
Research Article
An Automorphic Distance Metric and Its Application to Node
Embedding for Role Mining

Vı́ctor Martı́nez , Fernando Berzal , and Juan-Carlos Cubero

Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain

Correspondence should be addressed to Fernando Berzal; berzal@acm.org

Received 2 February 2021; Accepted 14 September 2021; Published 13 October 2021

Academic Editor: Atila Bueno

Copyright © 2021 Vı́ctor Mart́ınez et al.)is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Role is a fundamental concept in the analysis of the behavior and function of interacting entities in complex networks. Role
discovery is the task of uncovering the hidden roles of nodes within a network. Node roles are commonly defined in terms of
equivalence classes. Two nodes have the same role if they fall within the same equivalence class. Automorphic equivalence, where
two nodes are equivalent when they can swap their labels to form an isomorphic graph, captures this notion of role.)e binary
concept of equivalence is too restrictive, and nodes in real-world networks rarely belong to the same equivalence class. Instead, a
relaxed definition in terms of similarity or distance is commonly used to compute the degree to which two nodes are equivalent. In
this paper, we propose a novel distance metric called automorphic distance, which measures how far two nodes are from being
automorphically equivalent. We also study its application to node embedding, showing how our metric can be used to generate
role-preserving vector representations of nodes. Our experiments confirm that the proposed automorphic distance metric
outperforms a state-of-the-art automorphic equivalence-based metric and different state-of-the-art techniques for the generation
of node embeddings in different role-related tasks.

1. Introduction

Role discovery is defined as the process of finding sets of
nodes following similar connectivity patterns or structural
behaviors [1].)e role of a node can be understood as the
function that node plays in the network. Different studies
have shown the importance of roles in different domains,
including predator-prey food webs [2], international rela-
tions [3], or the function of proteins in proteomes [4].

Unfortunately, this problem has received limited at-
tention when compared to community detection [5–7],
despite that role discovery identifies complementary in-
formation and has found applications in several useful
network data mining tasks. For example, roles can be used to
model and characterize the behavior of entities in a network,
to predict structural changes, and to detect anomalies [8].
Since the same roles can be observed across different net-
works, this information has been successfully exploited for
transfer learning [9]. Role information can also be used for
enhancing the visualization of interesting patterns in graphs

[10]. Additional applications of role discovery have been
described in the scientific literature [1].

Formally, two nodes have the same role if, given an
equivalence relation, they belong to the same equivalence
class [11, 12]. Different equivalence classes have been studied
for nodes in networks.

Structural equivalence, where two nodes play the same
role if they are connected to exactly the same neighbor nodes,
has been widely studied [13, 14].)ese nodes will have exactly
the same topological properties, such as degree, clustering
coefficient, or centrality, since they are indistinguishable from
a structural point of view. However, different authors have
pointed out the limitations of structural equivalence for
modeling roles or positions, which is the name that roles
receive in sociology, since structural equivalence is more
related to the concept of locality than the actual concept of
role [15]. If the constraint of having to be connected to exactly
the same neighbors is relaxed to being connected to neighbors
with exactly the same topological function, we obtain auto-
morphic equivalence classes, where two nodes are equivalent

Hindawi
Complexity
Volume 2021, Article ID 5571006, 17 pages
https://doi.org/10.1155/2021/5571006

mailto:berzal@acm.org
https://orcid.org/0000-0002-6537-2599
https://orcid.org/0000-0002-5012-8403
https://orcid.org/0000-0002-9987-1740
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5571006

if they can swap their labels to form an isomorphic graph
[16, 17]. Automorphically equivalent nodes will also have
exactly the same topological properties, but, without the
requirement of locality imposed by structural equivalence,
pairs of nodes at distances larger than two can still have the
same role.)erefore, automorphic equivalence is more
closely related to the intuitive concept of role, which is un-
derstood as the function of a node within a network.

Other equivalence classes, less relevant than the previ-
ously mentioned ones, are not covered in this work. Regular
equivalence deserves a special mention due to its importance
as a relaxation of automorphic equivalence that only re-
quires being connected to nodes with the same function,
omitting the actual count of connections [18]. Regular
equivalence does not preserve topological properties and is
more suited to hierarchically organized networks [2].

)ese binary equivalences are strict mathematical ab-
stractions that rarely occur in real-world networks, leading
to all nodes being assigned a different role. In practice,
equivalences are relaxed to similarities, allowing two nodes
to play the same role by partially satisfying the constraints
imposed by the mathematical definition of structural,
automorphic, or regular equivalence.

In this paper, we present a novel automorphic distance
metric, capturing distances between nodes in terms of auto-
morphic equivalence. According to the network structure, two
nodes will be at a distance that is proportional to how far they
are from being automorphically equivalent.)is leads to a
softer definition of automorphic roles, instead of forcing all
nodes to fit in strict classes of roles. However, when needed,
these distances can be used to discover and instantiate specific
role classes. Our distance function satisfies metric axioms, as
we prove below, does not require external parameters nor
feature engineering, and is computable for nodes across dif-
ferent networks. We also present different applications of our
proposal, with special emphasis on generating node embed-
dings that preserve node roles. Node embeddings are vector
representations of nodes capturing relevant information in
terms of pairwise distances [19]. Much work has been done in
embedding techniques that preserve neighborhoods or
communities [20–22]. However, role-preserving embeddings
have only recently begun to be studied [23, 24].

Our paper is structured as follows. In Section 2, we
discuss the relevant related work in automorphic distance
metrics. In Section 3, we describe our proposed automorphic
distance metric and study its admissibility as a distance
metric, as well as its computational complexity. In addition,
we present an approximated algorithm to compute our
proposed automorphic distance that offers higher scalability.
In Section 4, we analyze its performance for different role-
related tasks and show how it outperforms previously
proposed approaches. Finally, conclusions and suggestions
for future research are presented in Section 5.

2. Related Work

Different metrics have been proposed to measure node
similarity. One of the most popular metrics is SimRank [25],
which iteratively computes similarity scores based on the

hypothesis that two nodes are similar if they link to similar
nodes. Different extensions of SimRank have been proposed
[26]. SimRank recursively computes the similarity of two
nodes according to the average similarity of all their
neighbor pairs, which can also be interpreted, as suggested
by its original authors, as how soon two random walkers will
meet if they start from these nodes.)us, this definition is
not suitable as a metric of similarity capturing automorphic
equivalence because it requires the two nodes to be close to
play the same role. Other similarity measures not based on
SimRank have been proposed, such as PageSim [27] and
Leicht’s vertex similarity [28]. However, these similarities
have been formally rejected as valid metrics for capturing
automorphic equivalence [29].

Since automorphic equivalence ensures the same to-
pological properties, some authors have tried to capture
automorphic equivalence by defining a similarity function
over a set of network topological properties [30].)e
problem of these feature-based methods is that they require
combining different complex hand-crafted features provided
by experts, which is far from a trivial process in practice. In
addition, they cannot guarantee, which set of features will
correctly approximate automorphic equivalence, resulting in
a very limited approach for automorphic equivalence
discovery.

As far as we know, RoleSim [29, 31] is the only proposed
metric that tries to formally capture the concept of auto-
morphic equivalence without using limited approximations
based on hand-crafted topological features. Omitting the
decay factor they introduce, by setting it to 0 in order to
capture the global network topology, this similarity measure
is iteratively computed until convergence as

s(x, y) � max
M(x,y)

􏽐(u,v)∈M(x,y)s(u, v)

deg(x) + deg(y) − |M(x, y)|
, (1)

where deg(n) is the degree of a node n and M(x, y) is the
optimal assignment of nodes in the neighborhood of x to
nodes in the neighborhood of y maximizing the expression,
that is, the pairs of neighbors of x and y with maximal
similarity. In the original manuscript, this function is pre-
sented as a role similarity metric by proving the corre-
sponding distance metric axioms. RoleSim is a form of
generalized Jaccard coefficient based on a recursive definition
of the similarity of neighbor roles. Despite the admissibility of
RoleSim, their approach presents several limitations.)e
RoleSim similarity can be considered an automorphic dis-
tance by taking its complementary or Jaccard distance:
d(x, y) � 1 − s(x, y).)e problem is that the Jaccard coef-
ficient is a normalized metric, which leads to a normalized
distance. As will be shown in our experimentation, this
normalization has a negative impact on the results obtained
by RoleSim. In addition, this similarity function exhibits
serious inconsistencies. For example, in the graph shown in
Figure 1, where node d has a one-to-many relationship to xi

nodes, the node pair (a, c) has the same exact similarity as any
pair (a, xi), independent of the number of xi nodes.)is
simple example shows the limitations of RoleSim when trying
to capture the automorphic similarity.

2 Complexity

As far as we know, no distance metric has been proposed
that is able to capture the concept of automorphic distance in
a consistent way, without relying on approximations based
on extracted topological properties nor forcing the nor-
malization of the distance function.

3. A Novel Automorphic Distance Metric

An isomorphism is a bijection between the nodes of two
graphs where two nodes are adjacent in one graph if and
only if the nodes that result from applying the bijective
function are also adjacent in the other graph. An auto-
morphism is an isomorphism from one graph to itself.
)erefore, two nodes are automorphically equivalent if there
exists an automorphism creating a correspondence between
them.

One form of testing for automorphic equivalence is
computing the canonical form of graphs. Graph canon-
icalization is the task of computing a labeling for nodes in a
graph such that every isomorphic graph yields the same
canonical labeling. Given a canonicalized graph, two
automorphically equivalent nodes must have been assigned
the same label. As previously stated, automorphic equiva-
lence is too restrictive to appear in real-world networks,
leading to most nodes having different canonical labels.

)e solution that we propose to this problem is the
definition of distances between labels, which ultimately al-
lows the definition of distances between nodes based on the
concept of automorphic equivalence.)is distance will be
proportional to the number of changes that need to be done
in the network to transform one label or equivalence class
into another. A zero distance implies that two nodes are
automorphically equivalent and play exactly the same role.
According to this distance d, we can say that nodes x and y

aremore automorphically similar or have amore similar role
to u and v, if d(x, y)<d(u, v). In order to propose a valid
distance metric, we must also prove that our metric satisfies
the metric distance axioms.

Our work is based on the 1-dimensional Weisfei-
ler–Lehman test of isomorphism [32, 33], also known as
color refinement, which is an algorithm to compute the
canonical labeling of graphs.)ese canonical labels can be
used to solve related problems, such as the computation of
efficient graph kernels [34].)e Weisfeiler–Lehman algo-
rithm works by initially assigning a label to each node
according to its degree, so nodes with the same degree have
the same initial label.)en, the algorithm iteratively updates

these labels by the following procedure. First, it takes the
labels from neighbor nodes, concatenates them according to
certain arbitrary order (the same ordering must be applied
for all nodes), and finally appends the label of the node at the
beginning of the obtained list. Each different sequence is
substituted by a newly generated unique label, so nodes
exhibiting exactly the same sequence are assigned the same
label.)is refinement process is repeated until labels sta-
bilize, that is, when every pair of nodes with the same label in
the previous iteration have the same label in the current
iteration.)erefore, after m iterations, which depend on the
network diameter, the canonical form is achieved, and an
additional iteration is required for testing the stabilization
condition.)ese final labels are the canonical form of the
graph and, therefore, two nodes with the same final label are
automorphically equivalent. An example of running the
algorithm in a simple graph is shown in Figure 2.

It can be noted that some pairs of the labels appearing in
the same iteration of the Weisfeiler–Lehman algorithm are
more similar than others.)e automorphic distance be-
tween two nodes can be defined as the distance between their
canonical labels. We propose a scheme to compute distances
between the labels that are obtained by the Weisfei-
ler–Lehman algorithm. Since distances are only defined for
labels appearing in the same iteration, a special label asso-
ciated with nodes of degree 0, which we call the empty label
ℓ∅, is considered for convenience. Isolated nodes are directly
assigned this label and left out of the iterative process.

Since labels created in the initial assignment are based on
the node degree, we define the distance of labels of nodes x

and y as the number of links that must be added to or
removed from node x to transform it into node y.)is can
be easily computed as their absolute degree difference as
follows:

d ℓ0(x), ℓ0(y)(􏼁 � |deg(x) − deg(y)|, (2)

where ℓ0(n) is the initially assigned label to node n.)is
definition of distance for initial labels is also valid for isolated
nodes, with degree 0, which have been assigned the empty
label.

Given these distances for initial labels, the distance
between labels for the subsequent iterations can be com-
puted as the distance of the optimally matched pairs of labels
of their neighbors from the previous iteration.)e distance
of labels from the i-th iteration can be computed as

d ℓi(x), ℓi(y)(􏼁 � min
Mi− 1(x,y)

􏽘
(u,v)∈Mi− 1(x,y)

d ℓi− 1(u), ℓi− 1(v)(􏼁,

(3)

where Mi− 1(x, y) is the optimal assignment of neighbors of
x to neighbors of y that minimizes the expression and,
therefore, it is just the sum of distances between neighbors of
x and y. If the neighborhood of one node is larger than the
neighborhood of the other, leading to unmatched nodes,
these nodes are directly matched with virtual nodes, which
are labeled ℓ∅.)e distances of unmatched nodes to the
empty label can be seen as the cost, in terms of distance, of
inserting and transforming a virtual isolated node to obtain a

a

b c

d

x1

…

x2

xn

Figure 1: Example graph where RoleSim yields inconsistent values.
Node d has a one-to-many relation to xi nodes.

Complexity 3

node with the label of the unmatched node.)e optimal
assignment, which would consider O(n!) alternatives using a
naive brute force approach, can be computed in polynomial
time using the Hungarian algorithm [35].

Initially, equation (2) and, in subsequent iterations,
equation (3) are used to compute a distance table. At any
given time, only distances from two iterations need to be
maintained: the distances currently being computed and the
distances from the most recent previous iteration.

)e described iterative process is carried out for each
iteration of the 1-dimensionalWeisfeiler–Lehman algorithm
until label stabilization.)e automorphic distance between a
pair of nodes is defined as the distance between their ca-
nonical labels. It should be noted that labels can be repre-
sented using any set of symbols. However, for simplicity, we
represent labels as positive integers.

)e complete algorithm is shown in Algorithm 1.)e
function neighbors(x) returns the set of labels of the
neighbor nodes of x.)e function sort(s) sorts a set of
elements.)e ordering among elements is not relevant for
the algorithm, but the same orderingmust always be applied.
)e function concatenate(x1, . . . , xn) returns the concate-
nation of elements x1, . . . , xn. Finally, the function
unique(s) generates and returns a unique symbol, such as an
integer, for each observed unique string s, where
unique(s) � unique(s′) if and only if s � s′.

3.1. Example. In this section, we show an illustrative ex-
ample applying the proposed automorphic distance metric
to the network shown in Figure 2(a).

)e proposed algorithm for computing the automorphic
distance initially assigns a label to each node according to its
degree, as shown in Figure 2(b).)erefore, two nodes will
have the same label if and only if they have the same degree.
)e initial distance table, represented as an upper triangular
matrix due to the symmetry of distances, which will be
proved in Section 3.2.3, is shown in Table 1.)is distance
table is computed using equation (2) according to the initial

label assignments. For example, the distance between the
labels 1 and 4 is 3, since this value is the absolute degree
difference of the corresponding nodes.

After initialization, the algorithm enters into its main
loop and performs its first iteration. For each node, the labels
of its neighbors are ordered and concatenated with its own
label, as shown in Figure 2(c). For example, the only node
with label 3 has the associated string 3|2, 2, 4, since its
neighbors have labels 2, 4, and 2.)ese concatenated strings
are replaced by a new label, chosen so that two nodes are
assigned the same new label if and only if they had the same
concatenated string.)is process generates a new labeling as
shown in Figure 2(d). Given these new labels, the algorithm
computes their pairwise distances using equation (3), which
are shown in Table 2.

For example, in order to compute the distance between
labels 5 and 9, the optimal assignment between their
neighbors minimizing the summation of distances,
according to the previous iteration, must be obtained. In the
previous iteration, 3 and 4 were the labels of the neighbors of
nodes with label 5. Likewise, 1, 1, 2, and 4 were the labels of
the neighbors of nodes with label 9.)e Hungarian algo-
rithm matches these neighbor labels to minimize their sum
of distances: (3, 2) and (4, 4) according to Table 1. Since the
two neighbor labels 1 of label 9 were left unmatched, they are
both matched with the empty label as (1, ℓ∅). Given this
optimal assignment, we can compute the distance between
labels 5 and 9 as

d1(5, 9) � d0(3, 2) + d0(4, 4) + d0 1, ℓ∅(􏼁 + d0 1, ℓ∅(􏼁

� 1 + 0 + 1 + 1 � 3.

(4)

We can use the same algorithm to compute the distance
between any other pair of labels. For example, to compute
the distance between labels 6 and 7, we first identify their
neighbor labels in the previous iteration: 2, 2, and 4 for label
6 and 4 for label 7. Using the Hungarian algorithm, both
labels 4 are matched with each other and both labels 2 are

(a)

4 4
1

1

1

2
23

(b)

4|1,1,2,4
1|4

1|4

1|4

2|3,43|2,2,4
2|3,4

4|1,2,3,4

(c)

9

7

7

5
56

7
8

(d)

9|5,7,7,88|5,6,7,9

6|5,5,8 5|6,9
7|9

7|9

5|6,8

7|8

(e)

13
1615

14

10
11 12

13

(f)

Figure 2:)e Weisfeiler–Lehman canonicalization algorithm applied to a simple graph. (a) Original graph, (b) initial labeling, (c) first
iteration, (d) first relabeling, (e) second iteration, and (f) second and final relabeling.

4 Complexity

matched with the empty label, since there are no remaining
labels to match them with.)erefore, the distance between
labels 6 and 7 is computed as follows:

d1(6, 7) � d0 2, ℓ∅(􏼁 + d0 2, ℓ∅(􏼁 + d0(4, 4) � 2 + 2 + 0 � 4.

(5)

Following this iterative process, the algorithm performs
a second iteration. Concatenated strings are computed as
shown in Figure 2(e) and labels are updated as shown in
Figure 2(f). It can be easily seen that labels have stabilized,
obtaining the canonical labeling of this graph.)e stabili-
zation condition can be tested by performing an additional

iteration and observing that nodes with label 13 are assigned
the same label, while the other nodes are assigned an unique
new label.)is new labeling would be equivalent to the
labeling obtained in the current iteration, the condition
required to achieve stabilization.)e pairwise distances
computed in this iteration are shown in Table 3.

For instance, let us compute the distance between labels
11 and 16. We start by finding the optimal assignment that
minimizes the pairwise distances of their neighbor labels in
the previous iteration, which are 5, 5, and 8 for label 11 and
5, 7, 7, and 8 for label 16.)e Hungarian algorithm obtains

procedure Automorphic Distance
Input: Set of nodes N of an undirected graph.
Output: Pairwise automorphic distances d(x, y) for each pair of nodes
(x, y) ∈ N × N.
for each x in N do

ℓ0(x)⟵ deg(x)

end for
for each x, y in N × N do

d(ℓ0(x), ℓ0(y))⟵ |deg(x) − deg(y)|

end for
i⟵ 1
stabilized⟵ false
while not stabilized do

stabilized⟵ true
R⟵
for each x in N do

hi(x)⟵ concatenate(sort(neighbors(x)))

ci(x)⟵ concatenate(ℓi− 1(x), hi(x))

ℓi(x)⟵ unique(ci(x))

if R · contains(ℓi(x)) and not R[ℓi(x)] � ℓi− 1(x) then
stabilized⟵ false

else
R[ℓi(x)] � ℓi− 1(x)

end if
end for
if not stabilized then
for each x, y in N × N do ▷ Using the Hungarian algorithm.

d(ℓi(x), ℓi(y))⟵ minMi− 1(x,y)􏽐(u,v)∈Mi− 1(x,y)d(ℓi− 1(u), ℓi− 1(v))

end for
i⟵ i + 1

end if
end while
for each x, y in N × N do

d(x, y)⟵ d(ℓi(x), ℓi(y))

end for
end procedure

ALGORITHM 1: Automorphic distance algorithm.

Table 1: Initialization of the distance table.

ℓ/ℓ ℓ∅ 1 2 3 4
ℓ∅ 0 1 2 3 4
1 0 1 2 3
2 0 1 2
3 0 1
4 0

Table 2: Distance table after the first relabeling.

ℓ/ℓ ℓ∅ 5 6 7 8 9
ℓ∅ 0 7 8 4 10 8
5 0 3 3 3 3
6 0 4 4 2
7 0 6 4
8 0 2
9 0

Complexity 5

the optimal matching (5, 5), (5, 7), and (8, 8), with an ad-
ditional (ℓ∅, 7), due to the difference of the node degrees
associated with labels 11 and 16. Once this optimal matching
has been obtained, we can easily compute the distance
between labels 11 and 16 using equation (3) as follows:

d2(11, 16) � d1(5, 5) + d1(5, 7) + d1(8, 8) + d1 ℓ∅, 7(􏼁

� 0 + 3 + 0 + 4 � 7.

(6)

)e automorphic distance between a pair of nodes is
defined as the distance between their canonical labels, which
are the final labels assigned in the iteration where stabili-
zation is achieved.)erefore, in our example, the distance
between nodes is given by Table 3. For example, we can see

how nodes with canonical labels 13 and 14 are close to being
automorphically equivalent, since their automorphic dis-
tance is only 2. In contrast, nodes with canonical labels 14
and 15 have a large automorphic distance, equal to 21, which
indicates that they are far from being automorphically
equivalent.

3.2. Metric Admissibility. In this section, we prove that the
distance function that we have defined is a valid metric or
distance function. In order to assert this statement, we must
prove the following four conditions: nonnegativity, identity
of indiscernibles, symmetry, and triangle inequality.

To prove these conditions, we note that equation (3) can
be recursively decomposed as

d ℓi(x), ℓi(y)(􏼁 � min
Mi− 1(x,y)

􏽘
(u,v)∈

Mi− 1(x,y)

d ℓi− 1(u), ℓi− 1(v)(􏼁

� min
Mi− 1(x,y)

􏽘
(u,v)∈

Mi− 1(x,y)

min
Mi− 2(u,v)

􏽘

u′ ,v′()∈
Mi− 2(u,v)

d ℓi− 2 u′(􏼁, ℓi− 2 v′(􏼁(􏼁

� · · ·

� 􏽘

x′ ,y′()∈M′(x,y)

d ℓ0 x′(􏼁, ℓ0 y′(􏼁(􏼁

� 􏽘

x′ ,y′()∈M′(x,y)

deg x′(􏼁 − deg y′(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(7)

where M′(x, y) is the set of pairs of nodes that appear in the
recursive summation at the deepest level of recursion as a
result of choosing the optimal assignment in each iteration.

3.2.1. Proof of Nonnegativity. Nonnegativity requires that
the distance function satisfies d(ℓi(x), ℓi(y))≥ 0 for any
possible pair of nodes x and y. Given the decomposition of
our metric as shown in equation (7), it is straightforward to
see that the summation of absolute values is guaranteed to be
always equal to or greater than 0.

3.2.2. Proof of the Identity of Indiscernibles.)e identity of
indiscernibles implies that the distance function satisfies
d(ℓi(x), ℓi(y)) � 0 if and only if ℓi(x) ≡ ℓi(y).)e

Weisfeiler–Lehman algorithm guarantees that automorph-
ically equivalent pairs of nodes are assigned the same ca-
nonical label, and nonautomorphically equivalent pairs of
nodes are assigned different canonical labels.

Equation (7) is only equal to zero when deg(x′)
� deg(y′) for every pair of nodes in M′(x, y). Two nodes
can only have the same canonical label if they are auto-
morphically equivalent, as guaranteed by the Weisfei-
ler–Lehman algorithm. If two nodes are assigned the same
canonical label, their neighbors must have been assigned
equivalent labels in all the iterations. Since the distance of a
label to itself is 0, we can see that the summation yields 0,
leading to a zero distance for nodes when ℓi(x) ≡ ℓi(y).

On the other side, when two nodes have different ca-
nonical labels, their neighbors must have been assigned

Table 3: Distance table after the second and final relabeling.

ℓ/ℓ ℓ∅ 10 11 12 13 14 15 16
ℓ∅ 0 18 24 16 8 10 27 25
10 0 10 2 12 8 13 11
11 0 12 16 14 13 7
12 0 8 10 11 13
13 0 2 19 17
14 0 21 15
15 0 6
16 0

6 Complexity

different labels during the execution of the algorithm.)is
implies that, in the recursive decomposition shown in
equation (7), at least one pair of nodes will not match nodes
with the same initial labels, leading to a distance greater than
0 for nodes ℓi(x)≢ ℓi(y).

3.2.3. Proof of Symmetry.)e condition of symmetry re-
quires that the proposed distance function must satisfy the
property d(ℓi(x), ℓi(y)) � d(ℓi(y), ℓi(x)). We can prove
that equation (7) is symmetric as

d ℓi(x), ℓi(y)(􏼁 � 􏽘

x′ ,y′()∈M′(x,y)

deg x′(􏼁 − deg y′(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 􏽘

y′ ,x′()∈M′(y,x)

deg y′(􏼁 − deg x′(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� d ℓi(y), ℓi(x)(􏼁,

(8)

since M′(x, y) is equal toM′(y, x) when we swap the nodes.
)e order of the nodes in each pair does not affect the result
of our distance function.

3.2.4. Proof of the Triangle Inequality.)e triangle in-
equality requires that the inequality d(ℓi(x), ℓi(y))≤ d

(ℓi(x), ℓi(z)) + d(ℓi(z), ℓi(y)) is satisfied by the proposed
automorphic distance function.

By the definition of the proposed distance, we know that

d ℓi(x), ℓi(y)(􏼁≤d ℓi(x), ℓi(z)(􏼁 + d ℓi(z), ℓi(y)(􏼁⇒

􏽘

(a,b)∈M′(x,y)

|deg(a) − deg(b)|

≤ 􏽘

(a,c)∈M′(x,z)

|deg(a) − deg(c)|

+ 􏽘

(c,d)∈M′(z,y)

|deg(c) − deg(d)|.

(9)

We know that the absolute value satisfies the triangle
inequality and thus the lower value that the right side can
take is

􏽘

(a,b)∈M′(x,y)

|deg(a) − deg(b)|≤ 􏽘

(a,d)∈M″(x,y,z)

|deg(a) − deg(d)|
,

(10)

where M″(x, y, z) is the set of pairs resulting from chaining
or combining M′(x, z) and M′(z, y) so that
(a, d) ∈M″(x, y, z) if and only if, (a, c) ∈M′(x, z) and
(c, d) ∈M′(z, y).

For this inequality to hold, it requires the nonexistence of
a pairing of nodes better than the matching done in the left-
hand side. Since the Hungarian algorithm ensures that
matchings are optimal, minimizing their sum of distances,
the matching at the right-hand side cannot be better than
optimal and, therefore, the value of the right-hand side can
only be equal to or greater than the value on the left-hand
side, satisfying the triangle inequality condition.

3.3. Metric Computational Complexity. In this section, we
analyze the time and spatial computational complexity of
our proposed metric.

)e initialization of labels based on the degree of nodes
has O(n) time and spatial complexity, where n is the number
of nodes in the network.)e computation of the table for the
initial distances has O(n2) time and spatial complexity, since
the distance is computed for every pair of nodes.

Each iteration of the algorithm requires computing the
sorted list of labels of the neighbors for each node.)is task
can be accomplished for each node with computational and
spatial complexity O(k), where k is the degree of the node,
when using radix, bucket, or counting sort.)us, computing
these strings for all nodes has O(nk) time and spatial
complexity. Renaming these labels can be done in O(n) time
using hash-based data structures. To compute the pairwise
distances between labels in the current iteration, the Hun-
garian algorithm, with computational complexity O(k3),
must be computed for each pair of nodes, leading to O(n2k3)

time complexity and O(n2) spatial complexity. Finally,
checking if the labels have stabilized can be done in O(n)

using a hash-based index.
)e number of iterations, m, required for 1-dimensional

Weisfeiler–Lehman algorithm to converge is closely related
to the diameter of the network [32]. Even though the
number of iterations is theoretically bounded by n, it has
been widely observed that real-world networks tend to
exhibit the small-world phenomenon, presenting a small
diameter [36, 37] and leading to a small number of iterations
required for convergence.

)erefore, by combining these partial results, the total
time complexity is O(mn2k3), where n is the number of
nodes in the graph, k is the degree of nodes, and m is the
number of iterations required for convergence.)e spatial
complexity of the algorithm is O(n2), since only the dis-
tances and labels from the previous and the current iteration
must be maintained at any given time.

Most of these steps can be easily parallelized, since most
of them are independent of each node and are only based on
the results from the previous iteration. For example, the
initial labels for each node can be assigned independently.
Once we have assigned these labels, the computation of their
pairwise distances can be split among all the available
processors, since they are independent.)e iterative as-
signment of labels in each loop iteration can also be par-
allelized using a concurrent data structure to ensure that the
new labels are properly generated. Furthermore, the pairwise
distances between these new labels can be easily computed in
a parallel way, since they are completely independent as they
only rely on the distance table computed in the previous
iteration.

3.4. A More Efficient Approximation.)e quadratic time
complexity with respect to the number of nodes in the
network limits the applicability of our proposed approach in
large networks. In this section, we introduce a more scalable
approximation of our approach.

Complexity 7

)e proposed alternative approach is based on the idea
of efficiently clustering similar labels just before computing
distances between labels.)is clustering only applies to the
computation of distances, not to the steps related to the
Weisfeiler–Lehman algorithm. Instead of requiring a dis-
tance matrix including all pairs of nodes, this approximated
approach only requires computing the distance matrix
between the obtained clusters.)e distances between pairs
of labels are approximated as the distance between the
clusters to which they belong to.)erefore, using this
approximation, the step where distances between pairs of
labels are computed becomes quadratic with respect to the
number of clusters, which are set by the experimenter and
can be much lower than the number of nodes in the
network.

)e proposed approximation algorithm is shown in
Algorithms 2–4.)e base structure of the algorithm re-
mains unchanged, but a new label clustering step is in-
troduced just before computing the distances between pairs
of labels.)is clustering procedure is based on choosing a
representative label for each cluster. A set for storing
representative labels, initially containing only the empty
label, is created. While the size of the set of representative
labels is less than the number of clusters c specified as a
parameter, a new representative label is added to this set as
follows. A number of labels s is sampled from a set of
remaining labels, which initially contains all the labels
obtained except the empty label.)e minimal distance to
every representative label, i.e., the smallest distance to any
label in the set of representative labels, is computed for each
sampled label.)e sampled label with the largest minimal
distance is chosen as a representative label. Next, the
chosen representative label is added to the set of repre-
sentative labels and removed from the set of remaining
labels.)is greedy procedure approximates a set of rep-
resentative labels with large distances among them.

Each representative label represents a cluster. A cluster is
assigned to each nonrepresentative label by choosing the
closest cluster according to the distance to its representative
label.

)e proposed approximation has a significant impact on
our algorithm computational complexity.)e spatial
complexity becomes O(c2 + nk), where c is the number of
clusters and can be set to c≪ n, since only distances between
pairs of clusters obtained in the same iteration must be
stored.

)e time complexity of the proposed approximation
can be obtained as follows.)e steps, which are also
present in the original algorithm, without the clustering
step, now have a computational complexity O(nk + mc2k3)

as a result of computing only distances between pairs of
clusters.)e time complexity of the greedy clustering step
is O(sc2k3) for the step where representative labels are

chosen, where s is the number of the sampled labels, and
for the step where clusters are assigned to each nonrep-
resentative label is O(nck3).)e greedy clustering pro-
cedure must be executed m times until the convergence of
the Weisfeiler–Lehman algorithm.)erefore, the com-
putational complexity introduced by the clustering pro-
cedure is O(msc2k3 + mnck3).

Given these complexities, the time complexity of the
complete algorithm is O(msc2k3 + mnck3). Since c and s can
be manually set to be much smaller than the number of
nodes in the network, this approach is more scalable and can
be applied to large networks.

4. Experimental Evaluation

)is section contains our experimental evaluation of the
proposed automorphic distance metric. In addition to the
theoretical results described in the previous sections of the
manuscript, we aim to show how our proposal properly
captures the concept of node role based on automorphic
equivalence and its different practical applications.

)e experimental evaluation of the proposed distance
metric is a complicated task due to the lack of a standard
evaluation methodology for role-based metrics. In order to
evaluate our distance metrics and compare the obtained
results with other state-of-the-art approaches, we propose
different experimental settings, which are described in the
following sections.

4.1. Performance Evaluation of Distance Metrics. In this
section, we evaluate and compare the proposed original
automorphic distance metric with RoleSim considered as a
distancemetric.We follow an evaluationmethodology based
on the idea that nodes playing the same role in the network
must show similar topological properties.)erefore, close
nodes with regard to an automorphic distance metric should
have similar topological properties, and their distance
should be correlated with the similarity between these
properties. For example, nodes with a similar role in the
network should also exhibit a similar centrality, and similar
nodes playing the role of bridges between different com-
munities should exhibit similar topological properties
measurable by different metrics proposed in the field of
network analysis.

We propose measuring the performance of these dis-
tance metrics by evaluating how well these metrics capture
global network structural properties.)is can be done by
computing the Pearson correlation coefficient between the
distances given by the evaluated methods for a given pair of
nodes and the absolute difference of their scores associated
with a given network structural property, as follows:

score � corr d ℓi(x), ℓi(y)(􏼁: ∀x, y ∈ N × N(􏼁, (|s(x) − s(y)|: ∀x, y ∈ N × N)(􏼁, (11)

8 Complexity

procedure APPROXIMATED AUTOMORPHIC DISTANCE
Inputs:
-Set of nodes N of an undirected graph.
-Number of clusters c.
-Number of samples s.
Outputs:
-Approximated pairwise automorphic distances d(x, y) for each pair of clusters (x, y) ∈ Ci × Ci.
-Mapping gi(x) from each label to its cluster representative.
for each x in N do
ℓ0(x)←deg(x)

end for
C0, g0←GREEDY LABEL CLUSTERING(N, c, s, 0)

for each x, y in C0 × C0 do
d(x, y)←COMPUTE DISTANCE(x, y, 0, g0)

end for
i←1
stabilized←false
while not stabilize d do
stabilized←true
R←
for each x in N do

hi(x)←concatenate(sort(neighbors(x)))

ci(x)←concatenate(ℓi− 1(x), hi(x))

ℓi(x)←unique(ci(x))

If R · contains(ℓi(x)) and not R[ℓi(x)] � ℓi− 1(x) then
stabilized←false

else
R[ℓi(x)]←ℓi− 1(x)

end if
end for
if not stabilized then

Ci, gi←GREEDY LABEL CLUSTERING(N, c, s, i, gi− 1)

for each x, y in Ci × Ci do
d(x, y)←COMPUTE DISTANCE(x, y, i, gi− 1)

end for
i←i + 1

end if
end while

end procedure

ALGORITHM 2: Approximated automorphic distance algorithm.

procedure COMPUTE_DISTANCE
Inputs:
-Labels x and y.
-Iteration i.
-Mapping from each label to its cluster representative g (optional).
▷)e mapping is only used for i> 0.
Output: Computed distance d.

If i � 0 then
d←|x − y|

else ▷ Using the Hungarian algorithm.
d←minMi− 1(x,y)􏽐(u,v)∈Mi− 1(x,y)d(g(ℓi− 1(u)), g(ℓi− 1(v)))

end if
end procedure

ALGORITHM 3: Distance computation.

Complexity 9

where corr(A, B) is the Pearson correlation between two
sequences A and B, N is the set of nodes in the network,
d(ℓi(x), ℓi(y)) is the distance between a pair of nodes x and
y, and s(n) is the score given by the network structural
property for a node n.

In order to capture the most important role-related to-
pological features, we included several network structural
properties in our experimentation. First, we included Pag-
eRank [38], a well-known algorithm for measuring the im-
portance of each node in a network.)is iterative algorithm
outputs a probability distribution that represents the likelihood
of reaching each node by randomly moving through the
network. Second, we considered closeness [39], which mea-
sures node centrality as the reciprocal of the sum of the shortest
path lengths to all other nodes. Finally, we also included be-
tweenness [40], which measures node centrality proportionally
to the number of shortest paths passing through each node.

Our experimentation was carried out using five networks
from very diverse domains. Due to the high computational
complexity of the evaluated methods, we restricted this
experiment to small networks with a few hundred nodes at
most.)e included networks are listed as follows:

(i) A communication network of 36 nodes and 62 links
between employees in a sawmill [41]. Two nodes,
each one representing an employee, are linked if
they contacted a number of times higher than a
given threshold.

(ii) A social network of bottlenose dolphins, with 62 nodes
and 159 links, based on observations between 1994
and 2001 [42]. A link represents frequent association
between dolphins, which are represented as nodes.

(iii) A network containing 77 nodes and 254 links of
character coappearances in the novel “Les Mis-
érables” [43], written by Victor Hugo. Each node
represents a character and each link represents the
coappearance of two characters in the same chapter.

(iv) A network, with 112 nodes and 425 links, of noun
and adjective adjacencies for the novel “David
Copperfield” [44], written by Charles Dickens. Each
node represents a word that is a noun or an ad-
jective, whereas a link represents adjacency of two
words in the text.

(v) A network, composed of 131 nodes and 1074 links,
representing the Brazilian air-traffic in 2016 [24],
which was extracted from the National Civil Avi-
ation Agency (ANAC). Nodes represent airports
and links represent the existence of commercial
flights between pairs of airports.

)e results we obtained are shown in Table 4.)e
distances computed by the automorphic distance are highly
correlated with the considered role-related structural
properties, outperforming RoleSim in most cases. Except for
the dolphin network, our distance shows a high correlation
with PageRank and closeness. Although positive, indicating
that it is capable of capturing part of this information,
RoleSim clearly performs worse in terms of capturing these
structural properties. Both distances present a lower cor-
relation with betweenness, especially in the dolphin and Les
Misérables networks, where RoleSim is not correlated at all.

)ese results suggest that our proposal outperforms
RoleSim in capturing role-based topological information
and that distances computed by our approach are more

procedure GREEDY_LABEL_CLUSTERING
Inputs:
-Set of nodes N of an undirected graph.
-Number of clusters c.
-Number of samples s.
-Iteration i.
-Mapping from each label to its cluster representative g (optional).
▷)e mapping is only used for i> 0.
Outputs:
-Set of cluster representatives C.
-Mapping gn(x) from each label to its cluster representative.

C⟵ ℓ∅􏼈 􏼉

L⟵ ℓi(x): ∀x ∈ N􏼈 􏼉

while |C|< c do
S⟵ sample(L, s)

r⟵ argmaxu∈Sargminv∈CCOMPUTE DISTANCE(u, v, i, g)

C. add(r)

L. remove(r)

end while
L′⟵ ℓi(x): ∀x ∈ N􏼈 􏼉

for each l in L′ do
gn(l)⟵ argminr∈CCOMPUTE DISTANCE(l, r, i, g)

end for
end procedure

ALGORITHM 4: Greedy label clustering.

10 Complexity

closely related to the roles of nodes. In the following section,
we will evaluate our distance in the task of generating
continuous representations for nodes based on their role.

4.2. Computing Role-Based Node Embeddings. A central
problem inmachine learning is finding representations that
ease the visualization or extraction of useful information
from data [45]. A common solution is the computation of
embeddings that represent complex objects in a vector
space preserving certain properties [46]. Node embedding,
also known as graph embedding, is the task of mapping
each node in a graph to a dimensional space trying to
preserve the similarity or distance between pairs of nodes.
)erefore, similar nodes will be located in similar regions of
the space. Node embeddings have lately gained attention,
since they have achieved good results in different machine
learning tasks [46]. Several models have been proposed for
node embedding. However, these techniques try to pre-
serve the connectivity of the network by obtaining em-
beddings that preserve the neighborhood and the
community of nodes [22, 47].)is information has proven
to be useful due to the presence of homophily, also known
as assortativity, in real-world networks [48], where entities
tend to be connected to similar ones, a feature that allows us
to explain certain features of the nodes. Even though the
connectivity information captured by these techniques is
relevant, these techniques fail to capture information re-
lated to the role or function of the nodes in the network,
which is a highly valuable information that is comple-
mentary to the information obtained by locality-based
embedding techniques.

Recently, different techniques for computing role-based
embeddings, capturing the roles of nodes by placing nodes
that play a similar function in the network close in the
resulting vector space, have been proposed. In this work, we
consider two state-of-the-art techniques that have received a
lot of attention: node2vec [23] and struc2vec [24]. Both
methods learn continuous representations capturing node
structural equivalence and identity, respectively.)ese ap-
proaches are based on applying the skip-gram model [49],
which was initially proposed as a model for natural language,
over node contexts extracted from the network using biased
random walks.

On the one hand, the node2vec method computes these
contexts combining the breadth-first search (BFS), with the
intention of reflecting structural equivalence, and depth-first
search (DFS), with the intention of reflecting homophily.)is
behavior is achieved using two parameters:p and q.)e return
parameter p controls the likelihood of returning back to the
previous node in the random walk.)e in-out parameter q

controls the tendency of moving to close or far nodes. If q> 1,
the random walks are biased towards close nodes. Otherwise,
the random walks are biased towards visiting more distant
nodes. We used the node2vec implementation available at
https://github.com/aditya-grover/node2vec.

On the other hand, the struc2vecmethod computes these
contexts by inducing a hierarchy that captures different
levels of information.)is hierarchy is used to build a
weighted multilayer network, with a layer for each level in
the hierarchy, which is used to generate node contexts by
performing biased random walks with the intention of
reflecting structural identity. We used the implementation
available at https://github.com/leoribeiro/struc2vec.

In order to compute node embeddings using role-based
distances, we apply the classical multidimensional scaling
(MDS) [50, 51] to the distance matrices.

)e following sections are devoted to the detailed study of
two particular cases, where we evaluate the embeddings ob-
tained using the proposed definition of automorphic distance
compared to the previously introduced approaches. For each
case, we show how 2-dimensional embeddings can capture
relevant information related to the function of the nodes in the
network.)ese sections are intended to provide some insights
into the properties of the obtained embeddings, whereas the
numerical evaluation is left for the next section.

4.2.1. Zachary’s Karate Club Network. Zachary’s karate club
network is a popular social network representing the 34
members of a university karate club as its nodes and their
interactions outside the club, as its links [52]. During the
study carried out by Zachary, a conflict arose between the
two club administrators, leading to the split of the club into
two groups according to the leader each member decided to
follow. For this reason, this network has served as a pro-
totypical case study for community detection algorithms and
some network analysis techniques.

Table 4: Pearson correlation coefficients illustrating the correlation of automorphic distance metrics and topological properties.

Network Method Page Rank Closeness Betweenness

Sawmill Automorphic 0.7987 0.7633 0.7856
RoleSim 0.3249 0.4858 0.1389

Dolphins Automorphic 0.7310 0.4176 0.2185
RoleSim 0.4476 0.4229 0.0032

Les misérables Automorphic 0.6976 0.6758 0.5205
RoleSim 0.2545 0.3197 0.0720

Copperfield Automorphic 0.9490 0.7636 0.8811
RoleSim 0.4480 0.6583 0.2493

Brazil airports Automorphic 0.8858 0.9272 0.5344
RoleSim 0.4271 0.5942 0.1328

)e highest correlation for each network and each structural metric is marked in bold.

Complexity 11

https://github.com/aditya-grover/node2vec
https://github.com/leoribeiro/struc2vec

Zachary observed that the formed groups were highly
homogeneous and assortative.)erefore, nodes tended to
be connected to nodes that took the same decision. In this
context, different embedding techniques have been pro-
posed in the past for generating embeddings distributing
nodes in multidimensional spaces according to the leader
they decided to follow [47].)is information is crucial
when the task is related to community detection. However,
these embeddings fail, by nature, to reveal the role of each
node in the network. In this study, we evaluate and
compare the results obtained by the previously introduced
techniques in the task of computing embeddings that are
able to capture the role of each node in Zachary’s karate
club network.

We assigned a class to each node according to objective
role-related properties.)e two leaders are colored in red.
Nodes interacting with the two leaders are colored in green.
Nodes not interacting with any of the two leaders are colored
in yellow. Finally, the remaining nodes, which interact with
only one of the leaders, are colored in blue. Figure 3 shows
the network drawn using the Fruchterman–Reingold force-
directed layout algorithm [53] and the embeddings obtained
by applying our automorphic distance, RoleSim, node2vec,
and struc2vec.

Due to the large number of possible parameter com-
binations in node2vec and struc2vec, the authors decided
to use the same values that were used by their original
authors in case studies included in their respective papers.
For struc2vec, we used the same parameters they used in
their Section 4.2, where they also studied this network for a
different task.)erefore, we set the number of walks per
source to 5, the walk length to 15, and the skip-gram
window size to 3. For node2vec, we used the same pa-
rameters that they used in their case study of the Les
Misérables network with the intention of capturing
structural equivalence, as shown in their Section 4.1.
)erefore, we set p � 1 and q � 2. Since they did not
provide the values of the other parameters, we used the
same as those for struc2vec.

In the resulting embeddings, shown in Figure 3, it can be
seen how all techniques seem to capture at least partial
information about the function of the nodes. For example,
all techniques place the two leaders, represented by the red
nodes, in close positions.)is observation also applies to
green nodes, which represent persons who interact with both
leaders. Furthermore, green nodes are highly clustered in all
the embeddings.

However, both node2vec and struc2vec show a poor
separation of the different classes. RoleSim seems to separate
the classes better, but still places green nodes inside the cloud
of blue nodes. In the three embeddings, the two leaders are
placed pretty close to normal club members, without cap-
turing their unique function in the network.

In contrast, it can be seen that the four roles are
linearly separated in the embedding generated using our
distance metric. In addition, it can be seen how the two
leaders are clearly mapped as outliers and placed notably
apart from the other nodes representing normal members
of the club.

4.2.2. World Trade Network. In network data mining,
homophily is commonly exploited in node classification
tasks, since nodes tend to exhibit the same class as their
neighbors [54]. Even though this situation occurs in a large
number of networks from very diverse domains, homophily
based classification techniques fail when the classes of the
nodes are defined by the role they play in the network,
instead of the community they belong to.

An illustrative example of this situation is a network
containing data on trade ofmiscellaneousmetalmanufactures
among 80 countries, according to data gathered in 1993 and
1994 from the Commodity Trade Statistics published by the
United Nations [55, 56]. Each country is represented by a
node in the network. Each commercial relationship is rep-
resented by an arc, which we consider an undirected edge in
practice. In this case, arcs correspond to trading high tech-
nology products or heavy manufactures between countries.

In addition, the authors of this dataset annotated coun-
tries in the network with their structural world economic
position in 1994. World economic positions are a classifi-
cation of countries in the context of the world-system theory
that explains some complex dynamics observed in the real-
world [57].)is classification splits countries into three
possible categories: core countries (colored in green), semi-
periphery countries (colored in blue), and periphery countries
(colored in red). In short, core countries have a high eco-
nomic, military, and political power, which allows them to
control the world economic system.)e periphery is com-
posed of less developed countries, owning a disproportion-
ately small share of global wealth. Finally, the semiperiphery
consists of countries that do not clearly fall in the previous two
categories and exhibit a more intermediate status.

In this case, for struc2vec, we used the same parameters
their authors used in the analysis carried out in Section 4.1 of
their manuscript.)erefore, we set the number of walks per
source to 20, the walk length to 80, and the skip-gram
window size to 5. For node2vec, we also used these pa-
rameters with p � 1 and q � 2.

Figure 4 shows the trade network drawn using the
Fruchterman–Reingold force-directed layout algorithm and
the embeddings obtained by applying different techniques.
Again, all techniques seem to capture role-related infor-
mation as shown by the elongated shape of all the em-
beddings, curved in the case of RoleSim, with core and
periphery countries placed at both ends.

It can be seen that the automorphic distance, RoleSim,
and struc2vec achieve a good separation of core and periphery
countries, with some overlapping with countries in the
semiperiphery. However, struc2vec shows a highly elongated
shape, also present in the case studies included in their
manuscript. Finally, node2vec seems to perform worse than
the other approaches. In spite of being able to separate the
peripheral countries, it does not perform well in the sepa-
ration of the central countries and those in the semiperiphery.

4.3. Performance Evaluation of Computed Node Embeddings.
)e case studies analyzed in the previous section allowed us to
gain some insight about the embeddings generated by our

12 Complexity

distance metric in comparison to other state-of-the-art ap-
proaches. However, in order to perform a more objective and
exhaustive evaluation, we extend this analysis by carrying out
a quantitative performance evaluation in this section.

As previously stated, the evaluation of techniques for
role discovery is a complicated task due to the lack of
available evaluation datasets with role-based ground-truth
data.)is difficulty extends to the evaluation of techniques
for generating embeddings capturing the notion of the node
role.)e most common solution is indirectly evaluating
these embeddings based on their application to other tasks
with evaluable or measurable performance metrics. For
example, these embeddings can be evaluated by means of a
classification problem, where labels related to node roles are

predicted using the generated embeddings. However, there
is no guarantee that the labels are completely determined by
the roles of nodes in the network.)erefore, these experi-
ments only evaluate which techniques capture the driving
factors of these labels better, and in which node roles may
only partially contribute or not contribute at all.)is crit-
icism extends to other tasks previously used to evaluate role-
based embeddings, such as link prediction.

In order to overcome these limitations while offering an
objective evaluation procedure, we propose a new approach
to evaluate techniques for computing role-based embed-
dings for nodes. Our proposal consists of measuring how
well the embeddings produced by these techniques can
reconstruct global network structural properties based on

(a)

−10 0 10 20 30 40

−10

−20

0

10

20

(b)

−0.4 −0.2 0.0 0.2 0.4 0.6

−0.4

−0.6

−0.2

0.0

0.2

0.4

0.6

(c)

−0.3 −0.2 −0.1 0.0 0.1 0.2

−0.2

−0.3

−0.1

0.0

0.1

0.2

(d)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−1.4

−1.5

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

(e)

Figure 3: Zachary’s karate club network and its node embeddings with node role coloring. (a) Force-directed layout, (b) automorphic
embedding, (c) RoleSim embedding, (d) node2vec embedding, and (e) struc2vec embedding.

Complexity 13

the same arguments we used in Section 4.1. Nodes with a
similar role in the network also exhibit similar topological
properties.)erefore, evaluating how well these embeddings
can be used to reconstruct these topological properties is an
indirect way of assessing the quality of these embeddings.

In our experimentation, we considered the network
structural properties previously described in Section 4.1. For
each method and each property, we trained a linear re-
gression model using the ordinary least squares method. For
a given node, these trained linear models take its embedding
as input and output the predicted score for the node cor-
responding to the structural property. We carried out our

experimentation using five-dimensional embeddings. We
chose this number of dimensions as a reasonable number,
enough to capture complex role-related patterns.

In order to carry out an unbiased evaluation, these
models were trained using a five-fold crossvalidation, with
80% of the nodes as training set and the remaining 20% as
the test set. In addition to crossvalidation, since all the
evaluated methods include an element of randomness, we
ran five different executions of the evaluation procedure
using different random seeds, both for the generation of the
embeddings and the crossvalidation procedure.)e root
mean squared error (RMSE) was used as the evaluation

(a)

−200

−150

−100

−50

0

50

100

150

−1000 −800 −600 −400 −200 0 200 400

(b)

−0.2

−0.4

0.0

0.2

0.4

−0.2 0.0 0.2 0.4

(c)

−1.18

−1.20

−1.16

−1.14

−1.12

−1.10

−1.08

−1.06

−1.04

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

(d)

−3.0

−3.5

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

−2 −1 0 1 2

(e)

Figure 4: World trade network and its corresponding node embeddings. (a) Force-directed layout, (b) automorphic embedding,
(c) RoleSim embedding, (d) node2vec embedding, and (e) struc2vec embedding.

14 Complexity

metric.)e reported error for a method on a given dataset is
the average RMSE obtained in the multiple executions of the
five-fold crossvalidation using different seeds.

In this experiment, we included the approximated
version of our proposal, node2vec, and struc2vec. RoleSim
was left out due to its high computational complexity, which
limits its applicability to large networks.

Methods included in the comparison have different
parameters that must be adjusted. Due to the high com-
puting requirements for executing each technique multiple
times, we limited our experimentation to a restricted set of
parameters. For our approximation of the automorphic
distance metric, we chose 30 clusters and samples as pa-
rameters, since it is a reasonable value considering the size of
the studied networks, which are presented below.

For node2vec and struc2vec, we limited our experi-
mentation to different parameter settings included in their
original papers. For node2vec, we used 0.50, 1, and 2 as
values for the p parameter.)e q parameter was also set to
0.50, 1, and 2. In order to avoid running a large number of
parameter combinations, which is computationally inten-
sive, we fixed the remaining parameters to the default values
used in the original paper: number of walks per source to 10,
length of walk per source to 80, and skip-gram window size
to 10. For struc2vec, we report the best results using the
following parameter combinations. We tested 10 and 20
walks per source with lengths 15 and 80. For the skip-gram
model, we used window sizes of 5 and 10.)e algorithm was
executed with all the optimizations enabled: OPT1, OPT2,
and OPT3.

Five different networks were used in our experimentation:

(i) A network, composed of 399 nodes and 5995 links,
representing European air-traffic in 2016 [24], built
using data from the Statistical Office of the Euro-
pean Union (Eurostat). Nodes representing airports
and links represent the existence of commercial
flights between pairs of airports.

(ii) Another network, with 1190 nodes and 13599
links, representing air-traffic in 2016 from the
United States of America [24].)e network was
built using data from the Bureau of Transportation
Statistics.

(iii) A communication network, with 1005 nodes and
16706 links, based on mailing data from a large
European research institution [58]. Each node
represents a person, and each link represents that
two nodes shared at least one email.

(iv) Another communication network, composed of
1133 nodes and 5451 links, built using mailing data
from the University Rovira i Virgili in Tarragona
[59], located in Spain. Each node represents an user,
and each link represents that at least one email was
sent between the two users.

(v) A network, with 1010 nodes and 3649 links, rep-
resenting the thesaurus written by Peter Mark Roget
[43]. Each node represents a category and each link
represents a relation between a pair of categories.

)e results obtained for this evaluation procedure are
shown in Table 5.)e best-performing parameters for
struc2vec and node2vec were omitted for the sake of clarity.
Note that the absolute error is small in all cases due to the
order of magnitude of the scores computed using the in-
cluded network properties.)ese results show how the
embeddings computed using the approximation of the
proposed automorphic distance metric achieve a lower
RMSE than the other approaches in 13 out of 15 cases. Only
node2vec outperforms our approach in two cases for
closeness, where it performs especially well compared to the
other approaches.

)ese results suggest that our proposal can capture node-
related information better than other state-of-the-art ap-
proaches, as shown by the lower error achieved in the task of
reconstructing topological properties.

Table 5: Obtained RMSE for the considered methods, networks, and structural network properties.

Method PageRank Closeness Betweenness

EU airports
Automorphic 7.67 × 10− 4 2.34 × 10− 2 7.18 × 10− 3

struc2vec 1.66 × 10− 3 4.15 × 10− 2 8.23 × 10− 3

node2vec 2.39 × 10− 3 5.58 × 10− 2 9.38 × 10− 3

USA airports
Automorphic 6.41 × 10− 4 3.59 × 10− 2 7.81 × 10− 3

struc2vec 9.66 × 10− 4 4.69 × 10− 2 7.99 × 10− 3

node2vec 1.10 × 10− 3 4.43 × 10− 2 8.28 × 10− 3

EU-email
Automorphic 2.72 × 10− 4 5.36 × 10− 2 2.63 × 10− 3

struc2vec 7.38 × 10− 4 6.45 × 10− 2 3.83 × 10− 3

node2vec 9.16 × 10− 4 4.95 × 10− 2 4.15 × 10− 3

Univ-email
Automorphic 2.92 × 10− 4 2.00 × 10− 2 2.63 × 10− 3

struc2vec 5.23 × 10− 4 2.49 × 10− 2 3.73 × 10− 3

node2vec 6.58 × 10− 4 2.83 × 10− 2 4.18 × 10− 3

Roget
Automorphic 2.68 × 10− 4 3.17 × 10− 2 2.52 × 10− 3

struc2vec 3.70 × 10− 4 3.62 × 10− 2 3.27 × 10− 3

node2vec 4.68 × 10− 4 1.74 × 10− 2 3.67 × 10− 3

)e lowest RMSE for each dataset and structural network property is marked in bold.

Complexity 15

5. Conclusions

In this paper, we have proposed a novel distance metric for
nodes that relaxes the strict concept of automorphic equiv-
alence. To the best of our knowledge, this is the first work to
propose a consistent nonnormalized distance metric that
captures the concept of automorphic equivalence without
approximating it using feature engineering. In addition, we
have shown that the proposed distance function is a valid
distance metric by proving the required conditions. Fur-
thermore, we have shown how our metric can be exploited to
generate node embeddings that capture role information.
Finally, we have carried out different experiments in order to
show how our proposal can outperform other state-of-the-art
techniques in different role-related tasks.

Our proposal creates new opportunities in problems
related to role discovery. Future work includes exploiting
our distance metrics in problems related to anomaly de-
tection in networks and transfer learning based on roles
shared by nodes across different networks.

Data Availability

)e network datasets used in our experiments are from
publicly available studies, which have been cited in our
paper.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was partially supported by the SpanishMinistry of
Economy and the European Regional Development Fund
(FEDER), under grant TIN2012-36951, and the program
“Ayudas para contratos predoctorales para la formación de
doc 2013,” under grant BES-2013-064699.)is work was
also partially supported by the project “BIGDATAMED:
Analisis de datos en Medicina, de las historias cĺınicas al
BIGDATA” with references B-TIC-145-UGR18 and P18-
RT-1765.

References

[1] R. A. Rossi and N. K. Ahmed, “Role discovery in networks,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 27, no. 4, pp. 1112–1131, 2015.

[2] J. J. Luczkovich, S. P. Borgatti, J. C. Johnson, and
M. G. Everett, “Defining andmeasuring trophic role similarity
in food webs using regular equivalence,” Journal of7eoretical
Biology, vol. 220, no. 3, pp. 303–321, 2003.

[3] E. M. Hafner-Burton, M. Kahler, and A. H. Montgomery,
“Network analysis for international relations,” International
Organization, vol. 63, no. 3, pp. 559–592, 2009.

[4] P. Holme and M. Huss, “Role-similarity based functional
prediction in networked systems: application to the yeast
proteome,” Journal of 7e Royal Society Interface, vol. 2, no. 4,
pp. 327–333, 2005.

[5] S. Fortunato, “Community detection in graphs,” Physics
Reports, vol. 486, no. 3, pp. 75–174, 2010.

[6] A. Lancichinetti and S. Fortunato, “Community detection
algorithms: a comparative analysis,” Physical Review E, Sta-
tistical, Nonlinear, and Soft Matter Physics, vol. 80, no. 5,
Article ID 056117, 2009.

[7] S. Papadopoulos, Y. Kompatsiaris, A. Vakali, and
P. Spyridonos, “Community detection in social media,” Data
Mining and Knowledge Discovery, vol. 24, no. 3, pp. 515–554,
2012.

[8] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson,
“Modeling dynamic behavior in large evolving graphs,” in
Proceedings of the 6th ACM International Conference on Web
Search and Data Mining, pp. 667–676, ACM, Rome, Italy,
February 2013.

[9] K. Henderson, B. Gallagher, T. Eliassi-Rad et al., “RolX:
structural role extraction & mining in large graphs,” in
Proceedings of the 18th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pp. 1231–1239, Beijing, China, August 2012.

[10] E. P. Xing, W. Fu, and L. Song, “A state-space mixed
membership blockmodel for dynamic network tomography,”
Annals of Applied Statistics, vol. 4, no. 2, pp. 535–566, 2010.

[11] R. S. Burt, “Detecting role equivalence,” Social Networks,
vol. 12, no. 1, pp. 83–97, 1990.

[12] H. C. White, S. A. Boorman, and R. L. Breiger, “Social
structure frommultiple networks. I. Blockmodels of roles and
positions,” American Journal of Sociology, vol. 81, no. 4,
pp. 730–780, 1976.

[13] F. Lorrain and H. C. White, “Structural equivalence of in-
dividuals in social networks,” Journal of Mathematical Soci-
ology, vol. 1, no. 1, pp. 49–80, 1971.

[14] L. D. Sailer, “Structural equivalence: meaning and definition,
computation and application,” Social Networks, vol. 1, no. 1,
pp. 73–90, 1978.

[15] S. P. Borgatti and M. G. Everett, “Notions of position in social
network analysis,” Sociological Methodology, vol. 22, pp. 1–35,
1992.

[16] N. E. Friedkin and E. C. Johnsen, “Social positions in influence
networks,” Social Networks, vol. 19, no. 3, pp. 209–222, 1997.

[17] P. E. Pattison, “Network models: some comments on papers
in this special issue,” Social Networks, vol. 10, no. 4,
pp. 383–411, 1988.

[18] M. G. Everett and S. P. Borgatti, “Regular equivalence: general
theory,” Journal of Mathematical Sociology, vol. 19, no. 1,
pp. 29–52, 1994.

[19] P. Goyal and E. Ferrara, “Graph embedding techniques,
applications, and performance: a survey,” 2017, http://arxiv.
org/abs/1705.02801.

[20] J. Liu, Z. He, L. Wei, and Y. Huang, “Content to node: self-
translation network embedding,” in Proceedings of the 24th
ACM SIGKDD International Conference On Knowledge Dis-
covery & Data Mining, pp. 1794–1802, London, UK, August
2018.

[21] J. Tang, M. Qu,M.Wang, M. Zhang, J. Yan, and Q.Mei, “Line:
large-scale information network embedding,” in Proceedings
of the 24th International Conference on World Wide Web,
pp. 1067–1077, Florence, Italy, May 2015.

[22] V. W. Zheng, S. Cavallari, H. Cai, K. C.-C. Chang, and
E. Cambria, “From node embedding to community embed-
ding,” 2016, http://arxiv.org/abs/1610.09950.

[23] A. Grover and J. Leskovec, “node2vec: scalable feature
learning for networks,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 855–864, ACM, San Francisco, CA,
USA, August 2016.

16 Complexity

http://arxiv.org/abs/1705.02801
http://arxiv.org/abs/1705.02801
http://arxiv.org/abs/1610.09950

[24] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo,
“struc2vec: learning node representations from structural
identity,” in Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
pp. 385–394, Halifax, Canada, August 2017.

[25] G. Jeh and J. Widom, “SimRank: a measure of structural-
context similarity,” in Proceedings of the 8th ACM SIGKDD
International Conference On Knowledge Discovery And Data
Mining, pp. 538–543, ACM, Edmonton Alberta, Canada, July
2002.

[26] M. R. Hamedani and S.-W. Kim, “SimRank and its variants in
academic literature data: measures and evaluation,” in Pro-
ceedings of the 31st Annual ACM Symposium on Applied
Computing, pp. 1102–1107, ACM, Pisa, Italy, April 2016.

[27] Z. Lin, M. R. Lyu, and I. King, “PageSim: a novel link-based
measure of web page similarity,” in Proceedings of the 15th
International Conference on the World Wide Web,
pp. 1019-1020, ACM, Edinburgh, UK, May 2006.

[28] E. A. Leicht, P. Holme, and M. E. Newman, “Vertex similarity
in networks,” Physical Review E, Statistical, Nonlinear, and
Soft Matter Physics, vol. 73, no. 2, Article ID 026120, 2006.

[29] R. Jin, V. E. Lee, and L. Li, “Scalable and axiomatic ranking of
network role similarity,” ACM Transactions on Knowledge
Discovery from Data, vol. 8, no. 1, 3 pages, 2014.

[30] L. Li, L. Qian, V. E. Lee, M. Leng, M. Chen, and X. Chen, “Fast
and accurate computation of role similarity via vertex cen-
trality,” in Proceedings of the International Conference on
Web-Age Information Management, pp. 123–134, Springer
International Publishing, Qingdao, China, June 2015.

[31] R. Jin, V. E. Lee, and H. Hong, “Axiomatic ranking of network
role similarity,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pp. 922–930, ACM, San Diego, CA, USA, August
2011.

[32] M. Fürer, “Weisfeiler-Lehman refinement requires at least a
linear number of iterations,” in Proceedings of the 28th In-
ternational Colloquium on Automata, Languages, and Pro-
gramming, pp. 322–333, Berlin, Germany, July 2001.

[33] B. Weisfeiler and A. Lehman, “A reduction of a graph to a
canonical form and an algebra arising during this reduction,”
Nauchno-Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–16,
1968.

[34] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen,
K. Mehlhorn, and K. M. Borgwardt, “Weisfeiler-Lehman
graph kernels,” Journal of Machine Learning Research, vol. 12,
pp. 2539–2561, 2011.

[35] H. W. Kuhn, “)e Hungarian method for the assignment
problem,” Naval Research Logistics, vol. 2, no. 1-2, pp. 83–97,
1955.

[36] J. Travers and S. Milgram, “)e small–world problem,”
Phychology Today, vol. 1, pp. 61–67, 1967.

[37] D. J. Watts and S. H. Strogatz, “Collective dynamics of
“small-world” networks,” Nature, vol. 393, no. 6684,
pp. 440–442, 1998.

[38] L. Page, S. Brin, R. Motwani, and T. Winograd, “)e Pag-
eRank citation ranking: bringing order to the web,” Technical
report, Stanford University Press, Redwood City, CA, USA,
1999.

[39] L. C. Freeman, “Centrality in social networks conceptual
clarification,” Social Networks, vol. 1, no. 3, pp. 215–239, 1978.

[40] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[41] J. H. Michael and J. G. Massey, “Modeling the communication
network in a sawmill,” Forest Products Journal, vol. 47, no. 9,
25 pages, 1997.

[42] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten,
and S. M. Dawson, “)e bottlenose dolphin community of
doubtful sound features a large proportion of long-lasting
associations,” Behavioral Ecology and Sociobiology, vol. 54,
no. 4, pp. 396–405, 2003.

[43] D. E. Knuth, 7e Stanford GraphBase-A Platform For Com-
binatorial Computing, ACM, New York, NY, USA, 1993.

[44] M. E. Newman, “Finding community structure in networks
using the eigenvectors of matrices,” Physical Review E, Sta-
tistical, Nonlinear, and Soft Matter Physics, vol. 74, no. 3,
Article ID 036104, 2006.

[45] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: a review and new perspectives,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1798–1828, 2013.

[46] Y. Goldberg and O. Levy, “word2vec explained: deriving
Mikolov et al.’s negative-sampling word-embeddingmethod,”
2014, http://arxiv.org/abs/1402.3722.

[47] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: online
learning of social representations,” in Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 701–710, ACM, New York, NY,
USA, August 2014.

[48] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a
feather: homophily in social networks,” Annual Review of
Sociology, vol. 27, no. 1, pp. 415–444, 2001.

[49] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” in
Proceedings of the International Conference on Learning
Representations, ICLR 2013, Scottsdale, AZ, USA, May 2013.

[50] I. Borg and P. J. Groenen, Modern Multidimensional Scaling:
7eory and Applications, Springer Science & Business Media,
Berlin, Germany, 2005.

[51] F. Wickelmaier, An Introduction to MDS, 46 pages, Aalborg
University, Aalborg, Denmark, 2003.

[52] W. W. Zachary, “An information flow model for conflict and
fission in small groups,” Journal of Anthropological Research,
vol. 33, no. 4, pp. 452–473, 1977.

[53] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by
force-directed placement,” Software: Practice and Experience,
vol. 21, no. 11, pp. 1129–1164, 1991.

[54] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node clas-
sification in social networks,” Social Network Data Analytics,
Springer, Berlin, Germany, pp. 115–148, 2011.

[55] W. D. Nooy, A. Mrvar, and V. Batagelj, Exploratory Social
Network Analysis with Pajek, Cambridge University Press,
Cambridge, UK, 2011.

[56] D. A. Smith and D. R. White, “Structure and dynamics of the
global Economy: network analysis of international trade
1965–1980,” Social Forces, vol. 70, no. 4, pp. 857–893, 1992.

[57] D. Chirot and T. D. Hall, “World-system theory,” Annual
Review of Sociology, vol. 8, no. 1, pp. 81–106, 1982.

[58] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution,”
ACM Transactions on Knowledge Discovery from Data, vol. 1,
no. 1, 2 pages, 2007.

[59] R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and
A. Arenas, “Self-similar community structure in a network of
human interactions,” Physical Review E, Statistical, Nonlinear,
and Soft Matter Physics, vol. 68, no. 6, Article ID 065103, 2003.

Complexity 17

http://arxiv.org/abs/1402.3722

