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Abstract: Increasing prevalence of metabolic syndrome (MetS) is causing a significant health burden
among the European population. Current knowledge supports the notion that endocrine-disrupting
chemicals (EDCs) interfere with human metabolism and hormonal balance, contributing to the
conventionally recognized lifestyle-related MetS risk factors. This review aims to identify epidemio-
logical studies focusing on the association between MetS or its individual components (e.g., obesity,
insulin resistance, diabetes, dyslipidemia and hypertension) and eight HBM4EU priority substances
(bisphenol A (BPA), per- and polyfluoroalkyl substances (PFASs), phthalates, polycyclic aromatic
hydrocarbons (PAHs), pesticides and heavy metals (cadmium, arsenic and mercury)). Thus far,
human biomonitoring (HBM) studies have presented evidence supporting the role of EDC exposures
on the development of individual MetS components. The strength of the association varies between
the components and EDCs. Current evidence on metabolic disturbances and EDCs is still limited and
heterogeneous, and mainly represent studies from North America and Asia, highlighting the need
for well-conducted and harmonized HBM programmes among the European population. Rigorous
and ongoing HBM in combination with health monitoring can help to identify the most concerning
EDC exposures, to guide future risk assessment and policy actions.

Keywords: metabolic syndrome; endocrine disrupting chemicals; human biomonitoring; HBM4EU;
obesity; insulin resistance; diabetes; dyslipidemia; hypertension

1. Introduction

The burden of non-communicable diseases (NCDs) is increasing worldwide and ex-
panding rapidly, affecting not only adults but also children and adolescents [1]. Many
NCDs share common risk factors such as sedentary lifestyles and unhealthy diets, increas-
ing the risk of obesity, hypertension, and distorted lipid and glucose metabolism, which
together are also known as metabolic syndrome (MetS), a strong predictor of cardiovascular
disease morbidity and mortality.

The latest MetS definition is from the Joint Interim Statement (JIS), developed jointly
by the International Diabetes Federation, the National Heart, Lung, and Blood Institute, the
American Heart Association, the World Heart Federation, the International Atherosclerosis
Society, and the International Association for the Study of Obesity [2]. The JIS definition of
MetS requires that at least three of the following five clinical findings are met: elevated waist
circumference, elevated triglycerides, reduced HDL cholesterol, elevated blood pressure,
and/or elevated fasting glucose [2]. In clinical practice and research, several definitions of
MetS with different cut-off points are still used, which may change classifications, analysis,
results, and interpretation of the findings [3,4].
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Traditionally, MetS has been related to unhealthy lifestyle factors, such as high calorie
and ultra-processed diets, decreased physical activity, and genetic predisposition. [5]. Since
environmental chemical production has increased rapidly in the past years [6], interest
has also grown towards understanding the association of chemical exposure and aetiology
and pathophysiology of metabolic disturbances through endocrine disruption. Therefore,
recently, exposure to endocrine disrupting chemicals (EDCs) has been identified as an
additional and inadvertent risk factor for metabolic disorders. EDCs exposure starts in
utero and continues throughout the human lifespan. Early life exposure, pregnancy and
childhood have been identified as high vulnerability stages for EDC exposure, increasing
the risk of disease later in life and in subsequent generations [7]. Other identified high-risk
groups are certain occupations [8–10], and those with low socioeconomic status [11].

The Endocrine Society has defined EDCs as “exogenous chemicals, or mixture of
chemicals, that can interfere with any aspect of hormone action” [12]. The WHO defined
endocrine disruptors as: “an exogenous substance or mixture that alters function(s) of the
endocrine system and consequently causes adverse health effects in an intact organism, or
its progeny, or (sub)-populations” [13].

Several European studies have estimated the prevalence of MetS to be between 13–35%
among large European cohorts, mostly around 25% [3,14,15]. In addition to the considerable
public health burden and increased risk of cardiovascular diseases, type 2 diabetes and
non-alcoholic fatty liver disease [5], the economic impact of MetS on Europe’s health care
costs is tremendous [16,17]. EDC-related health costs in the European Union have been
assessed to be several hundreds of billions of euros annually [17]. Prenatal BPA exposure
alone was identified to have a 20–69% probability of causing 42,400 cases of childhood
obesity, with associated lifetime costs of EUR 1.54 billion [18].

In this overview, the most suggestive EDCs prioritized in the European Human
Biomonitoring Initiative (HBM4EU) [19,20] are presented in relation to the MetS compo-
nents. The aim of this review is not to be all-encompassing, but rather focus on the most
crucial EDCs identified and provide information for policy makers, the general public
and health professionals towards a more comprehensive approach regarding metabolic
disturbances.

2. Methods

The HBM4EU is a joint effort of 30 countries and the European Environment Agency,
co-funded by the European Commission. The initiative coordinates and advances HBM
in Europe among different populations, identifies possible health impacts caused by en-
vironmental chemicals, and provides information on possible health effects to support
policy making. During the HBM4EU initiative 2017–2021, two sets of priority substances
were identified by international research teams, substance experts and other public health
professionals. [19,20] This prioritization led to the identification of 18 compounds or groups
of substances: acrylamide, aniline family, aprotic solvents, arsenic, benzophenones, bisphe-
nols, cadmium (Cd), chromium VI (Cr VI), flame retardants, lead (Ld), mercury (Hg),
mycotoxins, per-/polyfluorinated compounds (PFAS), non-persistent pesticides, phtha-
lates and HexamollDINCH, polycyclic aromatic hydrocarbons (PAHs), chemical mixtures,
and emerging chemicals. These substances are presented in scoping documents, which can
be found on the project’s website with detailed information [21].

Those scoping documents were used as basis for this review. A supplementary
literature search on specific HBM4EU priority substances and metabolic syndrome and
its components was conducted during the first half of 2021 on PubMed. In the literature
search, key words, such as ‘chemical exposure’, ‘environmental chemicals’ and each of
the individual priority substances or groups of substances and ‘metabolic syndrome’ and
each of its individual components ‘diabetes’, ‘glucose’, ‘obesity’, ‘weight’, ’blood pressure’,
‘hypertension’, ‘lipids’ were used in different combinations. The search criteria were limited
to recent systematic reviews, reviews, and meta-analysis. If there were no or a very limited
number of review papers available, individual epidemiological studies were also included
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in the review. Through this process we identified eight substances presented in this study
for which associations with MetS or any of its components were observed.

This was not a systematic review, but a scoping review methodology was applied.
A scoping review provides an overview of the available research evidence but does not
provide a quantitative assessment and does not allow use of formal meta-analytic meth-
ods [22].

In this short overview, only the most suggestive associations between the HBM4EU
selected chemicals and MetS outcomes are presented. The main focus was on vulnerable
populations, such as pregnant women, in utero exposure and childhood exposure.

3. Results

Figure 1 summarizes the existing knowledge on associations between different chemi-
cal families and MetS components. The following sections will provide more details on
existing knowledge of chemicals or groups of substances.

Figure 1. Identified associations between substances and components of metabolic syndrome (color of the line refers to the
substance and line type to the component of the metabolic syndrome).

3.1. Bisphenols

Bisphenol A (BPA) is one the most produced and used plasticizers worldwide. BPA
acts as an endocrine disruptor, xenoestrogen in particular, and the newer substitutes
bisphenol F (BPF) and S (BPS) are suggested to have similar effects [23,24]. Human
bisphenol exposure is ubiquitous, and contamination happens through ingestion, dermal
absorption, and inhalation of particulates and vapor phases [25]. Common exposure
pathways include epoxy resins in canned foods/beverages, polycarbonate plastics, thermal
paper, plastic toys, dental materials, and consumer goods [26]. As the use of BPA is
decreasing, substitutes such as BPS and BPF are becoming more widely used [24]. However,
the current evidence shows that most alternative bisphenols are as hormonally active as
BPA [24,27].

BPA presents a short biological half-life in the human body, approximately 6 h, and
after oral administration the maximum concentration in blood occurs within 80 min [28].
Although rapidly excreted in urine, population BPA exposure is continuous due to its use
in myriads of everyday consumer products. To protect against BPA exposure, the European
Commission has taken actions by banning the use of BPA in infant feeding bottles [29]
and restricting the use of BPA in certain food-contact materials [30]. The amount of BPA
allowed in children’s toys has also been further limited down to 0.04 mg/L in toys [21,31].
Additionally, since 2016, the use of BPA has been restricted in thermal paper and the
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ban took effect in 2020 within the European Union [32]. Although the relevance of BPA
exposure and its effects on human health have been widely agreed on, there is a lack of
consensus on the cut-off values (tolerable daily intake limits) by different agencies [21].

Several systematic reviews have been conducted to evaluate the current knowledge
on BPA exposure and metabolic and glucose disturbances, and they have revealed strong
evidence on BPA’s association with metabolic syndrome [28,33–36]. Most often the research
has focused on obesity and glucose disturbances. BPA exposure has been associated with
development of hypertension in several studies [37–39]. For BPS and BPF, less research thus
far exists, however some evidence of BPS’s effect on hypertension has been observed [38].
Teppala et al. [40] investigated the cross-sectional association of BPA exposure and MetS
among 2104 NHANES participants during 2003–2008. In the analysis, BPA was positively
associated with MetS risk, and the observed association was independent of confounding
factors (age, gender, ethnicity, smoking, alcohol intake, physical activity levels and urinary
creatinine).

Recent meta-analyses support that an association exist between BPA exposure and
obesity in both children and adults [41,42]. Although limited, preliminary evidence with
bisphenol substitutes points to the same direction. BPF has been shown to have some
evidence of association between children’s and adolescent’s obesity, interestingly, showing
a stronger association among boys, which might suggest possible sex differences [27]. In a
study based on the 2013-2016 NHANES survey, BPA was not significantly associated with
obesity, in contrast to BPS and BPF [16].

Although BPA has been associated with childhood obesity in a previous meta-analysis [41],
associations with markers of lipid and glucose homeostasis have been more inconsistent [43].
Notwithstanding, more consistent BPA associations with leptin and adiponectin suggest that
adipokines may be more sensitive biomarkers of early metabolic impairment among chil-
dren [43].

Pregnancy and perinatal periods have been proposed to be particularly susceptible
for BPA action and development of type 2 diabetes (T2DM) [44]. Among pregnant women,
exposure to BPA was associated with higher systolic and diastolic blood pressure [45].
Urinary BPA concentrations in the second trimester, but not the first trimester of pregnancy,
were positively associated with blood glucose levels 1 h after a 50 g glucose tolerance test
at 24–28 weeks of gestation among sub-fertile women [46]. Other studies have not found
associations with gestational diabetes [47]. In a study investigating maternal bisphenol
concentrations and children’s lipid metabolism, no association was discovered with non-
fasting lipid concentrations during childhood [48].

In adults, the relationship between BPA and glucose homeostasis has been relatively
well-studied. In general, BPA has been associated with increased glycated hemoglobin
(HbA1c) levels in adults [49,50], greater serum insulin levels and insulin resistance [51],
and higher risk of prediabetes [52] and type 2 diabetes [53]. Moreover, a prospective study
identified a susceptible group of adults for BPA effects on glucose homeostasis based on a
genetic risk score [54].

Although not without some inconsistencies, the overall toxicological, observational,
and human intervention streams of evidence support that BPA exposure during develop-
ment, but also at adulthood, constitutes a risk factor for obesity, insulin resistance, and
other MetS components. Preliminary evidence suggests that BPS and BPF do not constitute
safe alternatives.

3.2. Per- and Polyfluoroalkyl Substances

Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that have been
produced globally since the 1950s. PFAS are a group of synthetic fluorinated compounds,
which are widely used in industrial and consumer products including stain- and water-
resistant coatings for fabrics and carpets, oil-resistant coatings for paper products approved
for food contact, floor polishes, pesticide formulations, fire-fighting foams, and mining
and oil well surfactants. The European Food and Safety Authority (EFSA) CONTAM



Int. J. Environ. Res. Public Health 2021, 18, 13047 5 of 19

Panel has set up the tolerable weekly intake (TWI) for perfluorooctanoic acid (PFOA),
perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHxS), and perfluorooc-
tanesulfonic acid (PFOS) to be 4.4 ng/kg body weight (bw) per week [55].

The most common and well-researched forms of PFAS are PFOA and PFOS. PFOA
and PFOS are long-chain perfluorinated compounds, which have shown carcinogenic,
reprotoxic, and immunotoxic features, as well as being capable of affecting thyroid and
lipid metabolism [56–58]. Several other long-chain PFAS have also been identified as being
highly persistent, bio-accumulative and toxic, as their elimination times go from years to
decades in humans [55]. Moreover, there are also concerns about short-chain PFASs, which
have been assumed to be less bio-accumulative, however are still persistent and found in
drinking water and food, including vegetables [21].

In a recent review [59] focusing on epidemiologic evidence on associations between
exposure to PFAS and the development of obesity, diabetes, and non-alcoholic fatty liver
disease, some evidence of association was discovered. From the total of 55 studies, approx-
imately 2/3 reported positive associations between PFASs and the prevalence of obesity
and/or type 1, type 2, or gestational diabetes [59]. For children, the evidence seems to be
less conclusive, as only development of dyslipidemia suggested positive association with
PFAS exposure [60].

MetS as an outcome was examined in one study, revealing that PFNA was associ-
ated with increased risk of MetS, increased waist circumference, elevated triglyceride,
and decreased HDL when controlling for multiple PFASs. Although perfluorodecanoic
acid (PFDA), PFOA, 2-(N-methyl-PFOSA) acetate (MPAH), and perfluoroundecanoic acid
(PFUnDA) were associated with decreased risk of certain MetS components, the most
consistent pattern was shown by PFUnDA. [61] Among overweight and obese participants,
PFASs have been associated with higher apoB and apoC-III concentrations, but not with
total cholesterol or triglycerides [58].

When examining vulnerable populations, children have shown higher serum concen-
trations of PFAS compared to adults [62]. In utero exposure for PFOA has been linked
to children’s obesity [63,64]. Among adolescents, PFOS, PFNA, PFDA, and PFUnDA
serum concentrations were positively associated with apolipoprotein B and total and LDL
cholesterol [65]. PFAS, PFHxS, PFOS, and PFOA concentrations were positively associated
with the risk of hypertension and, furthermore, PFHxS and perfluoroheptane sulfonic acid
(PFHpS) concentrations were positively associated with obesity [65]. No association was
discovered between PFAS exposure and development of hypertension in children [66].

Among pregnant women, gestational diabetes mellitus (GDM) and PFAS exposure has
so far revealed inconsistent and component specific differences [67–69]. In one study, PFOS,
PFOA, PFHxS, PFNA, 2-(N-ethyl-perfluorooctane sulfonamide) acetate, N-ethyl perfluo-
rooctanesulfonamidoacetate (EtFOSAA), N-methyl perfluorooctanesulfon-aminodoacetate
(MeFOSAA), perfluorodecanoate, and perfluorooctanesulfonamidoacetate (FOSAA) ex-
posure showed no association with glucose tolerance and PFAS exposure [68]. Two other
studies showed that the serum levels of perfluorobutane sulfonate (PFBS) and perfluorodo-
decanoid acid (PFDoA) were significantly higher in the GDM group in comparison to the
controls [69], and in another study PFOS and PFHxS were associated with impaired glucose
intolerance or gestational diabetes mellitus [67]. A possible association between pregnancy-
induced hypertension (PIH) and PFAS exposure was discovered in one study [70], as
another study revealed high detection rate of PFASs in the placenta but no evidence on
hypertensive disorders during pregnancy [71]. PFOA has been further associated with
increased maternal total cholesterol [67].

As PFASs have shown increased association with diverse adverse health outcomes,
new substitutes are constantly entering the market. For example, 2,3,3,3-Tetra-fluoro-2-
(heptafluoropropoxy) propavoic acid (GenX) has been developed to substitute PFOA use.
GenX has shown some evidence of metabolic disturbances, however to a lesser extent
than PFASs [72]. Another PFAS substitute, chlorinated polyfluorinated ether sulfonic
acids (Cl-PFESA), was associated with increased prevalence of hypertension and elevated
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DBP. Moreover, it seemed that women were more susceptible to changes associated with
Cl-PFESA [73]. However, knowledge regarding exposure to these compounds and adverse
health effects is still limited.

Recently, the state of knowledge on the effect of PFAS (mainly PFOS and PFOA)
exposure on cholesterol and triglyceride homeostasis has been reviewed [74]. Many
epidemiological studies show positive associations between increased blood levels of total
blood cholesterol, and in some cases triglyceride with higher PFOS/PFOA levels, but
most of these are cross-sectional studies. In vitro research in human liver cells shows
that PFOS/PFOA activate the PPARα pathway, as well as some other nuclear receptors,
such as PXR. In addition, data indicate that suppression of the nuclear receptor HNF4α
signaling pathway as well as disturbances of bile acid metabolism and transport could
be important molecular events that require, however, further investigation. Experimental
studies (mainly rodents) exposed to high levels of PFAS (at least 100-times higher than in
humans), however, show reverse effects.

3.3. Phthalates

Phthalates are the most used plasticizers worldwide, with a consumption of 7.5 million
tons annually. They are included in numerous products, including vinyl flooring, adhesives,
detergents, lubricating oils, automotive plastics, children’s toys, textiles, wallpapers, food
packaging, and personal care products. Phthalates are known to exhibit a variety of
health effects. Notably, not all phthalates have the same endocrine-disrupting potency or
developmental effects, nor are effects of exposure to their mixtures fully understood [21,75].

In HBM studies, the phthalate metabolites examined vary between the studies. Due to
their adverse health effects on reproduction and development seen in animal studies, which
can also be considered relevant to humans, the European Union has restricted the amount
of diiso-decyl phthalate (DiDP), di-n-octyl phthalate (DnOP) and di-iso-nonyl phthalate
(DiNP) in children’s’ toys and items that can be placed in children’s mouths [76]. The use
of s di(2-ethylhexyl) phthalate (DEHP), butylbenzyl phthalate (BBzP), di-n-butyl phthalate
(DnBP), and diiso-butyl phthalate (DiBP) are additionally under restriction [77] and must
not be used without permission. In addition, DEHP, DnBP, BBzP, DiBP, bis(2-Methoxyethyl)
phthalate (DMEP), di-n/iso-pentyl phthalate (DnPeP, DiPeP), and 1,2-benzenedicarboxylic
acid (DHNUP) are further prohibited for use in cosmetics in the European Union [78]. Addi-
tionally, new chemical compositions with lower toxicity have been developed to be used as
alternatives for the traditional phthalates, e.g., Hexamoll®DINCH® [21]. In the HBM4EU,
HBM guidance values (HBM-GVs) were established for specific phthalates (DEHP, BBzP,
DnBP, DiBP, di(2-propylheptyl) phthalate (DPHP) and DINCH) and for children, adults
including adolescents, and occupational exposure population groups [79,80].

In general, the available review literature supports a positive association between
phthalates and obesity-related factors [28,81,82], glucose disturbances [28,33,82,83], and
hypertension [84]. A review on phthalates and gestational metabolic syndrome (GMS)
reported inconclusive results [85]. Among children, a systematic review’s meta-analysis
indicated a significant association between individual phthalate metabolites with body
mass index (BMI), BMI z-score, waist circumference, dyslipidemia, and glucose in serum.
In addition, significant associations were observed between prenatal exposure to some
phthalate metabolites and birth weight [81].

Possible sex differences in phthalate exposure and development of MetS have been
observed [86–90]. For men, higher DEHP metabolite concentrations were associated with
increased odds of MetS, while in women, the highest association was observed with
monobenzyl phthalate (MBzP) the main metabolite of BBzP [88]. Additionally, increases in
waist circumference and BMI have been linked to DEHP, BBzP, DnBP and diethyl phthalate
(DEP) exposure in men [90] and DEP exposure in female adolescents and adults [87].
Among pregnant women, decreased systolic and/or diastolic blood pressure has been
associated with higher phthalate levels [45].
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Among children, some associations between phthalate exposure and development
of hypertension have been reported [91,92]. For lipids, one study examining children and
adolescents observed no association with phthalate metabolites and triglycerides or high-
density lipoproteins [91]. Another study observed lower levels of total and low-density
lipoprotein (LDL-C) in response to higher urinary phthalate metabolites (DEP and DnBP
metabolites and MCPP, a metabolite for various phthalate compounds) in boys, and lower
LDL-C and di-2-ethylhexyl phthalate (ΣDEHP) in girls [89]. Adolescents with intermediate
monobutyl phthalate (MnBP) concentrations also presented higher odds of MetS in compar-
ison to adolescents with lower concentrations; interestingly, monoisobutyl phthalate (MiBP)
concentrations and odds of MetS varied by sex [86]. Furthermore, phthalate exposure
during childhood has been associated with lower systolic and diastolic blood pressure [45].

3.4. Polycyclic Aromatic Hydrocarbons (PAH)

Polycyclic aromatic hydrocarbons (PAHs) are a group of chemicals composed of
carbon and hydrogen atoms, and they are omnipresent environmental pollutants found in
the air, water and soil. PAHs are a result of the incomplete burning of coal, oil and gas, in
car emissions and tobacco smoke. PAHs are spread through the atmosphere, especially
in close proximity to roads with heavy traffic, municipal waste incinerators, and different
industrial sites. In addition to air exposure, PAHs can be found on household items, such
as cosmetics, coatings, and rubber. [93] Additionally, PAHs can also be generated and
ingested through foods cooked at high temperatures.

Main exposure route in humans is inhalation but also some exposure through ingestion
and dermal absorption occurs. Most vulnerable populations to PAH exposure are smokers,
certain industry workers and children [94,95]. Most often, HBM studies measure PAH
metabolites in urine samples [21].

PAHs are regulated based on the National Emission Ceilings Directive 2001/81/EC [96].
The HBM4EU initiative provides a comprehensive presentation of the legislative framework
regarding PAHs and other air pollutants [21].

One systematic review and meta-analysis was identified examining associations be-
tween urinary PAH metabolites and development of diabetes, revealing significantly higher
pooled odds of T2DM in the highest group in comparison to the lowest category of urinary
naphthalene, fluorine, phenanthrene, and total polycyclic aromatic hydrocarbon (OH-PAH)
metabolites [97]. Another systematic review observed positive associations between PAH
exposure with increased risk of elevated blood pressure and obesity [98]. The associations
between hypertension and PAH exposure have been observed in several previous observa-
tional studies [99–113]. In two NHANES studies, research on metabolic disturbances and
PAH exposure show evidence of the association between obesity (2-hydroxynaphthalene
(2-NAP), BMI and 2-NAP, 2-hydrozyfluorene (2-FLUO), 3-hydrozyfluorine (3-FLUO) and 2-
hydroxyphenanthrene (2-PHEN)), type 2 diabetes (1-hydroxynaphthalene (1-NAP), 2-NAP,
2-PHEN and 1-pyrene), dyslipidemia (1-NAP, 2-NAP, 2-FLUO, 3-FLUO and 2-PHEN), and
hypertension (2-NAP and 2-PHEN) [101,104].

Occupational exposure to PAHs has been observed among certain occupations and
industries. Coke oven workers were shown to have higher urinary levels of 1-NAP and
2-FLUO in a significant dose–response relationship, with increased prevalence of MetS
and, furthermore, 1-NAP was positively associated with low HDL-C [105]. Elevated
urinary 4-hydroxyphenanthrene (4-OHPh) was significantly associated with increased risk
of T2DM [106]. Among outdoor workers, hydroxypyrene (1-HOP) occupational exposure
was negatively associated with both systolic and diastolic blood pressure [107].

Among children, exposures to 2-naphtol, 9-phenanthrol, and total OH-PAH have
been associated with increased risk of obesity, and exposure to 1-HOP has been related
with higher risk of cardiometabolic risk factors in children who had excess weight [108].
Another study observed that BMI z-score, waist circumference, and obesity were positively
associated with total PAH and napthalene metabolites in children. [109]. In addition, boys
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attending a school close to an oil refinery showed an increased the risk of prehyperten-
sion [110].

3.5. Pesticides

Pesticide use is ubiquitous worldwide, however evidence on endocrine-disrupting
human health effects is still scarce. The synthetic pesticides are classified in four main
groups: organochlorines, organophosphorus, carbamates and pyrethroids [111]. Currently,
pyrethroids are the most used pesticides in the EU. Studies of pyrethroids are scarce, and
therefore a complete picture of low-level environmental and dietary exposure effects on
human health is difficult to achieve. [21,111].

Humans are exposed to pesticides via ingestion, inhalation, or dermal absorption
through skin. For the general population, pesticide residues in food constitute the main
source of exposure. The most vulnerable populations include infants, children, pregnant
women, agriculture farm workers, and pesticide applicators. [21,111] Urine, blood/serum,
and hair are used as biomonitoring matrices. [21]

An EU Pesticides Database has been developed to provide information on active sub-
stances used in plant protection products, including Maximum Residue Levels (MRLs) in
food products, and emergency authorizations of plant protection products in the Member
States (https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en). As chil-
dren and pregnant women are considered the most vulnerable populations for exposure,
baby food products are included in the control programs and the European Commission
has defined specific rules for foods specially manufactured for infants (below 12 months of
age) and young children (between 1 and 3 years of age) [112].

Two systematic reviews (one including a meta-analysis) and one review article showed
some evidence of non-persistent pesticide exposure and diabetes or other glucose dis-
turbances (insulin resistance, beta-cell dysfunction) [113–115]. Both systematic reviews
identified current limitations of the evidence: high heterogeneity, cross-sectional study
designs, lack of addressing selection bias, addressing confounding factors and wide con-
fidence intervals. In addition, to glucose disturbances, Xiao et al. [115] identified four
obesity-related studies, indicating inconsistent results.

MetS as an individual health outcome has been examined in three studies [116–118].
In one cross-sectional study [118], the NCEP-ATP III definition was used as criteria for
MetS. Seven pesticides showed significant associations with MetS across the quintiles of
exposure in each of the unadjusted models (p,p′-DDT, p,p′-DDE, HCB, β-HCCH, oxychlor,
tNONA, Mirex). In a case-control study [117] it was found that after adjusting for all other
confounders except for BMI, beta-hexachlorocyclohexane (β-HCH) and heptachlor epoxide
were positively associated with MetS, and in a cohort study [116] participants who had been
exposed to pesticides had an elevated incidence of MetS in comparison to the non-exposed.
To date, this has been the only study to assess the relationship between incidence of MetS
and pesticide exposure. [116] Organochlorine pesticides are often measured in blood,
although adipose tissue is known to contain a reservoir of accumulated concentrations
that may better capture long-term exposure [36]. It has been shown that β-HCH and
hexachlorobenzene (HCB) were associated with the risk of suffering at least one MetS risk
factor [119].

In two cohort studies [120,121], inconclusive results were obtained on organochlorine
pesticides (OCPs), as some OC pesticides and PCBs predicted excess adiposity, dyslipi-
demia, and insulin resistance among participants without diabetes [120], while no associa-
tion was detected in lipid outcomes in the other study [121]. Although associations have not
always been consistent, it has been recognized that organochlorine pesticides constitute a
risk factor for metabolic disturbances including excess adiposity, dyslipidemia, and insulin
resistance in adults and possibly in children in response to prenatal exposure [122–124].

Limited data on pesticide exposure and pregnant women’s hypertension exist, as
only suggestive findings exist thus far [125,126]. Additionally, a very limited number of
studies have so far been conducted on human early life exposure and pesticides, however

https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en
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animal studies indicate some evidence of metabolic disturbances [127]. A prenatal exposure
study discovered that prenatal dichlorodiphenyltrichloroethane (DDT) exposure and its
metabolite dichlorodiphenyldichloroethylene (DDE) were associated with hypertension
over a long follow-up period [128].

3.6. Heavy Metals
3.6.1. Arsenic (As)

Arsenic is a natural component on earth’s crust, as it can be found in soil and ground-
water in number of countries. The toxicity of arsenic depends on its form (inorganic
or organic) and species. [129] The toxic species are inorganic forms, such as arsenious
acid (As[III]), arsenic acid (As[V]), monomethylarsonic acid (MMA), dimethylarsinic acid
(DMA), and trimethylarsine oxide (TMAO). On the other hand, organic arsenic, which
is consumed in food (mainly fish and seafood) is less harmful for human health. The
sources for exposure are both natural and anthropogenic [21]. Usually, exposure hap-
pens through contaminated drinking water, by using water in food preparation, through
irrigation of crops, in different industrial processes, by eating contaminated food, or smok-
ing tobacco [130]. Furthermore, occupational exposure occurs in industries, including
gold mining, arsenic production, wood preservation, glass manufacturing, and smelting
operations [131–134].

Arsenic has been shown to have severe health effects from short- and long-term
exposure. Arsenic exposure in children is similar to adults, and they do not seem to be
more sensitive [130].

Arsenic exposure is mostly measured in spot urine samples that can detect inorganic
arsenic (iAs) and methylated metabolites (DMA and MMA). Urine is considered as a
preferred collection method for exposure, due to its non-invasive nature, easiness of a
collection, and good detection of metabolites. Blood sampling is also possible, however is
less used due to its invasiveness and the short half-life of inorganic and organic arsenic
species. The safe total daily intake (TDI) limit ranges between 20-300 micrograms/per
day [31].

Development of obesity and arsenic exposure showed inconsistent results in two
review articles due to differences in dose, form, and route of exposure [135,136]. For
diabetes-related outcomes, some evidence of association has been presented, but notably
still a limited number of epidemiological studies exist [83,137]. In a meta-analysis, both
low and high exposure levels of arsenic were suggested to have a positive association
between exposure and development of hypertension [138]. According to a systematic
review, arsenic exposure can affect lipid metabolism by reducing serum HDL levels and
increasing serum LDL levels [139].

Maternal arsenic exposure and gestational diabetes mellitus (GDM) show indications
of association [140,141]. In utero arsenic exposure and development of diabetes has thus
far been studied in very limited way, however some evidence of association has been
indicated [142]. Among children, development of obesity and other metabolic disturbances
(Homeostatic Model Assessment for Insulin Resistance (HOMA-IR)) have been linked to
children with higher arsenic concentrations [143].

3.6.2. Mercury (Hg)

Mercury is a naturally occurring element that is found in air, water, and soil. Hg
exposure can cause several different adverse health effects to humans and is considered as
one of the top ten chemicals (or groups of chemicals) of major public health concern. The
Minamata Convention on Mercury launched in 2017 is an international commitment in
addressing mercury pollution, and it has been ratified by the European Union [144]. In
Europe, strict regulations also exist in restricting Hg pollution and human exposure. The
European Commission introduced the Community Strategy Concerning Mercury in 2005,
which consists of a comprehensive plan to address Hg use and pollution. European legisla-
tion concerning Hg includes instructions on food safety, chemicals, environment, consumer
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products, and occupational health and safety. Two especially vulnerable populations for
Hg exposure are fetuses and individuals with occupational exposure [21].

Hair, urine, blood, nails, breast milk, cord tissues, cord blood, and placenta are the most
used measurement matrixes for mercury exposure. The choice of matrix depends on the
time of sampling after exposure, whether chronic or acute exposure is being investigated,
and which types of mercury compounds are being assessed [21,145].

Three systematic reviews have shown evidence of metabolic disturbances in response
to Hg exposure [146–148]. Tinkov et al. [148] discovered six studies on obesity, from which
five showed positive association with exposure to mercury. For glucose metabolism/DM,
the results were more inconclusive; six studies showed a positive link and three (including
one systematic review) found no association in human studies. Additionally, dyslipidemia
and atherosclerosis showed inconsistent results. Similar results were discovered in Roy
et al.’s [147] systematic review focusing on diabetes, MetS and insulin resistance, and Hg
exposure. The authors included 34 studies in their analysis and concluded that there is
evidence that suggests a possible association between Hg and incidence of MetS and/or
DM. The third systematic review concluded that data from model organisms suggest a
possible association between Hg exposure and development of MetS, albeit human data
are still inconclusive [146]. Hypertension was examined in a systematic review and meta-
analysis, revealing that people with higher concentrations rates of Hg also had higher risk
of hypertension in the dose-response analysis [149].

Children’s chronic Hg exposure was assessed in a systematic review from which
four of the included articles assessed prenatal exposure, two studied both prenatal and
postnatal exposures, and two investigated postnatal exposures. A positive significant
association was detected between chronic Hg exposure and increased levels of blood
pressure in children or adolescents according to four studies (three of them analyzing
prenatal exposure). However, designs of the studies were heterogeneous and different
covariates were used in the studies [150]. An individual cohort study suggested that young
adults (20–32 years) with high Hg exposure during their young adulthood might have
increased risk of DM later in life [151].

3.6.3. Cadmium (Cd)

Cd can be found globally on natural and anthropogenic sources. Most common
anthropogenic sources are color pigments and stabilizers used in plastics, automobile
radiators, alkaline batteries, mining activities, fertilizers, sewage sludge, and inappropriate
waste disposal. Exposure of Cd among adults in Europe happens through food, water, and
tobacco smoke, containing around 10-20 micrograms of cadmium per day. Cd-rich foods
include seafood, liver, kidney, wild mushrooms, flaxseed, and cocoa powder. However,
80% of the contamination from food comes from cereals, potatoes, and vegetables grown in
contaminated soil. High Cd levels in soil are usually due to use of phosphate fertilizers,
and in non-polluted areas the concentration levels are relatively low [21].

Among vulnerable populations, such as pregnant women and occupationally exposure
adults, some evidence on the adverse effect of Cd on metabolic health exists. The association
of increased risk of gestational diabetes (GDM) and Cd seems to be suggestive [152–154].
Koreans working with heavy metals were shown to possibly have an increased risk of
MetS [155].

Cd exposure and metabolic disturbances have been examined in several reviews, sys-
tematic reviews, and meta-analysis. Studies on overweight, obesity, and Cd exposure show
contradictory results [156]. For glucose disturbances and T2DM, suggestive associations
have been observed [156,157]. Hypertension was examined in three review studies (one
systematic review, one systematic review and meta-analysis, and one review article) show-
ing some evidence of association with cadmium exposure [157–159]. Satarug et al. [157]
highlight that women seemed to be more susceptible to adverse blood pressure effects
than men. No systematic reviews were found on lipids, however two individual studies
showed evidence of dyslipidemia in accordance with cadmium exposure [160,161].
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4. Discussion

MetS is a major public health challenge in Europe due to its high prevalence and
costs [3,14–18]. Apart from the traditional risk factors such as sedentary lifestyle or un-
healthy diet, environmental contaminants are increasingly recognized and studied as
additional risk factors [162].

As this scoping review highlights, the current evidence on environmental chemicals’
effects on the development of MetS varies between the MetS components and environmen-
tal substances. What is inferred from the presented results is that MetS is influenced by the
impact of different chemical families on obesity, glucose abnormalities, and blood pressure.
Less evidence exists for lipid abnormalities. Among children, impacts on obesity and blood
pressure were most common, and more inconsistent results were observed for glucose
metabolism than among adults. The results from this review also highlight the effect of
chemical mixtures on metabolic outcomes. Although not covered, the different chemical
families investigated may act through both similar and dissimilar modes of action, which
opens the possibility of additive or even synergic effects [163]. In the context of ubiquitous
population exposure to most of the revised chemicals, the concept of mixtures should be
kept in mind in both risk assessment and policy making [164].

Although not without some inconsistencies, the overall toxicological, observational,
and human intervention mainstreams of evidence support that BPA exposure during
development, but also at adulthood, constitutes a risk factor for obesity, insulin resistance,
and other MetS components. Preliminary evidence suggests that BPS and BPF do not
constitute safe alternatives. For PFASs, epidemiological evidence shows an association
between obesity, dyslipidemia, and diabetes among adults. In utero exposure has been
linked with childhood obesity, and exposure among adolescents with increased risk of
obesity, dyslipidemia, and hypertension. Recent evidence on PFAS substitutes GenX and
GI-PFESA indicate that they are not safer alternatives in respect to MetS components. For
phthalates, reported studies suggest associations with obesity, glucose disturbance, and
hypertension among adults. Prenatal exposure is shown to increase risk of childhood
obesity, and exposure during the childhood may result increased risk of obesity, lipid, and
glucose disturbances. For phthalates, sex differences in the associations have also been
observed. Exposure to PAHs has been associated with increased risk of obesity, diabetes,
and hypertension. Among children, exposure to PAHs has been linked to increased risk
of obesity. For pesticides, existing evidence is still scarce but suggests associations with
diabetes and non-persistent pesticides. Furthermore, some evidence to support possible
association with MetS has been reported. For three heavy metals (arsenic, mercury, and
cadmium), limited evidence exists but there are some indications that exposure would
increase the risk of obesity, diabetes, and hypertension. Additionally, for arsenic and
mercury, association with the risk of dyslipidemia has been observed. Although several
systematic reviews and meta-analysis have been found, most of the included studies are
cross-sectional or case-control designs, limiting causal inference. The HBM is an important
tool that can help to overcome these limitations. However, at present, most studies are
conducted in North America (NHANES) and Asia, and only few a European countries,
such as Germany [165] and France [166], have incorporated human biomonitoring modules
into their national health examination surveys.

In this review, MetS was examined as an outcome only in few studies, and most
available data focused on individual MetS components. Although some MetS components
have been widely researched (e.g., obesity and glucose metabolism), others have gained
less focus (dyslipidemia and hypertension). Nevertheless, an increase in the risk of iso-
lated MetS components will lead, over time, to a higher risk of MetS and cardiovascular
disease, morbidity, and mortality. Therefore, the role of environmental chemicals on MetS
should not be overlooked. Indeed, additional studies are needed and should be focused on
increasing study quality: harmonization of MetS definitions, harmonization of exposure
assessment with certified laboratories undergoing interlaboratory comparisons, representa-
tive population samples, longitudinal designs with repeated measurements, harmonization
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of effect biomarkers implemented and quality control measures, and harmonization of
statistical protocols including a selection of the most relevant covariates based on causal
graphs [43,167]. All of this will contribute to generating more confident information and
improve the uptake of HBM results by risk assessment and policymakers [168].

5. Conclusions

Current evidence on the associations of metabolic disturbances and EDC exposures
is inconclusive and fragmented, although the overall picture supports the involvement
of exposure to many chemical families in the risk of suffering MetS components. There
is a need, however, to establish harmonized and standardized HBM procedures among
the European population, in addition to rigorous and continuous human biomonitoring
combined with health monitoring, including novel effect biomarkers which could provide
comprehensive information on EDC exposure and association of metabolic disturbances.
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