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Body mass index interacts with a genetic-risk score
for depression increasing the risk of the disease in
high-susceptibility individuals
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Depression is strongly associated with obesity among other chronic physical diseases. The latest mega- and meta-analysis of
genome-wide association studies have identified multiple risk loci robustly associated with depression. In this study, we aimed to
investigate whether a genetic-risk score (GRS) combining multiple depression risk single nucleotide polymorphisms (SNPs) might
have utility in the prediction of this disorder in individuals with obesity. A total of 30 depression-associated SNPs were included in a
GRS to predict the risk of depression in a large case-control sample from the Spanish PredictD-CCRT study, a national multicentre,
randomized controlled trial, which included 104 cases of depression and 1546 controls. An unweighted GRS was calculated as a
summation of the number of risk alleles for depression and incorporated into several logistic regression models with depression
status as the main outcome. Constructed models were trained and evaluated in the whole recruited sample. Non-genetic-risk
factors were combined with the GRS in several ways across the five predictive models in order to improve predictive ability. An
enrichment functional analysis was finally conducted with the aim of providing a general understanding of the biological pathways
mapped by analyzed SNPs. We found that an unweighted GRS based on 30 risk loci was significantly associated with a higher risk of
depression. Although the GRS itself explained a small amount of variance of depression, we found a significant improvement in the
prediction of depression after including some non-genetic-risk factors into the models. The highest predictive ability for depression
was achieved when the model included an interaction term between the GRS and the body mass index (BMI), apart from the
inclusion of classical demographic information as marginal terms (AUC= 0.71, 95% CI= [0.65, 0.76]). Functional analyses on the 30
SNPs composing the GRS revealed an over-representation of the mapped genes in signaling pathways involved in processes such
as extracellular remodeling, proinflammatory regulatory mechanisms, and circadian rhythm alterations. Although the GRS on its
own explained a small amount of variance of depression, a significant novel feature of this study is that including non-genetic-risk
factors such as BMI together with a GRS came close to the conventional threshold for clinical utility used in ROC analysis and
improves the prediction of depression. In this study, the highest predictive ability was achieved by the model combining the GRS
and the BMI under an interaction term. Particularly, BMI was identified as a trigger-like risk factor for depression acting in a
concerted way with the GRS component. This is an interesting finding since it suggests the existence of a risk overlap between both
diseases, and the need for individual depression genetics-risk evaluation in subjects with obesity. This research has therefore
potential clinical implications and set the basis for future research directions in exploring the link between depression and obesity-
associated disorders. While it is likely that future genome-wide studies with large samples will detect novel genetic variants
associated with depression, it seems clear that a combination of genetics and non-genetic information (such is the case of obesity
status and other depression comorbidities) will still be needed for the optimization prediction of depression in high-susceptibility
individuals.
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BACKGROUND
Depression and obesity are common conditions that tend to co-exist.
Depression is the most common psychiatric disorder with more than
300 million people suffering from it. At the same time, the
prevalence of obesity is a serious worldwide issue and one of the
major health challenges of the 21st century [1]. The co-occurrence of
both conditions has been designated as one of the most important
contributors to the worldwide disability burden, further leading to
major personal and public health implications as well as generating
an enormous economic and social cost [2, 3]. Given the high
prevalence of both disorders and their consequences, understanding
the nature of their relationship is a pressing clinical problem.
There is evidence that people with depression are more likely to

be obese compared to psychiatrically-healthy controls [4].
Conversely, people with obesity are also more prone to develop
depression than normal-weight subjects so that the association
between both conditions is bidirectional [5]. Several longitudinal
meta-analyses have robustly evidenced this phenomenon, show-
ing how obesity longitudinally increases the risk of developing
depression, and vice versa [6–9]. The mechanisms underlying this
association remain unclear nonetheless [6]. Behavioral, socio-
cultural, psychological, and biological factors have been proposed
as plausible explanation [3]. Regarding behavioral and socio-
cultural factors, obesity would lead to depression due to stigma,
interpersonal distress, and changes in body image; while
depression would lead to obesity as a result of physical inactivity,
alcohol abuse, and emotional eating [1, 6, 10, 11]. Interestingly,
several biological dysregulations have been further described to
derive from such behavioral alterations in both depression and
obesity [3]. On the other hand, it might happen that depression
and obesity share some molecular disturbances, strongly con-
nected by alterations in the systems involved in homeostatic
adjustments and the brain circuitries that integrate mood
regulatory responses (e.g., the hypothalamic–pituitary–adrenal
(HPA) axis, immuno-inflammatory activation, neuroendocrine
regulators of energy metabolism, or the microbiome) [5, 6, 12–14].
Family-based and twin studies have proven a strong heritable

component for both depression and obesity, with heritability
estimates of ~35% and ~40% for depression and body mass index
(BMI) respectively [15–17]. Although in both cases rare genetic
variants and other chromosomal aberrations represent the bulk of
the genetic load, genome-wide association studies (GWAS) have
also identified a great number of associated single nucleotide
polymorphisms (SNPs). These SNPs only represent a small fraction
of the genetic susceptibility to these diseases nonetheless. While
GWAS studies on BMI already identified hundreds of associated
SNPs more than a decade ago [18–21], GWAS performed on
depression have had notable difficulties for identifying associated
variants [22]. Indeed, it has not been until quite recently that two
depression GWAS meta-analyses identified 44 [23] and 102 [24]
independent and significant loci associated with the disorder.
Besides each individual genetic characterization, a shared genetic
susceptibility profile has also been revealed for both conditions,
which could be another influencing factor for the bidirectional
depression–obesity relationship. Particularly, it has been estimated
that up to 12% of the genetic component for depression could be
shared with obesity [3, 25]. This promising finding has led to
innovative approaches aiming to unveil the molecular mechan-
isms underlying the depression–obesity relationship [26–29].
Although initial expectations for GWASs on depression were high,

mentioned SNPs individually account for only small proportions of
reported heritability. Consequently, the practice of utilizing indivi-
dual SNPs to predict depression is now considered a limited
approach and other innovative perspectives have emerged to take
advantage of available GWAS insights [30]. On this matter, several
genomic studies have proposed to study multiple common SNPs
collectively to improve the estimation of disease predisposition [31].
Based on the construction of genetic-risk scores (GRSs), that include

multiple genetic variants at the same time, these approaches have
recently gathered considerable interest [32], and have proven utility
identifying groups of individuals who could benefit from the
knowledge of their probabilistic susceptibility to disease. In brief, a
GRS is usually calculated as a sum of the number of risk alleles
carried by an individual, where the risk alleles are defined by the
SNPs and their measured effects as detected by GWAS in a particular
trait [33]. Although some authors have previously evaluated the
performance of GRSs to discriminate depression [23], no study to
date has investigated the utility of GRSs for depression prediction in
people with obesity accounting for BMI information. On this matter,
and given the strong relationship between obesity and depression,
it could be possible that the inclusion of BMI information into the
model (along with the GRS) elicits an improvement in predictive
ability. Previous results from our group have already proved the
hypothesis but in the opposite direction; a GRS for obesity improved
its performance when the model included information about the
depression status of each patient [34].
Therefore, in the present study we aimed: (i) To investigate

whether a GRS combining a number of well-defined SNPs associated
with depression might have utility for depression prediction in
individuals with obesity, (ii) To evaluate whether the predictive ability
of the model improves when obesity information is considered as a
covariate, and (iii) To obtain a general picture of the cellular and
molecular pathways mapped by those SNPs included into the GRS.

METHODS
Study population
The sample consisted of 2123 community-based individuals (136 depres-
sion cases, 1987 controls) from the PredictD-CCRT study; a Cluster,
Controlled, Randomized Trial (CCRT). The PredictD-CCRT study was a
national, multicentre randomized controlled trial, which had two parallel
groups: cluster assignment by primary care center, and a follow-up of
18 months. The aim of this study was to assess the performance of a
preventive intervention on the depression incidence, taking into account
the level and profile of risk of depression of each individual. The PredictD-
CCRT was conducted in 70 primary care centers from 7 Spanish cities. The
Spanish National Health Service covers over 95% of the population,
providing free medical service, which ensured a representative sample
from the south of Spain. Participants were assessed for clinical,
psychological, sociodemographic, anthropometric, lifestyle, and other
environmental variables. Individuals who also agreed to participate in
genetic studies gave specific informed consent and provided a biological
sample. This study was approved in each participating city by the
corresponding ethics committee, and it was conducted in compliance with
the Helsinki Declaration. The PredictD protocol, effectiveness, and cost-
effectiveness analyses are fully described and available elsewhere [35–38].
Briefly, patients belonging to the recruiting centers were selected using a
systematic random sampling, each 4–6 patients, from the family
physician’s appointment lists at random starting points for each day.
Family physicians further checked whether the selected patients met any
of the following exclusion criteria: age under 18 or over 75 years; inability
to understand or speak Spanish; severe mental disorder (psychosis, bipolar,
personality disorder…); cognitive impairment; terminal illness; the patient
is scheduled to be out of the city more than four months during the
18 months of the follow-up; and persons who attend the primary care
center on behalf of the person that initially has the appointment [35].

Characterization of depression
The psychiatric interview section was conducted by trained interviewers,
independently from physicians. These research assistants completed a 20-
h training by accredited instructors, in order to guarantee standardization.
The section depression of the Composite International Diagnostic Inter-
view (CIDI) was used for the assessment of depression. The CIDI [39, 40]
which is a structured interview was used for the diagnosis of depression
according to the DSM-IV criteria.

Characterization of BMI and obesity
Height and weight data from each individual were used to calculate body
mass index (BMI) using the formula: weight in kilograms divided by height
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in square meters (kg/m2). International cut-off reference points were
applied for obesity categorization (BMI < 25: normal weight, BMI ≥ 25:
overweight, and BMI > 30: obesity). Underweight individuals (BMI ≤ 18.5)
were excluded from analyses.

SNP selection
An extensive review of the literature was performed by the research team.
Medline and Scopus databases were explored using relevant terms in the field
of depression-associated genes (e.g., “depressive disorder”, “major depressive
disorder”, “major depression”, “MDD”, “candidate gene”, “SNP”, “polymorph-
ism”, “loci”). SNPs were initially selected based on two criteria: (i) SNPs from
candidate genes reported in case-control studies on depression and replicated
in more than one independent study, or in loci having a significant potential
role in depression (i.e., loci involved in well-established pathways associated
with depression: the hypothalamic–pituitary–adrenal (HPA) axis [41] and the
serotonergic system [42]) (n= 25); (ii) SNPs associated with depression from
GWAS or meta-analyses establishing a P-value cut-off of P≤ 7 × 10−6 (n= 47).
The information obtained from each approach was then combined and
compared to the list of SNPs available from Illumina technology (San Diego,
California), so that a definitive list of candidate variants was obtained: 6 and 10
SNPs initially selected from candidate gene studies and GWAS, respectively,
were discarded in this step. Finally, 56 SNPs were selected for downstream
analyses: (i) 19 SNPs from candidate gene association studies [43–55] and (ii)
37 SNPs associated with depression in GWAS or meta-analyses [56–68].
Detailed information for the final 56 candidate SNPs included in the analyses
and their mapped loci is available in Supplementary Table 1a, b.
We further investigated functional and biological databases for

additional information about identified top genetic regions on depression.
Among the genes mapped by the selected SNPs, there are genes
associated with depression-related pathways [25, 69–74]. A pathway
enrichment analysis (PEA) of those genes was performed with the
gprofiler2 R package [75]. Pathways that were significantly over-
represented in the gene list, as compared to all known genes in the

genome, were obtained from Reactome and WikiPathways databases
(Supplementary Fig. 1). The P-value of the enrichment of the different
pathways was computed using a Fisher’s exact test and multiple-test
corrections were applied, considering false discovery rates (FDRs), that
measures expected proportion of false significant matches within results.
Details for the enrichment analysis can be found in Supplementary Table 2.
Besides, following a recent detailed protocol [76], statistically significant
pathways (FDR-adj.P < 0.05) were used to build an enrichment map in the
‘EnrichmentMap’ Cytoscape app [77] with the aim to collapse redundant
pathways into a single biological theme rather than including general and
specific pathways with many shared genes (Supplementary Fig. 2).

Genotyping
A saliva sample was obtained from each participant using the Oragene
DNA saliva collection kit (OG-500; DNA Genotek Inc.). DNA extraction was
performed using standard procedures. DNA concentration was measured
by absorbance measure using the Infinite® M200 PRO multimode reader
(Tecan, Research Triangle Park, NC).
Genotyping was performed using the TaqMan® OpenArrayTM Genotyp-

ing System (Applied Biosystems, Foster City, CA) following the manufac-
turer’s instructions. Raw data were analyzed with the TaqManGenotyper
v1.2 software (Thermo Fisher Scientific). SNPs showing a linkage
disequilibrium (LD) value of R² > 0.8 in pairwise unphased correlations
were removed from the selection. For all candidate markers, we further
evaluated call rate, Hardy–Weinberg equilibrium (HWE), and minor allele
frequency (MAF). MAFs of all SNPs were ≥0.05 and similar to those
reported for Iberian populations in Spain in phase 3 of the 1000 Genomes
Project. To account for the presence of genotyping errors, all SNPs with
less than a 95% call rate were excluded from the analyses. In relation to
HWE, the Wigginton’s exact test was applied only in controls at an alpha
level of 0.05. After all quality control checks, the selected 56 markers were
available for downstream analyses. A complete workflow detailing the
whole SNP selection procedure can be found in Fig. 1.

n= 2123
Case:Control (136:1987) 
Male:Female (801:1322)

"PredictD-CCRT" study

DNA EXTRACTION AND GENOTYPING ARRAY (56 SNPs)

30 SNPs

Con�nuous GRS associa�on test

EXCLUSION CRITERIA
Call rate per SNP < 95 %

Call rate per individual < 100 %
Hardy–Weinberg equilibrium (HWE) p<0.05

Minor Allele Frequency (MAF) ≤ 5 %
Linkage Disequilibrium (LD) R² > 0.8 in 

pairwise unphased correla�ons
Individuals with BMI < 18.5

GRS construc�on

n= 1650
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Models
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Univariate SNP test
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− ( )
) = β0 + β1*SEX + β2*AGE  + β3*PROVINCE + β4*BMI + ε

Model 3:  Ln ( ( )

− ( )
) = β0 + β1*SEX + β2*AGE  + β3*PROVINCE + β4*GRS + ε

Model 4:  Ln ( ( )

− ( )
) = β0 + β1*SEX + β2*AGE  + β3*PROVINCE + β4*GRS + β5*BMI + ε

Model 5:  Ln ( ( )

− ( )
) = β0 + β1*SEX + β2*AGE  + β3*PROVINCE + β4*GRS + β5*BMI + 
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Model 2 vs Model 1
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NRI
cfNRI

IDI
AUC

Model
evalua�on

GRS CONSTRUCTION
26 SNPs discarded due to

incoherence

Removed
0 SNPs &

473 individuals
(32 Cases/441 Controls) 

Fig. 1 Complete workflow detailing the study design and statistical analyses performed: quality control process, association analysis and
construction and evaluation of predictive models. AUC area under the receiver operating characteristic curve, cfNRI the category-free net
reclassification improvement, HWE Hardy–Weinberg equilibrium, IDI integrated discrimination improvement, LD linkage disequilibrium, MAF
minor allele frequency, MDD major depressive disorder, NRI net reclassification improvement, SNP single nucleotide polymorphism.
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Genetic-risk score construction (GRS)
To explore whether common variants with small risk effects on depression
predict depression occurrence in our sample, a GRS was constructed
following an unweighted approach, as implemented in the PredictAbel R
package [78]. In this approach, a GRS is calculated for each individual based
on the number of risk alleles for depression, without accounting for each SNP
effect size. The motivation underlying this choice is the fact that most of the
selected markers came from individual genetic studies, where no robust beta
values were available. All initially selected SNPs from the literature (56 SNPs,
as can be seen in Supplementary Table 1a), were assessed for association in
our sample applying univariate regression analyses on depression. Although
most of these SNPs were not significantly associated with depression in our
sample, all effect sizes and direction of associations were compared to those
reported in the literature for each selected SNP. With the aim of constructing
a robust genetic-risk score, we only selected those SNPs showing concordant
associations (in terms of effect size direction) between the association signal
reported in the literature and the association signal reported in our sample. As
a result, 30 SNPs from the 56 markers were selected for the construction of
the GRS. The rationale behind this procedure is the fact that many of the
selected SNPs might not be significant in our population while still being
associated with depression according to other studies. For these SNPs that
individually do not show statistical association, constructing a GRS is of special
interest since we can combine their small effects so joined, they report a
significant relationship with depression. SNPs in which the minor allele was
reported as a protective marker (instead of a risk variant) were flipped in
order to compute the risk score. Since the GRS cannot be estimated if any of
the markers present a non-callable genotype for a certain individual, subjects
showing a call rate <100% for any of the 30 candidate SNPs were removed
from the analyses. As a result, 1650 individuals (104 depression cases and
1546 controls) were considered for the GRS construction. Details for the SNPs
finally included in the GRS can be found in Supplementary Table 1a.

Statistical analysis
A complete workflow detailing the study design and statistical analyses
performed can be found in Fig. 1. Differences between cases and controls for
main clinical characteristics were analyzed using the Student’s t test, the
Welch’s test, or the U Mann–Whitney test for quantitative variables. The
Pearson’s Chi-squared test was used for investigating group differences in
categorical variables instead. Cohen’s d and Cramér’s V were calculated to
assess effect sizes in quantitative and qualitative variables, respectively.
Binary logistic regression models were employed to test the effect of

each individual SNP on depression under an additive genetic model of
inheritance (thereafter named in the paper as univariate SNP analyses). We
performed a post hoc power analysis based on a Z test for logistic
regression using G-Power software. Power estimation was conceived for a
logistic regression model including the GRS and the rest of adjusting
covariates. Under the assumption of a normal distribution for the GRS in
our sample, the power of our logistic regression in the N= 1650 sample,
was estimated 99.99% (e.g., there is a 99.99% chance of correctly rejecting
the null hypothesis that a particular value of the GRS is not associated with
the value of the outcome variable (depression), with 1650 participants).
Multiple linear regressions were used for the univariate SNP analyses on
BMI. Regression models were evaluated by model control investigating
linearity of effects on outcome(s), consistency with a normal distribution,
and variance homogeneity. Continuous variables were tested for normality
using the Shapiro–Wilk test and transformed when necessary by means of
the natural log or the rank-based inverse normal transformation. All
regression models employed are detailed in Fig. 1. Given the number of
genetic markers analyzed, we considered false discovery rates (FDRs)
calculated as in Benjamini and Hochberg to correct for multiple-hypothesis
testing in univariate SNP analyses [79]. Regarding GRS analyses, logistic
regression models were applied to test whether higher genetic-risk scores
were observed for depression cases than controls. Logistic regression
models were also applied for comparing participants presenting a high-risk
genetic profile (Q2, Q3, or Q4) vs. those belonging to the reference quartile
(Q1). Multiple linear regression was employed to investigate association
between continuous GRS and BMI. Model deviance of logistic regressions
(D²) was calculated to assess the amount of outcome variability explained
by each group of variables. All tested models in our work were properly
adjusted by confounders such as sex, age, province (geographical
location), or BMI whenever necessary (Fig. 1).
To assess the predictive ability of the constructed GRS, five different

predictive models were trained and evaluated in our sample (see trained
models in Fig. 1). The area under the receiver operating characteristic

(ROC) curve (AUC) was calculated for each model and all possible
comparisons between constructed models were tested for statistical
significance in terms of prediction improvement. Besides AUC, three
recently proposed statistical metrics were also adopted to quantify the
added predictive value of each model with respect to its immediate prior.
These statistical metrics were the integrated discrimination improvement
(IDI), the net reclassification improvement (NRI), and the category-free NRI
(cfNRI). All of them have been previously described [80]. Since no
established risk categories exist in depression, the NRI was applied
according to standard risk categories (low (<5%), medium (5% to <25%), or
high (≥25%)) [80]. For this reason, the cfNRI and the IDI were preferred
estimators than NRI in our study. Discrimination plots, predictiveness
curves, prior posterior risk curves, and risk distribution plots were obtained
for each trained model (data not shown but available upon request). All
predictive assessments were conducted using the PredictABEL and the
pROC R packages [78, 81]. All statistical analyses were performed in R
environment, version 3.4.5 (R Project for Statistical Computing).
Besides constructing our models in the whole population (interpretable

models), we also implemented a sampling validation procedure. Particu-
larly, K-fold cross-validation is a great method in case the classes are not
equally balanced in a dataset. The use of this sort of validation consists of
dividing the dataset in k groups or folds of samples (of equal sizes, if
possible). Thus, the learning process is done with k−1 folds (training), and
the evaluation of model’s performance is done with the fold left out
(testing). This iterative method helps to create models using different folds,
and evaluate the model’s performance through different metrics (with the
fold left out). In Particular, we opted for a 5-fold cross-validation. To create
the folds we used the function createFolds() from the caret package. To
calculate the rest of the metrics we used the reclassification() function from
the predictABLE package.

RESULTS
Demographic characteristics
A complete workflow detailing the adopted study design and the
statistical analysis conducted can be found in Fig. 1. General
characteristics of the study population by experimental condition
are summarized in Supplementary Table 3. After excluding
subjects with any missing genotypes or BMI under 18.5, a total
of 1650 participants were finally included in our analysis (104
depression cases and 1546 controls). A significantly higher BMI
was found in depression cases than in control (P= 0.02; Cohen’s
d= 0.24). Furthermore, we found statistically significant differ-
ences in the case-control proportion between the different
provinces of recruitment (P= 0.008; Cramér’s V= 0.103), suggest-
ing that the geographical location of participants could be an
important confounding variable to adjust genetics models for. The
mean age of the participants was slightly higher in the group with
depression than in controls, although this difference was not
statistically significant (P= 0.19; Cohen’s d= 0.13). Regarding sex,
62.24% of the total sample were females with no sex differences
observed between cases and controls (P= 0.64; Cramér’s V=
0.12).

Genetic association analyses on depression
Five SNPs from the 56 candidate genetic variants showed a
significant association with depression status in the univariate
analyses (Supplementary Table 4). While the reference minor
alleles of SNPs rs6537837 and rs242939 (mapping the GNAI3 and
CRHR1 genes, respectively) were reported as protective markers
for depression, the reference minor alleles for the rs349475,
rs310501, and rs1800532 (mapping the genes LINC02223;CDH18,
VCAN;HAPLN1, and TPH1) were identified as risk markers for
depression. Univariate SNP analyses for depression were adjusted
for all pertinent confounders as illustrated in Fig. 1. Although none
of these results remained statistically significant after strict
multiple-hypothesis correction by FDR (alpha= 0.05), all associa-
tions were nominally confirmed using Fisher’s exact tests. The
genetic location of each SNP (i.e., exonic, intronic, intergenic,
upstream, or downstream) is shown in Supplementary Table 1a.
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Surprisingly, all significant SNPs were identified as intronic or
intergenic variants.
From these analyses, 30 SNPs were carefully selected (as they

showed similar directional effect compared to the literature
findings) and incorporated into an unweighted GRS. The GRS was
tested for association with depression status as described in the
“Methods” section and in Fig. 1. The density distribution plot of
the constructed GRS in our population is presented in Fig. 2. The
mean (and standard deviation) of the GRS in the whole sample
was 20.82 (2.97), being 22.38 (2.91) in depression cases and 20.71
(2.94) in controls, being this difference statistically significant (P=
1.02 × 10−7; Cohen’s d= 0.57) (Supplementary Table 3). Interest-
ingly, a logistic regression model adjusted for sex, age, province,
and BMI revealed a strong risk association between the GRS and
the depression status, so that the odds of being depressed were
estimated to increase by factor 1.35 for each additional risk allele
in the GRS (OR= 1.35; CI 95%= [1.13, 1.27]; P= 1.35 × 10−7). The
depression variability attributable to the genetic component in
the model was estimated at 4.17%. When comparing individuals
presenting the highest risk scores (Q4) to those belonging to the
first quartile (Q1) a stronger association was evidenced (OR= 4.19;
CI 95%= [2.3, 7.62]; P= 2.76 × 10−6). When comparing individuals
in the third quartile (Q3) to those belonging to the first quartile
(Q1), the association was quantified with an OR= 2.37 (CI 95%=
[1.25, 4.46]; P= 0.008). The remaining comparison (Q2-vs-Q1)
reported a non-significant result otherwise (OR= 1.73; CI 95%=
[0.92, 3.26]; P= 0.08). When modeling BMI on depression in a
model adjusted for sex, age and province, no significant
association was reported (OR= 1.2; CI 95%= [0.98, 1.46]; P=
0.09). On the other hand, the most intriguing result was the
interaction found between the GRS and BMI (further adjusted for
age, sex, and province), with depression (OR= 1.14; CI 95%=
[1.07–1.20]; P= 1 × 10−4). The direction and magnitude of this
interaction can be observed in Fig. 3, and suggest the existence of

gene-environment interaction phenomena by which BMI
increases the genetics-conferred risk of depression in high-
susceptibility individuals.

Prediction of depression
To demonstrate the validity of the GRS for the prediction of
depression, five logistic regression models were constructed,
trained, and evaluated in our sample. These models comprised
a model with classical demographic information only (age, sex,
and province), named model 1, and other four additional
models that further included (alone or combined) BMI or GRS
information (see Fig. 1 for more details). The predictive ability of
each model was evaluated using AUC. Statistical significance
and magnitude of improvements in predictions between
models were further assessed by means of the metrics NRI,
cfNRI, and IDI, as described in the “Methods” section. Results for
all models and performed comparisons are presented in Fig. 4
and Table 1. The lowest predictive ability corresponded to the
model 1, incorporating classical demographic information only
(AUC= 0.62, 95% CI= [0.57, 0.68]) (Fig. 4). The inclusion of the
GRS into this model (model 3) reported an increase in the AUC
up to 0.69 (95% CI= [0.64, 0.74]) and (P= 1 × 10−5 for cfNRI and
IDI). Instead, the inclusion of BMI into the classical demographic
model (model 2) did not provoke any improvement in the AUC
of model 1 (Table 1). A model combining both the GRS and BMI
as marginal terms alongside the classical demographic variables
(model 4) barely improved the AUC reported for the model 3
(with the GRS as a marginal term). Surprisingly, a model
incorporating an interaction term between the GRS and the BMI
(model 5) achieved the higher predictive ability for depression
(AUC= 0.71, 95% CI= [0.65, 0.76]). The significance of this
improvement of model 5 with regard to both model 3 and 4
was estimated at P= 0.009 for IDI and NRI. Presented results
correspond to the model constructed in the whole sample. In

Fig. 2 Density distribution plot of the constructed GRS in our population. MDD major depressive disorder.
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addition, we cross-validated our findings employing a 5-fold CV
procedure. Our main conclusions remained, although the AUC
of all models slightly decreased (Supplementary Tables 5 and 6).
The results shown in these tables correspond to the average
metrics across folds (k= 5).

Genetic pleiotropy on BMI
Given previous evidence of a shared genetic-risk profile between
depression and BMI, we investigated whether an association could
exist between candidate SNPs and BMI in our sample. For that
purpose, both univariate SNP and GRS-based analyses were
performed with BMI as outcome variable (see Fig. 1 for more
details regarding adjusting covariates). As a result, no significant
association was reported between the GRS and BMI (OR= 1.2,
95% CI= [0.98−1.46], and P= 0.09) (Supplementary Fig. 3). In
univariate SNP analyses, only the rs12457996 (mapping the SYT4
gene) showed a significant association (Supplementary Table 7)
being the C allele associated with a lower BMI in our sample (P=
0.03). The association did not remain statistically significant after
multiple-testing correction.

DISCUSSION
In this study, we constructed an unweighted GRS, including 30
depression-associated genetic-risk variants from previous GWAS
and candidate gene studies on depression (Fig. 1) [57–63]. As a
first goal, we aimed to investigate whether the constructed GRS
was associated with depression as well as if it was able to predict
depression with enough precision and accuracy. Given the strong
connection between depression and obesity, we also aimed to

elucidate whether the predictive ability of the GRS improved with
the inclusion of BMI information for each individual. As a result, we
found that the GRS is strongly associated with depression status
and that it presents a not negligible depression predictive ability
by itself. Remarkably, we showed how the interaction of BMI
information with the GRS improves the predictive ability of the
genetic component, deriving to a predictive ability of certain
clinical relevance (AUC= 0.71). This result goes in line with recent
approaches in which a close relationship between both conditions
has been described [26–28] and complements our previous study
in which we demonstrated the opposite relation [34].
We found that higher scores from the constructed GRS are

strongly associated with a greater prevalence of depression in our
sample (P= 1.35 × 10−7) (Fig. 2). In these analyses, the genetic
component represented by the GRS accounted for 4.17% of the
depression heritability. For the accomplishment of all these
analyses, an unweighted GRS approach was employed, instead
of a weighted GRS, due to the lack of GWAS or genetic meta-
analyses providing robust estimates for the effects of the SNPs of
interest in the literature [56–67]. Despite not using a weighted
approach, our unweighted GRS demonstrated a strong association
with depression, which is in line with previous reports on the
clinical utility of GRS unweighted approaches [34, 82, 83].
The GRS showed a stronger association with depression than

individual SNPs. Thus, it is quite probable that common genetic
variants tested here represent only a small and cumulative
contribution to the whole genetic susceptibility profile of
depression [23, 24, 84], which is a commonly observed
phenomenon in the genetic architecture of many complex
diseases [85]. In our study, the finding of SNPs eliciting small
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Fig. 3 Graphical representation of the direction and magnitude of the GRS*BMI interaction. BMI body mass index, MDD major depressive
disorder, SD standard deviation.
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and cumulative risk effects on depression was further supported
by the fact that the greater and more significant differences were
observed for the comparisons between individuals presenting a
considerable number of risk variants (Q4) and individuals from the
bottom reference quartile (Q1), which are individuals barely
presenting risk alleles (OR= 4.19; CI 95%= [2.3, 7.62]; P= 2.76 ×
10−6).
Both alone and in combination with classic demographic

information, the GRS has demonstrated a good performance for
the prediction of depression status in our sample. Contrary to the
GRS, the addition of BMI information alone to the basic model did
not show an improvement of its performance (although an
increase in the AUC was reported, it did not reach statistical
significance). The further inclusion of BMI information as an
interaction term (along with the GRS) elicited a significant

improvement in the clinical prediction of depression (P-value IDI
= 0.001 and P-value NRI= 0.009) (Table 1). Particularly, BMI was
identified as a trigger-like risk factor for depression acting in a
concerted way with the GRS component (Fig. 3). These findings,
therefore, support the existence of a link between obesity and
depression and reinforce the theory that the relationship is
bidirectional.
In order to obtain a general picture of the cellular and molecular

pathways mapped by analyzed SNPs, an enrichment functional
analysis was conducted. Observed gene overlapping between
some of the significant pathways suggests that those cellular
mechanisms in which are involved could provide part of the
disease map in depression. Associations between those obtained
biological pathways and depression have been found in previous
studies [25, 69, 70]. In this regard, for example, there is evidence

Fig. 4 Evaluation of the predictive ability of the constructed predictive model using AUC. AUC area under the receiver operating
characteristic curve, GRS genetic-risk score.

Table 1. Statistics for model improvement with the addition of genetic and non-genetic-risk factors for MDD.

Initial model: Model 1
Final model: Model 2

Initial model: Model 1
Final model: Model 3

Initial model: Model 3
Final model: Model 4

Initial model: Model 3
Final model: Model 5

Initial model: Model 4
Final model: Model 5

NRI −0.03 (−0.08,0.009) 0.09 (−0.001,0.17) −6e−04 (−0.04,0.04) 0.11 (0.02,0.19) 0.11 (0.02,0.19)

NRI P-value 0.12 0.05 0.98 0.01 0.009

cfNRI 0.19 (−0.006,0.39) 0.43 (0.24,0.63) 0.16 (−0.04,0.36) 0.24 (0.04,0.43) 0.17 (-0.03,0.37)

cfNRI P-value 0.06 1e−05 0.11 0.01 0.09

IDI 0.002 (−6e−04,0.005) 0.02 (0.01,0.03) 0.003 (5e−04,0.006) 0.02 (0.007,0.03) 0.01 (0.005,0.02)

IDI P-value 0.12 1e−05 0.02 0.001 0.001

Model 1 (Sex+Age+Province), Model 2 (Sex+Age+Province+BMI), Model 3 (Sex+Age+Province+GRS), Model 4 (Sex+Age+Province+GRS+ BMI), and Model
5 (Sex+Age+Province+GRS*BMI). The 95% confidence intervals are shown in parentheses. Statistically significant results are highlighted in bold.
NRI net reclassification improvement, cfNRI category-free NRI, IDI integrated discrimination improvement, AUC area under the curve of the receiver operator
characteristic curve.
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that confirms the antidepressant potential of ECM remodeling
after chronic stress by mean of intra-cortical degradation of
perineuronal nets (PNNs) [71]; or the role of the PI3K-Akt signaling
pathway in proinflammatory regulatory mechanisms, given that
neuron inflammation and inflammatory cytokine production
contribute to the pathology of depression [72]; as well as, the
alteration of circadian rhythms and disturbances of sleep [69, 73].
In this way, such evidence not only gives support to the use of
certain polymorphisms as a predictive tool, but also helps us to
contextualize which mechanisms are being altered and to have a
more functional perspective of this analysis.
There are certainly some limitations that should be mentioned.

Some of the main drawbacks from this study include a high
unbalanced design between depression cases and control as well
as the absence of analyzed SNPs from the recently published
meta-analysis list [23, 24]. Therefore, generated hypotheses here
would require more detailed characterization in bigger and
independent cohorts.
In summary, we found that a GRS based on 30 depression-

associated risk loci was significantly associated with depression.
Although GRS on its own explained only a small amount of variance
of depression, a significant novel feature of this study is that including
non-genetic-risk factors such as BMI together with a GRS came close
to the conventional threshold for clinical utility used in ROC analysis
and improves the prediction of depression. This has potential clinical
implications as well as implications for future research directions in
exploring the links between depression and obesity-associated
disorders. While it is likely that future genome-wide studies with
very large samples will detect variants other than the common ones,
it seems probable that a combination of non-genetic information will
still be needed to optimize the prediction of obesity.
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