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Abstract: On-surface synthesis, complementary to wet chemistry, has been demonstrated to be a
valid approach for the synthesis of tailored graphenic nanostructures with atomic precision. Among
the different existing strategies used to tune the optoelectronic and magnetic properties of these
nanostructures, the introduction of non-hexagonal rings inducing out-of-plane distortions is a promis-
ing pathway that has been scarcely explored on surfaces. Here, we demonstrate that non-hexagonal
rings, in the form of tropone (cycloheptatrienone) moieties, are thermally transformed into phenyl or
cyclopentadienone moieties upon an unprecedented surface-mediated retro–Buchner-type reaction
involving a decarbonylation or an intramolecular rearrangement of the CO unit, respectively.

Keywords: on-surface synthesis; graphene nanoribbons; retro-Buchner reaction; intramolecular
rearrangement; scanning tunneling microscope; non-contact atomic force microscope; CO functionalized
tip; X-ray photoelectron spectroscopy

1. Introduction

Graphene, and its lower-dimensional derivatives, such as graphene nanoribbons or
nanographenes, are interesting fundamental and technological materials thanks to their
intriguing optoelectronic and magnetic properties [1–3]. These properties depend on their
structures, making achieving atomic precision during their synthesis essential. So far, this
accuracy can solely be obtained through bottom-up approaches, either under solutions
or on surfaces under ultra-high vacuum (UHV) conditions—the latter being known as
on-surface synthesis (OSS). The former—although very powerful and versatile from a
synthetic point of view—fails when large nanostructures are aimed, due to their lower
solubility and higher reactivity [4]. On the other hand, OSS allows for the circumvention
of these challenges thanks to the highly inert UHV environment, the 2D confinement,
and the special catalytic properties of metallic surfaces, while additionally affording a
full set of powerful characterization techniques which even allow for the observation of
the intramolecular structure of such nanomaterials [5,6]. To date, a wide variety of low-
dimensional graphene-based nanostructures have been synthesized through different on-
surface chemical reactions [7,8]. It is worth mentioning that, for example, in the blooming
field of graphene nanoribbons (GNRs), most of the strategies used to tune their properties
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have focused on the modification of structural parameters, such as the size, edge structure,
chemical composition, or geometry [9]. Other routes based on the alteration of the local
aromaticity by the introduction of non-hexagonal rings are starting to be explored [10–14],
mainly focusing on lower-order rings, while larger ones, such as seven- or eight-membered
rings are typically limited to their combination with lower pentagonal or square rings,
respectively [15–19]. Although the introduction of seven- and eight-membered rings in
nanographenes has already been demonstrated using a bottom-up approach in solutions
and leading to a saddle-shaped distortion [20–28], their inclusion as sole defects into on-
surface synthesized extended nanostructures remains a challenge. Therefore, if we aim
to tune the properties of on-surface-synthesized graphene-based nanostructures through
the introduction of higher-order rings, understanding their thermal stability on metallic
surfaces becomes crucial.

Here, we demonstrate that cycloheptatrienone moieties incorporated into the polypheny-
lene precursor 1 (Scheme 1, ring in blue), designed to yield an edge-distorted heptagon-
containing chevron-GNR (3), are not stable above 525 K on an Au(111) surface, but recon-
struct into phenyl (4) or fluorenone-based units (5) upon an unprecedented retro-Buchner-
type surface-mediated reaction involving a decarbonylation or intramolecular rearrange-
ment, respectively. The resulting GNRs have been characterized through high-resolution
scanning tunneling (STM), non-contact atomic force microscopies (nc-AFM), and X-ray
photoemission spectroscopy (XPS), and rationalized in terms of analogue solution-based
retro-Buchner reactions. This study will contribute to the current understanding of the
on-surface thermal stability of isolated higher-order defects in graphenic nanostructures.
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Scheme 1. Schematic representation of the different reaction pathways toward the formation of
tropone-GNR (3), fluorenone-GNR (5), and chevron-GNRs (4).

2. Materials and Methods
2.1. Synthetic Details

Unless otherwise stated, all reagents and solvents (CH2Cl2, hexane) were purchased
from commercial sources and used without further purification. Dry toluene was purchased
from Scharlau (Barcelona, Spain). Flash column chromatography was carried out using
Silica gel 60 (230–400 mesh, VWR, Leuven, Belgium) in the stationary phase. Analytical TLC
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was performed on aluminum sheets coated with silica gel with the fluorescent indicator
UV254 (VWR, Leuven, Belgium) and observed under UV light (254 nm) and/or staining
with phosphomolybdic acid (5% ethanol solution) and subsequent heating. Preparative
TLC was performed on the Silica gel G preparative layer (20 × 20 cm, 1000 microns, Silicycle,
QC, Canada). All 1H and 13C NMR spectra were recorded on a Bruker Avance NEO 500
MHz spectrometer (Billerica, MA, USA), at a constant temperature of 298 K. Chemical
shifts are reported in ppm and referenced to residual solvents. Coupling constants (J)
are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as
follows: m = multiplet, quint. = quintet, q = quartet, t = triplet, d = doublet, s = singlet,
b = broad. Assignment of the 13C NMR multiplicities was accomplished using DEPT
techniques. ESI-TOF mass spectra were recorded using a Waters XEVO GL-XS QT (Buenos
Aires, Argentina) of mass spectrometer. IR-ATR spectra were recorded using a Perkin
Elmer Spectrum Two IR Spectrometer (Tres Cantos, Spain). Melting points were measured
using a Stuart SMP3 (Nemours, France).

2.2. Experimental Methods

STM experiments were carried out in three ultra-high vacuum (UHV) systems, two
belonging to the ESISNA group (ICMM, Madrid, Spain) and one to the Nanotech@surfaces
group (Empa, Zürich, Switzerland). The former ones are equipped with an RT-STM (STM1,
Scienta Omicron, Uppsala, Sweden) and an XPS setup (a PHOIBOS 100 1D delay line
detector electron/ion analyzer and a monochromatic Al Kα anode (1486.6 eV), Specs
Surface Nano Analysis GmbH, Berlin, Germany), respectively, while the latter has an
LT-STM/AFM (Scienta Omicron, Uppsala, Sweden). In all systems, the base pressure was
below 10−10 mbar. STM images shown in this study were acquired at either 77 K or 5 K,
as stated in each figure caption. STM images were obtained using the constant current
mode, with the bias voltage provided with respect to the sample. Electrochemically etched
tungsten tips were used for the measurements, and STM images were analyzed using
WSxM software (Madrid, Spain) [29]. Nc-AFM images with CO functionalized tips were
acquired at 5 K using the constant height mode. In this case, the tungsten tip, attached
to a tuning fork, was functionalized by picking up individual CO molecules from NaCl
islands, which were deposited onto the surface after completing the GNR reaction. For
these measurements, the sensor was excited to its resonance frequency (22361 Hz) with
a constant amplitude of ~80 pm, while the frequency shift was recorded (HF2Li PLL by
Zurich Instruments).

XPS measurements were performed using a pass energy of 15 eV. All spectra were
calibrated in binding energy (BE) to the Au 4f at 84.0 eV. All fits were carried out using
Voigt functions, keeping the Lorentzian full-width half-maximum (FWHM-L) constant
during the fitting (0.25, 0.35, and 0.35 eV for C 1s, O 1s, and Br, respectively).

2.3. Sample Preparation

Au(111) single crystals (SPL) were prepared using iterative sputtering (Ar+, 1 keV)
and annealing (750 K) cycles until they were judged to be clean through STM. Compound
1 was deposited onto the Au(111) surface through thermal sublimation at 510 K using
a 6-fold ORMA evaporator (Mantis Deposition). The typical deposition rate used was
approximately 1 Å/min, as determined by a quartz micro-balance.

3. Results and Discussion

Monomer 1, incorporating both a tropone moiety and aryl bromides, was synthesized
in a straightforward manner following a previously described procedure (see details and
Figures S1 and S2 in Supplementary Materials) [22]. Scheme 1 shows an illustrative repre-
sentation of the targeted reaction pathway to incorporate tropone units (blue rings) into
well-defined graphenic nanostructures, namely modified chevron-GNRs (tropone-GNR 3,
top part). In principle, it would be expected that when the heptagon-containing polypheny-
lene monomer 1 is deposited on the Au(111) surface held at 475 K and then post-annealed at
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675 K, tropone-containing oligomers 2 and chevron-GNRs incorporating heptagonal rings
3 should be formed upon sequential Ullmann-like coupling and subsequent cyclodehydro-
genation reactions, respectively. However, the analysis of 18 different GNRs using in situ
nc-AFM images shows that 3 is not obtained and that two other reaction products (4 and
5) prevail, as indicated in the reaction scheme. On the one hand, the formation of pristine
chevron-GNRs 4 upon the detachment of a CO molecule (surface-mediated decarbonyla-
tion) is achieved. On the other hand, we observe the formation of a cyclopentadienone unit
(yellow rings) at the external “cape” of the pristine chevron-GNR, in a fluorenone-GNR 5,
with an estimated yield of ~25%. Similar decarbonylation ring transformation upon the
loss of atomic/molecular species and intramolecular rearrangements have been previously
reported [10,11,30], although never for seven- or higher-membered rings. Interestingly, as
discussed later, both pathways can be explained through either a retro-Buchner-type reac-
tion or a decarbonylation process. Additionally, it is worthwhile to note that the remaining
5% is associated with other structures that cannot be clearly identified and which could be
related to intramolecular CO rearrangement products or defective reaction products.

Figure 1 summarizes the different structural configurations observed within the same
GNR. The first striking conclusion is that although heptagonal rings are preserved during
the polymerization step, as judged from the formation of polymeric islands stabilized by
O-mediated inter-ribbon H-bonding (vide infra and Section S1 in Supplementary Materials),
no tropone moieties survive the final GNR growth process. At some point during the on-
surface synthesis, a CO molecule is either detached or rearranged within 2. In the former
case, the new C–C bond formation gives rise to pristine chevron GNRs, as evidenced in the
frequency shift and corresponding current images shown in Figure 1a,b and highlighted
by the pink 6-membered rings in Figure 1c. In the latter case, a rearrangement of the CO
unit and a surface-mediated dehydrogenation reaction, implying the rupture of C–C bonds,
results in a fluorenone unit or a cyclopropenone moiety (yellow ring and red-dashed circle
in Figure 1c, respectively) linked to one of the external six-membered rings of the pristine
chevron-GNR. As shown below, this latter case would be related to an intermediate state in
the CO rearrangement sequence. Finally, the upper edge of the GNR presents a distorted
geometry, which cannot be determined but must be related to a defective intramolecular
cyclodehydrogenation or a defective monomer (yellow arrow in Figure 1a and question
mark in Figure 1c), contributing to the 5% undefined structures mentioned above.

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 1. Synthesized chevron-GNRs on Au(111). A constant height (a) frequency-shift nc-AFM 
image and (b) a current image simultaneously obtained with a CO-functionalized tip showing the 
most characteristic variations of the GNRs. Scanning parameters were as follows: (6.5 nm × 3 nm) V 
= 5 mV, Δz = −2.1 Å @ 0.2 V, and 4 pA. (c) A proposed chemical sketch of the GNR structure, in-
cluding pristine chevron-like (pink) and fluorenone (yellow) segments together with a possible 
cyclopropenone moiety (red-dashed circle). 

In order to elucidate the temperature at which the CO detachment/rearrangement 
takes place, and to confirm the intact arrival of 1 onto the Au(111) surface upon sublima-
tion, we have carried out a detailed analysis of the STM images showing the polymeric 
phase (Figure 2), as well as an X-ray photoemission spectroscopy (XPS) study of the O 1s 
(Figure 2e), C 1s, and Br 3d core-level peaks (Figure S3), as a function of sample temper-
ature. Figures 2a–d present a set of STM images obtained after annealing the surface 
covered with 1 at 475 K, 525 K, 585 K, and 625 K, respectively. Figures 2a,b show the 
presence of polymers assembled into islands. It is well-known that oligomeric precursors 
of pristine chevron-GNRs tend to agglomerate into islands due to an attractive π–π in-
teraction between external interdigitated phenyl rings [31]. However, this stacking dis-
appears upon the planarization of the oligomers into chevron GNRs due to steric repul-
sion between neighboring in-plane hydrogen atoms [32]. In our case, as the external part 
of precursor 1 (dibenzoannelated tropone unit, see Scheme 2) is already planarized, in-
terdigitation is unfavorable even at the polymer stage. Still, we observe that the polymers 
2 have self-assembled into islands. We attribute this to an attractive hydrogen bonding 
interaction mediated by the ketone groups in the tropone moieties. For instance, a similar 
behavior has been reported among N-doped chevron GNRs [32]. If the annealing tem-
perature is increased to 585 K (Figure 2c), some of the oligomers start to detach from the 
islands. This observation can be rationalized in terms of a partial loss of oxygen atoms 
from the molecules, indicating that the decarbonylation reaction takes place between 525 
K and 585 K, and confirming the intact arrival of precursor 1 onto the surface upon dep-
osition. These results are further supported by the analysis of the XPS core-level peaks. 
Figure 2e presents the thermal evolution of the O 1s core-level peak (see Section 2 of the 
ESI for the complete XPS analysis, including C 1s and Br 3d core-level peaks, Figure S3). 
The bottom curve corresponds to a multilayer deposition of 1 on the clean Au(111) sur-
face held at RT, which has been used as a reference value for the BE of the oxygen in the 
tropone unit. The obtained BE is characteristic of ketone groups (531.6 eV) [33]. This re-
sult confirms that the molecule reaches the surface intact, discards the molecular de-
composition already in the crucible, and corroborates the hypothesis of a surface-induced 

Figure 1. Synthesized chevron-GNRs on Au(111). A constant height (a) frequency-shift nc-AFM
image and (b) a current image simultaneously obtained with a CO-functionalized tip showing the most



Nanomaterials 2022, 12, 488 5 of 10

characteristic variations of the GNRs. Scanning parameters were as follows: (6.5 nm × 3 nm)
V = 5 mV, ∆z = −2.1 Å @ 0.2 V, and 4 pA. (c) A proposed chemical sketch of the GNR structure,
including pristine chevron-like (pink) and fluorenone (yellow) segments together with a possible
cyclopropenone moiety (red-dashed circle).

In order to elucidate the temperature at which the CO detachment/rearrangement
takes place, and to confirm the intact arrival of 1 onto the Au(111) surface upon sublima-
tion, we have carried out a detailed analysis of the STM images showing the polymeric
phase (Figure 2), as well as an X-ray photoemission spectroscopy (XPS) study of the O 1s
(Figure 2e), C 1s, and Br 3d core-level peaks (Figure S3), as a function of sample tempera-
ture. Figure 2a–d present a set of STM images obtained after annealing the surface covered
with 1 at 475 K, 525 K, 585 K, and 625 K, respectively. Figure 2a,b show the presence of
polymers assembled into islands. It is well-known that oligomeric precursors of pristine
chevron-GNRs tend to agglomerate into islands due to an attractive π–π interaction be-
tween external interdigitated phenyl rings [31]. However, this stacking disappears upon
the planarization of the oligomers into chevron GNRs due to steric repulsion between
neighboring in-plane hydrogen atoms [32]. In our case, as the external part of precursor
1 (dibenzoannelated tropone unit, see Scheme 2) is already planarized, interdigitation is
unfavorable even at the polymer stage. Still, we observe that the polymers 2 have self-
assembled into islands. We attribute this to an attractive hydrogen bonding interaction
mediated by the ketone groups in the tropone moieties. For instance, a similar behavior
has been reported among N-doped chevron GNRs [32]. If the annealing temperature is
increased to 585 K (Figure 2c), some of the oligomers start to detach from the islands.
This observation can be rationalized in terms of a partial loss of oxygen atoms from the
molecules, indicating that the decarbonylation reaction takes place between 525 K and
585 K, and confirming the intact arrival of precursor 1 onto the surface upon deposition.
These results are further supported by the analysis of the XPS core-level peaks. Figure 2e
presents the thermal evolution of the O 1s core-level peak (see Section 2 of the ESI for the
complete XPS analysis, including C 1s and Br 3d core-level peaks, Figure S3). The bottom
curve corresponds to a multilayer deposition of 1 on the clean Au(111) surface held at RT,
which has been used as a reference value for the BE of the oxygen in the tropone unit. The
obtained BE is characteristic of ketone groups (531.6 eV) [33]. This result confirms that the
molecule reaches the surface intact, discards the molecular decomposition already in the
crucible, and corroborates the hypothesis of a surface-induced detachment of the CO unit.
As we increase the surface temperature to 435 K, the O 1s core-level peak experiences a
strong drop in intensity, indicating multilayer desorption. This multilayer desorption is
accompanied by an ~ 0.5 eV shift toward a lower BE, which can be attributed either to a
charge transfer from the surface toward the molecules or to the increased screening of the
signal of the first monolayer [34].

Subsequent annealing steps at 475 K, 525 K, and 575 K do not significantly modify
the energy position, suggesting that no important change in the molecular structure of
the tropone unit occurs. This range of temperatures corresponds to the formation of the
polymer 2 and the initial stages of CDH; therefore, the heptagonal rings seem to remain
unaltered upon polymerization by surface-mediated Ullmann coupling. Finally, annealing
at 625 K induces a 0.25 eV shift of the peak toward higher BE and an enlargement of the peak
width, which could be associated with a small variation in the chemical environment around
the ketone group and is compatible with a progressive intramolecular rearrangement of the
CO unit, thus giving rise to the fluorenone-GNRs. It is interesting to note that the intensity
of the O 1s core-level peak does not significantly change during the whole growth process
even though partial decarbonylation takes place. This can be explained by three factors:
(i) the XPS signal is quite low as there is only one O atom per molecule, resulting in a low
signal-to-noise ratio, as clearly seen in the spectra. This high noise ratio induces a high level
of error in the determination of the peak areas, which may account for the low variability in
temperature; (ii) the XPS is a macroscopic technique that averages the signal over a rather



Nanomaterials 2022, 12, 488 6 of 10

large area in comparison to STM (mm vs. nm). Additionally, when doing STM, it is common
to find areas where the nanostructures are not properly formed; thus, they are contributing
to the XPS signal but are not being considered in the STM analysis; (iii) frequency-shift
nc-AFM images sometimes reveal the presence of bright dots at the bays of the GNRs.
Similar features have been reported for reaction subproducts in the reconstruction of 9-
methyl-9H-carbazole into phenanthridine, where they have been attributed to methyl
radicals stabilized by the surface [30]. In our case, they could be associated with carbonyl
radicals stabilized by the surface and the GNRs, thus also contributing to the O 1s signal. In
any case, XPS and STM analysis are in fair agreement (considering that experiments have
been carried out in different systems and the temperature has been measured in different
ways), thus corroborating that the modification of the tropone moiety must take place
between 525 K and 585 K (probably closer to the upper limit of 585 K).
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Figure 2. STM images (100 nm × 100 nm) of the thermal evolution of 2 on Au(111) after annealing
at (a) 475 K, (b) 525 K, (c) 585 K, and (d) 625 K. The STM parameters are as follows: (a) I = 30 pA,
V = 1.0 V; (b) I = 20 pA, V = −1.2 V; (c) I = 20 pA, V = −1.0 V; (d) I = 20 pA, V = 1.0 V. (e) The thermal
evolution of the O 1s XPS core-level peak. The green line shows the BE position of the peak maximum.
From bottom to top: RT, 435 K, 475 K, 525 K, 575 K, and 625 K, respectively.

Summing up all the experimental evidence presented, it is proposed that the tropone
unit is transformed into a phenyl ring (CO detachment resulting in 4) or into a cyclopenta-
dienone unit (CO rearrangement resulting in 5) during the cyclodehydrogenation process
(above 525 K). It is interesting to note that similar thermally-induced decarbonylation
processes have been reported for fluorenone-based chevron-GNRs on Au(111) [11], al-
though a considerably higher temperature of 625 K and much longer annealing times were
needed, thus indicating higher stability of the fluorenone vs. the tropone moieties. This fact
rationalizes the transformation of the latter into the former. However, no similar results
have been reported for tropone-based GNRs on surfaces. On the other hand, the thermally
induced decarbonylation of benzannulated tropones has been previously described in
the case of solution chemistry. It implies an electrocyclic ring closure and cheletropic CO
extrusion, leading to the corresponding aromatic derivatives during pyrolysis [35,36]. A
similar reaction pathway could be suggested in the present case (Scheme 2). In analogy to
the well-known cycloheptatriene–norcaradiene equilibrium [37], the cycloheptatrienone
unit in 1 (I, Scheme 2) would be in equilibrium with the norcaradienone intermediate
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II through electrocyclic ring closure. Subsequently, II can decompose directly through a
cheletropic extrusion of CO (transition from II to III) or via diradical IV, yielding, in both
cases, a phenantrene moiety III (resulting in 4) [35,38]. Several mechanisms could explain
the formation of norcaradienone V, either by intramolecular rearrangement via diradi-
cal IV or by a sequence of [1,5] sigmatropic shifts of the cyclopropanone subunit [35,39].
Ring opening/closure from norcaradienone V and final dehydrogenation would form
the fluorenone unit in VI (as in the case of 5, Scheme 1). Within this context, it is also
worth noting that the described pyrolysis of tropones without surface interaction implies
higher temperatures than the ones reached in our OSS case [35]. Therefore, we should
also take into consideration the role of the gold surface and the presence of Au adatoms
in the reaction pathway, which is related to the retro-Buchner reaction mediated by Au(I),
as reported by Echavarren et al. [40,41]. In that case, cycloheptatrienes, in equilibrium
with norcaradienes, can react with cationic Au(I) complexes to obtain Au(I) carbenes and
an aromatic system, which could match with the phenanthrene unit in the pristine GNR
generated in our case. In this sense, it should be noted that the adatoms present on the
surface at elevated temperatures could play the role of these complexes, as it has been
demonstrated that they can play an active role in catalyzing reactions [42–44]. Our results
can, therefore, be explained by a retro–Buchner reaction that implies a decarbonylation
process forming a gold carbonyl. Thus, these results would represent the first example of
an on-surface retro–Buchner-type reaction.
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4. Conclusions

We have shown, by means of STM, nc-AFM, and XPS, an unprecedented conver-
sion of a cycloheptatrienone unit into a phenyl group or a cyclopentadienone unit dur-
ing the cyclodehydrogenation step through the detachment or rearrangement of the CO
unit, respectively. A reaction pathway, based on a gold-mediated CO extrusion reaction,
is proposed.

This work aids in the understanding of the stability of higher-order non-hexagonal
rings incorporated into graphenic nanostructures as a path towards the tailored engi-
neering of their properties through the introduction of out-of-plane structural distortions,
thus expanding the toolbox for the bottom-up synthesis of atomically precise carbon-
based nanostructures.
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