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We study the cyclotomic exponent sequence of a numerical semigroup S , and we compute 
its values at the gaps of S , the elements of S with unique representations in terms of 
minimal generators, and the Betti elements b ∈ S for which the set {a ∈ Betti(S) : a ≤S b}
is totally ordered with respect to ≤S (we write a ≤S b whenever a − b ∈ S , with a, b ∈ S). 
This allows us to characterize certain semigroup families, such as Betti-sorted or Betti-
divisible numerical semigroups, as well as numerical semigroups with a unique Betti 
element, in terms of their cyclotomic exponent sequences. Our results also apply to 
cyclotomic numerical semigroups, which are numerical semigroups with a finitely supported 
cyclotomic exponent sequence. We show that cyclotomic numerical semigroups with 
certain cyclotomic exponent sequences are complete intersections, thereby making progress 
towards proving the conjecture of Ciolan, García-Sánchez and Moree (2016) stating that S
is cyclotomic if and only if it is a complete intersection.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

A numerical semigroup S is a submonoid of N (the set of non-negative integers) under addition, with finite complement 
in N . The non-negative integers that are not in S are its gaps, and the set of gaps is denoted by G(S). The largest gap 
is the Frobenius number of S , denoted by F(S). The number of gaps of S , also known as the genus of S , is denoted by 
g(S). A numerical semigroup admits a unique minimal generating system; its elements are called minimal generators, and 
its cardinality the embedding dimension, denoted by e(S). The smallest positive integer in S is the multiplicity of S and is 
denoted by m(S). For an introduction to the theory of numerical semigroups the reader is referred, e.g., to [17].

To a numerical semigroup S we can associate its Hilbert series, defined as the formal power series HS (x) = ∑
s∈S xs ∈Z�x�, 

and its semigroup polynomial, given by PS (x) = (1 − x) 
∑

s∈S xs . (Indeed, since all elements larger than F(S) are in S and F(S)

is not, PS (x) is a monic polynomial of degree F(S) + 1.) In the sequel we say that a formal identity of the form A(x) = B(x)
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is true if it holds in Z�x�. For notational convenience we will often denote the infinite sum 1 + xd + x2d + · · · by (1 − xd)−1, 
where d ∈N .

It is not difficult to conclude that the coefficients of PS are in {−1, 0, 1} and that consecutive non-zero coefficients 
alternate in sign. On noting the formal identity HS(x) = (1 − x)−1 − ∑

s∈G(S) xs , we have

PS(x) = 1 + (x − 1)
∑

s∈G(S)

xs, (1)

and so PS(1) = 1. In addition, PS (0) = 1 and, by [7, Lemma 11] (see also Lemma 3.1), there exist unique integers e j such 
that the formal identity

PS(x) =
∞∏
j=1

(1 − x j)e j (2)

holds. We call the sequence e = {e j} j≥1 the cyclotomic exponent sequence of S and we will use this notation throughout the 
paper.

Cyclotomic exponent sequences were introduced in [7] as a tool for studying cyclotomic numerical semigroups; we will 
come back to this later in this section. The purpose of this paper is to initiate the study of any numerical semigroup by 
means of its cyclotomic exponent sequence. Our ultimate goal is to characterize special families of numerical semigroups in 
terms of properties of their cyclotomic exponent sequences.

Our first main result determines the exponent sequence of S at gaps and minimal generators.

Theorem 1.1. If S �=N is a numerical semigroup and e is its cyclotomic exponent sequence, then

a) e1 = 1;
b) e j = 0 for every j ≥ 2 not in S;
c) e j = −1 for every minimal generator j of S;
d) e j = 0 for every j ∈ S that has only one factorization and is not a minimal generator.

Our second main result determines e at certain Betti elements (see Section 2.3 for a definition of the latter and the 
related notion of R-classes). In order to introduce our findings, we need the following definitions.

Let (X, ≤) be a partially ordered set. We define the set U(X) as

U(X) = {x ∈ X : ↓x is totally ordered},
where ↓x = {y ∈ X : y ≤ x}. We note that

Minimals≤ X = Minimals≤ U(X). (3)

We write a ≤S b if b − a ∈ S . Since S is a cancellative monoid free of units, the relation ≤S defines an order relation on 
Z. Moreover, for any s ∈ S , the set ↓s (considered in (S, ≤S )) is finite.

If S is a numerical semigroup, we define the set

E(S) = {d ∈ N : d ≥ 2, ed �= 0, d is not a minimal generator},
notation which we will use throughout.

Our next result relates the partially ordered sets (Betti(S), ≤S) and (E(S), ≤S ).

Theorem 1.2. Let S be a numerical semigroup with cyclotomic exponent sequence e. Then U(Betti(S)) = U(E(S)). Moreover, for every 
b ∈ U(Betti(S)), the exponent eb is equal to the number of R-classes of b minus 1.

A direct consequence of (3) and Theorem 1.2 is that Minimals≤S Betti(S) = Minimals≤S E(S). In order to prove The-
orem 1.2 we need to understand the graph of factorizations ∇b of the elements b in U(Betti(S)) (see Section 2.3 for 
a definition of ∇b). Our main technical result on this matter is Theorem 5.9, which shows that when b ∈ U(Betti(S)) \
Minimals≤S Betti(S), the graph ∇b has exactly one connected component that is not a singleton.

As a consequence of Theorem 1.2 we are able to characterize some families of numerical semigroups solely in terms 
of their cyclotomic exponent sequences. Before stating our next result, let us define these families. In what follows, S is 
a numerical semigroup. We say that S is Betti-sorted if Betti(S) is totally ordered with respect to ≤S , and that S is Betti-
divisible if Betti(S) is totally ordered with respect to the divisibility order in N . These two families of numerical semigroups 
were introduced in [10], where the authors showed that they are complete intersections (see Section 2.4 for a definition). 
The third family we consider is that of numerical semigroups with a unique Betti element, which is obviously a subset of 
each of the two previous families. This family was studied in [10] and [11].
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Theorem 1.3. For a numerical semigroup S the following assertions hold:

a) The semigroup S is Betti-sorted if and only if E(S) is totally ordered by ≤S .
b) The semigroup S is Betti-divisible if and only if E(S) is totally ordered by the divisibility order.
c) The semigroup S has a unique Betti element if and only if E(S) is a singleton.

Our work also has some consequences for cyclotomic numerical semigroups.

Definition 1.1. A cyclotomic numerical semigroup is a numerical semigroup whose cyclotomic exponent sequence e has 
finite support; that is, there exists N ∈N such that e j = 0 for every j ≥ N .

These semigroups were introduced and studied in [7] using a different, but equivalent, definition (see Section 2.1). It 
turns out that every complete intersection numerical semigroup is cyclotomic, the former being a numerical semigroup such 
that the cardinality of its minimal presentation equals its embedding dimension minus one (see Section 2.3 for a brief recap 
on the concept of minimal presentations). In [7] the authors made the following conjecture, which they checked to be true 
for numerical semigroups with Frobenius number not exceeding 70, using the GAP package numericalsgps [8,9].

Conjecture 1.4 ([7, Conjecture 1]). A numerical semigroup is a complete intersection if and only if it is cyclotomic.

A version of this conjecture has been established for certain graded algebras, see [5], but the numerical semigroup 
version remains open. Conjecture 1.4 is equivalent with saying that a numerical semigroup S is a complete intersection if and 
only if its cyclotomic exponent sequence e has finite support. This establishes an equivalence between an algebraic property of 
a numerical semigroup and one that only involves its cyclotomic exponent sequence. Note that e has finite support if and 
only if E(S) is finite. Recall that Theorem 1.3 deals with the case where E(S) is a singleton.

As a consequence of our results, we make further progress towards proving Conjecture 1.4 by showing that all members 
of a certain family of cyclotomic numerical semigroups are complete intersections. More precisely, if the Hasse diagrams of 
Betti(S) and E(S) with respect to ≤S are forests, that is, U(Betti(S)) = Betti(S) and U(E(S)) = E(S), then we are able to 
deduce that S is a complete intersection (Corollary 7.6). Computations suggest that such forests arise very frequently; for 
instance, there are 197 complete intersection numerical semigroups with Frobenius number 101 (equivalently, with genus 
equal to 52), and for 170 of them the Hasse diagram of their set of Betti elements with respect to ≤S is a forest. Here 
we should mention that, for any complete intersection numerical semigroup S , we have Betti(S) = E(S), as explained in 
Section 2.4.

The paper is organized as follows. In Section 2 we gather some preliminary material used in the rest of the paper. In 
Section 3 we introduce cyclotomic exponent sequences and establish some elementary properties. In Section 4 we prove 
Theorem 1.1. In Section 5 we give the proof of Theorem 1.2, which comes in two parts, and we discuss a few tools needed 
for this purpose, such as minimal Betti elements and restricted factorizations (as this section is the longest, we kindly 
ask in advance for the reader’s patience). In Section 6 we give the proof of Theorem 1.3, while Section 7 is dedicated to 
applications to cyclotomic numerical semigroups, open questions, and concluding remarks.

2. Preliminaries

Here we recall a few properties and notions that are needed throughout the paper. References in the subsection headers 
give suggestions for further reading.

Section 2.1 is exceptional in that it is not needed for the rest of the paper. Its purpose is to show that the original 
definition of a cyclotomic numerical semigroup S , given in [7] through saying that PS admits a factorization into cyclotomic 
polynomials as in (5), is equivalent with the definition used here.

2.1. Cyclotomic numerical semigroups and cyclotomic polynomials [7,20]

The semigroup polynomial and the Frobenius number of a numerical semigroup of embedding dimension two can be 
easily determined (see, for instance, [15]).

Lemma 2.1 ([15, Theorem 1]). If 2 ≤ a < b are coprime integers, then

P〈a,b〉(x) = (1 − x)(1 − xab)

(1 − xa)(1 − xb)
.

Corollary 2.2 (Sylvester, 1884). If 2 ≤ a < b are coprime integers, then F(〈a, b〉) = ab − a − b.
3
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Lemma 2.1 shows that S = 〈a, b〉 is a cyclotomic numerical semigroup, since its exponent sequence has finite support. 
The factorization of P〈a,b〉 into irreducibles is easily found by using the well-known factorization

xn − 1 =
∏
d|n

�d(x) (4)

of xn −1 into cyclotomic polynomials (all of them irreducible over Q). In the special case where a and b are prime numbers, 
we find that P〈a,b〉(x) = �ab(x), which then gives a very natural proof of the classical fact that the coefficients of �ab(x) are 
all in {−1, 0, 1} and that consecutive non-zero coefficients alternate in sign.

The following two results describe some basic properties of the cyclotomic exponent sequence attached to a cyclotomic 
numerical semigroup.

Proposition 2.3. Let S be a numerical semigroup and let e be its cyclotomic exponent sequence. If S is cyclotomic, then 
∑

j≥1 e j = 0.

Proof. Let N be the largest index j such that e j �= 0. Then we have

PS(x) = (1 − x)
∑

j≤N e j G S(x),

for some rational function G S (x) satisfying G S (1) /∈ {0, ∞} (in fact G S (1) = ∏
j≤N je j ). Since PS (1) = 1, it follows that ∑

j≥1 e j = 0. �
Proposition 2.4. Let S be a numerical semigroup. Then S is cyclotomic if and only if PS(x) factorizes in the form

PS(x) =
∏
d∈D

�
hd
d , (5)

where D is a finite set and hd are positive integers.

Proof. Let e be the exponent sequence of S and let N be the largest index j such that e j �= 0. By Proposition 2.3 we have ∑
1≤ j≤N e j = 0 and so

PS(x) =
N∏

j=1

(1 − x j)e j =
N∏

j=1

(x j − 1)e j .

By (4) it then follows that PS (x) can be written as in (5), where a priori some of the integers hd may be negative. As the 
complex zeros of the cyclotomic polynomials are all different, this would lead to PS having a pole, contradicting the fact 
that PS is a polynomial.

For the other direction, we use the Möbius function μ(n), which is equal to zero for non-square free integers n and to 
(−1)r otherwise, where r is the number of prime factors in the prime decomposition of n. By applying Möbius inversion 
to (4) one obtains

�n(x) =
∏
d|n

(xd − 1)μ(n/d).

Using the fact that 
∑

d|n μ(d) = 0 for n ≥ 2, this can be rewritten for n ≥ 2 as

�n(x) =
∏
d|n

(1 − xd)μ(n/d).

Since PS(1) �= 0, �1(1) = 0, and �d(1) �= 0 for d ≥ 2, we have 1 /∈ D, and so, using the latter identity, it follows that there 
are integers e1, e2, . . . such that

PS(x) =
∞∏

d=1

(1 − xd)ed ,

where ed = 0 for d > maxD, which means that e has finite support. �
Recall that a polynomial f (x) of degree d is self-reciprocal if f (x) = xd f (1/x). The cyclotomic polynomial �n is self-

reciprocal for n ≥ 2. As a consequence of this fact and Proposition 2.4, it follows that if S is cyclotomic, then PS (x) is 
self-reciprocal. It is not difficult to show that a numerical semigroup is symmetric (that is, for every n ∈ Z, either n or 
F(S) − n is in S) if and only if PS is self-reciprocal [15]. Therefore, every cyclotomic numerical semigroup is symmetric. The 
4
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converse is generally not true; for instance, it can be shown that for every positive integer e ≥ 4, there exists a numerical 
semigroup of embedding dimension e that is symmetric but not cyclotomic [12,18].

Proposition 2.4 raises the question whether one can classify cyclotomic numerical semigroups for which PS decomposes 
into a small number of irreducible factors. This and similar questions are addressed in [6], where the authors show, for 
example, that PS = �n if and only if n = pq and S = 〈p, q〉 for distinct prime numbers p and q.

2.2. Apéry sets [17]

Let S be a numerical semigroup and m ∈Z. The set

Ap(S;m) = {s ∈ S : s − m /∈ S}
is called the Apéry set of m in S . Given any arithmetic progression modulo m, the numbers in it that are large enough will 
be in S , whereas the numbers that are small enough will not be in S . Therefore, among them we will find at least one 
element from Ap(S; m), and so | Ap(S; m)| ≥ m.

In the remainder of this subsection we assume that m ∈ S , in which case S = Ap(S; m) + mN and | Ap(S; m)| = m. It 
then follows that every integer z can be uniquely written as z = km + w with k ∈Z and w ∈ Ap(S; m), and that z ∈ S if and 
only if k ≥ 0. We will use this fact several times.

From S = Ap(S; m) + mN we infer that HS (x) = ∑
w∈Ap(S;m) xw ∑∞

k=0 xkm , hence

(1 − xm)HS(x) =
∑

w∈Ap(S;m)

xw , (6)

with the right-hand side being the Apéry polynomial of m in S , see [16].

2.3. Minimal presentations and Betti elements [1,17]

Let S be a numerical semigroup minimally generated by {n1, . . . , ne}. There is a natural epimorphism ϕ : Ne → S , defined 
as ϕ(a1, . . . , ae) = ∑e

i=1 aini . The set kerϕ = {(a, b) ∈Ne ×Ne : ϕ(a) = ϕ(b)} is a congruence, that is, an equivalence relation 
compatible with addition; hence, S is isomorphic, as a monoid, to Ne/ kerϕ . A presentation for S is a system of generators 
of kerϕ as a congruence. A presentation is minimal if none of its proper subsets generates kerϕ . It can be shown that all 
minimal presentations of a numerical semigroup have the same (finite) cardinality (see, for instance, [17, Chapter 7]).

Given ρ ⊆ Ne × Ne , denote by cong(ρ) the congruence generated by ρ , that is, the intersection of all congruences 
containing ρ . Define ρ0 = ρ ∪ {(y, x) : (x, y) ∈ ρ} and ρ1 = {(x + u, y + u) : (x, y) ∈ ρ0, u ∈Ne}. It turns out that cong(ρ) is 
the transitive closure of ρ1.

A minimal presentation of S can be constructed as follows. For s ∈ S , let Z(s) be the set of factorizations of s in S , that 
is, the fiber ϕ−1(s) (we use Z(S) to denote the set of all factorizations of elements in S , which equals Ne(S)). Define ∇s to 
be the graph with vertices Z(s) and with edges xy so that x · y �= 0 (dot product; that is, edges join factorizations having 
minimal generators in common). The connected components of ∇s are called the R-classes of s. The element s ∈ S is a Betti 
element if ∇s is not connected. We denote by Betti(S) the set of Betti elements of S , and by nc(∇s) the number of connected 
components of ∇s .

Assume that s ∈ Betti(S) and let C1, . . . , Cr be the connected components of ∇s (thus r = nc(∇s)). Pick xi ∈ Ci for all 
i ∈ {1, . . . , r}, and set ρ(s) = {(x1, x2), (x2, x3), . . . , (xr−1, xr)}. Then ρ = ⋃

s∈Betti(S) ρ
(s) is a minimal presentation of S . All 

minimal presentations can be constructed by using the following idea. Think of (xi , x j) as a link connecting Ci and C j . Then 
you need all connected components to be connected with these links. The minimal possible choice is to have a spanning 
tree connecting them all, once the xi have been chosen. Different choices of xi in Ci and different spanning trees will yield 
different minimal presentations, but they all have the same cardinality (see, for instance, [1, Chapter 4]). As a consequence, 
all minimal presentations have cardinality equal to 

∑
s∈Betti(S)(nc(∇s) − 1).

2.4. Complete intersection numerical semigroups [17]

Let S be a numerical semigroup with embedding dimension e. It can be shown that the cardinality of any minimal 
presentation of S has e − 1 as a lower bound (see, for instance, [17, Chapter 8]), and numerical semigroups attaining this 
bound are called complete intersections.

Let S1 and S2 be two numerical semigroups, and a1, a2 be two coprime integers such that a1 ∈ S2, a2 ∈ S1 and neither 
a1, nor a2 is a minimal generator. The set a1 S1 + a2 S2 is a numerical semigroup known as the gluing of S1 and S2. We will 
write S = a1 S1 +a1a2 a2 S2.

A complete intersection numerical semigroup S is either N or a gluing a1 S1 +a2 S2 with both S1 and S2 complete inter-
section numerical semigroups (see [17, Chapter 8]). It turns out that Betti(S) = {a1a2} ∪ {a1b1 : b1 ∈ Betti(S1)} ∪ {a2b2 : b2 ∈
Betti(S2)}, see [2].

It is well-known (see [2]) that

Ha1 S1+a a a2 S2(x) = (1 − xa1a2)HS1(xa1)HS2(xa2), (7)

1 2
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which, in terms of semigroup polynomials, can be written as

Pa1 S1+a1a2 a2 S2(x) = (1 − x)(1 − xa1a2)

(1 − xa1)(1 − xa2)
PS1(xa1)PS2(xa2). (8)

Consequently, a formula for PS in terms of the minimal generators and Betti elements of S can be given. If S = n1N +b1

n2N + · · · +be−1 neN (with {n1, . . . , ne} the minimal generating system of S and with bi not necessarily distinct integers), 
then [2, Theorem 4.8] states that

HS(x) =
∏e−1

i=1 (1 − xbi )∏e
i=1(1 − xni )

. (9)

If S = a1 S1 +a1a2 a2 S2 is a gluing of S1 and S2, then every minimal presentation of S comes from the union of a min-
imal presentation of S1, a minimal presentation of S2 and a pair of factorizations of a1a2, one in a1 S1 and the other in 
a2 S2; see, for instance, [17, Chapter 8]. Thus, by (7) and the fact that every minimal presentation of S has cardinality ∑

b∈Betti(S)(nc(∇b) − 1), the multiplicity of bi in the numerator of (9) is precisely nc(∇bi ) − 1 and the above formula can be 
rewritten as

HS(x) =
∏

b∈Betti(S)(1 − xb)nc(∇b)−1∏e
i=1(1 − xni )

. (10)

Indeed, this identity characterizes complete intersection numerical semigroups.

Proposition 2.5. Let S be a numerical semigroup. Then S is a complete intersection numerical semigroup if and only if HS satisfies 
(10).

Proof. We prove that if S verifies (10), then S is a complete intersection numerical semigroup; the other implication also 
holds, as we have just seen. Recall that PS (x) = (1 − x) HS(x) is a polynomial and that by (1) we have PS (1) = 1. Thus 
the factors 1 − x of the numerator and denominator of PS (x) must cancel each other out and we find 

∑
b∈Betti(S)(nc(∇b) −

1) = e(S) − 1. Consequently, any minimal presentation of S has cardinality e(S) − 1, which means that S is a complete 
intersection. �

One of our aims is to prove that the Hilbert series of a cyclotomic numerical semigroup always satisfies (10). In this 
paper we do so for some particular classes of cyclotomic numerical semigroups.

2.5. Other series and polynomials associated to numerical semigroups [19]

This subsection is dedicated to introducing a few other objects that arise naturally in connection to numerical semi-
groups. However, the only results needed in the sequel are the upcoming definitions and the accompanying identity (11). 
The reader may therefore choose to omit the discussion on the polynomial KS , which we make here for sake of complete-
ness, and directly skip to Section 2.6.

Let S be a numerical semigroup minimally generated by a set A. The denumerant of s ∈ S , denoted by d(s), is the 
cardinality of Z(s), the set of factorizations of s in S . We can consider the denumerant series

∑
s∈S d(s)xs , which verifies the 

equality

∑
s∈S

d(s)xs =
∏
n∈A

∞∑
j=0

x jn =
∏
n∈A

1

1 − xn
. (11)

This equality is widely used in our work and its proof is straightforward. We note that every Betti element has denumerant 
exceeding one.

Let A = {n1 < · · · < ne} be the minimal system of generators of S . Székely and Wormald [19] were the first to study the 
function

KS(x) = (1 − xn1) · · · (1 − xne )HS(x), (12)

which, on writing

KS(x) = (1 + x + · · · + xn1−1)(1 − xn2) · · · (1 − xne )PS(x),

turns out to be a polynomial of degree F(S) + ∑e
j=1 n j .

Let S be a complete intersection numerical semigroup. From (10) we derive

KS(x) =
∏

(1 − xb)nc(∇b)−1. (13)

b∈Betti(S)

6
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Corollary 2.6. Let S be a complete intersection numerical semigroup minimally generated by {n1, . . . , ne}. Then

F(S) +
e∑

j=1

n j =
∑

b∈Betti(S)

b(nc(∇b) − 1).

Proof. The result follows from taking degrees in (13). �
The polynomial KS has been explicitly computed for several families of numerical semigroups. For instance, an expres-

sion is given in [4] for numerical semigroups of embedding dimension three, and for those of embedding dimension four 
that are symmetric or pseudo-symmetric. In that paper, KS is related to the Betti numbers of the semigroup ring associated 
to S (see [3] for a different approach).

2.6. Isolated factorizations [10]

Let S be a numerical semigroup and let s ∈ S . We say that a factorization z of s is isolated if z ·x = 0 for every factorization 
x of s different from z. Thus, z is an isolated factorization if and only if {z} is an R-class of ∇s . This means either that s has 
a unique factorization, or that s is a Betti element with one of its R-classes being a singleton. We denote by I(s) the set of 
isolated factorizations of s, and by I(�) the set of isolated factorizations of the elements of � ⊆ S . Thus

I(�) = Is(�) ∪ Ib(�),

where Is(�) is the set of isolated factorizations coming from elements with a unique factorization, and Ib(�) = I(�) ∩
Z(Betti(S)) that of the isolated factorizations of the Betti elements in �. We also denote the cardinality of I(s) by i(s) and 
we define IBetti(S) as the set of Betti elements with an isolated factorization. Isolated factorizations can be characterized 
as in Lemma 2.7. First, we need some notation. Let x, y ∈ Ne . We say that x ≤ y if x j ≤ y j for every j. This gives an order 
relation on Ne , known as the cartesian product order. Recall that x < y when x ≤ y and x �= y.

Lemma 2.7. Let S be a numerical semigroup and s ∈ S. A factorization z ∈ Z(s) is not isolated if and only if there exists x ∈ Ib(S) such 
that x < z. In particular,

Ib(S) = Minimals≤ Z({s ∈ S : d(s) ≥ 2}).
As a consequence, any factorization z ∈Ne(S) can be written as z = w + x1 + · · · + xl with w ∈ Is(S) and x1, . . . , xl ∈ Ib(S).

Proof. The first assertion is merely a rephrasing of [10, Lemma 3.1].
Assume that z ∈ Ne(S) = Z(S). If ϕ(z) has a unique factorization, then z = w ∈ Is(S). Otherwise, there exists x1 ∈ Ib(S)

such that x1 < z. We consider now z − x1 and start anew. This process must end either with a 0 or with a factorization that 
is the unique factorization of an element in the semigroup. �

We say that an element s ∈ S is Betti-minimal if s ∈ Minimals≤S Betti(S). As a consequence of Lemma 2.7, one can 
characterize Betti-minimal elements as in Proposition 2.8.

Proposition 2.8 ([10, Proposition 3.6]). Let S be a numerical semigroup and s ∈ S. The following statements are equivalent:

a) s is Betti-minimal;
b) s is a minimal element of IBetti(S) with respect to ≤S ;
c) s has at least two factorizations and all of them are isolated, that is, nc(∇s) = i(s) ≥ 2.

The following result is a particular case of [10, Corollary 3.8] and characterizes the elements having a unique factorization 
in terms of Apéry sets.

Corollary 2.9 ([10, Corollary 3.8]). Let S be a numerical semigroup. Then

{m ∈ S : d(m) = 1} =
⋂

b∈Betti(S)

Ap(S;b) =
⋂

b∈Minimals≤S Betti(S)

Ap(S;b).

The next lemma allows us to deal with sequences of Betti elements of the form b1 ≤S · · · ≤S bt , and will be useful for 
the study of U(Betti(S)).

Lemma 2.10 ([10, Lemma 3.12]). Let S be a numerical semigroup. If b1 and b2 are two Betti elements of S such that b1 <S b2 , then 
x · y = 0 for every x ∈ Z(b1) and y ∈ I(b2).
7
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3. Cyclotomic exponent sequences

In this section we show how to compute, both theoretically and practically, the cyclotomic exponent sequence of a 
numerical semigroup, and we give some examples. Practically, they can be computed with the function CyclotomicEx-
ponentSequence or, alternatively, with the function WittCoefficients of the GAP [9] package numericalsgps
[8], which implements the method given in the upcoming Lemma 3.5.

Let a(x), b(x) ∈Z�x� and p(x) ∈Z[x]. We use the notation a(x) ≡ b(x) (mod p(x)) to indicate that a(x) − b(x) ∈ p(x)Z[x]. 
Note that ≡ is an equivalence relation.

The next lemma, together with the fact that PS (x) ≡ 1 (mod x), shows that for any numerical semigroup there is an 
expansion of the form (2), where the exponents e j are uniquely determined integers.

Lemma 3.1. Let f (x) ∈Z�x� and suppose that f (x) ≡ 1 (mod x). Then there exist unique integers e1, e2, . . . such that, in Z�x�,

f (x) =
∞∏

k=1

(1 − xk)ek . (14)

Proof. We show how to successively determine the integers e1, e2, . . . , em such that (14) holds modulo xm+1. By assumption, 
f (x) = 1 − e1x (mod x2) for some e1 ∈ Z. This then gives f (x)(1 − x)−e1 ≡ 1 (mod x2). Let m ≥ 2. Suppose that we have 
found integers e1, . . . , em−1 such that

f (x)
m−1∏
k=1

(1 − xk)−ek ≡ 1 (mod xm).

As the right-hand side is of the form 1 − emxm (mod xm+1) for some integer em , we infer that

f (x)
m∏

k=1

(1 − xk)−ek ≡ 1 (mod xm+1).

We now turn our attention to the uniqueness claim. For the sake of contradiction, suppose there exists a different 
sequence of integers fn such that f (x) = ∏∞

k=1(1 − xk) fk . Let m be the smallest integer such that fm �= em . Put h(x) =∏m−1
k=1 (1 − xk)ek . We then have

f (x) ≡ h(x) (1 − xm)em (mod xm+1)

on the one hand, and

f (x) ≡ h(x) (1 − xm) fm (mod xm+1)

on the other. As the two expressions have different coefficients in front of xm , we have reached a contradiction, concluding 
the proof. �
Example 3.2. Let α be an integer. We have 1 − αx = ∏∞

k=1(1 − xk)M(α,k) , with M(α, k) = 1
k

∑
j|k μ(k/ j)α j . This is the so-

called cyclotomic identity, see, e.g., [13]. In case p is a prime number, the fact that M(α, p) must be an integer implies 
Fermat’s Little Theorem stating that αp ≡ α (mod p).

Remark 3.3. Expansions of the form (14) arise in quite different areas such as automata, group, graph and Lie algebra theory; 
see [14] for some references.

Remark 3.4. Let f (x) ∈ Z[x] and suppose that f (x) ≡ 1 (mod x). By (14) we have f (x) ≡ ∏n
k=1(1 − xk)ek (mod xn+1). This 

identity allows one to determine the first n coefficients of f . On taking n = deg( f ), we can even reconstruct f completely.

Although the proof of Lemma 3.1 is constructive, it is computationally slow. If instead of a formal series we are given a 
polynomial, then the following “polynomial version” of Lemma 3.1 provides a faster way to calculate the exponents in (14). 
We can thus use it in the particular case f = PS in order to obtain the exponent sequence of a numerical semigroup S .

Lemma 3.5 ([14, Lemma 1]). Let f (x) = 1 + a1x + · · · + adxd ∈ Z[x] be a polynomial with ad �= 0, and let α1, . . . , αd be its roots. 
Then the numbers s f (k) = α−k

1 + · · · + α−k
d are integers satisfying the recursion

s f (k) + a1s f (k − 1) + · · · + ak−1s f (1) + kak = 0, (15)
8
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with am = 0 for m > d. In particular, for k > d, the integer s f (k) is given by the linear recurrence

s f (k) = −a1s f (k − 1) − · · · − ads f (k − d).

Over Z�x� one has

f (x) =
∞∏

k=1

(1 − xk)e f (k),

with

e f (k) = 1

k

∑
j|k

s f ( j)μ

(
k

j

)
∈ Z. (16)

Proof. This follows from Lemma 1 of [14] on taking F̂ (x) = f (x) and noting that the reciprocal F of F̂ has α−1
1 , . . . , α−1

d as 
roots. (Note that 0 does not occur as root of f .) �

Combining Lemmas 3.1 and 3.5 with Remark 3.4 gives rise to the following.

Proposition 3.6. A numerical semigroup S has a unique cyclotomic exponent sequence e = {e j} j≥1 with e j = ePS ( j) for every j ≥
1. Conversely, given a cyclotomic exponent sequence coming from a numerical semigroup, there is a unique numerical semigroup 
corresponding to it.

Let S be a complete intersection numerical semigroup. The cyclotomic exponent sequence of S is provided by (10). We 
have

a) e1 = 1;
b) e j = −1 if j is a minimal generator of S;
c) e j = nc(∇ j) − 1 if j is a Betti element of S;
d) e j = 0 otherwise.

Example 3.7. As illustrated below, cyclotomic exponent sequences of cyclotomic and non-cyclotomic numerical semigroups 
can differ greatly in their behavior, although they may share some common properties, as observed in Theorems 1.1 and 1.2.

a) The semigroup S = 〈4, 6, 9〉 is a complete intersection, hence cyclotomic. Indeed, we have

PS(x) = x12 − x11 + x8 − x7 + x6 − x5 + x4 − x + 1

= (1 − x)(1 − x4)−1(1 − x6)−1(1 − x9)−1(1 − x12)(1 − x18),

and the cyclotomic exponent sequence of S is given by

1,0,0,−1,0,−1,0,0,−1,0,0,1,0,0,0,0,0,1,0, . . . .

b) Let S = 〈3, 5, 7〉, with semigroup polynomial PS(x) = x5 − x4 + x3 − x +1. The first 100 entries of its cyclotomic exponent 
sequence are

1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, -1, 0, 0, 1, 0,
1, 0, 1, -1, 0, -2, 0, -2, 1, -1, 3, 0, 3, -1, 3, -3, 1, -5, 1, -5, 3, -3,
7, -2, 8, -4, 7, -9, 4, -14, 6, -14, 12, -10, 22, -9, 25, -16, 23, -30, 17,
-42, 23, -43, 41, -36, 66, -37, 76, -60, 73, -100, 66, -133, 91, -139, 148,
-129, 219, -146, 252, -222, 252, -340, 255, -438, 346, -469, 524, -473,
731, -564, 846, -820, 887, -1183, 973, -1488, 1309, -1635, 1889, -1756,
2530, -2157, 2947, -3026, 3214, -4181, 3701, -5187, 4922, -5839, 6834,
-6563, 8905, -8200, 10467, -11195, 11807, -14992, 14052, -18463, 18510,
-21237, 24982, -24675, 31960, -31101, 37904, -41573, 43905, -54450, 53343,
-66840, 69606, -78312, 91968, -93176, 116272, -117909, 139142, -155059,
164573, -199918, 202659, -245305, 262345,

which suggests that S is not cyclotomic, and this is indeed the case (for otherwise, if S were cyclotomic, the roots of 
PS would be of absolute value 1; since deg(PS) = 5, we would have at least one real root, which can only be ±1, a 
contradiction).
9
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One can rapidly check with the help of a computer that the roots of PS (x) in Example 3.7b satisfy the hypothesis of 
Corollary 3.8, hence explaining why the cyclotomic exponents grow exponentially.

Corollary 3.8. Suppose that the roots αi of f are ordered in such a way that their absolute value is non-decreasing and, in addition, 
|α1| < |α2|. Then we have∣∣∣∣∣e f (k) − α−k

1

k

∣∣∣∣∣ ≤ d(k)

k
(|α1|−k/2 + deg( f ) |α2|−k),

with d(k) the number of divisors of k. In case f is linear, the term involving α2 can be omitted.

Proof. From (16) and s f ( j) = α
− j
1 + · · · + α

− j
deg( f ) , we infer that e f (k) = 1

k α−k
1 + E(k) with

k|E(k)| ≤
∑

j|k, j<k

|α1|− j +
deg( f )∑

r=2

∑
j|k

|αr |− j ≤ d(k)|α1|−k/2 + deg( f )d(k) |α2|−k.

The double sum does not arise in case f is linear. �
Example 3.9. Let α = p be a prime number in Example 3.2. Gauss already knew that M(p, k) is the number of irreducible 
monic polynomials of degree k in the ring Fp[x]. By Corollary 3.8 we have

pk

k
− 2

k
pk/2 ≤ M(p,k) ≤ pk

k
+ 2

k
pk/2.

Regarded as “building blocks,” irreducible monic polynomials are for Fp[x] what prime numbers are for Z. In this sense, 
the above estimate can be compared with the Prime Number Theorem, which states that the number of primes p ≤ x is 
asymptotically equal to x/ log x.

4. Cyclotomic exponent sequences, gaps and minimal generators

In this section we prove Theorem 1.1 by combining the upcoming Lemmas 4.1, 4.2, 4.3 and 4.5. We start with the trivial 
observation that S = N if and only if PS (x) = 1. That is, N is the only numerical semigroup whose cyclotomic exponent 
sequence is constantly zero. We deal with the case S �=N for the remainder of this section.

Throughout this section we let A be the minimal generating system of S , and e = {e j} j≥1 its cyclotomic exponent 
sequence.

Lemma 4.1. For every j ∈ {2, . . . , m(S) − 1}, we have e j = 0. Moreover, e1 = 1 and em(S) = −1.

Proof. Let m = m(S). From the congruence HS (x) ≡ 1 + xm (mod xm+1) we see that

PS(x) ≡ 1 − x + xm ≡ (1 − x)(1 + xm) ≡ (1 − x)(1 − xm)−1 (mod xm+1).

The latter congruence determines e1, . . . , em uniquely, see the proof of Lemma 3.1. �
It follows that we have the formal identity

HS(x) =
∞∏

j=m(S)

(1 − x j)e j . (17)

Lemma 4.2. For every gap g of S with g > 1, we have eg = 0.

Proof. We proceed by contradiction. Let g > 1 be the smallest gap of S having a non-zero exponent. Considering the series 
HS (x) modulo xg+1, we obtain

HS(x) ≡ (
1 − xg)eg

g−1∏
j=m(S)

(1 − x j)e j

≡ −eg xg +
g−1∏

(1 − x j)e j (mod xg+1).

(18)
j=m(S)

10
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Since, by assumption, we have e j = 0 for every gap j of S with 2 ≤ j < g , the series expansion of 
∏g−1

j=m(S)
(1 − x j)e j is 

of the form 
∑

s∈S asxs , and so in particular the coefficient of xg is zero. On comparing the coefficients of xg in both sides 
of (18), we obtain 0 = −eg , a contradiction. �
Lemma 4.3. For every n ∈ A we have en = −1.

Proof. Let n be a minimal generator of S . By considering HS(x) modulo xn+1, we have

HS(x) ≡ (1 − xn)en

n−1∏
j=m(S)

(1 − x j)e j

≡ −enxn +
n−1∏

j=m(S)

(1 − x j)e j (mod xn+1).

(19)

By Lemma 4.2, the series expansion of 
∏n−1

j=m(S)(1 − x j)e j is of the form 
∑

s∈S asxs . Since n cannot be written as a sum of 
two or more non-zero elements of S , we have an = 0. On comparing the coefficients of xn in both sides of (18), we obtain 
1 = −en . �
Remark 4.4. Let S be a numerical semigroup minimally generated by A, and let e be its cyclotomic exponent sequence. By 
Lemmas 4.1, 4.2 and 4.3, we have {1} ∪ A ⊆ { j ∈N : e j �= 0} and { j ∈N : e j �= 0, j ≥ 2} ⊆ S . Hence,

E(S) = { j ∈N : e j �= 0, j ≥ 2} \ A ⊆ S.

In light of (11), we obtain

HS(x) =
∑
s∈S

d(s)xs
∏

d∈E(S)

(1 − xd)ed . (20)

Lemma 4.5. For every d ∈ E(S), we have d(d) ≥ 2. Moreover, if α ∈ Minimals≤S E(S), then eα = d(α) − 1.

Proof. Let d ∈ E(S) and α ∈ Minimals≤S E(S) with α ≤S d. By comparing the coefficients of xα in both sides of (20) we find 
that 1 = d(α) − eα . Since 1 ≤ d(α) and eα �= 0, we obtain eα > 0. In particular, we find that d(α) = 1 + eα ≥ 2 and, thus, 
d(d) ≥ 2. �
Proof of Theorem 1.1. The first statement in Lemma 4.5 is equivalent to the fact that e j = 0 for every j ∈ S \ A with d( j) = 1. 
Theorem 1.1 now follows by combining Lemmas 4.1–4.3 and 4.5. �

We illustrate this theorem with an example.

Example 4.6. Let S = 〈3, 5, 7〉 be the numerical semigroup considered in Example 3.7b. We have G(S) = {1, 2, 4} and 
Betti(S) = {10, 12, 14}. Moreover, the elements of S that are not minimal generators, but yet have only one factorization, 
are 6, 8, 9, 11. Thus we have e j = 0 for j ∈ {2, 4, 6, 8, 9, 11}, which is consistent with the entries of the exponent sequence 
given in Example 3.7b.

5. Cyclotomic exponent sequences and Betti elements

The goal of this section is to prove Theorem 1.2. This result relates the partially ordered sets (Betti(S), ≤S ) and 
(E(S),≤S ). Let (X, ≤) be a partially ordered set. In the introduction we defined the set U(X) a

U(X) = {x ∈ X : ↓x is totally ordered},
where ↓x = {y ∈ X : y ≤ x}. Note that Minimals≤ X is a subset of U(X). Recall that Theorem 1.2 states that U(Betti(S)) =
U(E(S)), and that it also determines the cyclotomic exponents of these Betti elements.

The proof of Theorem 1.2 is carried out by induction and is rather technical and elaborate. For the benefit of the reader, 
it is divided into several parts. We start by showing, in Section 5.1, that Minimals≤s Betti(S) = Minimals≤S E(S). The proof of 
this result is simple and elegant, and serves as motivation and warm-up for the work carried out in this section. Moreover, 
the fact that Minimals≤s Betti(S) = Minimals≤S E(S) is used in the base case of the induction of the proof of Theorem 1.2. 
In Section 5.2 we explain the main idea behind this induction. In Section 5.3 we study the graph ∇b of factorizations of the 
elements b ∈ U(Betti(S)) and develop the technical results that we need to tackle Theorem 1.2. Finally, in Section 5.4 we 
use our insights on ∇b to complete the proof of Theorem 1.2.
11



A. Ciolan, P.A. García-Sánchez, A. Herrera-Poyatos et al. Discrete Mathematics 345 (2022) 112820
5.1. Minimal Betti elements

In this section we relate the Betti-minimal elements of a numerical semigroup to its cyclotomic exponent sequence. The 
following result was established in [7].

Lemma 5.1 ([7, Lemma 15]). If S is a cyclotomic numerical semigroup such that {d : ed < 0} is its minimal system of generators and 
max{d : ed < 0} < minE(S), then minE(S) = min Betti(S).

In order to prove [7, Lemma 15] the authors show that minE(S) is the smallest element of S having at least two 
representations in terms of the minimal generators of S . Here we reach a much more general conclusion without any 
assumptions on S .

Let m and b be two positive integers. The Taylor series centered at 0 of the complex function (1 − zb)−m is given by

(1 − zb)−m =
∞∑
j=0

(
m + j − 1

j

)
z jb =

( ∞∑
j=0

z jb
)m

(21)

and its radius of convergence is 1. Therefore, the expression (20) for HS(x) can be rewritten as

HS(x) =
∑
s∈S

d(s)xs
∏

d∈E(S)
ed<0

∞∑
j=0

(−ed + j − 1

j

)
x jd

∏
d∈E(S)

ed>0

ed∑
j=1

(
ed

j

)
(−1) j x jd. (22)

Proposition 5.2. Let S be a numerical semigroup. For every s ∈ S with d(s) ≥ 2, there exists d ∈ E(S) such that d ≤S s.

Proof. From (22) we infer that if there is no d ∈ E(S) with d ≤S s for some s ∈ S , then d(s) = 1. �
Theorem 5.3. Let S be a numerical semigroup. Then Minimals≤S Betti(S) = Minimals≤S E(S). Moreover, we have eα = d(α) − 1 =
i(α) − 1 for every α ∈ Minimals≤S E(S).

Proof. Let β be a Betti element minimal with respect to ≤S . Then d(β) ≥ 2 and, by Proposition 5.2, there exists α ∈
Minimals≤S E(S) such that α ≤S β . Since d(α) ≥ 2 by Lemma 4.5, Corollary 2.9 states that there exists a Betti element β ′
such that β ′ ≤S α. The minimality of β forces β ′ = α = β . Hence, we have β ∈ Minimals≤S E(S). The other inclusion is 
proved similarly. The value eα is found by invoking Lemma 4.5 and Proposition 2.8. �
5.2. Proof idea of Theorem 1.2

In this section we describe our approach to proving Theorem 1.2. We focus on the inclusion U(E(S)) ⊆ U(Betti(S)).
Let η ∈ U(E(S)) and � =↓η. We want to show that η ∈ U(Betti(S)). Since η ∈ U(E(S)), we can write � = {b1 ≤S . . . ≤S bl}

with bl = η. Note that b1 ∈ Minimals≤S E(S), so b1 is Betti-minimal by Theorem 5.3. Let i be an integer with 2 ≤ i ≤ l. We 
define

∑
s∈S

ri−1(s)xs = HS(x)
i−1∏
j=1

(1 − xb j )
−eb j . (23)

In light of (20), we have∑
s∈S

ri−1(s)xs =
∑
s∈S

d(s)xs
∏

d∈E(S)\�i−1

(1 − xd)ed .

We can rewrite this expression as∑
s∈S

ri−1(s)xs =
∑
s∈S

d(s)xs
∑

k∈〈E(S)\�i−1〉
ckxk, (24)

for certain coefficients ck with c0 = 1 and cd = −ed for any d ∈ Minimals≤S (E(S) \ �i−1). Therefore, we have

ri−1(s) = d(s) when {d ∈ E(S) : d ≤S s} ⊆ �i−1,

ri−1(s) = d(s) − es when s ∈ Minimals≤S (E(S) \ �i−1) .
(25)

Most of our work is devoted to finding an algebraic interpretation of the coefficients ri−1(s). Assuming that b1, . . . , bi−1 ∈
U(Betti(S)), we want to show by induction on i that, when s ∈ Minimals≤S (E(S) \ �i−1), we have 0 < ri−1(s) and ri−1(s)
12



A. Ciolan, P.A. García-Sánchez, A. Herrera-Poyatos et al. Discrete Mathematics 345 (2022) 112820
corresponds to the number of factorizations of s that are not isolated. Combining this assertion with (25) for s = bi , we will 
conclude that in this situation ebi is the number of isolated factorizations of bi , so bi is a Betti element (recall here that 
d(bi) ≥ 2 by Corollary 2.9). In this induction, a key role is played by the observation that∑

s∈S

ri(s)xs = (1 − xbi )
−ebi

∑
s∈S

ri−1(s)xs

can be rewritten as

∑
s∈S

ri(s)xs =
∞∑
j=0

(
i(bi) + j − 1

j

)∑
s∈S

ri−1(s)xs,

where we use ebi = i(bi) and (21). Hence, for any s ∈ S , we obtain

ri(s) =
qs∑

j=0

ri−1(s − jbi)

(
i(bi) + j − 1

j

)
, (26)

where qs is the largest integer such that s − qsbi ∈ S .
In order to study the connection between the coefficient ri(s) and the factorizations of s, we introduce Betti restricted 

factorizations in Section 5.3, and we show that the number of Betti restricted factorizations of certain elements satisfies a 
similar recursion to (26). In order to be able to fill in the details of this proof, we will also need to understand the graph of 
factorizations ∇b of any b ∈ U(Betti(S)).

5.3. Betti restricted factorizations and U(Betti(S))

The main goal of this subsection is to prove Theorem 5.9, which describes the graph of factorizations ∇b of any b ∈
U(Betti(S)), and to develop the machinery that we need to complete the proof presented in Section 5.2. To this end, we 
introduce the concept of Betti restricted factorizations and we study their properties.

Let S be a numerical semigroup and let � ⊆ IBetti(S). We define the set of Betti restricted factorizations of an element 
s ∈ S with respect to � by

B(s;�) = {w + x1 + · · · + xl ∈ Z(s) : w ∈ Is(S), l ≥ 0 and x1, . . . , xl ∈ I(�)} .

If � = {b}, then we use the notation B(s; b) = B(s; �). Note that B(s; ∅) = ∅ when s has at least two factorizations. 
Furthermore, if s only has one factorization, then B(s; �) = Z(s). Another trivial observation is that if �1 ⊆ �2, then 
B(s; �1) ⊆ B(s; �2).

Betti restricted factorizations allow us to obtain some information about the number of isolated factorizations of certain 
Betti elements, and play an essential role in the proof of Theorem 1.2. First we need the following result, which shows that 
B(s; �) and Ib(S) are closely related.

Lemma 5.4. Let S be a numerical semigroup. Let � ⊆ IBetti(S) and s ∈ S \�. Then B(s; �) ⊆ Z(s) \ Ib(S). Moreover, if {b ∈ IBetti(S) :
b <S s} ⊆ �, then B(s; �) = Z(s) \ Ib(S).

Proof. If d(s) = 1, then Z(s) ∩ Ib(S) = ∅ and the result follows, thus we may assume that d(s) ≥ 2. Let z ∈ B(s; �). There is 
x ∈ I(�) such that x < z. By Lemma 2.7, z is not isolated, that is, z ∈ Z(s) \ Ib(S). Finally, if {b ∈ IBetti(S) : b <S s} ⊆ �, then 
Lemma 2.7 asserts that every z ∈ Z(s) \ Ib(S) can be expressed as an element of B(s; �). �

If s has at least two factorizations and B(s; �) = Z(s) \ Ib(S), then we find that the number of connected components of 
∇s equals i(s) plus the number of R-classes of B(s; �), where i(s) is the number of isolated factorizations of s. Hence, in 
this context, B(s; �) is connected in ∇s if and only if i(s) = nc(∇s) − 1. This observation plays an important role in the proof 
of Theorem 5.9. First, we prove that B(s; b) is always connected.

Lemma 5.5. Let S be a numerical semigroup and let b ∈ IBetti(S). For every s ∈ S write s = ωs + qsb, with ωs ∈ Ap(S; b) and qs ∈N .

a) If Z(ωs) = {w}, then

B(s;b) = {
w + x1 + · · · + xqs : x1, . . . , xqs ∈ I(b)

}
.

b) If d(ωs) ≥ 2, then B(s; b) = ∅.
13
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Proof. Let us assume that B(s; b) �= ∅. Let w + x1 + · · · + xl ∈ B(s; b) with w ∈ Is(S) and x1, . . . , xl ∈ I(b). By Corollary 2.9, 
we have ϕ(w) ∈ Ap(S; b), and thus s = ϕ(w) + lb. Hence, we obtain ϕ(w) = ωs and qs = l. Since w ∈ Is(S), we infer that 
Z(ωs) = {w} and

B(s;b) = {
w + x1 + · · · + xqs : x1, . . . , xqs ∈ I(b)

}
.

Consequently, if d(ωs) ≥ 2, then B(s; b) = ∅. Finally, if Z(ωs) = {w}, then we have w + qsx ∈ B(s; b) for any x ∈ I(b), which 
implies that B(s; b) is not empty, and the result follows. �

The base case of the induction presented in Section 5.2 requires us to prove that r1(s) = |B(s, b1)| for some elements s. 
This identity follows from the following corollary.

Corollary 5.6. Let S be a numerical semigroup and let b ∈ IBetti(S). For every s ∈ S we have

|B(s;b)| =
{(i(b)+qs−1

qs

)
if d(ωs) = 1;

0 otherwise,

where qs and ωs are as in Lemma 5.5.

Proof. The result is a consequence of Lemma 5.5. Let s ∈ S . If d(ωs) ≥ 2, then |B(s; b)| = 0. Otherwise, since the isolated 
factorizations of b are disjoint, we find that every element of B(s; b) is uniquely determined by qs isolated factorizations 
of b. The proof is completed by counting the number of combinations with repetitions of size qs from a set with i(b)

elements. �
We will use the following observation several times in the proof of Lemma 5.8, which shows connectivity of B(s; �) in 

∇s under some hypotheses.

Lemma 5.7. Let S be a numerical semigroup and let b1 be a Betti-minimal element of S. Let � ⊆ IBetti(S) with b1 ∈ �. For each s ∈ S
such that b1 is the only Betti-minimal element b of S with b ≤S s, and for each x ∈ I(�) such that ϕ(x) ≤S s, there exists z ∈ B(s; �)

with x < z.

Proof. Let s ∈ S be such that b1 is the only Betti-minimal element of S below s with respect to ≤S , and let x ∈ I(�) such 
that ϕ(x) ≤S s. Set b = ϕ(x). Write s − b = ω + qb1, where ω ∈ Ap(S; b1) and q ∈ N . By Corollary 2.9, ω has only one 
factorization. We can choose z = w + x + qy ∈ B(s; �), where Z(ω) = {w} and y ∈ I(b1). Here we have used that Betti-
minimal elements have isolated factorizations by Proposition 2.8. �

Recall that U(Betti(S)) is the set of b ∈ Betti(S) such that ↓b = {b′ ∈ Betti(S) : b′ ≤S b} is totally ordered. In Lemma 5.8
we establish connectivity of B(s; �) under some assumptions. This is the main ingredient of the proof of Theorem 5.9.

Lemma 5.8. Let S be a numerical semigroup. Let u ∈ U(Betti(S)) and let � =↓u. If s ∈ S \� is such that u ≤S b for all b ∈ Betti(S) \�

with b ≤S s, then B(s; �) is connected in ∇s .

Proof. Assume that � = {b1 <S · · · <S bl}, and so u = bl . Write �i =↓bi = {b1 <S · · · <S bi}, for i ∈ {1, . . . , l}. We proceed by 
induction on l, the size of �. Note that, by definition of ↓u, b1 is Betti-minimal and the only Betti-minimal element with 
b1 ≤S u. Let s ∈ S \ � be such that u ≤S b for every b ∈ Betti(S) \ � with b ≤S s. If b ∈ Betti(S) with b ≤S s, then either 
b ∈ � and b1 ≤S b, or b /∈ � and b1 ≤S u ≤S b. In any case, we have shown that b1 ≤S b for every b ∈ Betti(S) with b ≤S s. 
Hence, either d(s) = 1 or b1 is the only Betti-minimal element with b1 ≤S s. We will use this fact in our induction.

First, we study the case l = 1. Note that either d(s) = 1 or b1 is the only minimal element of S with b1 ≤S s. In the 
first case, we have B(s; b1) = Z(s). In the second case, Lemma 5.7, with � = {b1}, yields that B(s; b1) is non-empty. Its 
connectivity follows from Lemma 5.5.

If l ≥ 2, let us assume that the result holds for l −1. If B(s; �) = B(s; �l−1), then we are done by the induction hypothesis. 
Let us consider the case B(s; �) �= B(s; �l−1). In this case we have bl ≤S s, so b1 is the only minimal Betti element of S with 
b1 ≤S s. There are two cases depending on the number of factorizations of s − bl .

Case 1: d(s − bl) ≥ 2. Notice that, under this assumption, b1 is the only minimal Betti element of S with b1 ≤S s − bl . 
Let z1 ∈ B(s; �) \ B(s; �l−1). There is y ∈ I(bl) such that y < z1. Let x ∈ I(b1). Since b1 ≤S s − bl , Lemma 5.7 provides us 
with z ∈ B(s − bl; �) such that x < z. Thus, we have z2 = z + y ∈ B(s; �l) and z1 · z2 �= 0. Moreover, there is z3 ∈ B(s; b1) ⊆
B(s; �l−1) with x < z3 (Lemma 5.5) and, in particular, z2 · z3 �= 0. From the arbitrary choice of z1 and the fact that B(s; �l−1)

is connected, it follows that B(s; �) is also connected.
Case 2: d(s − bl) = 1. Set ω2 = s − bl , and let w2 be the unique factorization of ω2. If z ∈ B(s; �) \ B(s; �l−1), then there 

is y ∈ I(bl) with y < z. Note that z − y is a factorization of ω2, whence z = w2 + y. That is, we have shown that
14
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B(s;�) \ B(s;�l−1) ⊆ {w2 + y : y ∈ I(bl)}.
Let us suppose that B(s; �) has at least two R-classes in order to obtain a contradiction. Since B(s; �l−1) and B(s; �) \
B(s; �l−1) are connected, the only option is z · y = 0 for every z ∈ B(s; �l−1) and y ∈ B(s; �) \B(s; �l−1). Write bl = ω1 +qb1
with ω1 ∈ Ap(S; b1) and q ∈ N (this implies Z(ω1) = {w1} by Corollary 2.9). We have s = ω1 + ω2 + qb1. There are two 
possible subcases, each of which yields a contradiction.

Subcase 2.1: d(ω1 + ω2) = 1. The factorization z = w1 + w2 + qx is in B(s; �) for any x ∈ I(b1), but it is not disjoint with 
any element of B(s; �) \ B(s; �l−1), a contradiction.

Subcase 2.2: d(ω1 + ω2) ≥ 2. In light of Lemma 2.7, there exist b ∈ Betti(S) and y ∈ I(b) such that y ≤ w1 + w2. For all 
x ∈ I(�l−1) we have ϕ(x) ≤S bl ≤S s and there is z ∈ B(s; �l−1) with x < z (Lemma 5.7). Under the standing assumption, 
z · w2 = 0. In particular, we have w2 · x = 0. It follows that the factorization w2 is disjoint with any isolated factorization of 
the Betti elements b1, . . . , bl−1. Since y ≤ w1 + w2, y ∈ I(b) and w1, w2 ∈ Is(S), we have w1 · y �= 0 and w2 · y �= 0. Hence, 
it follows that y is not an isolated factorization of any of the elements b1, . . . , bl−1, so b /∈ �l−1. Since b ≤S ω1 + ω2 ≤S s, 
either b ∈ � or bl ≤S b by hypothesis. We conclude that bl ≤S b ≤S ω1 +ω2. Write ω1 +ω2 = ω+ pb1 +bl with ω ∈ Ap(S; b1)

and p ≥ 0. Since s = ω2 + bl and s = ω1 + ω2 + qb1 = ω + (p + q)b1 + bl , we obtain ω2 = s − bl = ω + (p + q)b1. Recall that 
d(ω2) = 1. This forces p = 0 = q, a contradiction because bl = ω1 + qb1 and d(bl) ≥ 2. �

We now have the ingredients necessary to prove Theorem 5.9, which determines the number of isolated factorizations 
of any b ∈ U(Betti(S)).

Theorem 5.9. Let S be a numerical semigroup and let b ∈ U(Betti(S)). Then either b is minimal and all its factorizations are isolated, 
or the number of isolated factorizations of b equals its number of R-classes minus 1.

Proof. Let ↓b = {b1 <S · · · <S bl} ⊆ Betti(S). If l = 1, then b is Betti-minimal and its factorizations are isolated (see Propo-
sition 2.8). Otherwise, we apply Lemma 5.8 to b1, . . . , bl , and conclude that B(b; �) is connected for � = {b1, . . . , bl−1}. By 
Lemma 5.4, we find that Z(b) = B(b; �) ∪ I(b), thus the number of isolated factorizations of b is one less than the number 
of R-classes. �
Corollary 5.10. Let S a numerical semigroup. Write Betti(S) = {b1 < b2 < · · · < bk}. Let us assume that k ≥ 2.

a) If b2 − b1 /∈ S, then b2 is Betti-minimal; that is, all its factorizations are isolated.
b) If b1 ≤S b2 , then b2 has nc(∇b2 ) − 1 isolated factorizations.

Proof. This is a direct consequence of Theorem 5.9. �
Theorem 5.9 gives us some information about the smallest Betti elements. Let b1 = min Betti(S). It is clear that b1 is 

Betti-minimal. Let us assume that there exists b2 = min(Betti(S) \ {b1}). Then either b2 is Betti-minimal (b2 − b1 /∈ S), or 
b1 ≤S b2. In the latter case we can apply Theorem 5.9 to conclude that i(b2) = nc(∇b2 ) − 1. Therefore, b2 always has isolated 
factorizations.

Example 5.11. Let S = 〈10, 15, 16, 17, 19〉. Then the Hasse diagram of (Betti(S), ≤S) looks as follows:

48

32

57

30 363534

Hence the minimal elements of Betti(S) are 30, 32, 34, 35, 36. The factorizations of these elements are all isolated. Theo-
rem 5.9 allows us to conclude that 48 has isolated factorizations and that nc(∇48) = i(48) + 1. Note that this result does 
not provide information about the factorizations of 57 (↓57 = {30, 32, 57}). In fact, one can check that 57 has an isolated 
factorization with the help of the GAP package numericalsgps.

Next, we want to give an expression for B(s; � ∪ {b}) in terms of B(s − jb; �), for suitable j, which is meant to be of the 
same shape as that given in recursion (26).
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Lemma 5.12. Let S be a numerical semigroup. Let � ⊆ IBetti(S) with � �= ∅ and b ∈ IBetti(S) \ �. Then for every s ∈ S we have

B(s;� ∪ {b}) =
qs⋃

j=0

⎛
⎝B(s − jb;�) +

j∑
i=1

I(b)

⎞
⎠ ,

where qs is the largest integer such that qsb ≤S s. In particular,

|B(s;� ∪ {b})| ≤
qs∑

j=0

|B(s − jb;�)|
(

i(b) + j − 1

j

)
.

Proof. It is clear that 
⋃qs

j=0

(
B(s − jb;�) + ∑ j

i=1 I(b)
)

⊆ B(s; � ∪ {b}). Let z ∈ B(s; � ∪ {b}). If z /∈ B(s; �), then there is 
y ∈ I(b) such that y ≤ z and z − y ∈ B(s − b; � ∪ {b}). We can repeat this argument a finite number of times until we find 
y1, . . . , y j ∈ I(b) and x ∈ B(s − jb; �) such that z = x + y1 + · · · + y j . Hence, we obtain z ∈ B(s − jb; �) + ∑ j

i=1 I(b). �
Example 5.13. Let us consider the numerical semigroup S = 〈4, 5, 6〉. We have Betti(S) = {10, 12}, Z(10) = {(1, 0, 1), (0, 2, 0)}
and Z(12) = {(3, 0, 0), (0, 0, 2)}. Since 72 = 6 · 12, by Lemmas 5.4 and 5.12 we find that

Z(72) = B(72; {10,12}) =
6⋃

j=0

⎛
⎝B((6 − j)12;10) +

j∑
i=1

I(12)

⎞
⎠ .

Note that (6, 0, 8) ∈ Z(72) and

(6,0,8) = 6(1,0,1) + (0,0,2) = 2(3,0,0) + 4(0,0,2).

This union is therefore not disjoint and the inequality given in Lemma 5.12 can be strict.

The following lemma shows that, under the hypotheses of Theorem 5.9, the upper bound given in Lemma 5.12 can be 
attained. Note that this recurrent expression has already arisen in (26).

Lemma 5.14. Let S be a numerical semigroup. Let u ∈ U(Betti(S)) and let � =↓u. Then, for every s ∈ S and z ∈ B(s; �), there are 
unique w ∈ Is(S) and x1, . . . , xt ∈ I(�) such that z = w + x1 + · · · + xt . Moreover, we have

|B(s;�)| =
qs∑

j=0

|B(s − ju;� \ {u})|
(

i(u) + j − 1

j

)
,

where qs is the largest integer such that qsu ≤S s.

Proof. By Theorem 5.9, we have � ⊆ IBetti(S). Let s ∈ S . If B(s; �) = ∅, then we are done. Let us assume that B(s; �) �= ∅
and let z ∈ B(s; �). The definition of B(s; �) ensures the existence of w ∈ Is(S) and x1, . . . , xt ∈ I(�) such that z = w + x1 +
· · · + xt . We show that this expression is unique. Let w1, w2 ∈ Is(S) and, for each x ∈ I(�), let px and qx be non-negative 
integers such that

z = w1 +
∑

x∈I(�)

pxx = w2 +
∑

x∈I(�)

qxx.

In light of Lemma 2.10, the supports of the elements of I(�) are disjoint. If there is x ∈ I(�) such that px �= qx , then either 
x < w1, or x < w2, contradicting the fact that w1, w2 ∈ Is(S), see Lemma 2.7. Therefore we have px = qx for every x ∈ �

and w1 = w2.
As a consequence, the union given in Lemma 5.12 is disjoint. Moreover, we have∣∣∣∣B(s − ju;� \ {u}) +

∑ j

i=1
I(u)

∣∣∣∣ = |B(s − ju;� \ {u})|
(

i(u) + j − 1

j

)

and the result follows. �
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5.4. Completing the proof of Theorem 1.2

We now have all the ingredients necessary to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. First, we prove that if η ∈ U(E(S)), then η ∈ U(Betti(S)) and eη is as in the statement. The tools 
developed in this part of the proof will be helpful when proving the other inclusion. As we follow the proof idea explained 
in Section 5.2, we recommend the reader to have a look at Section 5.2 before reading this proof. Let � = {d ∈ E(S) : d ≤S η}. 
Since η ∈ U(E(S)), we can write � = {b1 <S · · · <S bl} and bl = η. For each i ∈ {1, . . . , l}, define �i = {b1, . . . , bi} and ri−1(s)
as in (23), identity which we recall below for the convenience of the reader:

∑
s∈S

ri−1(s)xs = HS(x)
i−1∏
j=1

(1 − xb j )
−eb j .

Note that from our hypothesis it follows that b1 is minimal in E(S). By Theorem 5.3, b1 is Betti-minimal. We prove by 
induction on i ∈ {1, . . . , l} the following assertions:

(a) if b ≤S bi for some b ∈ Betti(S), then b ∈ �i ;
(b) bi ∈ U(Betti(S)) and ebi > 0;
(c) ri(s) = |B(s;�i)| for every s ∈ S such that b1 is the only Betti-minimal element with b1 ≤S s.

First, we study the case i = 1. As a consequence of Theorem 5.3, b1 Betti-minimal and i(b1) = d(b1) = eb1 + 1 ≥ 2. In 
particular, (a) and (b) hold for i = 1. Note that, by (6), we have HS(x) = ∑

ω∈Ap(S;b1) xω
∑∞

j=0 x jb1 . In conjunction with (21)
and i(b1) = eb1 + 1, this yields

∞∑
s=0

r1(s)xs =
∑

ω∈Ap(S;b1)

xω

( ∞∑
j=0

x jb1

)i(b1)

=
∑

ω∈Ap(S;b1)

xω
∞∑
j=0

(
i(b1) + j − 1

j

)
x jb1

=
∑
s∈S

(
i(b1) + qs − 1

qs

)
xs,

(27)

where qs is the unique non-negative integer such that s − qsb1 ∈ Ap(S; b1). Let s ∈ S be such that b1 is the only Betti-
minimal element with b1 ≤S s. Then from Corollary 2.9 it follows that ωs = s −qsb1 has only one factorization. By combining 
Corollary 5.6 and (27), we conclude that r1(s) = |B(s;�1)|, as desired.

Now assume that (a), (b) and (c) hold for i − 1 ∈ {1, . . . , l − 1} and let us prove that they also hold for i. We prove each 
of the induction hypotheses for i separately. In doing so, we will use the identities (25) several times, which, for the sake 
of readability, we also recall here:

ri−1(s) = d(s) when {d ∈ E(S) : d ≤S s} ⊆ �i−1,

ri−1(s) = d(s) − es when s ∈ Minimals≤S (E(S) \ �i−1) .

(a) We proceed by deriving a contradiction. Let us assume that there is b ∈ Betti(S) \ �i−1 such that b <S bi . Then there 
exists an element

β ∈ Minimals≤S {b ∈ Betti(S) \ �i−1 : b <S bi}.
Let D = {d ∈ Betti(S) : d <S β}. Since β <S bi , from minimality in the choice of β it follows that D ⊆ �i−1. If D = ∅, 
then β is Betti-minimal and, by Theorem 5.3, β ∈ E(S). We thus obtain β ∈ {d ∈ E(S) : d <S bi} = �i−1, but β /∈ �i−1
by definition, a contradiction. We conclude that ∅ �= D ⊆ �i−1. Hence, we have b1 ∈ d, so b1 ≤S β <S bi and b1 is the 
only Betti-minimal element that satisfies b1 ≤S β . From our induction hypothesis, we obtain |B(β;�i−1)| = ri−1(β). Note 
that {d ∈ E(S) : d ≤S β} ⊆ {d ∈ E(S) : d <S bi} = �i−1. Hence, by (25), we find that ri−1(β) = d(β), so |B(β;�i−1)| = d(β). 
We can apply Lemma 5.8 with u = bi−1 and s = β , finding that B(β; �i−1) is connected in ∇β . But we have shown that 
|B(b;�i−1)| = d(b) or, equivalently, Z(β) = B(β; �i−1). This contradicts the fact that β ∈ Betti(S).
(b) From Lemma 5.4 and (a) it follows that Z(bi) \ Ib(bi), so |B(bi;�i−1)| = d(bi) − i(bi). Moreover, by our hypothesis we have 
|B(bi;�i−1)| = ri−1(bi). Note that bi ∈ Minimals≤S (E(S) \ �i−1) by definition of �i−1. Hence, by (25) we obtain ri−1(bi) =
d(bi) − ebi . We conclude that d(bi) − i(bi) = d(bi) − ebi , that is, 0 ≤ i(bi) = ebi . Since ebi �= 0, we have i(bi) ≥ 1 and bi ∈
Betti(S) because bi has at least two factorizations (Corollary 2.9). In view of (a), we have {b ∈ Betti(S) : b ≤S bi} = �i , which 
by hypothesis is totally ordered, so b ∈ U(Betti(S)).
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(c) Let s ∈ S such that b1 is the only Betti-minimal element with b1 ≤S s. Note that thanks to (b) we can apply Lemma 5.14
with u = bi . Recall that in (26) we showed that

ri(s) =
qs∑

j=0

ri−1(s − jbi)

(
i(bi) + j − 1

j

)
,

where qs is the largest integer such that s − qsbi ∈ S . This equation in combination with Lemma 5.14 yields

ri(s) =
qs∑

j=0

|B(s − jbi;�i−1)|
(

i(bi) + j − 1

j

)
= |B(s;�i)| ,

which finishes the proof by induction.
In the induction we have also shown that ebi = i(bi), see the proof of our hypothesis (b). Since bi ∈ U(Betti(S)), by 

Theorem 5.9 we have nc(∇bi ) = i(bi) + 1 = ebi + 1. The fact that eb1 = nc(∇b1 ) − 1 has been established in Theorem 5.3.
Finally we show that U(Betti(S)) ⊆ U(E(S)). Let u ∈ U(Betti(S)). Let us write ↓u = {b ∈ Betti(S) : b ≤S u} = {b1 <S · · · <S

bl = u}. We prove by induction on i that bi ∈ U(E(S)). Note that b1 is Betti-minimal and, thus, b1 ∈ U(E(S)) by Theorem 5.3. 
Let us assume that b1, . . . , bi−1 ∈ U(E(S)) and let us prove that bi ∈ U(E(S)). Let �i−1 = {b1, . . . , bi−1}. We consider ri−1(s)
as in (23). In light of the induction hypothesis (c), we have ri−1(s) = |B(s,�i−1)| for every s ∈ S such that b1 is the only 
Betti-minimal element with b1 ≤S s. In particular, we have ri−1(bi) = |B(bi,�i−1)| and, thus, ri−1(bi) = d(bi) − i(bi), where 
we used Lemma 5.4. From Theorem 5.9, we find that i(bi) > 0. Therefore, ri−1(bi) < d(bi) and, by (24), there exists d ∈
E(S) \�i−1 with d ≤S bi . Hence, there is α ∈ Minimals≤S {d ∈ E(S) \�i−1} with α ≤S bi . By (25) we have ri−1(α) = d(α) −eα . 
From the induction hypothesis (c), we obtain ri−1(α) = |B(α,�i−1)|. Since 0 < r1(s) ≤ ri−1(s) by (27) and (26), we have 
B(α, �i−1) �= ∅. In view of Lemma 5.4, B(α; �i−1) = Z(α) \ Ib(α), so 1 ≤ ri−1(α) = d(α) − i(α). We find that i(α) = eα �= 0. 
We have 0 �= eα = i(α). We conclude that α is a Betti element with α ≤S bi . Since α /∈ �i−1 by definition, we must have 
bi = α ∈ E(S) and {d ∈ E(S) : d ≤S bi} = {b1, . . . , bi}. We obtain bi ∈ U(E(S)), as wanted. �
Example 5.15. Here we can see Theorem 1.2 in action for a couple of numerical semigroups.

a) We consider again the semigroup from Example 5.11. Let S = 〈10, 15, 16, 17, 19〉. Recall that the Hasse diagram of 
(Betti(S), ≤S) looks as follows:

48

32

57

30 363534

Hence the minimal elements of Betti(S) are 30, 32, 34, 35 and 36. The set U(Betti(S)) consists of these Betti-minimal 
elements and the Betti element 48. Therefore, by Theorem 1.2, we conclude that U(E(S)) = {30, 32, 34, 35, 36, 48} and 
we can determine the exponents es of these elements from their number of isolated factorizations.

b) An interesting application is finding Betti elements from E(S). Let us consider the semigroup S = 〈3, 5, 7〉 of Exam-
ple 3.7b. We gave the first entries of the cyclotomic exponent sequence of S . The smallest elements of E(S) are 
10, 12, 14, 17, 19, . . .. Note that U(E(S)) = {10, 12, 14} since any other element in E(S) can be written as α + 3 j for 
some α ∈ {10, 12, 14} and j ≥ 0. Therefore, we have U(Betti(S)) = {10, 12, 14} = Minimals≤S Betti(S), and each one of 
these elements has only two factorizations (their cyclotomic exponents are 1).

6. Betti-sorted and Betti-divisible numerical semigroups

In this section we prove Theorem 1.3, which characterizes Betti-sorted and Betti-divisible numerical semigroups in terms 
of their cyclotomic exponent sequences. Recall that S is Betti-sorted if Betti(S) is totally ordered by ≤S , and that S is Betti-
divisible if Betti(S) is totally ordered by the divisibility order in N . Our characterizations are consequences of Theorem 1.2. 
We will use the following result on ordered sets.

Lemma 6.1. Let (X, ≤) be an ordered set such that every descending chain becomes stationary. Then X is totally ordered if and only if 
U(X) is totally ordered.

Proof. First, if X is totally ordered, then any subset of X , and in particular U(X), is totally ordered. Now let us assume that 
U(X) is totally ordered. Suppose U(X) �= X in order to obtain a contradiction. Then we can choose α ∈ Minimals≤ (X \ U(X)). 
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The existence of minimal elements is guaranteed by the hypothesis that every descending chain becomes stationary. We 
have {a ∈ X : a < α} ⊆ U(X) by minimality of α. Thus ↓α is of the form {a1 < · · · < ak < α} for some k ≥ 0 and a1, . . . , ak ∈
U(X). We conclude that α ∈ U(X), a contradiction. Therefore, X = U(X) and X is totally ordered. �
Lemma 6.2. Let S be a numerical semigroup. Then S is Betti-sorted if and only if E(S) is totally ordered by ≤S . Moreover, if this is the 
case, then Betti(S) = E(S).

Proof. In view of Theorem 1.2 and Lemma 6.1, S is Betti-sorted if and only if U(Betti(S)) = U(E(S)) is totally ordered by 
≤S or, equivalently, E(S) is totally ordered by ≤S . �

This gives the following alternative proof of the fact that Betti-sorted numerical semigroups are complete intersections. 
For the original proof we refer to [10], where in fact the authors show the stronger result that Betti-sorted numerical 
semigroups are free.

Corollary 6.3. If S is a Betti-sorted numerical semigroup, then S is a complete intersection.

Proof. In view of Lemma 6.2, we have E(S) = U(E(S)). By applying Theorem 1.2 we find that eb = nc(∇b) − 1 for every 
b ∈ Betti(S) = E(S). Let A be the minimal system of generators of S . With the help of Theorem 1.1, we conclude that

HS(x) =
∏

b∈Betti(S)(1 − xb)nc(∇b)−1∏
n∈A(1 − xn)

.

Therefore, S is a complete intersection by Proposition 2.5. �
Lemma 6.4. Let S be a numerical semigroup. Then S is Betti-divisible if and only if E(S) is totally ordered by the divisibility order.

Proof. Let S be a numerical semigroup such that either Betti(S) or E(S) is totally ordered by the divisibility order. Then, 
by Lemma 6.2, S is Betti-sorted and Betti(S) = E(S). It follows that Betti(S) and E(S) are totally ordered by the divisibility 
order. �

Betti-divisible numerical semigroups are rare, but they have a very rich structure. In fact, it can be shown that they are 
free for any arrangement of their minimal generators, see [10, Theorem 7.10].

Lemma 6.5. Let S be a numerical semigroup minimally generated by A. Then S has a unique Betti element if and only if E(S) is a 
singleton.

Proof. Let S be a numerical semigroup such that Betti(S) or E(S) is a singleton. Then S is Betti-sorted by Lemma 6.2 and 
Betti(S) = E(S), so both Betti(S) and E(S) are singletons. �

Theorem 1.3 now follows by combining Lemmas 6.2, 6.4 and 6.5.

7. Applications to cyclotomic numerical semigroups and open questions

We can now use our freshly enriched insight on the connections between cyclotomic exponent sequences and Betti 
elements to prove that certain cyclotomic numerical semigroups are complete intersections. We do so by showing that 
these numerical semigroups satisfy the hypotheses of Proposition 2.5 and are, as such, complete intersections. This approach 
has already been carried out in Corollary 6.3, where we showed that Betti-sorted numerical semigroups are complete 
intersections. In fact, here we extend Corollary 6.3 to a larger family of numerical semigroups. First, let us consider the 
following conjectures.

Conjecture 7.1. Let S be a cyclotomic numerical semigroup and let e be its cyclotomic exponent sequence. Then n ∈ N is a minimal 
generator of S if and only if en < 0.

Conjecture 7.2. Let S be a cyclotomic numerical semigroup and let e be its cyclotomic exponent sequence. Then eb = nc(∇b) − 1 for 
all b ∈ Betti(S). In particular, we have Betti(S) ⊆ E(S).

These conjectures are motivated by the following result.

Proposition 7.3. Conjecture 1.4 holds if and only if Conjectures 7.1 and 7.2 hold.
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Proof. First, we note that Conjectures 7.1 and 7.2 are directly implied by Conjecture 1.4 and Proposition 2.5. Now let us 
assume that S is a cyclotomic numerical semigroup such that Conjectures 7.1 and 7.2 hold for S and let us prove that 
Conjecture 1.4 holds for S or, equivalently, that S is a complete intersection. Since Conjecture 7.1 holds for S , from Proposi-
tion 2.3 and Theorem 1.1 we obtain

0 =
∑
d≥1

ed = −e(S) +
∑
d≥1
ed>0

ed.

From these equalities, Conjecture 7.2 and the fact that e1 = 1 (by Theorem 1.1), we conclude that

e(S) =
∑
d≥1
ed>0

ed ≥ 1 +
∑
b∈Betti(S)

(nc(∇b) − 1),

which shows that the cardinality of any minimal presentation of S is bounded by e(S) −1, and therefore that S is a complete 
intersection (see Section 2.4). �

Theorem 1.1 shows one direction of Conjecture 7.1. Here we show that this conjecture holds for a large set of cyclotomic 
numerical semigroups.

Corollary 7.4. Let S be a numerical semigroup minimally generated by A. If U(E(S)) = E(S), then E(S) ⊆ Betti(S), S is cyclotomic 
and Conjecture 7.1 holds for S.

Proof. From Theorem 1.2, we find that E(S) = U(Betti(S)) and that eb = nc(∇b) − 1 > 0 for every b ∈ E(S). In particular, 
E(S) is finite and, thus, S is cyclotomic (Definition 1.1). Let n ∈ N with en < 0. We have n /∈ E(S) because eb > 0 for every 
b ∈ E(S). Moreover, recall that e0 = 0 and e1 = 1 by Theorem 1.1, so n ≥ 2. Since E(S) is the set of positive integers j such 
that j ≥ 2, e j �= 0 and j is not a minimal generator, we conclude that n is a minimal generator of S . �

As already mentioned in the introduction, computations suggest that these numerical semigroups arise very frequently.

Corollary 7.5. Let S be a cyclotomic numerical semigroup. If Betti(S) = U(Betti(S)) and Conjecture 7.1 holds for S, then S is a complete 
intersection.

Proof. From Theorem 1.2 and Betti(S) = U(Betti(S)), we obtain Betti(S) ⊆ E(S). The result now follows from Proposi-
tion 7.3. �
Corollary 7.6. Let S be a numerical semigroup. If Betti(S) = U(Betti(S)) and E(S) = U(E(S)), then S is a complete intersection.

Proof. This follows by combining Corollaries 7.4 and 7.5. �
Example 7.7. Let S = 〈8, 12, 18, 25〉. Then

PS(x) = (1 − x)(1 − x24)(1 − x36)(1 − x50)

(1 − x8)(1 − x12)(1 − x18)(1 − x25)
.

Then E(S) = Betti(S) = {24, 36, 50}. The graph (Betti(S), ≤S) is depicted below.

36

50 24

From this graph it follows that Betti(S) = U(Betti(S)) and, thus, S is a complete intersection.

Finally, let us make a few comments on Conjecture 7.1. In [7, Lemma 14] it is shown that this conjecture holds true 
under several restrictions on S . We notice that the restrictions in part (a) and (b) of Lemma 14 from [7] cannot both hold 
at the same time, hence the statement of [7, Lemma 14] is void, in the sense that it does not find cyclotomic numerical 
semigroups satisfying Conjecture 7.1. We conclude this section by improving [7, Lemma 14].
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Proposition 7.8. Let S be a cyclotomic numerical semigroup with cyclotomic exponent sequence e. Let j ∈ N with e j < 0 and j <
min{d ∈ N : ed > 0}. Then j is a minimal generator of S. As a consequence, if max{d ∈ N : ed < 0} < min{d ∈ N : ed > 0}, then 
Conjecture 7.1 holds for S.

Proof. Let j ∈ N with e j < 0 and j < min{d ∈ N : ed > 0}. In view of Theorem 1.1, either j is a minimal generator or 
d( j) ≥ 2. In the latter case, by Theorem 5.3, there is α ∈ Minimals≤S E(S) with α ≤S j, and that eα > 0. However, this 
implies that

min{d ∈N : ed > 0} ≤ α < j < min{d ∈ N : ed > 0},
a contradiction. We conclude that j must be a minimal generator of S . �
7.1. Open questions

Regarding cyclotomic exponent sequences of arbitrary numerical semigroups, it would be interesting to study the values 
of these sequences at those Betti elements that are not in U(Betti(S)), where our current techniques fail to yield any result.

Coming back to cyclotomic numerical semigroups, by Definition 1.1 a numerical semigroup is cyclotomic if and only if 
its cyclotomic exponent sequence has finitely many non-zero terms. By Proposition 2.4 this is equivalent with PS being a 
product of cyclotomic polynomials.

Question 7.9. Is there a weaker condition than the cyclotomic exponent sequence having finite support that would ensure 
that PS is a product of cyclotomic polynomials?

A possible way to weaken the condition would be, for instance, to require that the exponent sequence has infinitely 
many zeros.

We point out that Conjecture 1.4 remains open, and it seems likely that further tools are needed in order to tackle it. 
One could start by showing that if S is a numerical semigroup such that |E(S)| ≤ 2, then S is a complete intersection. Here 
we have managed to address the case |E(S)| = 1 in Theorem 1.3, but our techniques are not enough to analyze the case 
when |E(S)| = 2 and the two elements in E(S) are incomparable with respect to ≤S . As seen in this section, Conjectures 7.1
and 7.2 are equivalent with Conjecture 1.4. It is thus well possible that at least one of the two is considerably easier than 
Conjecture 1.4, and thus they warrant individual investigation.
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