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ABSTRACT

The relevance of the intrinsic series resistance effect in the context of resistive random access memory (RRAM) compact modeling is investi-
gated. This resistance notably affects the conduction characteristic of resistive switching memories so that it becomes an essential factor
to consider when fitting experimental data, especially those coming from devices exhibiting the so-called snapback and snapforward effects.
A thorough description of the resistance value extraction procedure and an analysis of the connection of this value with the set and reset
transition voltages in HfO2-based valence change memories are presented. Furthermore, in order to illustrate the importance of this feature
in the shape of the I–V curve, the Stanford model for RRAM devices is enhanced by incorporating the series resistance as an additional
parameter in the Verilog-A model script.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055982

I. INTRODUCTION

Resistive Random Access Memories (RRAMs) are nowadays
under study worldwide for their outstanding potential in the devel-
opment of non-volatile memory-based applications.1,2 Because of
their tunable conduction properties, resistive switching devices are
also gaining momentum in the neuromorphic circuit landscape
since they can mimic biological synapses.3–7 Their use in a fully
compatible CMOS technology context can unleash an overwhelm-
ing development of these applications to advance in neuromorphic
computing and neural network hardware implementation.3–7

Moreover, due to their inherent stochastic nature, these devices can

be used as entropy sources for cryptographic circuits, such as physi-
cal unclonable functions and random number generators.8–10

RRAMs features allow us to stack cells in 3D and scale to very
small process nodes. The cells typically employ a switching material
(usually a transition metal oxide) sandwiched in between two metal
electrodes.1,2 One of the most important physical mechanisms
associated with resistive switching (RS) is the formation and
rupture of nanofilaments across the dielectric film. From a technol-
ogy point of view, there is substantial flexibility to optimize the per-
formance through an appropriate selection of switching materials
and memory cell organization. However, although RRAMs have
demonstrated some advantages over flash devices and other
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emerging structures (phase change memories and ferroelectric
memories) such as short read/write times, high endurance, low
power operation, radiation hardness, CMOS compatibility, they are
not exempt from serious drawbacks.2,11 It is worth mentioning that
massive industrial production still faces several challenges such as a
high variability and the lack of reliable electronic design automa-
tion EDA tools. In this regard, compact models are essential tools
to tackle these latter concerns.

RRAM compact modeling has been addressed in the last years
at different levels. The Stanford model (STFM)12–15 has been
employed by many research groups. Other models have also been
introduced.16–20 In the general modeling context, both analytical
expressions to describe device operation and parameter extraction
techniques need to be developed as a whole.21 Even well-established
models are unable to reproduce certain observable phenomena
and, therefore, they must be continuously improved to account for
new physical and technological features associated with particular
materials or devices. This is precisely the focus of our work. In par-
ticular, we take the intrinsic series resistance effect in RRAM opera-
tion analysis into consideration and report a systematic approach
to extract this series resistance from the experimental results. As it
will be shown in Secs. II–V, the role played by the series resistance
is of utmost importance for understanding the RRAM electrical
behavior, an issue which has been already recognized by several
authors.22–25 The study of the role played by the series resistance
within RRAM models is particularly performed for the STFM since
its use is extended and its algebraic formulation is both compact as
well as intuitive. The enhanced STFM flexibility to reproduce
valence change memories (VCM) experimental data is assessed in
depth. For the sake of completeness, it is worth pointing out that in
the last few years, VCM devices modeling has been addressed

following a variety of approaches;12,14,16–18 in particular, different
types of filament shapes have been considered (cylindrical, trun-
cated cone, and hourglass26). In addition, from the analytical for-
mulation viewpoint, the state variable has been assumed from a
different perspective: the width of the gap between the conductive
filament tip and the electrode,12,13 the CF volume or radius,17,18

and as a generalized memory variable.27 The device current calcula-
tion has been performed also under different considerations includ-
ing tunneling, Schottky, Poole–Frenkel, and ohmic conduction
regimes.12,14,20,26 Some of the modeling implementations also
account for variability28 and noise; in the latter case, Random
Telegraph Noise (RTN) has been found appropriate for crypto-
graphic purposes such as random number generation circuits.9,29

The paper is organized as follows, in Sec. II, we introduce the
device fabrication and measurement details. Section III is devoted
to the series resistance extraction procedures, while the modeling
developments are tackled in Sec. IV, and finally, we wrap up with
the main conclusions in Sec. V.

II. DEVICE DESCRIPTION AND MEASUREMENT

The RRAMs were fabricated using a highly doped N-type
(ρ = 4mΩ cm) silicon wafer. The top metal electrode consists of a
200 nm TiN/10 nm Ti bi-layer while the bottom metal, a
50 nm-thick W layer, was deposited on the silicon substrate with a
20 nm Ti adhesion layer, see Fig. 1(a). The back of the wafers was
metalized with aluminum for electrically contacting the bottom
electrode through the silicon substrate. The dielectric layer consists
of a 10 nm-thick HfO2 film deposited by ALD. The area of the
devices is 15 × 15 μm2. It is worth mentioning that the fabricated
RRAMs are valence change mechanism-based devices.

FIG. 1. (a) Layer stack scheme of the devices under study and (b) experimental I–V curves for 1000 set/reset cycles. The inset in (b) shows the set and reset voltages for
two of the curves measured.
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The electrical characterization of the devices was performed
applying a ramped voltage (0.08 V/s) to the TiN/Ti top electrode
with a voltage step of 0.01 V and with the W bottom electrode
grounded. A forming process was performed with current compli-
ance ICC= 0.1 mA and subsequently a sequence of 1000 RS cycles

was measured, see Fig. 1(b). These cycles consist of consecutive set
and reset transitions. In particular, for positive voltages, a set
process leads to the formation of a conductive filament (CF) that
shorts the electrodes30 and the device switches to the low resistance
state (LRS). The reset process occurs at negative voltages, in this
case, the CF is ruptured and the device switches back to the high
resistance state (HRS).30 See the set and reset voltages indicated in
the inset of Fig. 1(b).

III. SERIES RESISTANCE AND TRANSITION VOLTAGES
EXTRACTION

In order to calculate the intrinsic series resistance, Rseries,
for compact modeling purposes, a numerical procedure similar to
that used in previous publications22–24 is considered here.
The method consists in using a redefined voltage scale,
VN = VApplied – IMeasured × Rseries, where VApplied is the external
applied voltage and IMeasured the measured current. We replot
the experimental I–V curves (as the ones shown in Fig. 1) by
changing the variable in the X axis to VN instead of the experi-
mental VApplied. By sweeping Rseries, we obtain different modified
IMeasured–VN curves (see Fig. 2). Among them, we select the one
with the steepest slope (close to a vertical line) in the region after
the curve knee; in doing so, we make sure the set process is visual-
ized properly as long as the current rises while the voltage is cons-
tant as shown in Fig. 2. This behavior is a clear sign of a sustained
conductive filament growth that leads to a current rise even if the
device voltage is fixed. The slope of the curve is computed by a
linear regression scheme along its straightest part.

Based on the obtained Rseries value, a comparison between Vset

and the transition voltage for the set process (VTS) is performed to
assess the influence of Rseries on the I–V curves. Notice that Vset is
obtained from the original I–V curve (first point where the

FIG. 2. Modified I–V curves (measured current vs VN) for a set process making
use of different series resistances. For the sake of clarity, only four curves corre-
sponding to different series resistances are included. The black-dashed lines
are the result of the linear regression performed to choose the curve with the
highest slope in the methodology proposed.

FIG. 3. Experimental current vs applied voltage for one cycle in a long RS series for one of the devices under study. The new transition voltage VTS is obtained from the
I–VN curve. (a) Linear and (b) logarithmic scale.
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maximum current slope along the I–V curve is found) and VTS from
the modified one (IMeasured–VN) after the Rseries calculation. In this
latter case, the projection in the X axis of the vertical line obtained in
the new curve (IMeasured–VN) is assumed as VTS (see Fig. 3).

The above described methodology can lead to erroneous
values for the series resistance in some particular I–VN curves
(because of the snapback effect). In order to improve the

parameter extraction method, only a region of the vertical section
of the modified I–V curve is fitted when searching for the steepest
slope. As indicated in Fig. 4(a), the fitting region is selected to be
in between a current value of 0.9 × Imax and a current resulting
from the average of the current (IS) (obtained at the point where
the set voltage is determined in the original experimental curve)
and the maximum current Imax, as shown in Fig. 4(a). This

FIG. 4. (a) Modified I–V curve in a set process for a series resistance = 22.1Ω. This value was obtained with the improved methodology. (b) Application of this methodol-
ogy to the 1000 RS set cycles measured (for each I–V curve one series resistance value is obtained). The red line indicates the average curve (calculated as the mean)
of all the RS cycles, while the black curve corresponds to the median curve of all the RS cycles considered.

FIG. 5. (a) Experimental and modified reset I–V curves. (b) Modified I–V reset curves for the 1000 cycles measured. The red line corresponds to the average curve (calcu-
lated as the mean) of all the RS cycles and the black curve corresponds to the median.
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methodology has been found to be more appropriate when snap-
back effects [Fig. 4(a)] take place in the lower part of the “intrin-
sic” I–V curve.22–24 By doing this, the snapback is avoided since
this region represents the starting phase of the conductive fila-
ment formation (the weight of the series resistance with respect
to the overall resistance, device plus series resistance, changes fast

here). The proper set process takes place in the vertical section of
the I–VN curve, as already stated. While the highest region of the
curve cannot be considered because of a different reason. When
the filament can no longer expand, the process slows down,
which can be regarded as the appearance of an additional series
resistance.

FIG. 6. Transition voltage for reset vs transition voltage for set for the data under study (1000 cycles). (a) The correlation of the variables plotted is shown and the corre-
sponding series resistances are given in a color code. (b) 3D plot of the series resistance vs set transition voltage and reset transition voltage for the whole RS series.

FIG. 7. Cumulative distribution functions for the studied parameters in the whole RS series: (a) series resistance and (b) transition voltages for the set (VTS) and for the
reset processes (VTR). The mean values for the series resistance, VTS, and VTR are 22.80Ω, 0.418 V, and −0.384 V, respectively. The standard deviation for the latter
parameters is 2.26Ω, 0.042 V, and 0.043 V in each case.
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FIG. 8. (a) Calculated series resistance vs cycle number in the whole RS series for the data under study and (b) set transition voltage (VTS) and reset transition voltage
(VTR) vs cycle number in the whole RS series for the data under study.

FIG. 9. (a) Three-dimensional view of the STFM modeling structure with an indication of different device regions [top electrode (TE), dielectric, conductive filament, and
bottom electrode (BE)] and (b) schematic representation of the main model geometrical parameters. The gap (g) between the TE and the filament tip is one of the state
variables, the other one is the temperature (T), (c) subcircuit for the STFM implementation, and (d) proposed modification of STFM implementation with cylindrical CF
including the series resistance.
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Figure 4(b) shows the proposed fitting methodology applied
to the measured 1000 RS cycles as well as the median and average
I–V curve. As it can be seen, the snapback effect is clear for some
of the curves plotted. Once Rseries is determined after obtaining the
steepest slope, the reset curves are corrected accordingly as illus-
trated in Fig. 5.

In addition, the reset and reset transition (VTR) voltages are
calculated from the measured and corrected reset curves, respec-
tively. They are obtained as the voltages corresponding to the
maximum current values, see Fig. 5(a). Notice that the values of
the set and reset transition voltages are quite similar, suggesting a
clear electric field dependence of the resistive switching mecha-
nisms. They are the minimum voltages required to induce the
vacancy movements in opposite directions. Nevertheless, tempera-
ture effects are also known to be involved in resistive switching due
to the thermally activated nature of the diffusive transport
mechanism.12,30–35 It is interesting to notice the axes scale in
Fig. 6(a), the transition voltages are located in relatively narrow
intervals; i.e., cycle-to-cycle variability is low (within a few tenths
of a volt). In addition, see that the higher the transition voltages
absolute value, the lower the series resistance, Fig. 6(b).

Figure 7(a) illustrates the cumulative distribution function
(CDF) for the series resistances extracted from the 1000 cycles
measured. The corresponding transition voltages CDFs are shown
in Fig. 7(b). Notice that VTS and VTR are described by the same
CDF except for the voltage sign (they are parallel).

The variability of the series resistance and the transition vol-
tages as a function of the cycle number is illustrated in Figs. 8(a)
and 8(b), respectively. A reasonable modeling of these numerical
series can be performed by means of time series analysis for circuit
simulation purposes.36 Notice that cycle-to-cycle (C2C) autocorre-
lation effects cannot be disregarded. In addition, the results
seem to be consistent, at least in the medium term, with a

mean-reverting stochastic process. In the case of VTR and VTS, the
cross-correlation is more than evident: as VTS increases, VTR

decreases in a symmetrical fashion. Again, this is a clear evidence
that the same physical mechanism activates the switching process.

Once the intrinsic series resistance parameter is extracted, the
C2C variability and the statistical distribution of the results can be
analyzed and quantified; in Sec. IV, we introduce the observed
parameter variation in the compact modeling approach. It is
important to highlight that the methodology introduced here,
although presented for VCM devices could also be employed with
other RRAM technologies.

IV. SERIES RESISTANCE INFLUENCE ON RRAM
COMPACT MODELING

In this section, the role played by the series resistance in the
RRAM electrical behavior is investigated by means of the Stanford

FIG. 10. Experimental (black symbols) and modified current (red symbols) vs voltage. Modeled data employing the STFM are shown for the modified (red line) and origi-
nal (black line, in this case, it is included an external resistance to account for the role of the series resistance, see the schematic). (a) Linear and (b) logarithmic scales.

TABLE I. Stanford model parameters employed for the fitting of the experimental
devices under study, in particular, for the cycle selected in Fig. 10.

Stanford model parameters

Device parameters Unit Resistive switching

Set Reset
Vo V 0.45
I0 mA 48
g0 nm 0.35
ν0 m/s 5 × 106

Α … 1 1.1
Β … 1 15
γ0 … 20
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FIG. 11. Current vs voltage for the modeled curves obtained with the Stanford model isolating some parameter variations. (a) I0, (b) ν0, (c) V0, (d) β, (e) g0, and (f ) γ0.
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model,12–15 see Fig. 9. The model consists in a differential equation
that describes the gap between the conductive filament tip and the
electrode (g), a current equation that shows exponential dependen-
cies with the gap and the applied voltage and a thermal model that
allows the calculation of the main filament temperature by means
of the device thermal resistance and capacitance. The series resist-
ance is introduced as a series component to the original model.
Notice that by doing this we consider the case in which part of this
series resistance can be external to the device.

Figure 10 illustrates a typical RS cycle simulation using the
STFM. The model is coded in Verilog-A. The inclusion of the
series resistance notably improves the fitting of the original experi-
mental results (see Table I for the model parameters).

The fitting was performed with and without a series resistance
(previously extracted, Rseries = 22.3Ω) in the simulation, see
Fig. 9(d). As can be seen, a good approximation was obtained in

the experimental I–V curve. This versatile and simple model works
well; however, for higher accuracy, other models (with even higher
complexity) need to be considered.16–19 As expected, there is a
trade-off between accuracy and complexity in the RRAM modeling
approach. In particular, for the devices considered here, we assume
some model parameters different for the set and reset processes, as
suggested in Ref. 14, see Table I.

Importantly, the set of parameters employed to simulate the
TiN/Ti/HfO2/W structure is different from what was used for other
type of devices.14 In particular, device currents for our devices are
higher than those reported in Ref. 14 and the abruptness of the
I–V curves at the onset of the set and reset processes is different.
To have a clear picture of the model behavior, we have analyzed the
influence of some of the model parameters on the I–V curve shape,
see Fig. 11 (in this case, no series resistance correction is included).
By accounting for the parameter variation, we can reproduce the

FIG. 12. Calculated radii of a cylindrical CF employed to model series resistance vs cycle number in the whole RS series obtained considering g = 2 nm and
σCF = 5 × 10

5 S/m (a) or g = 2 nm and σCF = 5 × 10
6 S/m (c). (b) and (d) Corresponding cylinder radii histogram for g = 2 nm and σCF = 5 × 10

5 S/m (σCF = 5 × 10
6 S/m).
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cycle-to-cycle variability observed in our devices. Although this is
out of the scope of this paper, we will try to establish next the con-
nection between the resistance variation and the CF physical aspect.

In order to complete the picture, the series resistance effect
can be incorporated into the STFM assuming approximately a
cylinder-like structure for the CF. This could be linked to the fila-
ment remnants after the reset process. In this case, as shown in the
schematics included in Fig. 9, due to the particularities of these
devices, we can compute the cylinder radius under this approxima-
tion using Eq. (1) (see Fig. 12),

Rseries ¼ tox � g
πσCFr2CF

: (1)

The following values for the gap and electrical conductivity
are considered in Figs. 12(a) and 12(b) (g = 2 nm and
σCF = 5 × 105 S/m, this latter value is in line with those previous
reported in Ref. 17), and in Figs. 12(c) and 12(d), g = 2 nm and
σCF = 5 × 106 S/m (a conductivity value in line with Ref. 37) were
employed.

See that the estimated radii are in the order of several nano-
meters [Figs. 12(a) and 12(b)] but recall that this could depend on
the electrical conductivity considered [Figs. 12(c) and 12(d)]; in
this respect, a kind of “effective” radii should be understood here
since, in real devices, conductive filaments are not strictly cylindri-
cal; in fact, the wider parts seem to be located close to the
electrodes.30

Finally, Fig. 13 shows the original fitting (see the red line in
Fig. 10) and simulations including a series resistance ranging from
0 to 100Ω. The role played by the series resistance is clearly recog-
nized from these plots. The experimental I–V curve shapes in this
type of devices (Fig. 1) are more closely reproduced when series
resistances are included (Fig. 13). In particular, as the series

resistance increases the set curve slope drops off. Notice that this is
not related to the progressiveness of the set transition but only a
consequence of the additional potential drop. Similarly, a more
progressive current reduction in the reset region is seen as the
series resistance increases.

V. CONCLUSIONS

The role played by the intrinsic series resistance in RRAM
devices has been analyzed from a compact modeling viewpoint.
The extraction procedure of the series resistance parameter has
been evaluated using experimental data from HfO2-based VCM
devices. The use of the series resistance to redefine the measured
I–V curves allows us to extract device transition voltages. These
transition voltages are shown to be correlated. It has been found
that the lower the series resistance is, the higher the transition
voltage absolute values are. We have also employed the series resist-
ance to enhance the accuracy of the RRAM Stanford model. The
use of this parameter to enhance the Stanford model allows us to
improve experimental data fitting.
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