
Received: 24 June 2021 | Accepted: 13 December 2021

DOI: 10.1002/int.22807

RE S EARCH ART I C L E

A fuzzy database engine formongoDB

Juan Miguel Medina | Ignacio J. Blanco | Olga Pons

Department of Computer Science and
Artificial Intelligence, University of
Granada, Granada, Spain

Correspondence
Juan Miguel Medina, Department of
Computer Science and Artificial
Intelligence, University of Granada,
C/Periodista Daniel Saucedo Aranda s/n,
18071 Granada, Spain.
Email: medina@decsai.ugr.es

Funding information

Universidad de Granada

Abstract

Big Data are a paradigm through which valuable in-

formation is achieved through the analysis of a large

amount of data. The sources of these data can be var-

ied, from data streams that will be processed in real

time, to the exploitation of transactional data stored in

databases. For this last use, due to their scalability, the

NoSQL databases, like mongoDB, a DBMS oriented to

documents, have been consolidated as a powerful tool

for the storage and processing of large volumes of

data. On the other hand, information sources for Big

Data algorithms can contain imprecise information,

and the way to obtain, aggregate and present results

can have an imprecise nature as well. For this reason, it

is useful to provide fuzzy extensions to these DBMSs.

In the case of MongoDB, there are few proposals and

not very complete. This paper describes fzMongoDB,

a fuzzy database engine that provides the mongoDB

database with the capacity to store documents with

imprecise information and to retrieve them in a flexible

way. It is implemented and integrated on the mongoDB

server using the resources it provides. The model

and implementation of fzMongoDB also includes an

indexing mechanism that accelerates the retrieval

process on fuzzy queries. Also, the performance of

these indexing mechanisms is evaluated.

KEYWORD S

fuzzy databases, fuzzy NoSQL databases, mongoDB

Int J Intell Syst. 2022;1–34. wileyonlinelibrary.com/journal/int | 1

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. International Journal of Intelligent Systems published by Wiley Periodicals LLC.

https://orcid.org/0000-0002-0964-7324
https://orcid.org/0000-0002-7825-9093
https://orcid.org/0000-0002-0149-0377
mailto:medina@decsai.ugr.es
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.22807&domain=pdf&date_stamp=2022-01-11

1 | INTRODUCTION

Currently, the Big Data paradigm is one of the most active research areas and there are many
advances in each of its components. The goal of this paradigm is the extraction of valuable
information (value) from a large amount of data (volume) with heterogeneous structure
(variety) and investing a reasonable amount of time (velocity). But there are other factors
involved in this study area, such as the validity of the data to be processed and the results
obtained, and the way the starting data are processed and how the results are shown. These
factors can benefit from the use of techniques in the Soft Computing area. In this sense, several
works such as References [1–3] propose the use of fuzzy models to handle vagueness in Big
Data processing, especially in relation to the handling of the variety and veracity inherent to the
available data.

In the Big Data paradigm, database management systems (DBMSs) play an important role
because they provide the storage mechanism for data streams and for the transactional data
involved in ulterior processing. Specifically, the NoSQL DBMSs are of interest for this para-
digm, due to its features like scalability and suitability for the big data algorithms processing.
NoSQL is a general category of DBMSs that do not follows the basics of the relational model.
This category comprises several kinds of DBMS, Reference [4] classifies five kinds of NoSQL
DBMSs: key‐value‐based databases, column‐oriented databases, document‐oriented databases,
graph‐based databases and object‐oriented databases. Our work focuses on document‐oriented
DBMS, specifically on mongoDB5 DBMS.

To deal with imprecise data in the Big Data context, these database systems need the
capability to represent and handle fuzzy data. In the literature there are many proposals to
provide to databases with the capability of handling imprecise data. Most of them have been
focused on the application of the fuzzy handling to the relational model. Two approaches
have been proposed to address the problem of imprecise treatment in these databases. The
first approach consists on extensions of the SQL query language to perform fuzzy queries on
classical relational databases. Some works that follow this approach are References [6–8].

The second approach extends the relational model toward a fuzzy relational model. The
proposals in this category provide mechanisms to represent several kinds of fuzzy data into the
models, and define the operators to perform fuzzy queries on these fuzzy data and on classical
data too. Some proposals in this sense are References [9–11].

Also we can found several proposals that define fuzzy databases models and implementa-
tion prototypes based on other classical models. There are several proposals for fuzzy object
databases, some of these are reviewed in References [12,13]. We have proposed in Reference
[14] a model to provide fuzzy capabilities to an object‐relational database system and an
implementation for this on the ORDBMS Oracle.

Reference [13] compiles many proposals of models and implementations to enhance
database models with fuzzy handling capabilities. Also, Reference [15] provides a review of the
most interesting proposals in this sense.

However, there are only a few proposals that extend the capacity of NoSQL databases to
deal with fuzzy data. Reference [16] shows a way to transform a fuzzy relational model into an
HBase model (this is a database oriented to columns). Reference [17] proposes a framework
(Fuzzy4S) and a fuzzy extension of the Cypher language (Cypherf) to provide Neo4J, which is a
graph‐based NoSQL database, with the ability to deal with fuzzy information.

When we search proposals to handle fuzzy information in document‐oriented databases, we
find a few proposals, fundamentally focused on the mongoDB5 DBMS. This document‐oriented

2 | MEDINA ET AL.

DBMS, which is the most used NoSQL database,18 provides a public access version called
mongoDB community edition. By analysing its features, we find that it is a good candidate to
integrate capabilities for the fuzzy data storage with the support for the processing of these data
using Big Data algorithms improved with techniques from the Soft Computing discipline.
Reference [19] proposes a basic fuzzy extension of the mongoDB query language that allows
one to query collections in a fuzzy way by means of the use of linguistic labels. Nevertheless, it
does not allow one to represent fuzzy information in the database. In Reference [20], a fuzzy
extension of the mongoDB language named FMQL is used to operate with fuzzy data. The
proposed system translates operations expressed in this language into F‐XML expressions. The
problem is the lack of explanation on how the mongoDB system performs the necessary
transformations from FMQL to F‐XML and how mongoDB executes this translated code.
Astachova et al. [21] present a proposal based on the implementation of a parser that translates
fuzzy queries, expressed by means of an extension of SQL, to an expression on Mongo query
language to be executed on it. The mongoDB database stores collections that can contain fuzzy
data and linguistic values using a geometry representation based on the use of GeoJSON type.
The fuzzy predicates on these data are computed through spatial operations on the arguments.

A most elaborate proposal to provide fuzzy handling on documents (JSON documents) is
described in Reference [22]. In this paper the framework J‐CO is proposed to collect, integrate,
process, store and query JSON documents, which could be geotagged. The framework uses
mongoDB to store the JSON documents. To operate with these documents the framework
provides the J‐CO‐QL language. This language allows one to perform some kind of flexible
query on JSON documents by means of the definition of “fuzzy operators” that are linguistic
labels with their respective membership functions. Note that this framework does not store
fuzzy information into the documents, only allows flexible queries about these.

In this paper we present fzMongoDB, a fuzzy module for extending mongoDB, by providing
the capability to represent and handle fuzzy data. All the extended capacities are supported
thanks to a fuzzy extension of the mongoDB language with a syntax consistent with
the classical one, which allows one to integrate fuzzy clauses with classical ones. The
implementation of this extension has been carried out using the resources provided by the
mongoDB system, translating the fuzzy statements into mongoDB expressions so they can
be directly executed. This module also provides an indexing mechanism that speeds up the
retrieval process for queries based on possibility and on necessity.

The paper is organised as follows. In Section 2 the main elements of the MongoDB database
are summarised, including the fundamental expressions and statements. Section 3 describes
the fuzzy database model on which the fzMongoDB module is based. Next, in Section 4, the
proposed syntax for this fuzzy extension is described. Section 5 describes how the fzMongoDB
module is implemented and illustrates, by means of an example, how to create, populate and
query a collection containing fuzzy data. In Section 6, it is shown a study of the performance of
the indexing strategy proposed. Finally, Section 7 contains the conclusions and the future lines
of research.

2 | MongoDB FUNDAMENTALS

MongoDB is an open‐source document‐oriented database and currently, it is the most used
NoSQL database.18 In this section we will review its main characteristics, its data model, the
basic Create, Read, Update and Delete (CRUD) operations and the tools and resources it

MEDINA ET AL. | 3

provides for implementing a fuzzy extension of the mongoDB system. Most of this information
is extracted from the MongoBD documentation.23

The main characteristics of mongoDB are:

• High performance. It is written in C++, supports complex embedded documents, what reduces
the number of I/O, and provides several types of indexes to increase the retrieval performance.

• A complete query language that supports, in addition to the basic CRUD operations,
handling for geospatial and text search queries and aggregation queries that benefit from Big
Data strategies.

• High Availability, through the mongoDB's replication facility, that provides automatic
failover and data redundancy.

• Horizontal Scalability; by means of sharding, the data are distributed across a cluster of
machines.

• Atomicity, Consistency, Isolation and Durability (ACID) support. From version 4.0, mongoDB

can guarantee the ACID database properties.

2.1 | Data model

MongoDB provides a flexible data model, what allows us to store from a simple document of key‐
value pairs, up to a document with embedded subdocuments and/or complex arrays with various
levels of depth. Data are stored in BSON format,24 which is an extension of the native objects of
JavaScript and provides some additional data types. Amongst these data types, several types of
numerical data, strings, dates and timestamps, arrays, booleans, null, and ObjectID are included.

2.2 | CRUD operations

In mongoDB, all database operations are performed by means of invocation of database
commands, through the statement db.runCommand(). MongoDB also provides shell, an
interactive JavaScript interface composed of a set of methods for invoking commands of the
database. Our proposal for a fuzzy extension includes a syntax based on these methods; because
of this, in this section we will review the methods involved in the basic operations on a
database: CRUD.

Data are stored in mongoDB through collections, which are comprised of a set of documents.
It is not necessary to explicitly create a new collection since the execution of the method that
inserts a new document into a collection, implicitly creates the new collection if it does not exist.
For instance, let us suppose we want to create a collection of housings for real estate purposes. The
next statement creates the housings collection and inserts a new document into it:

4 | MEDINA ET AL.

It is possible to insert several documents by a single insert command, using an array of
documents (a list of documents separated by commas enclosed in square brackets).

For retrieval purposes (Read), mongoDB provides the database method find, whose basic
syntax is as follows:

db.<collection>.find(<query>,<projection>)

where <collection> determines the collection to be queried, the <query> parameter is
a document and allows one to express several types of queries: key‐value, by range, compound
queries, on fields that contain an array, on the array of documents, and so forth. This parameter
contains basic comparison operations which are expressed in the way:

{<field>: {<rel_op>: <value>}}

where the symbols $eq, $ne, $lt, $gt, $lte, $gte for <rel_op> are used to express
the relational comparators  =, ≠, <, >, , , respectively. Note that {<field>: {$eq:
<value>}} is equivalent to {<field>: <value>}.

To combine atomic comparison operations through the logical operators AND, OR and
NOT, the following syntax is used, respectively:

{$and: [{<expression1>}, {<expression2>}, …, {<expressionN>}]}
{$or: [{<expression1>}, {<expression2>}, …, {<expressionN>}]}
{field: {$not: {<operator-expression>}}}

The <projection> parameter is used to determine which fields appear or not in the
query results; its basic syntax is

{<field1>: <0_or_1>, …, <fieldN>: <0_or_1>}

To indicate that a field appears in the result of the query, the value must be set to 1; to
explicitly exclude a field, the value must be set to 0. In the following example we illustrate the
use of the find method to express a query on the housings collection.

Example 1. “Show the flats, with its price, area, number of rooms and description,
which have three rooms and the price is less than or equal to 120000 euro.”

The update method provides the functionality to change the contents of a document. Its
basic syntax is as follows:

MEDINA ET AL. | 5

where <collection> indicates the collection to be updated, the <query> parameter is a
document to determine which documents will be updated; this parameter uses the same syntax
of the <query> parameter in the findmethod; the <update> parameter is a document that
establishes the modifications to be applied. If the optional parameter upsert is set to true, a
document is inserted when no document matches the query; if the optional parameter multi
is set to true, the method updates all documents that match the query; if it is set to false, only
one is updated.

The deleteOne method is used to remove a document from a collection; its syntax is

where <collection> indicates the collection from which the document will
be deleted; the <query> parameter is a document to determine the document to be
deleted; this parameter uses the same syntax of the <query> parameter in the find
method.

To delete all documents that match the query, the deleteMany method is
provided. This method uses the same syntax as the deleteOne method. To delete all
documents from a collection an empty document ({}) must be passed to the <query>
parameter.

2.3 | Aggregation operations

Aggregation is one of the main proposals of mongoDB to process and transform data from
collections. MongoDB provides two ways to carry it out, by means of the database commands
mapReduce and aggregate.

2.3.1 | MapReduce command

The mapReduce command implements the MapReduce programming model, whose main
features are the capacity to parallelise and distribute the processing, so it is frequently used in
the Big Data area. The basic syntax for this command is

In this command, the map field accepts a JavaScript function that associates or “maps” a
value with a key and returns the key and value pair. In the reduce field it is necessary to

6 | MEDINA ET AL.

attach a JavaScript function that “reduces” to a single object all the values associated with a
particular key. If used, in the finalize field we can provide a JavaScript function that
processes the output of the reduce method to modify the output. In the out field we specify
where to store of the result of the map‐reduce operation. In the query field we can determine
which documents input the map function, this parameter uses the same syntax as the used for
the filter clause of the find command.

2.3.2 | Aggregate command

This command uses an aggregation pipeline that consists in taking a collection as input and
applying a sequence of stage‐based manipulations on it. This command is fundamental for our
implementation purposes, because we use it to execute the mongoDB expressions obtained
after translating the fuzzy sentences into native mongoDB expressions, directly executable by
this command. The basic syntax of this command is

where in the aggregate field it is set the name of the input collection for the pipeline. To
handle the output of the aggregation command a cursor object is used; by means of the cursor
field, the options for the creation of this cursor objects are set. For instance, to indicate a
cursor with the default batch size, it is necessary to set cursor: {}. In the pipeline
field it is provided an array of aggregation pipeline stages that process and transform
sequentially the document stream as part of the aggregation pipeline. Currently, there are
23 types of stages that can be used in the aggregation pipeline; these ones are full documented
in Reference [23], but for our implementation purposes, we are mainly interested in the
match and project stages.

The match stage filters the document stream, supplying to the next stage only those
documents that match the specified query. The syntax is {$match: {<query>}}, where
to express the <query> document it is used the same syntax than the used for the filter
field of the find command. In addition to the relational and logical operators described in
Section 2.2, we will describe those ones useful for our implementation:

• $add: An arithmetic operator that receives a list of expressions, which must be evaluated as a
number, and adds all of them.

• $substract: An arithmetic operator that receives a list of expressions, which must be evaluated
as a number, and subtracts all of them.

• $multiply: An arithmetic operator that receives a list of expressions, which must be evaluated
as a number, and multiplies all of them.

• $divide: An arithmetic binary operator that receives a list of two expressions and returns the
division of the first of them between the second.

• $cond: A conditional ternary operator that receives a list of three expressions and evaluates
the condition expressed in the first expression, if it is evaluated as true executes the second

MEDINA ET AL. | 7

expression and if it is evaluated as false the third expression is executed. This operator allows
us to perform the classic if–else of any programming language.

• $switch: An operator that evaluates cases expressions. It has the following syntax:

If <expression1> evaluates to true, $switch executes <expression1b>, the
same for <expression2>, if it evaluate to true executes <expression2b>, If none
expressions evaluate to true, $switch executes <expression_D>.

• $arrayElemAt: An operator for expressions with arrays. It receives a list of two expressions,
where the first parameter is the field that corresponds to the array and the second one is the
index of the array you want to obtain. It returns the value that is in the requested position of
the array.

• $type: Returns a string that identifies the BSON type of the argument.
• $expr: Allows the use of aggregation expressions in the query language. Its use in combination
with the operator “cond” is a powerful tool to elaborate complex conditional operations into
the match stage.

The projection stage is similar to the projection parameter of the find method,
except that it can generate new fields in the output collection using complex expressions
that compute the desired results from the data in the fields of the input collection.
To add a new field or to reset the value of an existing field, the following specification is
used:

<field>: <expression>

where <field> is the new field to be added or reset and, <expression> is a
document that can use a large number of aggregation pipeline operators. These include the
same operators that can be used in the match stage.

2.4 | Query optimisation by indexing

Indexing is a mechanism provided by the DBMS to increase the performance of the retrieval
processes. MongoDB provides several types of indexes: single and compound indexes, multikey
indexes on arrays, geospatials and text indexes, and so forth.

For our implementation purposes, the more suitable index type to enhance the retrieval
performance is the compound index. This one consists of an index structure that stores
references to multiple fields, improving the queries based on them. The basic syntax for
creating such indexes is

8 | MEDINA ET AL.

db.collection.createIndex({<field1>: <type>, <field2>:
<type2>, …})

where the <typen> parameters indicate whether the index is arranged ascending (1) or
descending (−1) in the corresponding field. Note that the order of the fields in the de-
claration is relevant for the index structure created and for the way the index is used in the
query process.

MongoDB provides the explain helper to show the execution plan selected to execute
a sentence. To show the execution plan of a sentence in its optional parameters,
the document {explain: true} must be added. Then, a document is returned
describing what statement will be executed, which indexes will be used (if defined), how they
are used, and all the information that allows us to evaluate how the sentence will be executed.

Another resource to evaluate and optimise queries is the hint parameter. This parameter
can be added to a query statement to determine the use of a specified index by the execution
plan. The format to use this option is {hint:<index>} where <index> can be the index
name, the index specification or {$natural: <1_or_1>} to force the query to perform a
collection scan (1, for forward) (−1 for reverse).

The explain helper and the hint option will help us to evaluate the performance of the
indexing strategy used for optimising queries in our mongoDB fuzzy extension.

3 | THE FUZZY DATABASE MODEL

The fuzzy database model that underlies the proposed fuzzy extension of the mongoDB system
is based on the fuzzy relational database model described in References [10,25]. The fuzzy data
model, the fuzzy comparison operators, and the fuzzy relational operators are adapted from this
fuzzy relational model to the document‐based database model of mongoDB. In this section, we
will describe such components of this model.

3.1 | Fuzzy data

The proposed fuzzy database engine provides fuzzy treatment to several kinds of data: fuzzy
numbers, scalars, unknown and undefined. We use a trapezoidal representation for the fuzzy
numbers, given by Equation (1):











 

μ x

β x γ
x α

β α
α x β

δ x

δ γ
γ x δ

() =

1 if ,
−

−
if < < ,

−

−
if < < ,

0 otherwise.

α β γ δ[, , ,] (1)

We can also represent crisp values and crisp intervals a b[,] (which can be queried by means
of fuzzy predicates). Table 1 summarises the fuzzy data supported for our fuzzy database
engine, and how they are represented using the supported mongoDB data types.

MEDINA ET AL. | 9

T
A
B
L
E

1
F
u
zz
y
da

ta
ty
pe

s
re
pr
es
en

ta
ti
on

on
m

o
n

go
D

B

T
yp

e
D
es
cr
ip
ti
on

R
ep

re
se
n
ta
ti
on

E
xa

m
p
le

C
ri
sp

A
si
n
gl
e
n
u
m
be
r

n
u
m
e
r
i
c
a
l
v
a
l
u
e

a
r
e
a
:

6
0

Sc
al
ar

A
si
n
gl
e
va
lu
e
on

a
n
ot

or
de

re
d
do

m
ai
n
w
it
h
a
n
ea
rn
es
s

re
la
ti
on

de
fi
n
ed

on
it
s
va
lu
es

"
#
"
||s

t
r
i
n
g

t
y
p
e
:
"
#
F
l
a
t
"

L
in
gu

is
ti
c
la
be
l

A
la
be
l
th
at

id
en

ti
fi
es

a
fu
zz
y
n
u
m
be
r

"
$
"
||s

t
r
i
n
g

p
r
i
c
e
:
"
$
C
h
e
a
p
"

In
te
rv
al

A
n
in
te
rv
al

va
lu
e

[
<
n
u
m
>
,
<
n
u
m
>
]

r
o
o
m
s
:

[
2
,
3
]

T
ri
an

gu
la
r

A
tr
ia
n
gu

la
r
po

s.
di
st
ri
bu

ti
on

[
<
n
u
m
>
,
<
n
u
m
>
,

<
n
u
m
>
]

a
r
e
a
:
[
5
0
,
6
0
,
6
5
]

T
ra
pe

zo
id
al

A
tr
ap

ez
oi
da

l
po

s.
di
st
ri
bu

ti
on

[
<
n
u
m
>
,
<
n
u
m
>
,
<
n
u
m
>
,
<
n
u
m
>
]

p
r
i
c
e
:
[
1
e
5
,
1
.
2
e
5
,
1
.
3
e
5
,
1
.
5
e
5
]

U
n
de

fi
n
ed

A
n
on

ap
pl
ic
ab

le
va
lu
e

"
$
u
n
d
e
f
i
n
e
d
"

t
y
p
e
:
"
#
F
l
a
t
"
,
f
l
o
o
r
s
:

"
$
u
n
d
e
f
i
n
e
d
"

U
n
kn

ow
n

A
n
u
n
kn

ow
n
va
lu
e

"
$
u
n
k
n
o
w
n
"

a
r
e
a
:
"
$
u
n
k
n
o
w
n
"

N
u
ll

A
n
u
n
de

fi
n
ed

or
u
n
kn

ow
n
va
lu
e

n
u
l
l

t
y
p
e
:

"
$
u
n
k
n
o
w
n
"
,
f
l
o
o
r
s
:

n
u
l
l

10 | MEDINA ET AL.

To understand the datatypes in Table 1, we should clarify the following:

• The Scalar datatype refers to data defined on a scalar domain without an order relation
defined on it. According to the GEFRED model,10 to perform flexible queries on this
datatype it is necessary to define a nearness relation on the domain values. To distinguish
Scalar datatype from string datatype in mongoDB, we set the label with the # character.

• Interval, Triangular and Trapezoidal datatypes are particular representations of trapezoidal
distributions; in mongoDB we use the array datatype to represent them.

• The Linguistic label datatype allows us to create labels that identify fuzzy numbers defined by
trapezoidal distributions. In mongoDB, we distinguish this datatype from the string datatype
prefixing the label with the $ character.

• The Unknown type represents any value of the underlying domain. It is represented in
mongoDB by means of the string “$unknown”.

• The Undefined type represents that it has no sense for the considered attribute to take any
value of the domain, that is, no value is applicable. It is represented in mongoDB by means of
the string “$undefined”.

• A Null value represents that we cannot provide any value because we do not know whether it
is applicable or not. To represent it, the BSON null type provided by mongoDB is used.

The fourth column in Table 1 illustrates the representation of each type in mongoDB by
means of an example.

3.2 | Fuzzy relational operators

To perform queries on fuzzy data it is necessary to extend the classical relational operators.
When a fuzzy relational operator is applied on two fuzzy numbers, it returns a value in [0, 1]

which represents the fulfilment degree (cdeg) for the considered fuzzy relational comparison.
The calculation of this degree depends on the measure used. In our model, we use measures
based on possibility and on necessity.

Our proposal provides support for the fuzzy extension of the classical relational operators,
as Medina et al.10 did in GEFRED:=, >, <, ⩾ and⩽, using a possibility measure: feq, fgt, flt, fgte
and flte, respectively, and using a necessity measure: nfeq, nfgt, nflt, nfgte and nflte, respectively.

Next, we show the definitions for these fuzzy operators when applied to trapezoidal distributions.
Let A α β γ δ= [, , ,]A A A A and B α β γ δ= [, , ,]B B B B be two trapezoidal possibility distributions

defined on an ordered domain Ω; then, the compatibility degree obtained for each fuzzy
comparison between them is calculated as shown in the following definitions:

Definition 1 (FEQ operator). The degree in which A and B are possibly equals is











 
 

feq A B

γ β β γ

δ α α δ

δ α

β α γ δ
δ α γ β

δ α

β α γ δ

(,) =

1 if and ,

0 if or ,

−

(−) − (−)
if > and < ,

−

(−) − (−)
in another case.

A B A B

A B A B

A B

B B A A
A B A B

B A

A A B B

(2)

MEDINA ET AL. | 11

Definition 2 (NFEQ operator). The degree in which A and B are necessarily
equals is



















 
 





nfeq A B

β α α β

γ δ δ γ

β α

β α α β
α β δ γ

γ δ

γ δ δ γ

β α

β α α β
α β δ γ

γ δ

γ δ δ γ
α β δ γ

(,) =

0 if (and) or

(and),

min
−

(−) − (−)
, if < and > ,

−

(−) − (−)

−

(−) − (−)
if < and ,

−

(−) − (−)
if and > ,

1 in another case.

A B A B

A B A B

A B

B B A A

A B A B

A B

B B A A

A B

B B A A

A B A B

A B

B B A A

A B A B

(3)

Definition 3 (FGT operator). The degree in which A is possibly greater than
B is










fgt A B

γ δ

δ γ

δ γ γ δ
γ δ δ γ(,) =

1 if ,

−

(−) − (−)
if < and > ,

0 in another case.

A B

A B

B B A A
A B A B (4)

Definition 4 (NFGT operator). The degree in which A is necessarily greater than
B is










nfgt A B

α δ

β γ

δ γ α β
α δ β γ(,) =

1 if ,

−

(−) − (−)
if < and > ,

0 in another case.

A B

A B

B B A A

A B A B (5)

Definition 5 (FGTE operator). The degree in which A is possibly greater or equal
than B is










fgte A B

γ β

δ α

β α γ δ
γ β δ α(,) =

1 if ,

−

(−) − (−)
if < and > ,

0 in another case.

A B

A B

B B A A
A B A B (6)

Definition 6 (NFGTE operator). The degree in which A is necessarily greater or
equal than B is

12 | MEDINA ET AL.










nfgte A B

α β

β α

β α α β
α β β α(,) =

1 if ,

−

(−) − (−)
if < and > ,

0 in another case.

A B

A B

B B A A

A B A B (7)

Definition 7 (FLT operator). The degree in which A is possibly less than B is










flt A B

β α

α β

α β β α
β α α β(,) =

1 if ,

−

(−) − (−)
if > and < ,

0 in another case.

A B

A B

B B A A
A B A B (8)

Definition 8 (NFLT operator). The degree in which A is necessarily less than
B is










nflt A B

δ α

γ β

α β δ γ
δ α γ β(,) =

1 if ,

−

(−) − (−)
if > and < ,

0 in another case.

A B

A B

B B A A

A B A B (9)

Definition 9 (FLTE operator). The degree in which A is possibly less or equal than
B is










flte A B

β γ

δ α

β α γ δ
β γ α δ(,) =

1 if ,

−

(−) − (−)
if > and < ,

0 in another case.

A B

B A

A A B B
A B A B (10)

Definition 10 (NFLTE operator). The degree in which A is necessarily less or
equal than B is










nflte A B

δ γ

γ δ

γ δ δ γ
δ γ γ δ(,) =

1 if ,

−

(−) − (−)
if > and < ,

0 in another case.

A B

A B

B B A A

A B A B (11)

3.3 | Logic connectives

To perform fuzzy queries that combine atomic fuzzy conditions, it is necessary the use of logic
connectives. In the model that underlies our fuzzy extension of mongoDB, we use theminimum

MEDINA ET AL. | 13

t‐norm for the connective AND, and the maximum t‐conorm for the connective OR. For the
NOT operator we use the expression:

NOT f x f x(()) = 1 − (). (12)

3.4 | Flexible conditions and query optimisation

A fuzzy query on a database is performed by means of a combination of atomic flexible
conditions. An atomic flexible condition implies the application of a fuzzy comparison operator
on a set of database rows with a given threshold of fulfilment. For instance, if we consider the
fuzzy set of rows that possibly satisfy the fuzzy condition C on the attribute A, its membership
function can be defined as shown in Equation (13).


C r d μ dΠ() = sup (Π (), ()),

d D A
A r C

()
()∕

(13)

where D A() is the underlying domain associated to the fuzzy attribute A, ΠA r() is the possibility
distribution which describes the fuzzy value of the attribute A for the row r , and μC is the
membership function defining the fuzzy condition C.

A flexible condition combined with a fulfilment threshold (T) is called atomic flexible
condition and it filters the rows that satisfy the flexible condition exceeding this threshold; it is
noted as  C T, .

When an atomic flexible condition is applied on trapezoidal fuzzy values, it is possible to
apply an indexing strategy to enhance the performance of the fuzzy query. This strategy is
based on the application of the indexing principle introduced in Reference [26]. In References
[27–30], this principle was implemented using the indexing mechanisms available on classical
RDBMS. The idea of the indexing principle consists of applying a preselection criterion that
retrieves the rows that possibly satisfy the flexible condition for a given threshold. Therefore,
the rows that do not satisfy the flexible condition are discarded. This preselection criterion
allows using indexes built on the components of the trapezoidal fuzzy numbers to improve the
retrieval performance. Later, it is necessary to filter again this set of rows to retrieve those ones
that effectively satisfy the flexible condition exceeding this threshold.

To illustrate the use of the preselection criterion, we will consider an atomic flexible condition
on a fuzzy attribute A t() to get the rows that are equal to a trapezoidal value C at a threshold T ,
using a possibility measure. Given the trapezoidal fuzzy attribute values represented as Π =A t()

α β γ δ[, , ,]A t A t A t A t() () () () the preselection criterion is expressed as Equation (14) shows

     ps C t T δ l α u′(,) ,A t base C T A t base C T() (,) () (,)∕ (14)

where  lbase C T(,) and  ubase C T(,) are, respectively, the infimum and the supremum of  base C T(,),
defined as in Equation (15). For the sake of simplicity, from now on, we will note  lbase C T(,) and

 ubase C T(,) as LCT andUCT , respectively.

 


 

base C T
supp C T

supp C T
(,) =

(), = 0,

(), 0 < 1.T
(15)

14 | MEDINA ET AL.

With the help of Figure 1 we will illustrate how to obtain the rows that satisfy the pre-
selection criterion and those ones that satisfy the selection criterion. This figure shows two rows
r s, on whose attribute A we apply a flexible condition  C T, with μ α β γ δ= [, , ,], Π =C A r()

α β γ δ[, , ,]A r A r A r A r() () () () and α β γ δΠ = [, , ,]A s A s A s A s A s() () () () () .
As we can deduce from Figure 1, the L U[,]CT CT limits are calculated by means of the next

expressions:

 
 

L T β T α

U T γ T δ

= + (1 −) ,

= + (1 −) .

CT

CT
(16)

On the other hand, the limits for any tuple t in the attribute A (LA t T() and UA t T()) are
computed as follows:

 

 

L T β T α

U T γ T δ

= + (1 −) ,

= + (1 −)

A t T A t A t

A t T A t A t

() () ()

() () ()
(17)

Visually, we can check that A s() and A r() satisfy the preselection criterion (Equation 14).
However, only A r() satisfies the selection criterion because it accomplishes the selection
condition:

 L U U L .A r T CT A r T CT() () (18)

For the sake of simplicity, we will note as  feq C A T(,), the illustrated atomic flexible
condition.

Using a similar reasoning (see Reference [28]), we can obtain the expression to get the
preselection and selection sets when applying an atomic flexible condition based on a necessity
measure,  nfeq C A T(,), .

The preselection condition is given by

 β L γ UA t CT A t CT() () (19)

FIGURE 1 Example of the computation of the preselection and the selection sets

MEDINA ET AL. | 15

and, the selection condition

 L L U U ,A t T CT A t T CT() () (20)

FIGURE 2 Example of the processing of a fuzzy query

where

 
 

L T β T α

U T γ T δ

= + (1 −) ,

= + (1 −)

CT

CT
(21)

16 | MEDINA ET AL.

and

 

 

L T β T α

U T γ T δ

= + (1 −) ,

= + (1 −) .

A t T A t A t

A t T A t A t

() () ()

() () ()
(22)

For the rest of the fuzzy comparison operators described in Section 3.2, the expressions to
compute the preselection and selection sets are the following:

•  fgt C A T(,), . The preselection and the selection condition are given, respectively, by next
expressions:

δ L ,A t CT() (23)

L L ,A t T CT() (24)

where

 L T δ T γ= + (1 −) ,CT (25)

 L T γ T δ= + (1 −) .A t T A t A t() () () (26)

•  nfgt C A T(,), . The preselection and the selection condition are given, respectively, by next
expressions:

β L ,A t CT() (27)

L L ,A t T CT() (28)

where

 L T δ T γ= + (1 −) ,CT (29)

 L T α T β= + (1 −) .A t T A t A t() () () (30)

•  fgte C A T(,), . The preselection and the selection condition are given, respectively, by next
expressions:

δ L ,A t CT() (31)

L L ,A t T CT() (32)

where

 L T β T α= + (1 −) ,CT (33)

 L T γ T δ= + (1 −) .A t T A t A t() () () (34)

MEDINA ET AL. | 17

•  nfgte C A T(,), . The preselection and the selection condition are given, respectively, by next
expressions:

β L ,A t CT() (35)

L L ,A t T CT() (36)

where

 L T β T α= + (1 −) ,CT (37)

 L T α T β= + (1 −) .A t T A t A t() () () (38)

•  flt C A T(,), . The preselection and the selection condition are given, respectively, by next
expressions:

α U ,A t CT() (39)

U U ,A t T CT() (40)

where

 U T α T β= + (1 −) ,CT (41)

 U T β T α= + (1 −) .A t T A t A t() () () (42)

•  nflt C A T(,), . The preselection and the selection condition are given, respectively, by next
expressions:

α U ,A t CT() (43)

U U ,A t T CT() (44)

where

 U T α T β= + (1 −)CT (45)

 U T β T α= + (1 −)A t T A t A t() () () (46)

•  flte C A T(,), . The preselection and the selection condition are given, respectively, by next
expressions:

α U ,A t CT() (47)

U U ,A t T CT() (48)

18 | MEDINA ET AL.

where

 U T γ T δ= + (1 −) ,CT (49)

 U T β T α= + (1 −)A t T A t A t() () () (50)

•  nflte C A T(,), . The preselection and the selection condition are given, respectively, by next
expressions:

γ U ,A t CT() (51)

U U ,A t T CT() (52)

where

 U T γ T δ= + (1 −) ,CT (53)

 U T δ T γ= + (1 −) .A t T A t A t() () () (54)

4 | SYNTAX OF THE FUZZY EXTENSION OF mongoDB

The fuzzy database model underlying this proposal is based on the fuzzy relational
database model described in References [10,25]. The fuzzy data model, the fuzzy comparison
operators and the fuzzy relational operators are adapted from this fuzzy relational model to the
document‐based database model of mongoDB.

Our proposal for a fuzzy extension of mongoDB is based on the fuzzy database model
described in Section 3; in this section we will describe the syntax to operate with this fuzzy
extension. All the components of this fuzzy syntax are extensions of the mongoDB language, so
they are consistent with the syntax it provides. The main elements of the mongoDB syntax have
been described in Section 2.

4.1 | Fuzzy data and fuzzy data definition statements

The proposed fuzzy extension of mongoDB uses the data model described in Section 3.1 with
the data types summarised in Table 1.

To operate with the fuzzy extension of mongoDB, it is necessary to use several system
collections that store metadata about the fuzzy data stored in the database. It is also necessary
to define some functions to manipulate such metadata.

The flabeldef function is provided to define fuzzy linguistic labels and the syntax is

flabeldef(<collection>,<field>,<flabel_name>,<fuzzy_
definition>)

being, <flabel_name> a string with the name of the label to be defined, <collection>
and <field> strings identifying where is the label defined, <fuzzy_definition> a fuzzy

MEDINA ET AL. | 19

number expressed in crisp, interval, triangular or trapezoidal format defining such linguistic label.
The execution of this function returns a new document with the provided values and it is inserted in
a collection named <collection>_flabel, according to the following format:

{
field_name: <field>,
label_name: <flabel_name>,
label_def: <fuzzy_definition>
}

If the label in this field is already defined, its definition is updated in the <collection>
_flabel collection with the new <fuzzy_definition> value.

To delete a label, the function flabeldel is used in the way

flabeldel(<collection>,<field>,<flabel_name>)

To define a scalar domain on a field and the nearness relation defined on it, the function
fnearnessdef is provided with this syntax:

fnearnessdef(<collection>,<field>,<scalars_array>,
<degrees_array>)

where <collection> and <field> determine where is the domain defined,
<scalars_array> is an array of Scalar datatype values that defines the scalar domain,
<degrees_array> is an array of numbers in [0, 1] that provides the nearness
degree between each pair of values of the domain. The content of the array of nearness
degrees depends on the order in the <scalars_array> field, in this way: if
<scalars_array> is given by ["#s1", "#s2",…, "#sn"] then to define the
nearness degree between each pair of scalars an array_nearness array must be
provided in the form: [<nd(#s1,#s2)>,<nd(#s1,#s3)>,…,<nd(#s1,#sn)
>,<nd(#s2,#s3)>,…,<nd(#s2,#sn)>,…,<nd(#sn-1,#sn)>], where each
<nd(#si,#sj)> represents the nearness degree between the scalar in the i position and the
scalar in the j position within the <scalars_array>.

Calling this function results in the insertion of a new document (or the replacement of an
existing one) in a metadata collection called <collection>_fnearness. The structure
of this document is as follows:

{
field_name: <field>,
domain_def: <scalars_array>,
nearness_degrees: <degrees_array>
}

To remove the definition of a scalar domain and the nearness relation defined on it the
function fnearnessdel is provided, with the format

fnearnessdel(<collection>,<field>)

20 | MEDINA ET AL.

4.2 | Fuzzy expressions

The expressions that can be used in mongoDB are extended to handle the supported fuzzy data
types and to perform fuzzy operations on them. These fuzzy expressions can be combined with
the “classical” mongoDB expressions.

4.2.1 | Fuzzy comparison expressions

The fuzzy extension provides fuzzy comparators (based on both possibility and necessity mea-
sures) that extend the classical relational operators for fuzzy comparisons. The basic syntax is

{<numerical_field>: {<fuz_rel_op>: <fuz_value> [,<threshold
_clause>]}}

where <fuz_rel_op> represents one of the provided fuzzy extensions for the comparison
operators ($eq, $ne, $lt, $gt, $lte and $gte) based on possibility measure: $feq,
$fne,$flt,$fgt,$flte and $fgte or, the ones based on the necessity measure:
$nfeq, $nfne,$nflt,$nfgt,$nflte and $nfgte. The <numerical
_field> item can store values of any of the fuzzy data types described on Table 1, excluding
the Scalar data type. Also, <fuz_value> can be of any of these data types, excluding a
Scalar data type value. The optional <threshold_clause> establishes the threshold (in
[0, 1]) that the fulfilment degree of the comparison must satisfy for the retrieval of a document.
Its syntax is $thold: <value_in_0_1>; when not established, the threshold is set to 0.

The specific syntax for comparisons on Scalar fields is

{<scalar_field>: {$feq: <scalar_value> [,<threshold_
clause>]}}

where the <scalar_field> can store values of the Scalar Undefined Unknown, , or
Null data type (Table 1). If a document stores a value of a different type from the ones
mentioned in this field, it is not retrieved. The <scalar_value> item can be of any of
these data types. If a nearness relation is defined on the domain of this field then it will
be used.

The following expressions are examples using the described syntax:

4.2.2 | Fuzzy logic expressions

The fuzzy extension of mongoDB provides the operators $fzand, $fzor and $fznot,
which implement the fuzzy extensions for the logical operators: $and, $or and $not.

MEDINA ET AL. | 21

$fzand joins fuzzy expressions using the min T‐norm and returns the documents
satisfying all the fuzzy conditions over the imposed threshold, $fzor joins fuzzy
expressions using the max T‐conorm and returns the documents satisfying any fuzzy ex-
pression over the imposed threshold and $fznot inverts the effect of a query expression
and returns documents that do not match the fuzzy expression at the established threshold.
Their basic syntax is

{$fzand: [<fuzzy_expression_1>, <fuzzy_expression_2>,…]}
{$fzor: [<fuzzy_expression_1>, <fuzzy_expression_2>,…]}
{$fznot: <fuzzy_expression>}

4.2.3 | Fuzzy conditions

To express a fuzzy predicate by means of a fuzzy expression, the $fzcond operator is used.
The syntax is

{<fzcond_name>: {$fzcond: <fuzzy_expression>}}

The <fzcond_name> assigned to the fuzzy predicate can be addressed in the $cdeg
operator to show the fulfilment degree to which each document matches this fuzzy predicate,
as described below. In a statement might appear several fuzzy predicates and, therefore, several
$fzcond operators.

4.2.4 | Fuzzy projection expressions

The projection component of a fuzzy statement is used in the same way as in the classical
statement, with the exception that the $cdeg operator can be included. As we previously
mentioned, the $cdeg operator is used to return the compatibility degree for the whole fuzzy
comparison or for each attribute in the provided array. The following sentences are valid syntax
expressions for this operator:

4.3 | Fuzzy CRUD syntax

The fuzzy extension of mongoDB provides four functions that extend the capability of the basic
mongoDB CRUD operations to deal with fuzzy data. These functions described below integrate
the handling of classical data and operators along with the respective fuzzy ones.

For the insert command, or method, there is no need to provide a specific extension,
because all fuzzy data types considered in Table 1 have a representation compatible with the

22 | MEDINA ET AL.

classical types provided by mongoDB. In this way, the creation of new documents including
instances of these fuzzy data types can be carried out with the provided insert command.

4.3.1 | FzFind

To extend the query capability to handle fuzzy predicates on fuzzy data, it is necessary to imple-
ment an extension of the find command. This extension, named fzFind, has the following syntax:

fzFind(<collection>, <filter>, <projection>, <options>)

where the string <collection> indicates the collection from which the retrieval is per-
formed; <filter> is a document that expresses the query condition, which can combine
classical conditions with fuzzy ones expressed as fuzzy conditions using the syntax shown
in Section 4.2.3; <projection> is a document including which fields will be included
in the result; in this document it is possible to combine classical projection expressions with
fuzzy projection expressions following the syntax shown in Section 4.2.4; finally, the optional
parameter <options> is a document composed of pairs option‐value that allows one to pass
the following optional options to the fzFind statement:

The result of the invocation of the fzfind function is a cursor to handle the resulting collection,
which supports the following cursor methods: cursor.hasNext(), cursor.next(), cursor.toArray(),
cursor.forEach(), cursor.map(), cursor.objsLeftInBatch(), cursor.itcount() and cursor.pretty(). The
functionality and use of these methods is described in the mongoDB documentation.23

4.3.2 | FzUpdate

This function extends the capability of the Update command to apply filters including fuzzy
predicates. It has the following syntax:

fzUpdate(<collection>, <updates>, <options>)

where the string <collection> denotes the collection to be updated, <options> is a
document composed of option‐value pairs to send the classical options supported by the
command Update and, <updates> is an array with one or many update statements, with the
format

[{q: <filter>,u: <document>,upsert: <boolean>,multi:
<boolean>,…},…]

MEDINA ET AL. | 23

where <filter> is a document to select the documents to be updated (the format is the same of
the fzFind command) and <document> is the modified document. The behaviour of the
parameters upsert and multi is the same as described for the update method in Section 2.2.

4.3.3 | FzDelete

To extend the capability of the Delete command to handle fuzzy predicates, this function is
implemented according to the following format:

fzDelete(<collection>, <deletes>, <options>)

where the string <collection> denotes the collection from which documents
will be removed, <options> is used to send the classical options supported by the command
Delete and, <deletes> is an array with one or many delete statements, with the format

[{q: <filter>, limit: <integer>, collation: <document>}, …]

where <filter> is a document to determine which documents will be deleted, <limit>
specifies the number of matching documents to delete (0 to delete all matching documents or 1 to
delete only one) and, collation is a document to provide language‐specific rules for string
comparison.

5 | FzMongoDB MODULE IMPLEMENTATION

The built fzMongoDB module consists of a script written in JavaScript which, once loaded in
a mongoDB session through the load command, provides mongoDB with the capacity for
representing and handling fuzzy data. To build this module, we have followed a strategy based
on the formulation of a syntax that is consistent with the classical syntax provided by
mongoDB, as described in Section 4. To implement this extended syntax, we have used some
resources provided by the mongoDB platform, which are described in Section 2, to translate the
fuzzy mongoDB statements into classical mongoDB statements whose direct execution provides
the expected fuzzy results.

To execute the fzFind statement, fzMongoDB script uses the mongoDB method aggregate.
The language processor analyses the statement syntax with its parameters and generates the
stages of the aggregation pipeline. From the filter parameter of this statement and invoking
several internal functions, the language processor generates a mongoDB expression for the
$match stage of the aggregation pipeline. In the same way, the processor generates a mongoDB

expression for the $project stage from the projection parameter of the fzFind statement. Then,
the method aggregate with the generated parameters is executed and the results are obtained.

For the fzUpdate and fzDelete statements, the fzMongoDB script uses the mongoDB method
runCommand, generating the parameters and options for this method from the input parameters
of such statements.

For the flabeldef, fnearnessdef, flabeldel and fnearnessdel statements, the fzMongoDB script uses
the mongoDB methods createCollection, insert, update and remove, generating the parameters and
options for these methods from the input parameters of such statements.

24 | MEDINA ET AL.

5.1 | An example of FzMongoBD module processing

With the assistance of Figure 2, we will illustrate the functioning of the fzMongoDB module
focusing on the most complex fuzzy statement, the fzFind statement. To do it, we will use the
collection of estates denominated housings used in Section 2.2, where each document describes
the characteristics of a property, some of them by means of fuzzy values. To show the structure
of each document we will use an insert command to insert an example of a property:

First, the fzMongoDB script is loaded (step 1 in Figure 2) through a classical client session
connected to the mongoDB server. To show how a fuzzy query on the housings collection is
processed, it is necessary to define the underlying domain for the field type and a nearness
relation on the values of this domain. According to the syntax shown in Section 4.1, we will
execute the next statement (step 2 in Figure 2):

As the result of the execution of this statement, the collection named housings_fnearness is
created with the document shown in step 2a of Figure 2.

Now, let us suppose we want to retrieve “flats” with a price of approximately 145,000 euros
but not more than 160,000 nor less than 130,000, with an area upper than 70m2, with a
threshold of 0.6 for the type of house, 0.8 for the price and, 0.7 for the area, showing the
relevant information of the estates satisfying the query. Using the syntax described in
Section 4.3.1, this query can be written in the client session (step 3 in Figure 2) as follows:

MEDINA ET AL. | 25

When this statement with these parameters is sent and is processed by the fzMongoDB
script, it generates (step 3b in Figure 2) the following mongoDB code:

where <query> is an expression which translates the fuzzy and classic predicates of the
clause <filter> of the fzFind command, to a directly executable classic mongoDB®

expression. For this example, the structure of this expression is

where for instance, the code for the two first sub expressions is

Note that, if we have created the following indexes on the price field:

db.housings.createIndex({price.0: 1, price.3: 1})
db.housings.createIndex({price.3: 1, price.0: 1})

mongoDB applies the pre‐preselection condition (shown in the two first lines
of the previous code) using the most efficient index. This precondition filters those
properties that finally fulfil the condition imposed on the price, speeding up the recovery
process.

26 | MEDINA ET AL.

Finally, <specifications> is an expression which translates the <projection>
clause of the fzFind command into a classical mongoDB code; by means of this code,
the information shown as result of the query (including compatibility degrees for the fuzzy
predicates) is generated. For this example, the expression is

<specifications>:
"_id:0, id_housing:1, type:1, price:1, rooms:1, area:1,+
<type_cdeg_code>+",+<price_cdeg_code>+",+<area_cdeg_code>

where for instance, the code for the second and third sub expressions is

MEDINA ET AL. | 27

Then, this classical code generated by the fzMongoDB script is automatically sent to the
mongoDB language processor to be executed (step 3c in Figure 2). As result, the mongoDB

server returns to the mongoDB client, the list of documents (housings) that satisfy the fuzzy
query (step 4 in Figure 2).

Figure 3 shows the execution of the query described in Figure 2 through a classical
mongoDB client, Robo 3T in this case. Once the fzMongoDB script is loaded into a mongoDB

classical client session, all supported fuzzy statements are available to the user.

6 | PERFORMANCE EVALUATION

The fuzzy extension module implements the optimisation described in Section 3.4 to improve
the performance of the retrieval operations, by means of the use of indexes in the query
execution plan. We have designed two sets of experiments to evaluate the performance en-
hancement of queries based on possibility and on necessity. The experimental setups have been
developed on a mongoDB database server ver. 4.2.11 running on a server having a Core i7 CPU
with 4 cores running at 3.4 GHz, 32 GB of RAM and a 512 GB SSD as the secondary storage.

6.1 | Indexing performance on queries based on possibility

To evaluate the performance impact of our indexing strategy for queries based on possibility,
we have generated a set of nine collections and a set of 37,714 queries using the feq operator.

FIGURE 3 Use of the fzMongoDB module through of a Robo 3T client [Color figure can be viewed at
wileyonlinelibrary.com]

28 | MEDINA ET AL.

http://wileyonlinelibrary.com

These queries have been executed using fulfilment thresholds in [0, 1]. To focus on the
performance of the indexing strategy, the designed queries only retrieve the amount of
documents that satisfy the fuzzy query.

So, the first set of collections (DBset1) was generated on the domain [0, 100000] and
comprises the following elements:

• Three collections with 105 documents, three collections with 106 documents, and three
collections with107 documents. The documents include a field called “trape” that stores an array
that represents each trapezoidal value generated. For each collection size, there are three var-
iants, which store trapezoids uniformly distributed with a fixed support size of 50, 500 and 5000,
respectively. The kernel of each trapezoid was generated using also a uniform distribution.

• In each collection, two compound indexes are created, one on the alpha and delta values of
the “trape” field, and the other on the delta and alpha values of this field.

• The set of queries is randomly generated using the same parameters as the documents
generated for the database set.

Figure 4 shows the results of the tests performed to evaluate the performance of the
possibility‐based queries. To compare the performance enhancement of our indexing strategy,
each query has been also executed performing a full scan of the collection (notated as FS in the
figures). In this figure, the results of the queries executed using our indexing strategy are noted
as IDX.

Figure 4A shows the average execution time of the queries (AET) with respect to the
collection size. For collections of 105 documents the AET of the indexed queries (IDX) is about a
half with respect to the execution based on full scan (FS); for collections with size 106 and 107

the AET of IDX is about four times less than FS.
In classical databases, the use of indexes is more efficient for queries that retrieve fewer

tuples, that is, when the selectivity is high. Figure 4B–D shows the AET with respect to the
selectivity of the query for collections of sizes 10 , 105 6 and 107, respectively. As we can see, in
general, the AET increases as selectivity increases. When we compare IDX performance with FS,
we notice that the trend is, the larger the collection size, the better the performance of IDX with
respect to FS, and the lower the selectivity, the better the IDX performance with respect to FS.

Figure 4E shows how the compliance threshold of the query affects the performance. When
this threshold is set to 1, the preselected documents match with those finally selected, and it is not
necessarily an additional filtering. Because of this, we can see that the performance increases as
the threshold does. On the other hand, IDX performs about 10 times better than FS on average.

The use of the compound index (alpha, delta) is more efficient when the upper alpha‐cut
(UCT) value of the queried trapeziod is low. This is so because predictably there will be fewer
trapezoids in the database whose alpha value be less than this upper alpha‐cut value. On the
other hand, if theUCT value is high the compound index (alpha, delta) will be more efficient. For
intermediate values, the use of any of these indexes will be less efficient. Figure 4F shows this
trend for IDX queries, also shows a better performance of IDX with respect to FS in any case.

6.2 | Indexing performance on queries based on necessity

To evaluate the performance of our indexing strategy on queries based on necessity, we have
designed the following experimental setup:

MEDINA ET AL. | 29

• Five collections with  10 , 3 10 , 10 , 5 105 5 6 6 and 107 documents, respectively. The documents
of these collections contain a field that stores trapezoids with a fixed support size of 100,
uniformly distributed on the domain ([0, 100000]). To generate the kernel of each trapezoid a
uniform distribution has also been used.

(A) (B)

(C) (D)

(E) (F)

FIGURE 4 DBSet1. Performance tests on possibility based queries. AET, time of the queries; FS, full scan;
IDX, indexing queries [Color figure can be viewed at wileyonlinelibrary.com]

30 | MEDINA ET AL.

http://wileyonlinelibrary.com

• A set of 40,000 queries was randomly generated using the same parameters as the documents
generated for the database set.

• For each collection, a compound index on the beta and gamma values of the trapezoidal field
has been created.

(A) (B)

(C) (D)

(E) (F)

FIGURE 5 DBSet2. Performance tests on necessity‐based queries. AET, time of the queries; FS, full scan;
IDX, indexing queries [Color figure can be viewed at wileyonlinelibrary.com]

MEDINA ET AL. | 31

http://wileyonlinelibrary.com

Figure 5 shows the results of the execution of the tests. Again, IDX represents the execution
of the queries using the index, and FS the execution without any index.

Figure 5A shows the average execution time for all queries with respect to the collection
size. As we see, the average performance of the queries using index (IDX) is about five times
better than FS.

Figure 5B–D shows the average performance with respect to the selectivity of the query for
collections with 100,000, 106 and 107 documents, respectively.

As we see in Figures 5E,F, the threshold of the query influences the performance
as expected, the higher the threshold, the better the performance. Moreover, the average
execution time for queries using IDX goes from a quarter of the time spent by FS at threshold
0 to the 24th part at threshold 1.

As all performed tests show, the use of our indexing strategy noticeably decreases the time
expended in the execution of the queries with respect to its execution without the use of any index.

7 | CONCLUSION

We have proposed fzMongoDB, a fuzzy extension module for mongoDB database to provide it
with the capability of handling flexible information, with four basic features:

1. It enables mongoDB database to represent and handle a wide variety of imprecise data types,
and to perform queries on them based on possibility, necessity and similarity.

2. It provides a syntax extension which is consistent with the mongoDB syntax, allowing the
natural integration of fuzzy clauses with classical ones.

3. It includes optimisations, based on indexing, to accelerate the retrieval process for queries
based on possibility and on necessity. The performance tests executed demonstrate that the
use of these indexing techniques speeds up the retrieval of documents, being better the
performance as the collections augment the size.

4. It is implemented by means of a JavaScript script that translates the fuzzy statement into
host statements of MongoBD, whose direct execution returns the results in the desired
format. This means that, to exploit the fuzzy handling provided by this module, the user only
needs to load the script into a classical mongoDB session and execute the sentences using
the fzMongoDB syntax.

Our fzMongoDBmodule beats other proposals available in the literature like19,20,22 which do
not allow one to represent fuzzy data into the mongoDB database. Although the proposal in
Reference [21] allows one to represent linguistic labels into mongoDB, it uses an inefficient
method to query them. Besides, all of them use an external module to translate the fuzzy
statements into the statements processable by the mongoDB database. In our case, the
fzMongoDB module is executed into the mongoDB database. Also our fzMongoDB module is
more detailed in the description of the fuzzy syntax, implementation and functioning than the
other proposals. Further, it includes enhancements to accelerate the retrieval process.

Regarding future works, we are going to explore the possibility to extend the capability of
the aggregation commands of mongoDB, such as mapReduce and aggregate, to deal
with fuzzy information. This will allow one to take advantage of the processing scalability of
this NoSQL database, integrating the capability for handling fuzzy information. MongoDB

supports the representation of geospatial data through the GeoJSON objects and to express

32 | MEDINA ET AL.

geospatial queries on them. It would be also interesting to extend its capacity to perform
flexible geospatial queries.

ACKNOWLEDGEMENTS
This study has been partially supported by the MCIN/AEI/10.13039/501100011033 and
FEDER: “Una manera de hacer Europa” under project PGC2018‐096156‐B‐I00: Recuperación y
Descripción de Imágenes mediante Lenguaje Natural usando Técnicas de Aprendizaje Profundo
y Computación Flexible.

ORCID
Juan Miguel Medina https://orcid.org/0000-0002-0964-7324
Ignacio J. Blanco https://orcid.org/0000-0002-7825-9093
Olga Pons https://orcid.org/0000-0002-0149-0377

REFERENCES
1. Fernández A, Carmona CJ, Jesus dMJ, Herrera F. A view on fuzzy systems for big data: progress and

opportunities. Int J Comput Intell Syst. 2016;9(Suppl 1):69‐80. doi:10.1080/18756891.2016.1180820
2. Ducange P. Fuzzy models for big data mining. In: Fullér R, Giove S, Masulli F, eds. Fuzzy logic and

applications. WILF, Springer International Publishing; 2019:257‐260.
3. Smits G, Pivert O, Yager RR, Nerzic P. A soft computing approach to big data summarization. Fuzzy Sets

Syst. 2018;348:4‐20. doi:10.1016/j.fss.2018.02.017
4. Nayak A, Poriya A, Poojary D. Type of NoSQL databases and its comparison with relational databases. Int

J Appl Inf Syst. 2013;5(4):16‐19.
5. MongoDB. MongoDB DBMS. https://docs.mongodb.com/
6. Bosc P, Pivert O. SQLf: a relational database language for fuzzy querying. IEEE Trans Fuzzy Syst. 1995;3(1):

1‐17. doi:10.1109/91.366566
7. Kacprzyk J, Zadrozny S. FQUERY for access: fuzzy querying for a Windows‐based DBMS. In: Bosc P,

Kacprzyk J, eds. Fuzziness in Database Management Systems. Studies in Fuzziness. Vol 5. Physica‐Verlag
HD; 1995:415‐433.

8. Ma Z, Yan L. Generalization of strategies for fuzzy query translation in classical relational databases. Inf
Software Technol. 2007;49(2):172‐180. doi:10.1016/j.infsof.2006.05.002

9. Prade H, Testemale C. Generalizing database relational algebra for the treatment of incomplete or
uncertain information and vague queries. Inf Sci. 1984;34(2):115‐143. doi:10.1016/0020-0255(84)90020-3

10. Medina JM, Pons O, Vila MA. GEDRED: a generalized model of fuzzy relational databases. Inf Sci. 1994;
76(1):87‐109. doi:10.1016/0020-0255(94)90069-8

11. Galindo J, Medina J, Pons O, Cubero J. A server for Fuzzy SQL queries. In: Andreasen T, Christiansen H,
Larsen H, eds. Flexible Query Answering Systems. Lecture Notes in Computer Science. Vol 1495. Springer;
1998:164‐174.

12. Shukla P, Darbari M, Singh V, Tripathi S. A survey of fuzzy techniques in object oriented databases. Int
J Sci Eng Res. 2011;2(11):1‐11. doi:10.1016/0306-4379(89)90017-3

13. Galindo J., ed. Handbook of Research on Fuzzy Information Processing in Databases. Information Science
Reference; 2008.

14. Barranco CD, Campaña JR, Medina JM. Towards a fuzzy object‐relational database model. In: Galindo J,
ed. Handbook of Research on Fuzzy Information Processing in Databases. IGI Global; 2008:435‐461.

15. Kacprzyk J, Zadrożny S, Tré GD. Fuzziness in database management systems: half a century of develop-
ments and future prospects. Fuzzy Sets Syst. 2015;281:300‐307. Special Issue Celebrating the 50th
Anniversary of Fuzzy Sets. doi:10.1016/j.fss.2015.06.011

16. Liu J, Zhang X. Modeling fuzzy relational database in HBase. J Intell Fuzzy Syst. 2016;31:1845‐1857. doi:10.
3233/JIFS-15899

17. Castelltort A, Martin T. Handling scalable approximate queries over NoSQL graph databases: Cypherf and
the Fuzzy4S framework. Fuzzy Sets Syst. 2018;348:21‐49. doi:10.1016/j.fss.2017.08.002

MEDINA ET AL. | 33

https://orcid.org/0000-0002-0964-7324
https://orcid.org/0000-0002-7825-9093
https://orcid.org/0000-0002-0149-0377
https://doi.org/10.1080/18756891.2016.1180820
https://doi.org/10.1016/j.fss.2018.02.017
https://docs.mongodb.com/
https://doi.org/10.1109/91.366566
https://doi.org/10.1016/j.infsof.2006.05.002
https://doi.org/10.1016/0020-0255(84)90020-3
https://doi.org/10.1016/0020-0255(94)90069-8
https://doi.org/10.1016/0306-4379(89)90017-3
https://doi.org/10.1016/j.fss.2015.06.011
https://doi.org/10.3233/JIFS-15899
https://doi.org/10.3233/JIFS-15899
https://doi.org/10.1016/j.fss.2017.08.002

18. DB‐Ranking. DB‐Engines Ranking. https://db-engines.com/en/ranking
19. Abir BK, Amel GT. Towards fuzzy querying of NoSQL document‐oriented databases. In: Laux, F. et al., eds.

Proceedings of the DBKDA 2015: The Seventh International Conference on Advances in Databases,
Knowledge, and Data Applications, Rome, Italy, 24–29 May 2015. International Academy, Research, and
Industry Association (IARIA):153–158.

20. Mehrab F, Harounabadi A. Apply uncertainty in document‐oriented database (MongoDB) using F‐XML.
J Adv Comput Res. 2018;9:87‐101.

21. Astachova IF, Samoilov NK, Kiseleva EI. Fuzzy request handler for Mongo QL derived from SQL. J Phys:
Conf Ser. 2020;1479:012017. doi:10.1088/1742-6596/1479/1/012017

22. Fosci P, Psaila G. Towards flexible retrieval, integration and analysis of JSON data sets through fuzzy sets: a
case study. Information. 2021;12(7):258. doi:10.3390/info12070258

23. MongoDB‐Doc. MongoDB Documentation. https://docs.mongodb.com/manual/
24. BSON‐Specification. BSON Specification. http://bsonspec.org/
25. Medina JM, Vila MA, Cubero JC, Pons O. Towards the implementation of a generalized fuzzy relational

database model. Fuzzy Sets Syst. 1995;75:273‐289.
26. Bosc P, Galibourg M. Indexing principles for a fuzzy data base. Inf Syst. 1989;14(6):493‐499. http://www.

sciencedirect.com/science/article/B6V0G-48TD2GC-HY/2/0b43ae6709c19a57591bccd54ad7386b
27. Medina JM, Barranco CD, Pons O. Evaluation of indexing strategies for possibilistic queries based on

indexing techniques available in traditional RDBMS. Int J Intell Syst. 2016;31(12):1135‐1165. doi:10.1002/
int.21820

28. Medina JM, Barranco C, Pons O. Indexing techniques to improve the performance of necessity‐based fuzzy
queries using classical indexing of RDBMS. Fuzzy Sets Syst. 2018;351:90‐107. doi:10.1016/j.fss.2017.09.008

29. Medina JM, Barranco CD, Pons O, Sanchez D. Building and Evaluation of Indexes for Possibilistic Queries
on a Fuzzy Object‐relational Database Management System. IEEE; 2017:1‐6.

30. Medina JM, Barranco CD, Pons O. Indexes for necessity queries. Implementation and performance eva-
luation on a fuzzy object‐relational database management system. In: 2018 IEEE International Conference
on Fuzzy Systems (FUZZ‐IEEE). IEEE; 2018:1‐6. doi:10.1109/FUZZ-IEEE.2018.8491608

How to cite this article: Medina JM, Blanco IJ, Pons O. A fuzzy database engine for
mongoDB. Int J Intell Syst. 2022;1‐34. doi:10.1002/int.22807

34 | MEDINA ET AL.

https://db-engines.com/en/ranking
https://doi.org/10.1088/1742-6596/1479/1/012017
https://doi.org/10.3390/info12070258
https://docs.mongodb.com/manual/
http://bsonspec.org/
http://www.sciencedirect.com/science/article/B6V0G-48TD2GC-HY/2/0b43ae6709c19a57591bccd54ad7386b
http://www.sciencedirect.com/science/article/B6V0G-48TD2GC-HY/2/0b43ae6709c19a57591bccd54ad7386b
https://doi.org/10.1002/int.21820
https://doi.org/10.1002/int.21820
https://doi.org/10.1016/j.fss.2017.09.008
https://doi.org/10.1109/FUZZ-IEEE.2018.8491608
https://doi.org/10.1002/int.22807

