
Journal of Building Engineering 49 (2022) 104024

Available online 12 January 2022
2352-7102/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Domestic hot water consumption prediction models suited for 
dwellings in central-southern parts of Chile 
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A B S T R A C T   

Domestic hot water (DHW) consumption in dwellings can play a key role in the development of 
policies that are focused on energy poverty, and in improving energy efficiency, among other 
aspects. There is an important variability observed with DHW among different countries due to 
technical, sociological, climatic, and economic factors. Most studies that deal with DHW pre-
dictions are based on stochastic models, and only a few apply time series or statistical methods. In 
the case of Chile, the country is undergoing a policy development process, and there is little 
information about DHW consumption. As a result, it is fundamental to have DHW consumption 
prediction models that are focused on dwelling. For this reason, the study analysed the possibility 
of using time series models to make future estimations about monthly domestic hot water (DHW) 
consumption. To this end, consumption data obtained from 98 apartments between 2015 and 
2021 were used, and 3 approaches were applied namely, exponential smoothing, basic structural 
model (BSM), and state-space model (SSM). The results showed that exponential smoothing and 
state-space methods allowed to obtain satisfactory results with regard to percentage error and 
confidence levels. Therefore, these models could be used to make future estimations of domestic 
hot water (DHW) consumption.   

1. Introduction 

Today, climate change and global warming are probably some of the greatest threats humanity is facing, and their cause is 
associated to high energy consumption and carbon dioxide (CO2) emission levels [1]. The building sector represents a large part of 
energy consumption and CO2 emissions in the world. According to the 2017 Global Status Report of the United Nations and the in-
ternational energy agency (IEA) for 2016 [2], buildings represented 30% of the consumed energy, and 28% of CO2 emitted at a global 
level. Therefore, improving energy efficiency in this sector is key to counteract environmental threats [3]. On the other hand, the 
residential sector comprises 73% of the consumed energy, and 61% of CO2 emissions of the building sector, that is to say, the resi-
dential sector by itself consumes 22% of global energy, and is responsible for 17% of all CO2 emissions in the world [2]. Thus, it is 
exigent that this sector mitigate this issue, at the earliest [4,5]. 

In most countries, the residential sector constitutes more than 25% of the country’s total energy consumption [6], such that in many 
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cases, it ranges between 11 and 27%, with values in Latin America ranging between 16 and 27% (See Table 1). 
The total energy consumption of most homes is constituted by heating, domestic hot water (DHW), electric appliances, and lighting 

[34]. In the European Union, heating and DHW can constitute up to 79% of the final energy consumption of a home [35], while for the 
member countries of organisation for economic co-operation and development (OECD), this value is almost 69% [2]. However, DHW 
consumption has been underestimated and has remained constant [36], even though it represents a relevant part of the home’s 
consumption [36]; following by heating [37]. In the United Kingdom, DHW consumption constitutes between 20 and 25% of resi-
dential consumption [27,28], in the European Union it is 14.8%, and in the United States, 19% [7]. For most Latin American countries, 
this value is above 17%, and above the average of OECD. However, it is possible to see that the percentage that DHW constitutes is very 
variable when compared to the total consumption of the home, reaching a minimum of 7% for Colombia, and a maximum of 44% for 
Sweden. 

This variability observed in DHW consumption in the residential sector depends on technical and sociological factors [39]. The 
number of occupants, their age, climate, and economy, among other factors, have been detected as key [34,38,and40]]. In particular, 
the number of occupants is closely linked to DHW consumption, and it is more important than the climate factor [41]. Meyer and 
Tshimankinda [42] analysed dwellings in South Africa and concluded that dwellings with more occupants consume a lower amount of 
DHW, as these represent the low-income and/or developing population. This aspect was detected in another study conducted in Greece 
as well [43]. Likewise, Evarts and Swan [44] found that the highest consumption appears in 3-person dwellings, falling as the number 
of people increases. Merrigan [45] found that starting from a base of 2 people, for every additional person, the consumption increases 
linearly in 45 L/day, while Ahmed et al. [40] identified that the presence of children leads to higher DHW consumption. Aydinalp et al. 
[46] studied the reliability of a prediction model for DHW using consumption profiles and socio-economic factors. 

Even so, personal and custom-related factors can have an impact, which means that DHW consumption is difficult to estimate [47]. 
For the same reason, consumption profiles are not the same in all countries [38], and they can also vary from dwelling to dwelling [40]. 
Two studies conducted in residential buildings in the Finnish cities of Tampere [40] and Helsinki [48], reported similar DHW con-
sumption, with an average of 43 and 44 L/person/day, respectively. However, there is a high variation in the range of this con-
sumption: the former from 20 to 70 L/person/day; and the latter, from 0 to 300 L/person/day. 

Table 2 shows the variability in consumption in litres per person per day (L/person/day) found in research projects in different 
countries, with values ranging between 32.3 L/person/day (Greece) to 140 L/person/day (South Africa). In Chile, the DHW con-
sumption value has not yet been determined accurately, and it is presented in the 2018 Final Report for Energy Use of Chilean Homes 
[18] in used energy format, where the value of litres per person is only expressed for water heaters and washing up (17.1 L/per-
son/day). Other approaches could be the values used for thermal solar system calculations, such as the one used by López-Ochoa et al. 
[49], which is 30 L/person/day based on the regulations, or 40 L/person/day indicated by the Chilean Solar Power Association [50]. 

Due to the variability in DHW consumption among countries, its estimation is relevant from multiple perspectives [59]. Firstly, 
realistic hot water demand patterns are required both for public policy and quantification of compliance with energy consumption 
reduction goals and their projection. Secondly, they are needed to size the impact at a neighbourhood or housing unit level and plan 
investments as well as suggest improvements and optimization of DHW systems [60], and more recently, for their automation [61]. 

There are different methods to make predictions. In the energy consumption area, these have been studied in-depth, and paper 
reviews have compiled the most commonly used methods [62–64]. However, these methods have not been applied greatly to estimate 
future DHW consumption. Fuentes et al. [60] state that most studies that deal with DHW predictions are based on stochastic models 

Table 1 
Percentage of residential energy and DHW consumption for different countries.  

Country Residential sector energy consumption over 
country consumption (%) 

Source Energy consumption for domestic hot water over total energy 
consumption of the home (%) 

Source 

OECD 20.0 [2] 16.4 [2] 
USA 21.1 [2] 19.0 [7] 
Canada 13.1 [8] 19.3 [9] 
Mexico 17.9 [10] 19.9 [10] 
Spain 17.1 [11] 17.3 [12] 
Australia 11.1 [13] 23.0 [14] 
New Zealand 11.0 [15] 29.0 [15] 
Germany 25.0 [16] 14.0 [16] 
Chile 16.0 [17] 20.0 [18] 
Uruguay 17.1 [19] 20.0 [20] 
Argentina 27.0 [21] 17.0 [21] 
Colombia 16.3 [22] 7.0 [22] 
Portugal 17.7 [23] 23.5 [23] 
France 27.5 [24] 30.7 [24] 
European 

Union 
26.1 [25] 14.8 [26] 

United 
Kingdom 

29.0 [27, 
28] 

25.0–20.0 [27, 
28] 

Finland 16.8 [29] 15.2 [30] 
China 11.7 [31] 14.0 [32] 
Sweden 15.0 [33] 44.0 [43]  
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and few apply time series or statistical methodologies. Neural networks [46,65,and66]] are among those methods that have been used 
to predict DHW consumption. As for time-series models, Gelazanskas and Gamage [67] used a series of forecasting models, including 
exponential smoothing, seasonal autoregressive integrated moving average (SARIMA), seasonal decomposition, and a combination of 
them to make a 24-h prediction based on individual dwellings, showing that this type of method has the potential to be used to control 
DHW. Popescu and Serban [68] used time-series analysis to predict dynamic hot water consumption in district heating systems. Denis 
et al. [61] evaluated the energy savings that can be achieved by using predictions with time series, focusing on specific water heating 
devices, which are triggered at the exact time the users require hot water to avoid its loss. Finally, Horkai [69] uses time series to study 
the relationship between DHW consumption and outdoor temperature in Budapest. In his time series, the “decomposition model is able 
to estimate hot water consumption per apartment per day for a future month with 94% probability” [69]. However, these studies have 
mainly focused on generating water consumption predictions for their control, either for a water heating device (individual or 
district-based) or the housing unit, to seek an efficient production that minimizes energy use. Till date, no studies have been identified 
that make DHW consumption projections in dwellings to generate inputs to establish energy policies. Likewise, studies that have used 
time-series have been made in other climate and sociocultural contexts, mainly in the European countries and Canada, which is why it 
is not clear how these methods can be applied or adapted to a context like Chile. 

It is important to note that Chile is setting parameters to define energy poverty policies [70], and for that reason, this study seeks to 
define average DHW consumption in homes, in order to contribute to energy poverty policies that fit the reality. In this sense, one of the 
most important aspects of energy policies is the estimation of future situations to reduce the vulnerability of families. Therefore, 

Table 2 
DHW consumptions per person in different countries.  

Country DHW consumption L/person/day Study scope Source 

Switzerland 55.0 
33.0 

– [51] 
[52] 

Finland 43.0 
43.6 

182 apartments 
86 apartments 

[40] 
[48] 

Germany 64.0 – [51] 
France 69.6 – [51] 
Spain 30.0 According to the technical guidelines [53] 
Portugal 40.0 – [51] 
Argentina 54.5 Calculated based on 3.3 persons/dwelling [54] 
Chile 17.1a 3500 surveys [18] 
Estonia 55.0 113 residential buildings [55] 
Denmark 41.0 National statistics [56] 
South Africa 80.0–140.0 National statistics [57] 
Greece 32.3 4 residential buildings [43] 
Latvia 39.3–44.7 4 residential buildings [58] 
Canada 94.0 – [51] 
United Kingdom 64.7 – [14] 
United States 40.0 – [51]  
a Only water heaters and washing up (does not include shower). Calculated from the average number of people per dwelling projected for 2020 by the INE (National 

Statistics Institute). 

Fig. 1. Research flowchart.  
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characterising and predicting DHW use is key, not because efficient use and energy-saving measures can be implemented from this, or 
so that a design that is fit for hot water generation systems [60] can be put in place, but because this can contribute towards the 
implementation of policies to reduce the risk of energy poverty, especially in vulnerable residential contexts. 

Based on the above, this study analysed the possibility of using time series to make future DHW consumption estimations, by not 
just integrating parameters of level, trend, and seasonality, but by also considering outdoor temperature as a critical factor for the 
estimations. The analysis included 3 different time series approaches using a DHW consumption database of Chilean dwellings ob-
tained between 2015 and 2021. 

2. Methodology 

The methodological framework of this research comprised a series of steps to obtain predictive DHW consumption models in 
Chilean dwellings. For this, a monitoring process was made for a set of dwellings between 2015 and 2021. These measurements were 
made on a monthly basis and used to generate the training and testing sets (August 2020–May 2021). The training set was used to 
generate several time series models using 3 different approaches, while the testing data was used to validate the errors of the esti-
mations. These steps are summarized in Fig. 1 and explained in the following subsections. 

2.1. Case study and monitoring 

A housing block with 98 apartments in the Bio-Bio Region, in Chile, was chosen as the case study (classified as Csb following the 
Koppen-Geiger classification, corresponding to a temperate climate with dry and mild summers), which had DHW being generated 
using a gas boiler and individual consumption meters. Considering the number of rooms, 3 different types of dwellings are distin-
guished among the 98 apartments, namely 1-bedroom dwellings (22 apartments) (Dw-B1), 2-bedroom dwellings (55 apartments) (Dw- 
B2), and 3-bedroom dwellings (21 apartments) (Dw-B3). An average occupation of 2 people was estimated in the Dw-B1 dwellings, 3 in 
Dw-B2, and 4 in Dw-B3. A weighted average was considered for the analysis with all the dwellings (Dw-AllB). 

The monthly consumption of the dwellings was recorded for 6 years, from July 2015 to May 2021, covering all seasons. Fig. 2 shows 
the monthly values and monthly average of the DHW consumption values, both in L/day and L/person/day. This extensive collection 
period was considered to obtain representative results of the dwellings and to consider variability in consumption linked to outdoor 
temperature. The consumption records were taken monthly by the individual DHW meters of each apartment, which were Class B ISO 
4064. Meanwhile, for DHW consumption estimations with regard to outdoor temperature, measurements were obtained from the 
Chilean National Air Quality Information System, using the meteorological station located at the coordinates UTM 673817 E 5927247 
N. 

2.2. Statistical treatment 

Due to the length of the study period when data was collected, there were periods where different apartments did not have any 
consumption, or their consumption was abnormally low. For this reason, it was decided that the following adjustments were to be 
made to the original database: those apartments lacking more than 50% of the data, i.e., equal to zero litres per day, were eliminated, 
to reduce the number of apartments to 20 for Dw-B1, 45 for Dw-B2, and 21 for Dw-B3; and those apartments that had less than 50% of 
the data or were below 24 l/d/p were replaced by the monthly mean of each typology for the year and month when the data was 
missing. This replacement was done considering that consumption is related to the monthly mean temperature, and therefore, each 
month and year would have variations that affect DHW consumption. On the other hand, the 24 l/d/p value was established bearing in 
mind that according to the data previously collected in Chile, these indicate that the consumption from using just the water heater and 
washing up (without shower use) is 17.1 l/d/p. Considering this, and the fact that a water flow of 0.1 l/s for over 4 min generates a 
consumption of 24 l/d/p, this is an acceptable threshold to be considered as a minimum consumption, without it being exceeding the 
consumption seen in other countries (See Table 2), instead of the value used by López-Ochoa et al. [49], which is 30 l/d/p based on the 
regulations, or the value indicated by the Chilean Solar Power Association, which is 40 l/d/p [50]. 

Fig. 2. Monthly values and monthly average of DHW consumption for the study period. The graph on the left shows the consumption in L/day, while the graph on the 
right shows it in L/person/day for the different types of dwellings: Dw-AllB (all dwellings), Dw-B1 (1-bedroom dwellings), Dw-B2 (2-bedroom dwellings), and Dw-B3 
(3-bedroom dwellings). 
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2.3. Time series models 

In this study, 3 different approaches were used for the time series, namely exponential smoothing, basic structural model (BSM), 
and state-space model (SSM). 

2.3.1. Exponential smoothing 
This is a relatively simple technique to use with time series. Exponential smoothing is a method where a prediction is continuously 

revised based on the most recent data. The method employs an iterative algorithm that in each time period (month or week), makes a 
forecast about the behaviour of the series based on duly weighted averages of previous data. In this sense, exponential smoothing 
assigns exponentially decreasing weights as the observation ages, that is to say, the oldest data is given less weight compared to the 
newest. Therefore, the most recent data has a higher weight in these predictions. 

In this case, a triple exponential smoothing, which is also known as Holt-Winters, must be considered because it account for the 
components of level, trend, and seasonality defined by the following expressions: 

Level Lt = α Yt

St− s
+ (1 − α)(Lt− 1 + Tt− 1)

Trend Tt = β(Lt − Lt− 1) + (1 − β)Tt− 1

Seasonality St = γ
Yt

Lt
+ (1 − γ)St− s

Prediction (Y t ) =̂
(
L (t − 1) + T (t − 1)

)
S (t − s)

(1)  

Where α and β are smoothing constants that are between zero and one, and “s” is the length of the seasonality or number of months or 
quarters in a year. 

To successfully apply these equations, data of the variable being forecast from at least two previous periods must be available. This 
has been satisfied through a broad data collection period, which exceeds two periods. On the other hand, the values of α and β have 
been determined to minimise the mean absolute percentage error (MAPE). 

2.3.2. Basic structural model 
BSM is a local trend model with an additional seasonal component. In BSM, a time series comprises a stochastic local trend, a 

seasonal trend, and a remainder. BSM is defined as follows: 

yt = μt + γt + εt, εt N
(
0, σ2

ε
)

μt+1 = μt + vt + εt, εt N
(
0, σ2

ε
)

vt+1 = vt + ct,wt N
(
0, σ2

c

)

γt+1 = − γt − γt− 1 − … − γt− 11 + wt,wt N
(
0, σ2

w

)

(2)  

Where μt and vt represent the mean and slope of the series (Level), respectively, γt is the seasonal component (Season), all of which are 
modelled by stochastic processes. With αt = (μtvtγtγt− 1…γt− 10)

′

, the model used is as follows: 
Where 

Zt =
(
Z[μ],Z[γ]

)

Tt = diag
(
T[μ],T[γ]

)

Rt = diag
(
R[μ],R[γ]

)

Gt = diag
(
G[μ],G[γ]

)
(3)  

Where 

Z[μ] = (1, 0)
Z[γ] = (1, 0,…, 0)

T[μ] =

[ 1 1
0 1

]

T[γ] =

R[μ] = I2

R[γ] = (1, 0, 0,…., 0)
′

G[μ] =

⎛

⎝
σ2

ε 0
0 σ2

c

⎞

⎠

G[γ] = σ2
w  

2.3.3. State-space for consumption and temperature 
Since the formulation of exponential smoothing models that is defined above does not allow for the inclusion of explanatory 

variables, the state-space approach was considered in this study to explain hot water consumption in litres/day and client water 
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consumption in litres/day person by the monthly mean temperature variable. The mean monthly temperature is equal to the sum of the 
mean daily temperatures by the number of days of the month, with the daily mean temperature being the mean value between the daily 
maximum and minimum temperatures. 

The state-space approach of Durbin & Koopman (2012) is frequently used in time series analysis [71]. The general model can be 
written in the following manner: 

yt = Ztαt + εt, εt N(0,Ht) (4)  

αt+1 = Ttαt + Rtηt, ηt N(0,Qt) (5)  

Where “n” represents the length of the time series, and “αt” is a vector of unobservable components of dimension “mx1”, called the state 
vector. The matrix Zt , Tt , and Rt are system matrices defined according to the model considered and, for this particular case, they are 
detailed below. The perturbations εt and ηt are assumed as independent, with normal distribution of zero mean and variances Ht and 
Qt, respectively. For this research, it is considered that these variances are constant. 

From the above, Eq. (4) is known as “equation of measurements or observations”, and Eq. (5) is called “equation of state”, and it 
represents the motion of components in the process over time. The idea is that conditional to observations, several components of the 
process can be estimated, such as level, trend, and seasonality, among others. 

For this work, the model was expressed in the following manner: 

yt = μt + λxt + εt, εt N
(
0, σ2

ε
)
​ μt = μt− 1 + εt, εt N

(
0, σ2

ε
)

(6)  

Where yt is the monthly hot water consumption, μt represents the mean (Level), λ represents the effect of changing the temperature by 
one degree over the hot water consumption. 

It is important to note that on estimating a state-space model, it may be interesting to analyse some of its components in particular. 
In this case, the interest focuses on estimating the λ coefficient, which represents the effect of temperature over hot water consumption, 
in particular the variation in DHW consumption, if the temperature increases by one degree. 

2.4. Approaches considered and model validation 

The 3 approaches described in subsection 2.3 were used to generate the time series. However, the possibility of designing specific 
time series models for each housing typology was considered. Therefore, for the purpose of this study, a model was designed for each 
approach, which estimates the average consumption of all the dwellings (Dw-AllB), and specific models, which estimate the average 
consumption of each dwelling by the number of bedrooms, namely 1-bedroom dwellings (Dw-B1), 2-bedroom dwellings (Dw-B2), and 

Fig. 3. DHW estimation level in a) L/day and b) L/person/day, with the 3 approaches and different dwelling typologies.  
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3-bedroom dwellings (Dw-B3). Likewise, the possibility of estimating two different output variables was considered due to the 
importance they have in the development of energy policies: DHW consumption expressed in L/day, and DHW consumption expressed 
in L/day/person. Therefore, the results of this study are based on the development of 24 different time series models obtained from the 
combination of 3 different approaches, with 4 different forms of case study and 2 output variables. 

To analyse the errors of estimations, the mean absolute percentage error (MAPE) was used. MAPE is an indicator of the demand 
forecast performance that measures the size of the (absolute) error as percentages (Eq. (7)). The fact that it estimates a magnitude of 
the percentage error implies that this is an indicator that is frequently used by those making forecasts due to its easy interpretation [72, 
73,and74]]. 

MAPE=

∑n
t=1At − Ft ∨ At

n
· 100 (7)  

Where At represents the real value observed, Ft is the forecast, and n is the number of observations. 
The evaluation and validation of the errors in estimations of the models were derived from the testing data (August 2020–May 

2021), using the performance obtained with the test period. 

3. Results and discussion 

Firstly, the performance of these prediction models was analysed. To this end, the estimation levels of the time series were first 
analysed (Fig. 3), and MAPE values were obtained for each combination of the approach and output variable (Table 3). In the case of 
the time series in Fig. 3, the dashed line represents the original behaviour of the time series, while the solid lines are the adjustment of 
each model. In the case of consumption and temperature state-space models, the analysis focused on the estimation of λ coefficient as 
well (Table 4), which represents the effect of outdoor temperature on DHW consumption. Regarding the consumption estimations in L/ 
day, it was seen how, for the combinations of all the dwellings, consumption fell by 0.20 L/day if the temperature increased by 1 ◦C. 
These values vary for different dwellings. Thus, while 1-bedroom dwellings have a similar reduction of 0.19 L/day, in the case of 2- 
bedroom dwellings, the fall is more significant, with − 0.32 L/day. In the case of 3-bedroom dwellings, an increase of 0.04 L/day is seen 
for each 1◦ rise. As for the estimation of consumption in L/person/day, the trends were similar to those obtained in L/day; however, the 
scale of values varied. In this sense, for every 1 ◦C increase in temperature, the reduction values ranged between 0.08 and 0.09 L/ 
person/day in all dwelling typologies, except in the 3-bedroom ones, which saw an increase of 0.01 L/person/day. These values allow 
us to see the DHW consumption variation trends against an increase in outdoor temperature. For a similar study in multi-apartment 
buildings in Budapest [69], a 1 ◦C rise in outdoor temperature resulted in around a 1 L decrease in domestic hot water (DHW) con-
sumption per apartment, per day. Just like in our study [69], differences were also found in this value depending on the dwelling 
typology. 

In any case, the analysis of the degree that fits the estimations obtained for the 3 time series approaches was made using variations 
of MAPE values. Thus, in the case of models designed for mean values of all dwellings (Dw-AllB), it could be seen how Approach 1 
(exponential smoothing) and Approach 2 (BSM) obtained a higher value in two output variables, while in Approach 3 (consumption 
and temperature state-space), the MAPE value was lower. In any case, the MAPE values under these approach-output variable com-
binations were always lower than 10%, except for the L/day variable with Approach 2, which is why they could be considered as 
acceptable. It is worth stating that Approach 3 had a lower percentage of errors in the estimations, with values below 2.5%. Likewise, it 
was seen how the design models for the consumption prediction of different sized dwellings (1, 2, or 3 bedrooms) had MAPE values 
that were similar to those obtained in the joint models of all the dwellings. In this sense, the use of specific models for each housing 
typology did not imply an improvement in MAPE values since cases with MAPE increases, which range between 1.1 and 1.59%, and 
reductions, which range between 0.11 and 3.3%, were obtained. From the study conducted by Gelažanskas L and Gamage K [67], it 
was concluded that the best performance was obtained for a combination of STL/ETS and STL/ARIMA techniques. 

Hence, the time series obtained error values that can be considered valid. In any case, these MAPE values are based on the errors 
obtained in the fit of the time series with training data, but they did not allow to evaluate reliability in the predictions of new data. For 
this reason, the estimations obtained by the model between August 2020 and May 2021 were analysed. Figs. 4 and 5 show the time 
series of estimations of each approach-output variable combination in L/day and L/person/day, respectively. Tables 5 and 6 represent 
the thresholds obtained for some confidence levels of 80 and 95% for each DHW consumption variable, respectively. As observed, the 
confidence levels for Approaches 1 and 2 have higher slack in comparison to Approach 3. In this sense, the consumption estimations in 
L/day of all the dwellings for a confidence of 80% obtained slack that ranged between 13 and 16.7 L/day in Approach 1, and between 

Table 3 
MAPE values obtained in the development of these models.  

Type MAPE (%) 

Approach 1 Approach 2 Approach 3 

L/day L/person/day L/day L/person/day L/day L/person/day 

Dw-AllB 8.30 8.19 9.97 10.2 2.41 2.47 
Dw-B1 7.84 7.84 7.89 7.89 2.30 2.30 
Dw-B2 9.40 9.40 6.90 6.90 3.99 3.99 
Dw-B3 9.78 9.78 7.74 7.74 1.92 1.92  
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16.6 and 20.6 L/day in Approach 2. In the case of Approach 3, the values ranged between 3.6 and 10.3 L/day. Thus, the use of 
consumption and temperature state-space models allows to achieve a lower amplitude in the confidence levels, thus ensuring that a 
higher number of predictions fit the forecast value. Within the literature reviewed, few studies integrate outdoor temperature in the 
DHW consumption projection models. In the case of Horkai [69], its relevance is highlighted alongside how climate change may lead to 
a reduction in consumption, particularly in Budapest. Although this study did not make climate change projections, it did identify a 
similar trend, acknowledging that by increasing the temperature, the demand falls, but this was done to a lesser extent than compared 
to Budapest. 

On the other hand, the use of specific models for each housing type derived the same behaviours in the slack trends, even though 
most of the cases obtained higher slack values with the specific housing models. In the case of 95% confidence, the slack values 
increased significantly in Approaches 1 and 2, with increases that ranged between 5.7 and 21 L/day, while in Approach 3, the increase 
ranged between 1.6 and 8.7 L/day. Even in the case of DHW consumption estimations in L/person/day, it was observed that Ap-
proaches 1 and 2 had a larger slack in the two confidence levels, while Approach 3 had a smaller one. In the literature, it has been 
identified that the prediction models lose accuracy when they are generated with less data; this is associated with discrimination on the 
basis of housing typologies or individual dwellings, which is why many studies have opted to make predictions by grouping housing 
units. According to Gelažanskas et al. [67], it is more difficult to reliably predict individual hot water usage compared to total usage. 

Thus, to analyse the slacks of confidence levels, Approach 3 is the one that allows to obtain more accurate confidence intervals. In 

Table 4 
λ values obtained in the state-space models for consumption and temperature (Approach 3).  

Type -value 

L/day L/person/day 

Dw-AllB − 0.20 − 0.08 
Dw-B1 − 0.19 − 0.09 
Dw-B2 − 0.32 − 0.11 
Dw-B3 0.04 0.01  

Fig. 4. DHW prediction in L/day with the 3 approaches and different housing layouts.  
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any case, the analysis was complemented with a comparison between the estimations of time series and real consumption values 
between August 2020 and May 2021. For this, the analysis was based on the MAPE value obtained in the predictions and percentage of 
correct data included within the confidence levels (Table 7). As observed, the estimations obtained with Approaches 1 and 2 had an 
error level that was close to the real data. Thus, the MAPE value ranged between − 4.2 and 7.8% in the layouts of Approach 1, and 
between 2.7 and 23% in Approach 2, where the value of 23% was obtained only with the 2-bedroom dwellings. Approach 3 also 
obtained suitable values, with some MAPE values below 15%. The MAPE values of Approaches 1 and 3 are within the ranges found by 
Ristow et al. (2021) for the water demand forecasts at an urban scale [75]. However, the estimations were more suitable with 
Approach 1. This can also be seen with the number of results included within the degrees of confidence of the estimations. In this sense, 
the estimations of Approach 1 allowed to obtain 77.8 and 88.9% of the months estimated within the range of estimations, while 

Fig. 5. DHW prediction in L/person/day with the 3 approaches and different housing layouts.  

Table 5 
Values associated to the confidence levels of estimations for consumption prediction in L/day.  

Approach Type 80% (L/day) 95% (L/day) 

Average value Minimum value Maximum value Average value Minimum value Maximum value 

Approach 1 Dw-AllB 14.7 13.0 16.7 22.5 19.8 25.6 
Dw-B1 11.4 10.7 12.7 17.5 16.3 19.4 
Dw-B2 17.5 14.5 20.2 26.8 22.2 30.9 
Dw-B3 21.6 19.2 24.5 33.1 29.4 37.5 

Approach 2 Dw-AllB 18.8 16.6 20.6 28.7 25.3 31.6 
Dw-B1 23.3 14.9 29.8 35.6 22.7 45.6 
Dw-B2 25.9 16.9 32.9 39.6 25.9 50.3 
Dw-B3 32.9 24.6 39.7 50.3 37.6 60.7 

Approach 3 Dw-AllB 7.4 3.6 10.3 11.4 5.5 15.7 
Dw-B1 4.1 3.0 5.1 6.3 4.5 7.8 
Dw-B2 11.6 5.1 16.4 17.8 7.8 25.0 
Dw-B3 9.3 6.1 12.0 14.2 9.3 18.3  
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Approach 3 obtained between 11.1 and 66.7%. This smaller number of months within the acceptability ranges of Approach 3 was due 
to the tight tolerance level range. In contrast, Approach 1 obtains an appropriate balance between the MAPE value and percentage of 
months classified correctly. Therefore, the use of this approach, i.e., exponential smoothing, may be a suitable methodology to make 
estimations of DHW consumption time series in Chilean dwellings. Anyhow, the state-space model could also be considered as a useful 
methodology to make the estimations, but its calculation process is more complex compared to that of Approach 1. 

Table 6 
Values associated to the confidence levels of estimations for consumption prediction in L/person/day.  

Approach Type 80% (L/person/day) 95% (L/person/day) 

Average value Minimum value Maximum value Average value Minimum value Maximum value 

Approach 1 Dw-AllB 4.9 4.3 5.6 7.5 6.6 8.5 
Dw-B1 5.7 5.3 6.3 8.7 8.2 9.7 
Dw-B2 5.8 4.8 6.7 8.9 7.4 10.3 
Dw-B3 5.4 4.8 6.1 8.3 7.4 9.4 

Approach 2 Dw-AllB 6.3 5.6 6.9 9.6 8.5 10.5 
Dw-B1 11.6 7.4 14.9 17.8 11.4 22.8 
Dw-B2 8.6 5.6 11.0 13.2 8.6 16.8 
Dw-B3 8.2 6.1 9.9 12.6 9.4 15.2 

Approach 3 Dw-AllB 2.4 1.2 3.4 3.7 1.8 5.2 
Dw-B1 1.8 1.4 2.2 2.8 2.2 3.3 
Dw-B2 3.8 1.7 5.4 5.9 2.6 8.3 
Dw-B3 2.0 1.6 2.3 3.0 2.4 3.6  

Table 7 
Performance obtained with the period between August 2020 and May 2021.  

Approach Type Output (L/days) Output (L/person/day) 

MAPE (%) 80% (%) 95% (%) MAPE (%) 80% (%) 95% (%) 

Approach 1 Dw-AllB 0.5 88.9 100.0 1.2 88.9 100.0 
Dw-B1 4.9 77.8 100.0 4.9 77.8 100.0 
Dw-B2 7.8 88.9 100.0 7.8 88.9 100.0 
Dw-B3 − 4.2 77.8 100.0 − 4.2 77.8 100.0 

Approach 2 Dw-AllB 2.7 88.9 100.0 3.3 88.9 100.0 
Dw-B1 9.1 100.0 100.0 9.1 100.0 100.0 
Dw-B2 23.0 100.0 100.0 23.0 100.0 100.0 
Dw-B3 3.8 100.0 100.0 3.8 100.0 100.0 

Approach 3 Dw-AllB 5.6 66.7 77.8 7.2 66.7 77.8 
Dw-B1 15.0 11.1 22.2 14.8 11.1 22.2 
Dw-B2 11.9 55.6 100.0 11.9 55.6 100.0 
Dw-B3 2.6 66.7 88.9 2.7 55.6 88.9  

Table 8 
Optimal values for the parameters by approach.    

(l/day) (l/day/person) 

Exponential smoothing.Approach 1  αt  βt  γt  αt  βt  γt  

Dw- 
AllB 

0.2452 0 0.0001 0.1850 0 0.6152 

Dw-B1 0.1347 0 0.0001 0.0662 0 0.5151 
Dw-B2 0.3061 0 0.0005 0.2936 0 0.6353 
Dw-B3 0.0001 0 0.0001 0.1346 0 0.4850 

Basic structural model.Approach 2  μt  βt  γt  μt  βt  γt  

Dw- 
AllB 

74.02134 − 0.53852565 11.5478812 24.53226 − 0.19562744 3.46273118 

Dw-B1 56.71414 − 0.70033564 2.45660611 28.35714 − 0.35016293 1.2281604 
Dw-B2 63.85254 − 0.47301566 7.9239585 21.28418 − 0.15767188 2.6413198 
Dw-B3 116.0038 − 0.68443077 17.729859 29.00098 − 0.17111007 4.43237023 

State-space for consumption by temperature.Approach 
3  

μt    μt    

Dw- 
AllB 

0.6941      

Dw-B1 0.7099      
Dw-B2 0.9048      
Dw-B3 0.5001       
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In the case of exponential smoothing, the αt, βt , and γt parameters, which are shown in Table 8, must be estimated. The proposed 
BSM and state-space models (SSM) consider variant parameters over time. Table 8 presents the final values of estimation of compo-
nents considered in each formulation. 

4. Conclusions 

Domestic hot water (DHW) consumption in dwellings may play a really important role in establishing energy policies. For this 
reason, this study looked at 3 different time series methodologies to make future DHW consumption estimations, namely exponential 
smoothing, basic structural model (BSM), and state-space model (SSM). Using a DHW consumption database from July 2015 to May 
2021, the following conclusions could be established:  

- State-space models (SSM) showed the variations associated to DHW consumption and outdoor temperature. Generally speaking, 
DHW consumption tends to increase by 0.2 L/day and 0.08 L/person/day with an increase of 1 ◦C in most housing typologies.  

- The fit of the models to the training database was satisfactory. In this sense, the results showed how MAPE values were below 10% 
in the 3 approaches. Thus, the 3 time series methods present suitable characteristics to obtain models adjusted to DHW con-
sumption training datasets. In any case, this aspect could present slight variations if the extension of training database was 
different. With regard to this, the training data used corresponds to a time series with monthly values between July 2015 and July 
2020.  

- No differences were detected in the performance of estimations between the use of joint models for all dwellings and individual 
models for each housing typology, i.e., considering the number of bedrooms.  

- The state-space model (SSM) obtained the lowest MAPE values in the training and a smaller slack in the confidence levels analysed 
(80 and 95%). However, future estimations obtained had a better fit with the exponential smoothing model, which also had some 
MAPE and slack values in the acceptable confidence levels. On the contrary, BSM did not obtain suitable results being the least 
suitable methodology to make DHW consumption estimations. Therefore, based on these results, exponential smoothing and state- 
space models are the most suitable approaches to make DHW estimations.  

- Following the principle of statistical parsimony, which establishes that a model must be as simple as possible, it would be 
recommendable to use the simplest, i.e., exponential smoothing, as it is the easiest to implement, does not require independent 
variables, and delivers acceptable MAPE values. 

The results of this study constitute a suitable methodology to predict the future situations of Chilean families and develop policies 
on energy matters. In this sense, high DHW consumption can lead to fuel poverty situations [76]. The availability of a predictive system 
like those developed through the time series in this study, could allow to define future situations. Thus, this research has direct im-
plications for guiding the construction industry and policies to define and measure DHW consumption in Chile. Likewise, it is worth 
highlighting the international nature of the results. 

Ultimately, the results of this study are of great interest for architects, engineers, policymakers, and governments. In addition to 
this, the methodologies designed here present a high degree of international application, as the datasets can be easily obtained by 
monitoring dwellings. Anyhow, in future steps for this research, some of the limitations detected should be addressed. Firstly, the 
estimations that were analysed in the study are from one year. The establishment of long-lasting energy policies may require making 
estimations for several years. The use of time series models to estimate DHW consumption in several periods has not been done in this 
study and should be addressed in future work. Secondly, the variable nature that DHW consumption may have between regions in a 
single year should be considered in future studies, to evaluate the limitations of time series-based predictive models. 
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[49] L.M. López-Ochoa, K. Verichev, J. Las-Heras-Casas, M. Carpio, Solar domestic hot water regulation in the Latin American residential sector with the 
implementation of the Energy Performance of Buildings Directive: the case of Chile, Energy 188 (2019), https://doi.org/10.1016/j.energy.2019.115985. 

[50] Asociación Chilena de Energía Solar, CAP.5 Cálculo de prestaciones energéticas, n.d. 
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