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Abstract: Function interpolation and approximation are classical problems of vital importance in
many science/engineering areas and communities. In this paper, we propose a powerful methodology
for the optimal placement of centers, when approximating or interpolating a curve or surface to
a data set, using a base of functions of radial type. In fact, we chose a radial basis function under
tension (RBFT), depending on a positive parameter, that also provides a convenient way to control
the behavior of the corresponding interpolation or approximation method. We, therefore, propose
a new technique, based on multi-objective genetic algorithms, to optimize both the number of
centers of the base of radial functions and their optimal placement. To achieve this goal, we use
a methodology based on an appropriate modification of a non-dominated genetic classification
algorithm (of type NSGA-II). In our approach, the additional goal of maintaining the number of
centers as small as possible was also taken into consideration. The good behavior and efficiency of
the algorithm presented were tested using different experimental results, at least for functions of one
independent variable.

Keywords: approximation; interpolation; RBFs; centers’ allocation; MOGA; NSGA-II algorithms

1. Introduction

In the last decades, radial basis function (RBF) methods have been developed in a way
that contributed to their great spread and emergence, mainly for their simplicity and for
having been lauded for the ability to solve multivariate scattered data approximation and
interpolation problems (see for example [1–3], and many other references included therein).
The main advantages of these methods are that they do not need a mesh or triangulation,
that they are simple to implement and dimension independent, and that no staircasing or
polygonization for boundaries is required [4,5].

Many authors have presented several methodologies for approximating or fitting
a surface to data (see for example [6,7]), such as the methodology that is based on the
polynomial interpolation theorem of Lagrange [8,9] and another important approach, that
is based on orthogonal polynomials [10].

Also, some seminal works on dynamic node adaptive strategy, or knot selection
placement for sparse reduced data, were published in [11,12].

In [13], the methodologies for single objective problems (SOP) have been presented
for selection and optimization of centers, mainly based on techniques for the selection
of center points through non-dominated sorting, where promising points are selected as
centers. Also, some successful hierarchical genetic algorihtm approaches for curve fitting
with B-splines were applied in [14].

On the other hand, the authors in [15] developed techniques to perform centers’ selec-
tion and estimation simultaneously by a componentwise boosting algorithm. Moreover,
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the centers of RBFs are selected among the vertices of the Voronoi diagram of the sample
data point in [16]. The methodology in [17,18] was to optimize the shape parameter of
radial basis functions for the solution of ordinary differential equations. The authors in [19]
used an approach based on genetic algorithms to optimize centers and radial basis function
neural networks (RBFNNs). However, they used one type of neural network where the
basis function is of Gaussian type. Research in neural networks has also attracted many
computer and mathematical scientists over the last years and covers a broad spectrum of
different subjects and real-world applications, such as image processing, pattern recogni-
tion and optimization in general (the reader can also consult the new upcoming book of
the authors Grienggrai Rajchakit, Praveen Agarwal and Sriraman Ramalingam [20] for
more information about the multiple applications and stability properties of these type of
neural networks and many other mathematical aspects of them).

In this paper, a new methodology for optimal placement of random centers, for
approximating or fitting a curve to data, using radial basis functions is developed. In
fact, we chose a radial basis function under tension (RBFT) that depends on a positive
parameter, that also provides a convenient way to control the behavior of the corresponding
interpolation or approximation method. A new technique is presented to optimize both the
number of radial basis centers and their optimal placement, using multi-objective genetic
algorithms. More precisely, we used a new approach based on an appropriate modification
of a goal-based non-dominated genetic classification algorithm (of type NSGA-II) and
tested the good behavior and efficiency of the algorithm using different experimental
results, at least for functions of one independent variable. However, the procedure and
theory can be developed in the same way for functions of any number of variables, so we
present it in this more general setting.

The key points concerning this goal-based NSGA-II version, compared with the
original NSGA, are the following (see for example [21,22]):

• A fast, non-dominated sorting mechanism, grouping the entire population into a
hierarchy of sub-populations, based on the Pareto dominance ordering.

• Inside each sub-group, the similarity between members is evaluated on the Pareto
front; to promote a diverse front of non-dominated solutions, the resulting groups
and similarity measures are used.

• For that, an adequate crowding distance is an appropriate mechanism of ranking
members of a front which are dominating, or dominated by others.

• The appropriate consideration of a certain elitist mechanism, in order to improve the
convergence properties of the algorithm.

• A niching operator without parameters is adopted, to maintain a certain level of
diversity among the possible solutions.

• One or several decision maker’s (DM) preferences within the evolutionary process are
provided, in order to focus into a particular region of the Pareto front, where the more
interesting features are present.

• In this way, a so-called region of interest (ROI) appears; it is the set of non-dominated
solutions that are preferred by the DM.

• The DM can provide his/her preferences before (a priori), after (a posteriori), or
during (interactively) the MOEA run.

• Therefore, some trade-off between objectives specifies that the gain of a unit on one
target is worth the degradation on some others and vice versa.

• In our case, keeping the number of centers as small as possible while controlling some
specific standard errors is our main goal.

Then, these ranking mechanisms are used with the corresponding genetic selection
operators (usually of Tournament type) to create the population of possible solutions of the
next generations.

Regarding implementation issues, we developed a MATLAB code through a suitable
adaptation of some previous subroutines for the NSGA-II algorithm by Mostapha Kalami
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Heris in [23] (see also [24]); we have also implemented the corresponding approximation
or interpolation procedures, using the specified RBFs according with [25].

2. Proposed Methodology

Let Ω be an open bounded connected nonempty subset of Rd (usually d = 1, 2, 3),
with Lipschitz-continuous boundary. We also use the classical notation Hk(Ω) to denote
the usual Sobolev space of all distributions u, whose partial derivatives, up to order k, are
in the classical Lebesgue space L2(Ω).

Let m > 1 be a positive integer (usually small) and let Πm−1(Rd) denote the space
of polynomials on Rd of total degree at most m− 1, whose dimension is denoted by d(m)

and let
{

q1, . . . , qd(m)

}
be the standard basis of Πm−1(Rd). Let us give an arbitrary finite

set {b1, . . . , bM} ⊂ Ω ⊂ Rd of distinct approximation points and a set of real values
U = f ≡ { f1, . . . , fM}, that usually comes from the evaluation of a certain function
f : Ω → R. We also use a set of centers {c1, . . . , cN} ⊂ Rd and, for each of them, the
translation of an appropriate radial function Φ(· − ci), i = 1, . . . , N, as in (2).

The main goal is to approximate, in the best possible way, the points

{(b1, f1), . . . , (bM, fM)} ⊂ Rd+1

by means of an adequate linear combination of radial basis functions (RBFs).

2.1. Spaces of Radial Functions

We define the radial basis functions that is used in the sequel. We consider the
following function (for ε ∈ R+, t ≥ 0):

φε(t) = −
1

2ε3 (e
−ε
√

t + ε
√

t) (1)

that is the fundamental solution, in the distribution sense, of the linear fourth-order
differential equation

d4φε

dt4 − ε2 d2φε

dt2 = δ,

where δ is the Dirac’s measure at the origin. The real parameter ε is called a tension
parameter.

In our case, we use radial basis functions that are the translations of the radial function
(now, for x ∈ Rd)

Φε(x) = φε(〈x〉2d) = −
1

2ε3

(
e−ε<x>d + ε < x >d

)
(2)

where < · >d denote the Euclidean norm on Rd.
This type of radial basis functions under tension (RBFTs) were introduced by A.

Bouhamidi and A. Le Mehauté [26] in 2004. They depend on a positive parameter that
provides a convenient way of controlling the behavior of the corresponding interpolation
or approximation method. Moreover, error estimates of the corresponding interpolation
method [26] are given in terms of Sobolev semi-norms, that also help in the convergence of
the associated procedure and provide attractive geometrical tension effects.

2.2. Smoothing Radial Basis Approximations

Therefore, the idea is to use a finite-dimensional space HN , whose basis is of the type

HN ≡ span
{

Φε(· − c1), . . . , Φε(· − cN), q1(·), . . . , qd(m)(·)
}

.
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In this case, the problem to be resolved can be formulated as follows: Given a set of
real values and an approximation data set {(bi, fi) : i = 1, . . . , M}, we still want to obtain
σN ∈ HN such that

σN(bi) ≈ fi, i = 1, . . . , M

by means of the following minimization problem.
Find σN ∈ HN such that

J (σN) ≤ J (υ), ∀υ ∈ HN (3)

where τ ∈ (0, ∞) and

J (v) =
M

∑
i=1

( fi − υ(bi))
2 + τ|υ |22

where

|υ|22 = ∑
|α|=2

∫
Ω
(∂αυ(x) )2dx

with

|α| = α1 + . . . + αd, ∀α = (α1, . . . , αd) ∈ Nd, ∂αυ(x1, . . . , xd) =
∂|α|υ

∂xα1
1 . . . ∂xαd

d
.

Thus,

σN(x) =
N+d(m)

∑
l=1

βl wl(x),

where

wl(·) =
{

Φε(· − cl), l = 1, . . . , N
ql−N(·), l = N + 1, . . . , N + d(m)

}
;

and β1, . . . , βN+d(m) ∈ R are the control coefficients (i.e., the problem’s unknowns), ob-
tained as the solution of the variational problem formulated in the following Theorem (see
for example [27,28]).

Theorem 1. The minimization problem (3) has a unique solution, that is also the only solution of
the following variational problem.

Find σN ∈ HN such that, for all υ ∈ HN ,

M

∑
i=1

σN(bi) υ(bi) + τ(σN , υ)2 =
M

∑
i=1

υ(bi) fi (4)

where
(u, v)2 = ∑

|α|=2

∫
Ω
(∂αu(x) ∂αυ(x) )dx

Proof. The expression

[[υ]] :=

(
M

∑
i=1

υ(bi)
2 + τ (v, v)2

) 1
2

constitutes a norm on HN equivalent to its usual norm. Then, as a consequence, the
continuous symmetric bilinear form

a : HN × HN −→ R
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defined by

a(u, υ) =
M

∑
i=1

u(bi)υ(bi) + τ(u, υ)2

is HN-elliptic. Besides, ψ : HN −→ R, so

ψ(υ) :=
M

∑
i=1

fi υ(bi)

is clearly a continuous linear form on this space.
Then, applying the Lax–Milgram lemma (see [29] for example), there exists a unique

function σN ∈ HN such that

a(σN , υ) = ψ(υ), ∀υ ∈ HN ;

that is, (4) holds. Moreover, σN is the unique function of HN that minimizes the functional

J̃ (υ) = 2
(

1
2

a(υ, υ)− ψ(υ)

)
,

concluding that σN also minimizes the functional J .

By linearity, we can reduce the problem (4) to the following linear system:(
AA> + τR

)
β = Af

where A = (wi(bj)), i = 1, . . . , N + d(m), j = 1, . . . , M.

R =

 ∑
|α|=2

∫
Ω

∂αwi∂
αwj dx


i,j=1,...,N+d(m)

β = (βi)i=1,...,N+d(m) ∈ RN+d(m), f ≡ ( fi)i=1,...,M

Remark 1. When M = N and bi ≡ ci for i = 1, . . . N, we could also consider an interpolating
problem at the centers, where the interpolating function σ̂N has explicitly the following form:

σ̂N(x) =
N

∑
i=1

λiΦε(x− ci) +
d(m)

∑
j=1

β j qj(x), x ∈ Rd, (5)

where the coefficients λ = (λ1, . . . , λN)
> and β = (β1, . . . , βd(m))

> are now the solution of the
following linear system: (

Aε M
M> O

)(
λ
β

)
=

(
f
0

)
(6)

where Aε = (Φε(ci− cj))1≤i,j≤N is an N×N matrix, M = (qj(ci)) 1≤i≤N
1≤j≤d(m)

is an N× d(m) ma-

trix, M> denotes the transpose of M, O is the d(m)× d(m) zero matrix, f ≡ ( f1, . . . , fN)
> ∈ RN

and 0 is the zero vector of Rd(m).
Take into account that we are considering the interpolating conditions

σ̂N(ci) = fi, i = 1, . . . , N;

together with the constraints (the usual orthogonality conditions to the space of polynomials
Πm−1(Rd) when we do not have the strict positiveness of the radial kernel function, to assure the
Πm−1(Rd)-unisolvency of the centers; see for example [1])
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N

∑
i=1

λiqj(ci) = 0, j = 1, . . . , d(m).

3. Methodology Overview

At this stage, it is important to define some ideas about multi-objective optimization
problems and describe fundamental issues for NSGA-II-type algorithms (see [22]). The
non-dominated sorting genetic algorithm is a multiple objective optimization algorithm,
whose objective is to improve the adaptive fit of a population of candidate solutions to a
Pareto front, constrained by a set of objective functions G ≡ (g1, . . . , gl , . . . , gL), each one
defined in an appropriate domain.

Amongst the first algorithms to explicitly exert certain tendency towards the discov-
ery of nondominated solutions, we could mention, for example, Fonseca and Fleming’s
MOGA [30]; it uses fitness sharing amongst solutions of the same rank, coupled along a
proportional adaptive selection to help promoting diversity.

The authors Srinivas and Deb’s [31] original nondominated sorting genetic algorithm
(NSGA) works in a similar way, but assigns fitness based on dividing the population into
a certain number of fronts of equal domination. To achieve this, the algorithm iteratively
seeks all the nondominated points in the population that still have not been labeled as
belonging to the current front and increments the front count, repeating until all solutions
have been finally labeled. Therefore, each point in a given front obtains, as its raw score,
the count of all solutions in inferior fronts. After this, Deb [22] and his coworkers, proposed
a revised NSGA-II algorithm, which still uses the idea of non-dominated fronts, but also
incorporates the following important changes:

• A crowding distance metric is defined for each point as the average side length of the
cuboid defined by its nearest neighbors in the same front. The larger the value, the
fewer solutions reside in the vicinity of the point.

• An appropriate survivor selection strategy, where the new population is obtained by
accepting the individuals from progressively inferior fronts until it is full, so that, if
not all the individuals in the last front considered can be accepted, they are chosen on
the basis of their crowding distance.

• Parent selection uses a modified tournament operator that considers, first, the domi-
nance rank, then crowding distance as the second criterium.

We can also see that, for the appropriate use of any NSGA-II procedure, it is necessary
to describe the following fundamental issues:

(1) Population initialization: the size of the population depends on the problem range.
(2) Non-dominated sort. Before talking about this stage we define the following:

• p and P, the individual and the main population, respectively.
• Sp is the set of all individuals dominated by p.
• np is the number of individuals that p dominates.
• prank is the rank that an individual p has, depending on the front assigned to it.
• Q is the set for storing temporarily the individuals in the (i + 1)-th front.

(We recall that, in this context of multi-objective optimization, we say that p dominates
q, or, equivalently, that q is dominated by p, if and only if p is no worse than q in all the
objective functions, but it is strictly better in at least one of them.)

We describe the non-dominated procedure as follows:

? For all individuals, ∀ p ∈ P:
? Initialize Sp = ∅ and np = 0
? ∀ q ∈ P− {p}

if p dominates q, then Sp = Sp ∪ {q}

else, if q dominates p, then np = np + 1

? if np = 0 , then F1 = F1 ∪ {p} and prank = 1.
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? Begin initializing the new front, from the first one (with i = 1).
? Next, for every front Fi, while Fi 6= ∅,

Q = ∅

∀p ∈ Fi and ∀q ∈ Sp

nq = nq − 1

if nq = 0, then Q = Q∪ {q} and qrank = i + 1

? i = i + 1 (augment the front counter by one).
? At this stage, the new front is Fi = Q.

(3) Crowding distance: It is very important to compare between individuals belonging to
the same front Fi, so that each individual has a crowding distance that estimates the
density of solutions surrounding each member in this front. The method of calculating
the crowding distance is summarized below.
For all considered fronts Fi and every objective function gl , l = 1, . . . , L, we perform
the following:

? We previously sort all of the members of the front Fi, according to the lth

objective function sort(Fi, l) ≡ {p[l]i,1, . . . , p[l]i,Ni
}, with Ni ≡ card(Fi); (where

gl(p[l]i,1) ≡ gmin
l and gl(p[l])i,Ni

≡ gmax
l ). Now, we use this arrangement to calculate

the crowding distance for each individual in Fi with the following passages.
? First, initialize the distances of each member of the front to zero.

? Namely, ∀p[l]i,j ∈ Fi, with j = 1, . . . , Ni. Let us define and compute the following:

? d[l]i,1 = d[l]i,Ni
= ∞ (to assure that these points are taken for next generations).

? d[l]i,j ≡ d[l]
p[l]i,j

(Fi) = 0, j = 2, . . . , Ni − 1.

? For k = 2 : (Ni − 1),

d[l]i,k = d[l]i,k +
gl(p[l]i,k+1)− gl(p[l]i,k−1)

gl
max − gl

min

(4) Selection: In order to select individuals, we use a crowded comparison operator that
depends on a binary tournament selection. The operation depends on Fi and prank;
we say that p ≺c q if

prank < qrank

or if p and q ∈ Fi

then d[l]p (Fi) > d[l]q (Fi)

(5) Genetic operator: Now, we describe the two parts of the simulated binary crossover
and that of polynomial mutation, both performed componentwise:

− Binary crossover: The following expressions represent the simulated binary
crossover (for each component k) of two contestants in the tournament, p1 and
p2:

c1,k =
1
2
((1− βk)p1,k + (1 + βk)p2,k)

c2,k =
1
2
((1− βk)p1,k + (1 + βk)p2,k)
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with βk ≥ 0 and ci,k represents the kth component to the ith child. However, the
density of any random sample is generated by

p(β) =

{
1
2 (ηc + 1)βηc , if 0 ≤ β ≤ 1
1
2 (ηc + 1) 1

βηc+2 , if β > 1

where ηc is defined as the distribution index of crossover. Let u be a uniform sample
random number included in (0, 1); then, we have

β(u) =

 (2u)
1

ηc+1 , if u < 0.5
1

2(1−u)]
1

ηc+1
, otherwise

− Polynomial Mutation: First, we define some important notions, such as the
following:

◦ ci,k is a child component.
◦ pi,k is a parent component.
◦ rk is a uniform sample random in (0, 1).
◦ δk is a mutation distribution index.
◦ [plower

i,k , pupper
i,k ] is the box constraints imposed over the kth-component.

Then, the polynomial mutation is defined componentwise by

ci,k = pi,k + (pi,k
upper − pi,k

lower)δk

where

δk =

 (2rk)
1

ηl+1 − 1, , if rk < 0

1− (2(1− rk))
1

ηl+1 , , if rk ≥ 0

(6) Recombination and selection: The offspring population is combined with the current
generation population and selection is performed to set the individuals of the next
generation; the elitism is ensured, because the best individuals are added sequentially
to the population. The selection of parents for the next generation is also based
on their crowding distance, by selecting the individual at random, but taking into
account their tournament score, then choosing the best individuals out of that set to
be parents.

(7) Selection of an appropriate region of interest (ROI), according with DM’s preferences:
In this case, the preference of the user is always to maintain the number of centers
as small as possible, if the degree of approximation remains within a preset range.
In this manner, the proposed procedure attempts to find a set of solutions in the
neighborhood of the corresponding Pareto optimal solution, so that the decision-
maker can have a better idea of the desired region.

Different forms of fitness (or objective functions) can be used in a NSGA-II procedure,
but the main goal, here, is to minimize some usual errors, such as EC and/or EL between
the original function and the approximating or interpolating function, constructed from
each population of random centers. At this step, it is also important to consider two error
estimations that are appropriate normalizations of a discrete version of the usual norms in
C(Ω) and L2(Ω), respectively, and they are given by the following expressions:

EC =
max

i=1,...,K
| f (ai)− σ(ai)|

max
i=1,...,K

| f (ai)|
(7)
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EL =

√√√√√√√√√
K

∑
i=1

( f (ai)− σ(ai))
2

K

∑
i=1

( f (ai))
2

(8)

where f ∈ C2(Ω) is a given function, σ ≡ σN is the approximating or σ ≡ σ̂N interpolating
RBF function associated with the given data set and {a1, . . . , aK} ⊂ Ω is another scattered
random point test data set (TDS) where the errors are computed.

However, before running any MOGA algorithm, there are always some key parameters
that should be defined. The most important ones are shown in Table 1 below.

Table 1. Parameters and functions used by MOGA in the simulations results.

Parameters of the MOGA Value

Number of generations 20
Population size 40

Crossover function Binary crossover
Selection function Binary tournament
Crossover fraction 0.9

Pareto fraction 0.4
Mutation function Polynomial mutation

Mutation rate 0.01
Centers’ deletion tolerance 0.5× 10−2

Fitness’ functions Centers number and EC or/and EL

Therefore, the most important goal of these methods will always be to try to improve
the adaptive fit of a population of possible solutions to a Pareto front constrained by these
often conflicting objectives. In this case, these objective functions are to minimize at least
one or several normalized discrete versions of some approximate errors; however, the
intention to maintain the number of centers as small as possible is also taken into account,
so that we allow the procedure to delete some of the obtained centers, when they become
sufficiently close to each other and the same level of approximation can be retained.

4. Simulation Examples

The objective of this study is to analyze the performance of this procedure for different
types of functions, optimizing the centers placement using radial basis functions by the
multi-objective genetic algorithms (MOGA) already used and explained in more detail
in [32], but using cubic spline basis functions instead of RBFs. Different experiments
were carried out and we show, in this section, the results for the approximation of several
functions, also presenting the evolution of the optimal distribution of points, together with
the related Pareto fronts. Similar results could be obtained for the case of interpolating
RBFs, as explained in the Remark 1.

In order to analyze the behavior of the radial basis approximations, a TDS with a
large (100) number of points was used, with a population number of 40 individuals, until
20 generations, in each one of the examples below. Concerning the shape parameter,
it is also true that it can affect the approximation accuracy of the RBF and the overall
computational stability of the procedure (see for example [33,34]), but it is not the goal of
our study for the moment; therefore, a fixed value of ε = 0.1 was used without problems in
all our computations. The same applies to the other smoothness parameter of the RBFs
approximating procedure, τ, where a constant fixed value of 1 was used in all our numerical
experiments.
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One-Dimensional Examples

Example 1. f1 : [0, π] −→ R

f1(x) = 0.12 + 0.25 exp−4(x− π
4 )

2
cos(2x) sin(2πx) .

To test the behavior of the approximation for the presented methodology, performed
by optimization of the centers’ placement of radial basis functions by a NSGA-II algorithm,
Figure 1 shows the results of the approximation of function f1(x), using radial basis
function approximations, while, in Figure 2, we can see how the EL error decreased clearly
when the number of centers increased. We can also see, in the left column of Figure 1, the
radial basis approximation corresponding to the last centers’ distribution, whose evolution
is also showed in the right column, with the increase in the number of interior centers for
the function f1(x) with 7, 9 and 11 centers, respectively.
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Figure 1. Radial basis approximation and evolution of final centers’ placement for the function f1(x)
with 7, 9 and 11 centers, respectively.

Example 2. f2 : [0, 1] −→ R

f2(x) = 0.5e−5(x−π/2)2
sin(4πx) cos(4x) .

For Example 2, the numerical approximation results for f2(x) and the evaluation of
centers are shown in Figure 3; on the other hand, the two normalized discretised errors for
f2(x) are also described in Table 2.

We can see, in the left column of Figure 3, the radial basis approximation corresponding
to the last centers’ distribution, whose evolution is also showed at the right column, with
the increase in the number of interior centers for the function f2(x), using 2, 4 and 6 interior
centers, respectively.
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Figure 3. Radial basis approximation and evolution of final centers’ placement for the function f2(x)
with 2, 4 and 6 interior centers, respectively.

Table 2. Two approximation discretization errors for f2(x).

Centers EL EC

2 4.3978× 10−2 1.8918× 10−3

4 2.6664× 10−2 6.7993× 10−4

6 4.0691× 10−3 1.9208× 10−4

8 3.9539× 10−3 1.7241× 10−4
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Example 3. f3 : [−1, 1] −→ R

f3(x) = 1− e−50|x| .

The graphical result approximating f3(x) with 20 interior centers, using 20 generations
in the NSGA-II algorithm, using radial basis functions, is showed in Figure 4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
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Figure 4. Graphical results for f3(x) with 20 interior centers (marked on the x-axis).

5. Conclusions and Future Work

Although there are some other approaches to select knots amongst a uniform partition
of the interval (or domain) of definition of the function to be approximated, or interpolated,
they are usually based on splines and the evolutionary procedure used to improve the final
allocation of these knots usually relies on basic genetic algorithms, not very performing
for general multi-objective problems, or even on self-adjusting or hybrid neural networks,
with the requirement of the previous hard training process, etc. This paper presents
another important and interesting possibility for optimizing both the number and the
corresponding centers’ placement in the problem of radial basis function approximation of
functions of one or several independent variables, where we can clearly see the effectiveness
of the strategy for different types of functions. We chose a radial basis function under
tension (RBFT) depending on a positive parameter, that also provides a convenient way
to control the behavior of the corresponding interpolation or approximation method. In
addition, the preliminary numerical results of this MOGA strategy, for centers’ placement
in approximating functions of one variable, show that the placement of the centers in radial
basis approximation function also has an important and significant impact on the behavior
of the final results, because the ideal place or location of the centers is not known in advance.
However, one important feature of this approach is that completely the same theoretical
procedure can be developed for problems in more spatial dimensions, for the well-known
meshless character of these type of functions. It is also well known that increasing the
number of centers for the radial basis in the RBF approximation usually also increases the
accuracy of the approximation, but only up to a certain level, where the computational
effort is not worthy enough; therefore, in our procedure, we can admit the coalescence of
very close centers, maintaining the same level of accuracy. In addition, in the interpolating
case, this possible, excessive proximity of the centers has to be avoided, so as not to have
excessive matrix conditioning problems with the linear systems to be solved. On the other
hand, in classic allocation methods, the designer should choose a priori the number of
centers that will be used and, many times, they are just equidistant uniform partitions of
the domain. However, using such a MOGA procedure of the type considered, they can
move freely inside the domain and the corresponding Pareto fronts can also be directly
improved using a different or variable number of centers, at the same time as simulations
are being performed.
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An open problem would be the optimal election of both the shape parameter ε and the
smoothness parameter τ, since they can depend not only on the number and distribution
of data points and the data vector, but even on the precision of the computations, even
though it is well known that very small values give, in general, highly accurate results.
Then, the idea would be to introduce, in a future work, these parameters also as possible
optimization variables in the general MOGA algorithm. In addition, the possibility of using
the basis of RBFs of compact support, such as the well-known Wendland’s RBFs, would be
a good alternative to the RBFs used in this work.
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