this section, we compute the WFR factors of each field present in the ALP EFT. All the loop integrals

involved, as well as 𝑆𝑈 (𝑁 ) constants, are defined in appendix A.

H.2.1 Fermions

The diagrams contributing to the LH lepton kinetic term are depicted in figure 44. (Similar ones are obtained

for the other fermions, with the exceptions that no diagram involving the 𝑆𝑈 (2) gauge boson exists for

RH fields. In the case of quarks, there is an additional diagram where the gluon runs in the loop; and the

scalar contribution to 𝑞𝐿 involves two diagrams where either 𝑢𝑅 or 𝑑𝑅 runs in the loop.)

We calculate the corresponding divergent amplitudes below, with the subscript (superscript) denoting

the field being integrated out (external field). In all amplitudes, 𝑝 denotes the external momentum and 𝛼

(𝑖) is the flavour (weak) index of the external field.
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Figure 44: Diagrams contributing to the renormalization of the kinetic term of the LH lepton.

iMℓ𝐿
𝐻

= (𝑦𝑒𝛼𝜌 )∗𝑦𝑒𝛼𝜌
i

32𝜋2𝜖
𝑢𝐿/𝑝𝑢𝐿 ; (479)

iMℓ𝐿
𝐵

= −
(𝑔1
2

)2 [
𝑢𝛾𝜇𝑃𝐿𝛾

𝛼𝛾𝜇𝑃𝐿𝑢
]
𝐼𝛼 = −

(𝑔1
2

)2 [
𝑢𝛾𝜇

(
2𝑔𝛼𝜇 − 𝛾𝜇𝛾𝛼

)
𝑃𝐿𝑢

]
𝐼𝛼

= −
(𝑔1
2

)2
(2 − d) (2𝐵3)𝑢𝐿/𝑝𝑢𝐿 =

(𝑔1
2

)2 i
(4𝜋)2𝜖

𝑢𝐿/𝑝𝑢𝐿 , (480)

with

𝐼𝛼 ≡
∫

𝑑d𝑘

(2𝜋)d
𝑘𝛼

𝑘2(𝑘 − 𝑝)2
= 2𝐵3𝑝𝛼 ; (481)

iMℓ𝐿
𝑊

= (−𝑔22)𝑇
𝑎
𝑖𝑚𝑇

𝑎
𝑚𝑖

[
𝑢𝛾𝜇𝑃𝐿𝛾

𝛼𝛾𝜇𝑃𝐿𝑢
]
𝐼𝛼 = 𝑔22

i
(4𝜋)2𝜖

𝐶
(2)
𝐹
𝑢𝐿/𝑝𝑢𝐿 . (482)

From here, we derive a generic expression for the fermionic 1→ 1 amplitude from one-loop diagrams

with gauge fields, which we apply in the following cases:

iM𝐵,𝑊 ,𝐺 =
i

(4𝜋)2𝜖

[
𝑔21𝑌

2 + 𝑔22𝐶
(2)
𝐹
+ 𝑔23𝐶

(3)
𝐹

]
𝑢𝐿,𝑅/𝑝𝑢𝐿,𝑅 . (483)

We therefore obtain:

iM𝑒𝑅
𝐻

= 𝑦𝑒𝜌𝛼 (𝑦𝑒𝜌𝛼 )∗
i

16𝜋2𝜖
𝑢𝑅/𝑝𝑢𝑅 , (484)

iM𝑒𝑅
𝐵

=
i

(4𝜋)2𝜖
𝑔21𝑢𝑅/𝑝𝑢𝑅 . (485)

iM𝑑𝑅
𝐻

= 𝑦𝑑𝜌𝛼 (𝑦𝑑𝜌𝛼 )∗
i

16𝜋2𝜖
𝑢𝑅/𝑝𝑢𝑅 , (486)

iM𝑑𝑅
𝐵,𝐺

=
i

(4𝜋)2𝜖

[
𝑔21

(
1
3

)2
+ 𝑔23𝐶

(3)
𝐹

]
𝑢𝑅/𝑝𝑢𝑅 . (487)

iM𝑢𝑅
𝐻

= 𝑦𝑢𝜌𝛼 (𝑦𝑢𝜌𝛼 )∗
i

16𝜋2𝜖
𝑢𝑅/𝑝𝑢𝑅 , (488)

iM𝑢𝑅
𝐵,𝐺

=
i

(4𝜋)2𝜖

[
𝑔21

(
2
3

)2
+ 𝑔23𝐶

(3)
𝐹

]
𝑢𝑅/𝑝𝑢𝑅 . (489)
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Figure 45: Diagrams contributing to the renormalization of the Higgs doublet kinetic term.

iM𝑞𝐿
𝐻

=
[
(𝑦𝑢𝛼𝜌 )∗𝑦𝑢𝛼𝜌 + (𝑦𝑑𝛼𝜌 )∗𝑦𝑑𝛼𝜌

] i
32𝜋2𝜖

𝑢𝐿/𝑝𝑢𝐿 , (490)

iM𝑞𝐿
𝐵,𝑊 ,𝐺

=
i

(4𝜋)2𝜖

[
𝑔21

(
1
6

)2
+ 𝑔22𝐶

(2)
𝐹
+ 𝑔23𝐶

(3)
𝐹

]
𝑢𝐿/𝑝𝑢𝐿 . (491)

H.2.2 Scalars

The diagrams contributing to the Higgs boson kinetic term are depicted in figure 45. The corresponding

divergent amplitudes read:

iM𝐻
𝜓 =

[
𝑦𝑒𝜎𝜌 (𝑦𝑒𝜎𝜌 )∗ + 3𝑦𝑑𝜎𝜌 (𝑦𝑑𝜎𝜌 )∗ + 3𝑦𝑢𝜎𝜌 (𝑦𝑢𝜎𝜌 )∗

] i
16𝜋2𝜖

𝑝2 ; (492)

iM𝐻
𝐵 = (−𝑔21 )

(
1
2

)2
𝐼 =

i
(4𝜋)2𝜖

(
−𝑔21
2

)
𝑝2 , (493)

where

𝐼 ≡
∫

𝑑d𝑘

(2𝜋)d
1

𝑘2(𝑘 − 𝑝)2
(2𝑝 − 𝑘) · (2𝑝 − 𝑘) = (3𝐴2 − 4𝐵3)𝑝2 =

i
(4𝜋)2𝜖

2𝑝2 ; (494)

iM𝐻
𝑊 = (−𝑔22)𝑇

𝑎
𝑖𝑘𝑇

𝑎
𝑘𝑖 𝐼 =

−2i
(4𝜋)2𝜖

𝑔22𝐶
(2)
𝐹
𝑝2 . (495)

Regarding the ALP, there are no divergent contributions to the kinetic term up to O(1/Λ).
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Figure 46: Diagrams contributing to the renormalization of the kinetic term of the abelian gauge boson.

H.2.3 Gauge fields

The diagrams contributing to the kinetic term of the U(1) gauge bosons are represented in figure 46. The

corresponding divergent amplitudes are given by (with the external polarization vectors implicit):

iM𝐵
𝐻 =

𝑔21
4

∑
𝑖

𝛿𝑖𝑖 𝐼
′ =

i
(4𝜋)2𝜖

𝑔21
6

[
𝑝𝜇𝑝𝜈 − 𝑝2𝑔𝜇𝜈

]
, (496)

where

𝐼′ ≡
∫

𝑑d𝑘

(2𝜋)d
(2𝑘 − 𝑝)𝜇 (2𝑘 − 𝑝)𝜈

𝑘2(𝑘 − 𝑝)2
= 𝑝2𝑔𝜇𝜈

(
−4𝐵3 + 16𝐶4

)
+ 𝑝𝜇𝑝𝜈

(
32𝐶4 − 8𝐵3 +𝐴2

)
=

i
(4𝜋)2𝜖

1
3

[
𝑝𝜇𝑝𝜈 − 𝑝2𝑔𝜇𝜈

]
. (497)

Considering the fermionic loops (in particular the one associated to 𝑒𝑅 ), we have:

iM𝐵
𝑒𝑅

= (−1)
∑
𝛼
𝛿𝛼𝛼𝑔

2
1 𝐼
′′ =

i
(4𝜋)2𝜖

2𝑔21
3
𝑛𝐺

[
𝑝𝜇𝑝𝜈 − 𝑝2𝑔𝜇𝜈

]
, (498)

where 𝑛𝐺 = 3 denotes the number of fermion generations and

𝐼′′ ≡
∫

𝑑d𝑘

(2𝜋)d
1

𝑘2(𝑘 − 𝑝)2

{
Tr

[
𝛾𝜇𝑃𝑅/𝑘𝛾𝜈𝑃𝑅

(/𝑘 − /𝑝 ) ] = 1
2
Tr

[
𝛾𝜇/𝑘𝛾𝜈

(/𝑘 − /𝑝 ) ] }
=
d
2

[
𝑝2𝑔𝜇𝜈

(
𝐴2 − 4𝐵3 + 8𝐶4

)
+ 𝑝𝜇𝑝𝜈

(
16𝐶4 − 4𝐵3

) ]
=

i
(4𝜋)2𝜖

2
3

[
𝑝2𝑔𝜇𝜈 − 𝑝𝜇𝑝𝜈

]
. (499)

In the first line of the integral above, we omitted a second part of the trace originating from the projector,

Tr
[
𝛾5𝛾𝜇/𝑘𝛾𝜈

(/𝑘 − /𝑝 ) ] = −i𝑘𝛼 (𝑘 − 𝑝)𝛽𝜖𝜇𝜈𝛼𝛽d/2, which cannot contribute since the only structures

allowed by gauge invariance are symmetric upon permutation of the indices 𝜇 ↔ 𝜈 .

In this way, all the other (LH or RH) fermionic loops can be easily computed by including the hyper-

charge factor 𝑌2 and the sum over colors and particles in the doublet. Altogether, they contribute with

iM𝐵
𝜓 =

i
32𝜋2𝜖

𝑔21

[
𝑝𝜇𝑝𝜈 − 𝑝2𝑔𝜇𝜈

]
𝑛𝐺

(
2 + 22𝑁𝐶

27

)
. (500)
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In the case of non-abelian gauge theories (where we use 𝑎,𝑏 to denote the group indices), we have to

take into account additional contributions from gauge boson self-interactions and ghost fields. The first of

these contributions gives:

iM𝑊
𝑊 =

−𝑔22
2
𝜖𝑐𝑎𝑑𝜖𝑐𝑏𝑑 𝐼

′′′ = 𝑔22
i𝛿𝑎𝑏
(4𝜋)2𝜖

10𝐶 (2)
𝐴
3

[
𝑝2𝑔𝜇𝜈 − 𝑝𝜇𝑝𝜈

]
, (501)

where

𝐼′′′ ≡
∫

𝑑d𝑘

(2𝜋)d

[
− 8𝑔𝜇𝜈𝑝2 + (8 − d)𝑝𝜇𝑝𝜈 + 2d(𝑝𝜇𝑘𝜈 + 𝑝𝜈𝑘𝜇) − 4d𝑘𝜇𝑘𝜈

]
= 𝑝2𝑔𝜇𝜈

[
− 8𝐴2 + 4d(𝐵3 − 4𝐴4)

]
+ 𝑝𝜇𝑝𝜈

[
(8 − d)𝐴2 + 8d𝐵3 − 32d𝐶4

]
=

i
(4𝜋)2𝜖

20
3

[
𝑝𝜇𝑝𝜈 − 𝑝2𝑔𝜇𝜈

]
; (502)

while the contribution from ghost fields reads:

iM𝑊
ghost = (−1)i

2𝑔22𝜖𝑎𝑚𝑛𝜖𝑏𝑛𝑚𝐼
′ = 𝑔22

i𝛿𝑎𝑏
(4𝜋)2𝜖

𝐶
(2)
𝐴
3

[
𝑝2𝑔𝜇𝜈 − 𝑝𝜇𝑝𝜈

]
. (503)

On the other hand, the contribution from fermions is given by

iM𝑊
𝜓

= (−1)𝑔22𝑇
𝑎
𝑖 𝑗𝑇

𝑏
𝑗𝑖

∑
𝛼
𝛿𝛼𝛼 𝐼

′′ = 𝑔22
i𝛿𝑎𝑏
(4𝜋)2𝜖

2𝑇 (2)
𝐹
3

𝑛𝐺
(
1 + 𝑁𝐶

) [
𝑝𝜇𝑝𝜈 − 𝑝2𝑔𝜇𝜈

]
. (504)

Finally, the diagram where the Higgs boson runs in the loop contributes with

iM𝑊
𝐻 = 𝑔22𝑇

𝑎
𝑖 𝑗𝑇

𝑏
𝑗𝑖 𝐼
′ = 𝑔22

i𝛿𝑎𝑏
(4𝜋)2𝜖

𝑇
(2)
𝐹
3

[
𝑝2𝑔𝜇𝜈 − 𝑝𝜇𝑝𝜈

]
. (505)

These results can be straightforwardly recast for the case of 𝑆𝑈 (3):

iM𝐺
𝐺+ghost = 𝑔

2
3

i𝛿𝑎𝑏
(4𝜋)2𝜖

11𝐶 (3)
𝐴
3

[
𝑝2𝑔𝜇𝜈 − 𝑝𝜇𝑝𝜈

]
. (506)

Regarding the fermions, all quarks 𝑢𝑅, 𝑑𝑅 and 𝑞𝐿 couple to the gluon and transform in the same (fun-

damental) representation of 𝑆𝑈 (3). Their contribution can be therefore obtained from equation 504 with

the replacement of (1 + 𝑁𝐶 ) → (1 + 1 + 2), leading to:

iM𝐺
𝜓 = 𝑔23

i𝛿𝑎𝑏
(4𝜋)2𝜖

8𝑇 (3)
𝐹
3

𝑛𝐺

[
𝑝𝜇𝑝𝜈 − 𝑝2𝑔𝜇𝜈

]
. (507)

To obtain the final WFR factors, all previous amplitudes should be matched with the tree level ampli-

tudes computed with the kinetic counterterm Lagrangian:

iM𝜓
EFT = i(𝑍𝜓 − 1)𝑢/𝑝𝑢 , (508)

iM𝐻
EFT = i(𝑍𝐻 − 1)𝑝2 , (509)

iM𝑉
EFT = −i(𝑍𝑉 − 1)

[
𝑝2𝑔𝜇𝜈 − 𝑝𝜇𝑝𝜈

]
𝛿𝑎𝑏 . (510)
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H.3 Removing redundancies

The R-operators generated in the process of renormalization can be removed upon field redefinitions,

such as 𝑆 → 𝑆 + O′/Λ. To linear order in 1/Λ, the latter can be implemented via the EOMs [311] of the
SM+ALP:

𝜕2𝑆 = −𝑚2
𝑆𝑆 −

𝜅𝑆
2
𝑆2 − 𝜆𝑆𝑆

3

3!
− 𝜅𝑆𝐻 |𝐻 |2 − 𝜆𝑆𝐻𝑆 |𝐻 |2 ; (511)

𝐷2𝐻𝑘 = −𝜇2𝐻𝐻𝑘 − 2𝜆𝐻 |𝐻 |
2𝐻𝑘 − (𝑦𝑢)𝛼𝛽𝑞𝛼𝐿𝑗𝜖 𝑗𝑘𝑢

𝛽
𝑅
− (𝑦𝑑 )†

𝛽𝛼
𝑑
𝛽
𝑅
𝑞𝛼
𝐿𝑘

− (𝑦𝑒 )†
𝛽𝛼
𝑒
𝛽
𝑅
𝑙𝛼
𝐿𝑘
− 𝜅𝑆𝐻𝑆𝐻𝑘 −

𝜆𝑆𝐻
2
𝑆2𝐻𝑘 (512)

𝑖 /𝐷𝑞𝛼
𝐿𝑘

= (𝑦𝑑 )𝛼𝛽𝐻𝑘𝑑
𝛽
𝑅
+ (𝑦𝑢)𝛼𝛽𝐻𝑘𝑢

𝛽
𝑅

(513)

𝑖 /𝐷𝑙𝛼
𝐿𝑘

= (𝑦𝑒 )𝛼𝛽𝐻𝑘𝑒
𝛽
𝑅
; (514)

𝑖 /𝐷𝑑𝛼𝑅 = (𝑦𝑑𝛼𝛽 )
†𝐻†
𝑘
𝑞
𝛽
𝐿𝑘

; (515)

𝑖 /𝐷𝑢𝛼𝑅 = (𝑦𝑢𝛼𝛽 )
†𝐻†
𝑘
𝑞
𝛽
𝐿𝑘

; (516)

𝑖 /𝐷𝑒𝛼𝑅 = (𝑦𝑒𝛼𝛽 )
†𝐻†
𝑘
𝑙
𝛽
𝐿𝑘
, (517)

where we again used latin (greek) indices for 𝑆𝑈 (2) (flavour). Using these equations, we arrive at the

following relations, valid on-shell2:

R𝑆2 = −𝑚2
𝑆𝑆

3 − 𝜅𝑆
2
𝑆4 − 𝜆𝑆

3!
O5 − 𝜅𝑆𝐻𝑆2 |𝐻 |2 − 𝜆𝑆𝐻O𝑆3 , (518)

R𝑆𝐻2 = −𝜇2𝐻𝑆 |𝐻 |
2 − 2𝜆𝐻O𝑆 − 𝑦𝑢𝛼𝛽O

𝛼𝛽
𝑆𝐻𝑢 − (𝑦

𝑑 )∗𝛼𝛽 (O
𝛼𝛽
𝑆𝐻𝑑
)† (519)

− (𝑦𝑒 )∗𝛼𝛽 (O
𝛼𝛽
𝑆𝐻𝑒 )
† − 𝜅𝑆𝐻𝑆2 |𝐻 |2 −

𝜆𝑆𝐻
2
O
𝑆3 ,

R𝐻𝑆2 = −𝑚2
𝑆𝑆 |𝐻 |

2 − 𝜅𝑆
2
𝑆2 |𝐻 |2 − 𝜆𝑆

3!
O
𝑆3 − 𝜅𝑆𝐻 |𝐻 |

4 − 𝜆𝑆𝐻O𝑆 , (520)

R𝛼𝛽𝑆𝑞 = 𝑦𝑢𝛽𝜎O
𝛼𝜎
𝑆𝐻𝑢 + 𝑦

𝑑
𝛽𝜎O

𝛼𝜎
𝑆𝐻𝑑

, (521)

R𝛼𝛽
𝑆𝑙

= 𝑦𝑒𝛽𝜎O
𝛼𝜎
𝑆𝐻𝑒 , (522)

R𝛼𝛽𝑆𝑢 = (𝑦𝑢)∗𝜎𝛽 (O
𝜎𝛼
𝑆𝐻𝑢)

† , (523)

R𝛼𝛽
𝑆𝑑

= (𝑦𝑑 )∗𝜎𝛽 (O
𝜎𝛼
𝑆𝐻𝑑
)† , (524)

R𝛼𝛽𝑆𝑒 = (𝑦𝑒 )∗𝜎𝛽 (O
𝜎𝛼
𝑆𝐻𝑒 )
† . (525)

2To clarify the notation, the conjugated operator of O𝛼𝛽

𝑆𝐻𝑑
= 𝑆𝑞𝛼𝐿𝜙𝑑

𝛽
𝑅 is (O𝛼𝛽

𝑆𝐻𝑑
)† = 𝑑𝛽𝑅𝜙†𝑞𝛼𝐿𝑆 .
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Altogether, these equations lead to the following replacements:

𝑎′𝑆𝐻𝑢 → 𝑎′𝑆𝐻𝑢 − 𝑟𝑆𝐻2𝑦𝑢 + 𝑟𝑆𝑞𝑦𝑢 − 𝑦𝑢𝑟𝑇𝑆𝑢 , (526)

𝑎′
𝑆𝐻𝑑 → 𝑎′

𝑆𝐻𝑑 + 𝑟𝑆𝐻2𝑦𝑑 + 𝑟𝑆𝑞𝑦𝑑 − 𝑦𝑑𝑟𝑇𝑆𝑑 , (527)

𝑎′𝑆𝐻𝑒 → 𝑎′𝑆𝐻𝑒 + 𝑟𝑆𝐻2𝑦𝑒 + 𝑟𝑆𝑙𝑦𝑒 − 𝑦𝑒𝑟𝑇𝑆𝑒 . (528)

H.4 Chirality-preserving basis and comparison with the

literature

Commonly, the ALP Lagrangian is written in a different basis than the one used in this work [184, 230,

287, 288, 312], favoring operators with derivative terms on the ALP so that its shift-symmetry is explicit:

Lshift =
(
𝜕𝜇𝑆

) ∑
𝜓

𝜓𝐶𝜓𝛾
𝜇𝜓 + 𝑔23𝐶𝐺𝑆𝐺

𝐴
𝜇𝜈𝐺

𝜇𝜈,𝐴 + 𝑔22𝐶𝑊 𝑆𝑊𝐴
𝜇𝜈𝑊

𝜇𝜈,𝐴 + 𝑔21𝐶𝐵𝑆𝐵𝜇𝜈𝐵
𝜇𝜈 , (529)

with𝜓 summing over all the chiral fermions in the theory. In the leptonic sector alone, we count 9+9 = 18
parameters in this basis, assuming both 𝐶𝑃 -preserving and 𝐶𝑃 -breaking interactions; while in our basis

there also are 18 parameters in 𝑎𝑆𝐻𝑒 . However, ours describes both shift-breaking and shift-symmetric

operators, while the basis in equation 529 preserves the ALP shift-symmetry. Hence, some of the 𝑑.𝑜.𝑓 .

in 𝐶𝑒 +𝐶𝑙 must be redundant.
Under certain assumptions, it is even possible to trade completely the LH operators by the RH ones,

since

𝜕𝜇𝑆𝑒𝑅

[
𝑦𝑒−1𝐶𝑙𝑦𝑒 + 𝑦𝑒†𝐶𝑙 (𝑦𝑒−1)†

2

]
𝑒𝑅

= −𝑆𝑒𝑅
𝑦𝑒−1𝐶𝑒𝑦𝑒

2

[←−/𝐷 + /𝐷]
𝑒𝑅 − 𝑆𝑒𝑅

𝑦𝑒†𝐶 (𝑦𝑒−1)†
2

[←−/𝐷 + /𝐷]
𝑒𝑅

= −𝑆𝑒𝑅𝑦𝑒−1𝐶𝑙𝑦𝑒
←−/𝐷𝑒𝑅 − 𝑆𝑒𝑅

−𝑦𝑒−1𝐶𝑙𝑦𝑒 + 𝑦𝑒†𝐶𝑙 (𝑦𝑒−1)†

2
←−/𝐷𝑒𝑅

− 𝑆𝑒𝑅𝑦𝑒†𝐶𝑙 (𝑦𝑒−1)† /𝐷𝑒𝑅 − 𝑆𝑒𝑅
𝑦𝑒−1𝐶𝑙𝑦𝑒 − 𝑦𝑒†𝐶𝑙 (𝑦𝑒−1)†

2
/𝐷𝑒𝑅

= −𝑆
[
i𝑙𝐿𝐻𝐶𝑙𝑦

𝑒𝑒𝑅 + h.c.
]
− 𝑆𝑒𝑅

[
𝑦𝑒−1𝐶𝑙𝑦𝑒 − 𝑦𝑒†𝐶𝑙 (𝑦𝑒−1)†

2

] [
−
←−/𝐷 + /𝐷

]
𝑒𝑅

= −𝜕𝜇𝑆𝑙𝐿𝐶𝑙𝛾𝜇𝑙𝐿 − 𝑆𝑒𝑅
[
𝑦𝑒−1𝐶𝑙𝑦𝑒 − 𝑦𝑒†𝐶𝑙 (𝑦𝑒−1)†

2

] [
−
←−/𝐷 + /𝐷

]
𝑒𝑅 ,

where we used IBP, together with the EOMs of leptons. (We ignored corrections to the anomalous gauge

operators that arise due to the anomaly equation [290].) A sufficient condition for the LH↔RH equivalence

is therefore to make the last term vanish, which is the case, for example, if [𝐶𝑙 , 𝑦𝑒 ] = 0.

204



In this case, the minimal chirality-preserving basis can be constructed out of the three RH fermionic

operators solely. Furthermore, in this limit, the Wilson coefficients in the chirality-preserving and chirality-

flipping bases become unambiguously related and we can obtain the RGEs in the former. Indeed, upon

the use of IBP and the EOMs,

(𝜕𝜇𝑆)𝑒𝑅𝐶𝑒𝛾𝜇𝑒𝑅 = i𝑆𝑒𝑅𝐶𝑒
[
i /𝐷 + i

←−/𝐷
]
𝑒𝑅 = i𝑆

[
𝑒𝑅𝐶𝑒 (𝑦𝑒 )†𝐻†𝑙𝐿 − 𝑙𝐿𝐻𝑦𝑒𝐶𝑒𝑒𝑅

]
, (530)

allowing us to identify

𝑎𝑆𝐻𝑒 = −Re
[
𝑦𝑒𝐶𝑒

]
, in the 𝐶𝑃 -preserving limit. (531)

Similarly for the other fermions. Note that the presence of the Yukawa matrix is necessary to make some

of the 𝑑.𝑜.𝑓 . in 𝑎𝑆𝐻𝑒 inactive, otherwise such identification would be impossible (because the 𝐶𝑃 -even

matrix 𝑎𝑆𝐻𝑒 contains 9 real parameters, whereas 𝐶𝑒 is made of only 6). To see that this is indeed the

case, consider the limit of 𝑦𝑒 → 0 which makes 𝑎𝑆𝐻𝑒 vanish, in contrast with the result from our original

basis where these two parameters are independent. Furthermore, equation 531 gives a sufficient condition

to make the Wilson coefficients shift-symmetric in the chirality-flipping basis, for any arbitrary hermitian

matrix 𝐶𝑒 ; see Ref. [8].

From equation 531, it follows that the evolution of the𝐶 -matrices is given by ¤𝐶 = 𝑦−1 ¤𝑦𝑦−1𝑎 −𝑦−1 ¤𝑎.
After replacing ¤𝑎𝑆𝐻𝜓 by equations 249, 250 and 251, and using equations 208-210 in Ref. [8] to account

for the running of the SM Yukawa matrices, we obtain:

𝛽𝐶𝑢 =𝑦𝑢†𝑦𝑢𝐶𝑢 + 2𝐶𝑢𝑦𝑢†𝑦𝑢 + 2𝜆𝑆𝐻𝐶𝑢 + (𝑦𝑢)−1𝑦𝑑𝐶𝑑𝑦𝑑†𝑦𝑢 (532)

+ 17
3
𝑔41𝐶𝐵 + 9𝑔

4
2𝐶𝑊 + 32𝐶𝐺𝑔

4
3𝐶𝐺 − 2𝛾

′ ,

𝛽𝐶𝑑
=𝑦𝑑†𝑦𝑑𝐶𝑑 + 2𝐶𝑑𝑦𝑑†𝑦𝑑 + 2𝜆𝑆𝐻𝐶𝑑 + (𝑦𝑑 )−1𝑦𝑢𝐶𝑢𝑦†𝑦𝑑 (533)

+ 5
3
𝑔41𝐶𝐵 + 9𝑔

4
2𝐶𝑊 + 32𝑔

4
3𝐶𝐺 + 2𝛾

′ ,

𝛽𝐶𝑒 =𝑦
𝑒†𝑦𝑒𝐶𝑒 + 2𝐶𝑒𝑦𝑒†𝑦𝑒 + 2𝜆𝑆𝐻𝐶𝑒 + 15𝑔41𝐶𝐵 + 9𝑔

4
2𝐶𝑊 + 2𝛾

′ , (534)

with

𝛾′ ≡ Tr
[
𝑦𝑒𝐶𝑒𝑦

𝑒† + 3𝑦𝑑𝐶𝑑𝑦𝑑† − 3𝑦𝑢𝐶𝑢𝑦𝑢†
]
. (535)

Note that no gauge corrections arise in the renormalization group evolution of the parameters in the new

basis. Although these corrections are present in the original RGEs of theO𝑆𝐻𝑢 ,O𝑆𝐻𝑑 andO𝑆𝐻𝑒 operators,
such contributions are exactly canceled by the running of the Yukawa matrices in the SM. The argument

goes as follows: since 𝐽 𝜇 ≡ 𝜓𝛾𝜇𝜓 is a conserved𝑈 (1) current, it cannot be renormalized directly. Indeed,
the difference 𝛿 𝐽 𝜇 between the renormalized (𝐽𝑅 ) and non-renormalized (𝐽0) currents, which is a sum of

𝜖 pole terms, must itself satisfy the Ward identity. Hence, 𝜕𝜇𝛿 𝐽 𝜇 = 0 and 𝐽
𝜇
0 = 𝐽

𝜇
𝑅
. This does not hold

if there are redundant operators involving gauge fields which can give corrections to (𝜕𝜇𝑆) 𝐽 𝜇 upon the
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use of the EOMs. However, no redundant operators involving the ALP and the gauge bosons exist (up to

dimension five) in our Green basis. The argument is completed once we note that the non-abelian structure

of the weak and strong interactions are not manifest in the renormalization of the ALP-fermion operators

at one-loop.

In Ref. [312], the ALP Lagrangian in equation 529 is supplemented by the following interaction:

L′shift ⊃ 𝑐𝐻
(
𝜕𝜇𝑆

)
i
[
𝐻†𝐷𝜇𝐻 − (𝐷𝜇𝐻 )†𝐻

]
. (536)

Such operator can be removed by redefining 𝐻 → 𝑒i𝑐𝐻𝑆𝐻 and𝜓 → 𝑒
−i2𝑐𝐻𝑌𝜓𝑆𝜓 . This leads to a shift

in the ALP–fermion couplings of the form𝐶𝜓 → 𝐶𝜓 + 2𝑐𝐻𝑌𝜓 , so that the RGEs in the basis without the
operator above are given by ¤𝐶′

𝜓
= ¤𝐶𝜓 + 2¤𝑐𝐻𝑌𝜓 . In this case, the analogous of equation 530, with the

inclusion of all fermions, leads to:

𝑎𝑆𝐻𝑢 =
𝑦𝑢

2𝑓

(
𝐶′𝑞 −𝐶′𝑢

)
, (537)

𝑎𝑆𝐻𝑑 =
𝑦𝑑

2𝑓

(
𝐶′𝑞 −𝐶′𝑑

)
, (538)

𝑎𝑆𝐻𝑒 =
𝑦𝑒

2𝑓

(
𝐶′𝑙 −𝐶

′
𝑒

)
, (539)

in the one-family limit with real Yukawa couplings3. Using the RGEs in appendix A of Ref. [312], together

with the evolution equations of the Yukawa matrices provided in Ref. [8], we can translate the results in that

Ref. into our original basis and compare the final RGEs with the ones obtained in section 6.2.2. We find a

single mismatch in the sign of the last term in equations 249–251. We do not find enough information to

track the origin of this discrepancy though.

Additionally, we can compare directly the one-loop ALP-fermion couplings induced by the ALP-gauge

boson operators in equations 532–534 with the results obtained in Ref. [184]. We find exact agreement.

Finally, let us comment on the factorization of the gauge couplings in the bosonic ALP Lagrangian which

is often adopted to make𝐶𝐺 ,𝐶𝑊 and𝐶𝐵 scale-invariant, that is𝑑𝐶𝑉 /𝑑𝜇 = 0, at one-loop order [287]. To
check that this is the case, we focus on the gluonic operator. The relation between the Wilson coefficients

in the this and our bases implies, under the previous hypothesis, that

𝛽
𝑆𝐺

= 64𝜋3𝐶𝐺𝜇
𝑑 (𝛼3)
𝑑𝜇

. (540)

Employing the running of the strong gauge coupling at one-loop [8],

𝜇
𝑑𝛼3
𝑑𝜇

=
𝛼23
𝜋

(
−11
2
+ 2𝑛𝐺

3

)
= −

𝛼23
𝜋

7
2
, (541)

3The 1/2 factor comes from the different normalization of the ALP–fermion couplings in the basis of Ref. [312].

206



the previous RGE becomes

𝛽
𝑆𝐺

= 16𝜋2(−14)𝛼2𝑠 𝐶𝐺 = −14𝑔43𝐶𝐺 , (542)

which matches exactly our equation 252, upon the identification 𝑎
𝑆𝐺

= 𝑔23𝐶𝐺 . The scale-invariance of

the remaining 𝐶𝑊,𝐵 couplings can be checked analogously.
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A
p
p
e
n
d
ix

I
Computations in the ALP LEFT

I.1 Divergences at one-loop

Analogously to section H.1, here we enumerate the different processes and amplitudes we have obtained

in order to fix the counterterms in the ALP LEFT. In this case, we do not compute the one-loop diagrams

by hand, but depict all the diagrams involved, pointing out the relations we used to simplify the results

from FormCalc to match onto the LEFT.

I.1.1 𝑉 (𝑝1) → 𝜓𝛼 (𝑝2)𝜓
𝛽 (𝑝3)

The diagrams contributing to this process are represented in figure 47, for 𝑉 = 𝐴 and 𝜓 = 𝑒. The

corresponding divergent amplitudes read:

iM1+2+4 =
𝑄𝑒𝑒

32𝜋2𝜖

[
4𝑎

𝑆𝐴
(𝑐𝑒 )𝛼𝛽 𝜖𝜇𝜈𝜎𝜌𝜖𝜎∗ 𝑝

𝜌
1𝑢2𝑃𝑅𝛾

𝜇𝛾𝜈𝑣3 (543)

+ i(𝑐𝑒𝑐†𝑒 )𝛼𝛽𝜖
𝜇
∗𝑢2𝑃𝑅𝛾𝜇𝑣3

]
+ . . . ,

iM3 =
i

4𝜋𝜖
𝑄2𝑒 𝛼em

{
(−3𝑎𝑒𝐴�̃�

†
𝑒 − 3�̃�𝑒𝑎

†
𝑒𝐴
+𝑄𝑒𝑒𝛿)𝛼𝛽𝜖

𝜇
∗𝑢2𝑃𝑅𝛾𝜇𝑣3 (544)

+ 2
(
𝑎𝑒𝐴

)
𝛼𝛽

[
𝜖
𝜇
∗𝑝
𝜈
1𝑢2𝑃𝑅𝛾𝜇𝛾𝜈𝑣3 + 2

(
−2𝜖∗ · 𝑝3 + 𝜖∗ · 𝑝2

)
𝑢2𝑃𝑅𝑣3

]}
+ . . . ,

where we wrote only the LH or RH parts of the amplitudes which are sufficient to fix univocally the coun-

terterms (the dots encode the remaining chiral part of the amplitudes that we do not show).
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Figure 47: Diagrams contributing to the renormalization of 1 photon–2 fermion interactions.

On the other hand, the tree level amplitude is given by:

iMEFT = i𝑄𝑒𝑒
(
𝑍𝛼𝛽 − 1

)
𝜖
𝜇
∗𝑢2𝑃𝑅𝛾𝜇𝑣3 − 2i

(
𝑎𝑒𝐴

)
𝛼𝛽 𝜖

𝜇
∗𝑝
𝜈
1𝑢2𝑃𝑅

(
𝛾𝜇𝛾𝜈 − 𝑔𝜇𝜈

)
𝑣3 (545)

+ i𝑄𝑒𝑒 (𝑟𝑒2)𝛼𝛽 (
𝜖∗ · 𝑝3 − 𝜖∗ · 𝑝2

)
𝑢2𝑃𝑅𝑣3 .

In particular, this process allows us to cross-check the WFR of the electron:

(𝑍𝑒𝐿 − 1) = −
1

32𝜋2𝜖
𝑐𝑒𝑐
†
𝑒 −

1
16𝜋2𝜖

𝑄2𝑒 𝑒
2 + 3

16𝜋2𝜖
𝑄𝑒𝑒

(
𝑎𝑒𝐴�̃�

†
𝑒 + �̃�𝑒𝑎

†
𝑒𝐴

)
, (546)

in matrix form. Similarly, by extracting the RH elements in the one-loop amplitude, we fix (𝑍𝑒𝑅 − 1).
The term with the Levi-Civita tensor in equation 543 can be reduced using the identity 355:

𝜖𝜇𝜈𝜎𝜌𝑃𝑅𝛾
𝜇𝛾𝜈 = −i𝜖𝜇𝜈𝜎𝜌𝑃𝑅𝜎𝜇𝜈 = −2𝑃𝑅𝛾5𝜎𝜎𝜌 = 2i𝑃𝑅

(
𝑔𝜎𝜌 − 𝛾𝜌𝛾𝜎

)
, (547)

so that it can be directly matched toMEFT.

To obtain easily the results for processes involving quarks, we did not replace the electric charge 𝑄𝑒

in the previous results.

I.1.2 𝑆 (𝑝1) → 𝜓𝛼 (𝑝2)𝜓
𝛽 (𝑝3)

The diagrams contributing to this process are represented in figure 48, for 𝜓 = 𝑢. The corresponding

amplitudes read:

iM1+2 =
1

16𝜋2𝜖

[
− 2

{
(𝑎𝑢)𝛼𝜎 (𝑐𝑢)𝜌𝛽�̃�

∗𝜌𝜎
𝑢 + (𝑎𝑢)𝜎𝛽 (𝑐𝑢)𝛼𝜌�̃�

∗𝜎𝜌
𝑢

}
𝑢2𝑃𝑅𝑣3 (548)

− (𝑎𝑢)𝛼𝜎 (𝑐𝑢)∗𝛽𝜎𝑢2𝑃𝑅/𝑝3𝑣3 − (𝑎𝑢)
∗
𝛽𝜎 (𝑐𝑢)𝛼𝜎𝑢2𝑃𝑅/𝑝2𝑣3

]
+ . . . ,

(549)

iM3+4 = −i
𝛿𝛼𝛽

𝜋𝜖

(
𝛼em

𝑄2𝑢
4
𝑎
𝑆𝐴
+ 𝛼3

1
3
𝑎
𝑆𝐺

) [
𝜖𝜇𝜈𝜌𝜎𝑝

𝜎
3𝑢2𝑃𝐿𝛾

𝜇𝛾𝜈𝛾𝜌𝑣3 + . . .
]

(550)

=
𝛿𝛼𝛽

𝜋𝜖

(
𝛼em

𝑄2𝑢
4
𝑎
𝑆𝐴
+ 𝛼3

1
3
𝑎
𝑆𝐺

) [
− 6𝑢 /𝑝2𝑃𝑅𝑣 + . . .

]
,
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Figure 48: Diagrams contributing to the renormalization of 1 scalar–2 fermion interactions.

where we used the identity 352. Furthermore,

iM5+6 = − 4
9𝜋𝜖

(
𝛼em + 3𝛼3

)
(𝑐𝑢)𝛼𝛽𝑢2𝑃𝑅𝑣3 + . . . , (551)

iM7 =
1

16𝜋2𝜖
(𝑐𝑢)𝛼𝜎 (𝑐𝑢)∗𝜌𝜎 (𝑐𝑢)𝜌𝛽𝑢2𝑃𝑅𝑣3 + . . . (552)

On the other hand, the tree level EFT amplitude is given by:

iMEFT = −(𝑐𝑢)𝛼𝛽𝑢2𝑃𝑅𝑣3 + (𝑐𝑢)∗𝛽𝛼𝑢2𝑃𝐿𝑣3 + (𝑟𝑆𝑢𝐿 )
∗
𝛽𝛼𝑢2𝑃𝑅/𝑝2𝑣3 (553)

+ (𝑟𝑆𝑢𝑅 )
∗
𝛽𝛼𝑢2𝑃𝐿/𝑝2𝑣3 + (𝑟𝑆𝑢𝐿 )𝛼𝛽𝑢2𝑃𝑅/𝑝3𝑣3 + (𝑟𝑆𝑢𝑅 )𝛼𝛽𝑢2𝑃𝐿/𝑝3𝑣3 .

The amplitudes involving other fermions are again trivially obtained from these results (replacing the

corresponding indices and charges).

I.1.3 𝑆 (𝑝1)𝑆 (𝑝2) → 𝜓𝛼 (𝑝3)𝜓
𝛽 (𝑝4)

The diagrams contributing to this process are represented in figure 49, for 𝜓 = 𝑢. The corresponding

amplitudes are very similar to the previous case and no additional identity is required to reduce them.
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I.1.4 𝑆 (𝑝1) → 𝑉 𝜇 (𝑝2)𝑉 𝜈 (𝑝3)

The diagrams depicted in figure 50, contributing to the process 𝑆 → 𝐴𝐴, lead to the following divergent

amplitude1:

iM2–7 =
𝑒

2𝜋2𝜖
𝜖
∗𝜇
2 𝜖∗𝜈3 𝑝𝜎2𝑝

𝜌
3

[
𝑄𝑒

{
Tr

[
𝑐𝑒𝑎
†
𝑒𝐴
+ 𝑐†𝑒 𝑎𝑒𝐴

]
i𝜖𝜇𝜈𝜎𝜌 − Tr

[
𝑐𝑒𝑐
†
𝑒𝐴
− 𝑐†𝑒 𝑐𝑒𝐴

] (
𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜇𝜈𝑔𝜎𝜌

)}
+ 3𝑄𝑑

{
Tr

[
𝑐𝑑𝑎
†
𝑑𝐴
+ 𝑐†
𝑑
𝑎𝑑𝐴

]
i𝜖𝜇𝜈𝜎𝜌 − Tr

[
𝑐𝑑𝑎
†
𝑑𝐴
− 𝑐†

𝑑
𝑎𝑑𝐴

] (
𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜇𝜈𝑔𝜎𝜌

)}
+ 3𝑄𝑢

{
Tr

[
𝑐𝑢𝑎
†
𝑢𝐴
+ 𝑐†𝑢𝑎𝑢𝐴

]
i𝜖𝜇𝜈𝜎𝜌 − Tr

[
𝑎𝑢𝑎
†
𝑢𝐴
− 𝑐†𝑢𝑎𝑢𝐴

] (
𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜇𝜈𝑔𝜎𝜌

)} ]
. (554)

The component of the trace proportional to the metric terms, which is matched to the𝐶𝑃 -odd operator

𝑆𝐴𝜇𝜈𝐴𝜇𝜈 , can be decomposed as

Tr
[
𝑐𝜓𝑎
†
𝜓𝐴
− 𝑐†

𝜓
𝑎𝜓𝐴

]
= 2iTr

[
Im(𝑐𝜓 )Re(𝑎𝜓𝐴) − Re(𝑐𝜓 )Im(𝑎𝜓𝐴)

]
. (555)

As expected, by considering only the 𝐶𝑃 -even part of the singlet Yukawa and dipole operators (that is, by

taking their coefficients to be real), the contribution above vanishes.

The tree level amplitude for this process reads2:

iMEFT = 4i𝑎
𝑆𝐴
𝜖𝜇𝜈𝜎𝜌𝜖

∗𝜇
2 𝜖∗𝜈3 𝑝𝜎2𝑝

𝜌
3 . (556)

This and the one-loop amplitude can be therefore matched straightforwardly. The same conclusion holds

for the gluon case.

I.1.5 𝑆 (𝑝1)𝑆 (𝑝2) → 𝑆 (𝑝3)𝑆 (𝑝4)

There are 72 diagrams contributing to this process; those not involving the quarks are represented in

figure 51. The corresponding one-loop amplitudes are trivially matched to the tree level EFT.

I.1.6 𝑆 (𝑝1) → 𝑆 (𝑝2)

The diagrams contributing to this process are represented in figure 52. We focus on the insertion of effective

operators, which can only contribute to the singlet mass along with three insertions of �̃�𝜓 . Therefore, using

the BF in equation 268, we compute the amplitude associated to 𝑆 → 𝑆𝜑𝜑𝜑 :

iM7+8+9 =
9i

2𝜋2𝜖
Tr

[
�̃�†
𝑑
𝑎𝑑�̃�
†
𝑑
�̃�𝑑 + �̃�

†
𝑑
�̃�𝑑𝑎
†
𝑑
�̃�𝑑 + �̃�

†
𝑢𝑎𝑢�̃�

†
𝑢�̃�𝑢 + �̃�

†
𝑢�̃�𝑢𝑎

†
𝑢�̃�𝑢

]
(557)

+ 3i
2𝜋2𝜖

Tr
[
�̃�†𝑒𝑎𝑒�̃�

†
𝑒�̃�𝑒 + �̃�

†
𝑒�̃�𝑒𝑎

†
𝑒�̃�𝑒

]
.

1We ignore the first diagram in figure 50, which is of higher order.
2Check footnote 1.
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This should be matched to the tree level amplitude from the spurion interaction

L
𝑆2𝜑3 = −

𝑎
𝑆2𝜑3

2
𝑆2𝜑3 , where 𝑎

𝑆2𝜑3 〈𝜑〉
3 ≡ �̃�2 , (558)

given by:

iMEFT = −i3!𝑎𝑆2𝜑3 . (559)

We cross checked the counterterm resulting from this procedure with that obtained in the limit of real

and diagonal fermion masses, with no insertion of the BF. The results match.

I.1.7 𝜓𝛼 (𝑝1) → 𝜓 𝛽 (𝑝2)

The diagrams contributing to this process are represented in figure 53, for𝜓 = 𝑒. Similarly to the previous

case, the effective operators can only contribute with two insertions of the fermion mass. We therefore com-

pute the process𝜓 → 𝜓𝜑𝜑 , to fix the mass counterterm. For the case of the electron, the corresponding

one-loop amplitude is:

iM2+3 = − 3
4𝜋2𝜖

i𝑒𝑄𝑒
(
�̃�𝑒�̃�

†
𝑒𝑎𝑒𝐴 + 𝑎𝑒𝐴�̃�

†
𝑒�̃�𝑒

)
𝛽𝛼
𝑢2𝑃𝑅𝑢1 + . . . (560)

There is also a contribution proportional to the scalar mass:

iM4 = −i 1
16𝜋2

�̃�2
𝑆 (𝑎𝑒 )𝛽𝛼 𝑢2𝑃𝑅𝑢1 + . . . (561)

The sum of these amplitudes is finally matched to tree level one,

iMEFT = −i2!�̃�
𝛽𝛼
𝑒 𝑢2𝑃𝑅𝑢1 + . . . (562)

Similar considerations hold for quarks, with extra contributions from the chromomagnetic operators.

I.2 Removing redundancies

The purely SMEFT operators in equation 267 can be redefined away using the relation3

𝐷2 = /𝐷2 +
𝜎𝜇𝜈

2

(
𝑒𝑄𝐴𝜇𝜈 + 𝑔3𝐺𝐴𝜇𝜈𝑇𝐴

)
, (563)

and the following EOM of the ALP LEFT:

i /𝐷𝜓 = �̃�𝜓𝜓𝑅 + �̃�
†
𝜓
𝜓𝐿 − i𝑐𝜓𝑆𝜓𝑅 + i𝑐

†
𝜓
𝑆𝜓𝐿 . (564)

3Note that 𝐷2 = 𝑔𝜇𝜈𝐷𝜇𝐷𝜈 =
(
𝛾𝜇𝛾𝜈 + i𝜎𝜇𝜈

)
𝐷𝜇𝐷𝜈 . Since the 𝜎 -matrix is anti-symmetric, 𝐷2 = /𝐷2 + i𝜎𝜇𝜈 [𝐷𝜇, 𝐷𝜈 ]/2.

Using that 𝐴𝜇𝜈 = i[𝐷𝜇, 𝐷𝜈 ]/2 (in the minus sign convention), we obtain equation 563.
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To correctly use the EOM, we must start with a Lagrangian that is explicitly hermitian,

L𝑅 ⊃ 𝜓
𝛼
𝐿 (𝑟𝜓2)𝛼𝛽 /𝐷2𝜓𝛽𝑅 +𝜓𝛽

←−/𝐷 2(𝑟†
𝜓2)𝛽𝛼𝜓𝛼𝐿 ; (565)

alternatively, using IBP, we can consider

L′𝑅 ⊃
1
2

[
𝜓
𝛼
𝐿 (𝑟𝜓2)𝛼𝛽 /𝐷2𝜓𝛽𝑅+𝜓

𝛽←−/𝐷 2(𝑟†
𝜓2)𝛽𝛼𝜓𝛼𝐿 +𝜓

𝛼
𝐿 (𝑟𝜓2)𝛼𝛽←−/𝐷 2𝜓𝛽

𝑅
+𝜓𝛽 (𝑟†

𝜓2)𝛽𝛼 /𝐷2𝜓𝛼𝐿
]
, (566)

which we take from now on. Applying the EOM in the first two terms, we obtain:

L′𝑅 ⊃ −
1
2

[
𝜓𝐿𝑟𝜓2 (

i /𝐷
) [
�̃�†
𝜓
+ i𝑐†

𝜓
𝑆
]
𝜓𝐿 −𝜓𝐿

[
�̃�𝜓 − i𝑆𝑐𝜓

]
(i
←−/𝐷 )𝑟†

𝜓2𝜓𝐿 + . . .
]
. (567)

The two terms, in this equation, proportional to the mass contribute to the WFR of the LH fermions.

Matching to (
𝑍𝜓𝐿 − 1

)
𝜓𝐿i /𝐷𝜓𝐿 , (568)

we obtain the following counterterm:

𝑍𝜓𝐿 − 1 = −
1
2

(
𝑟𝜓2�̃�†𝜓 + �̃�𝜓𝑟†𝜓2

)
. (569)

In the same way, applying the EOM to the last two operators in equation 566, we find:

𝑍𝜓𝑅 − 1 = −
1
2

(
�̃�†
𝜓
𝑟𝜓2 + 𝑟†𝜓2�̃�𝜓

)
. (570)

We remark that, in case we had worked with equation 565, the results for the WFR factors would have

been apparently different. We have checked explicitly that this difference can be removed by performing

suitable chiral rotations and therefore has no physical meaning [8, 281].

In equation 567, there are still redundant operators which can be further reduced. With that aim, we

apply again IBP+EOM in these operators, obtaining:

1
2

{
𝜓𝐿 (i
←−/𝐷 )𝑟𝜓2

[
i𝑐†
𝜓
𝑆
]
𝜓𝐿 +𝜓𝐿

[
i𝑆𝑐𝜓

]
𝑟†
𝜓2(i /𝐷)𝜓𝐿

}
(571)

=
1
2
i𝑆𝜓𝐿𝑐𝜓𝑟

†
𝜓2

[
�̃�𝜓 − i𝑆𝑐𝜓

]
𝜓𝑅 + h.c.

Repeating this procedure for the two last operators in equation 566, we obtain the following relations:

𝑐𝜓 =
1
2

(
𝑐𝜓𝑟
†
𝜓2�̃�𝜓 + �̃�𝜓𝑟†𝜓2𝑐𝜓

)
, (572)

𝑎𝜓 = 𝑐𝜓𝑟
†2𝑐𝜓 . (573)

The contributions to the dipole operators are directly read from the identity 563:

𝑎𝜓𝐴 =
𝑒𝑄𝜓

2
𝑟𝜓2 , (574)

𝑎𝜓𝐺 =
𝑔3
2
𝑟𝜓2 . (575)
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Finally, the redundant operators involving the ALP can be removed by applying the EOM. For example,

for those involving the up-quark,

𝑆𝑢𝛼
𝐿
i /𝐷𝑢𝛽

𝐿
= (�̃�𝑢)𝛽𝜌𝑆𝑢𝛼𝐿𝑢

𝜌
𝑅
− i(𝑐𝑢)𝛽𝜌𝑆2𝑢𝛼𝐿𝑢

𝜌
𝑅
, (576)

𝑆𝑢𝛼
𝑅
i /𝐷𝑢𝛽

𝑅
= (𝑚𝑢)∗𝜌𝛽𝑆𝑢

𝛼
𝑅𝑢
𝜌
𝐿
+ i(𝑐𝑢)∗𝜌𝛽𝑆

2𝑢𝛼𝑅𝑢
𝜌
𝐿
. (577)

This reduction adds the following contributions to the ALP–fermion couplings:

𝑐𝜓 = 𝑟𝑆𝜓𝐿�̃�𝜓 − �̃�𝜓𝑟
†
𝑆𝜓𝑅

, (578)

𝑎𝜓 = 𝑟𝑆𝜓𝐿𝑐𝜓 − 𝑐𝜓𝑟
†
𝑆𝜓𝑅

. (579)

Altogether, the redundant operators in the SM+ALP LEFT lead to the following replacements:(
𝑍𝜓𝐿 − 1

)
→

(
𝑍𝐿 − 1

)
− 1
2

(
𝑟𝜓2�̃�†𝜓 + �̃�𝜓𝑟†𝜓2

)
, (580)(

𝑍𝜓𝑅 − 1
)
→

(
𝑍𝑅 − 1

)
− 1
2

(
�̃�†
𝜓
𝑟𝜓2 + 𝑟†𝜓2�̃�𝜓

)
, (581)

𝑐𝜓 → 𝑐𝜓 +
1
2

(
𝑐𝜓𝑟
†
𝜓2�̃�𝜓 + �̃�𝜓𝑟†𝜓2𝑐𝜓

)
+ 𝑟𝑆𝜓𝐿�̃�𝜓 − �̃�𝜓𝑟

†
𝑆𝜓𝑅

, (582)

𝑎𝜓 → 𝑎𝜓 + 𝑐𝜓𝑟
†2𝑐𝜓 + 𝑟𝑆𝜓𝐿𝑐𝜓 − 𝑐𝜓𝑟†𝑆𝜓𝑅 , (583)

𝑎𝜓𝐴 → 𝑎𝜓𝐴 +
𝑒𝑄𝜓

2
𝑟𝜓2 , (584)

𝑎𝜓𝐺 → 𝑎𝜓𝐺 +
𝑔3
2
𝑟𝜓2 . (585)
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Figure 49: Diagrams contributing to the renormalization of 2 scalar–2 fermion interactions.
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Figure 50: Diagrams contributing to the renormalization of 1 scalar–2 gauge boson interactions.
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Figure 51: Diagrams contributing to the renormalization of 4 scalar interactions (ignoring the contributions
from quarks).
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Figure 52: Diagrams contributing to the renormalization of the scalar mass.
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Figure 53: Diagrams contributing to the renormalization of of the electron mass.
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