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Abstract: Obesity and cardiometabolic risk have been associated with vitamin D levels even in
children. The objective of the present study was to evaluate the association between insulin resistance
(IR), cardiometabolic risk factors, and vitamin D in children from prepubertal to pubertal stages.
A total of 76 children from the PUBMEP study, aged 4–12 years at baseline, were included. Children
were evaluated in prepubertal and pubertal stages. Anthropometric measurements and selected
cardiometabolic risk biomarkers, such as plasma glucose, blood lipids, insulin, adiponectin, leptin,
and blood pressure, and serum 25-hydroxyvitamin D (25(OH)D) were determined. Children were
categorized by obesity degree and IR status combined before and after puberty. Paired t-test and mul-
tivariate linear regression analyses were conducted. During puberty, the increase in triacylglycerols,
insulin, and HOMA-IR and the decrease in QUICKI were significantly associated with the reduction
in 25(OH)D (B = −0.274, p = 0.032; B = −0.219, p = 0.019; B = −0.250, p = 0.013; B = 1.574, p = 0.013,
respectively) after adjustment by BMI-z, sex, and pubertal stage. Otherwise, prepubertal non-IR
children with overweight/obesity that became IR during puberty showed a significant decrease
in 25(OH)D and HDL-c, and an increase in waist circumference and triacylglycerol concentrations
(p < 0.05 for all) over time. These results suggest that changes in IR seem to be associated with an
effect on 25(OH)D levels during puberty, especially in children with overweight.
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1. Introduction

The association of vitamin D deficiency with higher body mass index (BMI), insulin
resistance (IR), and cardiometabolic risk factors in observational studies with pediatric and
young populations has been reported [1–3]. Furthermore, previous literature has described
a higher prevalence of vitamin D deficiency in children and adolescents with obesity in the
pubertal stage compared to prepuberty [4,5].

Lower vitamin D serum concentrations in individuals with obesity may be due to the
lower bioavailability of vitamin D as a consequence of its storage in adipose tissue and
the volumetric dilution related to larger body size [6,7]. Vitamin D is metabolized in the
liver to 25-hydroxy-cholecalciferol (25(OH)D) and later in the kidney to 1,25-dihydroxy-
cholecalciferol (1,25(OH)2D) [8]. While serum levels of 25(OH)D are recognized as the
best marker of vitamin D nutritional status, 1,25(OH)2D, also known as calcitriol, binds to
vitamin D receptors (VDRs), which are present in a wide variety of tissues other than bone,
including pancreatic β-cells, the adipose tissue, brain, and activated T and B lymphocytes,
among others [9]. Indeed, vitamin D is associated with the mechanisms responsible for
insulin secretion, favoring blood glucose control [10,11]. Moreover, several studies showed
that cardiometabolic risk markers are related to lower plasma vitamin D concentrations in
children [12,13].

Obesity is also associated with alterations of the lipid profile and increased con-
centrations of circulating inflammatory biomarkers, which are closely related to IR and,
consequently, hyperglycemia [9]. Additionally, puberty is a period of growth and vitamin
D, as a steroid hormone, plays an important role in the regulation of calcium levels and
bone metabolism [14]. In addition, vitamin D activity occurs via the binding of its active
metabolite 1,25(OH)2D to the VDR, which is also expressed in the reproductive organs,
which could partly explain the association between vitamin D and puberty [15,16]. How-
ever, there are still few longitudinal studies assessing cardiometabolic risk and vitamin D
status during puberty. A study showed that prepubertal children with central obesity and
suboptimal vitamin D levels had higher pubertal IR compared with those no central obesity
and optimal vitamin D levels [17]. Finally, most of the population has vitamin D deficiency,
and this trend has also been found in children [18,19], which highlights the importance
of longitudinal studies aiming to assess vitamin D status in critical periods of life, such
as puberty, or conditions such as obesity. Thus, the present study aimed to evaluate the
relationship between insulin resistance, cardiometabolic risk factors, and serum 25(OH)D
concentrations from prepuberty to puberty, considering BMI status, in a sample of Spanish
children.

2. Materials and Methods
2.1. Subjects and Study Design

The present work included Spanish children from the PUBMEP study, a longitudinal
study based on the follow-up of a cohort of children who had previously participated in the
GENOBOX study [20]. GENOBOX is a case–control, multicenter study carried out in a total
of 1444 Spanish children (706 males and 738 females), aged 3 to 17 years, from 2012–2015.
Detailed inclusion and exclusion criteria as well as informed consent and approval by the
local ethics committees where children were recruited have been reported elsewhere [21].
A subsample of 76 children (34 girls) recruited in the Clinical University Hospital of
Santiago de Compostela was selected based on the following inclusion criteria: having
measured twice, at prepubertal and pubertal stages, the serum 25(OH)D, homeostasis
model assessment for insulin resistance (HOMA-IR), height, and weight, for the calculation
of body mass index (BMI), and pubertal status recorded. All the children were initially
recruited in the prepubertal stage between 2012 and 2015 (T0) and invited for follow-up
medical consultation in 2018 (T1). Among the recruited children, participants who were
in the pubertal period (at least Tanner II, confirmed with sex hormones), were invited
to participate in the PUBMEP study. At the prepubertal stage, the children were aged
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4–12.1 years, and at the pubertal time they were aged 9.7–18.1 years (mean time between
measurements: 6.2 ± 2.8 years).

To assess the influence of puberty on serum concentration of 25(OH)D and the
metabolic outcomes, children were categorized according to the combination of their
obesity degree by Cole et al. [22] and the presence of IR by HOMA-IR cut-off points de-
tailed below. Thus, they were allocated into six experimental groups. Group 1 consisted
of normal weight and non-IR children that remained a normal weight and non-IR over
time; group 2, children with overweight (OW) or obesity (OB) and non-IR who changed to
normal weight and non-IR during puberty; group 3, children with OW/OB and non-IR
with no change over time; group 4, children with OW/OB and IR changing to non-IR
during puberty; group 5, children with OW/OB and non-IR changing to IR; and group 6,
children with OW/OB and IR with no change (Supplementary Figure S1). The samples
were collected throughout the year (at the 43rd parallel north), representing the different
seasons to control for seasonal effects. In addition, no children took multivitamins or,
specifically, vitamin D supplements.

This study was conducted according to the guidelines set out in the Declaration of
Helsinki (Edinburgh 2000 revised), and all procedures were approved by the Ethics and
Research Committee of Galicia Autonomous Community (2011/198 and 2016/522). Written
consent was obtained from the parents of all the children.

2.2. Clinical Examination and Anthropometric Measurements

Anthropometric measurements were taken with the children barefoot and in their
underwear. Bodyweight (kg), height (cm), and waist circumference (WC) (cm) were
measured using standardized procedures, and BMI was calculated. The BMI z-scores were
calculated based on the Spanish reference standards [23], and the children were classified
for obesity using the BMI age- and sex-specific cut-off points proposed by Cole et al. [22].

According to the Tanner criteria, the pubertal stage was determined following the stan-
dards for pubic hair and genitalia growth in boys and breast and pubic hair development in
girls through a physical examination by pediatric endocrinologists [24]. It was confirmed
by the determination of sexual hormones in serum. Blood pressure was measured three
times by the same examiner following international recommendations [25].

2.3. Biochemical Analyses

After 10 h of overnight fasting and rest, blood samples were drawn by venipuncture.
The samples were protected from sunlight and refrigerated. The serum and plasma were
separated and cryopreserved at −80 ◦C until the analysis was conducted.

The insulin concentration was analyzed by chemiluminescent microparticle immunoas-
say. Serum concentrations of glucose, lipids (total cholesterol, triacylglycerols (TAG), high-
density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c))
were measured by spectrophotometry.

Plasma adipokines (adiponectin and leptin) were analyzed using XMap technology
(Luminex Corporation, Austin, TX, USA) and human monoclonal antibodies (Milliplex
Map Kit; Millipore, Billerica, MA, USA), as previously reported in the literature [26].

2.4. Homeostasis Model Assessment for Insulin Resistance Cut-Off Points

The presence of IR in children was defined according to the HOMA insulin resistance
(HOMA-IR) index. The cut-off points were obtained from a previously well-described
Spanish cohort composed of children and adolescents [27]. Values of HOMA-IR ≥ 2.5
were considered as an IR indicator for the prepubertal stage [27]. For the pubertal stage,
the cut-off points for IR were based on the 95th HOMA-IR percentile, considering sex
(HOMA-IR ≥ 3.38 in boys and HOMA-IR ≥ 3.90 in girls) [26].
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2.5. Analysis and Diagnostic Criteria of Vitamin D Status

Serum 25(OH)D concentrations were quantified using a direct competitive chemilu-
minescence immunoassay by the LIAISON method. Sensitivity of the assay was 4 ng/mL
(10 nmol/L) and the intraclass correlation coefficient (CV) was 5.5% at 7.2 ng/mL, 2.9% at
35 ng/mL, and 4.8% at 128 ng/mL. The interclass CV was 12.7% at 5.91 ng/mL, 6.9% at
45.9 ng/mL, and 7.9% at 62.7 ng/mL. A duplicate of each sample was analyzed.

According to the cut-off proposed by Holick et al. [28], vitamin D ‘deficiency’ was
defined as serum 25(OH)D levels <20 ng/mL, ‘sufficient for bone health’ as 20–29 ng/mL,
and ‘optimal’ as ≥30 ng/mL, which is associated with additional health benefits, although
values of 40–60 ng/mL are preferred.

2.6. Statistical Analysis

A Kolmogorov–Smirnov test was used to assess the distribution of the included
variables and transformation was performed when needed. Those variables that did not
achieve normality were analyzed with non-parametric tests after transformation. A chi-
square test was used for comparisons of categorical variables.

A paired t-test or Wilcoxon signed-rank test was used to determine the statistical
difference of the changes between prepubertal and pubertal stages for the considered
cardiometabolic risk factor variables.

Associations between the cardiometabolic factors and 25(OH)D levels were examined
using linear regression analysis and Pearson correlation coefficient. Two models were
created for the cross-sectional analysis in the pubertal stage: an unadjusted model and an
adjusted model, including BMI z-score, sex, and the pubertal stage reached (I–V). For the
longitudinal analysis, two models were also created: one unadjusted and one adjusted by
BMI z-score (T1), sex, the pubertal stage reached (I–V), and by the baseline value of the
cardiometabolic biomarker 25(OH)D levels (T0). Multicollinearity was checked using the
variance inflation factor (VIF)/tolerance. All models included in this study presented VIFs
below 2, and the tolerance measures were ≥0.7, according to a reference for VIF < 5 and
tolerance >0.2.

Delta values (∆ = T1–T0) were also obtained for each continuous variable. Compar-
isons of the metabolic variables were performed according to vitamin D classification for
the groups of prepubertal and pubertal children using ANOVA or the Kruskal–Wallis
test. Bonferroni correction was applied for multiple comparisons. A p-value < 0.05 was
considered significant. All analyses were performed using the SPSS software (version 26).

3. Results

The mean age of the included children was 7.8 ± 1.9 years in the prepubertal stage,
45% being girls. The characteristics of the prepubertal and pubertal children according
to the vitamin D status are presented in Table 1. The adiponectin levels were lower in
prepubertal children with deficiency and insufficiency of vitamin D than those with optimal
levels (p = 0.036); however, no difference was observed in the pubertal stage (p = 0.582).
In addition, there were mean differences in some cardiometabolic factors, with higher
values of WC, systolic and diastolic blood pressure, TAG, fasting insulin, and HOMA-IR,
(all, p < 0.01), and lower values for LDL-c (p = 0.026), QUICKI (p < 0.01), adiponectin
(p = 0.001), and leptin levels (p = 0.047) in the pubertal stage in comparison with the
prepubertal stage.
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Table 1. Characteristics of the participants at baseline (prepubertal) and at the follow-up (pubertal) according to vitamin D status.

T0 (Prepubertal) T1 (Pubertal)
p-Value *All

(n = 76)
Optimal
(n = 14)

Insufficiency
(n = 26)

Deficiency
(n = 36) p-Value All

(n = 76)
Optimal
(n = 6)

Insufficiency
(n = 23)

Deficiency
(n = 47) p-Value

Age (years) 7.8 (1.9) 6.3 (1.6) 8.0 (1.9) 8.2 (1.7) 0.002 13.9 (2.2) 15.2 (1.6) 14.2 (2.4) 13.7 (2.2) 0.229 <0.001
Weight (kg) 37.9 (12.1) 32.0 (9.3) 38.4 (15.0) 39.9 (10.1) 0.07 68.0 (21.2) 72.7 (16.9) 69.1 (13.5) 66.8 (24.6) 0.619 <0.001

BMI (kg/m2)
22.8

[14.3–36.0]
22.8

[14.8–26.8]
22.4

[14.7–36.0]
22.9

[14.3–35.5] 0.519 26.2
[15.0–45.5]

25.9
[18.8–37.6]

25.9
[17.9–32.6]

26.5
[15.0–45.5] 0.997 <0.001 ¥

BMI z-score 2.1 (1.8) 2.4 (2.4) 2.0 (1.8) 2.1 (1.6) 0.785 1.7 (1.6) 1.5 (2.0) 1.5 (1.2) 1.8 (1.7) 0.799 0.003
Waist circumference
(cm) 74.4 (13.1) 67.8 (11.2) 75.5 (15.1) 76.3 (11.9) 0.107 87.1 (15.5) 90.5 (19.9) 86.6 (11.7) 86.9 (16.7) 0.850 <0.001

SBP (mmHg) 104.3 (11.8) 100.1 (15.4) 104.9 (12.2) 105.5 (9.6) 0.333 116.2 (15.8) 118.9 (9.9) 114.6 (11.5) 115.7 (18.6) 0.841 <0.001

DBP (mmHg) 62.0
[45.0–100.0]

59.5
[46.0–79.0]

62.5
[49.0–77.0]

63.0
[45.0–100.0] 0.671 67.0

[49.5–94.5]
72.7

[63.0–82.0]
68.0

[55.0–85.0]
65.5

[49.5–94.5] 0.266 <0.001 ¥

25(OH)D (ng/mL) 23.0 (10.6) 40.9 (8.6) 24.4 (2.6) 15.1 (3.5) <0.001 19.0 (7.6) 35.7 (6.9) 24.4 (2.5) 14.3 (3.6) <0.001 0.004
Fasting glucose
(mg/dL) 81.0 (8.2) 83.6 (6.7) 80.6 (8.4) 80.3 (8.6) 0.415 81.2 (7.4) 80.5 (5.0) 80.7 (7.7) 81.6 (7.6) 0.872 0.867

Fasting insulin
(mUI/L) 8.0 (6.0) 6.4 (4.6) 7.4 (5.4) 9.1 (6.9) 0.245 14.2 (9.4) 15.9 (14.1) 11.4 (7.6) 15.4 (9.5) 0.123 <0.001

HOMA-IR 1.6 (1.2) 1.3 (0.9) 1.5 (1.1) 1.8 (1.4) 0.327 2.9 (2.0) 3.1 (1.9) 2.4 (2.0) 3.2 (3.0) 0.131 <0.001
QUICKI 0.4 (0.05) 0.4 (0.05) 0.4 (0.05) 0.4 (0.04) 0.409 0.3 (0.03) 0.3 (0.05) 0.3 (0.03) 0.3 (0.03) 0.115 <0.001
TAG (mg/dL) 56.2 (27.0) 48.1 (20.0) 51.7 (20.9) 62.6 (32.0) 0.211 70.7 (31.7) 56.8 (20.6) 64.1 (20.2) 75.7 (36.4) 0.222 <0.001

Cholesterol (mg/dL) 164.0
[102.0–298.0]

168.0
[112.0–221.0]

168.0
[102.0–225.0]

162.5
[104.0–298.0] 0.849 157.0

[101.0–271.0]
157.5

[126.0–200.0]
152.0

[101.0–210.0]
157.0

[103.0–271.0] 0.382 0.053 ¥

HDL-c (mg/dL) 52.6 (12.6) 53.3 (9.8) 52.1 (11.3) 52.7 (14.6) 0.958 50.6 (15.1) 49.5 (13.3) 45.5 (9.6) 53.2 (17.0) 0.163 0.180

LDL-c (mg/dL) 92.0
[52.0–224.0]

101.0
[52.0–155.0]

99.0
[56.0–139.0]

92.0
[56.0–224.0] 0.822 87.0

[50.0–187.0]
82.5

[71.0–113.0]
87.0

[50.6–147.0]
90.0

[50.0–187.0] 0.875 0.026 ¥

Adiponectin (mg/L) 17.9 (12.0) 24.9 (14.4) 16.9 (11.6) 14.6 (9.8) 0.036 12.0 (8.5) 12.5 (9.5) 9.6 (5.3) 13.2 (9.5) 0.582 0.001
Leptin (µg/L) 13.8 (13.4) 10.1 (7.9) 15.2 (17.1) 14.3 (12.1) 0.515 10.4 (7.5) 10.7 (12.2) 8.3 (6.2) 11.3 (7.4) 0.322 0.047

Data are expressed as mean (standard deviation) or median [min-max]. * Statistical differences between prepubertal stage and pubertal stage (all) (paired t-test or ¥ Wilcoxon test). p < 0.05 was considered
significant. Abbreviations: BMI: Body Mass Index; DBP: Diastolic Blood Pressure; SBP: Systolic Blood Pressure; 25(OH)D: 25-hydroxycholecalciferol; HOMA-IR: Homeostasis Model Assessment for Insulin
Resistance; QUICKI: Quantitative Insulin Sensitivity Check Index; TAG: Triglycerides; HDL-c: High-Density Lipoprotein Cholesterol; LDL-c: Low-Density Lipoprotein Cholesterol.
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Considering the deficiency of vitamin D according to obesity degree, 50% of the
prepubertal children with obesity presented deficiency in vitamin D (Supplementary
Table S1). On the other hand, a total of 40.8% of the pubertal children presented obesity
and serum 25(OH)D levels decreased significantly from the prepubertal to the pubertal
stage (∆ = −4.0 ng/mL, p = 0.004) (Table 1), with 64.5% of the children with obesity having
vitamin D deficiency (Supplementary Table S1).

The associations between cardiometabolic variables and 25(OH)D levels in the pu-
bertal stage are shown in Table 2. Results showed that WC (p = 0.021), TAG (p = 0.002),
insulin levels (p = 0.001), HOMA-IR (p = 0.001), and concentration of leptin (p = 0.032) were
inversely associated with 25(OH)D levels and QUICKI (p = 0.001), and directly associated
with this vitamin in the unadjusted model. After adjusting for BMI, sex, and the pubertal
stage, the associations remained for TAG, insulin levels, HOMA-IR, and QUICKI with
25(OH)D levels (B =−0.274, p = 0.032; B = −0.250, p = 0.013; B = −0.219, p = 0.019; B = 1.574,
p = 0.013).

Table 2. Multivariable linear regression analysis between cardiometabolic variables and levels of 25(OH)D, both at the
pubertal stage (T1).

Cardiometabolic
Variables (T1)

25(OH)D Levels (T1) (ng/mL)

Unadjusted Model 1 Adjusted Model 2

B 95% CI p-Value B 95% CI p-Value

Waist circumference (cm) −0.007 −0.013 to −0.001 0.021 −0.002 −0.016 to 0.012 0.759
SBP (mmHg) −0.006 −0.012 to 0.000 0.065 −0.002 −0.010 to 0.006 0.580
DBP (mmHg) −0.059 −0.249 to 0.130 0.535 0.082 −0.138 to 0.302 0.459

Glucose (mg/dL) −0.001 −0.014 to 0.012 0.859 −0.003 −0.016 to 0.010 0.652
Insulin (mUI/L) −0.283 −0.437 to −0.128 0.001 −0.250 −0.446 to −0.054 0.013

HOMA-IR −0.256 −0.404 to −0.108 0.001 −0.219 −0.400 to −0.038 0.019
QUICKI 1.817 0.795 to 2.839 0.001 1.574 0.337 to 2.811 0.013

TAG (mg/dL) −0.349 −0.563 to −0.135 0.002 −0.274 −0.525 to −0.024 0.032
Cholesterol (mg/dL) −0.018 −0.098 to 0.061 0.653 −0.041 −0.121 to 0.038 0.303

HDL-c (mg/dL) −0.015 −0.107 to 0.077 0.748 −0.098 −0.201 to 0.005 0.061
LDL-c (mg/dL) −0.011 −0.075 to 0.053 0.727 −0.019 −0.083 to 0.044 0.551

Adiponectin (mg/L) 0.062 −0.071 to 0.196 0.356 0.003 −0.155 to 0.161 0.973
Leptin (µg/L) −0.080 −0.153 to −0.007 0.032 −0.014 −0.160 to 0.132 0.850

Multivariable linear regression analysis with cardiometabolic variables as independent variables in pubertal children (T1) 1. 2 The model
was adjusted for sex and the BMI z-score, and the pubertal stage (T1). Abbreviations: BMI: Body Mass Index; HOMA-IR: Homeostasis
Model Assessment for Insulin Resistance; QUICKI: Quantitative Insulin Sensitivity Check Index; DBP: Diastolic Blood Pressure; SBP:
Systolic Blood Pressure; TAG: Triacylglycerol; HDL-c: High-Density Lipoprotein Cholesterol; LDL-c: Low-Density Lipoprotein Cholesterol;
SE: Standard Error; CI: Confidence Interval.

Prospective associations between cardiometabolic variables at the prepubertal stage
(T0) and 25(OH)D levels in the pubertal stage (T1) are shown in Table 3. The insulin
(p = 0.030), HOMA-IR (p = 0.032), and adiponectin (p = 0.049) levels in the prepubertal stage
(T0) were inversely associated with 25(OH)D levels in the pubertal stage (T1). Additionally,
the QUICKI was directly associated with 25(OH)D levels (p = 0.043). However, these
associations were not maintained after adjusting the analysis for 25(OH)D levels in the
prepubertal stage (T0), BMI z-score (T1), sex, and the pubertal stage reached.
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Table 3. Multivariable linear regression analysis between cardiometabolic variables at the prepubertal stage (T0) and
25(OH)D levels in the pubertal stage (T1).

Cardiometabolic
Variables (T0)

25(OH)D Levels (T1) (ng/mL)

Unadjusted Model 1 Adjusted Model 2

B 95% CI p-Value B 95% CI p-Value

Waist circumference (cm) −0.004 −0.011 to 0.003 0.272 0.004 −0.005 to 0.013 0.398
SBP (mmHg) −0.007 −0.015 to 0.002 0.110 −0.004 −0.012 to 0.005 0.394
DBP (mmHg) −0.136 −0.295 to 0.023 0.093 −0.076 −0.238 to 0.086 0.352

Glucose (mg/dL) −0.001 −0.012 to 0.011 0.875 0.002 −0.011 to 0.014 0.774
Insulin (mUI/L) −0.136 −0.258 to −0.014 0.030 −0.097 −0.228 to 0.034 0.144

HOMA-IR −0.132 −0.252 to −0.012 0.032 −0.088 −0.214 to 0.039 0.172
QUICKI 0.783 0.025 to 1.541 0.043 0.534 −0.254 to 1.321 0.181

TAG (mg/dL) −0.137 −0.344 to 0.071 0.193 −0.007 −0.227 to 0.214 0.953
Cholesterol (mg/dL) −0.008 −0.080 to 0.065 0.836 −0.004 −0.078 to 0.071 0.917

HDL-c (mg/dL) −0.006 −0.112 to 0.100 0.910 −0.077 −0.184 to 0.030 0.157
LDL-c (mg/dL) −0.004 −0.067 to 0.058 0.888 0.003 −0.060 to 0.065 0.935

Adiponectin (mg/L) 0.140 0.000 to 0.279 0.049 0.070 −0.085 to 0.225 0.373
Leptin (µg/L) −0.006 −0.061 to 0.049 0.835 0.046 −0.015 to 0.108 0.136

Multivariable linear regression analysis with cardiometabolic variables as independent variables in prepubertal children (T0) 1. 2 The
adjusted model was adjusted for 25(OH)D levels in prepubertal stage (T0), BMI z-score (T1), sex, and the pubertal stage reached 2.
Abbreviations: BMI: Body Mass Index; HOMA-IR: Homeostasis Model Assessment for Insulin Resistance; QUICKI: Quantitative Insulin
Sensitivity Check Index; DBP: Diastolic Blood Pressure; SBP: Systolic Blood Pressure; TAG: Triacylglycerol; HDL-c: High-Density
Lipoprotein Cholesterol; LDL-c: Low-Density Lipoprotein Cholesterol; SE: Standard Error; CI: Confidence Interval.

The changes observed in the longitudinal data by the combined groups of obesity
degree and presence of IR are shown in Table 4. Children with OW/OB who developed IR
during puberty (group 5) presented a significant reduction in the concentration of 25(OH)D
(∆ = −7.0 ng/mL; p = 0.035). Moreover, decreases in HDL-c (p = 0.020) and QUICKI
(p < 0.001) and increases in insulin levels (p < 0.001), HOMA-IR (p < 0.001), TAG levels
(p < 0.001), WC (p < 0.001), and systolic (p = 0.002) and diastolic (p = 0.005) blood pressure
were also observed in this group. In addition, a significant correlation was found between
25(OH)D levels and TAG (r = −0.646, p = 0.017) and WC (r = −0.622, p = 0.023) in the
pubertal stage in this group (data not shown).

Finally, negative associations were shown between the change over time (T1–T0) in
TAG and WC with change over time (T1–T0) in 25(OH)D levels (B = −0.098, p = 0.034;
B = −0.206, p = 0.035, respectively) after adjusting for the change in BMI z-score, sex,
and the pubertal stage reached (Supplementary Table S2).

Associations between 25(OH)D levels and WC and TAG in each measurement time and
delta values by obesity degree are shown in Supplementary Figures S2 and S3, respectively.
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Table 4. Characteristics of the participants of the longitudinal study according to obesity degree and presence of IR.

Variables
NW Non-IR No Change

Group 1 (n = 16)
OW/OB Non-IR to NW Non-IR

Group 2 (n = 6)
OW/OB Non-IR No Change

Group 3 (n = 26)
OW/OB—IR to Non-IR

Group 4 (n = 9)
OW/OB—Non-IR to IR

Group 5 (n = 13)
OW/OB IR No Change

Group 6 (n = 6)

T0 ∆ T0 ∆ T0 ∆ T0 ∆ T0 ∆ T0 ∆

Sex, F/M 4/12 4/2 8/18 6/3 8/5 4/2
Age (years) 7.5 (2.1) 7.3 (3.2) ** 8.4 (1.6) 6.4 (2.5) ** 7.8 (1.9) 5.9 (2.5) ** 8.1 (1.9) 5.1 (3.1) ** 7.1 (1.9) 6.5 (2.8) ** 8.6 (0.8) 4.9 (1.9) **
BMI z-score −0.3 (0.6) 0.1 (0.5) 1.3 (0.6) −1.4 (0.4) ** 3.0 (1.3) −1.0 (1.5) ** 3.1 (1.9) −1.0 (1.7) 2.5 (1.1) 0.4 (1.3) 3.5 (1.6) 0.4 (0.9)

BMI (kg/m2) ¥ 15.9 [14.3;
20.2] 3.4 [0.5; 8.7] ** 21.6 [17.7;

24.1]
−0.6 [−3.9;

2.8] 23.6 [19.6; 29.8] 3.07 [−3.9;
10.7] ** 25.4 [21.4; 36.0] 0.8 [−5.2; 11.3] 23.3 [17.9; 25.1] 5.1 [2.5; 15.6] ** 26.2 [23.0; 35.5] 7.1 [2.0; 12.5] *

Waist
circumference (cm) 58.3 (6.1) 13.2 (7.2) ** 75.7 (9.4) −0.2 (9.9) 78.0 (10.2) 10.8 (11.7) ** 81.6 (13.1) 10.2 (16.3) 75.4 (8.5) 18.9 (11.1) ** 89.5 (12.4) 22.4 (13.6) *

SBP (mmHg) 100.7 (11.9) 7.2 (15.2) 105.0 (10.6) 7.8 (17.9) 103.8 (13.5) 12.5 (16.1) ** 109.2 (13.6) 11.8 (15.0) 102.5 (9.0) 13.8 (12.8) ** 111.5 (7.3) 24.1 (29.6)

DBP (mmHg) 59.5
[50.0–72.0]

6.0 [−13.5;
20.5]

68.5 [58.0;
76.0]

−6.0 [−18.0;
3.0] 62.0 [46.0; 81.0] 7.0 [−11.0;

21.0] ** 66.0 [50; 79] 0.5 [−11.0;
31.5] 63.0 [45; 71.0] 9.0 [−4.0; 24.0]

**
64.5 [56.0;

100.0]
7.7 [−20.0;

21.5]
25(OH)D (ng/mL) 27.1 (15.2) −7.6 (13.4) 21.5 (6.8) −0.5 (12.0) 22.2 (8.1) −1.2 (10.8) 24.4 (9.4) −6.3 (9.4) 23.0 (10.8) −7.0 (12.4) * 15.0 (6.3) 0.1 (10.3)
Fasting glucose
(mg/dL) 80.0 (9.2) 0.6 (10.5) 83.3 (8.1) −3.0 (9.0) 80.4 (7.9) −0.5 (10.2) 81.1 (7.9) −3.3 (7.8) 79.4 (6.9) 5.5 (11.8) 87.5 (9.9) −0.5 (17.8)

Fasting insulin
(mUI/L) 4.7 (2.8) 5.3 (3.3) ** 5.6 (3.3) 2.7 (3.1) 5.3 (3.2) 4.3 (4.7) ** 17.0 (6.3) −4.2 (7.2) 7.8 (3.2) 17.3 (8.0) ** 18.1 (5.3) 11.9 (11.7) *

HOMA-IR 0.9 (0.5) 1.1 (0.7) ** 1.1 (0.6) 0.5 (0.7) 1.1 (0.7) 0.8 (0.9) ** 3.3 (0.9) −0.9 (1.4) 1.5 (0.7) 3.8 (2.2) ** 3.9 (1.1) 2.3 (1.8) **
QUICKI 0.4 (0.04) −0.05 (0.04) ** 0.4 (0.04) −0.03 (0.04) 0.4 (0.04) −0.05 (0.05) ** 0.3 (0.01) 0.02 (0.03) 0.4 (0.03) −0.06 (0.03) ** 0.3 (0.01) −0.02 (0.01) **
TAG (mg/dL) 44.8 (19.9) 12.8 (20.5) * 57.7 (24.4) −3.0 (14.1) 52.7 (21.3) 13.6 (26.0) ** 71.7 (26.5) −10.1 (27.1) 55.7 (36.1) 43.8 (31.0) ** 77.8 (34.3) 13.5 (36.6)
Cholesterol
(mg/dL) ¥

175.0
[112.0–231.0]

−5.0 [−28.0;
43.0]

160.0 [119.0;
246.0]

9.5 [−36.0;
25.0]

173.0 [104.0;
298.0]

−7.0 [−101.0;
30.0]

164.0 [141.0;
221.0]

−14.0 [–39.0;
0.0] *

158.0 [102.0;
185.0]

7.0 [−30.0;
33.0]

171.0 [135.0;
203. 0]

−11.5 [−36.0;
29.0]

LDL-c (mg/dL) ¥ 102.0
[54.0–140.0]

−1.5 [−32.0;
25.0]

99.5 [56.0;
184.0] 3.0 [−30.0; 9.0] 101.0 [56.0;

224.0]
−5.0 [−81.0;

24.0]
83.0 [66.0;

155.0]
−5.0 [−35.0;

10.0]
92.0 [52.0;

114.0]
2.0 [−31.0;

28.0]
96.0 [62.0;

149.0]
−8.0 [−29.0;

15.0]
HDL-c (mg/dL) 59.7 (13.4) 0.2 (11.6) 51.3 (7.9) 6.7 (10.6) 53.7 (12.9) −6.0 (15.1) 51.0 (11.9) 2.3 (28.9) 46.0 (9.8) −3.7 (5.0) * 46.8 (12.8) −2.3 (12.0)
Adiponectin
(mg/L) 23.3 (14.6) −9.0 (15.4) * 17.4 (11.4) 0.1 (15.6) 17.6 (13.1) −6.5 (15.1) * 15.3 (10.0) −1.9 (11.4) 11.4 (4.3) −3.6 (6.2) 18.2 (11.6) −0.8 (8.8)

Leptin (µg/L) 3.7 (6.2) −0.1 (5.8) 9.4 (5.1) −5.5 (4.22) * 14.2 (11.3) −4.2 (12.3) 22.2 (22.0) −11.4 (21.6) 13.5 (4.2) 3.0 (6.2) 34.5 (9.3) −11.2 (11.2)

Data are expressed as mean (standard deviation) or median [min; max]. * p < 0.05; ** p < 0.01—statistical differences between prepubertal stage and pubertal stage (all) (paired t-test or ¥ Wilcoxon
test). ∆: changes (T1–T0). Abbreviations: NW: Normal Weight; OW: Overweight; OB: Obesity; F: Female; M: Male; BMI: Body Mass Index; DBP: Diastolic Blood Pressure; SBP: Systolic Blood Pressure;
25(OH)D: 25-hydroxycholecalciferol; HOMA-IR: Homeostasis Model Assessment for Insulin Resistance; QUICKI: Quantitative Insulin Sensitivity Check Index; TAG: Triglycerides; HDL-c: High-Density
Lipoprotein Cholesterol; LDL-c: Low-Density Lipoprotein Cholesterol.
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4. Discussion

Our findings showed that, in the pubertal period, the increase in insulin levels, HOMA-
IR, TAG, and decrease in QUICKI was significantly associated with the reduction in
25(OH)D levels independently of sex, body mass, and the pubertal stage reached. How-
ever, no associations were found in the prepubertal stage when adjusting by the potential
covariables. Additionally, non-insulin-resistant children with overweight or obesity that
changed to insulin-resistant during puberty showed a significant decrease in the concen-
tration of 25(OH)D over time accompanied by a reduction in HDL concentrations and an
increase in the TAG levels and WC.

4.1. Deficiency of Vitamin D

Most of the worldwide population has vitamin D deficiency, which has been related,
in part, to obesity [29]. In our pubertal sample, 92.6% of children with overweight and
obesity showed non-adequate values of vitamin D (31.5% insufficiency and 61.1% defi-
ciency), while out of the normal-weight children, 90.9% showed non-adequate values
(27.3% insufficiency and 63.6% deficiency). Out of those that showed deficiency in the
total pubertal sample, 70.2% had overweight or obesity and 29.8% were normal weight.
Some mechanisms have been hypothesized to explain the relation between vitamin D
deficiency and obesity, such as lower dietary intake of vitamin D, reduced skin exposure
to sunlight due to limited time spent on outdoor physical activity [30], and 25(OH)D
accumulation in fat and dilution volumetric of this vitamin due to a large amount of fat
mass [6]. In this sense, all children evaluated in this study lived in a region above the 43rd
parallel north, where they are considered at risk of vitamin D deficiency due to low sun
exposure, especially during winter.

4.2. Insulin Resistance and Vitamin D

Previous studies have shown that vitamin D deficiency is related to IR and to alter-
ations in the markers that characterize metabolically unhealthy individuals with obesity.
In these studies, it has also been found that vitamin D deficiency increases the risk of
cardiovascular disease in children with obesity [3,31–33]. However, there is a lack of stud-
ies showing that IR and the other cardiometabolic markers are predictors of vitamin D
concentration. In our sample, we have found that, regarding IR and vitamin D, insulin
levels and HOMA-IR were inversely associated with 25(OH)D concentration in children.
Further, corroborating these relationships, insulin sensitivity (QUICKI index) was directly
associated with concentrations of 25(OH).

The role of vitamin D status on glucose homeostasis can be explained by the fact that
the active form of vitamin D (1,25[OH]2D) activates the transcription of the insulin receptor
and peroxisome proliferator-activated receptor-δ genes and increases insulin-mediated
glucose transport [34]. Moreover, this vitamin has been found to participate in the synthesis
and improvement of insulin sensitivity due to the vitamin D receptor and enzyme 1-α-
hydroxylase in pancreatic beta cells, the vitamin D response element in the promoter insulin
gene, and the vitamin D receptor in skeletal muscle [34]. In addition, vitamin D has been
linked to mitochondrial function in experimental studies [35,36], and the dysfunction of
these organelles precedes the development of IR.

4.3. Puberty, Insulin Resistance, and Vitamin D

Previous longitudinal studies have suggested that puberty influences vitamin D
status and its relation with IR and other metabolic syndrome components in the pediatric
population [17,37,38]. In this sense, it has been shown that the prevalence of vitamin D
deficiency increases among older children [39,40], and puberty seems to influence this
deficiency [4,41], probably due to the increased requirement of vitamin D for growth and
bone turnover [14]. It is worth noting that puberty is marked by an increase in body
weight, which is associated with IR and a reduction in serum 25(OH)D levels [17,41–43].
However, previous studies found no associations between serum 25(OH)D and insulin
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parameters in prepubertal children [38,42]. This is in line with the cross-sectional results
of the present study, where no significant associations were observed between HOMA-IR
and the 25(OH)D levels in the prepubertal children. However, we did find cross-sectional
associations between HOMA-IR and 25(OH)D levels in the pubertal period, suggesting
that these associations could be triggered by puberty.

4.4. Obesity during Puberty, Insulin Resistance, and Vitamin D

We found that the development of IR during puberty in children with OW/OB
was accompanied by a reduction in 25(OH)D and HDL-c levels and an increase in the
concentrations of TAG. These outcomes increase the cardiovascular risk in this population.

Several studies have associated the development of obesity with puberty; however,
this relationship has been shown to be bidirectional, i.e., excess weight can also influ-
ence puberty [44–46]. Proposed mechanisms for these relationships include the action
of aromatase in adipose tissue, an enzyme that acts in the conversion of androgens to
estrogens; the latter being known to increase body fat, favoring body weight gain [47,48].
Besides these, a direct action of adipokines has also been postulated, especially leptin,
for its action in regulating the hypothalamic–pituitary–gonadal axis, signaling the release
of gonadotropin-releasing hormone (GnRH), a mechanism necessary for the onset of pu-
berty [48,49]. Moreover, worsening glucose tolerance associated with obesity is also another
aspect observed in pubertal children compared to those in the prepubertal stage [50,51],
which, added to the increased production of adipokines in obesity, increases the chances of
developing IR during puberty [52].

It is already known that obesity is the main contributing factor to IR in children since
the hypertrophy of adipose tissue in obese children associated with stromal hyperprolif-
eration along with macrophage infiltration evidence the participation of inflammation in
IR [53]. In addition to the previous explanation, obesity and IR are associated with the
presence of chronic low-grade inflammation, situations that may benefit from adequate
vitamin D status, given its action in reducing cytokine and chemokine release by adipocytes
and chemotaxis of monocytes [31,54].

In a preclinical study, vitamin D insufficiency exacerbated macrophage recruitment,
and adipose tissue increased in animals under high-fat diet conditions with a concomitant
release of proinflammatory adipokines [54]. Several studies have already shown an inverse
relationship between overweight or obesity and vitamin D deficiency in children and
adolescents [4,55,56]. This relationship also was observed in a meta-analysis of epidemio-
logical studies with adults, in which increased vitamin D concentrations reduced the risk
of abdominal obesity in a dose-dependent manner [57]. Thus, adequate vitamin D levels
may be even more necessary in the population with obesity than in the normal-weight
population.

The relationship between obesity, IR, and vitamin D deficiency in the pediatric pop-
ulation is still not clarified, especially during puberty. Previous studies demonstrated
that the serum 25(OH)D and IR in children with obesity are influenced by puberty [42,58].
In addition, another study showed that children with central obesity and suboptimal
vitamin D levels before puberty onset had higher IR in the pubertal stage when compared
with those without central obesity and optimal vitamin D levels [17]. These outcomes
increase the cardiovascular risk in our population. In the present study, we have shown
that cardiometabolic variables predict lower 25(OH)D levels at the pubertal stage. Addi-
tionally, associations between the increased TAG levels and reduction of 25(OH)D serum
concentrations were found during puberty. Although studies that show associations in this
direction are not found in the literature, vitamin D and dyslipidemias have been the focus
of studies involving children with obesity [56,59] and in the pubertal stages [38,56].

4.5. Strengths and Limitations

Some limitations need to be considered for the present study. First, the small sample
size; however, the lack of longitudinal studies should be taken into account. In addition,
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the study did not include data on diet or sun exposure. Considering that the children
live in a region above the 43rd parallel north, a deficit risk zone for hours of sunlight and
radiation angle, blood was collected in all seasons. On the other hand, this study presents
the strength of having measured 25(OH)D levels and cardiometabolic risk markers at
different stages of sexual maturation so that the influence of puberty on the outcomes of
interest and the longitudinal associations could be assessed.

5. Conclusions

In conclusion, there is an association in puberty between some cardiometabolic factors
and 25(OH)D levels, but this was not found in the prepubertal stage. Interestingly, non-
insulin-resistant children with overweight or obesity that became insulin-resistant during
puberty showed a significant decrease in the concentration of 25(OH)D over time and
HDL-c while they showed a significant increase in WC and TAG levels. Additionally,
the changes during puberty of the cardiometabolic factors, specifically TAG levels and WC,
were negatively associated with changes in 25(OH)D levels, independently of body mass
index. In addition, considering the endemic deficiency/insufficiency of vitamin D in the
population, children with IR and obesity could present even lower levels of 25(OH)D along
with other cardiometabolic disorders. These results highlight the importance of screening
and preventing vitamin D deficiency during puberty to avoid cardiometabolic risk early
in life and the utility of vitamin D as a cardiometabolic risk marker. Further longitudinal
studies are needed to investigate those associations in depth.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13124488/s1, Supplementary Figure S1: Study design and experimental details of the
study population, Supplementary Figure S2: Associations between 25(OH)D levels and WC in
prepubertal (T0) and pubertal stages (T1), and delta values, by obesity degree, Supplementary
Figure S3: Associations between 25(OH)D levels and TAG in prepubertal (T0) and pubertal stages
(T1), and delta values, by obesity degree. Supplementary Table S1: Percentage of prepubertal
and pubertal children according to vitamin D status and obesity degree. Supplementary Table
S2: Multivariable regression analysis between change of cardiometabolic variables and change in
25(OH)D levels (delta values T1–T0).
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