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Abstract  

 

Background: Alcohol is an established risk factor for several cancers, but modest alcohol-cancer 

associations may be missed due to measurement error in self-reported assessments. The identification 

of biomarkers of habitual alcohol intake may enhance evidence on the role of alcohol in cancer onset. 

Methods: Untargeted metabolomics was used to identify metabolites correlated with habitual alcohol 

intake in a discovery dataset from the European Prospective Investigation into Cancer and Nutrition 

(EPIC; n=454). Significant correlations were replicated in independent datasets of controls from case-

control studies nested within EPIC (n=281) and the Alpha-Tocopherol, Beta-Carotene Cancer 

Prevention (ATBC; n=438) study. Conditional logistic regression was used to estimate odds ratios 

(OR) and 95% confidence intervals for associations of alcohol-associated metabolites and self-

reported alcohol intake with risk of pancreatic cancer, hepatocellular carcinoma (HCC), liver cancer, 

and liver disease mortality in the contributing studies.  

Results: Two metabolites displayed a dose-response association with alcohol intake: 2-hydroxy-3-

methylbutyric acid and an unidentified compound (m/z(+):231.0839). A 1-SD increase in log2-

transformed levels of 2-hydroxy-3-methylbutyric acid was associated with risk of HCC (OR=2.14; 

1.39-3.31) and pancreatic cancer (OR=1.65; 1.17-2.32) in EPIC and liver cancer (OR=2.00; 1.44-2.77) 

and liver disease mortality (OR=2.16; 1.63-2.86) in ATBC. Conversely, a 1-SD increase in log2-

transformed questionnaire-derived alcohol intake was not associated with HCC or pancreatic cancer in 

EPIC or liver cancer in ATBC but was associated with liver disease mortality (OR=2.19; 1.60-2.98) in 

ATBC.  

Conclusions: 2-Hydroxy-3-methylbutyric acid is a candidate biomarker of habitual alcohol intake that 

may advance the study of alcohol and cancer risk in population-based studies. 

 

Keyword: alcohol intake, untargeted metabolomics, 2-hydroxy-3-methylbutyric acid, biomarkers, 

EPIC, ATBC  
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In 2016, an estimated 2.8 million deaths, corresponding to 6.8% and 2.2% of age-standardized 

deaths in men and women, respectively, were attributed to alcohol use worldwide [1]. Excessive 

alcohol consumption is an established risk factor for many acute and chronic health conditions [2], 

including cancers of the upper aerodigestive tract, female breast, liver, colon and rectum [3]. However, 

the relationship of alcohol, particularly light-to-moderate alcohol consumption, with other cancer sites 

remains controversial [4].  

Self-reported alcohol intake is, like other dietary factors, prone to underreporting [5]. 

Although the extent and distribution of exposure misclassification is unknown [6], it is likely that 

observed associations between alcohol use and disease risk in prospective studies are attenuated and 

that estimates of alcohol-attributable death and disease are underestimated. Biomarkers of liver 

function and oxidative stress are used to study alcohol-related liver injury and alcoholic liver disease 

(ALD) [7, 8], but most alcohol consumers, particularly light-to-moderate consumers, will never 

manifest ALD. There are also biomarkers of recent (e.g., ethyl glucuronide) and heavy alcohol use 

(e.g., carbohydrate deficient transferrin and phosphatidylethanol (PEth)) [9-11]. However, biomarkers 

of habitual alcohol use, including light-to-moderate drinking, are needed to better assess alcohol 

exposure in epidemiological studies and to improve risk estimates for diseases including cancer where 

modest associations may exist.  

Metabolomics is a powerful tool for discovering dietary biomarkers. When used in an 

untargeted mode, it can detect a wide range of compounds in biological samples including metabolites 

formed during digestion, metabolism and microbial fermentation [12, 13], making it well-suited for 

discovering novel biomarkers of exposure or response to habitual alcohol consumption. Herein we 

applied a multistep design, using untargeted metabolomics and independent discovery and replication 

datasets, to identify serum metabolites associated with habitual alcohol consumption among free-

living individuals with a wide range of intake. We then estimated the associations of these candidate 

alcohol biomarkers with risk of pancreatic cancer, liver cancers, and liver disease mortality in the 

European Prospective Investigation into Cancer and Nutrition (EPIC) study and the Alpha-

Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC). 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.12.20224451doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.12.20224451


6 
 

METHODS 

 

Study design 

EPIC Study 

EPIC recruitment and study procedures, including dietary assessment methods and blood 

collection are described extensively elsewhere [14]. Briefly, EPIC is a large cohort study of over half a 

million men and women recruited between 1992 and 2000 in 23 European centers. Diet, including 

average daily alcohol intake, over the 12 months before enrolment was assessed by validated country-

specific food frequency questionnaires (FFQ) designed to capture local dietary habits with high 

compliance. Country-specific alcohol intake was calculated based on the estimated average glass 

volume and ethanol content for wine, beer, cider, sweet liquor, distilled spirits, or fortified wines, 

using information collected in standardized 24-hr dietary recalls from a subset of the cohort [15]. The 

correlation between alcohol intake estimated by FFQ and 24-hour dietary recall was 0.79 [16]. Blood 

samples were collected and stored at -196ºC under liquid nitrogen at the International Agency for 

Research on Cancer (IARC) for all countries except Sweden (-80°C freezers), and Denmark (-150°C, 

nitrogen vapor).  

Our study included a discovery and two replication datasets (Figure 1). The discovery set 

(n=454) was nested in the EPIC cross-sectional study [17, 18]. The first replication set included 

control subjects from two EPIC nested case-control studies of hepatocellular carcinoma (HCC; n=129) 

and pancreatic cancer (n=152) with untargeted metabolomics data [19-21]. Non-metastatic incident 

HCC (n=129) and pancreatic cancer (n=152) cases, were matched 1:1 with cancer-free controls on 

study center, sex, age at blood collection (�±�1 year), date (�±�6 months) and time of the day 

(�±�2�h) of blood collection, fasting status, and, for women, exogenous hormone use. Follow-up 

was based on a combination of methods, including health insurance records, registries and active 

follow-up [14]. Approval for the EPIC study was obtained from the IARC ethics review board (Lyon, 

France) and local review bodies of participating institutions.  

 

ATBC Study 
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The second replication set included two nested case-control studies in the ATBC cohort of 

male Finnish smokers [22]. In ATBC, participants reported on demographics, lifestyle, and medical 

history via questionnaires and donated a fasting serum sample at baseline, which was stored at -70°C. 

Participants were passively followed during the post-intervention period via linkage with the Finnish 

Cancer Registry and death registry. Liver cancer (n=229) and liver disease mortality (n=248) cases 

were individually matched 1:1 with controls, selected by incidence density sampling, on baseline age 

(+/-5 years) and serum draw date (+/-30 days) [23]. For this study, we excluded cases and controls 

with missing data on alcohol intake (n=72) and those with samples that failed laboratory analysis  

(n=14) resulting in an analytic sample of n=438 controls for cross-sectional analysis and 192 and 199 

complete case-control sets for prospective analyses of liver cancer incidence and liver disease 

mortality, respectively. Approval for the ATBC study was obtained from the Institutional Review 

Boards of National Cancer Institute (Bethesda, Maryland), and the National Public Health Institute of 

Finland. EPIC and ATBC studies were conducted according to the guidelines of the Declaration of 

Helsinki; all participants provided written informed consent. 

 

Metabolomics analyses 

Sample analysis, data pre-processing, matching of features across datasets, and compound 

identification are desribed in detail in the Supplementary Methods. Briefly, all samples were 

analyzed by the same laboratory at IARC with a UHPLC-QTOF-MS system (1290 Binary LC system, 

6550 QTOF mass spectrometer; Agilent Technologies, Santa Clara, CA) using reversed phase 

chromatography and electrospray ionization. Raw data were processed using Agilent MassHunter 

Qualitative analysis B.06.00, ProFinder B.08.00, and Mass Profiler Professional B.12.1 software with 

Agilent’s recursive feature finding procedure. The m/z values of the features of interest were searched 

against the Human Metabolome Database (HMDB) [24] and METLIN [25].Compound identity was 

confirmed by comparison of chemical standards and representative samples.  

 

Statistical analyses 
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We used an integrated workflow for metabolomics data analysis [26]. Features detected in 

<50% of the discovery set samples abd ackground features, (i.e., feature intensities present in all 

blanks with ratio of geometric mean intensities of non-blank:blank samples <5) were excluded. 

Feature intensities were log2-transformed. Study participants with >50% missing features and those 

identified as outliers by a PCA-based approach were excluded [27]. Missing values were imputed 

within each plate by a K-nearest neighbours method, with K=10 [28]. Last, feature intensities 

measured across plates within any single batch were normalised by applying a random forest-based 

approach to correct for unwanted variation [29]. In the EPIC discovery set and replication sets, these 

steps were applied on feature matrices acquired in positive and negative modes separately. In ATBC, 

these steps were applied on each batch.  

In the discovery and replication sets, alcohol intake (g/day) was adjusted for age, sex, country 

(in EPIC only), body mass index (BMI, kg/m2), smoking status and intensity, coffee consumption 

(g/day, log-transformed) via the residual method in linear regression models. Coffee drinking and 

coffee-associated metabolites have been strongly associated with risk of liver cancer and liver disease 

mortality in ATBC [30, 31]; for consistency, coffee drinking was considered a potential confounder 

across discovery and replication sets. Residuals for feature intensities were also adjusted for well plate 

number within the analytical batch, position within the plate (row and column indexes), and the study 

(EPIC replication) or batch indicator (ATBC replication) as random effects. We used the principal 

component partial-R2 (PC-PR2) method [32] to quantify the contribution of alcohol and potential 

confounders to the variability of the 67 features intensities that were statistically significantly 

associated with alcohol intake in the discovery set [33]. 

We calculated Pearson correlation coefficients using the residuals for alcohol intake and for 

feature intensities; correlations with a false discovery rate (FDR)-corrected p-value<0.05 were 

considered statistically significant, and these f1 features were carried forward for replication. In the 

first (EPIC) replication step, f 1 residual-adjusted correlation coefficients were computed and corrected 

by the more conservative Bonferroni method. The f 2 correlations with a p-value <0.05/f 1 were 

considered statistically significant and carried forward to the second replication step in ATBC, again 

using the residuals for alcohol intake and for feature intensities. The linearity of the association 
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between standardized residuals of 2-hydroxy-3-methylbutyric acid and of alcohol intake was evaluated 

with cubic regression splines with 5 knots [34], by comparing the log-likelihood of models with and 

without the non-linear terms to a chi-distribution with 2 degrees of freedom. 

The EPIC replication set was used to define high- (quartile 4: alcohol intake >33.1 and >12.3 

g/day in men and women, respectively)) and low-consumers (quartile 1: alcohol intake >0.1 but <4.9 

and <1.1 g/day in men and women, respectively) . We used logistic regression to estimate the area 

under receiver operating characteristics (AUROC) curves [35] and evaluated the predictive accuracy 

of the residuals of each main feature (i.e., candidate biomarkers) to discriminate high-consumers from 

low-consumers for metabolites that replicated across studies. We used the leave-one-out cross 

validation scheme, to mitigate  issues related to over fitting [36].  

We estimated odds ratios (OR) and 95% confidence intervals (95% CI) for candidate features 

and HCC and pancreatic cancer in EPIC and liver cancer and fatal liver disease in ATBC using 

conditional logistic regression models. In crude (conditioned on the matching criteria only) and 

multivariable models, adjusting for potential confounders, feature intensities were log2-transformed, 

centered and scaled (i.e., mean=0, standard deviation=1) to ensure comparability of OR across 

different endpoints.  

All statistical analyses were performed using the Statistical Analysis Software, release 9.4 

(SAS Institute Inc., Cary, NC, USA) and R version 3.6.0 [37]. 

 

RESULTS 

Population characteristics 

Baseline participant characteristics are presented in Table 1. In the EPIC discovery set, most 

participants were women (57.5%) and never (52.2%) or former (26.4%) smokers. In the EPIC 

replication set, there was a higher percentage of men (52.7%) and a lower percentage of never smokers 

(46.2%). In the ATBC replication set, all participants were Finnish men and current smokers. Median 

alcohol intake was 10.0 g/day, 6.6 g/day, and 11.5 g/day in the EPIC discovery, EPIC and ATBC 

replication sets, respectively.  
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Biomarker discovery analysis 

After excluding participant samples identified as outliers or as having too many missing 

values, the final discovery set comprised 451 and 452 study participants in positive and negative 

ionization mode datasets, respectively. The final EPIC replication set comprised 271 and 277 study 

participants in positive and negative ionization datasets, respectively. Residuals of 205 features in the 

discovery set were significantly correlated with residuals of alcohol intake (163 features in positive 

and 42 features in negative ionization mode; Figure 1), with correlation coefficients ranging from -

0.29 to 0.50 in log-log plots (Table S1).  

Of the 205 features in the discovery set, 51 features in positive and 16 features in negative 

ionization mode (f 1=67) matched by mass and retention time with equivalent features in the EPIC 

replication set, and PC-PR2 analyses showed that alcohol intake explained >7% of variability in the 

feature intensities (f 1=67; Figure 2). Residuals of f2=10 features were statistically significantly 

correlated with residuals of alcohol intake (Table 2). The first two features corresponded to a 

compound that could not be unequivocally identified, but had an identical mass, isotope pattern, ion 

formation (mostly [M+Na]+ and [M+HCOOH-H]-) and retention time to ethyl glucoside 

(HMDB0029968) [38]. However, chromatograms (Supplementary Methods) indicated a lack of 

specificity, and although fragmentation of the [M+Na]+ ion could not be induced, our results suggest 

the unknown is a combination of ethyl-α-D-glucoside, ethyl-β-D-glucoside, and an additional 

structural isomer. The remaining eight features corresponded to a single compound, which was 

confirmed by comparison with an authentic standard as 2-hydroxy-3-methylbutyric acid 

(HMDB0000407).  

For subsequent analyses, the feature with the greatest chromatographic intenstity (i.e., main 

feature) for each metabolite was used (Table 2). The discriminatory accuracy for high versus low 

alcohol consumption in cross-validated models that included both 2-hydroxy-3-methylbutyric acid and 

the unknown compound was 75% (95% CI: 69-86%) (Figure 3). The test for non-linearity using 

restricted regression spline was borderline significant (p=0.06; Figure S1). All seven positive 

ionization mode features selected in the EPIC replication set were confirmed in the ATBC replication 

set (Table 2). In the ATBC replication set, the discriminatory accuracy for alcohol consumption (high 
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vs. low consumers as defined in men in EPIC) of 2-hydroxy-3-methylbutyric acid and the unknown 

compound was 76% (95% CI: 68-84%), only 2% higher than the discriminatory accuracy observed for 

2-hydroxy-3-methylbutyric acid alone (74%, 95% CI: 66-82%).  

 

Disease risk associations  

In multivariable models (Table 3), 2-hydroxy-3-methylbutyric acid was associated with 

increased odds of HCC (OR1-SD=2.14: 1.39, 3.31) and pancreatic cancer (OR1-SD=1.65: 1.17, 2.32) in 

EPIC, as well as liver cancer (OR1-SD=2.00; 1.44, 2.77) and fatal liver disease (OR1-SD=2.16; 1.63, 

2.86) in ATBC; the unknown candidate biomarker was associated with increased odds of liver cancer 

(OR1-SD=1.70; 95% CI: 1.29, 2.25) and liver disease mortality (OR=1.85; 95% CI: 1.39-2.46) in 

ATBC, but not with HCC or pancreatic cancer in EPIC. Alcohol intake was not associated with HCC 

(OR1-SD=0.78; 95% CI: 0.56, 1.09) or pancreatic cancer risk (OR1-SD=1.03: 0.77, 1.39) in EPIC, but 

was strongly associated with liver disease mortality (OR1-SD=2.19: 95% CI, 1.60, 2.98) in ATBC. The 

alcohol findings are in line with previously published EPIC and ATBC analyses [39-41]. 

 

DISCUSSION 

Using untargeted metabolomics data from a discovery and two independent replication sets, 

we found two serum metabolites that were highly correlated with self-reported habitual alcohol intake. 

One compound was identified as 2-hydroxy-3-methylbutyric acid; the other remains unknown but is 

likely a combination of isomers of ethyl glucoside. Of note, ethyl-α-D-glucoside is a known 

constituent of some alcoholic beverages [38]. Both compounds could discriminate high alcohol 

consumers from low consumers in EPIC and ATBC despite marked differences in the study designs. 

Notably, 2-hydroxy-3-methylbutyric acid was strongly associated with HCC and pancreatic cancer 

risks in EPIC, and with liver cancer and fatal liver disease in ATBC. In contrast, self-reported alcohol 

intake was only consistently associated with risk of liver disease mortality in ATBC. Further research 

is needed to elucidate the potential metabolic cascade from alcohol drinking to 2-hydroxy-3-

methylbutyric acid to disease. Additionally, studies measuring circulating concentrations of 2-

hydroxy-3-methylbutyric acid rather than relative levels are now needed to compare across studies and 
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improve risk estimation; this is especially important for diseases such as pancreatic cancer, for which 

the literature is suggestive [42] yet inconsistent [43].  

Prior population-based studies have used a targeted or semi-targeted metabolomics approach 

to identify alcohol-specific metabolomic profiles of alcohol intake. Three studies, including one in 

EPIC, used targeted metabolomics, measuring 123 to 163 metabolites, to gain insight into metabolic 

pathways linking alcohol drinking to human health [44-46]; ten alcohol-metabolite associations were 

common to all three studies and included phosphatidylcholines (PCs), LysoPCs, acylcarnitines and 

sphingomyelins. Of note, PCs  contribute to the formation of PEth in human tissues [47], which is a 

known biomarker of recent and heavy alcohol consumption used to diagnose alcohol abuse [48, 49]. A 

fourth targeted study used nuclear magnetic resonance to evaluate cross-sectional associations of 76 

lipids, fatty acids, amino acids, ketone bodies and gluconeogenesis-related metabolites with alcohol 

consumption [50]. The endogenous metabolites identified by these targeted platforms did not overlap 

with the compounds most highly correlated with alcohol intake in our untargeted study, underscoring 

the breadth of the metabolome and discovery potential of untargeted metabolomics methods.  

Metabolomics analyses that limit biomarker discovery to previously annotated compounds 

have also identified several alcohol-related biomarkers. For example, using prediagnostic serum 

samples from a nested breast cancer case-control study within a U.S. cohort, alcohol intake was 

associated with 16 of the 617 annotated metabolites, including 2-hydroxy-3-methylbutyric acid, 2,3-

dihydroxyisovaleric acid (i.e., 2,3-hydroxy-3-methylbutyric acid), ethyl glucuronide and several 

endogenous metabolites related to androgen metabolism [51]. Other cross-sectional analyses, 

measuring hundreds of metabolites, also found associations of 2-hydroxy-3-methylbutyric acid, 2,3-

dihydroxyisovaleric acid (i.e., 2,3-hydroxy-2-methylbutyric acid)  and ethyl glucuronide with alcohol 

intake using prediagnostic serum [52, 53]. However, these studies lacked separate discovery and 

replication steps, and estimated correlations in cases and controls combined rather than in controls 

only. One study, which included discovery and replication sets, evaluated associations between 

alcohol intake and 356 known metabolites among African Americans [54] and found that alcohol was 

associated with five 2-hydroxybutyrate-related metabolites including 2-hydroxy-3-methylbutyric acid. 

A Japanese study of 107 metabolites in men identified positive associations between 2-hydroxybutyric 
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acid and alcohol intake in a discovery and a replication set [55]. The production of 2-hydroxy-3-

methylbutyric acid and other hydroxybutyric acid-related metabolites is linked to the rate of hepatic 

glutathione synthesis, which can increase considerably in response to oxidative stress or detoxification 

of xenobiotics in the liver [56]. A targeted metabolomics investigation in EPIC found evidence 

suggesting that glutathione metabolism is involved in the development of HCC [20]. Additionally, 2-

hydroxy-3-methylbutyric acid is a product of branched-chain amino acid metabolism, which has been 

linked to alcohol drinking [55, 57]. 

To our knowledge, this study is unique in its untargeted metabolomics approach without 

preselected metabolites and its use of a discovery and two independent replication sets. By considering 

nearly 7,000 features, many of which are correlated, we greatly increased the number of potential 

candidates, but we also incurred a stronger penalisation for multiple testing. Consequently, our 

approach may have missed features that did not meet stringent thresholds for statistical significance. A 

strength of our approach was the use of large independent discovery and replications sets; although 

matching features by mass and retention time across sets may have resulted in the loss of relevant 

information. Other potential limitations relate to generalizability and measurement error. Circulating 

metabolite levels reflect environmental exposures as well as host and microbial metabolism [58-60], 

and identification of candidate biomarkers that are sufficiently specific to ethanol and generalizable to 

diverse populations is challenging. Measurement error, both systematic and random, is inherent to 

self-reported assessments [61-63], including alcohol intake, and likely biases association estimates in 

not only aetiological studies, but also in biomarker discovery studies. Despite our use of cutting-edge 

untargeted metabolomics methods, a robust study design, and an aetiological component to evaluate 

the associations of our candidate biomarkers with disease outcomes, we cannot dismiss the possibility 

that our findings were impacted by measurement error in self-reported alcohol intake.  

In summary, we observed robust correlations between self-reported habitual alcohol intake 

and 2-hydroxy-3-methylbutyric acid and an unidentified compound in a discovery set and two 

independent replication sets of cancer-free participants. Associations for 2-hydroxy-3-methylbutyric 

acid with risk of HCC and pancreatic cancer in the EPIC study and with liver cancer in ATBC were 

stronger than those for either self-reported alcohol intake or the unidentified compound. In conclusion, 
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2-hydroxy-3-methylbutyric acid is a promising candidate biomarker for studying the relationship 

between habitual alcohol intake and health [51-54], but further research, preferably in the context a 

randomized-controlled trial, is needed to better characterize the relationship between 2-hydroxy-3-

methylbutyric acid and alcohol at varying levels of intake. 
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Figure legends 

 

Figure 1. Flowchart of the study, displaying features and samples size of the discovery and 

Replication I (EPIC) and II (ATBC) sets (blue box), as well as of the aetiological components in 

nested-case-control studies (red box). 

 

Figure 2. PC-PR2 (Principal Component Partial R2) analysis to quantify the contribution of potential 

confounder variables to the variability of the set of f1=67 feature intensities that were statistically 

significantly associated to alcohol intake in the discovery set.  

 

Figure 3: ROC curves with AUC for high alcohol intake, in the range 33.1- 138.9 g/day in men (EPIC 

n=36; ATBC n=70) and 12.3-93.5 g/day in women (EPIC n=26), vs. low alcohol intake, in the range 

of >0.1-4.9 g/day in men (EPIC n=35; ATBC n=90) and >0.1-1.0 g/day in women (EPIC n=25), in (A) 

EPIC replication set and (B) ATBC replication set for the two identified biomarker candidates after 

cross-validation. 
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Table 1. Descriptive statistics of the discovery and replication sets.  

 EPIC Discovery 1 EPIC Replication 2 ATBC Replication 3 
 (n=454) (n=281) (n=438) 
Men (%) 42.5 52.7 100 
BMI (median kg/m2; 10-90th %) 25.8 (20.9-31.6) 26.6 (20.7-34.1) 26.2 (22.5-31.3) 
Age (median years; 10-90th %) 55.2 (42.5-63.9) 59.4 (49.0-68.6) 56.0 (51.0-63.0) 
Smoking status (%)    

Current 18.5 19.2 100 
Former 26.4 33.5  
Never 52.2 46.2  
Unknown 2.9 1.1  

Smoking intensity (median cig/day; 10-90th %) 11.5 (2-26) 15 (4-30) 20 (10-30) 
Country (%)    

France  14.5 0.4  
Italy  34.8 18.5  
Spain  - 10.0  
United Kingdom - 17.1  
The Netherlands - 10.3  
Greece 12.3 10.7  
Germany  38.3 24.9  
Denmark - 8.2  
Finland - - 100 

Alcohol non-drinkers (%) 4 8 14 9 
Alcohol intake (median g/day; 10th-90th %)    

Men 21.4 (1.3-50.4) 14.9 (1.0-51.7) 11.5 (0.2-42.1) 
Women 5.2   (0.02-24.9) 2.0 (0.01-23.3) -- 

Coffee intake (median g/day; 10th-90th %) 146.3 (21.4, 580.2) 190 (3, 857) 550 (220-1,100) 

1EPIC cross-sectional sample;  
2Controls from both liver and pancreatic cancer EPIC nested case-control studies; 
3Controls from liver cancer and liver disease mortality ATBC nested case-control studies excluding those with missing data on 
alcohol intake;    
4Alcohol non-drinkers are considered as those with alcohol intake ≤0.1g/day. 
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Table 2. Feature-specific intensity and reproducibility (coefficient of variation=CV) in quality control (QC) samples, and adjusted Pearson correlation coefficients (r) with 
between alcohol intake in the discovery and replication sets. 

    QC samples 1 
(n=38) 

EPIC Discovery 
(n=454) 2 

EPIC Replication  
( n=281) 3 

ATBC Replication  
(n=438) 

m/z 4 RT 5 
(min) Method Associated metabolite Mean 

intensity 
CV 
(%) r p-value q-value 6 r p-value 7 r p-value 8 

231.0839 9 0.89 RP+ Unknown 58378 18.5 0.41 1.2 x 10 -19 4.4 x 10-16 0.38 7.0 x 10-11 0.40 6.3 x 10-18 

253.0925 0.93 RP- Unknown 11140 13.2 0.39 2.6 x 10-18 4.6 x 10-15 0.32 3.2 x 10-8 -10 - 

203.0227 9 2.78 RP+ 2-hydroxy-3-methylbutyric acid 204079 14.8 0.26 1.9 x 10-8 2.0 x 10-6 0.24 5.3 x 10-5 0.40 1.1 x 10-18 

217.9895 2.78 RP+ 2-hydroxy-3-methylbutyric acid 36539 11.7 0.30 9.0 x 10-11 2.1 x 10-8 0.25 2.3 x 10-5 0.38 2.4 x 10-16 

250.0134 2.78 RP+ 2-hydroxy-3-methylbutyric acid 122838 12.5 0.28 9.0 x 10-10 1.6 x 10-7 0.27 8.2 x 10-6 0.40 3.5 x 10-18 

221.0605 2.78 RP+ 2-hydroxy-3-methylbutyric acid 56192 11.2 0.28 2.6 x 10-9 3.2 x 10-7 0.25 2.1 x 10-5 0.39 1.9 x 10-17 

218.9958 2.78 RP+ 2-hydroxy-3-methylbutyric acid 115590 11.7 0.28 1.3 x 10-9 2.1 x 10-7 0.26 1.8 x 10-5 0.40 1.7 x 10-18 

235.0479 2.78 RP+ 2-hydroxy-3-methylbutyric acid 34447 15.5 0.20 2.3 x 10-5 1.0 x 10-3 0.26 2.1 x 10-5 0.38 4.2 x 10-16 

117.0559 2.78 RP- 2-hydroxy-3-methylbutyric acid 211842 12.1 0.28 1.3 x 10-9 2.2 x 10-7 0.28 2.0 x 10-6 -10 - 

261.9788 2.78 RP- 2-hydroxy-3-methylbutyric acid 15985 11.9 0.27 7.2 x 10-9 8.3 x 10-7 0.28 2.7 x 10-6 -10 - 

1 Quality control samples within the discovery set; 
2 The analyses of features acquired in positive and negative modes used data from 451 and 452 participants, respectively, after the exclusion of outliers and samples with too 
many missing values;  
3 The analyses of features acquired in positive and negative modes used data from 271 and 277 participants, respectively, after the exclusion of outliers and samples with too 
many missing values;  
4 m/z= monoisotopic mass divided by the charge state values, as observed in the discovery set; 
5 Retention time; 
6 Q-values associated to False Discovery Rate (FDR) procedure to correct for multiple testing [64], alpha=0.05;  
7 Threshold for statistical significance corrected with Bonferroni method for multiple testing, equal to 0.0007463 (0.05/f 1, with f 1=67). 
8 Threshold for statistical significance corrected with Bonferroni method for multiple testing, equal to 0.007 (0.05/f 3, with f 3=7); 
9 Feature chosen for analysis of disease see Table 3;    
10 Feature not available in ATBC. 
 
 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted M

arch 15, 2021. 
; 

https://doi.org/10.1101/2021.03.12.20224451
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.03.12.20224451


20 
 

Table 3. Crude and adjusted 1 odds ratios (OR, 95% CI) of self-reported alcohol intake (12 g/day) and the main features of the unknown compound and 2-
hydroxy-3-methylbutyric acid (per 1-SD) with hepatocellular carcinoma (HCC; 129 case-control sets) and pancreatic cancer (152 case-control sets) in EPIC, 
and with liver cancer (194 case-control sets) and liver disease mortality (201 case-control sets) in ATBC  
 Crude models  Adjusted models1  
  OR (95% CI) p-value OR (95% CI) p-value 

HCC, EPIC (128 case-control sets)       
Alcohol intake (12g/day) 1.13 (1.00, 1.27) 0.05 1.04 (0.89, 1.20) 0.65 

Alcohol intake (log2-transformed, 1-SD) 0.93 (0.73, 1.20) 0.59 0.78 (0.56, 1.09) 0.14 

Unknown compound (log2-transformed, 1-SD) 2 1.17 (0.90, 1.52) 0.25 1.01 (0.73, 1.40) 0.94 

2-hydroxy-3-methylbutyric acid (log2-transformed, 1-SD) 3 1.75 (1.29, 2.39) 3.8 x 10-4 2.14 (1.39, 3.31) 5.5 x 10-4 

Pancreatic cancer, EPIC  
(139 case-control sets) 

      

Alcohol intake (12g/day) 1.07 (0.92, 1.25) 0.36 1.04 (0.88, 1.24) 0.65 

Alcohol intake (log2-transformed, 1-SD) 1.08 (0.83, 1.40) 0.58 1.03 (0.77, 1.39) 0.83 

Unknown compound (log2-transformed, 1-SD) 2 1.20 (0.95, 1.50) 0.13 1.17 (0.91, 1.51) 0.22 

2-hydroxy-3-methylbutyric acid (log2-transformed, 1-SD) 3 1.52 (1.13, 2.04) 5.2 x 10-3 1.65 (1.17, 2.32) 3.9 x 10-3 

Liver cancer, ATBC  
(192 case-control sets) 

      

Alcohol intake (12g/day) 1.25 (1.09, 1.43) 1.2 x 10-3 1.17 (1.01, 1.36) 0.03 

Alcohol intake (log2-transformed, 1-SD) 1.33 (1.05, 1.67) 0.016 1.23 (0.94, 1.60) 0.13 

Unknown compound (log2-transformed, 1-SD) 2 1.34 (1.07, 1.68) 0.01 1.70 (1.29, 2.25) 2.0 x 10-4 
2-hydroxy-3-methylbutyric acid (log2-transformed, 1-SD) 3 2.08 (1.53, 2.82) 2.6 x 10-6 2.00 (1.44, 2.77) 3.4 x 10-5 

Liver disease mortality, ATBC  
(199 case-control sets) 

      

Alcohol intake (12g/day) 1.38 (1.22, 1.54) 1.1 x 10-7 1.32 (1.16, 1.50) 1.6 x 10-5 
Alcohol intake (log2-transformed, 1-SD) 2.37 (1.78, 3.14) 2.8 x 10-8 2.19 (1.60, 2.98) 8.4 x 10-7 
Unknown compound (log2-transformed, 1-SD) 2 1.95 (1.49, 2.54) 9.1 x 10-7 1.85 (1.39, 2.46) 2.6 x 10-5  
2-hydroxy-3-methylbutyric acid (log2-transformed, 1-SD) 3 2.26 (1.73, 2.95) 2.1 x 10-9 2.16 (1.63, 2.86) 9.6 x 10-8 

1 Models for hepatocellular carcinoma (HCC) were adjusted for body mass index(BMI, kg/m2), waist circumference (cm), recreational and household physical 
activity (Met-hours/week), smoking status, level of educational attainment, and coffee intake (grams/day, log2-transformed); models for pancreatic cancer 
were adjusted for BMI (kg/m2), sex-specific physical activity categories and smoking; ATBC liver cancer and fatal liver disease models were adjusted for 
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BMI (kg/m2), leisure time physical activity, smoking intensity (cigarettes/day), level of educational attainment, and coffee intake (grams/day, log2-
transformed); 
2 Unknown compound (m/z=231.0839);  
3 2-hydroxy-3-methylbutyric acid (m/z=203.0227). 
 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted M

arch 15, 2021. 
; 

https://doi.org/10.1101/2021.03.12.20224451
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.03.12.20224451


(A) 

 
(B) 

 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.12.20224451doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.12.20224451


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.12.20224451doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.12.20224451


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.12.20224451doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.12.20224451

