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Abstract: Despite the ancestral evidence of an asymmetry in motor predominance, going through
the inspiring discoveries of Broca and Wernicke on the localization of language processing, continu-
ing with the subsequent noise coinciding with the study of brain function in commissurotomized
patients—and the subsequent avalanche of data on the asymmetric distribution of multiple types of
neurotransmitters in physiological and pathological conditions—even today, the functional signifi-
cance of brain asymmetry is still unknown. Currently, multiple evidence suggests that functional
asymmetries must have a neurochemical substrate and that brain asymmetry is not a static concept
but rather a dynamic one, with intra- and inter-hemispheric interactions between its various pro-
cesses, and that it is modifiable depending on changing endogenous and environmental conditions.
Furthermore, based on the concept of neurovisceral integration in the overall functioning of an organ-
ism, some evidence has emerged suggesting that this integration could be organized asymmetrically,
using the autonomic nervous system as a bidirectional communication pathway, whose performance
would also be asymmetric. However, the functional significance of this distribution, as well as the
evolutionary advantage of an asymmetric nervous organization, is still unknown.

Keywords: neurochemical asymmetry; functional asymmetry; neurovisceral integration; neuropep-
tides; neuropeptidases

1. The Early Development

The concept of neurovisceral integration comes from Claude Bernard [1], developed
more recently by Thayer and Lane [2]. Initially, it has been built on the basis of the connec-
tion between brain and heart that Claude Bernard already masterfully anticipated [3]:

“Le cœur et le cerveau se trouvent dès lors dans une solidarité d’actions réciproques des
plus intimes, qui se multiplient et se resserrent d’autant plus que l’organisme devient
plus développé et plus délicat. Ces rapports peuvent être constants ou passagers, varier
avec le sexe et avec l’âge”

However, without doubt, that reflection goes further and constitutes an integral
concept that encompasses the entire organism [4,5]. Furthermore, there are data that
suggest that this global organization is carried out in an asymmetric way [6–9].

Although no one yet knows for sure how life on earth acquired its asymmetric charac-
ter or what the biological advantage of asymmetry over symmetry would be [10], some
authors suggest that the asymmetry could have a molecular origin from which life would
evolve [11–13]. If we go back to pure physical concepts, Joe Rosen suggests that symmetry
underlies nature [14], but the same author indicated that symmetry implies asymmetry,
and that the universe cannot have perfect symmetry [15]. Frank Close even argues that
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the Universe is asymmetric and that virtually all living species are essentially a function of
cosmic asymmetry [16]. According to Michael Gazzaniga [17]:

“The molecular aspects of life reflect a complex system laced with feedback loops and
multiple interactions-nothing is linear and simple”

If we briefly review the milestones in the knowledge of brain asymmetry, we could
first highlight motor strength and ability. The fact that the neuronal groups that govern
them are mostly located in the contralateral cortex to the body side which is considered to
constitute the most evident case of an asymmetric brain function. There is evidence that
such asymmetry also occurred in prehistoric times [18,19]. Some specific contributions that
connect handedness with peripheral processes, such as ovarian function, are interesting.
Thus, a connection between handedness and the appearance of sexual maturity in women
has been described. In left-handed women, menarche appeared earlier than in right-handed
women [20]. Furthermore, Jones and colleagues [21] had shown that the content of various
neurotransmitters in the lizard brain predominated on the ipsilateral side to that of the
ovary in which ovulation was occurring. The lizard, like humans and other primates,
alternates ovulation between the left and right ovary. These results somehow take us
beyond simple brain asymmetry, suggesting a neurovisceral integration, mediated, in part
and in these cases, hormonally. Its functional meaning remains to be elucidated. In any
case, these data suggest that handedness is integrated into a broader and more complex
biological context, as we will see throughout this review.

In the second half of the 19th century, Paul Broca [22] and Carl Wernicke [23], almost
simultaneously and independently, perfectly aware of the significance of their discoveries,
demonstrated that the processes of expression and of understanding language were located
in specific areas of the cortex in the left hemisphere and not in the right. Universal recogni-
tion of the importance of brain asymmetry came with the studies of Michael Gazzaniga [24]
and Roger Sperry, who received the Nobel Prize in 1981 [25] for their discoveries regarding
the functional specialization of the cerebral hemispheres. They carried out their study
largely in commissurotomized patients, in which the corpus callosum—as the main bundle
of fibers that connects both hemispheres—had been sectioned to alleviate the consequences
of massive epileptic seizures. It was suggested that under physiological conditions, the
two hemispheres were characterized by processing different functions. Thus, while the left
hemisphere would be analytical, verbal, mathematical or sequential, the right one would
be spatial, imaginative and synthetic [26,27]. The researchers observed that the right hemi-
sphere is unable to carry out verbal functions after lesions of the left hemisphere (with intact
corpus callosum) that compromise language function. However, after commissurotomy,
the right hemisphere was capable of carrying out verbal functions. In the Nobel lecture [25]
it was reported that with the intact commissure, the lesion that compromises a function of
the left hemisphere will inhibit the expression of the same function, latent but suppressed,
of the undamaged right hemisphere. This implies that, under physiological conditions,
both hemispheres function as a unit, leading one or the other, depending on the studied
function that will exist in both, but will be latent in one or the other. When a unilateral
injury occurs, the function that is altered prevails over both hemispheres and the two
continue acting as an integrated unit, although with that specific function altered. When
an undamaged hemisphere is freed by commissurotomy from its integration with the other
hemisphere and consequently from its inhibitory influence, its own latent function may
become manifest [25]. In conclusion, from studies in split brains, Michael Gazzaniga speaks
about two brains in one head, but connected to each other, informing and influencing each
other, leading to integrated cognitive processing [24].

2. Neurochemical Substrate for Brain Asymmetry

In this context, on the basis that functional asymmetries must have neurochemical
substrates that support them, the bilateral distribution of classical neurotransmitters was
analyzed. As examples, the bilateral distribution of norepinephrine [28,29], serotonin [30]
or dopamine [31] were studied with varying results of left or right predominance, depend-
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ing on the brain region analyzed. The greatest attempts to relate a lateralized brain function,
such as the circling behavior that rats spontaneously exhibit, with the bilateral distribution
of a neurotransmitter, such as dopamine, were made by Shapiro et al. [32] and Nielsen
et al. [33]. They observed that the animals rotated mainly toward the contralateral direction
to the side that contains higher levels of dopamine or a higher number of activated postsy-
naptic dopamine receptors. However, simultaneously with such works, it is necessary to
highlight the “revolution” [34] that led to the demonstration of the existence of receptors
for opiates such as morphine in the brain [35]; the existence of endogenous opiate peptides,
such as enkephalins, that bound to those receptors [36]; and the demonstration that other
neuropeptides not only act as neurohormones [37,38] but also as neurotransmitters [39]
that could coexist with the classic neurotransmitters [40].

The functional analysis of neuropeptides can also be carried out through the study
of their processing through the action of proteolytic enzymes [41] known as neuropepti-
dases [42,43]. Therefore, the brain asymmetry of such neuropeptides could be reflected
in the activity of the enzymes that metabolize them (reviewed in [44]). In addition to the
demonstration of the existence of asymmetries in the activity of neuropeptidases in various
brain regions under basal conditions—such as the predominance of leucine-aminopeptidase
in the left frontal cortex and left hypothalamus of male rats [45], or the diversity in the left
or right predominance of various aminopeptidases in other brain areas, such as amygdala,
hippocampus or prefrontal cortex [46]—the asymmetry reflected by these enzymes showed
a dynamic behavior, depending on the changing environmental conditions, such as light or
darkness [44,47]. In this context, some specific contributions that relate brain asymmetry
with seasonal changes, as well as with the month in which the birth took place [48] and
even changes in the Earth’s magnetic field [49] can also be included.

3. Asymmetric Neurovisceral Integration

The simultaneous study of neuropeptidase activities and other biochemical param-
eters in various brain regions, tissues and peripheral fluids, as well as cardiac or renal
functions, revealed asymmetric interactions between all of them, which were modified
under certain experimental conditions. Although correlation does not imply causality, it
may be suggestive of some mutual interaction between different locations or functions,
which allows us to speculate on a possible neurovisceral integration. In particular, while in
control hypertensive animals a left predominance of correlations between neuropeptidases
of the frontal cortex and left ventricular tissue was observed in male rats, the predomi-
nance changed radically to the right site after treatment of the animals with captopril [50].
However, in contrast, while plasma neuropeptidase activity was significantly correlated
with the right frontal cortex of hypertensive control rats, the predominance shifted to
the left in rats treated with captopril [51]. Spontaneously hypertensive rats dramatically
increased their blood pressure following dopamine depletion of the left hemisphere, but
not of the right [52]. In addition, under various vasoactive treatments, a predominance of
correlations between neuropeptidase activities of the left frontal cortex and systolic and
diastolic blood pressures was, in general, also observed [6]. In addition, left frontal cortex
also correlated predominantly with water balance functions, such as water intake and
diuresis [8]. In relation to an asymmetry in the gut–brain connection, it seems that the right
vagus nerve predominates more than the left in the stimulation of intestinal endocrine
cells [53]. Furthermore, the gut has been linked to the regulation of emotional state and
central reward systems through the vagus nerve, specifically the right nerve, involving the
substantia nigra, dopamine and cholecystokinin [54] (Figure 1).
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Figure 1. Some examples of bidirectional neurovisceral interaction, between the brain and various
peripheral tissues, mediated by neurochemical factors conveyed by the autonomic nervous system
through anterograde and retrograde transport processes, in which the predominant side of the
interaction is indicated. Intra-hemispheric left and right interactions, as well as inter-hemispheric
interactions, may presumably influence the end result of neurovisceral integration. Some references
are indicated in which such predominance in the interaction has been described: brain–ventricular
tissue [50], brain–cardiac function [6], brain–kidney function [8], brain–intestine function [53,54]
and brain–plasma function [51]. It is necessary to take into account that this pattern of prevalence
will presumably be different depending on which neurochemical factors are considered or which
central and peripheral functions are analyzed. In addition, it may be modified in degree and/or side
depending on sex, age, species or other multiple endogenous or exogenous changing factors.

It remains to be analyzed to what extent neurochemical changes in the bilateral
brain pattern affect the level and prevalence of asymmetry of certain brain functions
and consequently their neurovisceral response. For example, unilateral lesions of the
nigrostriatal system, which at least unilaterally deplete dopamine levels, affect dopamine-
dependent motor and presumably non-motor functions, such as the left or right direction
of rotation after injury, and other neurochemical factors involved [55]. Specifically, the
results varied depending on the side of the lesion and the strain studied (Wistar Kyoto or
spontaneously hypertensive rat) and demonstrate the involvement, not only of dopamine
but also of aminopeptidase A, a cholecystokinin regulatory neuropeptidase [55].

All these results could lead us to propose that, if neurochemical laterality is modified
depending on changes in the external environment and physiological and/or pathological
modifications of the internal environment, different functional lateralities would also be
modified. If this is so, we could speculate that changes in the external and/or internal envi-
ronment, which alters the bilateral neurochemical distribution, may imply changes in the
level or patterns of predominance of certain functions, including modifications in the neu-
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rovisceral response. The interactions would be bidirectional, mediated by the autonomic
nervous system in which the parasympathetic has been described to be regulated by the
left hemisphere [56] and the sympathetic one by the right [57]. The bidirectional influence,
through the autonomic nervous system, is supported by the description of anterograde
and retrograde transport in the autonomic innervation [6,8,9,58,59]. In addition, intra-
and inter-hemispheric neurochemical and functional interactions could also influence the
final result of neurovisceral integration [7,60,61]. Particularly of interest is the fact that
the classic motor and language dominances are mutually interconnected and that they
influence and modify each other. In this sense, Knetchs et al. [62] show that there is a direct
connection between handedness and the degree of left or right predominance of language:
in right-handed subjects, the greater degree of lateralization of language implies left domi-
nance for language, whereas in left-handed people, the greater degree of lateralization of
the language implies right dominance for the language.

4. Neuropathologies and Brain Asymmetry

Lubben et al. [63] review the asymmetric nature of neurodegenerative diseases, such
as Parkinson’s disease, Alzheimer’s disease, multiple sclerosis or amyotrophic lateral
sclerosis, highlighting the greater prevalence of the left hemisphere at the origin of all of
these diseases. The authors suggest that the brain already develops with innate differences
between both hemispheres, which implies that one of them is more vulnerable, causing
the onset of the pathology to precipitate earlier and more easily. There are also interesting
studies that link brain asymmetry and cerebrovascular accidents. Ma et al. [64] describe that
accidents located in the left hemisphere produce more severe sensory–motor and cognitive
alterations than those produced in the right hemisphere. These accidents also involve
asymmetric neurochemical alterations, such as in norepinephrine, dopamine or dynorphin,
but the results are still not very consistent. However, the authors conclude that the incidence
of cerebral ischemia is higher in the left hemisphere than in the right one, and therefore
these patients should receive priority in their treatment [64]. It is worth highlighting the
study by Zhang et al. [65] on the association between sex, the hemispheric location of the
stroke and the subsequent appearance of depression as one of the common post-stroke
sequelae. The authors concluded that the appearance of a post-stroke depression is more
frequent in women who have suffered an accident in the left hemisphere than in the right.
It is possible that gender differences in the consequences of unilateral accidents are partly
due to inter-hemispheric differences in physiological endogenous or exogenous conditions,
such as those that occur during the ovarian cycle [66,67] or those produced in both genders
due to circadian rhythms [reviewed in 67]. On the other hand, it is necessary to take
into account that, although there is a hemispheric dominance in brain functions, the left
hemisphere for language and the right for visual–spatial functions, both functions are
also elaborated, although to a lesser extent, in the contralateral hemisphere [68]. This side
could therefore intervene in a hypothetical inter-hemispheric compensation of the deficit
produced after a unilateral injury. However, the individual variability of the results does
not yet provide a conclusive model of recovery, so more evidence is required to help assess
and predict the degree of recovery after unilateral injuries [69].

In the study of brain asymmetry, we cannot forget the processing of pain, inevitably as-
sociated with emotional circuits. In this sense, Toutain et al. [70] have observed an increase
in intra-hemispheric interactions in the left hemisphere in case of a painful sensation, this
increase being greater in women. These authors also suggest that emotions can modulate
the level of brain asymmetry under pain conditions. Regarding the relationship between
pain threshold and brain asymmetry, an asymmetry in pain perception has been observed
depending on the type of painful stimulus. The pain produced by pressure is predominant
on the left body side (which implies the right hemisphere), but no body asymmetry was
observed when the stimulus was thermal [71]. In this sense, Pauli et al. [72] already ob-
served lower pain thresholds in the left hand than in the right and concluded that right
frontal hyperactivity could be a marker of an increase in pain sensitivity associated with a
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negative emotional state, such as depression. As we have already mentioned in this review,
these asymmetric functional behaviors must have a neurochemical correlate that has been
partially analyzed in the relationship between the brain–heart connection and depression
(reviewed in [7]). Analyzing the activity of various neuropeptidases responsible for the hy-
drolysis of neuropeptides involved in emotional processes, such as enkephalins or oxytocin
in cortico-limbic regions, such as the prefrontal cortex (among others), a predominantly
right lateralization in depressive states is suggested.

On the other hand, the socioeconomic implications of a deeper understanding of brain
asymmetry and its neurovisceral integration could predict and, when appropriate, prevent
neuropathologies or behavioral deviations. The greater or lesser incidence of left or right
neuropathologies can derive from alterations in the general asymmetric processing of the
organism, including the asymmetric bidirectional connection between the brain and the
peripheral tissues [73–78].

Furthermore, the hemodynamic similarity between the brain and some previously
discussed organs such as the kidney, should be taken into account regarding neurovisceral
integration [79]. Both organs share anatomy–physiological hemodynamic properties,
responding in parallel to injuries that can influence each other [79]. Unilateral lesions of
either organ, brain or kidney, may thus influence each other asymmetrically.

Finally, we should emphasize that this asymmetric neurovisceral integration is self-
regulating, trying to maintain homeostasis through compensatory mechanisms against
unilateral physiological modifications but also in the front of unilateral lesions. This
compensatory response is therefore an attempt to maintain homeostasis. This may partly
explain the dynamic nature of brain asymmetry, which can be extended to the general
concept of neurovisceral integration [80] (Figure 2).
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Figure 2. Hypothetical scheme of a global, dynamic and asymmetric model of neurovisceral integration. Changes in the
external environment such as diurnal or seasonal, as well as differences in physiological or pathological changes in the
internal environment, could lead to modifications in the level and/or bilateral profile of neurochemical and functional
predominance. These changes could also condition an asymmetric visceral response and vice versa. Likewise, except for the
external environment, all the previous factors would interact mutually in conditioning their responses. In short, the integral
functioning of the organism could be carried out in a dynamic and asymmetric way with a neurochemical basis.
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5. Conclusions

From all the reported studies, we can clearly establish the existence of a cerebral
asymmetry that extends to an asymmetric neurovisceral integration in which a neuro-
chemical asymmetry underlies, but we can also conclude that this asymmetry changes
neurochemically and functionally depending on the modification of multiple endogenous
and exogenous factors.

In conclusion, brain asymmetry is a dynamic concept whose complexity increases
progressively. There is no doubt that in addition to the functional asymmetries that we
already know, there must be many more, without claiming that virtually all functions
would be processed asymmetrically. Likewise, we could say that there are nuances of all of
them, dependent on multiple factors that modulate them and in which a neurochemical
substrate underlies, equally modulated by these factors.

Asymmetry involves the entire organism, so we can assume the concept of asym-
metric neurovisceral integration that uses the autonomic nervous system, endocrine and
neuroendocrine systems as communication channels. It is modulated by changes in the
external and internal environment, the response of which depends, among other factors, on
the brain site, sex or the type of function under consideration. It is a complex system that
involves multiple functional and neurochemical processes that interact with each other.

From all these observations described above, it can also be deduced that, basically, our
present knowledge about brain asymmetry is mostly descriptive. Therefore, to understand
its biological significance, we need to continue advancing in this crucial research, without
losing sight of the fact that it is a dynamic and global concept.
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