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Abstract: Advanced glycation end-products (AGEs) may promote oxidative stress and inflammation
and have been linked to multiple chronic diseases, including cancer. However, the association of
AGEs with mortality after colorectal cancer (CRC) diagnosis has not been previously investigated.
Multivariable Cox proportional hazards models were used to calculate hazard ratios and correspond-
ing 95% confidence intervals for associations between dietary intake of AGEs with CRC-specific and
all-cause mortality among 5801 participant cases diagnosed with CRC in the European Prospective
Investigation into Cancer and Nutrition study between 1993 and 2013. Dietary intakes of AGEs
were estimated using country-specific dietary questionnaires, linked to an AGE database, that ac-
counted for food preparation and processing. During a median of 58 months of follow-up, 2421 cases
died (1841 from CRC). Individually or combined, dietary intakes of AGEs were not associated with
all-cause and CRC-specific mortality among cases. However, there was a suggestion for a positive
association between AGEs and all-cause or CRC-specific mortality among CRC cases without type II
diabetes (all-cause, Pinteraction = 0.05) and CRC cases with the longest follow-up between recruitment
and cancer diagnosis (CRC-specific, Pinteraction = 0.003; all-cause, Pinteraction = 0.01). Our study sug-
gests that pre-diagnostic dietary intakes of AGEs were not associated with CRC-specific or all-cause
mortality among CRC patients. Further investigations using biomarkers of AGEs and stratifying by
sex, diabetes status, and timing of exposure to AGEs are warranted.

Keywords: advanced glycation end-products; dietary advanced glycation end-products; all-cause
mortality; colorectal cancer mortality

1. Introduction

Colorectal cancer (CRC) is the third leading cause of cancer death worldwide [1].
Large differences in incidence rates across countries and rapid changes in incidence among
migrant populations suggest that modifiable environmental factors, including diet and
lifestyle, play an important role in CRC etiology [2]. Despite advances in screening and
treatment, there is an increasing number of CRC survivors that are at risk for CRC recur-
rence and death [3]. Multiple lifestyle and dietary factors such as tobacco smoking, obesity,
and heavy alcohol intake have been linked to the risk of CRC [4]. However, knowledge
of the risk factors affecting survival after CRC diagnosis is limited. It is of interest to
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determine whether modifiable factors may affect cancer survival, particularly those that
could be modified by changes in diet or lifestyle.

Advanced glycation end products (AGEs) comprise a large heterogeneous group of
compounds derived from a series of irreversible reactions between reducing sugars and
free amino groups in amino acids, or oxidation of sugars, lipids, and amino acids [5].
Endogenous AGEs are formed in the human body under physiological conditions, and
their formation is enhanced in people with diabetes [6]. A major exogenous source of the
pool of AGEs in our body is from the diet [7,8]. Foods rich in both fat and protein and
cooked at high temperature and with dry heat processing, such as grilling, broiling, frying,
or roasting, tend to be the major sources of dietary AGEs [9]. The best characterized dietary
AGEs include Nε-[carboxymethyl]lysine (CML), Nε-[1-carboxyethyl]lysine (CEL), and
Nδ-[5-hydro-5-methyl-4-imidazolon-2-yl]-ornithine (MG-H1) [10].

Experimental studies have suggested that the accumulation of AGEs can increase
oxidative stress and inflammation in the tissue through binding to the receptor for ad-
vanced glycation end products (RAGEs) [11–16]. Another mechanism through which AGEs
induce pathological effects is via the cross-linking of collagen and other proteins, which
could contribute to structural and physiologic changes in the cardiovascular system [17,18].
Through the above mechanisms, AGEs may act as a risk factor for aging-related health
outcomes [11–13], including reduced survival among cancer patients. In epidemiologic
studies, higher AGEs have been associated with various chronic diseases, including some
cancers and cardiovascular disease (CVD) [19–24], which are associated with reduced sur-
vival. However, the results of previously published observational studies on the association
of AGEs with mortality risk were inconsistent [21,25–31], which in part could be due to
different populations included in the studies (e.g., patients with diabetes or breast cancer, or
older healthy individuals) and different methods for estimating exposure to AGEs. Among
these, most studies focused on AGE measurements in plasma [21,26–30], and only two
prospective studies [25,31] investigated the associations of dietary AGEs with mortality
risk. The first [25] reported a positive association between higher post-diagnosis dietary
AGE intake and all-cause, CVD, and breast cancer mortality among breast cancer patients.
However, the second study among healthy Japanese adults [31] suggested that dietary
AGEs are not associated with higher risk of all-cause mortality. To our knowledge, so far,
no prospective studies have investigated the association of dietary AGEs with mortality
risk among CRC patients.

Therefore, we examined the associations between pre-diagnostic dietary intakes of the
three best characterized AGEs—CML, CEL, and MG-H1—and CRC-specific and all-cause
mortality among individuals diagnosed with CRC in the large, multi-center prospective
cohort, the European Prospective Investigation into Cancer and Nutrition (EPIC) study.
We hypothesized that higher dietary intakes of these AGEs before cancer diagnosis are
associated with higher mortality risk.

2. Methods
2.1. Study Population and Data Collection

The EPIC is a large, multi-center prospective cohort study with more than 520,000 partici-
pants. The details and methods of the EPIC study have been reported previously [32,33].
Participating countries include France, Germany, Greece, Italy, The Netherlands, Spain, the
United Kingdom, Sweden, Denmark, and Norway. Between 1992 and 1998, standardized
lifestyle/personal history questionnaires, anthropometric data, and blood samples were
collected from most participants at recruitment, before disease onset or diagnosis.

Individuals who were eligible for the study were recruited from the general population
of a specific geographical area, town, or province. Exceptions included the French sub-
cohort and the Utrecht (The Netherlands) sub-cohort: the former is based on members of
the health insurance system or state-school employees, while the latter is based on women
who underwent screening for breast cancer. In addition, a portion of the Spanish and
Italian sub-cohorts included blood donors. In our analysis, we included participants from
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all centers except Greece (excluded due to data restriction issues). Lifestyle questionnaires
were used to obtain information on education, physical activity, lifetime alcohol intake,
smoking status, and self-reported diabetes mellitus status at baseline. Anthropometric
measures were assessed at recruitment, and body mass index (BMI) was computed as
weight in kilograms over height in square meters.

The EPIC study was approved by the Ethical Review Board of the International Agency
for Research on Cancer (IARC) and the Institutional Review Boards of each participating
center. Written consent was obtained from all EPIC participants upon enrollment into
the study.

2.2. Dietary Assessment and Estimation of AGE Intake

In EPIC, country- or center-specific validated dietary questionnaires (DQs) were com-
pleted at baseline, accounting for the usual food intake during the previous 12 months [32].
The Netherlands, Germany, Northern Italy, and France used quantitative DQs. In Spain
and Ragusa (Italy), the quantitative DQs were interviewer-administered and structured by
meals. Malmö (Sweden) and the UK used semi-quantitative food frequency questionnaires
in combination with 7-day and 14-day records, respectively. In Umeå (Sweden), Denmark,
Norway, and Naples (Italy), semi-quantitative food frequency questionnaires (FFQs) were
used. Harmonization of food groups and portion sizes for quantification was carried out
centrally at the IARC [34]. Cooking methods were not included in the DQ and FFQ. We
used the most common cooking methods in a given country reported in the 24-hour recalls
either in the EPIC calibration study or in national surveys.

Dietary AGEs were estimated using a reference dietary AGE food composition
database, which is based on the CML, CEL, and MG-H1 concentrations (in mg/100 g of
food) obtained from 190 food items commonly consumed in Europe using ultra-performance
liquid chromatography tandem mass-spectrometry analysis [10]. Foods from the reference
database were matched to those included in the DQs by name and descriptors, particu-
larly those pertaining to preparation and processing whenever applicable [35]. Generic
or multi-ingredient DQ foods were decomposed into more specific foods or ingredients
based on country-specific recipes obtained from previous EPIC projects [34,36]. The EPIC-
specific AGE composition database was then generated and used to obtain the daily intake
(mg/day) of CML, CEL, and MG-H1 per study participant. The validity of these data was
further confirmed by assessing the expected associations between higher dietary intakes of
any of three AGEs and weight gain after an average of five years of follow-up in the same
study population [36].

2.3. Cancer Ascertainment and Follow-Up

Cancer data was coded using the International Classification of Disease (ICD)-10 and
the second revision of the ICD for Oncology (ICD-O-2). CRC cases included participants
who developed colon (C18.0–C18.7), rectal (C19–C20), and overlapping or unspecified
origin colorectal tumors (C18.8–C18.9). CRC included colon and rectal cancer cases. Colon
cancer included tumors that developed in both the proximal site (C18.0–C18.5: cecum,
appendix, ascending colon, hepatic flexure, transverse colon, and splenic flexure) and the
distal site (C18.6–C18.7: descending and sigmoid colon).

Incident cancer cases were ascertained through record linkage with regional cancer
registries (Denmark, Italy, The Netherlands, Norway, Spain, Sweden, and the United
Kingdom; complete up to 2011–2013) or through a combination of methods, including the
use of health insurance records, contacts with cancer and pathology registries, and active
follow-up through study subjects and their next-of-kin (France and Germany; complete
up to 2008 and 2009). Of 6027 identified CRC cases, we excluded individuals who were
missing dietary AGE data (n = 99), had tumor stage coded as in situ (n = 3), had a follow-up
time of zero due to cancer diagnosis listed on the death certificate (n = 4), or reported
extreme total energy intakes (top and bottom 1% of the total energy intake to estimated
energy requirements ratio; n = 120), leaving 5801 CRC cases for the final analytic cohort.
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2.4. Vital Status Follow-Up

Vital status follow-up was determined through record linkage with regional and/or
national mortality registries (Denmark, Italy, The Netherlands, Spain, and the United
Kingdom) or active follow-up (France and Germany). Censoring dates for complete follow-
up were between January 2013 and February 2015. Mortality was coded using ICD-10
(which includes Injuries and Causes of Death), and the outcome was assigned based on the
underlying cause of death.

2.5. Statistical Analyses

Dietary intakes of CML, CEL, and MG-H1 were natural log (ln)-transformed, and
total energy intake was adjusted using the residual method [37]. For energy adjustment,
we computed standardized residuals of each of the three AGEs by regressing the ln-
transformed AGEs on total energy intake, sex, and center and adding back the sex- and
center-specific mean to each observation. The combined AGE value was calculated as
the sum of the three total energy-adjusted AGEs. The total energy-adjusted AGEs were
analyzed separately and combined on a continuous scale per standard deviation (SD)
increment and as quintiles of intake across all centers.

Death from CRC was the primary endpoint, and death from any cause was used as
a secondary endpoint. Entry time was age at first tumor diagnosis, and exit time was
either death or censoring date (lost to or end of follow-up), whichever event occurred
first. Cox proportional hazard models were used to calculate hazard ratios (HRs) and
95% confidence intervals (CIs). The proportional hazard assumptions for all variables in
the model were tested with Schoenfeld residuals and included a time-dependent covari-
ate in the Cox model. Two main models were fitted with different sets of adjustments.
Model 1 was stratified by center and adjusted for sex, age at diagnosis (continuous, years),
tumor stage (I, II, III, IV, missing), and total energy intake (continuous, kcal/day). To
determine the final model (Model 2), the following a priori identified covariates were
assessed as potential confounders: grade of tumor differentiation (well, moderately, poorly
differentiated, unknown), location of primary tumor (colon or rectum), smoking status
(never smoker, former smoker, current smoker, unknown), BMI (kg/m2), year of diagnosis,
dietary intakes (red and processed meats, fruits and vegetables, dietary calcium, dietary
fiber, sugar, dairy, alcohol drinking pattern), physical activity, and type II diabetes based
on self-reporting at baseline and ascertainment before cancer diagnosis. These variables
were chosen based on previous published evidence showing their associations with CRC
incidence or survival and/or AGEs. We evaluated confounding by assessing change (>10%)
in HRs after including the variables in the model. The final Model 2 was stratified by
center and adjusted for year of diagnosis (continuous), location of tumor (colon/rectum),
BMI (continuous, kg/m2), smoking status (never, former, current, missing), and type II
diabetes (no, yes, missing; defined as being diagnosed with diabetes at baseline or during
follow-up). Participants with missing values were included in all analyses, and respective
variables were coded with a missing value indicator, unless otherwise specified. p-value for
trend was calculated, with the median value of each AGE quintile included as a continuous
variable in the corresponding models.

To evaluate the linearity of the dose-response associations between continuous intakes
of AGEs and risk for CRC-specific and all-cause mortality, non-parametric restricted cubic
splines [38,39] were fitted to a Cox proportional hazard model using the SAS macro
“lgtphcurv9” [40]. Tests for non-linearity used the likelihood ratio test, comparing the model
with only the linear term to the model with both the linear and cubic spline terms [40].

We assessed whether missing tumor stage information influenced the effect estimates
using several approaches. The first approach reclassified missing tumor stage values into a
separate missing category and adjusted for the stage variable in the final model (included
in the primary analysis). Second, a sensitivity analysis was conducted by excluding
participants with missing stage information and subsequently by assessing how the results
were affected by the missing stage information. Finally, an imputation of missing tumor
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stage values was conducted using the SAS PROC MI procedure as described previously [41].
The multiple imputation method was based on available data for the other covariates in
the model and assumed that the stage data was missing at random.

Stratified analyses by categories of potentially biologically relevant effect modifiers
(time interval between recruitment and CRC diagnosis, length of follow-up, sex, age at
diagnosis, tumor site, grade, and stage, BMI, physical activity, smoking status, alcohol
intake, and prevalent and incident diabetes) were conducted. Stratified multivariable-
adjusted HRs and 95% CIs were reported per 1 SD increase in CML, CEL, MG-H1, and
combined AGEs. A cross-product of AGE as a continuous variable and the covariate
of interest as a continuous or categorical variable was included in the model to test for
multiplicative statistical interaction; the likelihood ratios based on the models with and
without the interaction terms were used to test for statistical significance.

All statistical tests were conducted using SAS version 9.2 (SAS Institute, Cary, NC,
USA). p-values of <0.05 were considered statistically significant.

3. Results
3.1. Patient Characteristics

Among the 5801 eligible CRC cases, over a mean of 68 (median = 58) months of follow
up, 2421 died of any cause (including 1841 from CRC). Selected baseline characteristics of
study participants across quintiles of the combined AGEs are shown in Table 1. CRC cases
in the highest compared to the lowest quintile of the combined AGEs were less likely to be
current smokers and, on average, had lower red meat consumption.

Table 1. Selected baseline characteristics of CRC cases (N = 5801) according to quintiles of pre-diagnostic combined a

energy-adjusted dietary AGE intake b in the EPIC study.

Characteristic

Combined a Dietary AGEs (mg/d)

Quintile 1:
<19.79

(N = 1160)

Quintile 2:
19.79–23.20
(N = 1160)

Quintile 3:
23.21–26.80
(N = 1161)

Quintile 4:
26.81–32.26
(N = 1160)

Quintile 5:
>32.26

(N = 1160)
p-Value

Age at diagnosis, mean (SD), y 66.04 (7.68) 65.69 (8.63) 66.01 (8.65) 66.49 (8.70) 67.25 (8.93) 0.39
Women, N (%) 870 (75) 709 (61) 680 (59) 570 (49) 491 (42) <0.001

Year at dx, median (min-max) 2004
(1993–2013)

2005
(1993–2013)

2005
(1993–2013)

2005
(1993–2013)

2005
(1992–2013) 0.89

Stage of disease, N (%) c <0.001
I 225 (19) 217 (19) 228 (20) 259 (22) 226 (19)
II 241 (21) 224 (19) 177 (15) 213 (18) 172 (15)
III 286 (25) 304 (26) 325 (28) 258 (22) 250 (22)
IV 165 (14) 142 (12) 128 (11) 116 (10) 98 (8)

Location of primary tumor, N (%) 0.75
Colon 762 (66) 748 (65) 766 (66) 750 (65) 752 (65)

Rectum 398 (34) 412 (35) 395 (34) 410 (35) 408 (35)
Smoking status, N (%) c <0.001

Never 462 (40) 482 (42) 462 (40) 471 (41) 494 (43)
Former 364 (31) 365 (31) 403 (35) 410 (35) 422 (36)
Current 326 (28) 301 (26) 276 (24) 259 (22) 224 (19)

BMI, mean (SD), kg/m2 26.14 (4.33) 26.29 (4.21) 26.34 (4.16) 26.54 (4.16) 26.17 (4.26) 0.15
Physical activity d, N (%) c <0.001

Inactive 197 (17) 182 (16) 187 (16) 181 (16) 128 (11)
Moderately inactive 383 (33) 375 (32) 351 (30) 320 (28) 347 (30)
Moderately active 446 (38) 450 (39) 458 (40) 458 (39) 438 (38)

Active 85 (7) 105 (9) 99 (9) 103 (9) 123 (11)
Diabetes e, N (%) c <0.001

No 952 (82) 943 (81) 922 (80) 901 (78) 881 (76)
Yes 105 (9) 106 (9) 122 (11) 111 (10) 105 (9)

Daily dietary intakes
Total energy, mean (SD), kcal 2019.4 (584.6) 2098.2 (609.6) 2115.0 (602.4) 2158.6 (628.8) 2155.3 (639.2) <0.001
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Table 1. Cont.

Characteristic

Combined a Dietary AGEs (mg/d)

Quintile 1:
<19.79

(N = 1160)

Quintile 2:
19.79–23.20
(N = 1160)

Quintile 3:
23.21–26.80
(N = 1161)

Quintile 4:
26.81–32.26
(N = 1160)

Quintile 5:
>32.26

(N = 1160)
p-Value

Fiber, mean (SD), g 19.8 (6.9) 21.6 (6.8) 22.8 (7.1) 23.9 (7.7) 25.4 (8.7) <0.001
Dietary calcium, mean (SD), mg 980.4 (440.7) 976.7 (408.5) 969.8 (378.6) 989.4 (375.1) 1003.4 (394.1) 0.30

Fruits, mean (SD), g 220.6 (191.4) 223.3 (184.7) 225.2 (183.0) 222.1 (161.4) 202.9 (155.0) 0.02
Vegetables, mean (SD), g 179.9 (123.3) 178.7 (115.9) 187.0 (115.0) 193.7 (125.2) 191.7 (132.1) 0.007
Red meat, mean (SD), g 50.9 (35.3) 52.7 (38.0) 52.7 (41.1) 46.5 (37.6) 41.9 (37.4) <0.001

Processed meat, mean (SD), g 30.9 (26.7) 34.5 (28.8) 34.6 (31.3) 37.8 (30.5) 37.2 (36.1) <0.001

Abbreviations: AGE, advanced glycation end product; BMI, body mass index; CRC, colorectal cancer; CML, Ne-(caroxymethyl)lysine; CEL,
Ne-(1-caroxyethyl)lysine; d, day; g, gram; MG-H1, Ne-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine; SD, standard deviation; y, years; dx,
diagnosis. a Combined AGEs = CML+CEL+MG-H1. b Total energy-adjusted residuals were computed by fitting a linear regression of the
log-transformed intake of AGEs on total energy intake, sex, and center. c The sum of percentages across subgroups did not add up to 100%
due to missing values. d Combined recreational and household activity as measured by the Cambridge index and shown as sex-specific
categories of metabolic equivalents. e Diabetes based on self-reporting at baseline and ascertainment during follow-up.

3.2. Dietary Intakes of AGEs and Mortality among CRC Patients

The associations of CML, CEL, MG-H1, and the combined AGEs with CRC-specific
and all-cause mortality are shown in Table 2. In our study population, the pre-diagnostic
dietary intakes of AGEs were not statistically significantly associated with CRC-specific or
all-cause mortality risk. For CRC-specific mortality, the fully adjusted HRs for the highest
relative to the lowest quintile (HRQ5 vs. Q1) of CML, CEL, MG-H1, and the combined
AGEs were 1.16 (95% CI: 0.98–1.36, Ptrend = 0.23), 1.11 (95% CI: 0.94–1.31, Ptrend = 0.13),
1.10 (95% CI: 0.94–1.28, Ptrend = 0.24), and 1.09 (95% CI: 0.93–1.28, Ptrend = 0.29), respectively.
For all-cause mortality, the fully adjusted HRQ5 vs. Q1 of CML, CEL, MG-H1, and the com-
bined AGEs were 1.13 (95% CI: 0.98–1.30, Ptrend = 0.36), 1.03 (95% CI: 0.89–1.19, Ptrend = 0.47),
1.09 (95% CI: 0.95–1.25, Ptrend = 0.23), and 1.08 (95% CI: 0.94–1.24, Ptrend = 0.33), respectively.
Although the suggestive positive associations for MG-H1 and combined AGEs were ob-
served mostly among women, no statistically significant interactions by sex were identified
(Supplemental Table S1). p-values for nonlinearity tests from the restricted cubic splines
models were generally consistent with a linear response (Supplemental Figures S1 and S2),
except for CML, which were consistent with a non-linear response.

Table 2. The associations of pre-diagnostic energy-adjusted dietary intakes of advanced glycation end products (AGEs) a

with all-cause and CRC-specific mortality among CRC patients in the EPIC study (n = 5801).

AGEs a Cut-Offs N
All-Cause Mortality CRC-Specific Mortality

Event HR (95% CI) b,c HR (95% CI) b,d Event HR (95% CI) b,c HR (95% CI) b,d

CML, mg/d
Quintile 1 <2.3 1160 447 1.00 (ref) 1.00 (ref) 348 1.00 (ref) 1.00 (ref)
Quintile 2 [2.3–2.7) 1160 489 1.11 (0.97–1.26) 1.14 (1.00–1.30) 384 1.13 (0.98–1.31) 1.13 (0.98–1.32)
Quintile 3 [2.7–3.1) 1161 498 1.11 (0.97–1.27) 1.13 (0.99–1.30) 368 1.08 (0.93–1.26) 1.10 (0.94–1.28)
Quintile 4 [3.1–3.7) 1160 474 0.99 (0.86–1.14) 1.02 (0.89–1.18) 361 1.03 (0.88–1.21) 1.04 (0.89–1.22)
Quintile 5 ≥3.7 1160 513 1.08 (0.93–1.25) 1.13 (0.98–1.30) 380 1.14 (0.97–1.34) 1.16 (0.98–1.36)

ptrend
e 0.72 0.36 0.31 0.23

Per 1.01 mg/d 1.00 (0.96, 1.04) 1.02 (0.98–1.06) 1.03 (0.98–1.08) 1.03 (0.98, 1.08)
CEL, mg/d
Quintile 1 <1.6 1160 463 1.00 (ref) 1.00 (ref) 354 1.00 (ref) 1.00 (ref)
Quintile 2 [1.6–1.9) 1160 435 0.90 (0.79–1.03) 0.92 (0.80–1.05) 335 0.92 (0.79–1.07) 0.93 (0.80–1.09)
Quintile 3 [1.9–2.2) 1161 492 1.01 (0.88–1.15) 1.01 (0.89–1.15) 378 1.04 (0.89–1.21) 1.04 (0.89–1.21)
Quintile 4 [2.2–2.6) 1160 496 0.92 (0.80–1.06) 0.92 (0.80–1.06) 368 0.96 (0.82–1.13) 0.96 (0.82–1.13)
Quintile 5 ≥2.6 1160 535 1.03 (0.89–1.18) 1.03 (0.89–1.19) 406 1.10 (0.93–1.29) 1.11 (0.94–1.31)

ptrend
e 0.45 0.47 0.14 0.13

Per 0.73 mg/d 1.01 (0.97–1.06) 1.01 (0.97–1.06) 1.02 (0.97–1.08) 1.02 (0.97–1.08)
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Table 2. Cont.

AGEs a Cut-Offs N
All-Cause Mortality CRC-Specific Mortality

Event HR (95% CI) b,c HR (95% CI) b,d Event HR (95% CI) b,c HR (95% CI) b,d

MG-H1,
mg/d

Quintile 1 <15.5 1160 457 1.00 (ref) 1.00 (ref) 360 1.00 (ref) 1.00 (ref)
Quintile 2 [15.5–18.4) 1160 471 1.07 (0.93–1.22) 1.07 (0.94–1.22) 370 1.07 (0.93–1.25) 1.08 (0.93–1.26)
Quintile 3 [18.4–21.4) 1161 460 0.99 (0.87–1.14) 1.00 (0.88–1.15) 335 0.94 (0.80–1.09) 0.95 (0.81–1.11)
Quintile 4 [21.4–26.1) 1160 506 1.08 (0.94–1.23) 1.09 (0.95–1.24) 393 1.07 (0.92–1.25) 1.09 (0.93–1.27)
Quintile 5 ≥26.1 1160 527 1.07 (0.93–1.22) 1.09 (0.95–1.25) 383 1.08 (0.92–1.26) 1.10 (0.94–1.28)

ptrend
e 0.37 0.23 0.35 0.24

Per 8.47 mg/d 1.01 (0.97–1.05) 1.02 (0.98–1.05) 1.02 (0.98–1.07) 1.03 (0.98–1.08)
Combined AGEs f, mg/d

Quintile 1 <19.8 1160 453 1.00 (ref) 1.00 (ref) 356 1.00 (ref) 1.00 (ref)
Quintile 2 [19.8–23.2) 1160 467 1.08 (0.94–1.23) 1.09 (0.95–1.24) 367 1.08 (0.93–1.26) 1.10 (0.95–1.28)
Quintile 3 [23.2–26.8) 1161 463 1.01 (0.88–1.15) 1.02 (0.89–1.17) 336 0.96 (0.82–1.12) 0.97 (0.83–1.13)
Quintile 4 [26.8–32.3) 1160 520 1.09 (0.95–1.24) 1.10 (0.96–1.26) 405 1.10 (0.95–1.28) 1.11 (0.96–1.30)
Quintile 5 ≥32.3 1160 518 1.06 (0.92–1.21) 1.08 (0.94–1.24) 377 1.07 (0.91–1.25) 1.09 (0.93–1.28)

ptrend
e 0.50 0.33 0.42 0.29

Per 9.83 mg/d 1.01 (0.97–1.05) 1.02 (0.98–1.05) 1.02 (0.98–1.08) 1.03 (0.98–1.08)

Abbreviations: AGE, advanced glycation end products; CRC, colorectal cancer; CML, Ne-(caroxymethyl)lysine; CEL, Ne-(1-
caroxyethyl)lysine; d, day; MGH1, Ne-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine; mg, milligram; HR, hazard ratio; ref, reference
category. a Residuals were computed by a linear regression of the log-transformed intake of AGEs on total energy intake, sex and center.
b Quintile 1 was a reference category in each model. c Multivariable cox proportional hazard model, stratified by center, and adjusted
for sex, age at diagnosis (yrs; continuous) and stage (categorical) and total energy intake (kcal/d; continuous). d Multivariable cox
proportional hazard model, stratified by center, and adjusted for sex, age at diagnosis (y; continuous), stage (categorical), total energy intake
(kcal/d; continuous), year of diagnosis (continuous), location of tumor(categorical), BMI (continuous), smoking status(categorical) and
prevalent/incident diabetes (categorical). e Ptrend was calculated with the median value of each quintile of AGE as a continuous variable,
adjusted for covariates in the corresponding model. f Combined AGEs: CML+CEL+MGH1.

3.3. Sensitivity Analyses

Excluding participants with missing stage information (around 26%) or using imputed
missing tumor stage data had no effect on the results (Supplemental Table S2) We also
assessed whether the association between dietary AGEs and risk of mortality differed for
long-term survivors. After the exclusion of cases that occurred during the first 5 years of
follow-up, a positive association of pre-diagnostic dietary AGEs with CRC-specific mortal-
ity was found for CML (HR = 1.19, 95% CI: 1.04–1.36; Ptrend = 0.01) and CEL (HR = 1.15,
95% CI: 1.02–1.30; Ptrend = 0.02) (Supplemental Table S2). Similar results were also observed
for all-cause mortality (Supplemental Table S3).

3.4. Stratified Analyses

Stratified analyses suggested differences in the associations between dietary AGEs and CRC-
specific (Figure 1 and Supplemental Table S2) and all-cause mortality (Supplemental Table S3)
across select subcategories of potential a priori defined biologically plausible effect modi-
fiers. Statistically significant positive associations between AGEs and mortality risk were
observed among participants who were diagnosed with CRC more than 11 years after
recruitment (CRC-specific mortality, per one SD change in AGE; HR CML = 1.09, 95% CI:
1.00–1.20; HR CEL = 1.11, 95% CI: 1.02–1.20, HR MG-H1 = 1.11, 95% CI: 1.02–1.21, and HR
AGEs = 1.11, 95% CI: 1.03–1.21; all Pinteraction < 0.01). There were also some indications that
the associations of CML, CEL, MG-H1, and the combined AGEs were slightly stronger
among participants without type II diabetes, with HRs of 1.07 (95% CI: 1.01–1.13), 1.05
(95% CI: 1.00–1.12), 1.06 (95% CI: 1.00–1.12), and 1.06 (95% CI: 1.00–1.12) for CRC-specific
mortality, and 1.05 (95% CI: 1.00–1.11), 1.04 (95% CI: 1.00–1.09), 1.05 (95% CI: 1.00–1.10),
and 1.05 (95% CI: 1.00–1.11) for all-cause mortality, respectively.
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Figure 1. The associations of pre-diagnostic combined dietary intake of AGEs a with CRC-specific mortality across strata of
selected patient characteristics among individuals with CRC in the EPIC study (n = 5801). Abbreviations: AGE, advanced
glycation end products; CRC, colorectal cancer. a Combined AGEs: CML+CEL+MGH1. b Diabetes based on self-reporting
at baseline and ascertainment during follow-up.

4. Discussion

Our findings suggest that pre-diagnostic dietary intakes of AGEs were not associated
with CRC-specific and all-cause mortality among CRC patients in this large prospective
study. Stratified analyses suggested potential interactions by time between recruitment
and CRC diagnosis and that the association might be limited to individuals without type II
diabetes and with more than 5 years of follow-up after cancer diagnosis.

AGEs are associated with oxidative stress and inflammation [5,9], which can be
involved in the initiation and progression of multiple chronic diseases, including can-
cers [11–13]. The accumulation of AGEs can activate intracellular signals via binding
to RAGEs, which in turn can promote inflammation and tissue injury sustained by a
RAGE-dependent expression of proinflammatory mediators, such as circulating mono-
cyte chemotactic protein 1 (MCP-1) and vascular cell adhesion molecule 1 (VCAM-1) [5].
Exposure to AGEs can also lead to increased levels of reactive oxygen species, which are
associated with an increase in oxidative stress. Both inflammation and oxidative stress are
associated with cellular and DNA damage, which could lead to carcinogenic mutation and
subsequent initiation, development, and progression of CRC [42–44]. In addition, AGEs
might crosslink with the proteins, leading to functional alterations of the vasculature and
angiogenesis [17,18], which might contribute to carcinogenesis [45]. AGEs could also be
associated with adverse outcomes, including recurrence and death, among CRC survivors.
Evidence from previous clinical trials has linked an AGE-restricted diet to a decrease in
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plasma AGEs and to markers of oxidative stress and inflammation [13,15,46], which might
support the idea that dietary AGEs contribute to the pool of AGEs in the human body and
could lead to CRC development and progression.

Only two previous epidemiologic studies investigated the association of dietary AGE
intakes with all-cause or cause-specific mortality risk and were limited to only dietary
CML [25,31]. A prospective study among postmenopausal women diagnosed with invasive
breast cancer (n = 2073) in the Women’s Health Initiative (WHI) study reported a statistically
significant positive association between higher post-diagnosis dietary intake of CML and
an increased risk of all-cause (HR = 1.51, 95% CI: 1.17–1.94), CVD (HR = 1.86, 95% CI:
1.19–2.91), and breast cancer (HR = 2.14, 95% CI: 1.19–3.84) mortality [25]. However, the
investigators measured CML only, and the assessment of dietary CML was based on
food composition as determined via an enzyme-linked immunosorbent assay (ELISA)
method, which is different from our quantitative instrumental mass-spectrometry method
for assessing dietary AGEs. The other study in a Japanese prospective cohort (men = 13,335
and women = 15,724) suggested that dietary CML intake estimated using a reference
liquid chromatography tandem mass-spectrometry-based data set was not statistically
significantly associated with higher mortality in healthy adults [31]. However, among
men, higher CML intake was associated with lower risk for all-cause mortality (HR = 0.89,
95% CI: 0.79–1.00; Ptrend = 0.05). Considering differences in timing of exposure (after cancer
diagnosis in the WHI study), AGE assessment methods (ELISA), and study populations
(breast cancer survivors and healthy adults), our results among patients with CRC may
not be directly comparable with previous findings. However, somewhat consistent with
previous findings, our study suggested that the positive AGE-mortality association might
be stronger among women. A prospective cohort study from Finland of non-diabetic men
(n = 535) and women (n = 606) also reported a stronger positive association between AGE-
modified bovine serum albumin (BSA), measured via ELISA, and all-cause mortality in
women but not men [30]. The reason behind this difference is not clear, but it is possible that
the biological differences between men and women in metabolism and immune response
could account for both our and previous findings. Earlier evidence suggested that AGE
accumulation is associated with positive expression of estrogen receptor alpha among
breast cancer patients and supported a potential mechanistic link between AGEs and
estrogen signaling [47,48]. This potential mechanism might contribute to the stronger AGE-
mortality associations in women with CRC, although we did not observe any differences
in women by menopausal status.

In our sensitivity analyses, after restricting participants to those who were diagnosed
with CRC after 11 years of recruitment, positive associations of dietary AGEs with increased
mortality risk were observed. These results are consistent with our original hypotheses.
A possibility for this could be that AGEs might influence molecular features and specific
molecular pathways of colon cancer during its development and progression [49], so that
earlier AGE exposures may be more important than later ones in relation to mortality risk.
We also found a suggestive positive association between intakes of CML and CEL and high
mortality risk with more than two years of follow-up after cancer diagnosis, which suggests
that the exposure might be more relevant for long-term outcomes. We also found a positive
association between intake of AGEs and high mortality risk in participants without type II
diabetes, which could in part be due to higher formation of endogenous AGEs relative to
dietary intake of AGEs among individuals with type II diabetes [9].

The major strengths of this study include the prospective study design, large sample
size, comprehensive collection and assessment of multiple potential confounding/effect
modifying factors, and multiple sensitivity analyses. In addition, our study used a state-of-
the-art quantitative instrumental mass-spectrometry-based method to assess three different
types of AGEs in foods [35], and we followed the recent “quality control” recommendations
for studies on AGEs, i.e., the study of several specific AGEs and the use of a validated food
composition database to estimate individual dietary AGE exposures [50].
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Our study also has several limitations. First, the dietary data were measured at
baseline before cancer diagnosis, and some participants might have modified their diet after
CRC diagnosis. However, earlier (not later) exposure to AGEs could be more important in
shaping the microenvironment for tumor development and determining its aggressiveness.
Second, we cannot exclude a potential misclassification in estimating dietary AGEs, which
is also influenced by personal cooking preferences. However, it was reported previously
that higher intakes of CEL, CML, and MG-H1 were positively associated with weight gain
and obesity after, on average, 5 years of follow-up in the EPIC study, which indicates the
validity of our dietary AGE assessment [36]. Third, our study population was limited to
Western European CRC patients, which restricts the generalizability of the study results.
Fourth, CRC cases might have changed their diet after cancer diagnosis. However, the pre-
diagnostic diet could be more indicative of exposures that promoted tumor development
and progression and influenced the tumor molecular profile and aggressiveness. Fifth,
we did not have information on CRC treatment. Generally, during the follow-up period,
we would not expect CRC treatment to differ by country within the countries and centers
participating in this study or by year of diagnosis or tumor stage. Therefore, our analyses
were conducted stratified by country of CRC diagnosis and adjusted for tumor stage
and year of diagnosis. Finally, to estimate the effect of missing CRC stage data we used
several approaches, all of which demonstrated the robustness of effect estimates against
uncertainties in CRC stage classification.

5. Conclusions

In conclusion, our findings suggest that pre-diagnostic dietary intakes of AGEs might
not be associated with CRC-specific or all-cause mortality among individuals diagnosed
with CRC. Further studies are necessary to investigate these associations in different
populations and examine whether these associations are stronger among women and
long-term survivors and differ by diabetes status and timing of exposure to AGEs.
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