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Abstract 

The new coronavirus has caused more than 1 million deaths and continues to spread rapidly. This virus 

targets the lungs, causing respiratory distress which can be mild or severe. The X-ray or computed 

tomography (CT) images of lungs can reveal whether the patient is infected with COVID-19 or not. 

Many researchers are trying to improve COVID-19 detection using artificial intelligence. In this paper, 

relying on Generative Adversarial Networks (GAN), we propose a Semi-supervised Classification using 

Limited Labelled Data (SCLLD) for automated COVID-19 detection. Our motivation is to develop 

learning method which can cope with scenarios that preparing labelled data is time consuming or 

expensive. We further improved the detection accuracy of the proposed method by applying Sobel edge 

detection. The GAN discriminator output is a probability value which is used for classification in this 

work. The proposed system is trained using 10,000 CT scans collected from Omid hospital. Also, we 

validate our system using the public dataset. The proposed method is compared with other state of the 

art supervised methods such as Gaussian processes. To the best of our knowledge, this is the first time 

a COVID-19 semi-supervised detection method is presented. Our method is capable of learning from a 

mixture of limited labelled and unlabelled data where supervised learners fail due to lack of sufficient 

amount of labelled data. Our semi-supervised training method significantly outperforms the supervised 

training of Convolutional Neural Network (CNN) in case labelled training data is scarce. Our method 

has achieved an accuracy of 99.60%, sensitivity of 99.39%, and specificity of 99.80% where CNN 

(trained supervised) has achieved an accuracy of 69.87%, sensitivity of 94%, and specificity of 46.40%. 

Keywords: Semi-supervised learning, Generative Adversarial Networks, COVID-19, supervised 

learning, deep learning. 



 

 

1 Introduction 
Since the beginning of 2020, the coronavirus disease 2019 (COVID-19) has been spreading all over the 

globe as it is contagious in an unprecedented manner [1]. In severe cases, it may lead to multiple organ 

failure, acute respiratory distress, heart problems, secondary infections in a comparatively high fraction 

of patients, and thus may cause deaths [2, 3]. On January 30th, 2020, The World Health Organization 

(WHO), announced the outbreak as a “public health emergency of international concern” (PHEIC). The 

epicentre of the outbreak was the Huanan Seafood Wholesale Market in Wuhan City, Hubei Province, 

China, and on March 11th, 2020, the WHO declared the COVID-19 a pandemic. Early detection and 

initiation of treatment in severe cases are vital to deal with the disease and thus mitigating mortality [4].  

Reverse-transcription polymerase chain reaction (RT-PCR) is generally utilized to confirm COVID-19. 

The sensitivity and specificity of RT-PCR were not recorded as robust enough for the treatment of the 

presumptive patients and early detection [5, 6]. A non-invasive imaging technique called computed 

tomography (CT) scans can play a crucial role in identifying some characteristic symptoms in the lung 

related to COVID-19 [7, 8]. A study using chest CT scans achieved 97% sensitivity (580/601 patients, 

95% CI, 95-98%) for COVID-19 detection [6]. Hence, chest CT scans may be effectively utilized in 

diagnosis and early detection of the disease. Since COVID-19 causes pulmonary changes, chest CT 

scans may exhibit imaging features analogous to other types of pneumonia, leading to confusion during 

COVID-19 detection. Hence, despite the advantages of CT, it is challenging to discriminate COVID-

19 from other types of pneumonia.  

Accessibility to huge datasets facilitates deep learning tools and applications to process large amount 

of unstructured information, allowing high level abstractions with enhanced generalisability and 

permitting key feature extractions [9]. In the domain of medical imaging, deep learning has shown 

outstanding performance in automatic feature extraction [10-12]. Due to the noteworthy performance 

that deep learning methods achieved especially in image processing tasks, it is remarkably useful as 

feature learners or automatic regressors in addition to classification tasks [9]. Deep learning is utilized 

to differentiate and detect viral and bacterial pneumonia in pediatric chest CT scans [13]. Different 

imaging features of chest CT can also be detected using deep learning [14, 15]. Chest CT scans of the 

positive COVID-19 patients have a discrete radiographic pattern: multifocal patchy consolidation, 

ground-glass opacities, and/or interstitial changes with a predominantly peripheral distribution [6, 7]. 

Chest CT scans with the help of deep learning methods have illustrated their efficacy in distinguishing 

COVID-19 from other types of viral pneumonia and thus becomes a useful diagnostic tool. This, in 

turn, leads to controlling and managing the pandemic situation [16]. 

Chest X-ray and CT scans have the potential to detect COVID-19 and isolate the patients in time. As 

most hospitals are equipped with X-ray, it is the first choice of the radiologists. However, chest X-ray 

images cannot distinguish soft tissues accurately [17]. Chest CT scan can be utilized as an alternative 

method. As the number of radiologists is scarce and also busy in pandemic situations, automatic 

detection of COVID-19 from chest images is highly desirable. Utilizing deep learning, Li et al. [18] 

designed a COVID-19 detection model called COVNet by extracting features from chest CT. Other 

non-pneumonia and community-acquired pneumonia (CAP) CT exams are conducted to evaluate the 

robustness of the model. Their model could discriminate CAP from other lung diseases, accurately. 

Wang et al. [19] utilized the deep learning strategies to derive the graphical features from the CT images 

of  COVID-19 patients. In these images, there are radiographical changes in the case of infected patients. 

Gozes et al. [20] proposed an automated approach using CT images for quantification, detection, and 

monitoring of COVID-19 patients. They used robust 3D and 2D models based on deep learning 

concepts and integrated them with clinical perceptive. They utilized a multi-centre international dataset 



 

 

and generated a corona score using a 3D volume review from thoracic CT features. This score helped 

the system to compute the evolution of ailment over time.  

Several studies have applied new approaches to detect COVID-19 cases using machine learning and 

deep learning approaches. Hemdan et al. [21] devised a deep learning-based framework dubbed as 

COVIDX-Net to aid clinicians to detect COVID-19 from X-ray images. They partitioned the dataset 

into 80% for training and 20% for testing. Zhang et al. [22] presented an anomaly detection deep 

technique for reliable and efficient COVID-19 detection. Apostolopoulos et al. [23] analysed the X-ray 

images of normal incidents, confirmed COVID-19 cases, and common bacterial pneumonia for 

automated detection of COVID-19 patients. They applied a convolutional neural network (CNN) with 

transfer learning. Their model derived biomarkers related to the COVID-19 illness. Butt et al. [24] 

compared multiple CNN models and devised a deep learning model based on 3D and 2D networks to 

classify no-infection, influenza viral pneumonia, and COVID-19 samples. Their model successfully 

differentiated the non-coronavirus and coronavirus cases per thoracic CT records.  

Other approaches include Song et al. [25] who devised a CT diagnosis system based on deep learning 

technology and termed it as DeepPneumonia for the identification of COVID-19 patients. Main lesion 

features, including ground-glass opacity (GGO) which are the key in the diagnosis, are located by their 

model. Sethy et al. [26] proposed a deep learning technique based on X-ray radiographs analysis for 

detection of COVID-19 patients. They implemented support vector machine classifier using the deep 

features to discriminate COVID-19 X-ray images from others.  Their technique could assist the 

radiologists in the diagnosis of COVID-19 patients.  

The test kits for COVID-19 are limited in hospitals owing to the exponential growth of the cases. 

Therefore, it is crucial to search for a fast alternative to detect such cases in order to confine the spread. 

Narin et al. [27] presented detection of COVID-19 patients based on Inception-ResNetV2, InceptionV3, 

and ResNet50 utilizing chest X-ray images. Confusion matrices and ROC analyses are performed with 

5-fold cross-validation. Shi et al. [28] established a deep learning oriented CT and clinical features 

based prognosis model for assessing the severity of COVID-19 infection. They applied the least 

absolute shrinkage and selection operator (LASSO), and developed the pneumonia severity index (PSI). 

Severe patients had higher PSI (p<0.001), percentage of infection (POICT), and mass of infection 

(MOICT) than non-severe ones. Their model proved its efficacy in the prediction of patients’ severity.  

Pervasive demands have arisen to combat COVID-19 pandemic crisis by designing an automated and 

efficient diagnosis system. Maghdid et al. [29] presented an accurate deep learning tool with fast 

detection mechanism for COVID-19 cases. Various CT and X-ray images have been integrated to 

provide a comprehensive and publicly available dataset. The detection technique consists of transfer 

learning and deep learning. The network is trained using AlexNet and CNN models on the CT and X-

rays dataset. The overview of published researches on COVID-19 detection is presented in Table 1. 

Table 1. Summary of works conducted on the detection of COVID-19 patients using deep learning (DL) 

techniques. 

Researches Modalities Number of Cases/images/datasets DL architecture 

Li et al. [18] CT 4356 chest CT Resnet50 

Wang et al. [19] CT 453 CT images CNN 

Gozes et al. [20] CT 157 cases Resnet-50 

Hemdan et al. [21] X-ray 50 Chest X-ray images Google MobileNet and 

modified VGG19 

Zhang et al. [22] X-ray X-VIRAL and XCOVID datasets Residual CNN 



 

 

Apostolopoulos et al. [23] X-ray 1427 X-ray images CNN with Transfer 

Learning 

Butt et al. [24] CT 219 cases CNN 

Song et al. [25] CT 275 cases Resnet50 

Sethy et al. [26] X-ray 2 datasets SVM plus Resnet50 

Narin et al. [27] X-ray 100 images Inception-ResNetV2, 

InceptionV3 and ResNet50 

Shi et al. [28] CT 196 cases VB-Net 

Maghdid et al. [29] CT and 

X-ray 

170 X-ray images and 361 CT 

images 

AlexNet 

Zhao et al. [30] CT 349 cases DenseNet-169 

ResNet-50 

 

Ko et al. [31] CT 3993 chest CT images ResNet-50 

 

Jaiswal et al. [16] CT 2492 CT scans DenseNet201 

Ardakani et al. [32] CT 1020 CT Xception 

ResNet-101 

Kumar et al. [33] CT 34,006 CT scan slices Capsule Network 

Ni et al. [34] CT 14,435 participants with chest CT 

images 

3D U-Net 

MVP-Net 

Alom et al. [35] CT and 

X-ray 

420 CT 

704 chest X-ray 

RNN with transfer learning 

Javaheri et al. [36] CT 89,145 CT Slices 3D CNN 

Saeedi et al. [37] CT 349 cases DenseNet121, ResNet50 

V1&V2, InceptionV3 and 

MobileNet V1&V2 

Zhang et al. [38] CT 640 images CNN 

Wang et al. [39] CT 640 images Graph convolutional 

network (GCN) and CNN 

 

Deep neural networks have great representation power but, their performance heavily relies on 

availability of labelled training data. In case the labelled data is limited, the deep networks won’t be 

able to learn well. However, we can still train the deep networks well by exploiting unlabelled data. The 

justification behind our hypothesis is the success of transfer learning [40]. In a nutshell, in transfer 

learning a learner trained for a specific task 𝑡𝑖 is modified for another task 𝑡𝑗 which bears some similarity 

to 𝑡𝑖. Although tasks 𝑡𝑖 and 𝑡𝑗 are not the same, the learner trained for 𝑡𝑖 can still benefit the similarity 

between 𝑡𝑖 and 𝑡𝑗 which accelerates the learning of 𝑡𝑗. This is the motivation for our two-phase semi-

supervised approach. In the first phase, the discriminator is trained to detect valid CT scan images. In 

the second phase, using the gained expertise from the first phase, the trained discriminator can learn 

sick and healthy CT images faster. The learning boost is due to the fact that regardless of being COVID 

or healthy, each training/test image is a valid CT scan which the discriminator has mastered using 

unlabelled data. 

Considering the above argument, one may be tempted to use non-deep learners in an attempt to reduce 

the required amount of the training data. However, the major drawback of such learners is that they 

treat the input samples as vectors. To feed images to such non-deep learners, we are forced to reshape 

the images into vectors. The reshaping operation destroys the meaningful features that each pixel has 

to offer relative to its neighbouring pixels. Hence, the application of deep learning based models seems 

to be inevitable if the features present in image inputs are to be captured properly. Hence using semi-

supervised learning to train deep models with a mixture of unlabelled and limited labelled data is the 

best solution. 



 

 

The main contribution of our work is twofold. First, we collected a dataset of lung CT scan images 

useful for training/evaluation of COVID-19 detection methods. Second, to the best of our knowledge, 

we are the first group to  propose the  semi-supervised COVID-19 detection method based on generative 

adversarial network (GAN) [41] to detect this disease. The proposed method has been improved using 

Sobel edge detection. Despite being semi-supervised, our method is competitive to its supervised 

counterparts. This feature is beneficial when labelled data is hard to get. Although we have focused on 

COVID-19 detection, our method is not limited to any specific dataset. The rest of the paper is organized 

as follows: Section 2 provides prerequisites, Section 3 describes our dataset, Section 4 elaborates the 

proposed method, Section 5 presents the experimental results and Section 6 concludes the paper. 

2 Prerequisites 
In this section, the required mathematical concept are briefly reviewed. First, GAN is reviewed since 

our method is based on it. The Gaussian Process is also reviewed since it is used during our experiments. 

2.1 Generative Adversarial Networks 
Originally proposed by GoodFellow, GAN is a generative model with massive applications. Compared 

to its predecessors, GAN is capable of generating high-quality images which are vivid and sharp. 

Basically, GAN is made of two neural networks, namely Generator (G) and Discriminator (D). The job 

of the Generator is to produce high-quality images which are called fake samples. The Discriminator 

must distinguish between the real and fake samples. The two networks compete against each other in a 

minimax game. That is why we call them adversarial networks. The objective function based on which 

the two networks are trained is given as [41]: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧~𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))], (1) 

where 𝑝𝑑𝑎𝑡𝑎(𝑥) is the real data (available dataset) distribution, 𝑝𝑧(𝑧) is the Generator input noise 

distribution, D(x) is the Discriminator output, z is the (Gaussian) noise vector and G(z) is the Generator 

output. As can be seen, the Generator is trying to minimize the objective function in equation (1), while 

Discriminator is trying to maximize it. To this end, the following gradients are calculated: 

∇𝜃𝑑

1

𝑚
∑ [𝑙𝑜𝑔𝐷(𝑥(𝑖)) + log (1 − 𝐷 (𝐺(𝑧(𝑖))))]

𝑚

𝑖=1

, 
(2) 

∇𝜃𝑔

1

𝑚
∑ [log (1 − 𝐷 (𝐺(𝑧(𝑖))))]

𝑚

𝑖=1

, 
(3) 

where 𝜃𝑑 and 𝜃𝑔 are the Discriminator and Generator parameters, respectively [41]. The gradients are 

computed over mini-batch of m samples. 

2.2 Gaussian Process 
Gaussian Process (GP) is a non-parametric probabilistic model which can be used for regression or 

classification. GP can be considered as an infinite-dimensional Gaussian distribution which is defined 

on functions as follows [42]: 

Definition: f is a Gaussian process if for any index set {𝑡(𝑖) ∈ ℝ𝐷 , 𝑖 = 1, … , 𝑛}, vector 𝑓(𝑡) =

[𝑓(𝑡(1)), … , 𝑓(𝑡(𝑛))]𝑇 has a multivariate Gaussian distribution of the form 𝑓(𝑡)~𝒩(𝑚(𝑡), 𝐾(𝑡, 𝑡)). 

Each  𝑓(𝑡(𝑖)) is a random variable, 𝑚(𝑡) is the mean function and 𝐾(𝑡, 𝑡) is the covariance matrix of 

the Gaussian distribution [42]. The mean function is initialized to constant zero (𝑚(𝑡) = 0). Each 



 

 

element of 𝐾(𝑡, 𝑡) is the output of a positive definite kernel function 𝑘: ℝ𝐷 × ℝ𝐷 → ℝ which receives 

𝑡(𝑖) and 𝑡(𝑗) as input. In this paper we use squared exponential kernel: 

𝑘(𝑡(𝑖), 𝑡(𝑗)) = 𝜎𝑓
2 exp {∑

−1

2𝑙𝑑
2 (𝑡𝑑

(𝑖)
− 𝑡𝑑

(𝑗)
)

2
𝐷

𝑑=1

} + 𝜎𝑛
2𝛿𝑖𝑗 ,     𝛿𝑖𝑗 = {

1, 𝑖𝑓 𝑖 = 𝑗
0, 𝑜. 𝑤       

 , (4) 

where the kernel function hyper-parameters 𝜎𝑓, 𝜎𝑛, and 𝑙 are signal variance, noise variance, and length 

scale, respectively. The hyper-parameters are learned based on the available training data. 

2.2.1 GP classification 

In this paper, we focus on binary classification of healthy and sick people. Hence, in this section, 

classification using GP is briefly reviewed. Following the binary classification conventions, the two 

class labels are denoted as{−1, +1}. The basic idea behind binary classification using GP is as follows. 

A prior GP is placed over the latent function 𝑓(𝑥). Output of GP is squashed through a logistic function 

𝜎(. ) to obtain prior 𝜋(𝑥) ≜ 𝑝(𝑦 = +1|𝑥) = 𝜎(𝑓(𝑥)). Here 𝑓(𝑥) values are not observable and we are 

not interested in them either. We only care about input vector 𝑥 and desired class label 𝑦. The sole 

purpose of 𝑓(𝑥) is to make the model formulation more convenient.  

Assuming that the training inputs are aggregated as column vectors in matrix 𝑋, and their corresponding 

labels are expressed as vector 𝑦, the GP inference is carried out in two steps: 

1. For a test case 𝑥∗, the distribution of the latent variable (𝑓∗) is computed as [42]: 

𝑝(𝑓∗|𝑋, 𝑦, 𝑥∗) = ∫ 𝑝(𝑓∗|𝑋, 𝑥∗, 𝑓)𝑝(𝑓|𝑋, 𝑦)𝑑𝑓, (5) 

where, 

𝑝(𝑓|𝑋, 𝑦) =
𝑝(𝑦|𝑓)𝑝(𝑓|𝑋)

𝑝(𝑦|𝑋)
. (6) 

2. Now 𝑝(𝑓∗|𝑋, 𝑦, 𝑥∗) is used to produce a probabilistic prediction as: 

�̃�∗ ≜ 𝑝(𝑦∗ = +1|𝑋, 𝑦, 𝑥∗) = ∫ 𝜎(𝑓∗)𝑝(𝑓∗|𝑋, 𝑦, 𝑥∗)𝑑𝑓∗. (7) 

3 Dataset description 
In this study, 10000 lung CT scan images were captured at Omid Hospital in Tehran. The images have 

been collected from February 2020 to April 2020. The mean and standard deviation of the patients’ age 

were 49.5±18.5 years old with 45% of the cases were male. Each image has been checked by three 

radiologists to determine whether the case is COVID-19 or not. Ethical approval to conduct use these 

data was obtained from the hospital. Typical normal and COVID-19 CT images used for this study is 

shown in Figure 1.  

 



 

 

   
(a)  

   
(b) 

Figure 1. Typical CT scan images used in this work:  (a) healthy subject, (b) COVID-19 infected patient. 

4 Proposed method 
Despite the fact that the new coronavirus is spreading quickly worldwide, the amount of available 

labelled data for diagnosing the disease is limited. Also, due to the rapid growth of this virus, the ability 

to label data quickly is desirable. Therefore, this study takes a semi-supervised approach to train the 

deep neural network for diagnosing coronavirus with high accuracy where only 10% of the training 

dataset is labelled. The proposed method has two phases. They are explained clearly in the following 

sections. 

4.1 First phase: unsupervised training 
The objective of the first phase is to learn the underlying distribution of dataset samples achieved using 

unsupervised training [43] of GAN model using unlabelled data. The reason for using GAN is its ability 

to learn the training data distribution. Upon completion of the first phase, the GAN networks parameters 

are trained such that the generator is capable of producing high quality fake images and the 

discriminator is capable of distinguishing fake image from the real ones. This means that the 

discriminator has learned to identify the valid CT scan image. The output of the first phase is the trained 

parameters of discriminator which are used as a starting point for the second phase.  

4.2 Second phase: supervised training 
The objective of the second phase is to fine tune the discriminator parameters such that it can classify 

CT scan images as COVID or healthy. To this end, the labelled data are used in supervised manner [44] 

to train the discriminator. It is worth noting that the generator is not needed in the second phase. The 

two phases of our method are depicted in Figure 2. As can be seen, the discriminator output in the first 

phase is the probability of being real given the input image while the output in the second phase is 

probability of being COVID infected. Each sample is classified as COVID if p(COVID) > 0.5, 

otherwise it is classified as Healthy. The advantage of probabilistic output is that it can also be used as 

an uncertainty measure. The more the discriminator output is close to 0.5, the higher the uncertainty 

about the sample class (Health/COVID) is. Hence, looking at the discriminator output, the human 

expert gets an insight on how much the classifier output can be trusted. In case the classification has 



 

 

low confidence (p(COVID)~0.5), the human expert can ask for another human/classifier to confirm the 

class of the test images. 

 

Figure 2. Schematic illustration of the proposed SCLLD model. 

4.3 GAN architecture 
The generator architecture [41] is shown in Figure 3. The input to the generator is a (Gaussian) noise 

vector which is fed to multiple convolutional layers. These layers convert the noise vector to synthetic 

CT scan images. The discriminator architecture is depicted in Figure 4. The input to discriminator is a 

two-dimensional image which could be a real sample or a fake one produced by the generator. During 

the forward pass of the discriminator, the input image is reduced to a scalar value which denotes the 

discriminator judgment about the received input sample. In the first phase, the ideal behaviour of the 

discriminator is to provide a higher probability of being real (p(real)) for real images and a lower 

probability for fake ones. Since the discriminator is competing against the generator (usually after the 

successful training), the probability provided by the discriminator is around 0.5 for both real and fake 

samples. This stems from the fact that the quality of the generator’s fake samples is high enough to 

deceive the discriminator. The desired behaviour of the discriminator in the second phase is to 

distinguish between COVID and healthy images. 

 

Figure 3. Network structure of generator model used in this work. 

 



 

 

 

Figure 4. Network structure of discriminator model used in this work. 

4.4 Dataset management 
Our dataset contains 10000 CT scan images which are divided into 80% training (8000 images) and 

20% testing (2000 images). The test data are all labelled. Moreover, 10% (800 images) of the training 

data is labelled. For validation, 20% (160 images) of the labelled training data is used. 

To improve the performance, we pre-process the available data. The edge detection by Sobel operator 

is applied to the data to further improve the feature extraction in GAN.  

4.5 Our method steps 
The main steps of our method are illustrated in Figure 5. In the first step, the dataset is partitioned to 

training, testing, and validation as explained in section 4.4. In step two, 10% of the training samples 

and entire testing samples are labelled, manually. Before any pre-processing, in the third step, the Sobel 

technique is used to detect the edges of the images. Labelled and unlabelled data are pre-processed in 

step four. Initial pre-processing includes resizing of images to 100*100 and normalizing them. The 

normalization maps the intensity of all image pixels to interval [0, 1]. The fifth step involves the creation 

of GAN generator and discriminator networks’ structures that are presented in Figure 3 and Figure 4, 

respectively.  The unsupervised training of sixth step is exactly the same as standard training procedure 

of GAN. The generator is trained such that it deceives the discriminator with high-quality fake images. 

The discriminator is trained in an unsupervised way by using the unlabelled data to distinguish between 

real and fake images. In the seventh step, the discriminator (with parameters initialized in step 6) is 

trained in a supervised manner to gain the ability to classify input images as healthy or COVID patients. 

To this end, the discriminator last layer activation provides the probability of each image of being 

COVID. In this step, the labelled data comes into play. Although the number of labelled data is small, 

the discriminator is able to distinguish COVID and healthy samples since its parameters have already 

been initialized to sensible values in the previous step. Finally, the trained discriminator is used to 

classify the test data in step eight.  



 

 

 

Figure 5. The proposed method steps 

 

4.6 Implementation details 
The proposed method has been implemented in Python using Keras library, which runs on top of 

TensorFlow. The experiments have been run on a PC with GFORCE GTX 950 GPU and 16GB of 

RAM. Hyperparameters of the method are explained in Table 2. 

Table 2. Parameters of the proposed method 

Size of the convolution kernels  3 × 3 

Generator input noise vector length 100 

Batch size 32 

Number of iterations 3500, 4000, and 4500 

Optimizer method Adam  

Adam parameters 𝛽1 = 0.9, 𝛽2 = 0.999 

Generator and discriminator loss Binary Cross Entropy (BCE) 

Generator learning rate 1e-3 

Discriminator learning rate 1e-3 

Convolutional layers activation function Leaky ReLU (𝛼 = 0.01) 

Edge detection algorithm Sobel with kernel size=3 

Dropout probability 0.5 

 

5 Results  
In this section, the experimental results of GAN and SCLLD methods for detection of COVID-19 

patients based on CT scan data are presented. For SCLLD method, we provided three loss plots at 

iterations 3500, 4000, and 4500 averaged on five number of runs with 95% confidence intervals. These 

plots are shown in parts a-c of Figures 6-8. Part d of these figures show ROC plots for SCLLD method.  

Moreover, we have compared the methods based on criteria such as accuracy, precision, sensitivity, 

recall, specificity, F1-score, and AUC. These criteria are computed according to the following equations 

[13]: 

Accuracy =
TP + TN

FP + FN + TP + TN
, 

(8) 

Sensitivity or Recall =
TP

TP + FN
, 

(9) 

Precision =
TP

TP + FP
, 

(10) 

F1 − Score =
2TP

2TP + FP + FN
, 

(11) 



 

 

Specificity =
TN

TN + FP
. 

(12) 

The experimental results for SCLLD method are presented in section 5.1. We have also summarised 

the results in Table 3. 

5.1 SCLLD results on our dataset 
The results of experiments at iterations 3500, 4000, and 4500 of SCLLD method are presented in 

Figures 6-8. The proposed method has two training phases: unsupervised and supervised. The loss plots 

in parts a and b of Figure 6 belong to the unsupervised training phase while the loss plot in part c is 

related to supervised training. Part d of the figure illustrates the ROC plot of trained SCLLD. The 

structure of plots in figures 7 and 8 are similar to the one explained in Figure 6. The only difference is 

the iterations (4000 and 4500) at which the plots are presented. The motivation behind plotting the 

results at multiple points during training is the investigation to the increasing number of iterations. This 

investigation is important since at some point during the training, the performance of SCLLD may 

degrade. Therefore, it is common practice to diagnose the SCLLD performance and stop the training 

when the performance of the model does not improve any more. 

It can be noted that, parts a and b of Figures 6-8 reveal that using Sobel operator has accelerated the 

training pace. Therefore, the best performance is achieved at iteration 3500. Beyond that iteration, the 

model has started to degrade quickly, leading to considerable loss value at iteration 4500 (part b of 

figure 8). 

The ROC plots at different iterations of SCLLD method match the accuracy results reported in Table 

3. Considering that the best performance is achieved at iteration 3500, it makes sense that ROC plots at 

this iteration reach value of 1.0 faster compared to their counterparts at iterations 4000 and 4500. For 

SCLLD, the accuracy decreases at iteration 4000 but increases slightly at iteration 4500. That is why 

ROC at iteration 4500 increases faster as compared to ROC at iteration 4000. An example of the CT 

images, result of applying Soble filter on them and the final results of GRAD-CAM are shown in Figure 

9. Grad-CAM is a generalization of the Class Activation Mapping. It does not needs re-training and can 

be applied broadly to any CNN-based architectures [45]. 

5.1.1 Sensitivity analysis regarding labelled training data size 

Based on the existing literature, GAN is good at capturing the underlying distribution of the training 

dataset [42]. However, the limited number of available labelled data might hurt the classification 

performance. This is the motivation for our semi-supervised approach SCLLD. In this section, we 

evaluated the performance of our method for different number of labelled data. This experiment reveals 

how much our semi-supervised approach can tolerate limited labelled data. The results for increasing 

sample size of training labelled data (1% to 10%) are presented in Table 4. It is clear that even in a 

semi-supervised setting, the amount of labelled data cannot be less than a certain threshold, otherwise 

the performance drops dramatically. This scenario is observed if the labelled data falls less than 3%. 

For labelled data size above 6%, the performance metrics are similar and the best results are achieved 

when 8% of the data are labelled. Theoretically, increasing the training data should lead to better 

performance. However, it is customary to train deep neural networks using mini-batch sizes smaller 

than the whole dataset. The benefit of mini-batch training is twofold [46]. First, smaller batch size 

reduces the memory demand for one step of training. Second, smaller batch size results in noisy 

gradients which has regularization effect preventing over-fitting. The noisy gradients lead to 

stochasticity during the learning process which is why the accuracy values in Table 4 do not necessarily 

increase with larger labelled data size. 

 



 

 

 

  

(a) Unsupervised training, real loss (b) Unsupervised training, fake loss 

  
(c) Supervised training loss (d) ROC plot 

Figure 6. SCLLD method results at iteration 3500: (a) loss plot on real data during unsupervised training, (b) loss 

plot on fake data (Generator output) during unsupervised training, (c) Loss plot for labelled data during supervised 

training and (d) ROC plot for classification of labelled data. 

 



 

 

  
(a) Unsupervised training, real loss (b) Unsupervised training, fake loss 

  
(c) Supervised training loss (d) ROC plot 

Figure 7. SCLLD method results at iteration 4000: (a) loss plot on real data during unsupervised training, (b) loss 

plot on fake data (Generator output) during unsupervised training, (c) Loss plot for labelled data during supervised 

training and (d) ROC plot for classification of labelled data. 

 



 

 

  
(a) Unsupervised training, real loss (b) Unsupervised training, fake loss 

  
(c) Supervised training loss (d) ROC plot 

Figure 8. SCLLD method results at iteration 4500: (a) loss plot on real data during unsupervised training, (b) loss 

plot on fake data (Generator output) during unsupervised training, (c) Loss plot for labelled data during supervised 

training and (d) ROC plot for classification of labelled data. 

Table 3. Comparison results between methods of GAN and SCLLD through different evaluation metrics. 

Methods Number 

of 

Iterations 

Accuracy 

(%)  

Precision 

(%) 

Recall 

(%)  

Specificity 

(%)  

F1-

score 

(%)  

Loss AUC 

(%) 

 

GAN 

3500 98.42 99.39 97.39 99.42 98.38 0.2567 98.4061 

4000 98.37 100 96.69 100 98.32 0.2856 98.3466 

4500 97.09 100 94.09 100 96.95 0.2205 97.0440 

 

SCLLD 

3500 99.61 99.8 99.4 99.81 99.6 0.2548 99.6023 

4000 98.77 100 97.49 100 98.73 0.1570 98.7474 

4500 98.96 97.94 100 97.96 98.96 0.3853 98.9805 



 

 

 

    
    

    
    

    
Figure 9. Examples of the CT images, result of applying Soble filter on them and the final results of GRAD-CAM 

are shown in the first, second and third rows, respectively. The first and second columns are the images of normal 

cases while the third and fourth columns are the images of sick cases. 

As can be seen in Table 4, the total training time is not a function of labelled data size. This is due to 

the fact that regardless of being labelled or not, all samples are eventually used during the supervised 

or semi-supervised training. Hence, the total cost of training is determined by the total number of 

labelled/unlabelled samples. 

Table 4. Effect of labelled training data size on SCLLD method performance within 4000 iterations. 

Amount of 

labelled 

training 

data (%) 

Accuracy 

(%)  

Precision 

(%) 

Recall 

(%)  

Specificity 

(%)  

F1-

score 

(%)  

Loss AUC 

(%) 

Total training 

time (minute) 

1 52.37 100 3.21 100 6.22 2.0755 51.6 0:26:52.736555 

2 64.6 83.18 35.17 93.11 49.44 1.0012 64.14 0:26:52.654560 

3 93.54 89.52 98.4 88.83 93.75 1.2660 93.62 0:26:57.976252 

4 96.15 98.52 93.59 98.64 95.99 0.2459 96.11 0:27:06.940879 

5 95.36 91.7 99.6 91.26 95.49 1.0138 95.43 0:26:55.096258 

6 99.26 98.91 99.6 98.93 99.25 0.2071 99.27 0:26:56.961483 

7 99.56 99.8 99.3 99.81 99.55 0.0963 99.55 0:26:47.955172 

8 99.95 100 99.9 100 99.95 0.1823 99.95 0:26:57.434292 

9 99.41 99.7 99.1 99.71 99.4 0.1091 99.4 0:26:56.027641 

10 99.36 98.81 99.9 98.83 99.35 0.2391 99.37 0:26:54.960978 



 

 

5.2 Evaluation of Convolution Neural Network on our dataset 
To highlight the role of using unlabelled data in our method, we have also trained a Convolutional 

Neural Network (CNN) on labelled data in a purely supervised manner. The structure of CNN is the 

same as our GAN discriminator. According to Figure 10, it is possible to compare the loss of CNN and 

our proposed method during the train and validation phases. According to this figure, it is clear that 

although the loss function of our proposed method is worse than CNN during the training phase, it 

shows better performance during the validation phase. 

The accuracy on training data and validation data during the training of CNN is shown in Figure 11. 

Looking at the accuracy plot, it is evident that the training has been stopped early by Keras library. The 

reason for early stopping is the fact that the CNN performance has started to degrade after iteration 11.  

 

  
a b 

Figure 10. Loss plot of CNN and the Proposed Method during a) training phase, b) validation phase 

 

Figure 11. The accuracy plot during the training of CNN on labelled data 

 



 

 

The performance of the trained CNN on test data is presented in Table 5. It is clear that CNN training 

has suffered from the lack of sufficient amount of labelled data. While CNN requires a huge amount of 

labelled training data in order to unleash its representation power; our method can enjoy unlabelled data 

to reach significantly better performance even if labelled data are limited. 

Table 5. Performance metrics of trained CNN on test data 

Accuracy 

(%)  

Precision 

(%) 

Recall 

(%)  

Specificity 

(%)  

F1-score 

(%)  

AUC 

(%) 

Total training 

time (minute) 

69.87 63.00 94.00 46.40 75.00 70.24 0:00:09.940334 

5.3 Evaluation of Gaussian Process on our dataset 
To gain a better understanding of our results, we have also compared our proposed method with a 

Gaussian process (GP) approach which is trained in supervised manner with our dataset. The advantage 

of GP is that it can represent any dataset. The drawback is its high computational complexity, which is 

of the order O(N3) [47] for N training samples. Considering that the amount of labelled data in our 

dataset is small, GP is an ideal choice since (i) the computation overhead is limited as the amount of 

available labelled data is limited. (ii) GP provides an estimate of the uncertainty in portions of the 

sample space where it has not seen enough data so the user knows where the GP output can be trusted. 

As can be seen in Table 6, despite its power, GP exhibited poor performance due to lack of sufficient 

labelled data. We can observe that even robust supervised methods cannot deal with limited labelled 

data. This clearly shows the importance of semi-supervised learning methods. The ROC diagram of GP 

experiment on our dataset is also presented in Figure 12. 

 
Figure 12. ROC diagram obtained using our method with our dataset and GP.  

 



 

 

Table 6. Performance of GP with our dataset. 

Accuracy 

(%)  

Precision 

(%) 

Recall 

(%)  

Specificity 

(%)  

F1-score 

(%)  

AUC 

(%) 

Total training 

time (minute) 

54.48 52 100 10.38 68 55.19 0:16:52.914259 

5.4 Evaluation of our method using a public dataset 
To evaluate the generalization of our method, we have evaluated the performance of our model using 

the publicly available Kaggle dataset [13]. The dataset belongs to China National Centre for Bio-

information with 8535 positive and 9430 negative CT scan samples. It can be noted from the presented 

results in Table 7 that our method has shown reasonable performance. Hence, our method is not limited 

to a specific dataset.  

Table 7. Results obtained using GAN and SCLLD methods with different evaluation metrics after 4000 training 

iterations with 80% of Kaggle dataset [13] for training and 20% for testing. 

Methods 
 

 

 

Accuracy 

(%)  

Precision 

(%) 

Recall 

(%)  

Specificity 

(%)  

F1-score 

(%)  
Loss 

AUC 

(%) 

Total training 

time (minute) 

 

GAN 89.98 98.77 79.91 99.1 88.34 0.3669 89.50 0:26:56.824186 

 

SCLLD 96.74 95.17 98.13 95.49 96.63 0.1977 96.81 0:26:59.223519 

 

6  Discussion and Conclusion  
COVID-19 pandemic has led to more than 1 million deaths and is spreading faster than expected. 

Currently, early detection of virus is of the highest importance which is a challenging task. Moreover, 

the virus detection test is expensive and not robust. Hence, chest x-ray and CT scans may be the useful 

tool to detect COVID-19 at an early stage. In addition to these detection techniques, researchers are 

utilizing AI methods to accelerate the detection and treatment of COVID-19 infected patients. This is 

the motivation behind our proposed method based on DL using a semi-supervised method.  

Our objective is to classify healthy and COVID-19 infected patients accurately using chest CT scan 

images. We have used the GAN method to deal with limited labelled data. To this end, GAN 

discriminator network parameters are initialized using unlabelled data. Next, the network parameters 

are fine-tuned with small number of labelled data. The proposed approach is further improved by pre-

processing the input images using Sobel edge detection. After the training, the GAN discriminator is 

used to classify the test data. Using the probabilistic discriminator output, our system provides the 

human experts with an uncertainty measure about its decision. The experimental results reveal the 

superiority of SCLLD method as compared to the GAN method alone (Table 3).  

To evaluate our SCLLD against other supervised methods, we have compared SCLLD performance 

with our dataset and other methods using their datasets (Table 8). Testing on different datasets is 

necessary since our dataset has limited labelled data which can hurt the performance of supervised 

methods. This comparison reveals that while supervised learners are crippled in the absence of enough 

labelled data, our method is capable of dealing with limited labelled data and learning from unlabelled 



 

 

ones reaching performance which is on par with supervised methods. This is clearly the advantage of 

our method, which is due to its semi-supervised nature.  

The drawback of our method is its computation overhead. In this work, we have used two training 

phases. In the first phase, standard GAN training is executed, which involves training of generator and 

discriminator together. The first source of overhead is generator training since when training is done, 

it is no longer needed. In the second phase of training, discriminator is trained using labelled data. 

Hence, the second source of overhead is training of discriminator twice (unsupervised and supervised).  

We may note that the final output of our method is the trained discriminator. 

In future work, we investigate the effect of training the generator using feature matching [48]. 

Moreover, it is interesting to explore the effect of using soft labels [48] during the unsupervised training 

phase of GAN. To this end, hard labels (zero and one) corresponding to fake and real samples are 

replaced with a random number between [0, 0.3] and [0.7, 1], respectively. Soft labels usually lead to 

stable training.  

Table 8. Summary of comparison with other automated DL methods developed to detect COVID-19 with CT 

images. 

Authors DL method 
Training 

approach 

Number of 

images  
Performance 

Ardakani et al. 

[32] 
ResNet-101 Supervised 1020 CT 

AUC: 0.994 

Sensitivity: 100% 

Specificity: 99.02% 

Accuracy: 99.51% 

Li et al. [18] Resnet50 Supervised 4356 CT 

Specificity: 92% 

Sensitivity: 87% 

AUC:  0.95 

Wang et al. [19] CNN Supervised 453 CT  

Sensitivity: 74% 

Specificity: 67% 

Accuracy: 73.1% 

Gozes et al. [20] Resnet-50 Supervised 6150 CT 

Specificity: 92.2% 

Sensitivity: 98.2% 

AUC: 0.996 

Hemdan et al. [21] 
Google MobileNet and 

modified VGG19 
Supervised 50 X-ray F1 score: 91% 

Apostolopoulos et al. 

[23] 

CNN with Transfer 

Learning 
Supervised 1427 X-ray 

Specificity: 96.46% 

Sensitivity: 98.66% 

Accuracy: 96.78% 

Butt et al. [24] CNN Supervised 618 CT 

Specificity: 92.2%, 

Sensitivity: 98.2% 

AUC: 0.996 

Song et al. [25] Resnet50 Supervised 1485 CT 
Sensitivity: 0.93 

AUC: 0.99 

Sethy et al. [26] SVM plus Resnet50 Supervised 50 X-ray 

Kappa: 90.76% 

F1 score: 91.41% 

FPR : 95.52% 

Accuracy: 95.38% 

Narin et al. [27] 

Inception-ResNetV2, 

InceptionV3 and 

ResNet50 

Supervised 3141 X-ray Accuracy: 98%. 

Shi et al. [28] VB-Net Supervised 196 CT AUC: 0.89 

Proposed method SCLLD 
Semi-

supervised 
10000 CT  

Accuracy: 99.60% 

Specificity: 99.80% 

Sensitivity: 99.39% 

AUC: 99.60% 
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