
����������
�������

Citation: Porras, C.; Pérez-Cañedo,

B.; Pelta, D.A.;Verdegay, J.L. A

Critical Analysis of a Tourist Trip

Design Problem with

Time-Dependent Recommendation

Factors and Waiting Times.

Electronics 2022, 11, 357. https://

doi.org/10.3390/electronics11030357

Academic Editors: Juan M. Corchado,

Stefanos Kollias and Javid Taheri

Received: 21 December 2021

Accepted: 22 January 2022

Published: 25 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Critical Analysis of a Tourist Trip Design Problem with
Time-Dependent Recommendation Factors and Waiting Times
Cynthia Porras 1,† , Boris Pérez-Cañedo 2,† , David A. Pelta 3,* and José L. Verdegay 3

1 Department of Software Engineering, Faculty of Informatics, Universidad Tecnológica de La Habana José
Antonio Echeverría, La Habana 19390, Cuba; cporrasn@ceis.cujae.edu.cu

2 Department of Mathematics, Faculty of Economics and Business Sciences, University of Cienfuegos,
Cienfuegos 55100, Cuba; bpcanedo@gmail.com

3 Department of Computer Science and AI, Universidad de Granada, 18071 Granada, Spain; verdegay@ugr.es
* Correspondence: dpelta@ugr.es
† These authors contributed equally to this work.

Abstract: The tourist trip design problem (TTDP) is a well-known extension of the orienteering
problem, where the objective is to obtain an itinerary of points of interest for a tourist that maximizes
his/her level of interest. In several situations, the interest of a point depends on when the point
is visited, and the tourist may delay the arrival to a point in order to get a higher interest. In this
paper, we present and discuss two variants of the TTDP with time-dependent recommendation
factors (TTDP-TDRF), which may or may not take into account waiting times in order to have a better
recommendation value. Using a mixed-integer linear programming solver, we provide solutions
to 27 real-world instances. Although reasonable at first sight, we observed that including waiting
times is not justified: in both cases (allowing or not waiting times) the quality of the solutions is
almost the same, and the use of waiting times led to a model with higher solving times. This fact
highlights the need to properly evaluate the benefits of making the problem model more complex
than is actually needed.

Keywords: time-dependent recommendation factor; tourist trip design problem; waiting time

1. Introduction

Tourism has been a key driver for the socio-economic progress of many countries.
In 2020, due to the SARS-COV-2 pandemic, the sector experienced a USD 4.5 trillion drop in
GDP and losses of 62 million jobs around the globe. However, in the November 2021 Report
from the World Travel & Tourism Council one can read that “projections not only show
promising growth opportunities in the domestic market for 2021; but a rise in international
travel which will further accelerate in 2022 and beyond. Following a 49.1% decline in 2020
and a loss of almost US$4.5 trillion, Travel & Tourism GDP is projected to rise by 30.7% in
2021 and 31.7% in 2022.” (https://research.wttc.org/trending-in-travel, accessed on 21
December 2021).

Within the tourism industry, an enormous set of artificial intelligence-based tools
is available to solve a huge amount of underlying decision and optimization problems.
For example, demand and price forecasting, recommendation systems, travel planning,
personalization, sentiment analysis, and so on [1–3].

Here the focus is on one essential situation that should be addressed: a tourist arrives
in a potentially unknown city, with several tourist places of interest to visit and some
selection of them (and visiting order) needs to be suggested. Planning tourist itineraries is a
challenging and time-consuming task due to the need to identify relevant places-of-interest
(POIs) for tourists and plan visits to a subset of the POIs maximizing the overall interest of
the route while having some time, budget, mobility, etc. constraints [4].
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In this context, the development of an automated tool to assist decision-making is
of utmost importance. However, before the implementation and deployment of such a
tool, there is a need to properly understand the underlying problem and to decide which
features should be included in the computational model of the problem.

From an optimization point of view, the tour planning is called “tourist trip design
problem” (TTDP): given a set of POIs, each one with a level of interest (score), and certain
time available, a route must be found that maximizes the overall interest subject to several
constraints [5]. This problem is modeled as the so-called orienteering problem (OP) [6] and
several variants have been considered [5,7].

The tour planning problem can be considered from other points of view, like consumer
perceptions, consumer choice, cognitive attitudes and acquisition decisions [4]. In our
contribution we focus on the area of optimization of tourist itineraries.

It should be remarked that the determination of a POI’s level of interest is far from
trivial as it may depend on several factors like personal preferences, weather conditions,
accessibility, ticket price, visiting time, etc. Much of the needed data can be retrieved from
social networks. These networks constitute a source of valuable information about tourist
preferences that could be later used to derive scores and recommendation factors of POIs,
as well as to promote different tourist destinations and specific itineraries [8]. The use of
time-dependent information adds an additional layer of complexity to the problem that
was previously considered in several works. For example, time-dependent travel times
were considered in [9]. Subsequently, several papers on the subject have been presented,
proposing extensions to the time-dependent OP (TDOP). Papers such as [10–12] manage
time-dependent travel times which are associated with transportation modes available
between POIs.

Li et al. [13] solved an OP in a time-dependent network where the travel times change
with respect to the entry time to the POI. Gunawan et al. [14] proposed a variant of TDOP
where the travel times change for each period due to congestion levels or characteristics
of the area. Gavalas et al. [15] proposed a variant of TDOP where the travel times are
dependent on the waiting times for the public transportation. Verbeeck et al. [16] proposed
an algorithm based on an ant colony system for the TDOP, where the travel time between
POIs depends on the departure time at the start node. Many times, the resulting problems
belong to the NP-Hard class, thus paving the way to the application of metaheuristics like
iterated local search, genetic algorithms, and so on [17].

Most of the available works assume that a POI’s interest is fixed for a given user (or
group of users), but here we depart from the following idea: the level of interest of a POI
should be related to when the POI is visited. For example, visiting a water fountain is more
interesting when the fountain is working than when it is not.

To the best of our knowledge, there are several works dealing with some kind of time-
dependent interest. Murat and Labadie [18] proposed a team OP (TOP) with a decreasing
function of the profits over time. Gündling and Witzel [19] presented a TOP with time
windows and time-dependent profits based on the visit duration (the longer the visit,
the higher the profit). Additionally, Isoda et al. [20] proposed three algorithms to obtain a
tour’s score in real time and to recommend an itinerary, where the POIs’ scores can be static
and dynamic depending on the time period. On the other hand, Yu et al. [21] proposed
a TTDP variant considering several routes, time windows and POIs’ levels of interest
as a function of a time-dependent recommendation factor. Furthermore, Yu et al.’s [21]
model introduces waiting times to allow reaching a POI when its level of interest is higher.
Unfortunately, the proposed model (as appears in the publication) cannot be used as is and
the test instances are not available.

The delay in the arrival of POIs has also been addressed in other variants of
TTDP [11,12,14–16,18,19,21]. However, the inclusion of this feature in the model may
(or may not) have an impact that should be properly analyzed.
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In this paper, we focus on two features: (1) the previously mentioned time-dependent
interest of a POI and (2) the opportunity to delay the arrival to a POI in order to obtain a
higher interest.

We argue here that besides adding new features to existing problems, the usefulness
and impact of such features should be properly evaluated. So, departing from a particular
case of the model presented by Yu et al. [21] (with a single route and no time windows),
the main objectives of this contribution are:

1. To propose a TTDP model with time-dependent recommendation factors, taking (and
not taking) into account waiting times.

2. To solve a set of test instances, in order to gain insights regarding the empirical
behavior of the models and to provide reference values for future research.

3. To evaluate whether or not considering waiting times provides any benefit in the
tour’s overall interest.

The rest of the paper is organized as follows: Section 2 describes the proposed math-
ematical model with time-dependent recommendation factors and waiting times (WT).
In order to evaluate if allowing waiting times provides a benefit, a model without waiting
times (NWT) is also presented. Section 3 describes a set of problem instances, using data
from Granada city, Spain. Section 4 describes the computational experiment’s settings
while the results are presented in Section 5. Finally, Section 6 is devoted to conclusions and
future research works.

2. Models for Time-Dependent TTDP

In this section, we propose a model for the tourist trip design problem with time-
dependent recommendation factors (TTDP-TDRF) and waiting times (WT). It is a particular
case of the model proposed in [21], with one itinerary and no time windows. Additionally,
some constraints have been revised.

Let us consider a graph G(V, A) where V is a set that includes all POIs and also the
start and end nodes of any possible itinerary, and A is a set of arcs among them. The travel
time between each pair of elements of V is known. Every POI in V has a visiting time and a
fixed score, representing its level of interest. The itinerary has a time budget Tmax. In order
to model time-dependent recommendation factors, T time periods are included. For each
time period, every POI has a recommendation factor to weigh its score.

When a tourist arrives at a POI and the visiting time is consumed, there are two
alternatives: first, leaving immediately to the next POI in the itinerary, and second, waiting
a certain time, thus arriving at the next POI in a period of time with a higher recommenda-
tion factor.

As one of the objectives of this contribution is to evaluate whether or not considering
waiting times provides any benefit, a model without waiting times (NWT) is also proposed.

We start by describing the shared parameters and variables of both models.
Parameters:
• V = {1, 2, . . ., n}: set of nodes (including all considered POIs) where 1 and n are the

start and end nodes of the route, respectively. All nodes in between are POIs that may
be included in the route.

• T: number of time periods.
• Si: score of POI i.
• fit: recommendation factor of POI i in period t.
• Tmax: maximum duration time for the itinerary.
• tij: travel time (or distance) from POI i to POI j.
• vi: visiting time at POI i.
• bt: starting time of period t.
• et: ending time of period t.
• M: a very large constant.
Variables:
• ai ∈ [0, Tmax]: arrival time at node i.
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• Xij ∈ {0, 1}: 1 if there is a path from POI i to POI j in the route, 0 otherwise.
• Yit ∈ {0, 1}: 1 if the visit to the POI i starts in period t, 0 otherwise.

Figure 1 shows an example of two solutions (tours) A and B under both models: the
latter is an itinerary that allows waiting times, while the former does not. Both tours have
V = {1, 2, . . ., n} nodes, where n = 7. The nodes i = 1 and i = 7 are the start and end
nodes, respectively. The nodes from i = 2 to i = 6 are the POIs of the itinerary. The table
displays, for each POI i, its score (Si), visiting time (vi) and recommendation factor for
every time period t ( fit). So, for example, if POI i = 2 is visited in period t = 2, then it will
have a level of interest S2 × f2,2 = 30× 0.5, while if it is visited in period t = 4, the interest
will be lower S2 × f2,4 = 30× 0.25.

After node i = 1, POIs i = 2 and i = 3 are visited. We observe that the recommendation
factor of POI i = 4 in the second period is 0.5, while it is 0.75 in the third one ( f4,2 < f4,3). If
waiting times are allowed, a tourist that follows itinerary B will delay the arrival to POI
i = 4 to gain a higher interest (he/she can spend more time visiting POI i = 3 or take extra
time to travel from POI i = 3 to POI i = 4). Then, the visit continues to POIs i = 5 and i = 6,
finishing at node i = 7. The interest of itinerary A is 110, while that of B is 112.5. In turn,
itinerary A will be completed before B, precisely because no waiting times are allowed.

Figure 1. Illustrative example: itinerary (A) has no waiting time and itinerary (B) has waiting time.

In what follows, we present the specific features for each model.

2.1. TTDP-TDRF with Waiting Times

In addition to features explained before, in this model the tourist can wait a time in
order to arrive at a POI in a period where its recommendation factor is higher. Consequently,
we have

max Z = ∑
t∈T

∑
i∈V

Si × fit ×Yit (1)

s.t. ∑
t∈T

vi ×Yit + ∑
i∈V

tij × Xij ≤ Tmax ∀i ∈ V ∀j ∈ V ∀t ∈ T (2)

a|V| ≤ Tmax (3)

∑
i∈V

X1i = ∑
i∈V

Xi|V| = 1 (4)

∑
i 6=h∈V

Xih = ∑
j 6=h∈V

Xhj = ∑
t∈T

Yht ∀h ∈ {2, . . . , |V| − 1} (5)

∑
t∈T

Yit ≤ 1 ∀i ∈ {2, . . . , |V| − 1} (6)

bt ×Yit ≤ ai ∀i ∈ V ∀t ∈ T (7)

ai ≤ et × (Yit + ((1−Yit)×M)) ∀i, j ∈ V (i 6= j) ∀t ∈ T (8)

ai + tij + vi ≤ aj + M× (1− Xij) ∀i, j ∈ V (i 6= j) (9)

The objective function (1) is aimed at maximizing the total interest of the tour. Con-
straint (2) ensures that the total time of the tour does not exceed Tmax. Constraint (3)
guarantees that the arrival time a|V| at node |V| (end node of the route) is less than or equal
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to the maximum travel time Tmax. Constraint (4) establishes that the tour must begin at
the start node and must finish at the end node, visiting them only once. Constraint (5)
guarantees the tour connectivity. Constraint (6) ensures that POIs are visited only once.
Constraints (7) and (8) establish that if POI i is visited in period t then its arrival time ai has
to be in the interval [bt, et].

Constraint (9) establishes that the arrival time at POI j (aj) is greater than the arrival
time at POI i (ai), provided that POI j is visited after POI i, consuming the visiting time
vi and traveling tij time units, where Xij = 1. This is the constraint that allows the use of
waiting times, since ai + tij + vi + wi = aj, where wi is the waiting time assigned to arrive
at a POI in an instant of time.

2.2. TTDP-TDRF without Waiting Times

This second model also considers the objective function (1) and the constraints (2)–(8).
In addition, to guarantee that tourists arrive at POI j at the exact time aj = ai + tij + vi (no
waiting time), a new constraint (11) is added to the model.

So, a model for TTDP-TDRF without waiting times is:

max Z = ∑
t∈T

∑
i∈V

Si × fit ×Yit

s.t. ∑
t∈T

vi ×Yit + ∑
i∈V

tij × Xij ≤ Tmax ∀i ∈ V ∀j ∈ V ∀t ∈ T

a|V| ≤ Tmax

∑
i∈V

X1i = ∑
i∈V

Xi|V| = 1

∑
i 6=h∈V

Xih = ∑
j 6=h∈V

Xhj = ∑
t∈T

Yht ∀h ∈ {2, . . . , |V| − 1}

∑
t∈T

Yit ≤ 1 ∀i ∈ {2, . . . , |V| − 1}

bt ×Yit ≤ ai ∀i ∈ V ∀t ∈ T

ai ≤ et × (Yit + ((1−Yit)×M)) ∀i, j ∈ V (i 6= j) ∀t ∈ T

ai + tij + vi ≤ aj + M× (1− Xij) ∀i, j ∈ V (i 6= j) (10)

aj ≤ ai + tij + vi + M× (1− Xij) ∀i, j ∈ V (i 6= j) (11)

Constraints (10) and (11) together guarantee that if POI j is visited right after POI i,
i.e., when Xij = 1, the arrival at POI j occurs exactly at ai + tij + vi; hence, no time is spent
in waiting.

3. Description of the Test Instances (Samples)

This section explains the process followed to generate the tests instances. In the
first place, a collection with 100 POIs from Granada city, Spain was constructed, using
the Python package OSMnx (https://osmnx.readthedocs.io/en/stable/, accessed on 21
December 2021) and the function geometries _from_place(‘Granada, Spain’) which returns
a set that includes museums, bars, restaurants, religious sites, etc.

The following additional information of each POI is also gathered: identifier, name,
service offered, node in the network, and latitude and longitude. Then, the travel times
between every pair of POIs were calculated using the same package. Four time periods
are considered (T = 4) and Tmax = 480 min. Each time period has a duration of 120 min.
The visit duration vi of every POI i is a randomly generated integer in the interval [20, 60].
The score (interest) Si is also a randomly generated integer in the interval [1, 10].

In order to assign the recommendation factors fit for every POI at each time period,
we first define a set RF = {0.25, 0.50, 0.75, 1}. Then, every fit is assigned a random value
from the set RF. Each POI has fit = 1 in some period t to ensure that there is an “ideal”
period t to visit it.

https://osmnx.readthedocs.io/en/stable/
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Having this set of 100 POIs, we considered nine different sizes |V| ∈ {10, 20, 30, 40, 50,
60, 70, 80, 90}, and, for each size, three different test instances were constructed, randomly
selecting the POIs. Two “dummy” nodes representing the start and end nodes of the tour
were finally added.

4. Description of Computational Experiments

The computational experiments are oriented to the following goals:

1. To solve the 27 test instances under the two models considered (WT, NWT), thus
obtaining the optimal solutions or reference values for future experimentation.

2. To evaluate the implications of including or not including waiting times in the
model considering:

• the quality of the solutions,
• the effort needed to obtain them,
• the similarity/differences between solutions.

In order to solve the problems (27 instances), CPLEX 20.1.0 [22] software was used,
with a maximum computational time of one hour per instance. CPLEX has been successfully
used to optimally solve and to compare different formulations of routing problems, such as
TSP [23]. Variants of TTDP were solved using this solver as well [7,9,14,16,21].

The experiments were performed on a computer with an Intel(R) Core(TM) i7-5700HQ
CPU 2.70GHz and 8GB RAM running Windows 10 Pro version 20H2. For each instance,
we recorded the best value achieved by CPLEX and the time required to obtain it. This
was done for the WT and NWT models. Thus, we ended up having a WT solution and
an NWT solution for each instance. In order to analyze other features of the solutions, we
also computed the number of POIs of the route, the total travel time as ∑ dij × Xij, the total
visiting time as ∑ vi ×Yit and the total time of the route (sum of total travel time and total
visiting time).

We resorted to the Damerau–Levenshtein (edit) distance [24] (as implemented in the
Python package available at https://pypi.org/project/fastDamerauLevenshtein/, accessed
on 21 December 2021) for measuring the similarity between two solutions. Given two
strings (or permutations as it is in our case) A and B, the Damerau–Levenshtein distance
computes the minimum required number of edit operations needed to transform A into B.
The edit operations are substitutions, insertions, deletions and transpositions of adjacent
elements, and they are performed on either of the strings [24]. The similarity between
two solutions is obtained upon normalization, i.e., we divide the number of operations by
the length of the longest permutation and subtract the result from one. The procedure is
clarified with the following example.

To make the calculations, solutions are interpreted as permutations of subsets of
indexes corresponding to POIs. So, let us consider the following permutations (solutions to
instance No. 9).

WT 18 22 12 11 28 20 9 15 30 21 4 3
NWT 12 18 19 28 11 20 9 21 15 4 3

In order to find the minimum edit distance in the above example, we first delete the
underlined numbers from both permutations; so 22, 19 and 30 are deleted. This makes
three operations, and thus we get

WT 18 12 11 28 20 9 15 21 4 3
NWT 12 18 28 11 20 9 21 15 4 3

Next, the numbers in bold are swapped, i.e., swap 18 and 12, 11 and 28, and finally, 15
and 21; this also makes three operations. So we have performed six operations in total and
ended up with the following permutations.

https://pypi.org/project/fastDamerauLevenshtein/
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WT 12 18 28 11 20 9 21 15 4 3
NWT 12 18 28 11 20 9 21 15 4 3

We see that they are now equal. Consequently, the similarity value is 1− 6/12 = 0.5,
where, for normalization, we have considered the number of operations performed (6) and
the length of the longest (unmodified) permutation (12).

5. Analysis of Results

The results for every instance under both models are available in Appendix A, where
Table A1 contains the results obtained for the WT model and Table A2 those obtained for
the NWT model.

The first element to highlight is that CPLEX failed to reach the optimal values in the
largest instances (those with 90 POIs) for both models. However, in the WT model, it failed
to optimally solve those with 80 POIs. Figure 2 provides a comparison on the quality of the
solutions obtained under each model, together with the effort (execution time) needed to
reach them. The execution time was represented using a log-log plot.
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Figure 2. Comparison of best values and execution time for every instance under WT and NWT mod-
els. (a) Best values; (b) Execution time.

As Figure 2a shows, in general, no relevant differences can be observed in the values
of the objective function for both models. Most of the points are in the straight line. Just five
points are above the line (No. 3, 11, 13, 26 and 27), thus indicating that in those instances,
the optimal values of the WT model are higher than those of the NWT model. In only one
case the NWT model achieved a higher value (No. 23). However, in this case, CPLEX failed
to reach the optimal value of the WT model within one hour. Additionally, in two cases
(No. 26 and 27) where CPLEX did not obtain the optimal solution to any of the models,
the WT model solution was better than the NWT model solution. Finally, just in 22% of the
instances the best values of the models are different.

If we consider now the computational effort needed to obtain the optimal values,
Figure 2b clearly shows that in 25 (out of 27) cases, it took CPLEX longer to solve the WT
model. Just in two cases (No. 3 and 13) the NWT model was slower to solve. Finally,
we applied the Wilcoxon non-parametric test between the execution times of the WT and
NWT models with α = 0.05. The results show a p-value ≤ 0.001, then there are significant
differences between the execution times of both models. Moreover, CPLEX obtained
solutions to the NWT model faster.

Regarding the characteristics of the solutions, we found that in three cases (No. 5,
14 and 15) the solutions to the WT and NWT models are exactly the same, and in two
cases (No. 9 and 27) the routes have a different number of POIs. In 44% of the instances,
the solutions to the WT model had a higher total travel time than those to the NWT model,
but their average difference is merely about 2 min. The total visiting time was the same in
67% of the instances, and the average difference over all the instances is just 1.7 min.
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Figure 3 displays the similarity values between solutions to the WT and NWT models
for every test instance, calculated using the Damerau–Levenshtein (edit) distance. Recall
that there are three instances per problem size. The plot shows that both models provide
quite similar solutions: in 18 cases the similarity values were higher than 0.5 and in only
one case, it was below 0.25. Another element to remark is that there does not seem to be
a correlation between similarity and problem size, although in problems with 70 or more
POIs the solutions never achieved similarity values higher than 0.75.
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6. Discussion and Conclusions

In this contribution, we presented an analysis of two variants of TTDP with time-
dependent recommendation factors. The first one takes into account waiting times, while
the second one does not. After constructing and solving 27 test instances, the following
conclusions are drawn:

• Although solutions obtained with the WT model are theoretically better than those
obtained with the NWT model, in 78% of the test instances the best scores from both
models are the same.

• In almost all cases, the solver obtained the solutions to the NWT model faster than to
the WT model.

• The similarity analysis revealed that the solutions to both models are quite similar.

In short, we claim that considering waiting times in the TTDP-TDRF is not justified,
at least in the test instances selected. Although including waiting times is a quite specific
feature, we also suggest that unneeded complexification should be avoided: the addition
of new features to a model in order to make it more “realistic” is not always needed.

As we have seen, adding new features to a model in order to make it more realistic
may complicate its solving process. However, in cases where those features are indeed
justified, a feasible alternative would be to obtain a set of solutions to a simpler model and
include such features a posteriori in the way proposed in [25].

Now, for most test instances the optimal overall interest is available in both models,
thus paving the way to explore the use of metaheuristic algorithms to solve them. This is
left as future work.
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Appendix A

Table A1. Results of CPLEX for each instance of WT model. Optimal values are marked in bold.

No. |V | Best Value Execution Time No. POIs Travel Time Visiting Time Total Time

1 10 53 0.36 10 41.02 371 412.02
2 10 42 0.17 10 38.53 410 448.53
3 10 65 0.98 10 32.15 357 389.15

4 20 74.75 2324.51 12 35.93 443 478.93
5 20 83 2.80 13 32.33 444 476.33
6 20 85.5 99.71 11 30.13 449 479.13

7 30 85 965.87 13 51.92 428 479.92
8 30 106 25.97 14 42.57 437 479.57
9 30 96 2.14 12 33.40 440 473.40

10 40 111 465.69 13 39.67 436 475.67
11 40 96 156.00 12 46.95 432 478.95
12 40 112.75 171.67 13 31.48 445 476.48

13 50 114 154.23 13 39.12 440 479.12
14 50 112.5 3524.52 13 40.67 439 479.67
15 50 117.75 3600 14 35.50 444 479.50

16 60 113 156.37 14 30.65 448 478.65
17 60 112 88.82 14 27.87 451 478.87
18 60 116 159.27 15 42.95 437 479.95

19 70 124 1706.51 14 41.85 438 479.85
20 70 131 364.93 15 43.05 434 477.10
21 70 123.25 1119.97 14 42.78 436 478.78

22 80 131 3600 15 42.68 436 478.68
23 80 132 3600 15 39.85 440 479.85
24 80 130 3600 15 45.72 434 479.72

25 90 126 3600 15 47.77 432 479.77
26 90 133 3600 15 44.63 426 470.63
27 90 134 3600 15 54.07 423 477.07

http://github.com/cporrasn/TTDP_TDRF_WT_NWT.git
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Table A2. Results of CPLEX for each instance of NWT model. Optimal values are marked in bold.

No. |V | Best Value Execution Time No. POIs Travel Time Visiting Time Total Time

1 10 53 0.26 10 47.56 371 418.57
2 10 42 0.16 10 40.87 410 450.87
3 10 62 1.42 10 35.20 357 392.20

4 20 74.75 15.01 12 31.45 448 479.45
5 20 83 0.77 13 32.33 444 476.33
6 20 85.5 12.90 11 30.88 449 479.88

7 30 85 855.91 13 51.92 428 479.92
8 30 106 6.81 14 42.05 437 479.05
9 30 96 2.14 11 34.13 439 473.13

10 40 111 85.18 13 38.70 441 479.70
11 40 95.25 75.98 12 46.57 432 478.57
12 40 112.75 39.48 13 28.87 451 479.87

13 50 112 3308.19 13 39.52 440 479.52
14 50 112.5 305.14 13 40.67 439 479.67
15 50 117.75 3600 14 35.50 444 479.50

16 60 113 84.62 14 31.60 447 478.60
17 60 112 7.63 14 28.53 451 479.53
18 60 116 37.66 15 40.70 437 477.70

19 70 124 620.99 14 41.53 438 479.53
20 70 131 306.80 15 45.18 434 479.18
21 70 123.25 512.30 14 43.27 436 479.27

22 80 131 3600 15 42.08 437 479.08
23 80 133 434.04 15 34.70 445 479.70
24 80 130 1717.90 15 45.97 434 479.97

25 90 126 3600 15 46.70 432 478.70
26 90 131 3600 15 42.77 432 470.63
27 90 133 3600 16 40.98 439 479.98

Table A3. Similarity results.

No. No. POIs of the Instance No. POIs of the route (NWT) No. POIs of the route (WT) Similarity

1 10 10 10 0.40
2 10 10 10 0.70
3 10 10 10 0.30
4 20 12 12 0.42
5 20 13 13 1.00
6 20 11 11 0.73
7 30 13 13 0.92
8 30 14 14 0.79
9 30 11 12 0.50

10 40 13 13 0.38
11 40 12 12 0.67
12 40 13 13 0.46
13 50 13 13 0.92
14 50 13 13 1.00
15 50 14 14 1.00
16 60 14 14 0.64
17 60 14 14 0.79
18 60 15 15 0.60
19 70 14 14 0.71
20 70 15 15 0.53
21 70 14 14 0.71
22 80 15 15 0.67
23 80 15 15 0.53
24 80 15 15 0.73
25 90 15 15 0.60
26 90 15 15 0.20
27 90 16 15 0.31
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8. Pop, R.A.; Săplăcan, Z.; Dabija, D.C.; Alt, M.A. The impact of social media influencers on travel decisions: The role of trust in

consumer decision journey. Curr. Issues Tour. 2021, 1–21. [CrossRef]
9. Verbeeck, C.; Sörensen, K.; Aghezzaf, E.H.; Vansteenwegen, P. A fast solution method for the time-dependent orienteering

problem. Eur. J. Oper. Res. 2014, 236, 419–432. [CrossRef]
10. Garcia, A.; Arbelaitz, O.; Vansteenwegen, P.; Souffriau, W.; Linaza, M.T. Hybrid approach for the public transportation time

dependent orienteering problem with time windows. In International Conference on Hybrid Artificial Intelligence Systems; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 151–158. [CrossRef]

11. Abbaspour, R.A.; Samadzadegan, F. Time-dependent personal tour planning and scheduling in metropolises. Expert Syst. Appl.
2011, 38, 12439–12452. [CrossRef]

12. Garcia, A.; Vansteenwegen, P.; Arbelaitz, O.; Souffriau, W.; Linaza, M.T. Integrating public transportation in personalised
electronic tourist guides. Comput. Oper. Res. 2013, 40, 758–774. [CrossRef]

13. Li, J.; Fu, P. A Label Correcting Algorithm for Dynamic Tourist Trip Planning. J. Softw. 2012, 7, 2899–2905. [CrossRef]
14. Gunawan, A.; Yuan, Z.; Lau, H.C. A mathematical model and metaheuristics for time dependent orienteering problem. In

Proceedings of the 10th International Conference of the Practice and Theory of Automated Timetabling (PATAT), York, UK, 26–29
August 2014; pp. 202–217.

15. Gavalas, D.; Konstantopoulos, C.; Mastakas, K.; Pantziou, G.; Vathis, N. Heuristics for the time dependent team orienteering
problem: Application to tourist route planning. Comput. Oper. Res. 2015, 62, 36–50. [CrossRef]

16. Verbeeck, C.; Vansteenwegen, P.; Aghezzaf, E.H. The time-dependent orienteering problem with time windows: A fast ant colony
system. Ann. Oper. Res. 2017, 254, 481–505. [CrossRef]

17. Vansteenwegen, P.; Gunawan, A. Other Orienteering Problem Variants. In Orienteering Problems: Models and Algorithms for Vehicle
Routing Problems with Profits; Springer International Publishing: Cham, Switzerland, 2019; pp. 95–112. [CrossRef]

18. Murat Afsar, H.; Labadie, N. Team Orienteering Problem with Decreasing Profits. Electron. Notes Discret. Math. 2013, 41, 285–293.
[CrossRef]

19. Gündling, F.; Witzel, T. Time-Dependent Tourist Tour Planning with Adjustable Profits. In Proceedings of the 20th Symposium on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020), Pisa, Italy, 7–8 September 2020;
Volume 85, OpenAccess Series in Informatics (OASIcs); Huisman, D., Zaroliagis, C.D., Eds.; Schloss Dagstuhl–Leibniz-Zentrum
für Informatik: Dagstuhl, Germany, 2020; pp. 14:1–14:14. [CrossRef]

20. Isoda, S.; Hidaka, M.; Matsuda, Y.; Suwa, H.; Yasumoto, K. Timeliness-Aware On-Site Planning Method for Tour Navigation.
Smart Cities 2020, 3, 66. [CrossRef]

21. Yu, V.F.; Jewpanya, P.; Lin, S.W.; Redi, A.A. Team orienteering problem with time windows and time-dependent scores. Comput.
Ind. Eng. 2019, 127, 213–224. [CrossRef]

22. Laborie, P.; Rogerie, J.; Shaw, P.; Vilím, P. IBM ILOG CP optimizer for scheduling. Constraints 2018, 23, 210–250. [CrossRef]
23. Bazrafshan, R.; Hashemkhani Zolfani, S.; Al-e hashem, S.M.J.M. Comparison of the Sub-Tour Elimination Methods for the

Asymmetric Traveling Salesman Problem Applying the SECA Method. Axioms 2021, 10, 19. [CrossRef]
24. Zhao, C.; Sahni, S. String correction using the Damerau-Levenshtein distance. BMC Bioinform. 2019, 20, 1–28. [CrossRef]

[PubMed]
25. Raoui, H.E.; Cabrera-Cuevas, M.; Pelta, D.A. The Role of Metaheuristics as Solutions Generators. Symmetry 2021, 13, 2034.

[CrossRef]

http://doi.org/10.1007/978-3-030-05324-6_110-1
http://dx.doi.org/10.1007/978-981-33-4256-9_42
http://dx.doi.org/10.1016/j.annals.2020.102883
http://dx.doi.org/10.1007/s10115-018-1297-4
http://dx.doi.org/10.1007/978-3-030-29746-6
http://dx.doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
http://dx.doi.org/10.1016/j.cor.2009.03.008
http://dx.doi.org/10.1080/13683500.2021.1895729
http://dx.doi.org/10.1016/j.ejor.2013.11.038
http://dx.doi.org/10.1007/978-3-642-13803-4_19
http://dx.doi.org/10.1016/j.eswa.2011.04.025
http://dx.doi.org/10.1016/j.cor.2011.03.020
http://dx.doi.org/10.4304/jsw.7.12.2899-2905
http://dx.doi.org/10.1016/j.cor.2015.03.016
http://dx.doi.org/10.1007/s10479-017-2409-3
http://dx.doi.org/10.1007/978-3-030-29746-6_8
http://dx.doi.org/10.1016/j.endm.2013.05.104
http://dx.doi.org/10.4230/OASIcs.ATMOS.2020.14
http://dx.doi.org/10.3390/smartcities3040066
http://dx.doi.org/10.1016/j.cie.2018.11.044
http://dx.doi.org/10.1007/s10601-018-9281-x
http://dx.doi.org/10.3390/axioms10010019
http://dx.doi.org/10.1186/s12859-019-2819-0
http://www.ncbi.nlm.nih.gov/pubmed/31167641
http://dx.doi.org/10.3390/sym13112034

	Introduction
	Models for Time-Dependent TTDP
	TTDP-TDRF with Waiting Times
	TTDP-TDRF without Waiting Times

	Description of the Test Instances (Samples)
	Description of Computational Experiments
	Analysis of Results
	Discussion and Conclusions
	
	References

