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Abstract: Clear windows onto emergent hadron mass (EHM) and modulations thereof by Higgs boson interactions
are provided by observable measures of pion and kaon structure, many of which are accessible via generalised par-
ton  distributions  (GPDs).  Beginning  with  algebraic  GPD Ansätze,  constrained  entirely  by  hadron-scale  and K
valence-parton distribution functions (DFs), in whose forms both EHM and Higgs boson influences are manifest, nu-
merous  illustrations  are  provided.  They  include  the  properties  of  electromagnetic  form  factors,  impact  parameter
space GPDs, gravitational form factors and associated pressure profiles, and the character and consequences of all-
orders evolution. The analyses predict that mass-squared gravitational form factors are stiffer than electromagnetic
form factors; reveal that K pressure profiles are tighter than  profiles, with both mesons sustaining near-core pres-
sures at magnitudes similar to that expected at the core of neutron stars; deliver parameter-free predictions for  and
K valence, glue, and sea GPDs at the resolving scale  GeV; and predict that at this scale the fraction of meson
mass-squared  carried  by  glue  and  sea  combined  matches  that  lodged  with  the  valence  degrees-of-freedom,  with  a
similar statement holding for mass-squared radii.
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I.  INTRODUCTION

mp ≃ 1

Uncovering the source of the vast bulk of visible mass
in the Universe is one of the highest priorities in modern
physics. It  is  the  quest  to  explain  the emergence of  had-
ron mass (EHM) [1-8]. Two questions define the heart of
this  problem  [9]:  how  does  a  proton,  built  from  three
valence  quarks  whose  masses  are  comparable  to  that  of
an  electron,  acquire  a  mass  GeV;  and  how  does
the  pion,  built  from  similar  valence  degrees-of-freedom,
remain nearly massless? Within the Standard Model,  the
answers are  expected  to  lie  within  quantum  chromody-
namics  (QCD)  and  relate  to  the  physical  expressions  of
the scale anomaly in this theory.

It  has  been  argued  that  low-energy  elastic  scattering

V = J/ψ,Υ

e+ p→ e′+V + p
V + p→ V + p

of  the  heavy-mesons  from  the  proton  can
provide  insights  into  connections  between  the  proton
mass  and  QCD's  scale  anomaly  [10].  Direct  access  to
such reactions  is  difficult.  So,  proposals  for  measure-
ments of the scale anomaly have been based on the sup-
position  that  the  photoproduction  of  such  mesons  from
the  proton, ,  provides  a  route  to

 [11, 12].  However,  it  is  now  known  that
this assumption is ill-founded; and this realisation elimin-
ates  any  model-independent  link  between  vector-meson
photoproduction and the in-proton scale anomaly [13, 14].

In contrast, increasingly many robust connections are
being  drawn  between  EHM  and  the  properties  of  pions
and  kaons,  revealed  in  both  phenomenological  sketches
and theoretical  predictions  [5-8, 15-26].  Importantly,  the
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links  can  be  verified  empirically  [1-4]. Such  is  the  con-
text  for  the  analysis  of π-  and K-meson generalised  par-
ton distributions (GPDs) [27-29] described herein, which
explores  their  capacity  to  reveal  novel  expressions  of
EHM in measures of pion and kaon structure and is also
both a modernisation and extension of the studies in Refs.
[30, 31].

Our report is arranged as follows. Section II recapitu-
lates known  properties  of  meson  light-front  wave  func-
tions (LFWFs)  and  explains  features  that  will  sub-
sequently  be  exploited.  Of  particular  importance  are  the
connections drawn  between  LFWFs,  distribution  amp-
litudes  (DAs),  and  distribution  functions  (DFs).  This  is
followed in Sec. III by elucidation of our approach to the
construction of realistic Ansätze for such LFWFs.

H(x, ξ, t) |x| ⩾ ξ
Section IV exploits the overlap representation [32] to

define  GPDs, ,  on  the  DGLAP  domain  ( )
[33-36];  uses  it  to  develop  algebraic  forms  for π and K
GPDs;  and  explicates  some  of  their  consequences,  with
results that include predictions for meson electromagnet-
ic form factors.

Impact parameter space (IPS) GPDs [37] for the π and
K are  discussed  in  Sec.  V,  with  insights  developed  by
capitalising on the algebraic character of our GPDs.

|x| < ξ

Pion and  kaon  gravitational  form factors  and  associ-
ated Breit-frame pressure profiles are reported in Sec. VI.
The latter require an extension of our overlap GPDs onto
the ERBL domain ( )  [38-40];  so an explanation of
the procedure we employ is also included. It  is based on
the Radon transform scheme described in Refs. [41, 42].

ζH
ζ > ζH

ζ = ζ2 := 2

Section  VII  explains  our  approach  to  evolving  the
hadron  scale  ( ) distributions  described  in  the  preced-
ing sections to any other scale . We benchmark our
scheme  by  delivering  predictions  for  all  pion  DFs
(valence, glue and sea) and comparing the valence-quark
DF with a modern analysis of relevant data [43, 44]. This
method of evolution enables us to calculate and report in
Sec.  VIII  the  meson mass-squared fractions  carried  by a
given parton species at  GeV, the value typical
of  contemporary  data-based  fits  to  parton  distribution
functions, viz.  to  separate  the  meson  mass-squared  into
valence,  glue,  and  sea  components  at  this  scale.  The
scheme is  similarly exploited to calculate  analogous res-
ults for the mass-squared radii.

ζH → ζ2Section  IX  discusses  the  effect  of  evolution
on the IPS GPDs reported in Sec. V.

The body  of  the  presentation  concludes  with  a  sum-
mary  and  perspective  in  Sec.  X.  This  is  followed  by  an
appendix that contains supplementary remarks on LFWFs. 

II.  LIGHT-FRONT WAVE FUNCTIONS AND
PARTON DISTRIBUTIONS

P = uh̄
At  leading  twist,  the  LFWF  for  the u quark  in  a

 pseudoscalar meson can be written: 

ψu
P(x,k2

⊥;ζ) =trCDZ2

∫
dk3dk4

π
δ(n · k− xn ·PP)

×γ5γ ·nχP(k−PP/2,PP;ζ) . (1)

Z2

k = (k1,k2,k3,k4)
PP k⊥ = (k1,k2)

n2 = 0 n ·PP = −mP

mP χP

The  trace  is  over  colour  and  spinor  indices;  is  the
dressed-quark  wave  function  renormalisation  constant;

, x is  the u-quark  light-front  fraction  of
the  meson's  total  momentum, ,  and  is  its
momentum in the light-front transverse plane; n is a light-
like  four-vector, ,  in  the  meson's  rest
frame,  with  its  mass;  is  the  Poincaré-covariant
Bethe-Salpeter  wave  function  describing  the  meson's
structure; and ζ is the renormalisation scale. The LFWF is
invariant  under  light-front  Lorentz  boosts.  Thus,  when
solving  bound-state  scattering  problems  using  a  light-
front  formulation,  compressed  or  contracted  objects  are
not  encountered  [45-47], e.g.,  the  cross-section  for  the
meson+proton  Drell-Yan  process  does  not  depend  on
whether the proton is at rest or moving.

ζ = ζH
+

P

Eq.  (1)  follows  Ref.  [48]  in  defining  the  LFWF  via
projection  of  the  meson's  Bethe-Salpeter  wave  function
onto  the  light-front.  The  approach  is  efficacious  for
strong-interaction bound-states [49], yielding a LFWF ex-
pressed in a quasiparticle basis whose character is defined
by the renormalisation scale. At , the hadron scale,
the  quark antiquark quasiparticle  pair  embody  all  prop-
erties of  [7, 50-54]; for instance, they are invested with
all the meson's charge, mass, and light-front momentum.
Owning  a  LFWF,  one  has  access  to  many  key  hadron
structure measures, including form factors, DAs and DFs.
For some such measures, evolution – DGLAP [33-36] or
either  ERBL  [38-40]  –  is  necessary  before  comparisons
become possible  with  quantities  inferred  from  experi-
ment. As described in Sec. VII, that is achieved herein by
using QCD's  process-independent  effective  charge  to  in-
tegrate the relevant evolution equations [7, 50-54].

χP

A meson's  Bethe-Salpeter  wave  function  can  be  ob-
tained  by  solving  an  appropriate  coupled  set  of  gap  and
Bethe-Salpeter equations.  Realistic  and  practicable  ker-
nels for these equations are being developed [55-58] and
results  are  available  for  spectra,  DAs,  DFs,  and  form
factors [7, 50-54, 59-65]. Accurate projection of  onto
the light-front  requires the use of  perturbation theory in-
tegral  representations  (PTIRs)  [66]  for  all  Schwinger
functions involved.  Construction  of  PTIRs  is  time  con-
suming  and  case  specific.  So,  following  Refs.  [31, 67],
we take a different and, for now, more insightful path.

Profiting  from  continuum  and  lattice  analyses  that
have  generated  coherent  predictions  for  meson  DAs and
DFs [7], we work in reverse to form LFWFs that replic-
ate such mutually consistent results for the pion and kaon.
The procedure begins by recalling a relationship between
LFWFs and leading-twist meson DAs [68]: 
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fPφu
P(x, ζH ) =

∫
dk2
⊥

16π3ψ
u
P

(
x,k2
⊥;ζH

)
, (2)

fP

h̄

where  is the meson's leptonic decay constant, which is
an order parameter for dynamical chiral symmetry break-
ing  (DCSB),  itself  a  corollary  of  EHM.  As  written,  the
DA is unit normalised. That connected with the  quasi-
particle is 

φh̄
P(x;ζH ) = φu

P(1− x;ζH ) . (3)

Importantly,  the  valence  quark  DFs  can  also  be  defined
through the LFWFs [7, 53, 54, 68]: 

uP(x;ζH ) =
∫

d2k⊥
16π3

∣∣∣∣ψu
P

(
x,k2
⊥;ζH

)∣∣∣∣2 , (4a)

 

h
P

(x;ζH ) = uP(1− x;ζH ) . (4b)

Eqs. (2)–(4) can reliably be used to constrain Ansätze for
π and K LFWFs; and two complementary approaches will
subsequently be used to develop efficacious parametrisa-
tions for the LFWF in Eq. (1). 

III.  ALGEBRAIC MODELS FOR LFWFs
 

A.    Spectral representation
PTIRs  have  successfully  been  used  to  explore  the

character  of  meson  parton  quasidistributions  [67]. Fol-
lowing that approach, the LFWF can be expressed thus:1)
 

ψu
P(x,k2

⊥;ζH ) = 12
[
Mu(1− x)+Mh̄x

]XP(x;σ2
⊥) , (5)

Mu,h̄

σ⊥ = k2
⊥+Ω

2
P

where:  are  dressed-quark/-antiquark  mass-scales,
whose  values  should  be  commensurate  with  the  infrared
size  of  the  relevant  running  masses  [7,  Fig.  2.5];

, 

Ω2
P =vM2

u + (1− v)Λ2
P+ (M2

h̄ −M2
u)

(
x− 1

2 [1−w][1− v]
)

+ (x[x−1]+ 1
4 [1− v][1−w2])m2

P ;
(6a)

 

XP(x;σ2
⊥) =

∫ 1−2x

−1
dw

∫ 1

1+ 2x
w−1

dv

+

∫ 1

1−2x
dw

∫ 1

w−1+2x
w+1

dv

 ρP(w)
nP

Λ2
P

σ2
⊥

; (6b)

ΛP nP is  a  mass  parameter;  and  is  the  Bethe-Salpeter
wave function's canonical normalisation constant [66].

∆2
hu = M2

h −M2
u

∆du

∆su

It is worth highlighting the  term in Eq.
(6a). As  indicated  above,  the  mass  scales  in  this  differ-
ence  are  an  expression  of  EHM  through  its  corollary  of
DCSB.  vanishes  for  the  pion  in  the  isospin-sym-
metry limit, which is a good approximation in Nature. On
the  other  hand,  is  significant  for  the  kaon;  and  this
term plays  an  important  role  in  recovering  known  fla-
vour-symmetry breaking effects in kaon DAs and DFs [7,
53, 54, 59, 61].

ρH(w)The bridge from Eq. (5) to a realistic LFWF is ,
the  spectral  weight.  When  judiciously  chosen  [67], res-
ults can be obtained for many hadron structure measures
that  are  practically  equivalent  to  the  most  sophisticated
predictions  currently  available.  For π-  and K-mesons,  an
optimal parametrisation is [67]: 

ρP(ω) =
1+ω vP

2aPbP
0

sech2
ω−ωP

0

2bP
0

+ sech2
ω+ωP

0

2bP
0

 , (7)

bP
0 ωP

0

vP , 0 aP

where the density's profile is controlled by , ; skew-
ing,  driven  by  differences  in  the  current-masses  of  a
meson's valence-quark/-antiquark  constituents,  is  intro-
duced by ; and unit normalisation is ensured via .
This  flexible,  yet  compact,  form reproduces the π and K
DAs described in Refs. [53, 54] when evaluated using the
parameters in Table 1 [31]. 

B.    Factorised representation

m2
P

M2
h̄
−M2

u

As sketched  in  Appendix  A,  the  LFWF specified  by
Eq.  (5)  factorises  up  to  corrections  that  vanish  as ,

. This suggests that for the π and K, especially so
far as  integrated quantities  are  involved,  it  is  a  good ap-
proximation to write: 

ψu
P

(
x,k2
⊥;ζH

)
= φ̃u

P(x;ζH )ψ̃u
P

(
k2
⊥;ζH

)
, (8a)

 

φ̃u
P(x;ζH ) = φu

P(x;ζH )/nφ̃u
P
, (8b)

 

fπ = 0.092 fK = 0.11

Table 1.    Used in Eqs. (5) – (7), one reproduces the pion and
kaon DAs described in Refs. [53, 54] and empirical values for
the  meson  decay  constants  [69]:  GeV, 
GeV. (Mass dimensioned quantities in GeV.)

P mP Mu Mh ΛP bP
0 ωP

0
vP

π 0.14 0.31 Mu Mu 0.316 1.23 0.41

K 0.49 0.31 1.2Mu 3Ms 0.1 0.625 0.41

Revealing pion and kaon structure via generalised parton distributions Chin. Phys. C 46, 013105 (2022)

fP∫
dx

∫
d2k⊥ψu

P(x,k2
⊥;ζH) = 16π3

1) This  expression  differs  from  its  analogue  [67,  Eq.  (10)]  by  a  factor .  The  mismatch  is  explained  by  a  different  normalisation  convention;  therein,
.
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n2
φ̃u

P
=

∫ 1

0
dx [φu

P(x;ζH )]2, (8c)

ψ̃u
P

(
k2
⊥;ζH

)
with the optimal choice for  decided by the ap-
plication.  This  assumption  is  supported  by  analyses  in
Ref. [7], which show that when Eqs. (8) are used in cal-
culating meson  structure  measures,  the  accuracy  typic-
ally exceeds the precision of foreseeable experiments.

Referring to Eq. (4a), Eq. (8) yields 

uP(x;ζH ) = [φ̃u
P(x;ζH )]2; (9)

so,  for  factorised  LFWFs,  the x-dependence is  com-
pletely prescribed by the forms of the π and K DFs at the
hadron-scale. Such were determined in Refs. [53, 54]: 

uP(x;ζH ) =nPx2(1− x)2

×
[
1+ρPx

αP
2 (1− x)

βP
2 +γPxαP (1− x)βP

]2
, (10)

k2
⊥

with  the  coefficients  and  powers  listed  in Table  2.  The
-dependence  remains  to  be  determined;  and  as  shown

below, that can be achieved by using one or two addition-
al pieces of empirical information. 

IV.  GENERALISED PARTON DISTRIBUTION:
OVERLAP REPRESENTATION

Employing the LFWFs just described, the analyses of
one-dimensional π and K structure measures in Refs. [53,
54]  can  be  extended  to  obtain  three-dimensional  images
by using the GPD overlap representation [27, 70]: 

Hu
P(x, ξ, t;ζH ) =

∫
d2k⊥
16π3ψ

u∗
P

(
x−,k2

⊥−;ζH
)
ψu

P

(
x+,k2

⊥+;ζH
)
,

(11)

P = (p′+ p)/2 p′ p

∆ = p′− p P ·∆ = 0 t = −∆2

with: ,  where ,  are  the  final,  initial
meson  momenta  in  the  defining  scattering  process;

, , ; the "skewness" 

ξ = [−n ·∆]/[2n ·P], |ξ| ⩽ 1; (12)
and 

x∓ = (x∓ ξ)/(1∓ ξ) , (13a)
 

k⊥∓ = k⊥± (∆⊥/2)(1− x)/(1∓ ξ) . (13b)

For subsequent  use,  we  record  a  useful  kinematic  iden-
tity [71, Eq. (4.33)]: 

∆2
⊥ = ∆

2(1− ξ2)−4ξ2m2
P; (14)

∆2 = ∆2
⊥ ξ = 0

Hu
P(x, ξ, t) = Hu

P(x,−ξ, t)
ξ ⩾ 0

hence,  when .  By construction, the overlap
representation ensures positivity [72]; and since, owing to
time-reversal invariance, , we only
consider  in the following.

|x| ≥ ξ

∆2 = 0
x ⩾ −ξ

x ⩽ ξ

The expression in Eq. (11) defines the GPD on ,
which  is  referred  to  as  the  DGLAP  domain  because  the
evolution equations in Refs. [33-36] express scale evolu-
tion  thereupon.  Further,  Eq.  (4)  is  seen  to  follow  as  the
GPD's  forward  ( )  limit  once  it  is  realised  that

 is  the  domain  of  support  for  the  quark  GPD,
whereas the antiquark GPD is only nonzero on .

A given quark's contribution to a target meson's elast-
ic  electromagnetic  form  factor  is  expressed  through  a
zeroth GPD moment: 

Fu
P(∆2) =

∫ 1

−1
dx Hu

P(x,0,−∆2;ζH ) . (15)

ξ = 0
The answer is independent of ξ; hence, computation with

 is sufficient. The complete meson form factor is ob-
tained by summing over quark contributions: 

FP(∆2) = euFu
P(∆2)+ eh̄Fh

P(∆2) , (16)

eu eh̄where ,  are the valence-constituent  charges in units
of the positron charge. As usual, the meson's charge radi-
us is defined via 

r2
P = − [6/FP(0)]dFP(∆2)/d∆2

∣∣∣
∆2=0 . (17)

|x| ⩽ ξ
An extension  to  the  domain  of  ERBL evolution  [38-

40], , is necessary to complete the definition of the
GPD. On this domain, the parton content of the initial and
final  state  LFWFs  differs  by  two.  Such  an  extension  is
challenging,  but  there  is  progress  [30, 41, 42].  We  will
therefore  focus  first  on  the  GPD in  the  DGLAP domain
before canvassing aspects of its ERBL extension. 

A.    GPDs using the spectral representation
The pion LFWF obtained using Eqs.  (5)–(7)  and the

coefficients/powers in Table 1 is depicted in Fig. 1A. In-
serting this result and its kaon analogue into Eq. (11), one

Table 2.    When these powers and coefficients are used in Eq.
(10),  one  obtains  representations  of π and K DFs  that  are  in
accord with all available data [53, 54].

P nP ρP γP αP βP

π 375.3 −2.51 2.03 1.0 1.0

K 299.2 5.00 −5.97 0.064 0.048

K. Raya, Z.-F. Cui, L. Chang et al. Chin. Phys. C 46, 013105 (2022)

013105-4



s̄ K+

Mu Ms̄

vK →−vK

obtains the GPDs depicted in Figs. 2 and 3 by straightfor-
ward  numerical  integration.  The -quark  in  GPD  is
found by switching  and  in Eqs. (5), (6a) and chan-
ging  in Eq. (7).

Hu
π(x,

ξ = 0, t = 0;ζH ) x = 1/2
Hu

K(x, ξ = 0, t = 0;ζH ) x < 1/2

x < ξ

Comparing Figs.  2A and 3A,  one  sees  that 
 is  symmetric  around ,  whereas

 is  skewed,  peaking  at ;  and
the peak magnitude of  this  kaon GPD is  larger  than that
of  the  pion.  Similar  patterns  are  seen  when  contrasting
Figs. 2B, 3B, which also show that both GPDs vanish on

. 

B.    GPDs using the factorised representation
Owing  to  the  reliability  of  well-chosen  factorised

Ansätze for LFWFs, discussed in Sec. III.B, we introduce
such a form here so as to reveal additional insights [31]: 

Hu
P(x, ξ,−∆2;ζH ) =

Θ(x−)
√

uP (x−;ζH )uP (x+;ζH ) Φu
P (z;ζH ) , (18a)

 

Φu
P(z;ζH ) =∫

d2k⊥
16π3 ψ̃

u
P

(
k2
⊥;ζH

)
ψ̃u

P

(
(k⊥− s⊥)2 ;ζH

)
, (18b)

Θ z = s2
⊥ = ∆

2
⊥(1− x)2/

(1− ξ2)2

Φu
P(0;ζH ) = 1

where  is  the  Heaviside  function, 
, Eq.  (14)  is  implicit,  and  canonical  normalisa-

tion guarantees  so that the GPD is properly
normalised in the forward limit.

Recalling Eq. (15), then Eqs. (18) can be used to ob-
tain
 

∂n

∂zn Φ
u
P(z;ζH )

∣∣∣
z=0 =

1

⟨x2n⟩ζH
h̄

dnFu
P(∆2)

d(∆2)n

∣∣∣∣∣∣∣
∆2=0

, (19a)

 

⟨x2n⟩ζH
h̄
= ⟨(1− x)2n⟩ζHu =

∫ 1

0
dx(1− x)2nuP(x;ζH ) .

(19b)

k2
⊥

P

n = 1

Evidently,  the -overlap  portion  of  a  factorised Ansatz
for  the u-in-  GPD is  fully  determined  by  the u-quark's
contribution to the elastic form factor and its DF. Consid-
ering the simplest case, :
 

∂

∂z
Φu

P(z;ζH )
∣∣∣∣∣
z=0
= −

r2
P

4x2
P(ζH )

, (20a)
 

 

A

B

x

k2
⊥r2

π

Fig. 1.    (color online) Upper panel- . PTIR pion LFWF ob-
tained using Eqs. (5)-(7) and Table 1. Lower panel- . LFWF
in  Panel  A  (solid  curves)  contrasted  with  the  factorised An-
satz,  Eq.  (22)  (dashed  curves),  plotted  as  a  function  of  on
contours of constant .

 

A Hu
π(x, ξ =

0,−∆2;ζH ) B Hu
π(x, ξ,0;ζH ) rπ ≈ 0.69

0.659(4)
0.640(7)

Fig.  2.    (color  online) Pion.  PTIR  GPD  obtained  using
Eq.(11)  and  the  LFWF  in Fig.  1A. Upper  panel- . 

. Lower  panel- . .  Here, fm,
computed  using  Eq.  (17).  (Experiment  [69, 73]: fm,

fm, respectively.)
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∂

∂z
Φh̄

P(z;ζH )
∣∣∣∣∣
z=0
= (1− dP)

∂

∂z
Φu

P(z;ζH )
∣∣∣∣∣
z=0

, (20b)

where
 

x2
P(ζH ) = ⟨x2⟩ζH

h̄
+ 1

2 (1− dP)⟨x2⟩ζHu , (21)

dP ∝ (Mh̄−Mu)

dπ = 0 dK > 0
s̄ FK

∆2

and  expresses  the  impact  on  the  meson's
charge  distribution  of  any  mass-difference  between  the
valence  constituents.  For  the  pion,  in  the  isospin-sym-
metry limit, ; whereas for the kaon,  because
the -quark contribution to  is stiffer (falls less rapidly
with increasing ) than that of the u-quark [62, 74].

k2
⊥It is especially useful to represent the -dependence

of  the  LFWF  using  a  Gaussian  because  then  Eqs.  (20)
completely constrain the pointwise behaviour:
 

ψu
P

(
x,k2
⊥;ζH

)
=

 16π2r2
P

x2
P(ζH )

uP(x;ζH )
1/2

exp
− r2

Pk2
⊥

2x2
P(ζH )

 .
(22)

This Ansatz is  compared with the more sophisticated
spectral representation in Fig. 1B: for practical purposes,

the factorised form provides  a  satisfactory  pointwise  ap-
proximation.  Thus,  as  claimed  above,  it  can  be  used  to
develop sound insights.

Working with Eq. (22), the DGLAP-domain GPD is 

Hu
P(x, ξ,−∆2;ζH ) =Θ(x− ξ)

√
uP (x−;ζH )uP (x+;ζH )

× exp
− ∆2

⊥ r2
P(1− x)2

4x2
P(ζH )(1− ξ2)2

 . (23)

h̄ P
Θ(x− ξ)→−Θ(−x− ξ)

uP→ s̄P r2
P→ r2

P(1− dH) x→ |x|

where Eq. (14) is understood. Exploiting the behaviour of
meson bound-states under charge conjugation, the -in-
GPD  is  obtained  by  replacing ,

,  and  in Eq. (23).
The DGLAP-domain π and K GPDs produced by Eq.

(23) are depicted in Figs. 4-6. Modest differences can be
seen in the three-dimensional  images, i.e., in  the follow-
ing comparisons: Fig. 2 with 4 and Fig. 3 with 5; and they
are revealed with more definition in Fig. 6.

∆2

∆2

Consider Fig.  6A.  Plainly,  the  factorised Ansatz
provides  a  sound  representation  of  the π GPD  on  the
complete domain of  depicted,  although there is  some
degradation  of  pointwise  accuracy  as  increases. Re-
garding Fig.  6B, Eqs.  (5),  (6b)  reveal,  as  already  re-
marked, that pointwise differences between a LFWF and
a  well-constructed  factorised  approximation  can  grow

 

A Hu
K (x, ξ = 0,−∆2;ζH ) B

Hu
K (x, ξ,0;ζH ) rK = 0.56

0.560(31) 0.53

Fig.  3.    (color  online) Kaon.  PTIR  GPD  obtained  using
Eq.(11) and the associated LFWF defined by Eqs. (5)-(7) and
Table 1. Upper panel- . . Lower panel- .

.  Here, fm,  computed  using  Eq.  (17).
(Experiment [69, 73]: fm, fm, respectively.)

 

A

Hu
K (x, ξ = 0,−∆2;ζH ) B Hu

K (x, ξ,0;ζH )

Fig. 4.    (color online) Pion GPD obtained using Eq. (11) and
the factorised LFWF discussed in Sec.  IV.B. Upper panel- .

. Lower panel- . .
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m2
P M2

h̄
−M2

uwith , . Consequently, the accord between the
PTIR GPD for the kaon and that produced by the factor-
ised LFWF,  Eq.  (22),  is  poorer  than  for  the  pion.  Non-
etheless,  the  evident  semiquantitative  agreement  shows
that the simple factorised Ansatz can still yield a fair pic-
ture.

Hu
P(x,0,0;ζH ) = uP(x;ζH )

Hu
π(x,0,0;ζH ) x = 1/2

Hu
K(x,0,0;ζH ) x = 0.4

s

∆2

x = 1

It is worth highlighting two qualitative features of the
hadron-scale π and K GPDs  in Figs.  2-6.  (i)  Given  that

,  one  recalls  that  the  maximum
of  is  located  at  and  that  of

 at  [53].  This  20% shift  is  standard
for Higgs-boson modulation of EHM in the -quark sec-
tor. (ii) The position of the peak shifts as the momentum
transfer to the target increases: as  grows, the maxim-
um of both the π and K GPDs shifts toward  and its
profile becomes narrower, i.e., more tightly focused with-
in  the  valence  domain.  This  aspect  emphasises  that  hard
probes reveal valence partons. 

C.    Elastic electromagnetic form factors

Fπ(∆2)

Elastic  electromagnetic  form  factors  of  the  pion  and
kaon,  computed  using  Eq.  (15)  and  the  GPDs  described
above, are drawn in Figs. 7, 8. For these calculations, one
only need  know  the  GPD  on  the  DGLAP  domain.  Re-
garding  in Fig. 7, it is plain that PTIR and factor-
ised-Ansatz GPDs deliver  practically  equivalent  predic-
tions.  Importantly,  the  data  in Fig.  7 were  not  used  to

constrain  either Ansatz for  the  pion  LFWF;  instead,  as
previously remarked, all  LFWFs used herein are entirely
determined  by  the  meson  DAs  described  in  Refs.  [53,
54].

∆2FK+ (∆2)

H s̄
K(x, ξ,−∆2;ζH )

Consider now the kaon elastic form factors in Fig. 8.
Panel  A  depicts  and  the  associated  flavour
separation as computed using the kaon GPD discussed in
Sec.  IV.B,  drawn  in Fig.  5,  and  its  partner  for

.  The  result  obtained  with  this  simple

 

A

Hu
K (x, ξ = 0,−∆2;ζH ) B Hu

K (x, ξ,0;ζH )

Fig. 5.    (color online) Kaon GPD obtained using Eq. (11) and
the factorised LFWF discussed in Sec.  IV.B. Upper panel- .

. Lower panel- . .

 

A u

x ∆2r2
π

B u

dK = 0.07

Fig. 6.    (color online) Upper panel- . -in-π GPD, plotted as
a  function  of  on  contours  of  constant :  solid  curves  -
produced  using  PTIR  LFWF,  Eqs.  (5)-(7)  and Table  1;  and
dashed  curves  -  results  from  factorised  LFWF,  Eq.  (23).
Lower  panel- .  Kindred  curves  for -in-K GPD. The  factor-
ised kaon LFWF is obtained with  in Eqs. (20), (22).
(Shading highlights curves that should be compared.)

 

∆2Fπ(∆2)Fig.  7.    (color  online)  obtained  using  the  GPDs
drawn in Fig. 2: PTIR (solid blue curve), Sec. IV.A; and fac-
torised  LFWF (short-dashed  magenta),  Sec.  IV.B.  Data  from
Refs. [75, 76].
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Q2 ≈ 4 2

s̄
F s̄

K+/F
u
K+ = 1.5

∆2 = 4GeV2 ∆2→∞

GPD Ansatz is  in  fair  agreement  with  the  prediction  in
Ref. [62], which used a far more elaborate and computa-
tionally  intensive  approach,  and  also  with  a  lattice-QCD
(lQCD)  result  [77],  which  is  still  preliminary  and  does
not extend beyond  GeV . This GPD model, based
on a factorised LFWF, also delivers agreement on the in-
dependent  contributions  from  the u-  and -quarks  with
those  predicted  in  Ref.  [62], e.g.,  at

. As , this ratio approaches unity.

Q2 = 0

Analogous  results  for  the  neutral  kaon  are  drawn  in
Fig. 8B. Again, there is semiquantitative agreement with
both the  Ref.  [62]  prediction and the  lattice-QCD result.
These  outcomes  are  interesting  because  the  neutral-kaon
charge  form factor  is  the  difference  between  two  curves
that  are  identical  at  and  of  similar  magnitude
thereafter;  so,  any  loss  of  precision  is  magnified  in  the
difference. 

V.  IMPACT PARAMETER SPACE GPD–
HADRON SCALE

∆2 > 0 ∆ ·PP = 0 ξ = 0

The impact parameter space (IPS) GPD is obtained by
considering  the  following  specification  of  kinematics:

, , ,  and  then  evaluating  a  two-di-
mensional Fourier (Hankel) transform with respect to the
remaining two degrees-of-freedom, viz. 

uP(x,b2
⊥;ζH ) =

∫ ∞

0

d∆
2π
∆J0(|b⊥|∆) Hu

P(x,0,−∆2;ζH ) , (24)

J0

|b⊥|

where  is a cylindrical Bessel function. This density re-
veals the probability of finding a parton within the light-
front at a transverse distance  from the meson's centre
of transverse momentum. The IPS GPD is completely de-
termined by the GPD's properties on the DGLAP domain.

Once more, valuable insights can be obtained by eval-
uating Eq. (24) using the GPD obtained from a factorised
LFWF. Substituting Eq. (18) into Eq. (24), yields: 

uP(x,b2
⊥;ζH ) =

uP(x;ζH )
(1− x)2

∫ ∞

0

sds
2π
ΦP(s2;ζH )J0

(
b⊥s
1− x

)
.

(25)

x2 x→ 1

|b⊥| = 0
|b⊥| = 0

x→ 1

uP(x = 1,b2
⊥ = 0;ζH )

|b⊥|
b⃗⊥ 2π|b⊥|uP(x,b2

⊥;ζH )
|b⊥| > 0

Now recall Eq. (9), from which it is clear that using any
hadron-scale  valence-quark DF,  the  first  factor  increases
as  when . Considering next the second factor in
Eq.  (25)  at  fixed x, this  Hankel  transform takes its  max-
imum value at .  Consequently, one should expect
the  IPS  GPD  to  peak  at  and  the  height  of  this
peak to  increase  steadily  as  whilst  simultaneously
becoming narrower owing to the increasingly oscillatory
behaviour  of  the  integrand's  Bessel  function.  Thus,  the
global  maximum  of  the  IPS  GPD  is  given  by

.  Plainly,  Eq.  (25)  defines  a  density
that  is  rotationally  invariant, i.e.,  a  function  of ,  not

; so, it is usual to plot . The peak in
this  function  is  shifted  to  by an  amount  that  ex-
presses aspects of bound-state dynamics.

P

Using  the  GPD  developed  from  a  factorised  LFWF,
one also obtains a simple expression for the longitudinal
light-front  distribution  of  the  mean-square  transverse
light-front extent of u-in- : 

⟨b2
⊥(x;ζH )⟩Pu = r2

P
(1− x)2uP(x;ζH )

x2
P(ζH )

, (26)

xP uP(x;ζH )
→ (1− dP)h̄(x;ζH ) h̄
where  is given in Eq. (21). The replacement 

 in the numerator yields the  result.
⟨b2
⊥(x;ζH )⟩PuEq.  (26)  indicates  that  the  behaviour  of 

can be read from that of the associated valence-quark DF.
In  physical  systems,  owing  to  EHM  as  expressed  in  its

 

A ∆2FK+ (∆2)

∆2 = 0

1 (e,e′K+)Λ

t

B FK0 (∆2) FK0 (∆2) = (1/3)F s̄
K+ (∆2)− (1/3)Fu

K+ (∆2)

Fig.  8.    (color  online) Upper panel- .  calculated
using  the  kaon  GPD  described  in  Sec.  IV.B  -  short-dashed
magenta  curve.  Contributions  from  the  individual  valence-
quark  flavours  are  also  drawn,  each  normalised  to  unity  at

. The additional theory comparisons are as follows: pre-
diction in Ref. [62] - solid black curve; and lQCD result from
Ref. [77] - dashed turquoise curve within like coloured band.
Data (crossed circles) from Ref. [78], representing analyses of
the H  reaction. The filled diamonds sketch anticip-
ated  data  [79]  (arbitrary  normalisation):  two  error  estimates
are shown, which differ in their assumptions about the model-
and -dependence of the form factor extractions. Lower panel-

. , ,  computed
using  flavour-separated  form  factors  in  Panel  A.  Additional
theory comparisons are as in Panel A. N.B. Results multiplied
by  a  factor  of  10  to  facilitate  comparison  with  charged-kaon
curves.
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DCSB corollary, such DFs are dilated and flattened with
respect to the scale-free profile [80]: 

qsf(x;ζH) = 30x2(1− x)2 . (27)

⟨b2
⊥(x;ζH )⟩Pu

qsf(x;ζH)

⟨b2
⊥(x;ζH )⟩πu x ≃ 0.23

x→ 1

It  follows  that  for  physical  systems  should
peak  at  a  lower  value  of x than  the  result  obtained  with

,  have  a  lower  peak  magnitude,  and  possess
greater  support  at  small-  and large-x.  These expectations
are borne out by the π-meson results plotted in Fig. 9. In
detail,  using  Eq.  (10)  and Table  2,  one  finds  that

 is  broadest  on  and becomes  pro-
gressively narrower as .

Integrating  Eq.  (26)  over x,  one  obtains  the  mean-
square transverse light-front extent: 

⟨b2
⊥⟩ =

r2
P

x2
P(ζH)

 ⟨x2⟩ζH

h̄
u

⟨x2⟩ζH
u (1− dP) h̄

; (28)

ζ = ζH
x = 1/2

For  the  pion,  so  long  as  the  DF  is  symmetric
around ,  as  it  is  in  any  sound  treatment  of  the
bound-state problem [51]: 

⟨b2
⊥(ζH )⟩πu =

2
3

r2
π = ⟨b2

⊥(ζH )⟩πd̄ . (29)

Regarding  the  kaon,  using  the  realistic  DF  specified  by
Eq. (9) and Table 2: 

⟨b2
⊥(ζH )⟩Ku = 0.71r2

K , ⟨b2
⊥(ζH )⟩Ks̄ = 0.58r2

K . (30)

uh̄

h̄

Evidently, there is a separation of baryon number in a 
meson, with the lighter u-quark lying, on average, further
from  the  system's  centre  of  transverse  momentum  than
the heavier -quark.

Using  the  Gaussian Ansatz in  Eq.  (23),  one  can  also
obtain an algebraic expression for the IPS GPD: 

uP(x,b2
⊥;ζH ) =

x2
P(ζH )

πr2
P

uP(x;ζH )
(1− x)2 exp

− x2
P(ζH )

(1− x)2

b2
⊥

r2
P

 . (31)

h̄ P x ∈ (−1,0)

uP→ h̄P r2
P→ r2

P(1− dP) x→ |x|

The -in-  GPD has nonzero support on  and is
obtained  via  the  following  replacements  in  Eq.  (31):

, , and . The resulting pion
and kaon IPS GPDs are drawn in Fig. 10.

The images in Fig. 10 disclose some notable features
of the three-dimensional distributions of valence degrees-
of-freedom within pseudoscalar mesons.
 

|b⊥| |x|

ζ = ζH

(i) All distributions are -broad at small , show-
ing there  is  little  probability  of  finding valence constitu-
ents on this domain at .
 

|x|(ii) As  increases, each distribution acquires a clear

 

A

d̄ u x

|b⊥ |
B s̄ u

K+

ζ = ζH

Fig.  10.    (color  online) Upper  panel- . Pion.  IPS  distribu-
tions for - (left) and -quarks (right), charting the -depend-
ent  probability  density  for  locating  these  objects  at  distance

 from  the  pion's  centre  of  transverse  momentum. Lower
panel- .  Kaon.  Analogous profiles  for  and -quarks  in  the

. Curves calculated using Eq. (31) and its analogues (based
on factorised LFWF Ansätze, which yield the GPDs in Figs. 4,
5). In both panels, .

 

⟨b2
⊥(x;ζH )⟩πu/r2

π

u

Fig.  9.    (color  online) ,  Eq.  (26):  longitudinal
light-front  distribution  of  the  mean-square  transverse  light-
front extent of -in-π. Results obtained with PTIR GPD, Sec.
IV.A, and factorised GPD, Sec. IV.B, are compared with that
characterising a scale-free system, whose valence DF is given
by Eq. (27).
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|b⊥|
|x|

maximum at  some value  of ,  whose  height  increases
with  whilst its width diminishes.
 

ζ = ζH iM

(iii)  Each probability density has a global maximum;
and at  their  positions and magnitudes (  quoted
from Fig. 10) are: 

π : (|x|,b⊥/rπ) = (0.88,0.13) , iπ = 3.29 , (32a)
 

Ku : (x,b⊥/rK)u = (0.84,0.17) , iuK = 2.38 , (32b)
 

Ks̄ : (x,b⊥/rK)s̄ = (−0.87,0.13) , is̄
K = 3.61 . (32c)

Ms̄/Mu

s̄

Clearly, in  a  bound-state  generated  by  valence  con-
stituents with different masses, the heavier object plays a
greater  part  in  defining  the  system's  centre  of  transverse
momentum; hence, lies closer to this point. For the kaon,
the relative shift is small – just 3%, but the difference in
magnitudes is 20%, matching the size of , which is
the  typical  scale  for  Higgs-modulation  of  EHM  in  this
system. It is worth noting, too, that the pion peak is 10%
larger than the mean of the u-in-K and -in-K heights.

|b⊥|
(x,b⊥/rπ) =

iπ = 3.46 (x,b⊥/
rK)u = iuK = 2.59 (x,b⊥/rK)s̄ =

is̄
K = 4.30

Figure 11 reveals that all these features persist in the
results  obtained  using  the  more  sophisticated  PTIR
LFWF Ansätze discussed in Sec. IV.A, although there are
minor quantitative differences. In this case, the probabil-
ity for the u-in-π to be found a distance  from the cen-
ter  of  transverse  momentum  peaks  at  (0.91,
0.065),  with ;  whereas  for  the  kaon  –  

 (0.83,  0.094),  and  ( –0.94,
0.041) , . 

VI.  PRESSURE PROFILES
 

A.    Gravitational form factors
Meson gravitational form factors can be accessed via

the first Mellin moment of their GPDs: ∫ 1

−1
dx x Hq

P(x, ξ,−∆2;ζH ) = θP
2 (∆2)− ξ2θP

1 (∆2) , (33)

θ1,2where  are related, respectively, to the distributions of
pressure and mass-squared within the meson. QCD evol-
ution will be canvassed in Secs. VII, VIII. Here we only
note  that  the  individual  form  factors  on  the  right-hand-
side of Eq. (33) are scale invariant. It is the left-hand-side
that changes.

θ2
ξ = 0

ζ = ζH

Like an electromagnetic form factor,  can readily be
computed using the  information above, viz.  setting 
and using the GPDs defined on the DGLAP domain. Fig.
12 depicts  the  results  obtained  with  the  GPDs  in  Sec.
IV.B  including,  for  the  kaon,  its  flavour separa-

tion: at this scale, 

θKu

2 (∆2;ζH )+ θKs̄

2 (∆2;ζH ) = θK
2 (∆2) , (34)

θK
2 θπ2

so that the entirety of the meson's mass-squared is lodged
with  the  dressed  valence  degrees-of-freedom.  (See  Sec.
VIII.) Evidently, following the pattern set by the electro-
magnetic form factors,  is stiffer than . We return to
this point in connection with Eq. (43).

 

A u

|b⊥ | x

x B

u K+

Fig.  11.    (color  online) Upper  panel- .  Pion. -quark  IPS
distribution slices,  plotted  as  a  function of  at  four  val-
ues, as computed with: PTIR LFWF (solid curves), Sec. IV.A;
and  factorised  LFWF  (short-dashed  curves),  Sec.  IV.B.  The
peak height decreases with increasing . Lower panel- . Ka-
on. Analogous profiles for -quark in the .

 

θ2 ζ = ζH

ξ = 0

Fig.  12.    (color  online) Mass-squared  distribution  form
factors, , for the pion and kaon, along with a  flavour
separation of the latter, all computed using Eq. (23) (based on
factorised LFWF) in Eq. (33) and .
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θ1The  calculation  of  is not  so  straightforward  be-
cause  it  is  sensitive  to  properties  of  the  GPD  on  the
ERBL  domain;  thus,  our Ansätze must  be  extended.  In
principle, a  covariant  extension  of  the  GPD  can  be  ac-
complished  by  exploiting  a  connection  between  the
Radon  transform  [81]  and  the  GPD  double  distribution
representation  [82-84]. For  the  pion,  a  practicable  ap-
proach  was  explained  in  Refs.  [41, 42].  An  issue  is  the
"D-term"  ambiguity  [84-86];  but  building  on  Refs.  [30,
41, 42],  Ref.  [31]  overcame this  problem by  writing  the
u-in-π GPD as follows:
 

Ĥu
π(x, ξ,−∆2) =Hu

π(x, ξ,−∆2)+Pπ(∆2)

× sign(ξ)
[
D−

(
x
ξ

)
+

1
ξ

D+
(

x
ξ

)]
, (35)

D−(z) D+(z)
z ∈ [−1,1]

Ĥu
π = Hu

π

Pπ(∆2)

ππ

where,  in  general,  and  are  odd  and  even
functions,  respectively,  with  support  on .  By
construction,  on  the  DGLAP  domain;  so,  the
former respects polynomiality if the latter does, irrespect-
ive  of  the  choice  for .  This  last  function  is  a
propagator for the scalar resonance that contributes on the
ERBL domain owing to  rescatterings [30, 87].

With the following choices:
 

D−(z) =
1
2

[
Hu
π(−z,1,0)−Hu

π(z,1,0)
]
, (36a)

 

D+(z) =
1
2

[
φu
π

(
1+ x

2

)
−Hu

π(z,1,0)− Ĥu
π(−z,1,0)

]
,

(36b)

Ĥu
π

Hu
π

|x| < ξ

ξ ≃ 1

then  complies  with  the  soft  pion  theorems  [84].  To
ensure  that  all  physical  constraints  are  preserved, e.g.,
GPD polynomiality,  we  complete  an  extension  of  to
the  ERBL  domain, ,  by  adapting  the  algebraic
PTIRs used elsewhere [88] to sketch the pion's GPD and
employing the Radon transform approach [41, 42]. In this
case,  one  obtains  an  algebraic  result,  which,  regarding
Eq. (36), is only needed on .

∆2

4M2
u

4M2
u s̄ 4M2

s

M→ M(1±0.1)

Focusing  on  the -dependence  of  the u-in-π exten-
sion,  the algebraic formula reveals that  it  is  weighted by
the  dressed-mass  of  the  active  valence  degree-of-free-
dom, i.e.,  for the u-in-π GPD. This is readily gener-
alised  for  a  kaon  extension  by  assuming  that u-in-K in-
volves  and -in-K, . (These masses are listed in
Table  1.)  Given  the  simplicity  of  the  approach  we  vary

 so as to estimate a model uncertainty. As
the  last  step,  we  exploit  the  insights  developed  in  Ref.
[30] to arrive at:
 

θ
Pq

1 (∆2) =cPq

1 θ
Pq

2 (∆2)+
∫ 1

−1
dx

× x
[
Hq

P(x,1,0)PMq
(∆2)−Hq

P(x,1,−∆2)
]
, (37)

cπu

1 = 1 cKu,s̄

1 = (1±s̄
u 0.08)where ,  reflects slight violation of

the  soft-pion constraint  [84] in  the  kaon channel,  as  cal-
culated following Ref. [30], and 

PM(∆2) = 1/(1+ y ln(1+ y)) , (38)

y = ∆2/[4M2] ln(1+ y), where the  piece is included to ex-
press  the  scaling  violation  that  characterises  quantum
field theories in four dimensions.

ζ = ζH
θKu

1 (∆2)+ θKs̄

1 (∆2) = θK
1 (∆2)

θ2 θK
1 θπ1

The  pressure  distributions  produced  by  Eq.  (37)  are
depicted in Fig. 13, including a  flavour separation
for the K: at this scale, . Follow-
ing  the  pattern  set  by  the  electromagnetic  form  factors
and ,  is stiffer than .

Adapting the usual expression for form factor radii: 

[rθ2

P ]2 = θPu

2 (0)[rθ2

Pu
]2+ θPs̄

2 (0)[rθ2

Ph̄
]2, (39)

augmented  by  Eq.  (17);  then  using  Eq.  (23),  obtained
with  factorised  LFWF Ansätze,  one  arrives  at  algebraic
expressions for the mass-squared radii: 

[rθ2

Pu
]2 =

3r2
P

2x2
P

⟨x2(1− x)⟩Ph̄
, (40a)

 

[rθ2

Ph̄
]2 =

3r2
P

2x2
P

(1− dP)⟨x2(1− x)⟩Pu
, (40b)

x2
Pwhere  is given in Eq. (21).

 

θ1

ζ = ζH
θ2

Fig. 13.    (color online) Pressure distribution form factors, ,
for the pion and kaon, along with a  flavour separation
of the latter, all computed using Eq. (37) with  from Fig. 12.
The band associated with each curve describes the model un-
certainty explained in connection with Eq. (37).
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x2
π = (3/2)⟨x2⟩ζHπu

Consider the π, for which . Then
 

[rθ2
π ]2 = 2[rθ2

πu
]2 = r2

π

2⟨x2(1− x)⟩ζHπu

⟨x2⟩ζHπu

. (41)

x ∈ (0,1)

The  ratio  of  moments  in  Eq.  (41)  is  always  a  positive
number less than unity because for any valence-quark DF
that is positive-definite and even on : 

2⟨x2(1− x)⟩ζHπu

⟨x2⟩ζHπu

=
1/2−⟨x2⟩ζHπu

⟨x2⟩ζHπu

=
⟨x(1− x)⟩ζHπu

⟨x2⟩ζHπu

; (42)

0 < ⟨x(1− x)⟩ζHπu
< ⟨x2⟩ζHπu

⟨x2⟩ζHπu
>

[⟨x⟩ζHπu
]2 = 1/4

and , where the first bound is plain
for  even  functions  and  the  second  follows  from  the
Cauchy-Schwarz  inequality,  which  entails 

. Generalisation of the argument to the kaon
is  straightforward.  Hence,  based on factorisable  LFWFs,
the  meson's  mass-squared  radius  is  always  smaller  than
its  charge  radius.  The  reliability  of  such Ansätze for in-
tegrated quantities suggests that the result is also true for
PTIR LFWFs.

These general statements are borne out by the LFWFs
described herein – using Eq. (10) and Table 2: 

rθ2
π /rπ rθ2

K /rK rθ2

Ku
/r̄K rθ2

Ks̄
/r̄K

0.81 0.78 0.84 0.72
, (43)

r̄2
K = r2

K/2
⊗

rθ2
π /rπ = 0.89

where .  A  symmetry-preserving  treatment  of  a
vector vector  contact  interaction  (SCI)  yields  [30]:

.
θ1Working instead with the  (pressure) form factors: 

rθ1
π /rπ rθ1

K /rK rθ1

Ku
/r̄K rθ1

Ks̄
/r̄K

1.18(6) 1.19(6) 1.25(7) 1.13(5)
, (44)

rθ1
π /rπ =

1.88(13)

where the uncertainties propagate those explained in con-
nection  with  Eq.  (37).  The  SCI  returns  [30]: 

.

γ∗γ→ π0π0

In  all  known  cases,  the  SCI  radii  ordering  matches
that  produced  by  our Ansätze;  and  these  results  accord
with  those  extracted  from  measurements  of 
[89]. In  the  latter  connection,  one  could  extend  our  ap-
proach somewhat in order to compute two-pion and -ka-
on generalised distribution amplitudes [90, 91].  Notably,
the separation of baryon number exposed by Eq. (30) and
Fig. 10 is also manifest in the gravitational radii. 

B.    Breit-frame pressure distributions

p(r)
s(r)

Following  Refs.  [92, 93], Breit-frame  pressure  pro-
files can be calculated for each meson; and with u-in-K as
an  example,  one  has  the  following  pressure, ,  and
shear force, , distributions [30, 31]: 

pu
K(r) =

1
6π2r

∫ ∞

0
d∆

∆

2E(∆)
sin(∆r)[∆2θKu

1 (∆2)] , (45a)

 

su
K(r) =

3
8π2

∫ ∞

0
d∆

∆2

2E(∆)
j2(∆r) [∆2θKu

1 (∆2)] , (45b)

2E(∆) =
√

4m2
K +∆

2 j2(z)

pK = pu
K + ps̄

K

where  and  is a spherical Bessel
function.  The  total  pressure  is  a  sum  of  the  individual
contributions  from  the  valence-parton  degrees-of-free-
dom: . The total shear force is obtained sim-
ilarly. (As  in  Eq.  (24),  two-dimensional  Fourier  trans-
forms  are  sometimes  preferred  [94];  nevertheless,  this
results in similar profiles and magnitudes.)

r ≃ 0

r

Pressure profiles calculated using the pion form factor
depicted  in Fig.  13 are  drawn  in Fig.  14;  and  as  noted
elsewhere [30, 31], they admit an intuitive interpretation.
Focusing first on Fig. 14A, the pressure is large and pos-
itive  on ,  showing  that  the  pion's  dressed-valence
constituents  repel  each  other  when  their  separation  is
small.  However,  with  increasing , the  pressure  de-
creases, changing sign at 

rπc = 0.45(3) fm. (46)

The SCI predicts a similar value [7]. This point marks the
transition to a domain upon which confinement forces be-
come the dominant influence on the pair.

r ≃ rπc

rπc

Figure 14B depicts the in-pion shear pressure,  which
is an expression of deformation forces inside the meson.
As  observed  in  Refs.  [30, 31]  and  highlighted  by Fig.
14C,  these  forces  are  largest  on ;  namely,  in  the
neighbourhood of  that  point  where  attractive  confine-
ment pressure begins to overwhelm the forces driving the
quark  and  antiquark  apart.  From  this  perspective, 
defines a pressure-based pion confinement radius.

r ≃ 0
0.1

It  is  notable  that  profiles  like  the  curve  in Fig.  14A
can also be drawn for neutron stars. In that case, the 
pressure  is  roughly  GeV/fm  [95]. Evidently,  there-
fore, pions and neutron stars have near-core pressures of
similar magnitudes.

Kaon  pressure  profiles  are  depicted  in Fig.  15. Al-
though  qualitatively  similar  to  the  pion  profiles,  the
quantitative differences  are  meaningful  because  they  re-
veal  Higgs  boson  modulation  of  EHM.  Regarding  the
pressure  radius,  the  kaon  is  approximately  15%  smaller
than the pion. The same level of contraction is seen when
comparing  the  respective  charge  radii  (Fig.  2 cf. Fig.  3)
and mass-squared radii, Fig. 12. Moreover, the kaon core
pressure is 20% greater than that in the pion and 

∫ ∞

0
dr r2sK(r) = 1.19(1)

∫ ∞

0
dr r2sπ(r) . (47)
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∫ ∞
0 dr r2 pπ,K(r) = 0Naturally,  because  the  mesons  are

bound states.
ζ = ζH

s̄

r = 0

The  flavour separations of the K pressure pro-
files are also drawn in Fig. 15. As one might have anticip-
ated from inspection of Figs. 7, 8, 10 and Eqs. (29), (30),
(43),  (44),  the -quark  contributes  a  greater  fraction  of
the  total K pressure  than  its  partner u-quark,  its
peak/trough  magnitudes  are  greater,  and  the  associated
distributions  are  concentrated  nearer  to . As  re-
marked elsewhere [31], one should expect similar effects

up s̄K dp uK

in a flavour separation of proton pressure profiles, identi-
fying  with  and  with . There are intimations of
this in Ref. [96, Fig. 8].

ζ > ζH

Returning to Eq.  (33),  we reiterate that  the mass and
pressure  form  factors  are  empirical  observables;  hence,
cannot  depend on  the  resolving  scale, ζ.  This  is  obvious
with  the  electromagnetic  form  factor:  defined  as  the
zeroth moment of the hadron's GPD, it is manifestly ζ-in-
dependent.  However,  the  gravitational  form factors  stem
from the first moment; so, the picture is more complex in
this case. Whilst the right-hand-side of Eq. (33) is fixed,
the  integrand  on  the  left-hand-side  evolves  with ζ:  on

, the valence-quark contribution becomes a sum of
valence,  sea  and  glue  contributions,  the  combination  of
which is ζ-independent. More on this in Sec. VIII. 

VII.  ALL-ORDERS EVOLUTION
 

A.    Process-independent charge
ζ = ζH

Q2 ∼ ζ2
E > m2

N

The  GPD is  not  accessible  in  experiment  be-
cause special kinematic conditions are required before the
data  can  be  interpreted  in  such  terms  [97].  Experiments
with  momentum transfers  squared  are typ-
ically needed. Consequently, any comparison with meas-
urements  requires  that  the  hadron  scale  GPDs  discussed

 

A

B

M = Mu(1±0.1) C

A

B rπ

Fig.  14.    (color  online)  Pion  profiles. Upper  panel- : pres-
sure. Middle panel- : shear force. Green curve and band com-
puted  from  obvious  analogues  of  Eqs.  (37),  (45),  with  the
terms  in  the  second  line  of  Eq.  (37)  evaluated  using

.  Gold band:  SCI results  [30]. Lower panel- :
Pion pressure distribution in Panel  (solid green curve) com-
pared with  the  derivative  of  the  related  shear  force  distribu-
tion in Panel .  (The  factor ensures matching units.)  Both
curves have near coincident zeros, revealing that shear forces
are  maximal  in  the  neighbourhood  of  the  radius  whereat  the
pressure changes sign and confinement effects become domin-
ant, Eq. (46).

 

A

B

Mu = Mu(1±0.1)
Ms̄ = Ms̄(1±0.1)

u s̄

Fig. 15.    (color online) Kaon profiles. Upper panel- : pres-
sure, Eq. (45a). Lower panel- : shear force, Eq. (45b). K res-
ults  obtained  using  Eq.  (37),  with ,

: solid magenta curve and band. Flavour separ-
ation: -in-K - dot-dashed blue curve; and -in-K - dashed red.
Dotted green  curve  and  like-coloured  band  reproduce  the  pi-
on profiles in Fig. 14.
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ζEabove  be  evolved  to  some  appropriate .  We  achieve
this by adopting the all-orders evolution scheme detailed
in Refs.  [52-54],  which uses QCD's process-independent
(PI)  effective  charge  [52]  to  integrate  the  one-loop
DGLAP equations.

Owing  to  the  emergence  of  a  nonzero  gluon  mass-
scale [7, 56, 98-102], QCD's PI charge saturates in the in-
frared. The  following  expression  provides  an  interpola-
tion of the numerical result [52]: 

α̂(k2) =
γmπ

ln

K2(k2)
Λ2

QCD

 , K
2(y) =

a2
0+a1y+ y2

b0+ y
, (48)

γm = 4/β0 β0 = 11− (2/3)n f n f = 4 ΛQCD = 0.234
2

, , ,  GeV,
with (in GeV ) 

a0 a1 b0

0.104(1) 0.0975 0.121(1)
. (49)

k2 ≳ (9ΛQCD)2

α̂(k2)
Notably,  on ,  the  relative  difference
between  and  QCD's  one-loop  perturbative  running
coupling is less than 0.1%.

k2 = Λ2
QCD

k2/Λ2
QCD K2(k2)/Λ2

QCD

Whilst  QCD's  perturbative  running  coupling  exhibits
a  Landau  pole  at ,  this  singularity  is  removed
from the PI charge by nonperturbative gauge sector inter-
actions.  The  effect  of  such  dynamics  is  apparent  in  Eq.
(48),  with  being  replaced  by  as
the argument of the logarithm. Thus, the quantity 

mG :=K(k2 = Λ2
QCD) = 0.331(2)GeV (50)

k2 ≲ m2
G

k = mG

defines a screening mass. It marks a boundary [100, 101]:
modes  with  are  screened  from  interactions,  the
effective  charge  ceases  to  run,  and  the  theory  enters  a
conformal  domain.  Consequently,  the  line  is  a
border between soft and hard physics, leading naturally to
the identification 

ζH = mG . (51)

ξ = 0Herein  we  describe  evolution  of  the  valence-
quark GPDs and associated IPS functions; so, we can em-
ploy  the  evolution  scheme  explained  in  Refs.  [52-54].
Consequently,  consider  the n-th  Mellin  moment  of  the
valence-quark GPD: 

⟨xnH f
P⟩
∆2

ζ =

∫ 1

−1
dxxnH f

P(x,0,−∆2;ζ) , (52)

f u, d̄, s̄for  = , the all-orders evolution of which is defined
via 

ζ2 d
dζ2 ⟨x

nH f
P⟩
∆2

ζ = −
α̂(ζ2)

4π
γn

f f (ζ)⟨xnH f
P⟩
∆2

ζ , (53)

with 

γn
f f (ζ) = −

∫ 1

0
dzznP f← f (z;ζ) (54a)

 

= −
∫ 1

0
dzznPu←u(z)+

∫ 1

0
dzznD f← f (z;ζ) , (54b)

 

D f← f (z;ζH) =
√

3(1−2z)D f (ζ) (54c)
 

D f (ζ) =
δ2

f

δ2
f + (ζ − ζH)2

. (54d)

P f← f f
Pu←u(z)

δ f = M f −Mu

Here,  is  the -quark  splitting  function,  with
 a  textbook  result  [97],  modified  to  incorporate

the  mass-dependent  correction  introduced  in  Refs.  [53,
54], with , referring to Table 1 above.

Given that the hadron scale is fixed, Eq. (51), then the
solution of Eq. (53) can be written in closed form: 

⟨xnH f
P⟩
∆2

ζ

⟨xnH f
P⟩∆

2

ζH

= exp
[
−
γn

0

2π

∫ ζ

ζH

dy
y
α̂(y2)

(
1−anD f (y)

)]
, (55)

with 

γn
0 =−

∫ 1

0
dzznPu←u(z)

=− 4
3

3+ 2
(n+1)(n+2)

−4
n+1∑
j=1

1
j

 , (56a)

 

an =
n
√

3
γn

0(n+1)(n+2)
. (56b)

γ0
f f (ζ) ≡ 0

Du(y) ≡ 0

It is worth remarking here that  because the
splitting  function  conserves  baryon  number;  hence,  as
stated above, the electromagnetic form factors defined by
Eq.  (15)  are  scale  invariant.  Moreover,  since ,
then Eq. (55) reproduces Ref. [54, Eq. (18)].

S =
g

x ∈ (−1,1) S
g

ξ = 0
x = 0 S g

Regarding  the  evolution  of  singlet  ( valence+sea)
and  glue  ( )  GPDs,  it  is  important  to  recall  that  GPDs
have nonzero support on , with the  GPD be-
ing  an  odd  function  on  this  domain  and  being  even.
However, when evaluated at , the domains on either
side of  decouple; so, for both  and , one can fo-
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x > 0cus  independently  on , whereupon  one  has  the  fol-
lowing all-orders evolution of the Mellin moments:
 

ζ2 d
dζ2 ⟨x

nHS
P ⟩
∆2

ζ =−
α̂(ζ2)

4π

×
[
γn

f f (ζ)⟨xnHS
P ⟩
∆2

ζ +2n fγ
n
f g(ζ)⟨xn−1Hg

P⟩
∆2

ζ

]
,

(57a)
 

ζ2 d
dζ2 ⟨x

n−1Hg
P⟩
∆2

ζ =−
α̂(ζ2)

4π

×
[
γn

g f (ζ)⟨xnHS
P ⟩
∆2

ζ +γ
n
gg⟨xn−1Hg

P⟩
∆2

ζ

]
,

(57b)

HS
P Hg

P P
ξ = 0

where  and  are,  respectively,  the -meson  quark
singlet and glue GPDs, evaluated at . Notably, in the
forward limit:
 

HS
P (x,0,−∆2) ∆

2→0
= [θ(x)− θ(−x)]

∑
f

f P(|x|)+ f̄ P(|x|) , (58a)

 

Hg
P(x,0,−∆2) ,∆

2→0
= xgP(|x|)θ(x)− xgP(|x|)θ(−x) , (58b)

gP Pwhere  is the glue-in-  DF.
The anomalous dimensions in Eqs. (57) are:

 

γn
f f (ζ) = γn

uu

[
1−anD f (y)

]
, (59a)

 

γn
g f (ζ) = γn

gu

[
1+an

γn
0

γn
gu
D f (ζ)

]
, (59b)

 

γn
f g(ζ) = γn

ug

[
1+bnD f (ζ)

]
, (59c)

 

bn =

√
5

γn
ug

[
1

1+n
− 6

2+n
+

6
3+n

]
, (59d)

bn Dg← f

an

where  is obtained via integration of  in Ref. [54,
Eq. (60b)], like  from Eq. (55c) above; and
 

γn
uu = γ

n
0 , (60a)

 

γn
gu = −

8
3

[
2
n
− 2

n+1
+

1
n+2

]
, (60b)

 

γn
ug = −

[
1

n+1
− 2

n+2
+

2
n+3

]
, (60c)

 

γn
gg =−12

1
n
− 1

n+1
+

1
n+2

− 1
n+3

−
n+1∑
k=1

1
k


−

[
11− 2

3
n f

]
. (60d)

Owing to the momentum conservation constraints dis-
cussed  in  Ref.  [54,  Sec.  VII.C],  the  following  identities
follow immediately from Eqs. (60): 

γ1
gu = −γ1

uu , 2n fγ
1
ug+γ

1
gg = 0 . (61)

b1 = 0Furthermore,  and 

γ1
g f (ζ)+γ1

f f (ζ) = γ1
gu+γ

1
uu = 0 , (62a)

 

2n fγ
1
f g(ζ)+γ1

gg = 2n fγ
1
ug+γ

1
gg = 0 . (62b)

 

B.    Benchmarking all-orders evolution

n f

The fact  that  massless  splitting  functions  are  re-
covered in the limit of  light quarks enables us to illus-
trate some  important  consequences  of  all-orders  evolu-
tion. For instance, in this case Eq. (55) delivers: 

⟨xnHu
P⟩∆

2

ζ

⟨xnHu
P⟩∆

2

ζH

=

 ⟨xHu
P⟩∆

2

ζ

⟨xHu
P⟩∆

2

ζH


γn

0/γ
1
0

; (63)

and the solution of Eqs. (57) is 

 ⟨x
nHS

P⟩
∆2

ζ

⟨xnHg
P⟩
∆2

ζ

 = [WnEnW−1
n ]

 ⟨x
nHS

P⟩
∆2

ζH

⟨xnHg
P⟩
∆2

ζH

 , (64a)

 

En =



 ⟨xHu
P⟩∆

2

ζ

⟨xHu
P⟩∆

2

ζH


λn
+/γ

1
0

0

0

 ⟨xHu
P⟩∆

2

ζ

⟨xHu
P⟩∆

2

ζH


λn
−/γ

1
0


, (64b)

En

∆2 Wn

where: owing to Eq. (55), the evolution matrix, , is in-
dependent of ;  and  is the modal matrix for the ar-
ray of anomalous dimensions, viz.  γn

uu 2n fγ
n
ug

γn
gu γgg

 =Wn

 λn
+ 0

0 λn
−

W−1
n . (65)

n = 1 λ1
+ =

56
9

λ1
− = 0For : ; , guaranteeing momentum con-
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servation; and 

W1 =

 1
3
4

−1 1

 . (66)

α̂

ζH
ζ > ζH

α̂

ζH

By  definition,  Eqs.  (63),  (64)  are  all-orders  exact.
Moreover, they do not explicitly depend on the particular
choice  of  effective  charge, .  Our  favoured  form  is  the
process-independent  charge  discussed  in  Ref.  [52]; not-
withstanding  that,  Eqs.  (63),  (64)  mean  that  once  the
valence-quark DF is known at  and its first moment is
known at any , then the complete valence, glue and
sea DFs can readily be obtained at the new scale without
explicit  reference to the form of . (A choice for the ef-
fective  charge  is  implicit  in  the x-dependence  of  the
valence-quark  DF  at ,  but  it  need  not  be  made
specific.)

P = π ∆2 = 0
These  remarks  are  readily  elucidated  by  considering

 and  in Eqs. (63), (64); then: 

⟨xn⟩ζu = ⟨xn⟩ζH
u

(
⟨2x⟩ζu

)9γn
0/32

, (67a)

  ⟨xn⟩ζS
⟨xn⟩ζg

 =Wn

 [⟨2x⟩ζu]λ
n
+/γ

1
0 0

0 [⟨2x⟩ζu]λ
n
−/γ

1
0


×W−1

n

 ⟨2xn⟩ζH
u

0

 . (67b)

⟨2x⟩ζ2
u =

⟨2x⟩ζ5
u = ζ5 := 5.2

Suppose  the  pion  hadron-scale  valence-quark  DF  is
that  determined  by  Eq.  (10),  with  the  coefficients  and
powers  listed  in Table  2.  Further,  suppose  that 
0.50(5) and  0.42(4),  GeV, as inferred in
a leading-logarithm,  next-to-leading  order  (NLO)  per-
turbative  QCD  fit  to  extant π-related  Drell-Yan  and
prompt  photon  data  [103].  Then,  Eqs.  (67)  produce  the
pion DFs drawn in Fig. 16.

The  results  in Fig.  16 are interesting  for  many  reas-
ons, some of which we list here.
 

ζH
ζH

(i) The evolution outcomes are independent of the ef-
fective  charge,  supposing  there  is  at  least  one  for  which
all-orders  evolution  is  a  viable  scheme and that  the  glue
and sea DFs vanish at . All dependence on the effect-
ive charge is encoded in the  valence-quark DF.
 

ζ = ζH

(ii)  The  pointwise  behaviours  of  all  DFs  in Fig.  16,
valence, glue and sea, are completely determined by that
of Eq. (10), with the coefficients and powers listed in Ta-
ble 2, which is the valence-quark  DF predicted in
Refs.  [52, 53] solely from knowledge of  the pion's  lead-
ing-twist DA.
 

χ2/datum = 0.94
ζ = ζ5

⟨2x⟩ζ5
u

(iii)  The  agreement,  evident  in Fig.
16B,  between  the  valence-quark  DF  predicted  by
the all-orders scheme and the result inferred from the data
in Ref. [43, E615] using next-to-leading-logarithm (NLL)
resummation at NLO in perturbative-QCD [44] is a para-
meter-free outcome. It  derives from a modern prediction
for  the  pion's  leading-twist  DA [52, 53]  and an  estimate
of  [103],  both  obtained  without  reference  to  the
NLL reassessment of the E615 data. 

C.    GPD evolution

ξ = 0
ζH

∆2

(ξ = 0, ζ = ζH )
ζ = ζ2

With  such  results  obtained  using  the  all-orders
scheme, we consider it worthwhile to report evolution of
all  GPDs as obtained via the numerical solution of
Eqs. (53)-(60), running  up to a desired ζ-value, and re-
constructing  the  distributions  from  the  evolved  Mellin
moments.  We  use  the  procedure  in  Ref.  [54], determin-
ing  the x-dependence  on  each  slice  and  therefrom
building the two-dimensional evolved GPD. In this way,
beginning with the  GPDs in Sec. IV B, one
obtains the  GPDs drawn in Fig. 17. Comparing the
valence-quark profiles, Figs. 4, 6A with Fig. 17A, it is ap-

 

ζ = ζH

A ζH → ζ2 ⟨2x⟩ζ2
u = 0.50(5)

⟨x⟩ζ2
g = 0.40(3) ⟨x⟩ζ2

S = 0.10(2) B ζH → ζ5

⟨2x⟩ζ5
u = 0.42(4) ⟨x⟩ζ2

g = 0.45(2) ⟨x⟩ζ2
S = 0.13(2)

B

Fig. 16.    (color online) Pion parton DFs obtained using Eqs.
(67)  to  evolve  the  valence-quark  DF specified  by  Eq.
(10) and the coefficients and powers listed in Table 2. Upper
panel- : ,  seeded  by ,  producing

, . Lower panel- : , seeded
by , producing , . No
explicit choice  for  the  effective  charge  was  necessary  to  ob-
tain these DFs. Data in Panel : Ref. [43, E615], rescaled ac-
cording to the analysis in Ref. [44].
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∆2

x = 0
ζH

ζH

(x ≃ 0,∆2 ≃ 0) ∆2

parent  that:  the peak location at  each -value is  shifted
toward ; and the evolved GPD is broader and flatter
than  the  profile.  The  strength  lost  from  the  valence-
quark GPD is  transferred  into  the  glue  and  sea  distribu-
tions,  drawn  in Fig.  17B, 17C:  recall,  both  these  GPDs
are zero at .  The bulk of the support of both glue and
sea  GPDs  is  concentrated  in  the  neighbourhood

; and their fall-off with increasing  is sig-
nificantly slower than with increasing x.

The evolved kaon GPDs are a qualitatively and semi-
quantitatively similar; so we only draw the valence-quark
profiles  in Fig.  18.  The  separation  of  baryon  number  is
preserved  under  evolution  to  all  empirically  accessible
scales.
 

VIII.  PARTITION OF MESON MASS-SQUARED
AND ASSOCIATED RADII

 

A.    Mass-squared
ξ = 0

θP
2 (∆2)

Tµν
P

Return  now  to  Eq.  (33)  and  consider  so  as  to
isolate . Owing to its connection with the expecta-
tion  value  of  the  energy-momentum  tensor, , evalu-
ated in the -meson [92, 93], the forward-limit of this ex-
pectation value produces the meson mass-squared: 

⟨P(PP)|Tµµ|P(PP)⟩ = m2
P θ

P
2 (∆2 = 0) = m2

P , (68)

θP
2 (∆2 = 0) = 1

where  the  last  equality  expresses  the  mass-squared sum-
rule: . Connections  between  the  expecta-
tion value on the left-hand-side in Eq. (68) and the QCD
scale anomaly are discussed, e.g., in Ref. [9], and broad-
er  connections  with  EHM  are  canvassed  in  Refs.  [2-7,
10].

ζH

Important  in  proceeding  here  is  the  fact,  explained
above,  that  dressed-valence  degrees-of-freedom carry  all
meson properties at the hadron scale, ; hence, 

θP
2 (∆2) =

∫ 1

−1
dx x

[
Hu

P(x,0,−∆2;ζH )+H h̄
P(x,0,−∆2;ζH )

]
.

(69)
∆2 = 0Focusing on : 

 

ξ = 0

ζH → ζ2 A B

C

Fig. 17.    (color online) Pion GPDs ( ) computed in Sec.
IV.B, beginning with the factorised LFWF and drawn in Fig.
4,  evolved  to : Upper  panel- :  valence; middle- :
glue; and lower- : sea.

 

ξ = 0

ζH → ζ2 A u B s̄

Fig. 18.    (color online) Kaon GPDs ( ) computed in Sec.
IV.B,  beginning  with  the  factorised  LFWF,  evolved  to

: Upper panel- : -valence; and lower- : -valence.
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θP
2 (0) = θPu

2 (0)+ θPh̄

2 (0) = ⟨x⟩Pu

ζH
+ ⟨x⟩Ph̄

ζH
. (70)

m2
P

ζH

One may therefore say that all  is  carried by dressed-
valence degrees-of-freedom at  and the relative appor-
tionment is  given  by  their  respective  light-front  mo-
mentum fractions.

ζ > ζH

Now  consider  shifting  the  resolving  scale  to  a  value
 and, for simplicity, focus on the pion: 

⟨2xHu
π⟩0ζH → ⟨xHS

π ⟩0ζ (71a)
 

= ⟨2xHvalence
π ⟩0ζ + ⟨2xHsea

π ⟩0ζ (71b)
 

= 2θπval

2 (0;ζ)+ θπsea

2 (0;ζ) , (71c)

where a direct identification of terms is intended; and 

⟨Hg
π⟩0ζH ≡ 0→ ⟨Hg

π⟩0ζ = θ
πg

2 (0;ζ) , 0 . (72)

n f

Using  the  evolution  equations  in  Sec.  VII,  one  finds
(  = 4 massless flavours): 

2θπval

2 (∆2;ζ)+ θπsea

2 (∆2;ζ)

=2θπval

2 (∆2;ζH )
[

3
7 +

4
7 (⟨2x⟩ζu)

7
4
]
, (73a)

 

θ
πg

2 (∆2;ζ) =
4
7

2θπval

2 (∆2;ζH )
[
1− (⟨2x⟩ζu)

7
4
]
. (73b)

ζ ⩾ ζHIt is now plain that at any scale : 

2θπval

2 (∆2;ζ)+ θπsea

2 (∆2;ζ)+ θπg

2 (∆2;ζ)

=2θπval

2 (∆2;ζH ) = θπ2(∆2) . (74)

These  results  can  readily  be  generalised  to  the  kaon
and mass-dependent splitting functions.

∆2 = 0
ζ > ζH m2

P

ζ = ζ2

Setting , there is an obvious corollary; to wit, at
any scale  the portion of  carried by a given par-
ton species is given by its light-front momentum fraction.
Thus, at , working with the DFs in Ref. [54], which
are reproduced by the LFWF Ansätze herein: 

ζ = ζ2 mass− squared fraction
u h̄ g sea

m2
π 0.24(2) 0.24(2) 0.41(2) 0.11(2)

m2
K 0.23(2) 0.27(2) 0.40(2) 0.10(2)

. (75)

ζ2As  the  scale ζ increases  beyond ,  the  mass-squared
fraction stored with the valence-quarks runs logarithmic-

4/7 3/7

ally to  zero,  as  may  be  read  from  Eq.  (55);  and  con-
sequently, using Eqs. (73), the glue and sea fractions, re-
spectively,  approach  and  at  the same rate.  (N.B.
The values  of  these  limiting  glue  and  sea  fractions  de-
pend on the splitting functions.) 

B.    Mass-squared radii
Eq. (74) also imposes a sum rule on the contributions

from the three parton classes to the total mass-squared ra-
dius. To see this, consider the π and recall that the follow-
ing radius is observable; hence, ζ-independent: 

[rθ2
π ]2 :=

−6
θπ2(0)

dθπ2(∆2)

d∆2

∣∣∣∣∣∣
∆2=0

. (76)

Considering the hadron scale, Eq. (69) highlights that
the dressed-valence  degrees-of-freedom  carry  the  en-
tirety of the mass-squared distribution; so, 

[rθ2
π ]2 =

−6
θπval

2 (0;ζH )

dθπval

2 (∆2;ζH )

d∆2

∣∣∣∣∣∣∣
∆2=0

. (77)

ζ > ζHAt any scale , using Eq. (74): 

[rθ2
π ]2 =2θπval

2 (0;ζ)[rθ2
πval

(ζ)]2

+ θπsea

2 (0;ζ)[rθ2
πsea

(ζ)]2

+ θ
πg

2 (0;ζ)[rθ2
πg

(ζ)]2, (78a)
 

[rθ2
πp

(ζ)]2 =
−6

θ
πp

2 (0;ζ)

dθπp

2 (∆2;ζ)

d∆2

∣∣∣∣∣∣∣
∆2=0

, (78b)

p = val,sea,g θ
πp

2 (0;ζ)
ζ = ζ2

where .  The  factors  in  Eq.  (78)  are
determined by Eqs. (67) and their  values are given
in Eq. (75).

n = 1Reviewing Eq. (55),  setting , a little thought re-
veals that 

[rθ2
πval

(ζ)]2 = [rθ2
πval

(ζH )]2 = [rθ2
π ]2; (79)

[rθ2
πsea

(ζ)]2 = [rθ2
πg

(ζ)]2 = [rθ2
π ]2

ζH

ζ > ζH

and similarly, from Eqs. (73), .
It is now apparent that when all hadron properties are car-
ried  by  the  dressed-valence  degrees-of-freedom  at ,
with  all-orders  evolution generating glue and sea  DFs at

,  then  all  in-pion  mass-squared  distributions  have
the same radii.

rθ2

Ku
rθ2

Ks̄
rθ2

K

Considering  the K,  the  following  quantities  are ζ-in-
dependent: , , ,  with  the  last  quantity  computed
from the  first  two  according  to  Eq.  (39).  With  mass-de-
pendent evolution as described above, the kaon's valence-
quark/antiquark mass-squared distributions continue to be
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rθ2

K

characterised  by  the  flavour-specific  radii  indicated  here
and the glue and sea distributions are characterised by .
The  relative  contributions  to  the  total  observable  mass-
squared radius  are  specified  by  the  light-front  mo-
mentum fractions carried by the particular species.

Exploiting these observations, one can decompose the
π and K mass-squared radii thus: 

ζ = ζ2 mass− squared radii partition
u h̄ g sea

rθ2
π /rπ 0.49(2) 0.49(2) 0.64(2) 0.33(3)

rθ2

K /rK 0.47(2) 0.52(2) 0.63(2) 0.32(3)

. (80)

rθ2
π /rπ = 0.81 rπ = 0.640(7)

ζ = ζ2
2×0.25(1) 0.33(1) 0.17(1)

rθ2

K /rK = 0.78 rK ≈ 0.53
0.21 0.20 0.26 0.13

With ,  Eq.  (43), fm  [73],  then
 valence, glue and sea fractions are, respectively, in

fm: , , .  Turning  to  the K,
, Eq. (43), fm [73], then the analog-

ous  fractions  are  roughly,  in  fm: , , , .
(The  quality  of  extant  charged-kaon  elastic  form  factor
data prevent any listing of sensible uncertainties [73].) 

IX.  IMPACT PARAMETER SPACE
GPD–EVOLVED

ζ2

ζ2

ζ = ζH

|b⊥|

Inserting  the -evolved  valence-quark  GPDs  drawn
in Figs. 17A, 18 into the right-hand-side of Eq. (24), one
obtains  the  associated -evolved  IPS  GPDs  depicted  in
Fig. 19. To check our methods, we verified that the same
results are produced by computing the Mellin moments of
the  IPS GPD directly, evolving those moments ac-
cording  to  Eq.  (53),  reconstructing  the x-profile  on  each

 slice,  and  therefrom  building  the  two-dimensional
evolved IPS GPD.

x = 0
2π|b⊥|qP(x,b2

⊥;ζ2)

Comparing Fig. 19 with Fig. 10, one sees that, as anti-
cipated  in  Ref.  [31]  and  sketched  for  the  pion  in  Ref.
[88],  evolution  causes  both  the  profiles  to  broaden  and
the  maxima  to  drift  toward .  Each  density,

, still has a global maximum, with loca-
tions: 

π : (|x|,b⊥/rπ) = (0.47,0.23) , iπ = 0.55 , (81a)
 

Ku : (x,b⊥/rK)u = (0.41,0.28) , iuK = 0.49 , (81b)
 

Ks̄ : (x,b⊥/rK)s̄ = (−0.48,0.22) , is̄
K = 0.61 , (81c)

s̄

which may be contrasted with the results in Eqs. (32). In
this  case,  the  pion peak height  equals  the  average of  the
u-in-K and -in-K heights, so  that  evolution  has  elimin-
ated the relative pion excess.

All  aspects  of  the  comparisons  just  described  are

x = 1

|b⊥|

straightforwardly  understood.  Under  evolution,  the
dressed-valence  degrees-of-freedom  shed  pieces  of  their
"partonic clothing",  thereby populating glue and sea dis-
tributions.  Momentum  conservation  therefore  requires
that  the  peak  location  move  away  from . This  en-
tails that the light-front momentum fraction carried by the
valence  degrees-of-freedom  is  reduced,  so  they  play  a
smaller part  in  defining  the  centre  of  transverse  mo-
mentum, in consequence of which the associated  val-
ues  are  larger,  leading  to  a  broader  distribution.  These
features are all apparent in the comparison between Figs.
10 and 19. 

X.  SUMMARY AND PERSPECTIVE

ζH

The  basic  inputs  for  this  survey  were  hadron-scale
( )  pion  and  kaon  valence-quark  distribution  functions
(DFs), computed and shown to explain existing data else-
where  [7, 53, 54].  Therefrom,  we  constructed  algebraic

 

A

d̄ u x

|b⊥ |
B s̄ u

K+ ζH → ζ2

s̄

Fig.  19.    (color  online) Upper  panel- . Pion.  IPS  distribu-
tions for - (left) and -quarks (right), charting the -depend-
ent  probability  density  for  locating  these  objects  at  distance

 from  the  pion's  centre  of  transverse  momentum. Lower
panel-  Kaon.  Analogous  profiles  for  and -quarks  in  the

. Curves calculated using the  valence-quark GPDs
drawn in Figs.  10A, 10B into the right-hand-side of  Eq.  (24)
and its analogue for the -in-kaon.
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H(x, ξ,−∆2;ζH )
|x| ⩾ ξ

Ansätze for  the  light-front  wave  functions  (LFWFs)  of
these mesons and subsequently generalised parton distri-
butions  (GPDs), ,  defined  throughout  the
DGLAP domain: . The GPDs may be judged real-
istic  because they provide good descriptions of  pion and
kaon observables  not  used  in  their  construction  [Figs.  7,
8].

⟨b2
⊥(x;ζH )⟩Pq

P

s̄

Transforming  these  GPDs  into  impact  parameter
space (IPS),  numerous  insights  were  developed  by  ex-
ploiting  their  algebraic  character  [Sec.  V].  For  example,
broadening of  the  valence-quark  DFs,  owing  to  the  dy-
namics  responsible  for  the  emergence  of  hadron  mass
(EHM), is similarly expressed in , the longit-
udinal light-front  distribution  of  the  mean-square  trans-
verse light-front extent of the valence-q parton in the -
meson [Fig. 9]. Moreover, there is a separation of baryon
number  in  the  kaon,  with  the  quark,  on average,  lying
closer to the kaon's  centre of transverse momentum than
the u quark [Fig. 10]. The size of this displacement is de-
termined  by  the  scale  of  Higgs  boson  modulation  of
EHM.

|x| < ξ

θ2

θ1

Extension  of  our  GPDs  onto  the  ERBL  domain,
,  enabled  calculation  of  the  two gravitational  form

factors of both the pion and kaon and, subsequently, asso-
ciated Breit-frame pressure distributions [Sec. VI]. Again
capitalising on algebraic simplicity, we demonstrated that
a  meson's  mass-squared  form  factor, ,  is  necessarily
stiffer  than its  electromagnetic  form factor.  On the other
hand,  available  examples  indicate  that  the  pressure  form
factor, , is typically softer. In all cases, heavier objects
have stiffer form factors [Figs. 12, 13].

θ1,2

s̄

Considering  the  pressure  profiles  obtained  from ,
the kaon is more compact than the pion and the near-core
pressures in both these pseudo-Nambu-Goldstone bosons
are commensurate with that thought to exist within neut-
ron stars [Figs. 14, 15]. Here, too, the magnitudes of dif-
ferences  between -  and u-quark  profiles  are  fixed  by
Higgs boson modulation of EHM.

ζ > mp
mp

(x ≃ 0,∆2 ≃ 0)

For any comparison with empirical results relating to
π and K GPDs,  which  may  become  available  in  future,
the hadron scale GPDs must be evolved to scales ,
where  is the  proton  mass.  We accomplished  this  us-
ing an all-orders scheme that delivers parameter-free pre-
dictions  [Sec.  VII].  The  approach  was  benchmarked
against available data on the pion's valence-quark DF, de-
livering a  prediction  in  agreement  with  an  existing  ana-
lysis [Fig. 16]. Thus validated, we employed the scheme
to  deliver  parameter-free  predictions  for  the  valence,
glue, and sea GPDs of the pion and kaon on the DGLAP
domain [Figs. 17, 18]: both glue and sea GPDs have max-
imal support in the neighbourhood .

m2
π,K

ζ = 2

The  all-orders  evolution  scheme  also  enables  one  to
arrive  at  predictions  for  the  fraction  of  carried  by
different  parton  species  at  any  resolving  scale.  Eq.  (75)
lists  GeV results,  whereat  the  mass-squared  frac-

ζH

ζ2

tion carried by glue and sea combined matches that stored
in  the  valence  degrees-of-freedom.  This  contrasts
markedly  with  the  apportionment  at , where  all  had-
ron  properties  are  lodged  entirely  with  the  dressed
valence degrees-of-freedom [Sec.  VI A].  Analogous res-
ults for  the  mass-squared  radii  are  discussed  in  connec-
tion with Eq. (80): at , roughly one-half of each meson
radius is contributed by glue and sea degrees-of-freedom.

ζ2

ζH

x = 0

The  likewise -evolved π and K IPS  GPDs  contain
no  surprises  [Sec.  IX].  With  respect  to  the  results,
they  are  dilated  and  flattened,  and  their  maxima  float
closer to , owing to evolution-induced unclothing of
the dressed valence degrees-of-freedom.

In future, it is worth looking harder at GPD extension
onto the ERBL domain. Whereas we have chosen to em-
ploy  algebraic  approximations  when  inverting  Radon
transforms,  it  may  be  profitable  to  use  our  realistic
DGLAP-domain GPD Ansätze as testbeds in the develop-
ment of reliable numerical methods. Of at least equal im-
portance is construction of realistic GPDs for the nucleon.
The  nucleon  distribution  amplitudes  built  elsewhere
[104],  based upon a  dynamical  quark+diquark picture of
nucleon structure, might provide a useful starting point. 
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APPENDIX A: PTIR LFWF IN THE
CHIRAL LIMIT

m2
P = 0 Mu = Mh̄

vP = 0
Consider  the  chiral  limit,  so  that , ,

. In  this  case,  Eqs.  (6)  simplify  greatly  and,  con-
sequently, Eq. (5) becomes: 

ψu
P(x,k2

⊥;ζH ) = [uP(x;ζH )]
1
2 ψ̃u

P(k2
⊥;ζH ) , (A1a)

 

ψ̃u
P(k2
⊥;ζH ) = 4

√
3π

M3
u(

k2
⊥+M2

u

)2 , (A1b)

where  we  have  used  Eqs.  (2),  (4).  Evidently,  the  chiral
limit  LFWF  assumes  a  factorised  (separable)  form;  so,
the corresponding u-quark GPD is given by Eq. (18a): 

Hu
P(x, ξ, t;ζH) =

θ(x−)
√

uP (x−;ζH)uP (x+;ζH) Φu
P (z;ζH) . (A2)

Now inserting Eq. (A1b) into Eq. (18b), one arrives at the
following compact result: 
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Φu
P(z;ζH) =

6M6
u(

z+4M2
u

)3

(
10+

z
M2

u
+

8(z+M2
u)

z

×


√

z+4M2
u

z
atanh

(√
z

z+4M2
u

)
−1


 . (A3)

ΦP(z;ζH) z = 0One can expand  around  to obtain 

ΦP(z;ζH) = 1− 3
5

z
M2

u
+O(z2) ; (A4)

then, according to Eq. (20), specialised to the pion, 

− d
dz
Φπ(z;ζH)

∣∣∣∣∣
z=0
=

3
5M2

u
=

r2
π

6⟨x2⟩ζH
u

. (A5)

Thus the framework yields a very simple result for the pi-
on charge radius in the chiral limit: 

rπ =

√
18
5
⟨x2⟩ζH

u
1

Mu
= 0.66 fm , (A6)

0.659(4) 0.640(7)

using  Eq.  (9)  and Tables  1, 2.  The  result  in  Eq.  (A6)
presents  a  fair  match  with  contemporary  values  inferred
from  experiment:  [69, 73]: fm, fm, re-
spectively.

The mathematical  structure of  Eq.  (A6) is  also inter-
esting.  It  indicates  that  the  electromagnetic  radius  of  the
pion is determined by the second light-front momentum-
fraction  Mellin  moment  of  the  valence-quark  DF,  which
measures its dilation, in units determined by the scale of
the chiral-limit light-quark dressed-mass.

In closing this appendix,  it  is  worth highlighting that
the  GPD  constructed  using  Eqs.  (A2),  (A3)  is  almost
pointwise  identical  to  the  pion  GPD  depicted  in Fig.  2,
which  was  obtained  from  the  PTIR  LFWF Ansatz,  as  a
comparison between Figs. 2 and 4 would suggest.
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