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Abstract We propose a method for computing numerically
integrals defined via iε deformations acting on single-pole
singularities. We achieve this without an explicit analytic
contour deformation. Our solution is then used to produce
precise Monte Carlo estimates of multi-scale multi-loop inte-
grals directly in Minkowski space. We corroborate the valid-
ity of our strategy by presenting several examples ranging
from one to three loops. When used in connection with four-
dimensional regularization techniques, our treatment can be
extended to ultraviolet and infrared divergent integrals.

1 Introduction

The ever-increasing precision of data from particle physics
experiments requires a comparable or better level of precision
in theoretical predictions, both to establish the parameters of
the Standard Model and to search for physics beyond it. To
achieve such precision requires the computation of multi-
loop amplitudes. A fundamental ingredient of such calcula-
tions is the evaluation of master loop integrals (MIs), in terms
of which the problem is reduced. This can be performed by
analytic, semi-numerical or fully numerical techniques (see
[1] for a recent review). Analytic methods are very success-
ful when the class of functions that contribute to the result is
known, which usually happens when the number of internal
and external masses is limited. However, such a-priori knowl-
edge is not always available, especially when the number of
scales increases, so that in these cases one would like to
be able to compute MIs numerically, for instance by Monte
Carlo (MC) techniques.

In the numerical computation of MIs, an important prob-
lem is the appearance of integrable threshold singularities,
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where single poles are moved away from the real inte-
gration domain by the iε prescription. These singularities
require special treatment, such as a contour deformation into
the complex plane [2–5], or vanishing-width extrapolations
methods [6–9]. Contour deformations are usually controlled
by some parameter whose value should be not too small, to
guarantee numerical accuracy, and not too large, to avoid
crossing branch cuts. In extrapolation methods a series of
integrals should be determined that converges to the right
value while keeping the computation time low.

This paper explains how integrals defined through the
iε prescription acting on first-order poles can be evalu-
ated numerically without deforming the integration contour
into the complex plane, and how this can be employed to
compute MIs appearing in multi-loop calculations. In addi-
tion, we demonstrate that this strategy allows one to com-
pute recursively higher-loop functions in terms of lower-loop
ones. Other semi-numerical methods relying on one-loop-
like objects to build higher loops can be found in [10–12].
In [10] a Wick rotation of the loop momentum is needed to
avoid singularities. The Feynman parameter space is used in
[11], and a contour deformation in [12]. Our method works
directly in Minkowski space and avoids contour deforma-
tions.

The structure of the paper is as follow. Section 2 details our
approach. In Sect. 3 we use it to integrate numerically thresh-
old singularities after an analytic integration over the energy-
components of the loop momenta. Section 4 explains how to
glue together lower-loop structures to compute numerically
certain classes of higher-loop MIs. Finally, in Sects. 5 and 6
we extend our treatment to ultraviolet and infrared divergent
configurations regularized via the four-dimensional method
of [13].
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2 Avoiding contour deformation

In this section we present two methods which avoid contour
deformation. The first method uses complex analysis, while
the second approach directly works with the original inte-
grand. The two procedures are equivalent, in that they give
rise to the same mappings. The numerical results presented
in the paper are obtained with method 1 and cross-checked
with method 2.

2.1 Method 1

For the sake of clarity, distinct letters (with or without addi-
tional subscripts) are used to denote variables ranging in dif-
ferent intervals. In particular, we employ x when −1 ≤ x ≤
1, y if 0 ≤ y ≤ 1, σ provided −∞ < σ < ∞. Finally,
0 ≤ ρ ≤ 1 stands for a random Monte Carlo (MC) variable.

The core of the procedure is a change of variable such that
the 1/(x + iε) behaviour of the integral

I := lim
ε→0

ˆ 1

−1
dx

1

x + iε
(1)

is flattened with x ∈ R. This is obtained by imposing

x + iε = eiπ(1−z), (2)

where z is a new complex integration variable. In fact, insert-
ing (2) in (1) gives the desired result,

I = −iπ
$ 1

0
dz. (3)

Equation (3) evaluates to −iπ along any curve in the z com-
plex plane connecting z = 0 to z = 1 when ε → 0. We use
this freedom to impose x ∈ R by parametrizing

z = α + iβ with α, β ∈ R and
ε

π
≤ α ≤ 1 − ε

π
. (4)

Inserting (4) in (2) gives

x = eπβ cos[π(1 − α)] + i{eπβ sin[π(1 − α)] − ε}, (5)

which is real when πβ = ln
ε

sin[π(1 − α)] , namely

x = xα := ε

tan[π(1 − α)] . (6)

Therefore

dz = dα

(
1 + i

dβ

dα

)
, (7)

which gives
$ 1

0
dz = lim

ε→0

1

gε

ˆ 1−ε/π

ε/π

dα
(

1 + i
xα

ε

)
, gε := 1 − 2ε

π
,

(8)

where gε has been introduced to impose the normalization to
1 also for small but not vanishing values of ε. In summary,
after changing variable as in (2), the requirement x ∈ R

determines the relation between �e(z) and �m(z).
Armed with these results, we generalize (1) to an integra-

tion over a function

f (x) = φ(x)/(x + iε), (9)

with φ(x) sufficiently smooth at x = 0,1

I f :=
ˆ 1

−1
dx f (x) =

ˆ 1

0
dy
[
f (−y) + f (y)

]
. (10)

Splitting the integration region of (8) into the two sectors
with xα < 0 or xα > 0 gives

I f = − iπ

gε

ˆ 1/2

ε/π

dα

×
[(

1 − i
yα
ε

)
φ(−yα) +

(
1 + i

yα
ε

)
φ(yα)

]
, (11)

where yα := ε/tan(απ). Equation (11) can be translated to a
MC language by looking for the local density g(y) that cor-
responds to a change of variable dρ = g(y)dy reabsorbing
the singular behaviour of the integrand of (10),

I f =
ˆ 1

0
dρ

f (−y) + f (y)

g(y)
, (12)

with
´ 1

0 dy g(y) = 1. By comparing (12) to (11) one deter-
mines

g(y) = 2ε

π(y2 + ε2)
, y = ε

tan(απ)
, α = ε

π
+ ρgε

2
. (13)

The mapping of (13) optimizes the integration over the
real part of z (see (7)). This gives stable numerical results
when φ(x) is such that the yα/ε terms in (11) are suppressed.
When this is not the case, they generate a large contribution to
the variance and, in order to flatten them, the parametrization
complementary to (7) is necessary,

dz = dβ

(
dα

dβ
+ i

)
, (14)

which gives

I f = − iπ

gε

ˆ β+

β−
dβ

×
[(

ε

−yβ
+ i

)
φ(−yβ) −

(
ε

yβ
+ i

)
φ(yβ)

]
, (15)

where

yβ := eπβ

√
1 −

( ε

eπβ

)2
, β− = 1

π
ln

ε

sin ε
, β+ = ln ε

π
.

1 From now on, we omit limε→0 and consider ε as an infinitesimal
parameter.
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Again, (15) is correctly normalized also for a small but not
vanishing ε. Comparing (12) to (15) gives now

g(y) = − gε

ln(sin ε)

y

(y2 + ε2)
, y = eπβ

√
1 −

( ε

eπβ

)2
,

β = ln(ε) − ρ ln(sin ε)

π
. (16)

Multichanneling

Flattening the whole 1/(x + iε) behaviour of (9) requires
a merging of (13) and (16), whose densities we dub g1(y)
and g2(y). This can be achieved via a multichannel approach
with combined density gc(y) := α1g1(y) + α2g2(y) and
α1 + α2 = 1,

I f =
ˆ 1

0
dρ

f (−y) + f (y)

gc(y)
. (17)

In (17), ρ is generated according to the distribution g1,2(y)
with probability α1,2, and the a-priori weights α1,2 can be
optimized as described in [14].

To reduce the variance when φ(x) peaks inside −1 ≤ x ≤
1 in a known way, it is also possible to include an arbitrary
numbers of further channels gi (y) (i > 2). However, care
must be taken due to the fact that the MC weight of (12)
includes both the f (−y) and f (y) contributions. To deter-
mine the corresponding density we observe that
ˆ 1

0
dy
[
gi (−y) + gi (y)

] =
ˆ 1

−1
dx gi (x), (18)

which means that if x is randomly chosen in −1 ≤ x ≤ 1,
the density is gi (−|x |) + gi (|x |). Hence, the MC weight is(
f (−y)+ f (y)

)
/
(
gi (−y)+gi (y)

)
, with gi normalized such

thatˆ 1

−1
dx gi (x) = 1. (19)

In summary, with Nch channels (including g1 and g2), the
more general multichannel MC mapping reads

I f =
ˆ 1

0
dρ

f (−y) + f (y)

gtot(y)
, dρ = gtot(y)dy, (20)

where

gtot(y) = gc(y) +
Nch∑
i=3

αi (gi (−y) + gi (y)), (21)

with arbitrary (but self-adjustable) weights fulfilling∑Nch
i=1 αi = 1. In the actual MC used to produce the results

presented in this paper we superimpose on gc(y) a flat dis-
tribution g3(x) = 1/2 and a channel

g4(x) = 1

2 ln 1+δ
δ

1

1 − |x | + δ
, δ = 10−4, (22)

which takes care of peaks around |x | = 1.

Principal value integrals

It is often useful to deal with improper integrals, whose
behaviour at large values of the integration variables is
defined via the Cauchy principal value. The fact that the two
symmetric points with respect to x = 0 are always consid-
ered together, makes the use of (20) very convenient. As a
matter of notation, we define

−
ˆ

dσ := lim

→∞

ˆ 


−


dσ, (23)

which can be mapped onto the interval [−1, 1] by changing
variable,

σ = x

1 − x2 . (24)

Thus, for instance,

−
ˆ

dσ
φ(σ)

σ + iε
=

ˆ 1

−1
dx

1 + x2

1 − x2 φ
( x

1 − x2

) 1

x + iε
, (25)

where we understand the symmetric treatment of (20), so that
(25) is well defined even when φ(σ) approaches a constant
as σ → ±∞.

Multiple integrals

Equation (20) can be easily extended to n-fold integrals of
the type

I f,n :=
ˆ 1

−1

n∏
j=1

(
dx j
)
f ({x}), (26)

with f ({x}) = φ({x})/∏n
j=1(x j + iε). Our notation is such

that {x} = x1, x2, . . . , xn and φ({x}) is a smooth function at
{x} = {0}. The result is

I f,n =
ˆ 1

0

n∏
j=1

(
dρ j
) f (−{y}) + f ({y})∏n

j=1 gtot(y j )
, (27)

where dρ j = gtot(y j )dy j and the numerator stands for a
sum over the 2n terms with positive or negative arguments.
For instance, when {y} = y1, y2,

f (−{y}) + f ({y})
= f (−y1,−y2) + f (−y1, y2)

+ f (y1,−y2) + f (y1, y2). (28)

Equation (27) can be generalized to more poles per vari-
able, moved away from arbitrary domains ∈ R, either by
partial fractioning the integrand or by splitting the integra-
tion region into sub-intervals. However, configurations like
that never appear in what follows, so we do not pursue a
detailed analysis in this direction.
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2.2 Method 2

As an alternative to the above method, one can apply separate
changes of variables to flatten the real and imaginary parts
of the pole factor(s) in the integrand. Consider the integral

I1[φ] :=
ˆ a

−a
dx

φ(x)

x + iε
=

ˆ a

0
dx

xφ−(x) − iεφ+(x)

x2 + ε2 ,

(29)

where φ±(x) = φ(x) ± φ(−x). We can write this as

I1[φ] =
ˆ a/ε

0
dy

yφ−(εy) − iφ+(εy)

1 + y2

=
ˆ rm

0
dr φ−(ε

√
e2r − 1) − i

ˆ θm

0
dθ φ+(ε tan θ),

(30)

where

rm := ln(1 + a2/ε2)/2 , θm := arctan(a/ε). (31)

Each of these integrals has optimal variance reduction (in
the absence of information about φ) and is therefore suited
to numerical integration as long as φ(x) is smooth at x =
0. Note that the ε/(x2 + ε2) and x/(x2 + ε2) behaviours
of (29) correspond to the local densities in (13) and (16),
respectively.

The method is easily generalised to two variables. Con-
sider

I2[φ] :=
ˆ a

−a
dx1dx2

φ(x1, x2)

(x1 + iε)(x2 + iε)

=
ˆ a

0
dx1dx2

�(x1, x2; ε)

(x2
1 + ε2)(x2

2 + ε2)
, (32)

where

�(x1, x2; ε) = x1x2φ
11 − iε(x1φ

10 + x2φ
01) − ε2φ00

(33)

with

φ00 = φ(x1, x2) + φ(−x1, x2) + φ(x1,−x2) + φ(−x1,−x2),

φ10 = φ(x1, x2) − φ(−x1, x2) + φ(x1,−x2) − φ(−x1,−x2),

φ01 = φ(x1, x2) + φ(−x1, x2) − φ(x1,−x2) − φ(−x1,−x2),

φ11 = φ(x1, x2) − φ(−x1, x2) − φ(x1,−x2) + φ(−x1,−x2).

(34)

For MC evaluation, we proceed as follows: for each shot,
generate x1r , x1t , x2r , x2t where

x1r = ε
√

e2r1 − 1, x1t = ε tan θ1,

x2r = ε
√

e2r2 − 1, x2t = ε tan θ2 (35)

where

0 < r1,2 < rm, 0 < θ1,2 < θm (36)

uniformly, with rm and θm as in (31). In (34), set x1 = x1t

when the first superscript is 0 and x1 = x1r when it is 1,
and similarly for x2 according to the second superscript. The
weights for the real and imaginary parts are then

wr = φ11r2
m − φ00θ2

m, wi = −(φ10 + φ01)rmθm . (37)

The generalisation of (32) to n variables is clear: φ{k j } has
superscript k j = 1 in the j th location when there is an x j in
the integrand, otherwise k j = 0. The symmetrized function
� becomes

�({x j }; ε) = (−iε)n
∑

{k j=0,1}

n∏
j=1

(i x j/ε)
k j φ{k j }({x j }),

(38)

where

φ{k j }({x j }) =
∑

{l j=0,1}

n∏
j=1

(−1)k j l j φ
(
{(−1)l j x j }

)
. (39)

For MC evaluation, for each shot, generate two points in
the n-dimensional hypercube

x jr = ε
√

e2r j − 1, x jt = ε tan θ j , (40)

where again 0 < r j < rm and 0 < θ j < θm uniformly. In
(39), set x j = x jt when k j = 0 and x j = x jr when k j = 1.
The weight is then

wr + iwi = (−iθm)n
∑

{k j=0,1}

n∏
j=1

(irm/θm)k j φ{k j }({x j }). (41)

Note that each shot involves 2n random numbers for {x jt }
and {x jr }, and then 4n function evaluations at x j = ±x jt
and ±x jr , so the computation time increases rapidly with
the number of variables.

2.3 Choosing ε

Here we perform a study of the value of ε to be used in
practice. More specifically, we compare the numerical and
analytic determinations of the three-fold test integral

T (ε) =
ˆ 1

−1

3∏
j=1

(
dx j

x j + iε

) 1∑
j1, j2, j3=0

x j1
1 x j2

2 x j3
3 (42)

= (8 − 6π2) + iπ(π2 − 12), (43)

whose behaviour at x j ∼ 0 mimics a typical multi-
dimensional environment. The result of this comparison is
given in Fig. 1, where the solid (dashed) line represents the
real (imaginary) part of (43). Bullets and squares with errors
are the MC predictions for �e [T (ε)] and �m [T (ε)], respec-
tively. To quantify the effect of a nonzero ε on the MC esti-
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Fig. 1 MC results for the real (red bullets) and imaginary (blue
squares) part of (42). They have been obtained with 1010 MC shots
per point, corresponding to 8×1010 calls to the integrand. To minimize
the statistical fluctuations, the same sequence of random numbers is
used for all values of ε

mate QMC(ε) ± ΔQ(ε) of a known quantity Q, it is conve-
nient to introduce the estimators

Δ1(ε) = |Q − QMC(ε)|
|Q| , Δ2(ε) = max

(
ε,

ΔQ(ε)

|Q|
)

. (44)

Requiring the ε 	= 0 bias on QMC(ε) to be of the order of
the maximum between ε and the relative MC error gives the
condition

R(ε, Q) := Δ1(ε)

Δ2(ε)
∼ O(1). (45)

Table 1 reports the R value of the entries of Fig. 1 and their
MC accuracy defined as

δ(ε) := max
(
Δ�e[T (ε)],Δ�m[T (ε)])

|TMC(ε)| . (46)

From Fig. 1 and Table 1 we infer that a range 10−8 ≤ ε ≤
10−6 is adequate to achieve MC estimates accurate at the
level of three parts in 105. Since the results presented in this
paper are never more accurate than this, we set, for definite-
ness, ε = 10−7. However, the last row of Table 1 shows
that numerically stable predictions are produced also with a
smaller ε and a larger MC statistics. From this, we deduce
that the ε 	= 0 bias can be reduced to be negligible in most
practical applications, and that the accuracy of our method
is driven by the MC error.

3 A semi-numerical integration algorithm for MIs

In this section we illustrate how the approach of Sect. 2 can
be successfully applied to produce stable and precise semi-
numerical MC estimates of loop MIs. This is achieved in

Table 1 The ratio in (45) for the real and imaginary parts of T (ε) in (42)
computed with 1010 (3×1011) MC shots when ε ≥ 10−8 (ε = 10−12).
The last column reports the MC accuracy defined in (46)

ε R(ε, �e[T ]) R(ε, �m[T ]) δ(ε)

10−4 1.1 7.0 3×10−5

10−5 1.1 0.5 3×10−5

10−6 0.6 0.3 3×10−5

10−7 0.5 0.2 3×10−5

10−8 0.6 0.1 3×10−5

10−12 0.02 1.5 7×10−6

Fig. 2 The scalar three-point one-loop function with arbitrary kine-
matics and masses C(P2, p2

1, p2
2,m0,m1,m2)

two steps. Firstly, we integrate analytically over the energy
components of the loop momenta, which is always doable by
means of the Cauchy integral theorem. In addition, depend-
ing on the case at hand, some of the loop angular integrals
can also be performed analytically. In this way, integral repre-
sentations of MIs can be easily obtained. Secondly, we give
up any attempt towards a fully analytic integration, which
may be difficult, and integrate numerically over the left-
over loop components. The integrand to be evaluated is usu-
ally plagued by threshold singularities. Single poles migrate
towards the real integration domain for some kinematic con-
figurations, so that a blind numerical integration over denom-
inators deformed by the Feynman iε prescription gives large
errors. However, this is precisely the situation for which our
approach is designed. We mitigate these problems by retain-
ing a finite small value of ε, flattening the real and imaginary
parts of pole contributions, and applying multichannel map-
pings.2 In what follows we illustrate the performance of this
strategy by means of two examples.

2 The use of threshold counterterms [15] could further improve the
precision of our approach.
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Table 2 Numerical estimates of
the one-loop integral (52)
multiplied by m2, compared to
the analytic result of [16].
Numbers obtained with 2 × 107

MC points. The MC errors are
indicated between parentheses

√
τ MC result Analytic result

0.01 9.85(2)×10−7 −i 4.9408(92) 0 −i 4.9348

0.2 9.90(1)×10−7 −i 4.9482(55) 0 −i 4.9513

0.5 1.0233(8)×10−6 −i 5.0361(41) 0 −i 5.0412

1.99 1.4341(9)×10−5 −i 1.0783(3)×101 0 −i 1.0782×101

2.01 1.5350(6) −i 1.2006(3)×101 1.5343 −i 1.2006×101

10 1.4216(3) +i 5.5007(30)×10−1 1.4216 +i 5.5030×10−1

102 2.8562(8)×10−2 +i 3.6999(15)×10−2 2.8557×10−2 +i 3.6990×10−2

104 5.7141(20)×10−6 +i 1.6258(5)×10−5 5.7116×10−6 +i 1.6258×10−5

3.1 A one-loop example

Consider the three-point function of Fig. 2 in the case m0 =
m1 = m2 = m, p2

1 = p2
2 = 0 and timelike P . Rescaling all

momenta by m

q

m
= (t, ρcθ , ρsθ sφ, ρsθcφ),

P

m
= (

√
τ , 0, 0, 0), (47)

p1

m
=

√
τ

2
(1, 1, 0, 0),

p2

m
=

√
τ

2
(1,−1, 0, 0), (48)

gives

C0 := C(P2, 0, 0,m,m,m) = 2π

m2

ˆ 1

−1
dcθ

ˆ ∞

0
dρρ2

×
ˆ ∞

−∞
dt

1

(σ0 + iε)(σ1 + iε)(σ2 + iε)
, (49)

with

σ0 = q2

m2 − 1, σ1 = (q − P)2

m2 − 1, σ2 = (q − p2)
2

m2 − 1.

One splits

1

σ2 + iε
= 1

2R2

(
1

t − √
τ/2 − R2 + iε

− 1

t − √
τ/2 + R2 − iε

)
(50)

with R2
2 := ρ2 + τ

4
+ √

τρcθ + 1. Thus

ˆ 1

−1
dcθ

1

σ2 + iε
= 1√

τρ

(
ln

t − √
τ/2 − R−

2 + iε

t − √
τ/2 − R+

2 + iε

+ ln
t − √

τ/2 + R−
2 − iε

t − √
τ/2 + R+

2 − iε

)
, (51)

where R±
2 :=

√
(
√

τ/2 ± ρ)2 + 1. The cut of the logarithms
with +iε (−iε) is in the lower (upper) t complex half-plane,
so that the integration over t in (49) is trivial once one rewrites

1

(σ0 + iε)(σ1 + iε)
= 1

4R2
0

(
1

t − R0 + iε
− 1

t + R0 − iε

)

Fig. 3 The two-loop self-energy diagram S2(m,m0,m1)

×
(

1

t − √
τ − R0 + iε

− 1

t − √
τ + R0 − iε

)
,

with R2
0 := ρ2 + 1. The results is

C0 = 2iπ2

m2τ

ˆ ∞

−∞
dr

r − iε

[
θ
(
r +

√
τ

2 − 1
)
L
(
r +

√
τ

2 ,
√

τ
)

+θ(r −
√

τ

2 − 1)L(r −
√

τ

2 ,−√
τ)
]
, (52)

where

L(r,
√

τ) := ln
r −

√
τ

2 + R(r,−√
τ) − iε

r −
√

τ

2 + R(r,
√

τ) − iε

and

R(r,
√

τ) :=
√

τ/4 + r2 + √
τ
√
r2 − 1.

When
√

τ > 2, the first integrand of (52) develops a pole
at r = iε that migrates towards the integration region in the
limit ε → 0. Treating this with the strategy of Sect. 2 gives
the results presented in Table 2.

3.2 A two-loop example

We study the two-loop self-energy scalar diagram of Fig. 3.
For a timelike P/m = (

√
τ , 0) and m1 = m it reads

S2 := S2(m,m0,m) = 1

m2

ˆ
d4ω1d

4ω2

5∏
j=1

1

σ j + iε
, (53)
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where

ωi := qi/m = (ti , ρi ) (54)

and

σ1 = ω2
1 − 1, σ2 = ω2

2 − 1,

σ3 = σ1 + τ − 2
√

τ t1, σ4 = σ2 + τ + 2
√

τ t2,

σ5 = (t1 + t2)
2 − ρ2

1 − ρ2
2 − 2ρ1ρ2cθ − μ0, (55)

with μ0 := m2
0/m

2. Integrating over the angular variables
gives

S2 = 4π2

m2

ˆ ∞

0
dρ1ρ1

ˆ ∞

0
dρ2ρ2

ˆ
dt1dt2

4∏
j=1

1

σ j + iε

× ln
(t1 + t2)2 − (ρ1 − ρ2)

2 − μ0 + iε

(t1 + t2)2 − (ρ1 + ρ2)2 − μ0 + iε
. (56)

The integration over t1 and t2 is trivial and produces

S2 = 2π4

m2τ

∑
λ1,2=±

ˆ ∞

−∞
dr1

ˆ ∞

−∞
dr2

F(r1, r2, λ1, λ2)

(r1 − iε)(r2 − iε)
, (57)

where

F(r1, r2, λ1, λ2) = λ1λ2 θ(A1 − 1)θ(A2 − 1)

× ln
r1 + r2 +

√
(

√
A2

1 − 1 +
√
A2

2 − 1)2 + μ0 − iε

r1 + r2 +
√

(

√
A2

1 − 1 −
√
A2

2 − 1)2 + μ0 − iε

and Ai := ri + λi
√

τ/2. Threshold singularities at r1,2 = iε
are present when λ1,2 = +1 if

√
τ > 2. When m0 = 0,

a two-dimensional implementation of the method of Sect. 2
gives the results reported in Table 3. Larger MC errors corre-
spond to smaller values of ρ. However, we observe that when
μ0 	= 0 this effect is mitigated. For instance, a 109 MC-point
estimate with ρ = .1 gives

− m2τ

π4 S2(m,m,m) = 8.582(6) − i 2.706(4). (58)

4 Gluing together lower-loop structures

Here we show how higher-loop integrals can be expressed in
terms of lower-loop building blocks. Throughout this section
dimensionful quantities are rescaled by an arbitrary mass m,
so that loop momenta are written as in (54) and, in particular,

ω := q/m = (t, ρcθ , ρsθ sφ, ρsθcφ). (59)

Furthermore, we define

μi := m2
i /m

2, τ := P2/m2, χ := (p2 − p3)
2/m2,

τi := p2
i /m

2, τi j := τi − τ j ,

λi j := λ(τ, τi , τ j ),

Table 3 The two-loop integral (57) with m0 = 0 multiplied by
−m2τ/π4 for several values of ρ := 4/τ . Numbers obtained with
109 (1010) MC points when ρ > 1 (ρ < 1). The analytic result is taken
from [17]. MC errors between parentheses

ρ MC result Analytic result

0.1 8.49(1) −i 1.94(2) 8.495 −i 1.927

0.3 9.34(1) −i 5.47(2) 9.340 −i 5.460

0.5 9.19(1) −i 9.71(1) 9.195 −i 9.716

0.7 7.39(1) −i 15.79(1) 7.396 −i 15.783

0.9 − 1.03(2) −i 27.591(8) − 1.061 −i 27.581

1.1 − 15.538(2) −i 1.8314(4)×10−5 − 15.540 +i 0

1.3 − 7.9915(8) −i 5.1218(7)×10−6 − 7.9921 +i 0

1.5 − 5.5608(6) −i 2.9000(4)×10−6 − 5.5614 +i 0

1.7 − 4.2990(5) −i 2.0139(3)×10−6 − 4.2996 +i 0

1.9 − 3.5153(5) −i 1.5412(2)×10−6 − 3.5157 +i 0

k2 := λ12/τ
2, k± :=

√
k2 ± iε,

(k′)2 := λ34/τ
2,

and study cases up to a P := p1 + p2 → p3 + p4 kinematics
of the form

p1 = m

2
√

τ
(τ + τ12, λ

1
2
12, 0, 0),

p2 = m

2
√

τ
(τ − τ12,−λ

1
2
12, 0, 0),

p3 = m

2
√

τ
(τ + τ34, λ

1
2
34 cos θ13, λ

1
2
34 sin θ13, 0),

p4 = m

2
√

τ
(τ − τ34,−λ

1
2
34 cos θ13,−λ

1
2
34 sin θ13, 0). (60)

Rescaled propagators belonging to the loop momentum q are
denoted by

σ0 := q2/m2 − μ0, σ1 := (q − P)2/m2 − μ1,

σ2 := (q − p2)
2/m2 − μ2, σ3 := (q − p3)

2/m2 − μ3.

In addition, we define

λ := λ(τ, σ0 + μ0, σ1 + μ1), (61)

and3

σ
i j
a := τ1 − τ + σ j + μ j + kcθ

2
λ

1
2 (τ, σi + μi , σ j + μ j )

+1

2

(
1 − τ12/τ

)
(τ + σi + μi − σ j − μ j ),

σ
i j
b := σi + μi + σ j + μ j + τ1 + τ2 − τ − σ

i j
a ,

σ
i j
c := τ3 + σi + μi + k′

2
λ

1
2 (τ, σi + μi , σ j + μ j )

3 σ
i j
a,b,c,d are the invariants (q− p1,2,3,4)

2/m2 computed at values of t

and ρ satisfying the conditions t2 −ρ2 = σi +μi and (t−√
τ)2 −ρ2 =

σ j + μ j .
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× (cθ cos θ13 + sθ sφ sin θ13
)

−1

2

(
1 + τ34/τ

)
(τ + σi + μi − σ j − μ j ),

σ
i j
d := σi + μi + σ j + μ j + τ3 + τ4 − τ − σ

i j
c . (62)

The essence of the procedure is to use σ0 and σ1 as inte-
gration variables of the method of Sect. 2. This is achieved
by multiplying the integrand by

1 = −
ˆ

dσ0−
ˆ

dσ1 Δ(σ0, σ1, ρ, t), (63)

where

Δ(σ0, σ1, ρ, t) := δ(σ0 + μ0 + ρ2 − t2)

×δ(σ1 − σ0 + μ1 − μ0 − τ + 2
√

τ t). (64)

This gives rise to the appearance of the following three func-
tionals,

�
(μ0,μ1)
1 [J1] :=

ˆ
d4ω J1 Δ(σ0, σ1, ρ, t),

�
(μ0,μ1,μ j )

j [J j ] :=
ˆ

d4ω
J j

σ j + iε
Δ(σ0, σ1, ρ, t), (65)

where j = 2, 3. Assuming J1 independent of any angular
variable and J2 (J3) independent of θ (φ) allows one to com-
pute the functionals once for all. �1 reads

�
(μ0,μ1)
1 [J1] = π

2τ
λ

1
2 θ(λ)J1. (66)

As for �2, one has

�
(μ0,μ1μ2)
2 [J2] = 1

4τ
θ(λ)

[
1

k+
ln

(
1 + k+λ

1
2

A2 + iε

)

− 1

k−
ln

(
1 − k−λ

1
2

A2 + iε

)] ˆ 2π

0
dφ J2.

(67)

with

A2 := (σ0 + μ0)

(
1 + τ12

τ

)
+ (σ1 + μ1)

(
1 − τ12

τ

)

+τ1 + τ2 − τ − 2μ2. (68)

Note that (66) and (67) have been analytically continued to
configurations with any sign of τ , τ1, τ2, λ12. Finally

�
(μ0,μ1,μ3)
3 [J3] = π

2τ
λ

1
2 θ(λ)

ˆ 1

−1
dcθ

J3

A3

1√
1 − B3

A2
3

, (69)

in which

A3 := (σ0 + μ0)

(
1 − τ34

τ

)
+ (σ1 + μ1)

(
1 + τ34

τ

)

+τ3 + τ4 − τ − 2μ3 + λ
1
2 k′cθ cos θ13 + iε,

B3 := λλ34

τ 2 s2
θ sin2 θ13. (70)

Fig. 4 The scalar four-point one-loop function
D(p2

1, p2
2, p2

3, p2
4, (p1+p2)

2, (p2−p3)
2,m2

1,m
2
2,m

2
0,m

2
3) with arbitrary

kinematics and masses

4.1 One-loop examples

To elucidate the procedure, we first consider gluing tree-level
structures to compute the three-point function of Fig. 2 – with
arbitrary kinematics and masses – and the box diagram of
Fig. 4 with p2

i = 0 and m0 = m1 = m2 = m3 = m, which
we dubC and D0, respectively. Equations (63), (67) and (69)
produce

m2C = −
ˆ 1∏

j=0

(
dσ j

σ j + iε

)
�

(μ0,μ1)
2 [1], (71)

m4D0 = −
ˆ 1∏

j=0

(
dσ j

σ j + iε

)
�

(μ0,μ1,μ3)
3

[
1

σ2 + iε

]
. (72)

In (71) the integration over the azimuth angle φ is trivial,

�
(μ0,μ1)
2 [1] = π

2τ
θ(λ)

∑
j=±

[
1

jk j
ln

(
1 + jk jλ

1
2

A2 + iε

)]
,(73)

while the integral over cθ in (72) has to be dealt with numer-
ically using the method of Sect. 2, which gives

�
(μ0,μ1,μ3)
3

[
1

σ2 + iε

]
= π

τ
θ(λ0)−

ˆ
dσ2

σ2 + iε

×θ(σ2 − σ−
2 )θ(σ+

2 − σ2)

A0

√
1 − B0

A2
0

, (74)

where

σ±
2 = στ ± λ

1
2
0

2
, στ := σ0 + σ1 − τ,

A0 = 2
[
σ2 − χ

τ
(στ − 2σ2)

]
+ iε,

B0 = −16
χ

τ

(
1 + χ

τ

)
[σ2(στ − σ2) − τ − σ0σ1] ,

λ0 = λ(τ, σ0 + 1, σ1 + 1). (75)
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Improving the numerical accuracy

When inserted in (71) and (72), Eqs. (73) and (74) could
potentially produce inaccurate results when strong cancella-
tions are expected among different integration regions. This
happens if

(a) the integrands do not vanish fast enough at large

values of σ0,1;
(b) τ is small. (76)

Note that case (a) is relevant to C but not to D0, since

lim
σ0,1→∞ �

(μ0,μ1)
2 [1] ∼ constant , (77)

lim
σ0,1→∞ �

(μ0,μ1,μ3)
3

[
1

σ2 + iε

]
∼ 1

σ0,1
, (78)

while (b) applies to both C and D0 due to the common
1/τ prefactor. In the following paragraphs we illustrate how
numerical inaccuracies caused by the configurations (a) and
(b) in (76) can be circumvented.

As for case (a), a preliminary analysis is in order to under-
stand the mechanism that makes C finite despite (77).4 We
define

σ10 := σ1 − σ0, (79)

in terms of which

m2C = lim

→∞

ˆ 


−


dσ10

ˆ
dσ0

�
(μ0,μ1)
2 [1]

(σ0 + iε)(σ0 + σ10 + iε)
.

Now the σ0 integral is convergent by power counting and λ

in (61) behaves as

lim
σ10→∞ λ ∼ λ̃ := (σ10 + β)2 − α, (80)

where α and β are constants. Replacing λ with λ̃ in (73)
produces an integrand in which all branch points and poles
are located in the lower σ0 complex half-plane. As a result,
the integral over σ0 approaches zero when σ10 → ±∞, so
that the 
 → ∞ limit exists. This same reasoning allows
one to construct a class of vanishing integrals defined as

m2C̃(α, β,
0) :=
ˆ

d4ω θ(|σ10| − 
0)

(σ0 + iε)(σ̃1 + iε)(σ̃2 + iε)
, (81)

with

m2σ̃1 := q2 + P2 − m2
1 − 2(q̃ · P),

m2σ̃2 := q2 + p2
2 − m2

2 − 2(q̃ · p2), (82)

4 The principal value integrations in (71) are not sufficient to regularize
the large σ0,1 behaviour. In fact, �

(μ0,μ1)
2 [1] approaches two different

constants when σ0,1 → ∞ or σ0,1 → −∞, so that no cancellation is
possible.

where q̃ is the asymptotic |σ10| → ∞ limit of q,

q̃

m
:= (t̃, 
̃ρ), t̃ := −σ10 + β

2
√

τ
, ρ̃ := λ̃

1
2

2
√

τ
. (83)

Again, all cuts and poles lie in the lower σ0 complex half-
plane, so that

C̃(α, β,
0) = 0. (84)

Now α and β can be set to obtain a local cancellation of the
problematic large σ10 configurations.5 An explicit calcula-
tion with τ1 = τ2 = 0 gives

α = 4τμ2, β = μ1 − μ0. (85)

When τi 	= 0 the accuracy of (71) is improved by the non-
vanishing external masses, so that (85) is relevant to this case
as well. In summary, the formula

m2C = m2C − m2C̃(α, β,
0) (86)

produces numerically stable results with α and β given in
(85) when the same sequence of σ0 and σ1 values are used in
both C and C̃ .

It turns out that the configurations of type (b) ofC are also
cured by the subtraction in (86). Thus, we are only left with
the discussion of the case (b) for D0. In the τ → 0 region it
is convenient to give up the exact formula and use, instead,
a few terms of a Taylor expansion in τ and χ obtained with
the method given in Appendix A,

D0

iπ2 = 1

6m4

[
1 + τ + χ

10
+ τ 2 + χ2

70
+ τχ

140

+τ 3 + χ3

420
+ τχ(τ + χ)

1260
+ O

(
τ 4
)]

. (87)

By doing that, it is easy to find a value of τ below which the
exact result is well approximated by (87), and above which
(72) is accurate.
Results

Here we present the numerical outcome of a MC based on
(71), (72), (86) and (87).

The results for C(P2, 0, 0,m,m,m) are shown in Figs. 5
and 6. In the latter, the relative difference between the MC
and the analytic (AN) non-zero results of the former is plotted
in terms of

ΔR,I := 1 +
(

MC − AN

AN

)
R,I

, (88)

where R and I refer to the real and imaginary parts, respec-
tively. With the given MC statistics, the analytic result is

5 Additionally, 
0 can be used to control when such a local subtraction
has to be performed.
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Fig. 5 MC estimates of the real (red bullets) and imaginary (blue
squares) part of (86), evaluated with mi = m, p2

i = 0 and 
0 = 0,
compared to the analytic output of [16]. Results obtained with 109 MC
shots per point

Fig. 6 The relative difference between the MC and the non-zero ana-
lytic results of Fig. 5 as defined in (88). Red bullets (blue squares) refer
to ΔR (ΔI )

reproduced by (86) within a few parts in 104,6 which is an
accuracy comparable to the one of Table 2, but obtained with
50 times more points. The main reason for this difference is
that the one-dimensional representation (52) is now replaced
by the twofold integration (71). On the other hand, the glu-
ing algorithm is highly modular and can be extended to more
complex situations, as we will see in the next subsection.

Table 4 displays our results for D0 as a function of τ and
the scattering angle −χ/τ = (1 + cos θ13) /2. We use the
MC evaluation of (72) above τ = 1 and the Taylor expansion
of (87) when τ < 1. In the former case, an accuracy of a few
parts in 103 is reached with 109 MC points.

6 Similar results are obtained when τ < 0. For instance, with τ = −103

Eq. (86) gives m2C = 1(1) × 10−6 − i 0.23566(5), to be compared to
the analytic value −i 0.23561.

4.2 Two and three-loop examples

Two-loop self-energy

The two-loop diagram of Fig. 3 can be easily obtained by
gluing together a one-loop triangle and a tree-level structure.
For instance, with m0 = m1 = 0 one has

m2S2(m, 0, 0) = −
ˆ 1∏

j=0

(
dσ j

σ j + iε

)

×�
(1,1)
1 [C(τ, σ1 + 1, σ0 + 1, 0, 0, 0)].

(89)

Equation (89) suffers the inaccuracies of type (a) of (76). To
cure this, we use the same strategy described in Sect. 4.1.
First, we consider an explicit representation of the triangle
as a function of σ0 and σ10 in (79),

C(τ, σ1 + 1, σ0 + 1, 0, 0, 0) = 2
iπ2

λ
1
2
0

F(σ0, σ10), (90)

with λ0 in (75),

F(σ0, σ10)

=
∑
j=1,2

(−1) j
{

Li2

(
2τ

v j

)
+ ln

(
2τ

v j

)
ln

(
1 − 2τ

v j

)

−1

4
ln2
(

2τ

v j
− 1

)
− 1

4
ln2
(
u j

v j

)}
, (91)

and

u1 = τ − σ10 + λ
1
2
0 − iετ,u2 = τ − σ10 − λ

1
2
0 + iετ

v1 = τ + σ10 + λ
1
2
0 − iετ,v2 = τ + σ10 − λ

1
2
0 + iετ.

From this, it is easy to determine a |σ10| → ∞ asymptotic
approximant of (90) that gives zero upon integration over
σ0,1. The results reads7

m2 S̃2(
c) := iπ3

τ
−
ˆ 1∏

j=0

(
dσ j

σ j + iε

)
θ(λ̃0)

×θ
(

2

c − τ 2

τ 2 + σ 2
10

)
F̃(σ0, σ10) = 0, (92)

where λ̃0 := (σ10−τ)2−4τ , 
c is arbitrary and F̃(σ0, σ10) is
constructed by replacing in (91) the u j , v j with their asymp-
totic counterparts ũ j , ṽ j defined as

ũ1 = ã θ(σ10) + b̃ θ(−σ10) − iετ,

ũ2 = b̃ θ(σ10) + ã θ(−σ10) + iετ,

ṽ1 = 2σ10 θ(σ10) + c̃ θ(−σ10) − iετ,

7 As in the case of (84), (92) is proven by observing that all cuts and
poles lie in the lower σ0 complex half-plane.

123



Eur. Phys. J. C            (2022) 82:55 Page 11 of 22    55 

Table 4 Numerical estimates of
m4D0 compared to the analytic
result of [16]. Equation (72)
[(87)] is used if τ > 1 [τ < 1].
When τ > 1, 109 MC points are
used. Statistical errors between
parentheses

τ −χ/τ Numerical result Analytic result

0.8 0.1 1.7798 1.7801

0.8 0.5 1.7274 1.7277

0.8 0.9 1.6790 1.6795

10 0.1 − 2.185(9) +i 2.64(9)×10−1 − 2.1871 +i 2.7316×10−1

10 0.5 − 1.642(4) +i 4.4(4)×10−2 − 1.6423 +i 4.2586×10−2

10 0.9 − 1.339(4) −i 3.6(4)×10−2 − 1.3368 −i 4.0162×10−2

100 0.1 − 1.297(3)×10−1 −i 1.253(2)×10−1 − 1.2993×10−1 −i 1.2556×10−1

100 0.5 − 4.761(8)×10−2 −i 5.176(9)×10−2 − 4.7572×10−2 −i 5.1670×10−2

100 0.9 − 3.090(8)×10−2 −i 3.447(8)×10−2 − 3.0812×10−2 −i 3.4615×10−2

1000 0.1 − 2.803(5)×10−3 −i 5.277(5)×10−3 − 2.8153×10−3 −i 5.2737×10−3

1000 0.5 − 7.66(2)×10−4 −i 1.501(2)×10−3 − 7.6923×10−4 −i 1.4986×10−3

1000 0.9 − 4.68(2)×10−4 −i 9.20(2)×10−4 − 4.6848×10−4 −i 9.2226×10−4

ṽ2 = c̃ θ(σ10) + 2σ10 θ(−σ10) + iετ, (93)

with

ã := − 2τ

σ10
(σ0 + 1), b̃ := 2(τ − σ10),

c̃ := 2τ

σ10
(σ10 + σ0 + 1). (94)

Finally, in the same spirit as (86), we rewrite

S2(m, 0, 0) = S2(m, 0, 0) − S̃2(
c), (95)

where we understand a local subtraction of the large |σ10|
configurations.

In Table 5 we present our numerical estimates based on
(95) with 
c = 1/2. An accuracy of the order of 10−3 is
achieved with 109 MC points. We also studied the stability
of (95) at small values of τ . For instance, when ρ = 100
(τ = 0.04) we obtain

− m2 τ

π4 S2(m, 0, 0) = −0.2090(2) − i 0.1263(3). (96)

Note that determining S̃2(
c) requires an analytic knowl-
edge of the integrand. When this is not possible, an alterna-
tive approach is to cut away the problematic configurations
in a controlled manner. For instance, discarding in (89) inte-
gration points with
√

τ 2/(τ 2 + σ 2
10) < 
 (97)

is expected to produce an error ofO(
2). Indeed we checked
that, with 
 = 0.01, the fraction of the integral discarded by
(97) is always below the errors reported in Table 5.

Three-loop self-energy

Our next example is the scalar three-loop self-energy of
Fig. 7, which is attained by gluing together the two trian-

Table 5 The two-loop integral (95) with 
c = 1/2 multiplied by
−m2τ/π4 as a function of ρ := 4/τ . Numbers obtained with 109 MC
points. Statistical errors between parentheses

ρ MC result

− 1.5 3.325(3) −i 1(2)×10−3

− 0.5 4.817(4) +i 1(3)×10−3

− 0.1 6.297(6) +i 4(7)×10−3

− 0.01 7.029(9) −i 1(1)×10−2

− 0.001 7.16(1) +i 1(3)×10−2

0.001 7.234(7) −i 2(3)×10−2

0.01 7.358(5) −i 1.3(2)×10−1

0.1 7.932(3) −i 9.30(8)×10−1

0.5 8.990(3) −i 3.981(4)

1.5 3.60(2)×10−1 −i 9.464(2)

gles

CL := C(τ, σ1 + μ1, σ0 + μ0, μ2, μ3, μ4),

CR := C(τ, σ1 + μ1, σ0 + μ0, μ5, μ6, μ7), (98)

by means of �1,

m4S3({μk}) = −
ˆ 1∏

j=0

(
dσ j

σ j + iε

)
�

(μ0,μ1)
1 [CLCR]. (99)

Now the integrand vanishes fast enough at large σ0,1, so that
no subtraction is needed. Our results for the case {μk} =
{1, 1, 0, 0, 0, 0, 0, 0} are shown in Fig. 8, where we com-
pare them with digitized curves obtained from Fig. 4 of
[10]. The agreement is good, but our points tend to over-
shoot the lines at large τ . However, the quality of the plot
in Ref. [10] is poor there and the digitization may be mis-
leading. Thus, we cross-checked internally our high-energy
results by comparing the outcome of two independent MCs
based on method 1 and 2 of Sect. 2, respectively. We did
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Fig. 7 The three-loop self-energy diagram S3({μk}) with masses
{m2

k/m
2} = {μk} := {μ0, μ1, μ2, μ3, μ4, μ5, μ6, μ7}

Fig. 8 The three-loop integral m4S3(1, 1, 0, 0, 0, 0, 0, 0) as a function
of τ . Red bullets (blue squares) refer to the real (imaginary) part com-
puted with 109 MC shots per point. The solid and dashed lines are
obtained from [10]. To compare, we divided (not multiplied, as stated
in [10]) our Eq. (99) by π6

not find any systematic difference in the range 7 < τ < 50.
Finally, we observe that dealing with arbitrary mass configu-
rations poses no difficulties whatsoever. For example, when
{μk} = {1, 1, 2, 3, 4, 5, 6, 7}, using OneLOop [16] to eval-
uate the CL ,R triangles gives, at τ = 10 and with 109 points,

m4

π6 S3({μk}) = 1.1453(8) × 10−1 − i 4.11(1) × 10−2.

Planar two-loop vertex

Consider now the two-loop scalar vertex of Fig. 9. Gluing
the one-loop triangle on the left

CL := C(τ, σ1 + μ1, σ0 + μ0, μ3, μ4, μ5)

by means of �2 gives

m4V2({μk}) = −
ˆ 1∏

j=0

(
dσ j

σ j + iε

)
�

(μ0,μ1,μ2)
2 [CL ]. (100)

Fig. 9 The planar two-loop vertex V2({μk}) of (100) with masses
{m2

k/m
2} = {μk} := {μ0, μ1, μ2, μ3, μ4, μ5}

This representation holds true with any sign of τ, τ1, τ2 and
for any choice of internal masses.8 In addition, it does not
require subtracting large σ0,1 configurations. In Table 6 we
collect a few results obtained by computing the triangle with
OneLOop. The last row refers to the Standard-Model-like
Z → νν̄ case with m0 = m1 = me, m2 = m3 = m4 = MW ,
m5 = 0, P2 = M2

Z and p2
1,2 = 0. This shows that the

MC error is under control also for configurations with large
mass gaps. Note that V2({μk}) can also be obtained by gluing
together the box on the right DR := D(τ1, τ2, σ3 +μ3, σ4 +
μ4, τ, σ

34
b , μ1, μ2, μ0, μ5) and the tree-level decay on the

left. When k2 is greater than zero one has

m4V2({μk}) = −
ˆ 4∏

j=3

(
dσ j

σ j + iε

) ˆ 1

−1

dcθ

2
�

(μ3,μ4)
1 [DR].

(101)

The loop momentum of the m3 line of Fig. 9 flows through
just one propagator of DR . Because of that, a “technical”
cut

√
τ 2/(τ 2 + (σ3 − σ4)2) < 
 is required to damp the

inaccurate large σ3,4 behaviour of (101). By power counting,
the discarded contribution is of O(
4). With 
 = 0.05 and
109 MC points (101) reproduces the numbers of Table 6 at
the percent level.

Non-planar two-loop vertex

The same reasoning leading to (101) allows one to compute
the non-planar two-loop vertex of Fig. 10,

m4V np
2 ({μk})

= −
ˆ 4∏

j=3

(
dσ j

σ j + iε

)ˆ 1

−1

dcθ

2
�

(μ3,μ4)
1 [Dnp], (102)

where

Dnp := D(τ1, σ3 + μ3, τ2, σ4

+μ4, σ
34
a , σ 34

b , μ1, μ2, μ0, μ5).

8 The inclusion of complex masses is in principle possible, although a
dedicated study is needed in this case to assess the numerical accuracy,
especially for small width-to-mass ratios.
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Table 6 The planar two-loop integral (100) as a function of arbitrary input parameters. Numbers obtained with 109 MC points. Statistical errors
in parentheses

τ τ1 τ2 {μk} MC result

10 2 3 {1, 2, 3, 4, 5, 6} − 2.751(7) −i 6.729(7)

−100 −4 7 {0, 1, 12, 7, 8, 9} − 1.025(1)×10−1 +i 1.5(7)×10−4

50 30 30 {6, 23, 2, 9, 9, 9} 9.307(4)×10−1 −i 1.347(4)×10−1

−40 1 1 {0, 0, 0, 0, 0, 0} 5.918(6) −i 9.51(3)

1000 0 0 {1, 1, 1, 1, 1, 1} − 3.558(4)×10−3 +i 2.3557(8)×10−2

31.9×109 0 0 {1, 1, 24.7×109, 24.7×109, 24.7×109, 0} − 2.5(8)×10−22 −i 1.7947(1)×10−19

Fig. 10 The non-planar two-loop vertex V np
2 ({μk}) of (102) with

masses {m2
k/m

2} = {μk} := {μ0, μ1, μ2, μ3, μ4, μ5}

Table 7 The non-planar two-loop integral (102) as a function of τ with
equal internal masses {μk} = {1, 1, 1, 1, 1, 1} and massless external
momenta τ1 = τ2 = 0. Numbers obtained with 109 MC points by
computing Dnp with OneLOop. Statistical errors within parentheses

τ MC result

2.1 − 1.538(8)×101 −i 6(6)×10−2

10 8.7(1)×10−1 −i 2.5415(9)×101

100 1.8848(6) +i 7.469(6)×10−1

1000 2.660(2)×10−2 +i 7.788(2)×10−2

Now the loop momentum of the m3 line flows through two
propagators of Dnp. This provides an additional damping
factor in (102) with respect to (101), so that large σ3,4 con-
figurations do not lead to numerical inaccuracies and no tech-
nical cut is required. A few numerical results are collected in
Table 7.

Planar and non-planar double box

The planar and non-planar two-loop double boxes are
depicted in Fig. 11a, b, respectively. They read

B2({μk}) = 1

m6 −
ˆ 1∏

j=0

(
dσ j

σ j + iε

)
�

(μ0,μ1,μ3)
3 [DL ], (103)

Bnp
2 ({μk}) = 1

m6 −
ˆ 1∏

j=0

(
dσ j

σ j + iε

)
�

(μ0,μ1,μ3)
3 [DR], (104)

(a)

(b)

Fig. 11 The planar (a) and non-planar (b) two-loop double boxes
B2({μk}) and Bnp

2 ({μk}) of (103) and (104) with masses {m2
k/m

2} =
{μk} := {μ0, μ1, μ2, μ3, μ4, μ5 μ6}

where

DL := D(τ1, τ2, σ0+μ0, σ1+μ1, τ, σ
01
b , μ2, μ4, μ5, μ6),

DR := D(τ1, σ0+μ0, τ2, σ1+μ1, σ
01
a , σ 01

b , μ2, μ4, μ5, μ6),

are the one-loop boxes on the left and right sides of Fig. 11a,
b, respectively. In Figs. 12 and 13 we present a comparison
between our estimates and the results presented in [7] for the
case

μk = {1, 1, 1, 3.24, 3.24, 1, 3.24}, τi = 1, χ = −4,

m = 50 GeV, (105)

in the region of τ where | cos θ13| ≤ 1.9 The agreement is
very good. As benchmark values, we list in Table 8 the MC
entries of Figs. 12 and 13, together with their statistical errors.

More complex structures

9 An analytic continuation to nonphysical configurations is possible,
although we did not try it.
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Fig. 12 The two-loop integral B2({μk}) of (103) as a function of τ

with the input values listed in (105). Red bullets (blue squares) refer to
the real (imaginary) part obtained with 109 MC shots per point using
OneLOop to compute DL . The solid and dashed lines are derived from
Fig. 2 of [7]

Fig. 13 The two-loop integral Bnp
2 ({μk}) of (104) as a func-

tion of τ with the input values listed in (105) (not {μk} =
{1, 1, 1, 3.24, 3.24, 3.24, 1}, as stated in the text of [7]). Red bullets
(blue squares) refer to the real (imaginary) part obtained with 109 MC
shots per point using OneLOop to compute DR . The solid and dashed
lines are derived from Fig. 3 of [7]

In all cases presented so far we could perform an easy ana-
lytic integration over at least one angular variable of the loop
momentum ω. When the number of loops and legs increases,
integrating analytically over cθ and/or φ is not trivial any
more, so that the number of numerical integrations required
by the gluing procedure reaches its maximum value, i.e.
four. In this paragraph we give a few examples of the gluing
approach in these more complex situations. In particular, we
use the multichannel approach of Sect. 2.1 to study the scalar
triple box B3 and two-loop pentabox E2 of Figs. 14 and 15,
respectively.

Table 8 The MC entries of Figs. 12 and 13 in units of GeV−6. The MC
errors are indicated between parentheses

τ 1012B2/(2π4) 1012Bnp
2 /(2π4)

9 − 0.971(1) +i 0.342(1) 0.0318(9) +i 0.5985(9)

10 − 0.8655(8) +i 0.1457(8) − 0.0301(7) +i 0.5521(7)

11 − 0.7586(6) +i 0.0168(6) − 0.0746(6) +i 0.5110(5)

12 − 0.6607(7) −i 0.0692(6) − 0.1090(5) +i 0.4729(5)

13 − 0.5720(5) −i 0.1275(5) − 0.1376(4) +i 0.4380(4)

14 − 0.4934(4) −i 0.1659(4) − 0.1616(3) +i 0.4065(3)

15 − 0.4229(3) −i 0.1903(3) − 0.1853(3) +i 0.3763(3)

16 − 0.3607(3) −i 0.2019(3) − 0.2061(3) +i 0.3414(2)

17 – − 0.2196(2)+i 0.3065(2)

18 – − 0.2275(2) +i 0.2728(2)

19 – − 0.2303(2) +i 0.2418(2)

20 – − 0.2301(2) +i 0.2138(2)

25 − 0.1017(1) −i 0.1506(1) –

As for B3, inserting (63) into the integrand gives

m8B3 = −
ˆ 1∏

j=0

(
dσ j

σ j + iε

) ˆ 1

−1

dcθ

2

ˆ 2π

0

dφ

2π

×�
(μ0,μ1)
1

[
DL(cθ )DR(cθ , sφ)

]
, (106)

where

DL(cθ ) := D(σ1 + μ1, σ0 + μ0, τ2, τ1, τ, σ
01
b ,

μ2, μ3, μ4, μ5),

DR(cθ , sφ) := D(σ1 + μ1, σ0 + μ0, τ3, τ4, τ, σ
01
c ,

μ6, μ7, μ8, μ9), (107)

are the one-loop boxes on the left and right sides of Fig. 14.
The change of variable

y = cφ (108)

produces

m8B3 = 1

8τ
−
ˆ 1∏

j=0

(
dσ j

σ j + iε

)
λ

1
2 θ(λ)

ˆ 1

−1
dcθ DL(cθ )

×
ˆ 1

−1

dy√
1 − y2

1∑
n=0

DR
(
cθ , (−1)n

√
1 − y2

)
.

(109)

When τ = 50,χ = −4, τi = μ0 = μ1 = 1,μ2÷9 = 0, (109)
gives, with 109 MC shots and using OneLOop to evaluate
DL ,R ,

m8B3 = −9.393(9) − i 0.374(9). (110)

Note that it is not difficult to deal with non-planar configu-
rations. For instance, the diagram obtained from Fig. 14 by

123



Eur. Phys. J. C            (2022) 82:55 Page 15 of 22    55 

Fig. 14 The three-loop planar box B3 of (106)

interchanging the vertices v1 ↔ v2 and v3 ↔ v4 is as in
(106), but with

DL(cθ ) := D(τ1, σ0 + μ0, τ2, σ1 + μ1, σ
01
a , σ 01

b ,

μ2, μ3, μ4, μ5),

DR(cθ , sφ) := D(τ4, σ0 + μ0, τ3, σ1 + μ1, σ
01
d , σ 01

c ,

μ6, μ7, μ8, μ9). (111)

Finally, the pentabox depicted in Fig. 15 reads

m8E2 = −
ˆ 1∏

j=0

(
dσ j

σ j + iε

) ˆ 1

−1

dcθ

2

ˆ 2π

0

dφ

2π

×�
(μ0,μ1)
1

[
E(ω)

σ2 + iε

]
, (112)

where E(ω) is the one-loop pentagon on the right side,
which depends upon ten independent invariants – built from
the momenta q=mω, p3÷5 – and the five masses m3÷7. The
presence of the 1/(σ2 +iε) propagator forces one to trade the
integral over cθ for an integration over σ2 to be dealt with the
method of Sect. 2. This, together with the change of variable
of (108), gives

m8E2 = 1

4τk
−
ˆ 2∏

j=0

(
dσ j

σ j + iε

)
θ(λ) θ(1 − |cθ |)

×
ˆ 1

−1

dy√
1 − y2

1∑
n=0

E(ωn), (113)

where

kλ
1
2 cθ = σ0 + μ0 + σ1 + μ1 − 2(σ2 + μ2 − τ2) − τ

+στ

τ12

τ
,

ω0,1 := 1

2
√

τ

(
στ , λ

1
2 cθ ,±λ

1
2 sθ

√
1 − y2,±λ

1
2 sθ y

)
,

στ := τ + σ0 + μ0 − σ1 − μ1. (114)

To provide a benchmark value, we have chosen to evaluate
(113) with μ0÷2 = 1, μ3÷7 = 0 at a particular p1 + p2 →
p3 + p4 + p5 phase-space point satisfying τ = 50, τ1 =
τ2 = 0 and τ3÷5 = 1, namely

p1

m
=

√
τ

2
(1, 1, 0, 0) ,

p2

m
=

√
τ

2
(1,−1, 0, 0) ,

Fig. 15 The two-loop planar pentabox E2 of (112)

p3

m
= 3

8

√
τ (1, r, r, 0) ,

p4

m
= 3

8

√
τ

[
1, r

(
c34 − s34√

2

)
, r

(
c34 + s34√

2

)
, rs34

]
,

with r = √
193/450, c34 = −159/193 and s34 =

√
1 − c2

34.
We employed CutTools [18] to reduce E(ωn) to one-loop
boxes. Computing the latter with OneLOop gives, with 109

MC shots,

m8E2 = 0.1125(1) − i 0.0041(1). (115)

Once again, non-planar configurations are obtained without
extra effort. For instance, if the vertex v of Fig. 15 is moved
to the m3 line, (112) still holds by simply modifying the one-
loop pentagon E(ω) accordingly.

5 UV divergences

We deal with ultraviolet divergent integrals following the
FDR approach of [13], in which the divergent configurations
are extracted from the original integrand by partial fraction-
ing.10 The resulting expressions are integrable in four dimen-
sions and nicely match the algorithm of Sect. 2. We illustrate
our procedure by means of the scalar two-point function of
Fig. 16,

BFDR =
ˆ

[d4q] 1

D̄0 D̄1
, (116)

where

D̄0 := q̄2 − m2
0, D̄1 := q̄2 − M2

1 (q), (117)

with M2
1 (q) := m2

1 +2(q · P)− P2 and q̄2 := q2 −μ2 + iε.
By partial fractioning11

1

D̄0 D̄1
=
[

1

q̄4

]
+ m2

0

q̄2 D̄0 D̄1
+ M2

1 (q)

q̄4 D̄1
. (118)

10 At one loop, FDR is equivalent to the MS scheme of Dimensional
Regularization.
11 The UV divergent piece is dubbed vacuum and written between
square brackets by convention.
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Fig. 16 The one-loop self-energy diagram of (116)

This gives, by definition of FDR integration,

BFDR := lim
μ→0

ˆ
d4q

(
m2

0

q̄2 D̄0 D̄1
+ M2

1 (q)

q̄4 D̄1

)∣∣∣∣∣
μ=μR

, (119)

where μR is the finite renormalization scale. It is convenient
to take the limit μ → 0 directly at the integrand level and
substitute μ with μR only in the logarithms. This is achieved
by rewriting

BFDR =
ˆ

d4q

{
1

D0D1
− 1

(q2 − μ2
R + iε)2

}
, (120)

where Di := D̄i + μ2. By doing so, μ2 is dropped every-
where, except in the logarithmically UV divergent part of the
vacuum, where it is replaced by μ2

R. In this way, no μ → 0
limit is required, so that (120) is a good starting point for a
numerical treatment. In what follows we describe how the
methods of Sects. 3 and 4 can be adapted to deal with (120).
More complex multi-loop UV divergent configurations can
be treated likewise.

5.1 Integrating over the loop energy component

We take m1 = m0 = m for simplicity. A rescaling as in (47)
produces

BFDR = 4π

ˆ ∞

0
ρ2dρ It , (121)

where

It :=
ˆ +∞

−∞
dt

{
1

(t2 − R2
0 + iε)((t − √

τ)2 − R2
0 + iε)

− 1

(t2 − R2
ν + iε)2

}
, (122)

with

R2
0 := ρ2 + 1, R2

ν := ρ2 + ν, ν := μ2
R/m2. (123)

The Cauchy integral theorem allows one to compute

It = iπ

2

{
1(

R0 − iε
)(
R0 − √

τ/2 − iε
)(
R0 + √

τ/2 − iε
)

− 1

(Rν − iε)3

}
. (124)

Inserting this in (121) and using r = R0 − √
τ/2 as a new

integration variable gives

BFDR = 2iπ2−
ˆ

dr
F(r)

r − iε
, (125)

where

F(r) = θ
(
r − 1 + √

τ/2
)√(

r + √
τ/2
)2 − 1

×
{

1

r + √
τ

− r
r + √

τ/2[(
r + √

τ/2
)2 − 1 + ν

]3/2

}
.

(126)

If
√

τ > 2 the pole at r = iε migrates towards the integra-
tion contour when ε → 0. Treating this with our numerical
approach produces the results collected in Table 9.

Integrals with a polynomial degree of divergence can be
treated in exactly the same way. As an example, Appendix B
details the case of the one-point function

AFDR =
ˆ

[d4q] 1

D̄0
. (127)

5.2 Gluing substructures

The gluing approach of Sect. 4 can be easily extended to
(116). Inserting (63) in (120) gives

BFDR(ν) = π

2τ
−
ˆ 1∏

j=0

(
dσ j

σ j + iε

)
λ

1
2 θ(λ) J (ν), (128)

with

J (ν) = 1 − σ0σ1

(σ0 + μ0 − ν + iε)2 (129)

and ν defined in (123). The presence of a double pole is an
obstacle to a direct numerical treatment of (128). In fact, our
algorithm is designed to deal with single poles only. However,
we observe that, ifν has a finite imaginary part, the singularity
never approaches the real axis. In particular, BFDR(−iν) is
better suited than BFDR(ν) to be evaluated numerically if ν ∈
�. Besides, the connection between the two can be derived
by differentiating (120),

∂BFDR

∂μ2
R

= −2
ˆ

d4q

(q2 − μ2
R + iε)3

= iπ2

μ2
R

, (130)

which gives

BFDR(ν) = BFDR(−iν′) − π3

2
− iπ2 ln

ν′

ν
. (131)

BFDR(−iν′) still suffers from numerical inaccuracies of type
(76) (a). To cure this, we locally subtract from it an approxi-
mant, B̃FDR(−iν′) = 0, constructed in such a way that, after
changing variables as in (79), all cuts and poles lie in the
lower σ0 complex half-plane. This is obtained by replacing
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Table 9 The integral of (116)
with m = m0 = m1 = 2μR as a
function of

√
τ . The numerical

estimates are computed by
sampling (125) with 108 MC
shots and the analytic results are
obtained with OneLOop. MC
errors between parentheses

√
τ Numerical result Analytic result

0.2 2(2)×10−6 −i 1.3614(3)×101 0 −i 1.3616×101

0.4 2(2)×10−6 −i 1.3411(3)×101 0 −i 1.3415×101

0.6 2(2)×10−6 −i 1.3065(3)×101 0 −i 1.3068×101

1.5 2(2)×10−6 −i 8.705(1) 0 −i 8.7063

1.9 4(4)×10−7 −i 2.0737(3) 0 −i 2.0739

2.1 − 9.455(1) +i 4.162(1) − 9.4541 +i 4.1616

4 − 2.6854(3)×101 −i 1.6453(5)×101 − 2.6852×101 −i 1.6456×101

10 − 3.0377(5)×101 −i 3.828(2)×101 − 3.0380×101 −i 3.8280×101

50 − 3.0990(6)×101 −i 7.112(5)×101 − 3.0981×101 −i 7.1094×101

100 − 3.1009(6)×101 −i 8.473(7)×101 − 3.1000×101 −i 8.4825×101

Table 10 The integral of (131) with ν = 1/4 and μ0 = μ1 = 1. The
estimates are obtained by sampling with 108 MC shots (132) evaluated
at ν′ = 1. MC errors between parentheses

√
τ BFDR(−iν′) − π3

2
− iπ2 ln

ν′

ν

0.2 − 4(4)×10−3 −i 1.357(3)×101

0.4 − 3(3)×10−2 −i 1.342(2)×101

0.6 − 1(1)×10−2 −i 1.308(2)×101

1.5 − 1(1)×10−2 −i 8.69(2)

1.9 2(2)×10−3 −i 2.04(2)

2.1 − 9.45(1) +i 4.19(2)

4 − 2.688(2)×101 −i 1.655(3)×101

10 − 3.039(4)×101 −i 3.825(5)×101

50 − 3.100(8)×101 −i 7.12(1)×101

100 − 3.09(1)×101 −i 8.49(2)×101

in (128) λ
1
2 θ(λ) → √

λ2 − 4τ iε θ(λ + 4τσ0). In summary,
we rewrite

BFDR(−iν′) = π

2τ
−
ˆ 1∏

j=0

(
dσ j

σ j + iε

)

×[λ 1
2 θ(λ) −

√
λ2 − 4τ iε θ(λ + 4τσ0)

]
J (−iν′).

(132)

In Table 10 we present our estimates for BFDR(1/4) with
μ0 = μ1 = 1 obtained by means of Eqs. (131) and (132).
The figures match the results of Table 9, although with larger
errors. However, we point out that the gluing method is more
flexible when it comes to generic kinematics. For instance,
with τ = −10, μ0 = 1, μ1 = 4, one obtains, with 108 MC
points,

BFDR(1/4) = 0.02(2) − i 27.20(3), (133)

to be compared to the analytic value −i 27.220.

6 IR divergences

We deal with IR divergent integrals by means of the FDR
approach of [19], where a small mass μ, added to judiciously
chosen propagators, is used as a regulator of both infrared and
collinear divergences. In this section, we illustrate how this
allows one to combine virtual and real contributions prior to
integration. After that, our method can be used to evaluate
numerically loop integrals where the IR configurations are
locally subtracted. We study, in particular, the IR divergent
scalar triangle

CIR := lim
μ→0

ˆ
d4q

1

D0D1D2
,

D0 := q2 − μ2 + iε,

D1 := (q + p1)
2 − μ2 + iε, D2 := (q − p2)

2 − μ2 + iε,

(134)

that appears in a P → p1 + p2 decay with p2
i = 0 and

s := P2. However, our findings can be generalized to more
complex environments.

Our strategy is based on combining together cut-diagrams
that are individually divergent, but whose sum is finite. We
use a scalar massless gϕ3 theory defined through the Feyn-
man rules of Fig. 17,

where we have introduced propagators with positive and
negative values of the energy and the momentum component
along the x direction. The cuts contributing to ϕ∗ → ϕϕ(ϕ)

are listed in Fig. 18 where, to make contact with (134),

Da + De = 4π2g4 π

2
(i CIR),

Dc + Dg = 4π2g4 π

2
(i CIR)∗. (135)

The diagrams are organized in pairs sharing collinear sin-
gularities. For instance, in Da the energy component of prop-
agator 1 is the sum of those of propagators 2 and 3. Thus,
propagators 1 and 3 never pinch in the q0

1 complex plane, and
propagator 3 can only become collinear to 4. Likewise, in Db
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Fig. 17 The Feynman rules of the gϕ3 theory. A special notation is
used for propagators with positive and negative values of p0 and px ,
which, in our convention, coincides with the direction of the back-to-
back final-state particles in the P rest-frame. The complex conjugate of
such rules is used in the r.h.s. of diagrams cut by a dashed line

Fig. 18 The two- and three-particle cuts contributing to ϕ∗ → ϕϕ(ϕ)

in the P rest frame where the propagators 2 and 5 have negative and
positive components of the momentum along x , as indicated by the ∓
labels attached to them. Thick lines represent the propagators to which
μ2 → 0 is added, as explained in the text

the sign of the momentum components along x only allows
particles 3 and 4 to become collinear to 5. In both cases, we
regulate the singular splitting by including a small mass μ

in propagators 3 and 4, leaving 5 massless.12 In summary,

12 Note that adding μ2 also to 1 and/or 2 does not change the asymptotic
μ → 0 limit of the result. This is used, for instance, in (135).

Da + Db is free of collinear divergences, and the same hap-
pens for Dc + Dd. In addition, Da + Db + Dc + Dd is also
free of infrared singularities. A similar reasoning applies to
De + Df + Dg + Dh, but with an opposite sign of the energy
component of q1. The previous analysis shows that the three-
particle cuts Db and Dd can be used as local countertems for
Da +Dc.13 This requires common reference frames. One can
employ two different routings for Da+Db and Dc+Dc. How-
ever, they must coincide in the limit q1 → 0 to guarantee the
cancellation of the soft behaviour of Da + Db + Dc + Dd. In
particular, when computing Da,b we assign a momentum q2

to propagator 4, from left to right, and choose

ω1 := q1/
√
s = (t1, ρ1, 0, 0),

ω2 := q2/
√
s = (t2, ρ2cθ , ρ2sθ sφ, sθcφ). (136)

On the other hand, we calculate Dc,d with q2 assigned to
propagator 5 and

ω1 = (t1,−ρ1, 0, 0),

ω2 = (t2, ρ2cθ , ρ2sθ sφ, sθcφ). (137)

The result of the computation is reported in Appendix C in
terms of integrals over

Ri :=
√

ρ2
i + η, with η := μ2/s. (138)

It is convenient to further split Da,c = Ds
a,c + Du

a,c, where
the superscripts s,u refer to the subtracted and unsubtracted
regions, which correspond to the integration intervals

√
η <

R1 < 1/2 and 1/2 < R1 < ∞, respectively. In fact, Db,d

contribute in the subtracted region only, and Du
a + Du

c is free
of IR singularities,

s

g4 (Du
a + Du

c) = −2π5( ln2 2 + 2Li2(−1/2)
)

= 254.838137 · · · . (139)

An analytic calculation [19] shows that
∑

j=a,b,c,d Dj = 0.
Hence, one must have

K := s

g4

(
Ds

a + Ds
c + Db + Dd

) =−254.838137 · · · .

(140)

In Table 11 we display our numerical estimate of K based on
Eqs. (C.22), (C.29) and (C.34). The correct result is precisely
approached and the MC error does not grow when decreasing
η, which is an indication that the local cancellation works as
expected. Finally, we point out that the outlined strategy can
be turned into a fully exclusive local subtraction algorithm
by introducing suitable phase-space mappings, as described
in [20].

13 An analogous procedure holds for the last four cuts of Fig. 18.
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Table 11 The combination of
cut-diagrams defined in (140) as
a function of η in (138).
Numbers obtained with 1010

MC shots

η K

10−10 − 254.81(1)

10−11 − 254.83(1)

10−12 − 254.84(1)

Table 12 Time to generate 106 MC shots on a single 2.2 GHz processor

Type of integral Location Time [s]

One-loop triangle Last row of Table 2 0.25

Two-loop self-energy Eq. (96) 4.7

Two-loop vertex Last row of Table 6 16

Planar double box Last row of Table 8 71

Three-loop planar box Eq.(110) 22

Two-loop pentabox Eq.(115) 17

UV one-loop bubble Last row of Table 9 0.17

IR case Table 11 0.13

7 Conclusion and outlook

We have presented a flexible method for the numerical treat-
ment of loop integrals in four-dimensional Minkowski space,
without the need of explicit contour deformation. This is
achieved by exploiting the iε prescription with a small finite
value of ε and making changes of variables to reduce the
variance of both the real and imaginary parts of the inte-
grand. We propose a semi-numerical approach, in which an
analytic integration over loop time-components is followed
by multichannel Monte Carlo integration. In some cases, fur-
ther integrations can be performed before the final numeri-
cal step. The method lends itself readily to the evaluation
of complex multi-loop structures by gluing together simpler
substructures. It also deals easily with processes involving
many different external and propagator mass scales, where
analytical results are difficult to obtain.

In practice, we find that 109 Monte Carlo shots with
ε ∼ 10−7 (in terms of some relevant mass scale) can yield rel-
ative precision of the order of 10−4 for one-loop diagrams and
10−3 for two- and three-loops obtained by gluing together
analytical results for one-loop substructures. As for the per-
formance of our algorithms, we report in Table 12 the time
to produce 106 MC shots with method 1 for a few represen-
tative cases. It ranges from a few tenths of a second to more
than a minute. Method 2 gives somewhat slower timings.

We have focused on scalar integrals without any structure
in the numerator, but we expect that the treatment of loop
tensors should follow the same guidelines described in this
paper. In particular, the approach of Sect. 3, in which an ana-
lytic integration is performed over the loop time-component,
should work as it stands. As for the gluing method of Sect. 4,

adding structures in the numerator could potentially lead to
worse behaviour that needs to be corrected by local subtrac-
tions of large loop configurations, as done in Eqs. (86), (95),
(132), or by the technical cuts described in (97) and (101). We
leave a detailed study of this subject for further investigation.

We have sketched out how our method can be extended to
UV and IR divergent configurations. Again, a deeper inves-
tigation is left for the future.

In summary, we believe that a numerical treatment of vir-
tual corrections in four dimensions, of the type we have pro-
posed, could be very beneficial in the computation of com-
plicated multi-leg multi-scale amplitudes. More specifically,
we think that the direction to go would be to integrate directly
the amplitude as a whole, rather than the separate MIs. This
could mitigate some of the large gauge cancellations among
individual contributions, if common loop momentum rout-
ings are chosen for classes of diagrams. In addition, Monte
Carlo integration of the loops and over the phase-space of real
emissions can be merged, potentially stabilising and speed-
ing up the calculation.
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Appendix A: Taylor expansions

The Taylor expansions for integrals like (71) and (72) can be
obtained using the general result

−
ˆ

d4q
qμ1 . . . qμk qν1 . . . qνk

(q2 − m2 + iε)n

= Cn,k
iπ2

m2n−2k−4 g
{μ1ν1 . . . gμkνk } (A.1)
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where

Cn,k = (−1)n (−4)k
(n − k − 3)!
k! (n − 1)! , (A.2)

which can be established by induction.
For (71), we first make a shift of variable q → q + p2.

Then for τ1 = τ2 = 0, μ1 = μ2 = 1 we have

C =
∞∑

k,l=0

−
ˆ

d4q
(2q · p1)

k(−2q · p2)
l

(q2 − m2 + iε)k+l+3 . (A.3)

Applying (A.1), and noting that terms with l 	= k vanish as
they would involve τ1 or τ2,

C

iπ2 =
∞∑
k=0

(−4)k
C2k+3,k

m2k+2 pμ1
1 . . . pμk

1 pν1
2 . . . pνk

2

×g{μ1ν1 . . . gμkνk }

= −
∞∑
k=0

pμ1
1 . . . pμk

1 pν1
2 . . . pνk

2

(2k + 2)!m2k+2 g{μ1ν1 . . . gμkνk }

= −1

m2

∞∑
k=0

(k!)2

(2k + 2)!τ
k , (A.4)

where τ = 2p1 · p2/m2. For τ1, τ2 	= 0, we have instead of
(A.3)

C =
∞∑

k,l=0

−
ˆ

d4q
(2q · p1 − p2

1)k(−2q · p2 − p2
2)l

(q2 − m2 + iε)k+l+3

= − iπ2

2m2

[
1 + 1

12
(τ + τ1 + τ2) + 1

90
(τ 2 + τ 2

1 + τ 2
2

+ττ1 + ττ2 + τ1τ2) + . . .
]
. (A.5)

This expansion can be extended to general masses by the
substitutions

τ1 → τ1 + μ2 − μ1 ,

τ2 → τ2 + μ2 − 1 . (A.6)

For the expansion of (72) we have

D0

iπ2 =
∑
j,k,l,n

l! (−m2τ)l−n

n!(l − n)!

×−
ˆ

d4q
(−2p1.q) j (2p2.q)k[2(p3 − p1).q]n

(q2 − m2 + iε) j+k+l+4 . (A.7)

Note that the number of factors of qμ must be even, j + k +
n = 2K . Then

D0

iπ2 =
∑
j,k,l,n

(−1) j+l+n 4K l! τ l−n

n! (l − n)!
CN ,K

m2K+4

×pμ1
1 . . . p

μ j
1 p

μ j+1
2 . . . p

μ j+k
2

×(p3 − p1)
μ j+k+1 . . . (p3 − p1)

μ2K

×g{μ1μ2 . . . gμ2K−1μ2K } (A.8)

where N = j +k+ l+4. Substituting (A.2), we obtain (87).

Appendix B: The one-point FDR integral

We compute the one-loop integral

AFDR =
ˆ

[d4q] 1

D̄0
, (B.9)

with D̄0 given in Eq. (117). Extracting the vacuum produces
the expansion

1

D̄0
=
[

1

q̄2

]
+
[
m2

0

q̄4

]
+ m4

0

q̄4 D̄0
, (B.10)

hence

AFDR = lim
μ→0

ˆ
d4q

m4
0

q̄4 D̄0

∣∣∣∣∣
μ=μR

. (B.11)

By taking the μ → 0 limit at the integrand level and replacing
μ with μR in the logarithmic divergent vacuum one obtains

AFDR =ˆ
d4q

{
1

q2 − m2
0 + iε

− 1

q2 + iε
− m2

0

(q2 − μ2
R + iε)2

}
.

(B.12)

Choosing now m = m0 gives

AFDR/m2 = 4π

ˆ ∞

0
ρ2dρ It , (B.13)

where

It :=
ˆ +∞

−∞
dt

{
1

t2 − R2
0 + iε

− 1

t2 − ρ2 + iε

− 1

(t2 − R2
ν + iε)2

}
, (B.14)

with R0 and Rν defined in (123). One computes

It = iπ

(
1

ρ
− 1

R0
− 1

2R3
ν

)
, (B.15)

which gives

AFDR/m2 = 4iπ2−
ˆ

dρ

ρ
θ(ρ)F(ρ), (B.16)

where

F(ρ) := 1√
1 + 1

ρ2

(
1 +

√
1 + 1

ρ2

) − 1

2
(

1 + ν
ρ2

) 3
2

.

Note that there is no pole in this case. In Table 13 we report a
comparison between a numerical implementation of (B.16)
and the analytic result

AFDR/m2 = iπ2(1 + ln ν). (B.17)
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Table 13 The integral of (B.16) as a function of ν compared to the
analytic result of (B.17). The numerical estimates are obtained with
108 shots. MC errors between parentheses

ν Numerical result Analytic result

0.1 −i 1.2855(2)×101 −i 1.2856×101

0.5 i 3.0281(4) i 3.0285

1 i 9.869(1) i 9.8696

2 i 1.6709(2)×101 i 1.6711×101

10 i 3.2596(4)×101 i 3.2595×101

Appendix C: The IR integrals

Here we obtain onefold integral representations for the cut-
diagrams Da,b,c,d of Sect. 6 and prove (139).
The diagram Db:

Choosing the momenta as in (136) gives

Db

g4 = 8π3

s

ˆ
d4ω1d

4ω2
δ+(σ2)δ+(σ3 − η)δ+(σ4 − η)

(σ1 − η + iε)(σ5 − iε)
×θ(ρ1 + ρ2cθ ), (C.18)

with

σ1 = (1 − t2)
2 − ρ2

2 ,

σ2 = (1 − t1 − t2)
2 − ρ2

1 − ρ2
2 − 2ρ1ρ2cθ ,

σ3 = t2
1 − ρ2

1 , σ4 = t2
2 − ρ2

2 ,

σ5 = σ2 − 1 + 2(t1 + t2). (C.19)

Note that a harmless μ2 has been added to propagator 1 and
that the Heaviside function forces propagator 5 to have a
positive component of the momentum along x . Using the
three Dirac delta functions one arrives at

Db

g4 = −8π5

s

ˆ ∞
√

η

dR1

ˆ ∞
√

η

dR2
1

1 − 2R2

1

1 − 2R+

×θ(1 − R+)θ(1 − |cθ |)θ(ρ1 + ρ2cθ ), (C.20)

with R1,2 in (138), R+ := R1 + R2 and

cθ = 1

2ρ1ρ2

[
1 + 2(η + R1R2 − R+)

]
. (C.21)

Integrating analytically over R2 produces logarithms with
boundaries determined by the three Heaviside functions. The
result reads

Db

g4 = −2π5

s

ˆ 1
2

√
η

dR1

R1
ln

⎛
⎜⎝η

1 + 1−2R1

R1+
√
R2

1−η

R1 +
√
R2

1 − η − η

⎞
⎟⎠ .

(C.22)

The diagram Da :

We split Da into two components, Da = D+
a + D−

a , with
positive and negative values of q1 along x . Choosing the

momenta as in (136) produces

D+
a

g4 = 4iπ2

s

ˆ
d4ω1d

4ω2

∏
j=1,3,4

(
1

σ j − η + iε

)

×δ+(σ2)δ+(σ5)θ(ρ1 + ρ2cθ ), (C.23)

with the same σ1÷5 of (C.19). Using the two delta functions
gives

D+
a

g4 = 8iπ4

s

ˆ ∞

0
dρ1ρ1

ˆ ∞

0
dρ2ρ2 I1

×θ(1 − |cθ |)θ(ρ2
1 − ρ2

2 + 1/4), (C.24)

where

cθ = 1

2ρ1ρ2

(1

4
− ρ2

1 − ρ2
2

)
(C.25)

and

I1 :=
ˆ ∞

0
dt1

{
1

t2
1 − R2

1 + iε

× 1

(1/2 + t1)2 − R2
2 + iε

1

(1/2 − t1)2 − R2
2 + iε

}
.

(C.26)

D−
a is obtained from (C.24) by replacing

θ(ρ2
1 − ρ2

2 + 1/4) → θ(−ρ2
1 + ρ2

2 − 1/4).

Hence

Da

g4 = 8iπ4

s

ˆ ∞

0
dρ1ρ1

ˆ ∞

0
dρ2ρ2 I1θ(1 − |cθ |). (C.27)

Computing I1 with the Cauchy integral theorem gives

Da

g4 = −8π5

s

ˆ ∞
√

η

dR1

ˆ ∞
√

η

dR2 θ(1 − |cθ |)

×
{

1

1 + 2R2

1

1 + 2R+ − 1

1 − 2R2 + iε

1

1 − 2R+ + iε

}
.

(C.28)

Note the appearance of the same denominator structures of
(C.20). An integration over R2 produces

Da

g4 = −2π5

s

ˆ ∞
√

η

dR1

R1

{
ln

1 + 2R2

1 + 2R+

− ln
1 − 2R2 + iε

1 − 2R+ + iε

}R+
2

R−
2

, (C.29)

where

R±
2 :=

√(
1

2
±
√
R2

1 − η

)2

+ η. (C.30)

The diagram Dc:

It is the complex conjugate of (C.29).
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The diagram Dd :

Inserting a harmless μ2 in propagator 5 and choosing the
momenta as in (137) gives

Dd

g4 = 8π3

s

ˆ
d4ω1d

4ω2
δ+(σ2 − η)δ+(σ3 − η)δ+(σ4)

(σ1 + iε)(σ5 − η − iε)
×θ(cθ ), (C.31)

where

σ1 = σ4 + 1 − 2(t2 − t1), σ2 = (1 − t2)
2 − ρ2

2 ,

σ3 = t2
1 − ρ2

1 , σ4 = (t2 − t1)
2 − ρ2

1 − ρ2
2 − 2ρ1ρ2cθ ,

σ5 = t2
2 − ρ2

2 . (C.32)

Using the delta functions produces

Dd

g4 = −8π5

s

ˆ ∞
√

η

dR1

ˆ ∞
√

η

dR2
1

1 − 2R2

1

1 − 2R+

×θ(1 − R+)θ(cθ )θ(1 − cθ ), (C.33)

with cθ as in (C.21). Integrating over R2 gives

Dd

g4 = −2π5

s

ˆ R+
1

√
η

dR1

R1
L(R1), (C.34)

where

L(R1) := ln

[(
1

1 − 2R1
+ 1

R1 +
√
R2

1 − η

)

× η(R1 − 2η)

(R1 +
√
R2

1 − η − η)(R1(1 − 2R1) + 2η)

]
,

(C.35)

and

R+
1 := 1

2

1 + 4η2

1 +√η − 4η2(1 − η)
. (C.36)

The combination Du
a + Du

c :

This is obtained from (C.29) and its complex conjugate by
replacing the integration region

√
η < R1 < ∞ by 1/2 <

R1 < ∞. Upon doing so, η can be set to 0 and R±
2 = R1 ±

1/2. Introducing x = 2R1 gives

Du
a + Du

c

g4 = −4
π5

s

ˆ ∞

1

dx

x

(
ln

x + 2

x + 1
+ ln

∣∣∣∣ x − 2

x − 1

∣∣∣∣
)

,

from which (139) follows.
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