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In warm inflation, dissipation due to the interactions of the inflaton field to other light degrees
of freedom leads naturally to the enhancement of the primordial spectrum during the last 10-20
efolds of inflation. We study this effect in a variant of the Warm Little Inflaton model, where the
inflaton couples to light scalars, with a quartic chaotic potential. These large fluctuations on re-
entry will form light, evaporating Primordial Black Holes, with masses lighter than 106 g. But at
the same time they will act as a source for the tensors at second order. The enhancement is maximal
near the end of inflation, which result in a spectral density of Gravitational Waves (GW) peaked
at frequencies f ∼ O(105 − 106) Hz today, and with an amplitude ΩGW ∼ 10−9. Although the
frequency range is outside the reach of present and planned GW detectors, it might be reached in
future high-frequency gravitational waves detectors, designed to search for cosmological stochastic
GW backgrounds above MHz frequencies.

PACS numbers: 98.80.-k, 98.80.Cq, 98.80.Es, 98.80.Bp, 11.10.Wx

1. INTRODUCTION

Inflation, a period of accelerated expansion in the early evolution of the Universe, provides an elegant solution to
the horizon and flatness problem, and at the same time a mechanism to generate the primordial seeds required to
explain the observed large scale structure [1–3]. Such a period can be easily modelled by a dynamical scalar field, the
inflaton, with the appropriate potential and interactions. According to the most recent CMB data [4], a successful
inflationary model should predict a quasi-adiabatic and gaussian primordial spectrum of perturbations, with spectral
index ns = 0.965 ± 0.004, and less than a 10% of primordial gravity waves (GW), i.e, a tensor-to-scalar ratio below
r < 0.07. However, although inflation should last at least around 50-60 efolds in order to explain the horizon and
flatness problem, CMB constraints only apply to roughly the first 10 e-folds of those, when the larger observable scales
k ' 10−3 − 1 Mpc−1 leave the horizon, leaving the remaining inflationary dynamics and the primordial spectrum
largely unconstrained. At smaller scales, the spectral index can turn from red-tilted to blue-tilted, and the amplitude
of the primordial spectrum can be much larger than the CMB value PR = 2.1 × 10−9. If the amplitude reaches a
critical value PR ∼ 10−2 this could lead to the formation of Primordial Black Holes (PBHs) on re-entry, due to the
collapse of the overdensities [5–8], with a very rich phenomenology. For example non-evaporating PBHs within the
appropriate mass range MPBH > 1015 g could be all or part of the Dark Matter content of our Universe [9–13];
and they can also act as a source of GW with a characteristic frequency spectrum [14–17]. Similarly, large scalar
perturbations are a source of tensor perturbations at second order, and therefore the same mechanism that leads to
PBHs during inflation will lead to a larger amplitude of primordial GW on smaller scales [18–20].

While the study of PBHs formation and the generation of primordial GW has been actively pursued over recent
years in different inflationary models, there has been not so many studies in the context of warm inflation. In standard,
cold inflationary scenarios, inflaton interactions play no role neither in the slow-roll dynamics not in the generation
of the primordial spectrum; on the contrary in warm inflation, those interactions can lead to the partial dissipation
of the inflaton energy density into radiation already during inflation [21–23]. The presence of a subdominant thermal
bath can modify the dynamics both at the background and the perturbation level. When dissipation dominates over
the Hubble friction term, the motion of the inflaton field will be further slow-down, enlarging the duration of inflation.
On one hand slow-roll conditions are easier to fulfil, and in particular the inflaton mass can be closer to the Hubble
parameter during inflation, relaxing the so-called “η”-problem [24, 25]. And in single-field models of inflation like
chaotic-like ones, the last 60 efolds of inflation can take place at smaller values of the inflaton energy density and
the Hubble parameter H, meaning a smaller value of the primordial tensor perturbations and the tensor-to-scalar
ratio. Most importantly, the presence of the thermal bath means that inflaton perturbations acquire now a thermal
component on top of the standard vacuum one, with implications also for the properties of the scalar primordial
spectrum. Models that are excluded by observations in their simpler cold inflation version, like quartic and quadratic
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chaotic models, are perfectly compatible with Planck data in their warm version [26].
Dissipation will depend on the temperature of the thermal bath, and although during inflation everything takes

place in the slow-roll, slowly changing regime, what matters is the comparison between the dissipation coefficient Υ
and Hubble friction H, given by the ratio Q = Υ/3H. Typically this ratio is an increasing function of time, and
depending on parameters inflation may enter in what is called the strong dissipative regime (SDR), i.e., Q� 1 with
dissipation fully dominating the dynamics at the background and perturbative level. Thermal fluctuations must be
taken into account [27], and when the dissipative coefficient is an increasing function of the temperature T this leads
to the amplification of the scalar curvature perturbation, and eventually to a blue-tilted spectrum. While we may
want to avoid as much as possible this effect on CMB scales, later on before the end of inflation this effect may
enhance the spectrum enough to source the tensor at second order and allow the formation of PBHs. The latter has
been studied (to our knowledge for the first time) in Ref. [28] for a dissipative coefficient Υ ∝ T 3 and an inflationary
quartic chaotic model. Sufficient enhancement of the primordial spectrum only takes place during the last 10-15 e-
folds of inflation, which translates at re-entry in relatively light, evaporating PBHs with masses MPBH . 103 g. The
effect on the tensor spectrum has been studied in Ref. [29] for a warm quintessential model with a linear and cubic
dissipative coefficient. They focused on the enhancement during the kinetion period following warm quintessential
inflation. The GW spectrum today would have a large enough amplitude to be detected, but peaked at too large
frequencies, by far outside the range of present and future GW detectors. However this conclusion may depend on the
functional T dependence of the dissipative coefficient, i.e., the pattern of inflaton interactions, and to some extend on
the inflationary model. Here we want to extend their analyses and explore other possibilities.

A cubic dissipative coefficient results for example when the inflaton couples to the light degrees of freedom (dof)
through a heavy mediator. This pattern directly protects the inflaton potential from acquiring large thermal cor-
rections that might spoil inflation, but typically requires a too large no. of light and mediator fields in order to get
enough dissipation. Instead the inflaton potential can be shielded against large radiative corrections by the use of
symmetries. When coupled directly to fermionic light dof this leads to a linear dissipative coefficient in the so-called
“Warm Little Inflation” (WLI) model [30–32]; an axion-like coupling to Yang-Mills fields gives again Υ ∼ T 3 in the
“Minimal Warm Inflation” (MWI) model [33]; while replacing fermionic by light scalar dof in the WLI give rise to
and inverse dissipative coefficient Υ ∼ 1/T [34]. In the latter case, we have “light” particles when their masses mi

are below T , but as inflation proceeds and T decreases, by the end of inflation we may have mi � T , and Υ ∼ Tκ

with κ > 0. While an inverse dissipative coefficient is free of the problems of the growing mode at CMB scales, before
the end of inflation we recover the enhancement of the spectrum and the prospects to have PBHs and non-negligible
GWs. This is the pattern that we want to study in this paper.

For that we need to derive the analytical expression of the scalar primordial spectrum beyond CMB scales, i.e.,
the expression of the “growing mode”. This would require the numerical integration of stochastic equations [23, 27],
for different values of the model parameters (couplings and masses). However, the amplitude and tilt of the scalar
spectrum mainly depend on the value of κ = d ln Υ/d lnT when the fluctuation leaves the horizon. Therefore instead
of scanning over the model parameters, we will first derive the expression of the growing mode with Υ ∝ Tκ, for
different values of constant κ. Now we can scan the model parameters, derive the value of κ, and then the spectrum
at different stages during inflation: constraints on CMB scales set the parameter space consistent with observations,
and for that we can explore whether it leads or not to enough amplification of GW, and PBHs. We will work with a
quartic chaotic inflationary potential, still one the simplest inflation models, and consistent with observations when
introducing dissipation in the system. The spectrum also depends on the statistical distribution function for inflaton
fluctuations n∗ (whether in vacuum or thermal). We will focus on the vacuum case n∗ = 0. Although the thermal
case can be also compatible with observations for the quartic chaotic model, typically it does not lead to enough
amplification of the spectrum at the end.

We want to maximise the amplification of the primordial spectrum between CMB scales and the end of inflation,
and this may be achieved while being in the weak dissipative regime with Q < 1 when observational constraints
applied, but ending inflation in the SDR. Searching for this pattern motivates our choice of the dissipative coefficient
and the inflationary potential. However, it must be stressed that WI all the way along in the SDR can provide a
viable scenario to overcome the difficulties to have inflation (i.e. quasi de Sitter vacua) in string theory [35–39], as
given by the so-called swampland conjectures [40–44]. These demand the relative slope of scalar potentials to be
larger than one in Planck units, i.e. having standard slow-roll parameters εφ, |ηφ| & 1, which invalidates slow-roll
cold inflation. On the other hand, in WI those parameters are only required to be smaller than a factor (1 +Q), i.e.,
they can be larger than one in the SDR. Several examples of this can be found in the recent literature, depending on
the combination of inflationary potential and particle interactions leading to dissipation: although a linear dissipative
coefficient with a quadratic chaotic potential as in the WLI model is consistent with observations only for values Q∗ . 1
[30] at horizon-crossing, we can reach Q∗ ' O(100) with Higgs-like potentials [31]; and a cubic dissipative coefficient
as in MWI [33] gives Q∗ ' O(100) when combined with a hybrid-like potential. In addition, the “Transplanckian
Censorship Conjecture” [45, 46] sets an upper bound on the scale of inflation V 1/4 ' 3× 10−10mP , in both cold and
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warm inflation [38, 47]. This could be achieved with runaway potentials, but the SDR-WI version has the advantage
of being already consistent with the other swampland conjectures [48, 49], and to solve the problem of the graceful
exit [50].

This works is organised as follows. We first review the basic of warm inflation, the dissipative coefficient and
background evolution for the interaction pattern with light scalar dof [34] in Section II. In Section III we give the
analytical expression of the growing mode for different constant values of κ. While this can be found in the literature
for κ = 3, 1, −1 [27, 30, 34, 51], here we will generalize those results to other intermediate values. This will allow us
to get the scalar primordial spectrum over the full range of inflation, and obtain the predictions for the scalar spectral
index ns and the tensor-to-scalar ratio r. We comment also on the implications for PBHs at the end of Section III,
and in Section IV we present the results for the spectrum of GW today. Finally, in section V we summarise and
discuss our results. Details on the calculation and approximations of the dissipative coefficiente are given in Appendix
A, while those related to the primordial spectrum are given in Appendix B. In Appendix C we provide a table with
the parameter values used in this work, and the parameters for the fitting function of the primordial spectrum near
the end of inflation.

2. BASICS OF WARM INFLATION: THE “SCALAR” WLI MODEL

After inflation ends, we must recover a radiation dominated universe before Big Bang Nucleosynthesis (BBN), made
of minimum the Standard Model particles. This period when the inflaton energy density is transferred to the thermal
bath is called reheating [52–54], and requires the interaction of the inflaton field with other particle species. But even
before reheating, interactions can lead to dissipative effects during inflation, and the continuous transfer of inflaton
energy density into radiation. In the context of slow-roll inflation, this is modelled by the introduction of an additional
friction term, the dissipative coefficient Υ, in the inflaton φ equation of motion (eom):

φ̈+ (3H + Υ)φ̇+ Vφ = 0 , (1)

where “dot” denotes derivative with respect to time, H is the Hubble parameter, and Vφ = dV/dφ, V being the
inflationary potential. Energy lost by the inflaton is gained by the radiation energy density ρr:

ρ̇r + 4Hρr = Υφ̇2 . (2)

where ρr = π2g∗T
4/30, g∗ being the effective no. of light dof. When friction dominates, either Hubble or dissipative,

we enter in the slow-roll regime, and we can approximate the eoms by :

φ̇ ' − Vφ
3H(1 +Q)

, (3)

ρr '
3

4
Qφ̇2 , (4)

where Q = Υ/(3H). The slow-roll conditions now read:

εφ '
m2
P

2

(
Vφ
V

)2

� 1 +Q , (5)

ηφ ' m2
P

Vφφ
V
� 1 +Q , (6)

where mP is the reduced Planck mass. These conditions assume that ρr � ρφ = φ̇2/2 + V ' V , which may be
violated by the end of inflation. Indeed when Q� 1 we will have ρr ' ρφ and inflation ends with a smooth transition
to a radiation dominated universe. While studying the slow-roll regime we will work with the parameters ηφ and

εφ, however to signal the end of inflation we will use instead the more accurate condition εH = −Ḣ/H2 = 1, with
3H2m2

P = ρφ + ρr; the parameter εH tell us indeed whether the universe expansion is accelerated (εH < 1) or not.
We will work with a quartic chaotic potential:

V (φ) =
λ

4
φ4 , (7)

and the dissipative coefficient given in a variant of the WLI where the inflaton couples to a pair of scalars χ1, 2 instead
of fermions [34]. We can call this the “Scalar Warm Little Inflation” (SWLI) model. As in the original WLI, the
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inflaton is the relative phase between two scalars fields φ1, 2 charged under a U(1) broken gauge symmetry at a scale
M , now coupled to a pair of scalars χ1, 2 with coupling g. The system satisfies the interchange symmetry φ1 ↔ iφ2,
χ1 ↔ χ2. This symmetry ensures that the scalar fields χ1, χ2 can be “light” during inflation, in the sense of having
masses below the temperature bath, while avoiding large thermal radiative corrections to the inflaton potential. The
interaction Lagrangian is given by:

LI =
1

2
g2|φ1 + φ2|2|χ1|2 +

1

2
g2|φ1 − φ2|2|χ2|2 , (8)

with φ1, 2 = Me±iφ/M/
√

2. Field dependent χi masses are then bounded by gM , but they may couple to other light
fermion/scalar dof and acquire a thermal mass. The interchange symmetry requires both to couple to the same fields,
and on average during inflation with φ�M we will have:

m2
χ(T ) ' g2M2

2
+
h2

12
T 2 +

h2
S

12
T 2 , (9)

where h is their Yukawa coupling to fermions, and hS denotes a generic contribution from scalars to the thermal
mass (including self-interactions). This extra contribution may help to keep the scalars in the high T-regime during
inflation. Using standard tools from thermal field theory, the dissipative coefficient is given by (see Appendix A):

Υ =
4g2

h2
· g

2M2

T
F [mχ/T ] , (10)

F [mχ/T ] =

(
T

mχ

)3
(
e−0.77mχ/T + 0.0135h6e−20T/mχ

(
T

mχ

)5
)
, (11)

which holds when T/H > 1. In the high T limit, gM � T , thermal corrections dominate the χi masses and we have
an inverse dissipative coefficient Υ ∼ 1/T ; but as T decreases during inflation, we may reach the low T regime with
a heavy scalar mediator, mχ ∼ gM � T and a dissipative coefficient Υ ∼ Tκ, with κ ≤ 7. This will be relevant if
we want to end inflation in the strong dissipative regime, Q� 1, where we may have second order induced GWs and
eventually PBHs.

In order to see when we may end in the strong dissipative regime, it is more useful to derive the slow-roll Eqs. for
the dissipative ratio Q and T/H, and the slow-roll parameter ε. At first order in the slow-roll parameters we use the
notation ε = εH ' εφ/(1 + Q). Taking the derivative of Q = Υ/(3H) with respect to to no. of efolds Ne, using Eq.
(10), we have:

d lnT/H

dNe
=

1

1− fT

(
(2− fT )ε− d lnQ

dNe

)
, (12)

where

fT =
d lnF [mχ/T ]

d lnT
. (13)

Combining now the derivative of the radiation slow-roll equation (4) with (12) we obtain:

d lnQ

dNe
=

2(1 +Q)

5− fT + (3 + fT )Q
((1 + fT )ε+ (1− fT )η) , (14)

with η = ηφ/(1 +Q). Finally, taking the derivative of ε ' εφ/(1 +Q) together with Eqs. (3) and (14) we have:

d ln ε

dNe
=

2

5− fT + (3 + fT )Q
((2(5− fT ) +Q(5 + fT ))ε− (5− fT + 4Q)η) . (15)

In particular for a quartic chaotic model one has ηφ = 3εφ/2, and

d lnQ

dNe
=

(5− fT )(1 +Q)

5− fT + (3 + fT )Q
ε , (16)

d lnT/H

dNe
=

5− fT + (1 + fT )Q

5− fT + (3 + fT )Q
ε , (17)

d ln ε

dNe
=

5− fT − 2Q(1− fT )

5− fT + (3 + fT )Q
ε . (18)
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FIG. 1: Left plot: evolution of the dissipative ratio Q, T/H and εH , and that of gM/T and d ln Υ/d lnT = fT − 1 (bottom
panel), with respect to the no. of efolds left to the end of inflation. Right plot: evolution of the energy densities (potential

V and kinetic φ̇2/2 inflaton energy densities, radiation ρr and total ρT ) during the transition from inflation to a radiation
dominated universe. The end of inflation happens at εH = 1, ∆Ne = 0, while it becomes RD at εH = 2. We have taken:
M = 10−4mP , g = 1, h = 2.5, hS = 4, and λ = 10−14.

The dissipative ratio always increases as far as1 fT < 5 , and so does T/H, but ε decreases when Q > (5−fT )/2(1−fT ),
and again increases when 1 < fT ≤ 5 for whatever value ofQ. That means that to end inflation in the strong dissipative
regime, Q � 1, we must be already in the low T regime with fT > 1 and Υ ∝ Tκ, κ = fT − 1 > 0. An example of
this behaviour is given in Fig. (1), where on the LHS we have plotted the evolution of the dissipative ratio Q, T/H,
εH , gM/T and d ln Υ/d lnT = fT − 1, with respect to the no. of efolds left to the end of inflation, taken as εH = 1.
We have numerically integrated the background equations for the parameter values M = 10−4mP , g = 1, h = 2.5,
hS = 4, λ = 10−14, and g∗ = 12. We recall that M is U(1) symmetry breaking scale, with the combination gM given
the non-thermal mass to the scalars χi coupled to the inflaton; the Yukawa couplings h and hS on the other hand give
their thermal mass (see Eq. (9)). The dissipative coefficient Eq. (10) is proportional to g4M2/h2, but only depends
indirectly on hS through the mass ratio mχ/T . Thus, hereon we will fix hS = 4 to ensure that thermal corrections to
the scalar masses dominate say at least 50-60 efolds before the end of inflation, as shown on the LHS in Fig. (1). The
slow-roll parameter εH ' εφ/(1 + Q) increases while the system is in the high T (gM/T < 1 ) but weak dissipative
regime (Q < 1). However when Q & 5/2 around 35 e-folds before the end, the slow-parameter starts decreasing, but
soon after we move into the low T regime with gM/T > 1, εH increases again and inflation ends.

Once inflation ends, dissipation quickly decreases, the inflaton starts oscillating around the minimum and on average
its energy density behaves like radiation. In addition, when ending inflation in the SDR the radiation energy density
is already comparable to that of the inflaton field. The last few e-folds of inflation and the transition from inflation
to radiation is shown on the RHS of Fig. (1), where the vertical dotted line labeled εH = 2 signals the time when the
universe becomes radiation dominated, in about O(1) efolds since the end.

The behaviour of Υ(T ), and in particular that of its derivative d ln Υ/d lnT , is relevant in order to get the expression
for the primordial power spectrum: this controls how much the fluctuations in the radiation bath affect those of the
inflaton field. In order to get the parameter space consistent with observations, i.e., the spectral index and tensor-
to-scalar ratio, we need the expression for scalar primordial spectrum, which will be reviewed in the next section.
Normalising the spectrum to the CMB value PR = 2.1× 10−9 at the pivot scale k∗ = 0.05 Mpc−1, one fixes as usual
one of the parameters of the model, i.e., the value of λ ∼ O(10−14). In the example in Fig. (1) we have not used
any information on the spectrum, and we have just taken λ = 10−14 as a typical value. The aim was to show the
background evolution, which will not depend much on the particular value of λ.

1 In order to have stable background evolution one requires Υ ∝ Tκ with κ ≤ 4, fT ≤ 5, i.e., we may transfer energy to the thermal bath
at a rate slower than the redshifting of standard radiation [55]. Once κ > 4 radiation will become dominant and inflation ends.
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3. PRIMORDIAL SPECTRUM IN WI

The primordial spectrum in WI is given by [26, 56]:

PR∗ =

(
H2
∗

2πφ̇∗

)2
(

1 + 2n∗ +
T∗
H∗
· 2
√

3πQ∗√
3 + 4πQ∗

)
G[Q∗] , (19)

where “*” denotes values at horizon crossing, and n∗ is the statistical distribution function of inflaton fluctuations;
these may remain in vacuum (n∗ = 0), they may termalize due to the interactions (n∗ = (1 − eH∗/T∗)−1), or be in
some other intermediate state. On the other hand, the function G[Q∗] encodes what is called the “growing mode”
[27, 30, 34, 51], due to the coupling of inflaton and radiation fluctuations. At linear order, it depends on the derivative
d ln Υ/d lnT at horizon crossing, such that when this is positive it does amplify the primordial spectrum, whereas
it has the opposite effect for a negative derivative. When d ln Υ/d lnT = 0 the perturbation equations can be
solved analytically at first order in the slow-roll parameters [56], obtaining Eq. (19) with G[Q∗] = 1; otherwise the
determination of G[Q∗] requires the numerical integration of the system. This is important because G[Q∗] and its
derivative will directly enter in the expressions for the spectral index ns and the tensor-to-scalar ratio r.

Tensor modes at linear order are not affected by dissipation, and their spectrum kept the standard form, with the
tensor-to-scalar ratio given by:

r =
16εH

(1 +Q∗)
· 1

F [T∗/H∗, Q∗]
· 1

G[Q∗]
, (20)

with

F [T∗/H∗, Q∗] = 1 + 2n∗ +
T∗
H∗
· 2
√

3πQ∗√
3 + 4πQ∗

. (21)

The spectral index is given by the logarithmic variation of the primordial spectrum Eq. (19) with the scale k∗ = a∗H∗,
which for superhorizon perturbations can be approximated by the derivative wrt the no. of efolds:

ns − 1 =
d lnPR∗

d ln k∗
' d lnPR∗

dNe
= −6εH + 2η + (ns − 1)F + (ns − 1)G , (22)

where we have called:

(ns − 1)F =
d lnF

dNe
=

d lnF

d lnQ∗
· d lnQ∗
dNe

+
d lnF

d lnT∗/H∗
· d lnT∗/H∗

dNe
(23)

(ns − 1)G =
d lnG

dNe
=

d lnG

d lnQ∗
· d lnQ∗
dNe

. (24)

Our model depends on the parameters controlling the coupling of the inflaton to the scalars and their thermal
masses: M , g, h and hS , and the self-coupling λ for the inflaton. As usual, the normalization of the amplitude of the
primordial spectrum with the Planck value fixes the value of λ, but for that we need the function G[Q∗]. We could
scan over the parameters of the model, numerically integrate the perturbation equations, get the growing mode and
the value of λ, and the predictions for the spectral index and tensor-to-scalar ratio. In practice, the function G[Q∗]
mainly depends on the value of Q and κ = d ln Υ/d lnT at horizon crossing. Instead of scanning over the parameters
M, g, h, hS , we have run the perturbation equations for WI for a quartic chaotic potential and a generic dissipative
coefficient Υ = CΥT

κ, for different values of constant κ; varying CΥ we tune the value of Q∗. In the numerical
simulations we have set λ = 10−14 and read the background values Q∗, H∗, T∗, etc...60 e-folds before the end of
inflation. In order to get the growing mode G[Q∗], we compare the amplitude of the spectrum at the end of inflation
with Eq. (19) with G[Q∗] = 1 (see Appendix B). Depending on the sign of κ, the numerical results can be well fitted
by the functions:

G[Q, κ] = (1 + eαsQβs + eαwQβw)κ , κ > 0 , (25)

G[Q, κ] =
(1 + a0Q

a1)a5

(1 + a2Qa3)a4
, κ ≤ 0 , (26)

where the coefficients are also functions of κ and they are given in Appendix B.
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FIG. 2: Left: prediction for the spectral index versus the value of the dissipative ratio Q∗; the grey shaded regions indicated
the 1σ (dark) and 2σ (light) Planck limits. Right: tensor-to-scalar ratio for the same parameter values; the grey shaded region
is excluded by observations, r < 0.07. As parameter values, we have taken the inflaton self coupling λ = 10−14, the symmetry
breaking scale M as indicated in the plot, vary the coupling of the scalars to the inflaton g and fermions h, and fixed their
coupling to other species hS = 4.

Finally, in order to get the predictions for ns and r and compare with Planck data, we need to get the no. of efolds
at which the Planck pivot scale k∗ = 0.05 Mpc−1 leaves the horizon during inflation. This is done using the standard
relation:

k

a0H0
=

akHk

aendHend
· aendHend

aRHHRH
· aRHHRH

aeqHeq
· aeqHeq

a0H0
, (27)

where “0” denotes present values and “eq” denotes the time of matter-radiation equality; “RH” signals the end of
reheating, and “end” means the end of inflation, i.e. when εH = 1. For any comoving scale k, one obtains for the no.
of efolds at horizon crossing [57–59]:

N(k) = 56.01− ln
k

kP
+ ln

aend
aRH

+ ln
ρ

1/4
RH

1016GeV
+

1

2
ln

ρk
ρRH

. (28)

This value depends on the details of reheating, and how the universe becomes radiation dominated such that its
expansion is dominated by a fluid with equation of state w = 1/3. However in our scenario when we en inflation in
the SDR (our case of interest) radiation in the sense of a thermal bath quickly dominates as shown on the RHS in Fig.
(1). Therefore, without further assumptions about the interactions of the inflaton field and the need of introducing
any other decay channel during reheating, we only need approximately a couple of e-folds after the end of inflation to
recover our RD universe, which happens when εH = 2. The total energy density at this point is the value rhoRH in
Eq. (28).

We can now scan over the model parameters, M , g, h and hS to get the predictions. From the background evolution,
we get the values of H∗, Q∗, T∗/H∗ and κ∗, at N(k∗) given in Eq. (28); normalising the spectrum Eq. (19) with
n∗ = 0 to the Planck value PR = 2.1 × 10−9 at the pivot scale we fix the value of λ; and from Eqs. (22) and (20)
the predictions for the model. Those are shown in Fig. (2), where we have scanned over different values of g and
h in the range [0.1,4], for the values of M indicated in the plot, and taking hS = 4 as an example. The spectral
index is consistent with observations for a dissipative ratio 3× 10−3 . Q∗ . 1, but the tensor-to-scalar ratio requires
Q∗ & 10−2. As usual in WI, the larger the value of Q∗, the more suppressed is r. But we cannot go beyond Q∗ & 1
because the spectral index becomes too large (and eventually blue-tilted) in this model.

This sets the parameter space compatible with observations, and the condition Q∗ & 10−2 ensures that we end
inflation in the SDR, with κ > 0 and a spectrum which amplitude is more amplified towards the end due to the effect
of the thermal fluctuations. However, while our seminalatycal estimation of the growing mode function G[Q∗] works
well in this model when κ . 0, starts failing toward the end of inflation and tends to overstimate the amplitude of
the spectrum. This can be seen on the LHS plot in Fig. (3), where for a set of parameters (M , g, h) we compare
the amplitude of the primordial spectrum PR[k] obtained analytically with the approximation for G[Q] (dashed-
lines) with the result of numerically integrating the equations for the perturbations (filled circles). The value of the
wavenumber k on the X-axes is normalised by aH at the end of inflation when εH = 1, i.e., the last mode that exits
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FIG. 3: Left plot: comparison of the semianalytical primordial power spectrum PR (dashed-lines) with the numerical results
(filled circles), with respect to the comoving wave-number normalised by the value of (aH) at the end of inflation, for the
parameter values indicated in the plot. Right plot: PR spectrum obtained numerically for the set of parameters given in the
plot. M is the symmetry breaking scale, g the inflaton coupling to the scalars χ, h the Yukawa coupling of the scalars to
fermions. The inflaton self-coupling λ in each case is adjusted imposing the normalization of the primordial spectrum to the
Planck value at the pivot scale. The value of the dissipative ratio Q∗ when the pivot scale crossed the horizon is also included.

the horizon. The seminalytical approximation is only applicable to those modes, and because of that the dashed
line end at kend = (aH)ε1 . On the other hand, the numerical integration allows us to read the spectrum at the end
of inflation for all modes. And indeed, because during WI modes are amplified before they cross the horizon, the
maximum of the spectrum is obtained for slightly larger modes with k ' 5kend. Larger modes will not have time to be
amplified, and the spectrum falls practically exponentially afterwards. We think that the failure of our approximation
for the growing mode function near the end of inflation is due to the fact that the dissipative coefficient Υ changes
its behavior but with a faster varying κ = d ln Υ/d lnT (see Fig. (1)). But in the regime when κ ' Constant our
estimations works well. In particular this is the case for modes that exit the horizon O(60) efolds before the end, i.e
k ' 10−19kend in Fig. (3), and we can rely on that to get the values of the spectral index and tensor-to-scalar ratio.
Although our function G[Q∗] overestimates the amplitude of the spectrum at the end, we can use it as an indication of
which parameter values can lead to the amplification of the spectrum. We have then selected some set of parameters
consistent with the observations of the spectral index and tensor-to-scalar ratio, and numerically integrate the Eqs.
for background and perturbations. Typically, to be consistent with observations we need (a) M ' O(10−4)mP , (b) to
keep hS = 4 in order to ensure the high T regime, i.e., mχ/T � 1 when observational constraints on the primordial
spectrum applied, and (c) to choose different values of the couplings g and h in order to have Q∗ ∼ O(10−1 − 1) but
ending inflation in the SDR. The amplitude of the spectrum at the end of inflation is shown on the LHS in Fig. (3).
The smaller amplitude at the end correspond to the example with the smaller Q∗ ' 0.04, which enters later in the
SDR.

In all the cases, the spectrum is amplified before the end, when κ turns positive. We reach values PR ≈ O(10−2 −
10−4) that may lead to PBH formation due to the collapse of the over-dense perturbations, with a mass given as a
fraction γ ' 0.2 of the horizon mass at re-entry [5, 7]:

MPBH(k) = γ
4π

3

ρ

H3
M

= γ
4πm2

P

HM
,

where HM is the Hubble parameter at the time of formation. Because we only get a large amplitude of the spectrum
by the end of inflation, PBHs may will form during the RD era that follows inflation, with [60]:

MPBH [g] =
γ

(5.4185× 10−24)2

(
3.36

g∗

)1/3(
kend

kM

)2
1

k2
end

. (29)

where g∗ ' 106.75 is the effective no. of dof at re-entry, kM = aMHM and kend ' O(1020) Mpc−1 in our models.
This gives PBH masses MPBH . 106 g, that will therefore evaporate before BBN [61–64]. Still, they can produce
relics that might overclose the universe, and if one consider this (model dependent) possibility, it may impose an
upper limit on their mass fraction β(M) . 10−16. Using the Press-Schechter formalism, for a Gaussian distribution
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FIG. 4: Variance of the density fluctuations with respect to the PBH mass, for the same parameter values than in Fig. (3).
The shaded area shows the region σ(M) > 0.05.

of fluctuations δ = δρ/ρ the mass fraction is given by:

β(M) =

∫ ∞
δc

dδP (δ) =
2√

2πσ(M)

∫ ∞
δc

dδexp(− δ2

σ(M)2
) = erfc(

δc√
2σ(M)

) , (30)

where “erfc” is the complementary error function, δc is the critical density contrast, and σ(M) the variance of the
density fluctuations at a mass scale M . When PBH formation takes place in a RD universe, δc ' 0.414 [65]. The
variance of the density fluctuations at a mass scale M is given in terms of the primordial spectrum as:

σ2(M) =
4(1 + w)2

(5 + 3w)2

∫
d ln k

(
k

kM

)4

W 2[k/kM ]PR(k) , (31)

where W [k/kM ] is a Gaussian window function that smooths the perturbation on the comoving scale kM . In order
to get an approximation of how large can be the primordial spectrum by the end of inflation in order not to be in
conflict with limits on evaporating PBHs, we could parametrize the primordial spectrum around the scale of interest
as a power-law, PR(k) ' PR(kM )(k/kM )(ns−1). The function σ(M) is then given by [60]:

σ(M) ' 4

9
√

2
C(ns)

√
PR(kM ) , (32)

where C(ns) = Γ1/2[(ns + 3)/2], and it ranges between 1 . C(ns) . 1.4 for 1 ≤ ns ≤ 3. The limit β(M) . 10−16

translates into σ(M) . 0.05, and using the approximation in Eq. (30), this gives PR . 0.02. However, our spectra
are not well approximated by a simple power-law with constant spectral index, with the running and the running of
the running being important during the last 10-20 efolds, and the approximation in (32) tends to overestimate σ(M).
For the numerical spectra in Fig. (3) we found that for k ≥ 10−12kend they can be parametrised as:

lnPR[k] = c0 + (1− exp(b0x− b1))P5[x] , (33)

where x = k/kend, P5[x] =
∑
i=0,5 aix

i, and we have chosen the common reference value c0 = −25 for all the spectra
for convenience. Values of the different parameters bi, ai are given in Table II in Appendix C. With this semianalytical
approximation for the spectrum, we have obtained the variance σ(M) by numerically integrating Eq. (31); the results
are plotted in Fig. (4), for our selected values of parameters. In all the cases we are below the potential limit on σ,
with a negligible mass fraction β(M)� 10−16.

4. SECOND ORDER INDUCED SPECTRUM OF GRAVITATIONAL WAVES

Although the enhancement of the primordial scalar spectrum only leads to light, evaporating PBHs, it will act as
an efficient second order source for the primordial tensors [18–20, 66–70]. To compute the power spectrum of the GW
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energy density today we follow the semi-analytical approach given in Ref. [69]. The energy density parameter for
GW per logarithmic k interval today is given by:

ΩGW, 0 =
ρGW (k)

ρT, 0
= 0.39

(
g∗(Tc)

106.75

)−1/3

Ωr, 0ΩGW (k, τc) , (34)

where Ωr, 0h
2 ' 4.18× 10−5 is the radiation density parameter today, τ the conformal time, the subindex “c” denotes

the time when the perturbation is well inside the horizon after re-entry during RD, and g∗(Tc) is the effective no. of
relativistic dof at that time. The GW spectral density is given in terms of the tensor spectrum:

ΩGW (k, τ) =
1

24

(
k

aH

)2

Ph(k, τ) , (35)

and the induced tensors at second order2 by the primordial scalar fluctuations by:

Ph(k, τ) = 4

(
4

9

)2 ∫ ∞
0

dv

∫ 1+v

|1−v|
du

(
4v2 − (1 + v2 − u2)2

4uv

)2

PR(kv)PR(ku)I2
RD(u, v, kτ) , (36)

where the analytical expression for the time average I2
RD can be found in [69].

Finally, in Fig. (5) we have the spectral density of induced GW today for our model and the set of parameters
considered in this work, obtained from Eqs. (34)-(36). The sensitivity curves for present and planned GW detectors
[75–79] are included as a reference. Also the BBN limit [69], ΩGWh

2 < 1.8 × 10−6, with h = 0.6736, that sets the
amount of extra radiation that can be present at the time of formation of light nuclei. The spectrum is amplified
due to (a) modes that exit the horizon near the end of inflation, re-entering soon after during RD; (b) modes upto
k ∼ 5kend that never become super-horizon, but gives the maximum amplification at the end of inflation. Those
modes are already inside the horizon when the RD era starts. Typically we have kend ' O(1020) Mpc−1, and this
tranlates into the frequency range today f ' O(105 − 106) Hz for the peak of the spectrum, with ΩGW, 0 ≈ 10−9

for the maximal amplification with the parameter values considered. The spectrum falls exponentially after the
maximum, as it does the primordial spectrum that sources it, but it has a slope slightly smaller than the standard
f3 before the maximum. Indeed, the reduction in the slope is due to log corrections and the spectrum behaves as
ΩGW (f < fpeak) ∝ f3 ln2 f/fpeak, with fpeak ∼ 2 × 106 Hz [80, 81]. Although the values of the amplitude and
frequency peak leave these waves so far outside the range of detection of current and near future GW experiments,
far future GW experiments sensitive to frequencies larger than kHz might be able to detect them. This would require
develolping new GW detectors like those proposed for example in [82, 83].

For the model parameters considered, the primordial scalar spectrum is not larger than O(10−2). It would be
interesting to find parameter values for which the spectrum is closed to the perturbative limit at the end PR '
O(0.1 − 1) and obtained the maximum possible amplification. Given that GW spectrum scales with P 2

R, this would
enhance the GW spectrum roughly 3-4 orders of magnitude with respect to the maximal value found in Fig. (5),
close to the BBN limit. Although the frequency range of the maximum will still be far from present and near future
GW detectors, smaller frequencies may enter within the reach of the “Einstein Telescope” or the “Cosmic Explorer”
[77, 78] (labelled ET and CE respectively in Fig. (5)). But in order to efficiently identify the parameter values M , g
and h for the maximal amplification, further work is first needed to characterize the enhancement of the spectrum at
the end of inflation with a varying vaue of κ, which we defer to the future.

Similarly, the peak frequency depends on the value of kend, i.e, on the value of Hend and the energy scale at which
inflation ends. For the quartic model studied here this is of the order Hend ' O(109) GeV. Models with a smaller
inflationary scale, like hybrid models or hilltop-like models might bring the spectrum within the detectable frequency
range. However for this kind of models the relevant 50-60 efolds of inflation typically take place already in the SDR,
and the relative amplification of the spectrum towards the ends diminish. We think that chaotic models are best
suited to explore the kind of large amplification of primordial perturbations needed to impact on the GW spectrum,
but this is of course a model dependent question and other possibilities are not excluded.

2 First order metric tensor perturbations decouple from scalar and vector perturbations, and are gauge independent. That is not the case
for second order induced metric tensor perturbations, which are generically gauge dependent [71–73]. However, it has been shown that
several choices of gauge, like the synchronous gauge, the uniform curvature gauge, and the Newton or zero-shear gauge, yield the same
GW spectrum today induced by scalar perturbations during radiation [72–74].
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FIG. 5: Spectral density of GW today for the SLWI model with a quartic chaotic potential, for parameter values as indicated
in the plot. The sensitivity curves for some GW detectors are also included. The horizontal dashed line is the BBN limit.

5. CONCLUSIONS

The main result of this work is given in Fig. (5), the spectral density of GW today for a model of quartic chaotic
warm inflation. Those are induced at second order by the enhancement of the primordial spectrum of curvature
perturbations. In warm inflation we have a coupled, resonant system of inflaton and radiation perturbations, and
when dissipation Υ grows with the T of the thermal bath, this gives rise to the amplification of the primordial
perturbations [27, 51]. When this effect already takes place at large scales scales around the pivot value at which
the primordial spectrum is normalised, it may lead to a blue-tilted primordial spectrum excluded by observations.
To avoid this, we have focused on the SLWI model [34], a variant of the LWI model with an inverse T dependent
dissipative coefficient at CMB scales, due to the coupling of the inflaton to a pair of light scalars. However, as inflation
proceeds, scalar masses become larger than T , we move into the low-T regime for dissipation, and we recover a model
with Υ growing with T . The spectrum is then naturally enhanced by the end of inflation. We combine this with a
quartic chaotic potential, instead of the quadratic one studied in [34]: while a quadratic potential is compatible with
observations when the system is already in the SDR 50 − 60 efolds before the end, the amplification experience by
the spectrum upto the end of inflation is larger in the quartic model.

By numerically integrating the perturbations Eqs. in a toy model with a quartic potential and Υ ∝ Tκ, with
κ =Constant, we have obtained seminalytical expressions for the amplitude of the primordial spectrum including the
so-called growing mode function, G[Q∗], for different values of κ. While this works well for the model considered in
this work at O(50-60) efolds before the end of inflation, when the variation of κ can be neglected, the approximation
fails towards the end and tends to overestimate the spectrum. Nevertheless, with the results at O(50-60) efolds we
scanned over the parameters of the model M , g and h, and obtain the parameter space compatible with (a) the
observational limits on the spectral index and tensor-to-scalar ratio, (b) ending inflation in the SDR. Beyond that and
near the end of inflation, we would need to characterize and understand better our spectrum, including the effects of
the variation3 of κ. This is beyond the scope of this work, where we try to estimate first whether the mechanism for
the second order enhancement of GW works. Then we have selected some model parameters that we think can be
representative of the mechanism, to compute numerically the spectrum of scalar perturbations and the induced GW
spectrum.

This amplification may also give rise to the formation of PBHs when the perturbations re-enter the horizon, soon
after the end of inflation. Nevertheless, we only have light, evaporating PBHs with masses MPBH . 106 g. They
may give rise to Planck relics that may overclose the universe. We have compute the variance function σ(M), which
for the cases considered is always small. This translates into a negligible mass fraction and no further constraint on

3 Integrating the perturbations with constant values of κ all along inflation we have checked that our fitting functions holds even for
modes exiting the horizon a few efolds before the end.
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this set of model parameters.
The maximal amplitude of GWs is obtained at frequencies f ' 0.1− 1 MHz, outside the range of detection of GW

detectors, but close for example to the typical stochastic spectrum obtained during preheating after inflation [84–88].
We notice that we do not expect any additional contribution due to preheating, i.e., we do not expect any parametric
resonance or additional particle production to take place at the end of inflation. For the parameter space that amplify
the spectrum in our case, inflation ends in a smooth transition from inflation to a radiation dominated universe, with
a damped, subdominant oscillating inflaton. In any case, our mechanism adds to the possible cosmological sources
of a background of gravitational sources beyond MHz frequencies, frequencies for which no astrophysical source has
been identified, and which may be searched for in future detectors [82, 83, 89].

Appendix A: Dissipative coefficient in the SWLI

Applying standard tools in Thermal Quantum Field Theory, the dissipative coefficient due to the coupling of the
inflaton field to a pair of scalars χi is given by [90–92]:

Υ =
4g4M2

T

∫
d4p

(2π)4
ρ2
χnB(p0)(1 + nB(p0)) , (A1)

where nB = (ep0/T − 1)−1 is the Bose-Einstein distribution function, and ρχ = ρχi the scalar spectral function:

ρχ =
4ωpΓχ

(p2
0 − ω2

p)2 + 4ω2
pΓ2

χ

, (A2)

where ω2
p = p2 +m2

χ, and Γχ is the thermal decay width of the scalars into a pair of massless fermions:

Γχ =
h2

16π

m2
χ

ωp

[
1 +

2T

p
ln

1 + e−ω+/T

1 + e−ω−/T

]
, (A3)

with ω± = ωp ± p. In an expanding universe, this expression holds for T/H > 1.
When mχ � T , in the high T regime, the dissipative coefficient can be computed analytically expanding around

the pole, p0 = ωp ± iΓχ [34],

ΥP '
4g4M2

T

∫
d3p

(2π)3

nB(p0)(1 + nB(p0))

Γχω2
p

' 4g4M2

h2
· T

2

m3
χ

(
1 +

1√
2π

(mχ

T

)3/2
)
e−mχ/T . (A4)

However this approximation fails in the opposite limit, the low-T regime when mχ/T � 1 and then Υ ∝ T 7. A better
approximation, obtained directly from a fitting to the numerical integration, is given by:

Υ =
4g2

h2
· g

2M2

T

(
T

mχ

)3
(
e−0.77mχ/T + 0.0135h6e−20T/mχ

(
T

mχ

)5
)
. (A5)

In Fig. (6) we have compared the dissipative coefficient obtained from the numerical integration Eq. (A1), the pole
approximation Eq. (A4), and the approximation used in this work Eq. (A5). The pole approximation works very
well even upto mχ/T ∼ 20, but it only gives the exponential suppression for large masses and it does not reproduced
the power-law contribution when mχ/T � 1.

Appendix B: Fluctuations in WI and the growing mode function

In order to get the amplitude of scalar primordial spectrum on superhorizon scales, we work with the comoving
curvature perturbation at linear order R. In WI we have a mixture of two fluids, radiation and inflaton field, and for
each one we can define

Rα = −H
hα

ΨGI
α , (B1)

with hα = ρα+pα, ρα, pα being the energy density and pressure of the background fluid, and ΨGI
α the gauge invariant

(GI) momentum perturbation. The total comoving curvature perturbation is given by

R =
hφ

hφ + hr
Rφ +

hr
hφ + hr

Rr . (B2)
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During slow-roll, one can show that the momentum perturbations fulfil the relation [51, 93]:

ΨGI
r ' QΨGI

φ , (B3)

on super-horizon scales, and using the slow-roll Eq. (4) we simply have:

R ' − (1 +Q)H

hr + hφ
ΨGI
φ ' Rφ , (B4)

which means that the primordial perturbations are adiabatic and there are no entropy perturbations. The GI inflaton
momentum perturbation is given by ΨGI

φ = −φ̇δφGI , δφGI being the GI inflaton fluctuation, and using hφ = φ̇2 we
have

Rφ =
H

φ̇
δφGI . (B5)

The spectrum is then given by:

PR(k) =
k3

2π2
|Rk|2 '

(
H

φ̇2

)2

Pφ(k) , (B6)

where Rk is the perturbation in Fourier space, Pφ(k) the inflaton spectrum.
Gauge invariant perturbations at first order are built combining field, momentum and energy density perturbations

with metric ones. At linear order, the FLRW metric is given by:

ds2 = −(1 + 2α)dt2 − 2a∂iβdx
idt+ a2(t)[δij(1 + 2ϕ) + 2∂i∂jγ]dxidxj . (B7)

We work in the longitudinal, shear-free gauge, in which χ = a(β + aγ̇) = 0 and α = −ϕ. The gauge invariant
momentum, field and radiation energy density perturbations at linear order are given by:

ΨGI = Ψ− (ρ+ p)ϕ/H , (B8)

δφGI = δφ− φ̇

H
ϕ , (B9)

δδρGIr = δρr −
ρ̇r
H
ϕ . (B10)

Instead of writting directly with the evolution equations for the GI perturbations, we found numerically more conve-
nient to work with the perturbed Eqs. for field and radiation energy density, including the metric perturbations, and
obtain the GI curvature perturbation from Eq. (B2). The equations for the coupled system of inflaton, radiation and
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FIG. 7: Numerical evolution of the PR for different mode values. On the LHS we start the integration 20 e-folds before the
end of inflation (the line labelled εH = 1), for the set of comoving wavenumbers given in units of the initial Hubble parameter.
We do the same on the RHS but starting at 10 e-folds before the end. Other parameter values as indicated in the plot. On the
LHS we have initially Q20 = 28 and κ20 = 0.5, while on the RHS we have Q20 = 50 and κ20 = 1.5.

metric perturbations can be found in [51? ]. Metric perturbations in the longitudinal gauge are given by combining
the Einstein Eqs. at linear order:

(Hα− ϕ̇) = − 1

2m2
P

Ψ , (B11)

−k
2

a2
ϕ+ 3H(Hα− ϕ̇) = − 1

2m2
P

δρ , (B12)

with α = −ϕ, where δρ (δΨ) is the total energy (momentum) density perturbation. The Eqs. for the radiation
fluctuations are given by (in Fourier space):

δρ̇r + 4Hδρr = −3H(1 + wr)ρrϕ̇+
k2

a2
Ψr + δQr +Qrα , (B13)

Ψ̇r + 3HΨr = −wrδρr − (1 + wr)ρrα−Υφ̇δφ , (B14)

where wr = 1/r, Qr = Υφ̇2 is the source term for the radiation that we have in Eq. (2), and δQr its perturbation

δQr = δΥφ̇2 + 2Υφ̇δφ̇− 2αΥφ̇2 . (B15)

Finally, the Eq. for the inflaton field perturbation is given by a Langevin-like equation, including the stochastic
Gaussian noises, quantum ξq and thermal ξT :

δφ̈+ 3Hδφ̇+

(
k2

a2
+ Vφφ

)
δφ =

√
2Hξq +

√
2ΥTξT − δΥφ̇+ φ̇(3(Hα− ϕ̇) + α̇) + (2φ̈+ 3Hφ̇)α−Υ(δφ−αφ̇) , (B16)

where 〈ξα(k, t)ξα(k′, t′)〉 = δ(3)(k− k′)δ(t− t′). In order to get the comoving curvature spectrum we have to integrate
the system of Eqs. (B13), (B14), (B16) for different realisations of the noise, and take the average:

PR =
k3

2π2
〈|R|2〉ξ . (B17)

Notice that the Eqs. are coupled through the terms proportional to

δΥ(T, φ) =
d ln Υ

d lnT

δT

T
+
d ln Υ

d lnφ

δφ

φ
, (B18)

for a general dissipative coefficient Υ(T, φ). When κ = d ln Υ/d lnT > 0 this leads to the amplification of the radiation
energy density perturbation and therefore to that of the field fluctuation [27]. For the dissipative coefficient and the
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FIG. 8: Amplitude of the primordial spectrum PR∗ obtained numerically for different values of Q∗ and κ∗, normalised by the
analytical value P nogr

R∗
valid for κ = 0. Numerical values are indicated by filled circles, dashed lines are the fitted functions

G[Q∗] given in Eqs. (B20) for κ∗ > 0 (RHS), and (B21) for κ∗ < 0 (LHS).

inflationary model considered in this work, an example of the numerical evolution of PR is given in Fig. (7). On
the LHS we have chosen the initial background values for field and radiation energy density such that we start the
integration of the perturbations 20 e-folds before the end, while on the RHS we start at 10 e-folds. We choose
the comoving wavenumber of the perturbations in units of the initial Hubble parameter in each case. Initial field
fluctuations are taken to be in vacuum, while we set the radiation to zero. We have checked that the evolution does
not depend on the choice of initial conditions for the perturbations because of the stochastic nature of the system:
in particular the thermal noise term will bring them quickly into their thermal values. Perturbations are amplified
before they become superhorizon when k < aH, and afterwards the comoving curvature perturbation freezes-out.
Due to the increasing behavior of both Q and mainly κ, the primordial curvature spectrum will peak at slightly larger
modes than the last one crossing the horizon.

For constant dissipation with neither T or φ dependence, the analytical solution was obtained in [56], and the
amplitude of the comoving curvature perturbation is given by:

P nogr
R∗

=

(
H2
∗

2πφ̇∗

)2
(

1 + 2n∗ +
T∗
H∗
· 2
√

3πQ∗√
3 + 4πQ∗

)
. (B19)

where the label “nogr” means without growing mode. Otherwise the system of Eqs. have to be integrated numerically
in order to get the modification to the above expression, i.e., the growing mode function G[Q∗] given in (19). We
have done this for different values of constant κ in Υ = CΥT

κ, and a quartic chaotic potential. By varying the value
of CΥ we can tune the value of Q at horizon crossing. The results of comparing our numerical results for PR∗ with
the analytical expression Eq. (B19), which gives the function G[Q, κ], are shown in Fig. (8). We have parametrized
this function as:

G[Q, κ] = (1 + eαsQβs + eαwQβw)κ , κ > 0 , (B20)

G[Q, κ] =
(1 + a0Q

a1)a5

(1 + a2Qa3)a4
, κ ≤ 0 , (B21)

which generalized the standard parametrizations found in the literature for the function G[Q∗] [26, 27, 51]. By
comparing with the numerical results we obtain the coefficients:

αw = −1.486 + 0.7091κ , (B22)

βw = 1.711− 0.3499κ , (B23)

αs = −5.168 + 0.5105κ , (B24)

βs = 2.692− 0.1472κ , (B25)
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when κ > 0, and:

a0 = 18.547 + 171.01κ+ 765.78κ2 + 1758.7κ3 + 2158.7κ4 + 1338.8κ5 + 328.71κ6 , (B26)

a1 = 1.1094 + 4.619κ+ 21.647κ2 + 50.429κ3 + 61.783κ4 + 37.797κ5 + 9.098κ6 , (B27)

a2 = 4.0275 + 28.686κ+ 103.74κ2 + 199.28κ3 + 210.14κ4 + 114.8κ5 + 25.452κ6 , (B28)

a3 = 0.68259 + 0.99858κ+ 3.1507κ2 + 3.7451κ3 + 0.563κ4 − 1.9247κ5 − 0.95376κ6 , (B29)

a4 = κ(−9.9143 + 34.481κ+ 250.17κ2 + 662.93κ3 + 880.09κ4 + 571.9κ5 + 144.43κ6) , (B30)

a5 = κ(−4.3323 + 36.915κ+ 284.89κ2 + 803.87κ3 + 1104.5κ4 + 734.8κ5 + 188.95κ6) , (B31)

when κ < 0.

Appendix C: Parameter values and primordial spectrum at the end of inflation

Although our fitting functions for the growing mode G[Q∗] work well when κ 'Constant, we have checked numeri-
cally that the approximation fails at the end of inflation when κ becomes positive and starts varying. Therefore, to
compute the primordial spectrum upto to the end, using the Eqs. (B13), (B14), (B16), we have first selected a set of
parameter values M , g and h that fulfilled our requirements: the predicted spectral index and tensor-to-scalar ratio
are consistent with observations, while around 10-20 efolds before the end we have the transition towards the SDR
with κ > 0 and the amplification of the spectrum. The list of the chosen parameter values, including the value of the
dissipative ratio Q∗ and the comoving wavenumber for the last possible mode exiting the horizon kend are given in
Table I.

M/mP g h Q∗ kend[Mpc−1]

1×10−4 1.4 3.6 0.04 2.140545×1020

2×10−4 0.9 2.4 0.71 3.026596×1020

3×10−4 0.5 1.6 0.18 2.713322×1020

4×10−4 0.4 1.2 0.55 2.806728×1020

5×10−4 0.3 1.0 0.22 2.774857×1020

6×10−4 0.3 1.1 0.61 3.618087×1020

7×10−4 0.2 0.7 0.13 2.636189×1020

TABLE I: Values of kend = (aH)end for different model parameters.

In order to compute the induced GW spectrum by the scalar perturbations, once the primordial curvature spectrum
was obtained, we have fitted the numerical values using the function:

lnPR[k] = c0 + (1− exp(b0x− b1))P5[x] , (C1)

where x = k/kend, P5[x] =
∑
i=0,5 aix

i, and c0 = −25. The values of the coefficients ai and bi can be found in Table

II. This fitting function works for k/kend > 10−12.

M/mP a0 a1 a2 a3 a4 a5 b0 b1

1×10−4 10.101 2.7069 0.32689 0.018567 0.00051652 5.6499×10−6 1.12985 3.7934

2×10−4 18.351 1.7829 0.14145 0.0083661 0.00027298 3.45×10−6 1.81186 5.7949

3×10−4 15.487 1.94 0.14802 0.007783 0.00025559 3.4977×10−6 1.53848 5.09359

4×10−4 18.233 1.8019 0.14391 0.0086305 0.00028623 3.6692×10−6 1.60554 5.32719

5×10−4 15.963 1.8733 0.14483 0.0080364 0.00026916 3.6427×10−6 1.54388 5.10092

6×10−4 15.25 1.5821 0.12109 0.0066757 0.00021502 2.7598×10−6 1.56107 4.99287

7×10−4 14.745 1.944 0.14338 0.0067079 0.00020095 2.6645×10−6 1.51569 5.01758

TABLE II: Values of ai, bi for different model parameters. We only quote the value of M for each set of parameters.
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