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Resumen

Esta tesis doctoral plantea una novedosa metodologia para el aprendizaje de Mode-
los de Accion para Planificacion Automatica. Esta metodologia se enmarca dentro
del campo de la Ingenieria de Conocimiento, concretamente en el drea de la Adqui-
sicion de Conocimiento. Especificamente, esta tesis doctoral presenta un proceso
de aprendizaje que combina de forma jerarquica distintas técnicas de Aprendizaje
Automatico, con un especial enfoque en el uso de técnicas de Inteligencia Artificial
Explicable.
Los objetivos considerados en el desarrollo de la tesis doctoral son:

+ Implementacion de un algoritmo de aprendizaje capaz de aprender
modelos de accion STRIPS cuyas precondiciones y efectos también
contengan expresiones aritméticas y relacionales. El estudio empirico
realizado para la evaluacion de este objetivo compara la solucién propues-
ta con algoritmos de referencia con el fin de analizar su comportamiento y
situarlo dentro del estado del arte.

+ Diseilo de un algoritmo de aprendizaje que mejore las capacidades del
anterior a la hora de trabajar bajo situaciones en las que la calidad de
los datos de entrada es baja. Para testear el nuevo procedimiento se im-
plementa un proceso experimental con el objetivo de confrontarlo respecto
al algoritmo desarrollado previamente usando datos de entrada con incerti-
dumbre. Ademads, con afin de obtener una mejor visiéon de conjunto de la
calidad de los métodos desarrollados, se compara la nueva metodologia con
algoritmos de referencia del estado del arte.

+ Desarrollo de un algoritmo de aprendizaje de modelos de accion capaz
de funcionar a partir de datos obtenidos de un entorno simulado. Para
un correcto andlisis de la metodologia implementada se usan datos obtenidos
de las ejecuciones de agentes sobre entornos simulados, comprobando que los
procesos propuestos pueden replicar el comportamiento de dichos agentes.

Los tres objetivos han sido alcanzados de forma satisfactoria implementando
una serie de algoritmos de aprendizaje que combinan de forma jerdrquica técni-
cas de regresion, clasificaciéon estadistica y analisis de grupos. Cada uno de estos
procesos de aprendizaje es el producto de la consecucidn de cada uno de los obje-
tivos propuestos anteriormente y supone una contribucidn al estado del arte por si
mismo. Para la correcta implementacion de cada algoritmo de aprendizaje se han
disefiado diversos métodos de preprocesamiento de datos, de tratamiento de la in-
certidumbre y de adquisicion de modelos de clasificacion, usando para ello técni-
cas bien conocidas del campo del Aprendizaje Automatico. Finalmente, indicar que
las contribuciones presentadas en la tesis doctoral se han evaluado usando, no solo
dominios de planificacion de referencia tomados de 1a comunidad de Planificaciéon
Automatica, si no también, del entorno de trabajo de videojuegos GVG-AI.
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Abstract

This doctoral thesis proposes a novel methodology for learning Action Models for
Automatic Planning. This methodology is framed within the field of Knowledge
Engineering, specifically in the area of Knowledge Acquisition. Particularly, this
doctoral thesis presents a learning process that hierarchically combines different
Machine Learning techniques, with a special focus on the use of Explainable Arti-
ficial Intelligence techniques.

The objectives considered in the development of the doctoral thesis are:

+ Implementation of a learning algorithm capable of learning STRIPS
action models whose preconditions and effects also contain arithmetic
and relational expressions. The empirical study carried out for the eval-
uation of this objective compares the proposed solution with reference algo-
rithms in order to analyse its behaviour and situate it within the state of the
art.

+ Design of a learning algorithm that improves the capabilities of the
previous one when working under situations where the quality of the
input data is low. To test the new procedure, an experimental process is im-
plemented to compare it with the previously developed algorithm using input
data with uncertainty. Furthermore, in order to obtain a better overview of
the quality of the developed methods, the new methodology is compared with
state-of-the-art reference algorithms.

+ Development of an action model learning algorithm capable of oper-
ating from data obtained from a simulated environment. For a correct
analysis of the implemented methodology, data obtained from the execution
of agents in simulated environments are used, verifying that the proposed
processes can replicate the behaviour of these agents.

All three objectives have been successfully achieved by implementing a series of
learning algorithms that hierarchically combine regression, statistical classification
and cluster analysis techniques. Each of these learning processes is the product of
the achievement of each of the above objectives and is a contribution to the state
of the art in its own right. For the correct implementation of each learning algo-
rithm, several methods of data pre-processing, uncertainty treatment and acqui-
sition of classification models have been designed, using well-known techniques
from the field of Machine Learning. Finally, it should be noted that the contribu-
tions presented in the doctoral thesis have been evaluated using reference planning
domains taken from the Automatic Planning community and, also, from the GVG-
Al videogame working environment.
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Chapter 1

Introduction

1.1 Motivation

Since the term Artificial Intelligence was coined in 1956, the number of areas of
knowledge and applications of Artificial Intelligence have multiplied over time. Of
these areas, Automatic Planning [ ] is one of the oldest and has historically
received the most attention from the scientific community. Automatic planning
is the discipline that deals with the production of plans to achieve a given goal,
in order to be executed by an agent (whether human or not). Unfortunately, the
implementation of automatic planning techniques in the real world presents prob-
lems.

In order to use automated planning techniques, it is necessary to define in ad-
vance an ontology that represents the “world” on which one wants to work. This
ontology (called planning domain) contains a definition of the objects of the world
being represented and their relationships, but more importantly, it contains a for-
mal definition of the activities that can be executed in that world. These activities
(called action models) are the basic component that forms the plans generated by
automatic planning techniques, and their ultimate purpose is to be executed by an
agent. Defining a planning domain is a heavy task that requires time and expert
knowledge. This issue is greatly exacerbated as the complexity of the world being
modelled increases.

However, in the area of Knowledge Engineering [ ], solutions to this prob-
lem have been proposed [ ]. These solutions are the so-called Action Model
Learning Techniques | ]. These techniques aim to automatically obtain a

planning domain from a set of input data extracted from pre-existing process execu-
tions, in such a way that the domain is able to reproduce the processes from which
the input information has been obtained. In recent years, several superb solutions
have been proposed which address this learning problem. These solutions usually
emphasise the aspect of learning using incomplete information, with some of them
being capable of learning under extreme input scarcity.

These approaches successfully learn planning domains, but from the point of
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view of learning planning domains for real-world problems, they also have some
major drawbacks.

« The first is that they neglect the improvement of the expressiveness of the
learned models, a key aspect for the implementation of planning domains in
this type of problem.

« The second is that they disregard other types of uncertainty in the input data
(e.g., noise), one of the most widespread problems with information obtained
from real-world applications.

In order to close the gap caused by these shortcomings, taking a step forward in
the state of the art, the following line of work is presented: To develop an action
model learning algorithm with sufficient capacity to be implemented in
real-world applications, and able to generate the most expressive planning
domains while handling uncertainty in the input data. To achieve this goal,
this solution bases the operation of its different components on techniques from
the field of Machine Learning [ , ].

The use of technology from the field of Machine Learning opens the door to the
use of some of the most robust and well-tested techniques in the history of modern
computing. Machine Learning is the most prolific field of Artificial Intelligence,
and basing the development of the contributions proposed in this paper on it gives
us access to a vast library of techniques, methods and technologies to meet the
needs of the challenge at hand.

Among these techniques, those of Explainable Artificial Intelligence are of
particular interest for the design of the methods proposed in this document. Ex-
plainable Artificial Intelligence is the discipline [ ] that encompasses a
series of specific machine learning techniques and methodologies that aim to gen-
erate solutions that can be interpreted by humans. Usually, machine learning algo-
rithms are governed by objective functions defined by a mathematical model, and,
when maximised/minimised, the solutions they obtain tend to make little sense
from a human perspective. Examples of this can be seen in a multitude of state-
of-the-art techniques, such as reinforcement learning, deep learning, or support
vector machines, which, although extremely competent in terms of performance,
are also extremely opaque and do not allow to understand their internal models
(the so-called black-box models); as a natural consequence, they make it difficult
to extract new knowledge from them. Techniques developed under the precepts
of explainable artificial intelligence allow a human operator to see and interpret
their internal models (so-called white-box models) in order to evaluate them. This
allows the user to weigh the decisions made by the algorithm and generate human-
understandable knowledge.

From the point of view of the work presented in this paper, techniques based on
explainable artificial intelligence present a great advantage, since their use allows
access to the information that has been extracted during the development of the
learning process, being able to obtain new knowledge from it with fewer impedi-
ments. Moreover, the interpretability of explainable artificial intelligence models
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is crucial for the simplicity of the learning process, since without them, the trans-
lation process necessary to obtain the planning domains would be a much more
complicated task.

1.2 Aims and Contributions

With this idea as a starting point, this thesis aims to develop a set of action model
learning techniques that, on the one hand, put special emphasis on the expres-
siveness of the models they generate and, on the other hand, are able to handle
low-quality input data. These techniques are the first steps towards a more ambi-
tious long-term goal: to develop an action model learning technique with sufficient
potential to be successfully implemented in the real world.

In order to achieve the proposed goal, 3 sub-objectives are posed throughout
the development of this thesis:

« Propose a learning process capable of learning STRIPS action models whose
preconditions and effects also contain arithmetic and relational expressions.

« Extend the above process to tackle the problem of learning action models in
the presence of noise in the input data.

« Propose a learning process for action models capable of operating using data
obtained in simulated environments.

As mentioned above, these objectives are intended to lay the foundations for
more complex technology, but even so, they are designed to make a contribution to
the state of the art of literature in their own right. Of the contributions that will
be presented in this report, the first one is the foundation stone on which the other
two are built, and is the first implementation of the learning process proposed in
the previous section.

These contributions have been presented indicating that they emphasise the
expressiveness of the models that can be obtained with them. In the environment
of Automatic Planning, in which we are moving, when we talk about “the expres-
siveness of a model” we refer to the abstract concept that indicates the capacity of
the model to represent the widest possible variety of situations. A planning model
has to be able to deal with worlds of enormous potential complexity, and the ex-
pressiveness of these worlds is key to being able to represent them appropriately.
This complexity may be due to the need to contemplate the handling of numerical
information, the handling of timestamps or the design of non-deterministic be-
haviours. Given the final objective proposed above, and the fact that the real world
is the greatest source of disparate situations that exist, a learning process with the
potential to obtain the most expressive models possible is paramount.

To address the challenge of action model learning, an algorithm was designed
to hierarchically combine different Machine Learning techniques (namely, statisti-
cal classification and regression methods) into a single method. This method aims
to generate a set of descriptive models (using statistical classification) that repre-
sent both the world before and after the execution of a given action. Then, using
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these models as a starting point, the proposed process extracts the conditions and
effects of that action. To increase the expressiveness of the learned models, pre-
processing techniques (based, among other things, on regression) are applied to
the input data to generate new knowledge to enrich them. This new knowledge
allows to increase the expressiveness of the descriptive models, and therefore, of
the action models that can be obtained from them. The designed learning process
is defined as a sequence of sub-processes, where each step will apply a different
Machine Learning technique. Each sub-process generates a standardised interme-
diate model, providing it with modularity and therefore allowing part of it to be
modified and even new procedures to be added, as long as the input and output
requirements of each of the elements of the general workflow are met.

Since the ultimate goal is to obtain a procedure that can be used to learn plan-
ning domains that can be implemented in the real world, the treatment of uncer-
tainty in the input data is crucial. Data extracted from real-world processes are
far from perfect and, therefore, they tend to be of poor quality. Whether due to
human error, problems with the sensors that record the data, or simple chance,
data extracted from the real world is often affected by noise. This problem will be
addressed during the development of the second sub-objective of this thesis. Al-
though the originally implemented learning procedure showed some resilience to
the lack of input data, it also had shortcomings when working with noisy data.
Therefore, a set of methods was proposed for the learning process in order to “de-
tect” and “clean” the intermediate models created in the algorithm from errors.
Specifically, a procedure was designed, based on statistical and cluster analysis
techniques.

As a preliminary step to implementing our learning processes in the real world,
it was decided to face the challenge of designing a methodology capable of work-
ing in simulated environments. Solving this challenge involves increasing the ex-
pressiveness of the learned action models by one step so that they are capable of
responding to the problem at hand. The simulated environments used as a testbed
come from GVG-AI | ], an environment developed for the General Artifi-
cial Intelligence [ ] agent competition. From the point of view of the learning
task, the collection of environments proposed in GVG-AI is challenging, as it re-
quires the modelling of planning actions with conditional effects. Solving this chal-
lenge involves improving the expressiveness of the learned action models so that
they are capable of responding to the real problem. With this in mind, the design
of the third, and final, contribution of this thesis was undertaken. This contribu-
tion is a learning algorithm capable of generating action models for such environ-
ments. These action models represent a qualitative leap in terms of expressiveness
in relation to the models learned in the previous contributions, allowing multiple
behaviours to be modelled in them. This new contribution shares the same core
precepts of the original one, which has been evolved and reworked to fit the new
learning challenge.
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1.3 Description of the Document

This document is structured in 6 chapters. Chapter 1 has presented the contri-
butions designed and implemented throughout the development of the doctoral
thesis, as well as the main motivations that led to their development.

Chapter 2 details in depth the technical concepts necessary to understand the
work developed in the subsequent chapters. Specifically, it describes the state-of-
the art in the fields of Automated Planning, Action Model Learning and Machine
Learning. Furthermore, the video game framework GVG-AI, a basic tool for the
development of the last sub-objective of the thesis, is also described. Finally, this
chapter includes an extensive bibliographical compilation of the state-of-the-art.

In Chapter 3, PlanMiner, the basic process for learning domains of action mod-
els, is described. This algorithm implements for the first time the learning philoso-
phy proposed above. Throughout this chapter, each of its components is described
in detail. In order to support its practical relevance, the chapter ends with exten-
sive experimentation comparing PlanMiner with other relevant state-of-the-art al-
gorithms.

The term “noise” refers to the problem that occurs with data, whereby the in-
formation it contains is distorted and erroneous. Noise is a widespread problem
in all areas of learning, and dealing with it is no trivial task. During the develop-
ment of PlanMiner, certain deficiencies were detected when working with noisy
data, which made the task of learning more difficult. These shortcomings are dis-
cussed in depth throughout Chapter 4, as well as the presentation of PlanMiner-N,
a direct evolution of PlanMiner specially designed to increase the latter’s resilience
to uncertainty. This chapter highlights in detail the methods added to the original
learning process while indicating how they make up for the shortcomings of the
original learning process. This chapter ends with the presentation of a series of
experiments that demonstrate PlanMiner-N’s capabilities in learning action mod-
els when faced with situations where the quality of the input data is low. These
experiments compare the quality of the models learned by PlanMiner-N with both
PlanMiner and a set of state-of-the-art algorithms.

As previously mentioned, GVG-Al is a very profitable field of application for
PlanMiner, serving as a springboard for the implementation of the solutions pro-
posed in this document in real-world problems. In the final stages of PlanMiner-N’s
development, the problem of learning action models in simulated environments
began to be addressed. To this end, we proceeded to test whether PlanMiner or
PlanMiner-N performed correctly and were able to obtain a set of action models
that could be used to play a GVG-AI video game. This test was a resounding failure,
but it allowed us to detect the weaknesses of our previous contributions, ultimately
leading to the creation of PlanMiner-C, an action model learning algorithm with
effects conditioned to the context of the world on which they are applied. Chap-
ter 5 presents in detail this new algorithm, an evolution of PlanMiner that reworks
the main components of PlanMiner in order to allow the learning of the previously
mentioned action models. Together with the relevant explanations, this chapter
presents an experimental process that aims to validate the new learning process,
obtaining information from an agent running on a series of simulated GVG-AI en-
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vironments, in order to reproduce its behaviour in a planning domain.

Finally, Chapter 6 contains the most interesting and informative observations
extracted from this research, aggregating all the relevant insights from the experi-
ments described in previous chapters into the final conclusions. In addition, a se-
ries of potentially useful lines of work are provided to improve the work developed
throughout this thesis in the future.
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1.4 Motivacion

Desde que se acuii6 el término Inteligencia Artificial en 1956, el nimero de areas
de conocimiento y aplicaciones de la misma se han ido multiplicando con el pa-
so del tiempo. De estas dreas, la Planificacion Automatica [ ] es una de los
mas antiguas y que mas atencidn ha recibido por parte de la comunidad cientifica
historicamente. La planificacién automaética es la disciplina que se encarga de la
produccién de planes que permitan alcanzar un objetivo dado, con el fin de de ser
ejecutado por un agente (ya sea humano o no). Por desgracia, la implantacién de
técnicas de planificacién automaética en el mundo real presenta problemas.

Para poder usar las técnicas de planificacion automética hace falta definir con
anterioridad una ontologia que representa al “mundo” sobre el que se quiere tra-
bajar. Esta ontologia (llamada dominio de planificacién) contiene una definicion
de los objetos del mundo que se estdn representando y sus relaciones, pero mas
importante, contiene una definicion formal de las actividades que pueden ejecu-
tarse en dicho mundo. Estas actividades (llamadas modelos de acciones) suponen
el componente basico que forma los planes generados por las técnicas de planifica-
cién automadtica, y su fin ultimo es ser ejecutadas por un agente. La definicion de
un dominio de planificacion es una tarea pesada que requiere de tiempo y conoci-
miento experto. Esta problematica se agrava enormemente segun se incrementa la
complejidad del mundo que se esta modela.

Sin embargo, en el 4rea de la Ingenieria de Conocimiento | ], se han pro-
puesto soluciones a esta problematica [ ]. Estas soluciones son las llama-
das Técnicas de Aprendizaje de Modelos de Accién [ ]. Estas técnicas

tienen como objetivo el obtener automaticamente un dominio de planificacién a
partir de un conjunto de datos de entrada extraidos de ejecuciones de procesos pre-
existentes, de forma que, dicho dominio, que sea capaz de reproducir los procesos
de los que se ha obtenido la informacién de entrada. En los tltimos afios se han
propuesto una serie de soluciones magnificas que abordan este problema de apren-
dizaje. Estas soluciones, por lo general, enfatizan el aspecto del aprendizaje utili-
zando informacién incompleta, siendo algunas de ellas capaces de aprender bajo
una escasez extrema de insumos.

Estas aproximaciones consiguen aprender exitosamente dominios de planifica-
cion, pero desde el punto de vista del aprendizaje de dominios de planificaciéon para
problemas del mundo real, este enfoque presenta una serie de problemas bastante
importantes.

« El primero es que se deja de lado la mejora de la expresividad de los modelos
aprendidos, aspecto clave para la implementacién de los dominios de plani-
ficacion en este tipo de problemas.

« El segundo es que se desatiende otros tipos de incertidumbre en los datos de
entrada (por ejemplo, el ruido), uno de los problemas mas extendidos que
acaecen a la informacion obtenida de aplicaciones del mundo real.

Con afan de cerrar la brecha provocada por estas carencias, dando un paso hacia
delante en el estado del arte, se presenta la siguiente linea de trabajo: Desarrollar
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un proceso de aprendizaje de modelos de accidon con capacidad suficiente
para ser implementado en aplicaciones del mundo real, siendo capaz de ge-
nerar los dominios de planificacién mas expresivos, al tiempo que maneja
incertidumbre en los datos de entrada. Para poder alcanzar este objetivo, di-
cha solucion basa el funcionamiento de sus diferentes componentes en técnicas
del campo del Aprendizaje Automatico [ , ]

El uso de tecnologia del campo del Aprendizaje Automatico abre la puerta a
la utilizacion de algunas de las técnicas mas sélidas y bien probadas de la historia
de la computacién moderna. El Aprendizaje Automatico es el campo mas prolifico
de la Inteligencia Artificial, y basar el desarrollo de las contribuciones propuestas
en este documento en él, nos permite acceder a una biblioteca ingente de técnicas,
métodos y tecnologias que satisfagan las necesidades del desafio que se presenta.

De entre estas técnicas, las de Inteligencia Artificial Explicable levantan un
especial interés para el disefio de las técnicas propuestas en este documento. La
Inteligencia Artificial Explicable [ ] esla disciplina que engloba una serie
de técnicas y metodologias especificas de aprendizaje automatico las cuales preten-
den generar soluciones interpretables por los humanos. Usualmente, las técnicas
de aprendizaje automatico se rigen por funciones objetivo definidas por un mode-
lo matematico, y que, al ser maximizadas/minimizadas las soluciones que generan
suelen tener poco sentido desde el punto de vista humano. Ejemplos de esto lo ve-
mos en multitud de técnicas del estado del arte, como las técnicas de aprendizaje de
refuerzo, las de aprendizaje profundo, o las maquinas de soporte vectorial, que, pese
a ser extremadamente competentes en términos de rendimiento, pero también son
extremadamente opacas y no permiten entender sus modelos internos (los llama-
dos modelos de caja negra) lo cual dificulta la extraccién de nuevo conocimiento de
los mismos. Las técnicas desarrolladas bajo los preceptos de la inteligencia artificial
explicable permiten a un operador humano ver e interpretar sus modelos internos
(llamados modelos de caja blanca) para poder evaluarlos. De cara al usuario, esto
le permite sopesar las decisiones tomadas por el algoritmo y generar conocimiento
comprensible para el ser humano.

Desde el punto de vista del trabajo presentado en este documento, las técnicas
basadas en inteligencia artificial explicable presentan una gran ventaja, ya que su
uso permite acceder a la informacion que se ha ido extrayendo durante el desarrollo
del proceso de aprendizaje, pudiendo obtener conocimiento nuevo de la misma con
menos impedimentos. Ademads, la interpretabilidad de los modelos de inteligencia
artificial explicable es crucial para la simplicidad del proceso de aprendizaje, ya que
sin ellos, el proceso de traduccion necesario para obtener los dominios de planifi-
cacién seria una tarea mucho mas complicada.

1.5 Objetivos y Contribuciones
Tomando esa idea base, esta tesis se plantea con el objetivo de desarrollar un con-
junto de técnicas de aprendizaje de modelos de accion que, por un lado, hagan es-

pecial hincapié en la expresividad de los modelos que generan y que, por otro lado,
sean capaces de manejar datos de entrada de baja calidad. Estas técnicas son los
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primeros pasos de un objetivo final a largo plazo mas ambicioso: desarrollar una
técnica de aprendizaje de modelos de accion con potencial suficiente para poder
ser implementada en el mundo real de forma satisfactoria.

Para alcanzar el objetivo propuesto, a lo largo del desarrollo de esta tesis se plan-
tean 3 subobjetivos:

« Proponer un proceso de aprendizaje capaz de aprender modelos de accion
STRIPS cuyas precondiciones y efectos también contengan expresiones arit-
méticas y relacionales.

« Extender el proceso anterior para afrontar el aprendizaje de modelos de ac-
cion ante la presencia de ruido en los datos de entrada.

 Proponer un proceso de aprendizaje de modelos de accién capaz de funcionar
a partir de datos obtenidos en entornos simulados.

Como se ha comentado, estos objetivos tienen como meta sentar las bases de
una tecnologia mas compleja, pero aun asi, han sido disefiados para suponer una
contribucion al estado del arte de la literatura por si mismos. De las contribuciones
que se presentaran a lo largo de esta memora, la primera de ellas constituye la piedra
fundacional sobre la que se construyen las otras dos, suponiendo la primera puesta
en practica del proceso de aprendizaje propuesto en la seccién anterior.

Estas contribuciones han sido presentadas indicando que hacen hincapié en
la expresividad de los modelos que pueden obtenerse con ellas. En el entorno de la
Planificacion Automatica, en el cual nos estamos moviendo, cuando se habla de “la
expresividad de un modelo” se hace en referencia al concepto abstracto que indica
la capacidad que tiene el mismo de representar la mayor variedad de situaciones
posible. Un modelo de planificaciéon debe enfrentar mundos que pueden llegar a
ser extremadamente complejos, y la expresividad de los mismos es clave para po-
der representarlos correctamente. Dicha complejidad puede venir dada por la ne-
cesidad de contemplar el manejo de informacién numérica, el manejo de marcas
temporales o el disefio de comportamientos no deterministas. Dado el objetivo final
propuesto anteriormente, y que el mundo real es la mayor fuente de situaciones dis-
pares que existe, un proceso de aprendizaje con potencial para obtener los modelos
mas expresivos posible es primordial.

Para afrontar el desafio del aprendizaje de modelos de accion, se disefié un al-
goritmo que combinard jerdrquicamente en un unico método distintas técnicas de
Aprendizaje Automatico (concretamente métodos de clasificacion estadistica y re-
gresion). Este método tiene como objetivo generar un conjunto de modelos descrip-
tivos (usando clasificacion estadistica) que representen tanto al mundo previo a la
ejecucion de una accién dada, como al posterior. Después, usando esos modelos
como punto de partida, el proceso que se propone extrae las condiciones y efec-
tos de dicha accion. Para incrementar la expresividad de los modelos aprendidos,
se aplican técnicas de preprocesamiento (basadas, entre otras cosas, en regresion)
a los datos de entrada para generar nuevo conocimiento con el fin de enriquecer-
los. Este nuevo conocimiento permite incrementar la expresividad de los modelos
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descriptivos, y por lo tanto, de los modelos de accién que se pueden obtener a par-
tir de ellos. El proceso de aprendizaje disefiado est4 definido como una secuencia
de subprocesos, donde cada paso del mismo, aplicard una técnica de Aprendizaje
Automatico distinta. Cada subproceso genera un modelo intermedio estandariza-
do, dotdndolo de modularidad y por consiguiente permitiendo modificar parte los
mismos, e incluso, afiadir procedimientos nuevos, siempre y cuando se cumplan
los requisitos de entrada y salida de cada uno de los elementos del flujo de trabajo
general.

Dado que el objetivo final es el de obtener un procedimiento que pueda ser usa-
do para aprender dominios de planificaciéon que puedan ser implementados en el
mundo real, el tratamiento de la incertidumbre en los datos de entrada es de extre-
ma importancia. Los datos que se extraen de procesos del mundo real distan mucho
de ser perfectos, por lo que, normalmente, tienden a ser de baja calidad. Ya sea por
error humano, problemas con los sensores que toman dichos datos, o por simple
azar, los datos que se extraen del mundo real suelen estar afectados por el ruido.
Este problema serd abordado durante el desarrollo del segundo subobjetivo de esta
tesis. Pese a que el procedimiento de aprendizaje implementado originalmente pre-
sentaba cierta resiliencia a la falta de datos de entrada, también mostraba carencias
a la hora de trabajar con datos ruidosos. Por ello se propuso un conjunto de méto-
dos al proceso de aprendizaje con el objetivo de “detectar” y “limpiar” de errores
los modelos intermedios que se crean en el algoritmo. En concreto, se disefio un
procedimiento, basados en técnicas estadisticas y de andlisis de grupos.

Como paso previo a la implementacién de nuestros procesos de aprendizaje en
el mundo real, se decidi6 afrontar el desafio de disefiar una metodologia capaz de
trabajar en entornos simulados. Resolver este desafio supone incrementar en un
paso la expresividad de los modelos de accién aprendidos, para que sean capaces
de dar respuesta al problema que se presenta. Los entornos simulados usados co-
mo banco de pruebas provienen de GVG-AI [ ], un entorno desarrollado
para la competicion de agentes de Inteligencia Artificial General [ ]. Desde el
punto de vista de la tarea de aprendizaje, la coleccién de entornos propuestos en
GVG-Al supone un reto, ya que requiere del modelado de acciones de planificacion
con efectos condicionales. Resolver este desafio supone mejorar la expresividad de
los modelos de accién aprendidos, para que sean capaces de dar respuesta al pro-
blema reales. Con esto en mente, se emprendié el disefio de la tercera, y ultima,
contribucion de esta tesis. Dicha contribucion es un procedimiento de aprendizaje
capaz de generar modelos de acciones para dichos entornos. Estos modelos de ac-
ciones suponen un salto cualitativo en términos de expresividad en referencia a los
modelos aprendidos en las contribuciones anteriores, permitiendo modelar mul-
tiples comportamientos en ellos. Esta nueva contribucion se basa en los mismos
preceptos que la original, los cuales evolucionan, rehaciéndolos para adecuarlos al
nuevo desafio de aprendizaje.
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1.6 Descripcion del Documento

Este documento se estructura en 6 capitulos. El Capitulo 1 presenta las contribu-
ciones disefiadas e implementadas a lo largo del desarrollo de la tesis doctoral, asi
como las principales motivaciones que llevaron al desarrollo de las misma.

El Capitulo 2 detalla pormenorizadamente los conceptos técnicos necesarios
para comprender el trabajo desarrollado en los capitulos posteriores. Concretamen-
te, se describe el estado del arte en los campos de Planificacién Automatica, el
Aprendizaje de Modelos de Accion y el campo del Aprendizaje Automatico. Ade-
mas se describe el entorno de trabajo de videojuegos GVG-AI, una herramienta
base para el desarrollo del ultimo subobjetivo de la tesis. Finalmente, este capitulo
contara con una extensa recopilacion bibliografica del estado del arte.

En el Capitulo 3 se describe PlanMiner, el proceso base para el aprendizaje de
dominios de modelos de accion. Este algoritmo implementa por primera vez la filo-
sofia de aprendizaje propuesta anteriormente. A lo largo de este capitulo se describe
detenidamente cada uno de sus componentes. El capitulo termina con una extensa
experimentacion donde se compara PlanMiner con otros algoritmos relevantes en
el estado del arte.

El termino “ruido”, hace referencia a la problemaética que acaece a los datos, por
los cuales, la informacion que contienen esta distorsionada y es erronea. El ruido
es un problema muy extendido en todos los &mbitos del aprendizaje, y abordarlo no
es trivial. Durante el desarrollo de PlanMiner se detectaron ciertas deficiencias a la
hora de trabajar con datos ruidosos, lo cual dificulta la tarea del aprendizaje. Estas
deficiencias son discutidas en profundidad a lo largo del Capitulo 4, asi como la
presentacion de PlanMiner-N un procedimiento de aprendizaje, evolucion de Plan-
Miner, el cual ha sido disefiado especialmente para incrementar la resiliencia del
segundo a la incertidumbre. En este capitulo se detallan pormenorizadamente los
métodos afiadidos al proceso de aprendizaje original, al tiempo que se indica como
suplen las carencias del mismo. Este capitulo finaliza con la presentacion de una
serie de experimentos que ponen de manifiesto las capacidades de PlanMiner-N a
la hora de aprender modelos de accion al enfrentar situaciones donde la calidad de
los datos de entrada es baja. Estos experimentos comparan la calidad de los mo-
delos aprendidos por PlanMiner-N tanto con PlanMiner como con un conjunto de
algoritmos del estado del arte.

Como se ha comentado previamente, GVG-AI es un campo de aplicacién de
PlanMiner muy provechoso, sirviendo de trampolin para la implementacion de las
soluciones propuestas en este documento en problemas del mundo real. En los es-
tadios finales del desarrollo de PlanMiner-N, se comenz6 a abordar la problematica
del aprendizaje de modelos de acciones en entornos simulados. Para ello, se pro-
cedidé a comprobar si PlanMiner o PlanMiner-N se desenvolvian correctamente y
eran capaces de obtener un conjunto de modelos de acciéon que pudieran ser usa-
dos para jugar a un videojuego de GVG-AL. Esta prueba fue un rotundo fracaso, pero
permitio detectar los puntos débiles de nuestras contribuciones anteriores, llevan-
do finalmente a la creacién de PlanMiner-C, un procedimiento de aprendizaje de
modelos de accion con efectos condicionados al contexto del mundo sobre el que se
aplican. El Capitulo 5 presenta en detalle a este nuevo algoritmo, una evolucién de
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PlanMiner que rehace los componentes principales del mismo, con el fin de permi-
tir el aprendizaje de los modelos de accidn previamente mencionados. Junto a las
explicaciones pertinentes, en este capitulo se presenta un proceso experimental que
tiene como objetivo validar el nuevo proceso de aprendizaje, obteniendo informa-
cion de un agente que se ejecuta sobre una serie de entornos simulados de GVG-AI,
con el fin de reproducir su comportamiento en un dominio de planificacién.

Finalmente, en el Capitulo 6 se presentan las observaciones finales mas in-
teresantes extraidas de la investigacidn desarrollada, exponiendo las conclusiones
extraidas de los diferentes procesos experimentales propuestos en los capitulos que
forman este manuscrito. Ademas se aportan una serie de lineas de trabajo poten-
cialmente provechosas para mejorar el trabajo desarrollado a lo largo de esta tesis
en un futuro.

12



Chapter 2

Background and Related
Work

2.1 Introduction

The contributions proposed in this dissertation integrate several fields of artificial
intelligence. Throughout this report, a series of solutions are presented that in-
tegrate knowledge engineering techniques with machine learning techniques with
the aim of learning planning domains. This chapter presents technologies and con-
cepts from these three fields, with the goal of letting the reader understand the
technical contributions proposed in later chapters. Additionally, it is pertinent to
introduce GVG-AI, the video games simulation environment used in the experi-
mentation of Chapter 5, which is of great interest for the last results presented in
this manuscript.

Therefore, we will split the rest of the chapter into four sections: One devoted
to diving into the details of automated planning, a second one to present the most
significant techniques in the field of machine learning for the work here presented,
a third block with a description of the issues about action model learning, and a
final fourth block detailing the particularities of the video games framework.

(i) Intheautomated planning section, we will explain the main planning paradigms
as well as the most widespread automated planning language.

(ii) Then, in the section devoted to machine learning we will briefly explain this
knowledge area, while also offering an overview of core concepts needed to
understand the contributions presented in this document.

(iii) Thirdly, in the part dedicated to action model learning, the most common
learning strategies will be presented along with a description of their most
typical input data formats; in addition, an in-depth revision of the state-of-
the-art of action model learning techniques will also be included.
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(iv) Finally, the chapter will conclude with a historical review of GVG-AI and a
description of the framework and its components.

2.2 Automated Planning

Automated Planning and Scheduling [ ] (called AI planning, AI P&S, or AP)
is the discipline of artificial intelligence that aims at the production of action plans,
usually with the objective of having an agent execute them. AP is one of the old-
est and most prolific artificial intelligence disciplines in artificial intelligence. The
seed of what is now AP was planted during the Dartmouth conference in 1956 along
with the founding of AI itself [ ]. The work of Newell, Shaw, Calman and
Herbert [ ] in the field of symbolic reasoning and the imitation of human
reasoning laid the foundations for what decades later became modern AP. From
the first steps of the robot SHAKEY [ | —the first automaton to reason using
a planner — 50 years ago to the present day, AP has proven to be a discipline ca-
pable of being successfully employed in a multitude of different problems. Over
the last few years, we have seen how AP has been used for space mission control
[ , ], emergency management [ ], orbital telescope op-
eration [ ] or underwater vehicle guidance [ ].

AP addresses the problem of defining strategies to obtain action sequences that
solve a problem. These action sequences are designed to be executed by an au-
tonomous entity (a human or an intelligent agent) in a timely manner (actions must
be executed in a given order). Prof. Austin Tate wrote in the MIT Encyclopedia of
Cognitive Science the following definition: “Planning is the process of generating
(possibly partial) representations of future behaviour prior to the use of such plans
to constraint or control that behaviour. The outcome is usually a set of actions, with
temporal and other constraints on them, for execution by some agent or agents. As
a core aspect of human intelligence, planning has been studied since the earliest
days of Al and cognitive science. Planning research has led to many useful tools for
real-world applications, and has yielded significant insights into the organization
of behaviour and the nature of reasoning about actions.”

Thus, in order to develop Al planning systems, planning algorithms take a de-
scription of the current state (initial state) of the world, a goal and a set of actions
as input. The initial state of the world defines the starting point from which the
planning system begins to work, and the goal constitutes the desired state of the
world. The defined set of actions transforms the world from its current state to the
goal. An action is a piece of work that forms one logical step within a process. An
action has conditions under which it can be executed, called preconditions, and its
impact on the world, called effects. Finally, the description of this set of actions
and their ordering (a plan) is the output of the planning algorithm [ ]. These
are the main aspects of planning problems, although even more complex problems
can be found when dealing with real planning scenarios, as shown next.

14



2.2. AUTOMATED PLANNING

2.2.1 PDDL: The Planning Domain Definition Language

The Planning Domain Definition Language (PDDL) was designed to be a neutral
specification of planning domains and problems, with neutral meaning that it does
not favour any particular planning system [ ]. Since then, it has become a
community standard for the representation and exchange of planning models. The
idea behind this language was to create a core representation of planning problems
which was generic enough to be implemented in the highest number of planners
possible. The second most important desideratum in the design of PDDL was for
it to resemble existing input notations by that time. Readers familiar with PDDL
may skip this section if they wish.
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domain

(define (domain rovers)
(:requirements
:strips
:typing

(:types
waypoint rover — object

(:constants
rock soil — sampleType

(:predicates
(in ?r — rover ?wp — waypoint)
(connected ?wp1 ?wp2 — waypoint)
(sample ?wp — waypoint ?s — sampleType)
(storedSample ?r — rover ?s — sampleType)

(:action move
:parameters (?r — rover ?wpi ?wp2 — waypoint)
:precondition (and
(in ?r ?wp1)
(connected ?wp1 ?wp2)
)
reffect (and
(not (in ?r ?wp1))
(in ?r ?wp2)
)

(:action sampleRock
:parameters (?r — rover ?wp — waypoint)
:precondition (and
(in ?r ?wp)
(sample ?wp rock)
(not (storedSample ?r rock))

)
:effect (and
(not (sample ?wp rock))
(storedSample ?r rock)
)
)
(:action sampleSoil
:parameters (?r — rover ?wp — waypoint)
:precondition (and
(in ?r ?wp)
(sample ?wp soil)
(not (storedSample ?r soil))

)

ceffect (and
(not (sample ?wp soil))
(storedSample ?r soil)

Listing 2.1: The Rovers PDDL planning domain

The basic version of PDDL is a standardisation of the syntax for expressing

STRIPS actions, using preconditions and effects to describe its applicability. The
syntax is inspired by LISP [ ], and the structure of a domain description is
a LISP-like list of parenthesised expressions [ ]. An early design decision in
the language was to separate the description about the ontology of the planning
domain from the description of specific objects, initial literals and goals that char-
acterise a given problem. This decision led to the implementation of the planners
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that accept two files as input described earlier. The main components of a planning
domain will be described in the following lines. To illustrate this, Listing 2.1 shows
an example of a domain and a problem written in the PDDL format for the Rovers
planning problem.

Preamble. Labelled with domain. This section names the domain and serves
as a unique identifier which the planner can reference. In our example, the
name of the domain is “rovers”.

Requirements. Labelled with the tag :requirements. This section speci-
fies the requisites that a planner must satisfy in order to be able to solve prob-
lems for a given domain. Every requirement must be specified by a certain
tag, in the example; the planner must be able to deal with STRIPS-like actions
(:strips) and object types (: typing).

Types. Labelled with the tag :types. This section indicates the different types
of objects in the world, categorising them. The different types may be organ-
ised in a hierarchical way with a child-parent relation, where child types in-
herit parent types. Object is the default type of the domain, is always defined
and is the parent of every other type of the domain. The example domain
presents two different types: one to represent rovers and other to represent
waypoints. Both are child types of the default type Object.

Constants. Labelled with the tag : constants. Constants are special objects
that do not need to be explicitly included in the different steps of the domain
as they are present across the whole planning problem. In our example two
constants are defined: rocks and soil, of type sampleType.

Predicates. Labelled with the tag :predicates. This section defines the
properties of the objects of the world and the relations among them. These
predicates are literals, as explained earlier, with some (if any) arguments that
reference declared objects. Arguments may have types to restrict the objects
that instantiate them. In the example of Listing 2.1, a number of literals are
defined to determine: the location of a rover (in ?r — rover 2wp — waypoint),
if there is a sample in a waypoint (sample 7wp — waypoint ?s — sampleType)
or stored in a rover (storedSample ?r — rover 7s — sampleType) or to indicate
if two waypoints are connected (connected 7wp1 ?wpz — waypoint).

Actions. Labelled with the tag : action. This section defines an action of the
problem; it can be defined multiple times (once for every action) and can be
broken down into three subsections: Parameters, Preconditions and Effects.

- The parameters of the action (tagged with : parameters) define the ob-
jects of the world that are performing the action, filtering which type of
objects can be used with it.

- The preconditions of the actions (tagged as : precondition)are defined
as a logical expression (in is most basic version, PDDL only supports
conjunction of literals) that must be true in the world state to allow the
execution of the action.
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- The effects of the action on the world (defined with the tag :effect),
like the preconditions, are defined as a conjunction of literals to be added
to or deleted from (marked with the logical connective not) the world
state. An important syntactic restriction in PDDL is that literals in the
world state can only be accessed in the preconditions/effects block if its
arguments are fully defined in the parameters of the action. For exam-
ple, the move action shown in Listing 2.1 needs as input a rover (the one
to be moved) and two waypoints (the starting and ending waypoints re-
spectively). To allow the execution of the action, the rover must be in
the starting waypoint and a viable path must exist between it and the
ending waypoint. The effects of the action on the world imply the ad-
dition of a literal that contains the new location of the rover and the
deletion of the literal that indicates its old location.

problem

(define
(problem roversProbi)
(:domain rovers)
(:objects
rovi — rover
Wp1 wp2 wp3 — waypoints
(:init
(in rovi wp1)
(connected wp1 wp2)
(connected wp1 wp3)
(connected wp2 wp1)
(connected wp2 wp3)

(connected wp3 wp2)
(connected wp3 wp1)

(sample wp2 soil)
(sample wp3 rock)

)
(:goal
(and
(storedSample rovi soil)
(storedSample rovi rock)

Listing 2.2: A Rovers PDDL planning problem
The elements of a PDDL planning problem (Listing 2.2) are the following:

« Preamble. Labelled with problem and :domain. This section names the
problem file —assigning it an identifier —and pairs it with a given planning
domain. The name in the domain must be the same in the preambles of both
the domain file and the problem file. In the example problem file, the prob-
lem is named roversProbl, and it needs the domain named rovers.

« Objects. Labelled with :objects. This section defines the objects which
exist within the problem’s world. Each object must be named with a unique
alphanumeric identifier. Objects must be typed (if necessary). If a type is
not given, but the typing requirement is set, the planner will consider the

18



2.2. AUTOMATED PLANNING

object as a default type object. We can see in the example that the world of
the problem has a rover (rov1) and three waypoints (wp1, wp2, wp3).

« Initial state. Labelled with :init. This section describes the initial state
of the world. PDDL forces to write specifically which literals are true in the
initial state. Every literal of the initial state must be already defined in the do-
main file paired with the problem file. Since PDDL follows the CWA, there
is no need to specifically state those facts which are initially false, and thus
no need to list the negative literals, as typically planners follow the “Closed
World Assumption” (CWA) [ ]. The CWA considers missing literals as
negative (i.e. false), in contrast with the “Open World Assumption” (OWA)
[ ] that interprets missing elements in a world state as unknown and
not evaluable instead of false. The initial state of the problem file of List-
ing 2.2 indicates the starting location of rov1 (in rov: wp1), the connectivity
grid of the waypoints (connected wp1 wpz) and the location of the samples
(sample wp3 soil).

« Problem goal. Labelled with :goal. This section defines the goals of the
problem. The goal is a logical expression that must be satisfied in the final
state to consider a plan as a solution to the problem. The goal must explicitly
indicate a given number of literal and its values. Literals that do not appear
in the goal are not considered important will be ignored when determining
if the goal is reached. The goal of the example problem is for rov1 to pick up
a rock and a soil sample.

Improvements of PDDL over time

The characteristics of PDDL mentioned here are the characteristics of version 1.2
of PDDL. Over time, new versions of PDDL were published to improve the expres-
sivity of the domains that can be coded, thus improving its capabilities to deal with
more complex problems too. There were 5 major iterations of PDDL: ADL, PDDL
2.1, PDDL 2.2, PDDL 3.0 and PDDL+. Those iterations added extra functionali-
ties to the previous versions of the language, with the exception of PPDDL, which
is an alternative research line parallel to the main PDDL development. The main
contributions of these versions of PDDL are the following:

« ADL is the acronym of Action Definition Language, a direct successor of
STRIPS. ADL is not a new version of PDDL but an extension of the original
PDDL which introduced conditional effects and logical quantifiers. Condi-
tional effects are a new type of effects that are executed in a given action if
certain preconditions are met, in addition to the rest of the action’s precon-
ditions. The new quantifiers enrich the logical expressions defined in PDDL
with 3, V and the or operator.

« PDDL 2.1 introduced two key elements: time and numbers. Time is included
with a new type of actions called durative actions. These actions include a
new section in addition to the classic sections: the duration of the action.
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Numbers are managed with a new type of literal, the fluent. Fluents are
literals with an associated numerical value. A fluent can be modified (in-
cremented, decremented or assigned) and compared to other fluents, thus
allowing a planning domain to deal with arithmetic and relational expres-
sions. The addition of numerical information in PDDL also introduced the
ability to track the costs of the domain’s actions.

« PDDL 2.2 included two straightforward improvements to PDDL 2.1: derived
predicates and timed initial literals. The first improvement allows for the def-
inition of a relational expression outside an action by assigning it to a named
(and thus reusable) literal, which avoids repeating the expression multiple
times in the domain. The second improvement enables the definition in the
initial state of the moment when a literal will be available.

« PDDL 3.0 introduced soft constraints into the actions. Soft constraints are a
new type of precondition that the planner’s user would like to see satisfied in
the world state but whose fulfilment is not mandatory.

« PDDL+ introduced the concepts of Processes and Events. Both elements
represent exogenous changes in the world state that happen when a certain
precondition is met, without the intervention of an action. The difference
between Processes and Events is that Events can only happen once.

« PPDDL enables the codification of stochastic behaviours in the PDDL for-
mat. A PPDDL (Probabilistic PDDL) action may have an effect (or set of ef-
fects) with an associated probability, so that when a planner is building a
plan for a given problem, these effects may (or may not) occur. At the time of
writing, PPDDL is somewhat obsolete and is being displaced by other tech-
nologies such as RDDL[ ].

There are many more versions of PDDL | ] that are not listed here. These
versions are more niche and have more specific uses so most of the planners in the
state-of-the-art does not support them. The most important features in PDDL for
this work are the conditional effects and the management of numerical resources,
and therefore, for the sake of comprehensibility of this document, we will focus on
these in the following pages.

Planning with numerical information

The management of numeric information included in version 2.1 of PDDL was a
significant milestone, as the introduction of this new characteristic broadened the
horizon of approachable problems using AP. One of the main contributions of this
work is that it can learn PDDL 2.1 planning domains but enriched with this kind
of information. The following lines will delve into this characteristic, explaining its
different components. This explanation will be illustrated by expanding the rover
examples of Listings 2.1 and 2.2 with numerical information.
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Fluents. PDDL 2.1 introduced a new type of predicates to code numerical in-
formation. This new type of predicates are called Fluents (also known as func-
tions). A fluent is a literal that has an associated numerical value instead of a
Boolean value. In order to use numerical fluents, the planner must comply with the
:fluents requirement. Fluents are defined in a different section in the planning
domain as typical predicates. The following example presents three new fluents
(battery ?r — rover), (bat_usage ?r — rover) and (distance 7wp1 ?wpz — waypoint) to
represent the level of battery remaining in a given rover, its consumption and the
distance between waypoints, respectively.

(: fluents
(battery ?r — rover)
(bat_usage ?r — rover)
(distance ?wp1 ?wp2 — waypoint)

)

For the initial state, fluents are instantiated in the : init section of the problem
file. In contrast with the predicates, fluents are defined in their own way. Follow-
ing the prefix notation, fluents are instantiated as (= < literal >< value >) where
< literal > is the instantiated literal and < value > a number. Below this paragraph
an extract of the initial state of a rovers problem can be found, where the fluents
of the example above are instantiated. In this example, we can see the battery and
consumption of the rover rovi, as well as the different distances among the way-
points set in the world.

(:init

(in rovi wp1)

(sample wp2 soil)
(sample wp3 rock)

(= (battery rovi) 100)
(= (bat_usage rovi) 3)

(= (distance wp1 wp2) 10)
(= (distance wpi wp3) 5)
(= (distance wpz2 wpi) 10)
(= (distance wpz wp3) 15)
(= (distance wp3 wp1) 5)
(= (distance wp3 wp2) 15)

Relational and Arithmetic Expressions. PDDL implements the arithmetic and
relational expressions using prefix notation. While this notation can be cumber-
some to read by a human, it relieves the task of parsing the expression by a com-
puter. Expressions in prefix notation are encoded as:

(operator operandl operand?)

where operator may be an arithmetic or relational operator, and the operands can
be fluents or other arithmetic expressions. The arithmetic operators defined in
PDDL are the following:
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(+ 4 (battery rovl))
(— 4 (battery rovl))
(* 4 (battery rovl))
(/ 4 (battery rovl))

Relational operators can be used as any other literal in the logical expressions
of the planning problem (i.e. the actions’ preconditions or the problem’s goal). The
relational operators defined in PDDL are the following:

(= 4 (battery rovl))
(> 4 (battery rovl))
(> 4 (battery rovl))
(< 4 (battery rovl))
(£ 4 (battery rovl))

Increase, decrease and assignment of fluents. PDDL 2.1 implements a new
set of effects to modify a fluent. These new effects complement the addition/dele-
tion lists of the actions. The new effects can be used to assign a value to a fluent or
to either increase or decrease its current value:

(assign (battery rovi) 4)
(increase (battery rovi) 4)
(decrease (battery rovi) 4)

The value to be assigned/increased/decreased can be a constant number or an
arithmetic expression that depends on other fluents. An updated version of the
move action of Listing 2.1 can be found below. In this action, there is a new pre-
condition that checks if the battery level of the rover that carries out the action is
higher than the consumption of the rover multiplied by the distance separating the
two waypoints it will travel between. Then, once the action has been executed, the
battery is lowered by that amount.
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(:action move
:parameters (?r — rover ?wpi ?wp2 — waypoint)
:precondition (and
(in ?r ?wp1)
(connected ?wp1 ?wp2)
>
(battery ?r)
( =
(bat_usage ?r)
(distance ?wp1 ?wp2)

)
)
ceffect (and
(not (in ?r ?wp1))
(in ?r ?wp2)
(decrease
(battery ?r)
( =
(bat_usage ?r)
(distance ?wp1 ?wp2)

)

Listing 2.3: Rovers domain’s move action with numerical information

Conditional Effects

As noted above, conditional effects were included with the ADL version of PDDL.
An action with conditional effects has the usual preconditions and effects blocks
of STRIPS actions —which work as expected— along with a series of special struc-
tures added to the effects. These structures implement the conditional effects, defin-
ing a new block of effects that is only triggered if certain extra conditions are met
in the world’s state. The conditional structures have the following structure:

(when (precondition) (effects))

precondition is a logical expression that must be true in the world to allow the exe-
cution of the effects block. An action with conditional effects can have several when
blocks, each with its own effects and conditions. Both the conditions and the ef-
fects of this block can use features provided by other PDDL contributions (namely
increases, decreases, or arithmetic expressions).

Listing 2.4 presents an example of a conditional action developed on the move
action (Listing 2.3). In this action, besides performing the tasks seen so far (moving
from a point ?7wp1 to a point 7wp2, checking and updating its battery level), the move
action keeps track of how many actions the rover has performed in order to request
a check and maintenance of its systems after a certain number of actions have been
performed. This conditional subroutine is intended to prevent breakage due to the
wear and tear of the rover’s components.
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(:action move
:parameters (?r — rover ?wpi ?wp2 — waypoint)
:precondition (and
(in ?r ?wp1)
(connected ?wp1 ?wp2)
(>
(battery ?r)
( =
(bat_usage ?r)
(distance ?wp1 ?wp2)

)

)
(checked ?r)

)
:effect (and
(not (in ?r ?wp1))
(in ?r ?wp2)
(decrease
(battery ?r)
( =
(bat_usage ?r)
(distance ?wp1 ?wp2)
)
)
(increase (timeout ?r) 1)
(when
(and
(=
(timeout ?r)
5
)
)
(and

(not (checked ?r))
(assign (timeout ?r) o)

)

Listing 2.4: Rovers domain’s move action with conditional effects

2.2.2 Planning Strategies

While planning systems address the problems described earlier in this section, dif-
ferent planning strategies have been developed for representing and reasoning about
these scenarios. In this section, the planning strategies mentioned and used through-
out this dissertation are described. Particularly, the Classical Planning paradigm is
fully detailed, since it has been the main paradigm used in this research work.

Classical Approach

The basic principle of Classical Planning, also commonly known as STRIPS or
STRIPS-like planning [ ], is finding a sequence of actions, which will modify
the initial state of the world into a final state where the goal holds. A state is a set of
atoms or literals that define how the objects of the model relate to each other and
their traits. A literal is an instantiated predicate of the form p(arg,, arg,, ..., arg,)
where p is the name of the literal and arg; an object of the world. The planner adds
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WP2 A ROV1

Figure 2.1: The Rovers problem

actions incrementally to the plan, trying to create the correct transformation from
the initial to the final state. The STRIPS planning is based on actions defined as a
tuple < Header, Pre, Eff > where Header contains the name and parameters of the
action, Pre are the preconditions that must be true to allow the execution of the ac-
tion —that is, what elements must hold in the state to be able to apply the action—
and Eff the effects of the action in the world after being executed —namely, what
elements change as a result of applying that action.— Preconditions are defined as
aconjunction of literals, while Effects can be represented as an Addition list (things
to include in the state) and a Deletion list (things to delete from the state) of literals.
An action is called a Grounded Action if its header is instantiated with objects of the
world (and therefore added to a plan).

An example of a classical planning problem is the so-called “Rovers”, that sim-
ulates the behaviour of a rover in the planet Mars that must move between a set of
predefined waypoints to take rock and soil samples. Using the example from Figure
2.1, we can describe a world where there are three waypoints (wp1, wp2, wp3) and
arover (named rov1) in wpl. The situation where the rover is in a given waypoint
is represented with the literal (in rov: wp1). The locations of the samples are de-
termined through the literals (rockSample wp3) and (soilSample wpz), for the rock
samples and the soil samples respectively. In order to travel between two waypoints,
they must be explicitly connected using the literal (connected wp1 wpz).

Typically, classical planners [ ] take two separate files as input:

« Problem file. Encodes the set of objects in the world, the initial state of the
problem (i.e. the literals that are true at the beginning of the problem) and
the goal state of the problem (i.e. the selection of literals, and their values,
which must be in a certain state to resolve the problem).

« Domain file. Describes the ontology of the problem. The ontology of a plan-
ning domain contains information about the type of the objects described in
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the problem file, the predicates that represent the relations among the objects
and the actions that can modify these predicates.

The basic planning algorithms of STRIPS-like domains are based on a method
called forward-chaining planning (FCP) | ]. FCP is described as an informed
search method that explores a search space of states in order to reach the objective
of the problem. This search space is composed of a set of nodes such that each
node is a set of predicates representing a state of the world. Each of the nodes that
form the search space is generated after applying an action to a previous node, so
that the algorithm generates new nodes from those already explored until a given
objective state is reached. To do this, FCP makes use of a heuristic that measures
how “close” a given node is to the objective that guides the whole search process; ac-
cordingly, planning engines that are based on it are called Heuristic Search planners

[ ]. Some of the best-known Heuristic Search planners in the state-of-the-art
are OPTIC [ ], POPF [ ], ENHSP [ ], Dino [ ], SMT-
Plan+ [ ], COLIN [ ], Fast Forward [ ] and MetricFF | ].

Fast Forward and its improved version, Metric-FF, are specially relevant for this
work, since they are used during the experimental process of the contributions pro-
posed in Chapters 3 and 4.

The Fast Forward planner

The Fast Forward planner [ ] (FF from now on) was originally proposed by
Jorg Hoffmann and Bernhard Nebel of the University of Freiburg in 2001. It was
the winner of the International Planning Competition in 2000, and the ideas it orig-
inally put forward have had a major impact on the development of planning engines
in recent years.

Algorithm 1 Pseudocode of FF algorithm
Input ] : initial state, G : problem’s goal
Output P : plan

1: Initialise P as a empty plan

2: 8§« 1
3: while h(s) # 0 do
4 8 « search state from s s that h(s”) < h(s)
5. ifs’is @ then
6
7
8
9

return FAILPLAN
end if
P < pathfromsstos’
S« s
10: end while
11: return P

FF implements a method called Enforced Hill-Climbing. This method com-
bines the well known Hill-Climbing method for local search with a breadth-first
search algorithm. At each step of the algorithm, FF selects the first element s’ in
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the neighbourhood of state s that improves its heuristic value h(s), updating s by
said element and repeating the process until the stopping criterion is met. When
generating and exploring the neighbourhood of s, not only those nodes that arise
from applying an action to it (i.e. the immediate neighbourhood) are taken into
account, but the whole tree of nodes produced from s is explored using a breadth-
first search algorithm. This combination of technologies leads to the search process
consisting of prolonged periods of exhaustive search, bridged by relatively quick pe-
riods of heuristic descent. After a certain number of nodes have been explored, in
the absence of an element with a higher heuristic value than the current one, the
algorithm finally stops and indicates that there is no plan to solve the problem. In
order to speed up the search process, FF makes use of an abstraction widely adopted
by state-of-the-art planners called “relaxed actions”, which makes the planner ig-
nore those effects of actions that eliminate elements of the states. The use of these
actions has a positive effect on the performance of heuristic computations, as it
greatly reduces their computational cost. Metric-FF, on the other hand, extends
the original FF concept to allow the original planner to work with advanced PDDL
concepts such as numerical information handling, conditional actions or the ADL
extension.

2.3 Machine Learning

Machine Learning (ML) [ , ] is the discipline of Artificial Intelligence
that studies computer algorithms able to improve their performance by themselves.
Stanford University defines it as “the science of getting computers to act without be-
ing explicitly programmed” emphasising the automated element of the techniques
developed in the field. Over the course of time, ML has become a pillar of modern
aspects of science, engineering and business. The beginnings of this discipline can
be traced back to the 1950s when Arthur Samuel and Frank Rosenblatt made pi-
oneering advances in the field. Arthur Samuel wrote the first program capable of
improving its execution, coining the term Machine Learning in the process. This
program was an Al capable of playing checkers [ ] and was able to study
past moves to predict future ones. Frank Rosenblatt designed the technology of
the perceptron [ ], the most basic component of all existing neural networks.
A decade later, Thomas M. Cover and Peter E. Hart published their paper “Near-
est neighbour pattern classification”, which introduced the world to the K-nearest-
neighbour (KNN) algorithm [ ], one of the most influential and fundamen-
tal algorithms in the history of computing. After these first initial steps, machine
learning has advanced by leaps and bounds, tackling countless problems while en-
riching itself with knowledge from other fields.

ML algorithms gain experience from a set of sample data passed as input (called
“training data”). This experience is used by the ML algorithms to learn (train) a
mathematical model that can be used in several ways. The most usual applications
of these models are: making predictions, making decisions or improving algorithm
performance. As said earlier, the biggest advantage of ML learning algorithms is
that they can achieve this automatically, without the need to be programmed ex-
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plicitly to do so. Another strength of ML algorithms is that they can face problems
intractable by a human, as they are able to process huge amounts of data without
external intervention.

When designing the contributions implemented during the doctoral work, it
was determined that the detection and modelling of patterns in the input data was
crucial to perform the proposed action model learning work. For this purpose, it
was decided to turn to machine learning, as it is the most prolific field of research
in these topics. Later in this document, we will extensively explain how the field of
machine learning merges with the field of action model learning; for now, we will
focus only on presenting the technical concepts necessary to develop the rest of the
manuscript.

2.3.1 Machine Learning techniques classification

While all ML systems share a common goal —the learning of a model that fits the
available data and can generalise its performance to new, unseen data—, how they
approach this problem and the use of the learned model determine the nature of the
ML algorithms. ML algorithms can be sorted into three categories according to how
they approach the learning process: supervised learning, unsupervised learning
and reinforcement learning.

+ Supervised learning algorithms train the models with a set of sample in-
puts (training data) paired with knowledge about the desired output of the
samples. The goal of supervised learning algorithms is to fit a model that
learns to correctly map inputs to outputs in future unknown data.

« Unsupervised learning algorithms lack the prior information about de-
sired algorithm output. These algorithms take input examples and try to find
patterns among them, aiming to group and model the inputs given their sim-
ilarities by searching for a “hidden structure” that connects them.

+ Reinforced learning algorithms try to maximise a given reward function
that guides the learning process. Starting from a collection of input data,
these algorithms predict an output and evaluate it with the reward function.
From the feedback of this measure they learn a strategy that maximises it
after successive iterations of the learning process.

Each of these paradigms addresses different problems | ], namely Clas-
sification, Regression, Clustering and Association. Supervised Learning focuses on
the first two, while Unsupervised Learning addresses the second two. On the other
hand, Reinforcement Learning does not have such a sharp distinction for the prob-
lems it solves. Summarising, we can describe these problems as:

« Classification. Statistical classification is the problem of categorising a col-
lection of examples into a set of finite discrete values. This is achieved by
quantifying and categorising the different attributes of the data instances
(called features) and finding a pattern in the attributes of those instances
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that share a group. In supervised learning, the techniques that tackle this
problem are simply called classification [ ] techniques, and rely on the
use of the so-called class labels to group instances and find patterns among
elements with the same label.

» Regression. Regression analysis [ ]is the problem of estimating the re-
lationship between a given continuous attribute (called dependent variable)
and a set of input attributes (called independent variables). Regression tech-
niques achieve this by learning the mathematical relation f(X) = Ysuch that
X is the set of independent variables and Y the dependent variable.

+ Clustering. Cluster analysis [ ] (simply called clustering) is the ML
problem of labelling data according to their characteristics. The clustering
problem is very similar to the classification problem but, unlike classification,
the label assigned to each piece of data is not known in advance, and must
therefore be assigned dynamically given the similarity of the data.

« Association. Association rule learning [ ] is the ML problem of find-
ing a relation between the elements of a data collection. An association rule
models an unknown hidden correlation among several features of the data
collection.

Of these problems, the most important for our contributions are Classification,
Regression and Clustering. The first two are used throughout the work done in
this doctoral thesis, while the last one is a key concept in the development of the
solution proposed in Chapter 4 of this document.

Finally, ML techniques are based on two main different learning methods: in-
duction and deduction reasoning. Deduction reasoning [ ] starts from a set
of given axioms and infers new knowledge that connects them. Deduction algo-
rithms usually follow a top-down approach by trying to learn a conclusion that
must be true if the axioms are valid. The algorithms based on the induction learn-
ing [ ] paradigm usually follow a bottom-up approach to generalise the initial
facts. To do this, inductive learning techniques detect patterns in the input data,
generalise them, and try to make them fit as many data observations as possible.
These patterns are obtained by selecting a set of hypotheses which are true for the
input data in a way that tautologically encompasses them. This second paradigm
is the core concept of the learning techniques designed in this document.

2.3.2 Datasets

Regardless of the paradigm on which an ML algorithm is based, the problem it
solves or the reasoning method it uses, the standard format for representing an
input data instance x is an array of size n x = (xy, X, ..., X;,) Where x;, i < n, are
the values of its features, and x, the value of the dependent variable or class label
(whichever applies). Arrays of examples are structured in an attribute-value matrix
(see example Table 2.1). This matrix, called dataset, displays the examples in its
rows, and the features of those examples in the columns.
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Length (cm) Weight (kg) Age  Fur length Fur coat Barks? | Class
36.65 4.75 13 Short Tortoiseshell ~ False Cat
40.31 7.49 5 Long-haired Calico False Cat
20.38 1.54 6 Heavy Cream False Dog
39.53 18.88 2 Short Black Saddle  True Dog
30.86 2.07 2 Short Tabby False Cat
70.22 64.38 12 Double Brindle True Dog

Table 2.1: Example dataset

The class or dependent variable corresponding to each example is defined in the
last column on the dataset, and is represented with a given categorical label (Dog
or Cat in the example) or a continuous value, according to whether the dataset
is modelling a classification or regression problem respectively. Table 2.1 shows
an example of the different types of features that can be encoded in a dataset: a)
categorical (Fur length and Fur coat), b) Boolean (Barks?), c) integer-valued (Age)
o d) real-valued (Length and Weight).

Uncertainty

There are exogenous factors that can affect the quality of the data contained in the
datasets. These factors, commonly referred to as “uncertainty”, have a major im-
pact on the performance of the various learning algorithms in the literature, mak-
ing their treatment an important topic of current research. These factors can be
classified into two different types: incompleteness and noise. We can summarise
these factors as:

« An incomplete dataset may contain no information about the value of an
attribute for a given instance, or it may contain no information about that
instance at all. Incompleteness can also affect datasets by causing class labels
associated with examples to disappear.

« A noisy dataset contains as much information as possible, but some of it may
be wrong. For a given attribute, the value that appears in an instance may
not be correct, either because there is some fuzziness (the value is not exactly
what it should be) in it, or because it has been replaced by a totally random
element (called outlier). In the case of class labels, noise is affected by assign-
ing the wrong label to a given example.

2.3.3 Explainable Artificial Intelligence

As previously stated, the interpretability of the models used throughout the learn-
ing process is paramount. Therefore, the techniques and methodologies of eXplain-
able Artificial Intelligence (XAI) [ ] are highly valuable for the work de-
veloped in this manuscript. Throughout the development of this thesis, extensive
use is made of these techniques in both classification and regression problems.
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On the one hand, to work with classification problems, the contributions pro-
posed in this dissertation use a type of white-box classification model called “rules”.
The rules [ ] are the classification model that best fit our work, and presents
the following structure:

IF A, and A, and...and A,, THEN Class is CL

with weight w

A rule is defined by an antecedent constructed as a conjunction of elements A;
and a consequent that contains information about a class label CL. The elements
A; are pairs “Attr is val”, where val is a value of the domain of the variable Attr. The
labels A; of each variable depends on the type of attribute. In our particular case,
they can be True or False for logical attributes or a number for numerical attributes.
The degree of confidence in the rule is defined by a weight. In our case, the weight
reflects the percentage of examples that support the truth of the rule. This model
is used irrespective of the classification algorithm that is implemented throughout
the learning process (these algorithms will be presented in the following pages).

On the other hand, the implemented solutions make use of certain regression
strategies to do their job properly. The most common regression techniques fit a
line that linearly combines a number of variables given as input. Although the
knowledge they contain is easily accessible to a human, these functions artificially
combine the variables and generate models that are not easily interpretable by a hu-
man operator. As the complexity of the problem to be solved increases, so does the
complexity of the linear model being fitted. This leads to the need to look for alter-
native methods that fit non-linear functions or that base their learning on black-box
techniques (such as the aforementioned neural networks).

The concept of Symbolic Regression (SR) [ ] was born in order to provide
an interpretable alternative to classical regression models. A symbolic regressor
[ , ] explores the entire space of mathematical formulae to find one that

best fits a given set of values. The search space consists of a set of basic math-
ematical operators (addition, multiplication and exponent) and a set of operands
representing the attributes of the problem. The output of the symbolic regressors is
asingle arithmetic expression that combines these elements into a single regression
model, usually represented in a tree structure (see Figure 2.2).

2.3.4 Related ML algorithms

To conclude, in the following lines we will describe briefly some algorithms from
the literature used along of this document. These algorithms are ID3, C.45, RIP-
PER, NSLV and K-means. The first four algorithms are classification algorithms
used in the experimentation process of the contributions presented in Chapters 3
and 4, while the last algorithm is a clustering algorithm used extensively in the
solution described in Chapter 4.
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A
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Figure 2.2: Symbolic regression tree of the formula 7 x X3 + 5

Iterative Dichotomiser 3 (ID3)

ID3 [ ] is a classification algorithm developed at the University of Sydney in
1975 by J. R. Quinlan. ID3 is a supervised learning algorithm that constructs a
decision tree from a set of data points. It constructs decision trees based on an
information-gaining principle by measuring the entropy of the decision trees dur-
ing the construction process. ID3 is restricted to binary classification problems.

The classification algorithm follows an iterative approach: A subset of the input
elements is chosen at random, and ID3 fits a decision tree for this subset, validating
the model with the rest of the elements. If every element is correctly classified, the
algorithm stops. Otherwise, ID3 selects a random number of incorrectly classified
elements and adds them to the input subset of elements used to build the decision
tree; then, the process is repeated. This approach ensures two things: i) that ID3
fits the decision tree as fast as possible and ii) that ID3 does not overfit the decision
tree to the input data.

The component that fits the decision trees in ID3 (Algorithm 2) proceeds by
following a greedy strategy: Starting from a set of data points and a collection of at-
tributes, ID3 selects one of those attributes, and, using a divide-and-conquer tech-
nique, splits the data points into two subsets. Each of these subsets separates those
examples whose values meet a condition imposed on the selected attribute, from
those examples that do not (e.g. that the values of an element must be greater than
a certain threshold). ID3 stops when every subset contains data points with the
same class label. In each step, ID3 selects a set of data points and takes the at-
tribute that provides the largest information gain, and then splits the data points
into subsets by their attribute values, thus creating a decision tree node for every
subset.

The information gained by splitting a set of data points using the attribute attr
is computed as:

gain(attr) = I(x,y) — E(attr)

where I(x,y) is the information required to correctly classify x objects that belong
to the class label X and y objects of class Y:

Yy Y
lngx ey

x x
I(x’y)__x+yl082x+y_x+y
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Algorithm 2 Pseudocode of ID3 algorithm

Input T : Training input data, A : set of data attributes
Output DT : Decision Tree

1:
2:
3:

23:
24:

Initialize DT as a node with every element in T

if The elements of DT have same goal value then
return DT

end if

. if T is @ then

Erase every element in DT, except those with most common goal value
return DT

: end if
. end « False
: while end = False do

if DT has no leaf nodes with elements with different goal labels. then
end < True
else
node < a leaf node with elements with different goal labels.
Select attr, the attribute with highest information gain of A :
for all a in attr do
subset < elements covered by a
if subset is not @ then
Add successor to node connected with an arc labelled by a whose el-
ements are subset
end if
end for
end if
end while
return DT
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Finally, E(attr) is the entropy of attr, defined as:

attr
| | X +

Ji
E(attr) = —1I(x;, ;)
Z;l X +y 1 1

with x; and y; as the number of instances covered by vals; of class x and y respec-
tively.

ID3 has two main limitations: i) It only deals with nominal attributes, limiting
the type of problems that ID3 can tackle. ii) It outputs an oversized tree when there
are attributes with a large number of different values, as its metric favours this kind
of attributes. The first limitation restricts the scope of application of ID3 to STRIPS
planning domains. Finally, the decision trees generated by ID3 must be encoded
in the form of rules (the reason why this encoding is necessary will be presented
in Chapter 3) as defined in the previous section. This is done by creating a rule for
each leaf node of the tree so that the antecedent of the rule is formed by all the
conditions of the intermediate nodes en route to a given leaf node, and its class
label is the one contained in that leaf node.

Ca.5

C4.5] ] was proposed in 1993 by J. R. Quinlan as an improvement to ID3, aim-
ing to overcome its limitations. C4.5 tackles the issues present in ID3 by including
several methods into its structure (see Algorithm 2): I) a new evaluation formula
for the attributes; II) a procedure to process continuous values; and IIT) a pruning
step to reduce the size of the output decision tree.

The attribute evaluation function in C4.5 deprecates entropy in favour of the in-
formation of the split. Information gain ratio IG for a given attribute attr is defined
= gain(attr)

I6(attr) = split_info(attr)

where gain is the gain measure of attr as computed by ID3 and split_info is the
information contained in the split, measured as:

o _ i i
split_info(attr) = ie;ﬂP( |attr|) % lOgZ(P(|attr| )

with P(#) as the proportion of elements i in attr. As noted, unlike entropy in
attr

ID3, information gain in C4.5 is independent of the distribution of the classes in
the examples being split. This metric penalises the most those attributes with a
high number of different values, reducing the overall size of the learned decision
tree.

C4.5 manages attributes with continuous values by implementing a process of
synthetic attribute creation. For a given attribute with continuous values, the values
are sorted in ascending order and C4.5 selects one as the threshold. It then creates
anew attribute to discern if a value of the given attribute is higher or lower than the
chosen threshold. C4.5 repeats this process by selecting every value of the original
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attribute as the threshold of a new synthetic attribute. These new attributes are
added to the set of nominal attributes and used during the tree building process.
Once the decision tree has been learned, C4.5 checks it trying to find branches

to prune. Pruning reduces tree over-fitting. The heart of the pruning process is
statistical confidence estimates. For a given near-leaf node (an internal node that
only contains leaf nodes as successors), C4.5 substitutes it for a leaf node formed
by adding together its leaf nodes. C4.5 calculates the confidence interval of the
pruned and unpruned tree, and the one with the lower upper limit in the confidence
interval is selected. C4.5 selects another near-leaf node iteratively until there are
no more left, following a bottom-up strategy. The confidence interval is calculated
as follows:

1—x

xX+y

Cl=xta*,[xx*

where x is the number of examples of one class, y is the number of examples of the
other class and « is a factor that depends on the desired level of confidence of the
interval (typically 9o% confidence, namely o = 1.64).

RIPPER

RIPPER | ] is the evolution of the IREP [ ] rule learning algorithm (see
Algorithm 3). Without modifying the main functionality of IREP, RIPPER included
several minor improvements that greatly enhanced its performance. RIPPER di-
vides the training set into two sets: the “growing set” and the “pruning set”. These
sets contain 2/3 and 1/3 of the data of the training set respectively. In each step of
the algorithm, RIPPER implements a greedy strategy to build a rule from the data
contained in the growing set. This rule is simplified by using the examples of the
pruning set to tune them.

The rules are built in an iterative way: starting from an empty rule, RIPPER
selects the pair <attribute, value> that covers more examples of the growing set of
class C; and includes it as a condition in the rule. Then, it repeats the process until
the rule covers only examples of class C;. The rule learned is largely overfitted, and
RIPPER tries to simplify it before including it in the ruleset. This simplification
aims to diversify the rule (and hence the ruleset) when facing non-present exam-
ples. RIPPER applies the pruning operator (removing a condition from the rule)
using the pruning set to measure the impact of the pruning. RIPPER selects the
condition that most reduces the error rate of the rule in the pruning set and then
removes it. The process is repeated, selecting another condition until no further
reduction in the error rate can be achieved. The error rate is computed with the
expression
p—n
p+n

pruningError(rule, PruneSet) =

where p is the number of examples of class C; covered by the rule and n is the
number of examples of other classes covered by the rule. The examples covered
by the rule are removed from the training set for further iterations, and the rule is
included in the output ruleset. The algorithm stops adding rules when there are no
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Algorithm 3 Pseudocode of RIPPER algorithm
Input T : Training input data
Output RS : Ruleset

1: Initialize RS as an empty ruleset
2: for all Class C; in T do
3:  while Number of examples of class C; in T != o0 do

4 Split T into GrowSet and PruneSet
5 Builds rule from GrowSet
6 Prune rule using PruneSet
7 if Error rate of rule in PruneSet > 50% then
8 return RS
9 else
10: Add rule to RS
11 Delete examples of T covered by rule
12: end if
13:  end while
14: end for

15: Optimize RS
16: return RS

more examples of class C; in T or when the description of the rule surpasses certain
length.

The biggest improvement of RIPPER on IREP was the inclusion of an optimi-
sation step of the output ruleset. The optimisation is carried out in the following
way: For each rule R; in RS two new rules are created: the revision rule and the
replacement rule. The revision rule is made by adding new conditions to R; (and
then pruning it) using the whole dataset as input instead of just the growing set.
The replacement rule is built in an analogous way, but starting from an empty rule
instead of R;. Once these two new rules for R; are created, RIPPER selects one from
among the three to be the final rule in RS according to the MDL criterion (Mini-
mum Descriptor Length).

NSLV

NSLV [ ] is a enhanced version of SLV [ ]. SLV was designed by A.
Gonzélez and R. Pérez in 1999 at the University of Granada. NSLV (Algorithm 4) is
a rule-based classification algorithm. It makes use of a genetic algorithm to fit the
classification rules to the input examples. In each iteration of the algorithm, SLV
learns a rule that covers a set of examples from the dataset.

In each iteration of the algorithm, NSLV takes a set of input data, and proceeds
to adjust the best rule from a collection of possible rules. The best rule is defined as
the one that supports the largest number of positives examples (i.e. examples whose
class concurs with the rule’s consequent) of a given class and the smallest number
of negative examples (i.e. examples whose class does not concur with the rule’s
consequent). Both components are evaluated asymmetrically when determining
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Algorithm 4 Pseudocode of SLV algorithm

Input T : Training input data
Output RS : Ruleset
1: Initialize RS as an empty ruleset
2: rule < learning a single rule from T using a genetic algorithm
3: while Performance of rule > 0 do
4 Add rule to ruleset
s:  Penalize examples covered by rulein T
6:  rule « learn a single rule from T
7. end while
8: return RS

the quality of a rule, with positive examples having more weight in the decision
than negative ones. Once a rule is set, it determines which examples in the dataset
are covered by it and marks them. Marked examples are penalised in later iterations
of the algorithm, which means that they will not be treated as positive examples
for a rule but as negative ones. This procedure ensures that the next rules that
are adjusted for the same class in the future will contain new information. Once
all the examples of a class are characterised, SLV will set a different class label.
The whole process is repeated as long as the Performance of the learned rules is
greater than zero. Roughly speaking, Performance measures the completeness of
the learned rules (i.e. the number of examples that are covered by them). Finally,
another particularity about NSLV rules is that they are descriptive, meaning that
they contain all key features of the examples, rather than the minimum number of
features that form other kinds of models.

The process that adjusts the rules for a given data set and a given class is im-
plemented as a genetic algorithm [ ]. This algorithm learns the antecedent of
a rule for a given class, encoding in every element of the population a candidate
antecedent for the target rule. Each element of the population encodes a chro-
mosome in two parts: the variable level and the value level. The variable level
indicates whether an attribute from the examples is selected to be part of the an-
tecedent. Each element of the variable level represents a threshold value that de-
termines whether an attribute deserves to be in the antecedent or not based on its
relevance. The value level indicates the value assignments that attributes can have.
For each attribute, the value level establishes the presence or absence of a value.
This encoding allows the genetic algorithm to modify both the attributes and their
values through its genetic operators. The genetic algorithm is guided by a fitness
function that measures the quality of an antecedent using a lexicographic evalua-
tion function that considers its completeness (the number of examples it covers),
its simplicity (the number of attributes it deems relevant) and its comprehensibil-
ity (the number of values assigned to each attribute). This fitness function assigns
the highest scores to those antecedents that cover the most examples and have the
fewest attributes and values marked as relevant.

In the literature, there are enhancements to NSLV proposed by its authors. Of
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all of them, the most significant one is INSLV. INSLV improves upon NSLV by ap-
plying a window to select a given number of data from the dataset that is used to
generate a set of rules. This process is repeated, increasing the size of the window in
each step, so that the rules learned in previous steps are refined in successive stages.
This process is repeated until the window size covers the entire input dataset.

K-means

The K-means algorithm [ ] was originally proposed by James MacQueen of the
University of California in 1967. From the start, this clustering algorithm stood out
in the literature due to its popularity and simplicity. K-means partitions a dataset
passed as input into k groups, so that each element is assigned to the group whose
mean value is closest. This dissertation uses the revision of the K-means algorithm
[ ] presented by Hartigan and Wong in 1975, which is more efficient than the
original proposal.

Algorithm 5 Pseudocode of K-means algorithm

Input T : Training input data, k : number of desired clusters
Output K : Set of clusters

1: K « Initialize k clusters

2: while —~ Convergence criterion is met do

3:  Assign every element of T to the closest cluster in K
4:  Recalculate the mean value of each cluster in K

5: end while

6: return K

K-means iteratively distributes the different elements T; of T among the clusters
in K. In each run of the algorithm (see Algorithm 5), K-means selects each data
point T; and calculates its distance to the centre of each cluster in K, assigning it to
the nearest cluster. The centre of each cluster is called the centroid and is calculated
as the average value of all the elements assigned to it. In other words, each element
T; is grouped with those elements closest to it. This concept of closeness between
two points is computed as the Euclidean distance between them. Once all the data
points have been assigned, K-means updates the centroids of each cluster with the
information from the new points assigned to them. This process is repeated until
the convergence criterion of the algorithm is met, which is that, after one run, all
clusters have stabilised. A stable cluster is one where, after one run, no element
assigned in the previous run has been added or removed. Finally, it should be noted
that the set of clusters K must be initialised at the start before entering the main
loop of the algorithm. This can be done randomly (the approach used in this work)
or by following a greedy strategy.

Cluster quality measures. Throughout the development of this PhD thesis, a
series of metrics are used to evaluate and measure the quality of the clusters ob-
tained by K-means. These metrics, taken from the state-of-the-art of the field in
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question, are the silhouette index [ ] and the normalised standard deviation of
a cluster. Summarising:

« The silhouette index of a cluster measures how close the elements of a clus-
ter are among themselves and how far they are to the elements of the other
clusters. A cluster with a good silhouette index contains well-matched ele-
ments which would be bad matches for the elements of the rest of the clusters.

« The normalised standard deviation quantifies how “wide” a given cluster
is. A very wide cluster implies that its elements are dispersed in it; thus, its
centre is not representative of them. On the other hand, a very tight cluster
would imply that its elements are near the centroid and thus they are well
represented by it.

On the one hand, the silhouette index of a cluster is computed as the average
silhouette index of every data point assigned to it. For a given element T;, its sil-
houette index is calculated as:

b(Ti)_a(Ti) if |k| >1
S(T;) = max(a(Ti),b(Ti))
0

if [k = 1

where a(T;) is the average distance from the element T; to the rest of the elements

of the cluster: )

a(Ty) = =1

Z distance(T;, Tj)
i,jek,i#j

and b(T;) is the average distance from T; to the nearest element of the other clusters.

.1 .
b(T}) = g&g} ] j;/ distance(T;, Tj)

with k and k' being elements of the set of clusters K.

The distance between two points is calculated by using the Euclidean distance
(as in K-Means). The metric s(T;) ranges from -1 to 1. A value of 1 means that the
i-th element is perfectly grouped in its assigned cluster; conversely, a value of -1
implies that the element is wrongly classified. The average silhouette score of all
points indicates how well grouped the data are in their clusters.

On the other hand, a cluster’s normalised standard deviation is calculated as:

1
H ZTiEk(Ti - :u)z

nSTD(k) = 7

where k is a cluster of K and y its centroid. A cluster’s normalised standard de-
viation quantifies how disperse the elements of the cluster are in relation to the
cluster’s centroid. The nSTD(k) score has a range of [0,00). The higher the value of
nSTD(k), the wider the cluster, and hence, the more separated the data points are
from the centre of the cluster.

39



CHAPTER 2. BACKGROUND AND RELATED WORK

Model —— P Yo
= — | pewer —— - avauw
— —
— earch —
Search — Planning \ .

Lente Experience =y | ™)

Environment

Input

Hnowiedge Acnc..-‘ Search \ /'
Model Control Execution
/ / Exparience
"
Learner

Figure 2.3: Integrated Planning-Execution-Learning architecture

2.4 Action Model Learning

AP is a powerful technology that can deal with a wide variety of situations and
environments, but this capability comes with some drawbacks when trying to in-
troduce AP systems into complex applications. Chief among these problems is the
need to gather and maintain knowledge about the problem to be solved to enable
AP techniques to solve it. These tasks (acquisition and maintenance of knowledge)
are very burdensome and can require a great deal of time and effort. Over time, the
different techniques for dealing with these tasks were formalised with Knowledge
Engineering [ ] (KE). The KE field is an AI discipline dedicated to formalis-
ing knowledge using a series of multidisciplinary techniques. These techniques are
responsible for modelling, acquiring, measuring and evaluating any kind of knowl-
edge.

The application of KE techniques in AP not only allows to better encode the
aforementioned information about the problems to be addressed, but also, knowl-
edge acquisition techniques can alleviate the process of implementing AP tech-
niques in more complex problems. As seen earlier in this chapter, the knowledge
of the problems is usually encoded in a document called planning domain. The
codification of these documents is a cumbersome and resource-intensive task and
usually requires an expert to bring in extensive knowledge of the problem. This in-
convenience grows with the complexity of the problem being tackled, as there are
more situations to contemplate and address explicitly. In addition, the search meth-
ods on which the planning engines are based are often PSPACE-Complete [ 1,
which, together with generic and uninformed heuristics implemented in them,
makes solving slightly large problems extremely costly. Hence, a poorly designed
domain would further increase this issue to the point of rendering the problem un-
solvable in practice [ ]. All these problems cause the task of hand-coding a
planning domain infeasible under certain circumstances and relying on techniques
that automatically realise this work is a must.

Knowledge acquisition techniques applied to AP can be divided into two main
areas given the problem they aim to solve [ ]. These fields are: action model
acquisition, and search control learning. Action model acquisition techniques are
concerned with gathering information about the operations that must be executed
to solve a given problem, while search control learning is concerned with deter-
mining the optimal search strategies to address the problem. These KE techniques
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can be merged with AP techniques in a constant cycle of Planning — Execution
— Learning (see Figure 2.3), where a system would be able to learn from its own
executions, iteratively refining the knowledge used to solve the problems, and con-
sequently, gradually generating better solutions. Starting from a solution obtained
using an AP technique (the planner), information about its execution on the prob-
lem’s environment is collected. This information is then fed to a knowledge acqui-
sition technique (the learner) that improves (or substitutes) the original knowledge
about the problem contained in the planner. For the sake of comprehension and
brevity in the rest of this work, we will only discuss the Action Model Learning
techniques since they are those that occupy the scope of this PhD thesis.

If we briefly analyse the characteristics of PDDL we can see why programming
a planning domain is extremely tedious. The need to explicitly define any kind
of action required to solve a problem is preceded by a detailed study of it. This
study must detect any possible situation that may be encountered during problem-
solving, and define a path to obtain a valid plan to solve the problem. As previously
mentioned, this task is very costly, both in terms of time and resources, and re-
quires an expert with extensive knowledge of the problem being addressed. From
acomputational standpoint, an error in determining the number of actions (or their
parameters) can negatively impact the performance of the planning engine. This
is due to the way these engines tend to work: their almost exclusive reliance on
heuristic search hinders their performance when a large number of elements (ei-
ther actions or action parameters) are involved.

These problems were highlighted by Shen and Simon [ ] in their work on
the LIVE system in 1989. Throughout the 1990s new approaches to this problem ap-
peared in the literature [ , , , ], but it was not until 2008 that
a milestone in this field was reached. The milestone we are talking about was the
creation of the “Workshop on Knowledge Engineering for Planning and Schedul-
ing (KEPS)” ] within the “International Conference on Automated Planning
and Scheduling” [ ]in 2008. In the words of its promoters, the aim of KEPS
was “to promote the knowledge-based and domain modelling aspects of AP, to ac-
celerate knowledge engineering research in AP and to encourage the development
and sharing of prototype tools or software platforms that promise more rapid, ac-
cessible, and effective ways to construct reliable and efficient AP systems”. In short:
the aim of KEPS is to formalise the application of KE techniques in the field of PA.
In the field at hand (knowledge acquisition), the advent of KEPS led to the emer-
gence of multiple learning techniques for planning domains.

The present section will delve deeper into the aforementioned techniques and
the challenges of applying KE methods to AP. As said earlier, we will specifically
focus on AML techniques, presenting and highlighting its particularities, but will
not go in depth into Search Control techniques in favour of a more comprehensive
exposition of the topic. First, this section will present a categorisation of the differ-
ent AML techniques. This categorisation will explain their characteristics, and how
they influence the learning process. Second, the different technologies that can be
implemented in an AML technique will be presented. For each technology, we will
provide a description of the most successful state-of-the-art AML techniques, espe-
cially those closely related to the technique presented in this dissertation.
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2.4.1  AML techniques classification

Although the goal of AML techniques is to learn action models, the way in which
they address the problem differs markedly among different techniques [ ]
Learning requirements vary greatly from technique to technique depending on the
characteristics of (i) the models to be learned and (ii) the quality (and quantity) of
the available input data [ ]. For example, (i) could limit the application of
certain techniques or impose certain requirements on the learning process, while
(ii) directly influences the type of domains that can be obtained or whether extra
techniques need to be implemented to perform the learning task correctly.

Model characteristics

Since the ultimate goal of AML techniques is to obtain a planning domain model, it
is safe to assume that taking into account a model’s characteristics is fundamental
when designing them. The characteristics of the learned domains not only define
the scope of application of a given AML technique, but they also delimit the dif-
ferent techniques that it will implement internally during its learning process. For
AML techniques, planning domains are defined by two viewpoints: the expres-
siveness of the domain’s actions and whether they are deterministic or not. These
characteristics are independent of the format in which the domain is written (i.e.
STRIPS-like, PDDL, etc.).

1. Expressiveness. This characteristic measures the ability of the AML tech-
nique to output a planning domain that encodes the widest range of situa-
tions. In the lower spectrum of the domain’s expressivity are planning do-
mains that only contemplate STRIPS actions; on the contrary, a highly ex-
pressive domain will handle numerical information, time, resources and/or
conditional effects.

2. Determinism. A deterministic domain will always get the same result for
the execution of a plan from the same initial state. The assumption that
each action does not always behave the same may heavily impact the design
process of AML techniques. The existence of non-deterministic behaviours
raises doubts about the correctness of scarce data patterns during the learn-
ing process, since it is not possible to determine whether or not anomalous
behaviour is erroneous or not.

The characteristics of the learned domains affect the design of AML techniques
by promoting (or directly forcing) the use of certain learning methodologies. For
example, AML techniques that are designed to deal with resources, time or nu-
merical fluents cannot be based on technologies that only handle boolean infor-
mation. This may suboptimally work in the opposite way: if a given problem will
only deal with logical predicates, an excessively powerful AML technique will solve
the problem but lack the efficiency of a learning algorithm optimised for that kind
of information. A deterministic domain will force the AML technique to make
some assumptions about the input when it encounters unusual input data. These
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assumptions may lead to marking uncommon input data as “noise” and therefore
ignoring it during the execution. With a non-deterministic domain, the task of
separating uncommon valid examples from noise is, at least, harder, and in certain
situations impossible. This issue forces the implementation of different procedures
in the AML technique to deal with it properly. Table 2.2 shows an overview of the
strengths and weaknesses of the different AML approaches, sorting them by the
characteristics of their learned domains.

System input

Input data is of vital importance in any Al technique based on knowledge extrac-
tion and learning [ ]. AML techniques are no exception, as input data must be
carefully considered during development. The overall performance of the learn-
ing process depends on the quality and quantity of the available input data. When
the input data does not reach the expected quality standards, it may be necessary
to implement certain strategies and techniques to enable the learning task to work
correctly. In this dissertation, we will distinguish between two types of input data:
plan traces and prior knowledge of the model being learned. The next lines will
explore, for these two types of input, the repercussions of the aforementioned stan-
dards on the entire learning process. But, first of all, let us define what a plan trace
is.

Input plan traces AML techniques usually base their learning on the use of plan
traces [ ]. A plan trace is a proof of the execution of a plan on an environ-
ment. The traces not only contain information about the list of actions that make
up the plan, but also a summary of the state of the environment as these actions
were executed. Regardless of the format in which the traces are written, the traces
are defined as a list of tuples

< S8i-1,Q;,8; >

where q; is an action of the plan executed in the state s;_, —named pre-state—, and
s; is the state resultant of the execution of the action —the post-state—. In a plan
trace with n tuples, s, would be the initial state of the problem, while s,, would be
the state in which the goal of the plan was achieved.

Some variations on this model have been defined to cover the particularities of
certain techniques. For example, it is possible to find traces that do not represent
the states at all | ] or traces that are missing some (or all) actions of the
plan| ]. The way in which states are coded may also vary, as they may follow,
for example, the CWA or the OWA.

As well as with datasets (see Section 2.3.2 of this chapter), the quality of a plan
trace may be affected by two different factors: Incompleteness and noise.

« An incomplete plan trace is a trace where some elements are missing. These
elements can be actions of the plan, predicates of some state, or whole states.

« A noisy plan trace is a trace where the observations have been wrongly per-
formed. Errors in the observations can be produced by a predicate with a
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Expressiveness

High

Low

Determinism
Deterministic Non-Deterministic
Strengths: Strengths:

¢ Covers all domains usable by top-
of-the-line planning competitions

¢ Good coverage of learning tech-
niques of diverse fields (e.g. ma-
chine learning)

‘Weaknesses:

 Fails to represent the uncertainty
of complex real-world problems

e Can virtually handle every possi-
ble planning situation

e Learns the most expressive do-
mains possible

Weaknesses:

* Requires highly complex learning
and planning algorithms

e Has a tough time facing typical
problems of real-world data like
noise

Strengths:

¢ Canwork with extremely efficient
learning and planning techniques

¢ Requires fewer input data than
other approaches to work prop-
erly

Weaknesses:

¢ Poor coverage of complex plan-
ning problems

Strengths:

e Fairly efficient learning algo-
rithms

e Is able to represent simple ran-
dom exogenous events of the
planning world

Weaknesses:

e Uncertainty has a considerable
impact even when learning sim-
ple problems

Table 2.2: Characteristics of the AML approaches according to their output
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value that is different from the real one, or by the appearance of an action
that is different from the one executed in a given point.

Incompleteness and noise are not mutually exclusive and may simultaneously af-
fect a plan trace. The uncertainty of the data —as this is called—leads to the use
of algorithms with high fault-tolerance that may ignore missing or erroneous data.
This is in addition to the necessity of implementing procedures to pre-process the
input data in order to relieve some uncertainty issues.

Table 2.3 shows an example of a complete and non-noisy plan trace. This plan
trace presents a plan where a rover rovl moves from wpl to wp3, traversing wp2,
and then returning to wp1. In wp2 and wp3, rov1 takes samples of the soil and the
rocks respectively. The first part of the table (sub-table 2.3a) lists the state transi-
tions of the trace, where the second part (sub-table 2.3b) presents the intermediate
states observed during the execution of the plan. The format used to display the
state transitions had three different parts: two indexes to link with their associated
pre-states and post-states, and a task header. The plan traces used in this work fol-
low the OWA. In the following chapters we will define how we pose the learning
problem and we will properly explain the reason behind this issue, but it can be
summarised as: the more information contained in the plan traces, the better. This
issue will be expanded on in further chapters of this manuscript.

Plan traces and static relations. This plan trace representation format is
the one used in the first two contributions presented in this manuscript (described
in Chapters 3 and 4). The experimentation in these contributions is performed
on benchmark planning domains from the automated planning literature, which
implies that the domains have a moderate size and the volume of information con-
tained in the states is reduced. When it comes to representing the information of
other sources, these premises are no longer fulfilled, since they can contain a huge
volume of information. When tackling the task of encoding this information into
a plan trace for our solution, we may find that it is not feasible due to the volume
of data to be processed. For example, in the plan trace model presented above, the
connection between locations must be encoded. For each pair of connected ele-
ments, a predicate must be necessarily included in a given state and, as the original
plan traces follow the OWA, a predicate for every unconnected pair of elements
must also be included. This causes a combinatorial explosion of predicates that
needlessly increases the size of the traces, especially when this information must
be repeated in each state of the trace. In the benchmark planning domains used in
the experimental process of Chapters 3 and 4 this issue is negligible, but when fac-
ing the challenges presented in Chapter 5 it leads to an unmanageable problem due
to the source used to get the experimental data. The experimental data is obtained
from videogames observations (detailed later in section 2.5 of the present chapter)
in which the world is defined as a grid where the different cells are connected. The
volume of this information is huge, but it must be stored for further use. Before
developing the techniques presented in the aforementioned chapter of this disser-
tation, it was mandatory to tackle this problem and design a new model of the plan
traces capable of processing all the information and storing it more efficiently in a

45



CHAPTER 2. BACKGROUND AND RELATED WORK

Pre-state Post-state Action
[ 1 (move rovi wp1 wpz)
1 2 (sampleSoil rov: wp2)
2 3 (move rovi wpz wp3)
3 4 (sampleRock rovi wp3)
4 5 (move rovi wp3 wp1)

(a) State transitions

Index | Predicates

0 (in rovi wp1) A (= (in rovi wp2)) A (= (in rovi wp3)) A

(sample wpz soil) A (sample wp3 rock) A (— (storedSample rovi rock)) A

(= (storedSample rov1 soil)) A (= (bat_usage rov1) 3) A (= (battery rovi) 100) A

(= (distance wp1 wp2) 10) A (= (distance wp1 wp3) 5) A (= (distance wpz wp1) 10) A
(= (distance wpz wp3) 15) A (= (distance wp3z wp1) 5) A (= (distance wp3 wpz) 15) A
(connected wp1 wp3) A (connected wp3 wp1) A (connected wpi wp2) A

(connected wp2 wp1) A (connected wp2 wp3) A (connected wp3 wp2)

1 (= (in rovi wp1)) A (in rovi wpz) A (= (in rovi wp3)) A

(sample wpz soil) A (sample wp3 rock) A (— (storedSample rovi rock)) A

(= (storedSample rov1 soil)) A (= (bat_usage rov1) 3) A (= (battery rovi) 70) A

(= (distance wp1 wpz) 10) A (= (distance wp1 wp3) 5) A (= (distance wpz wp1) 10) A
(= (distance wp2 wp3) 15) A (= (distance wp3 wp1) 5) A (= (distance wp3 wpz) 15)A
(connected wp1 wp3) A (connected wp3 wp1) A (connected wpi wp2) A

(connected wpz wp1) A (connected wp2 wp3) A (connected wp3 wp2)

2 (= (in rovi wp1)) A (in rovi wpz) A (= (in rovi wp3)) A

(— (sample wpz soil)) A (sample wp3 rock) A (- (storedSample rovi rock)) A
(storedSample rov1 soil) A (= (bat_usage rovi) 3) A (= (battery rovi) 65) A

(= (distance wp1 wp2) 10) A (= (distance wp1 wp3) 5) A (= (distance wpz wp1) 10) A
(= (distance wpz wp3) 15) A (= (distance wp3z wp1) 5) A (= (distance wp3 wp2) 15)

3 (= (in rovi wp1)) A (- (in rovi wp2)) A (in rovi wp3) A

(— (sample wpz soil)) A (sample wp3 rock) A (- (storedSample rovi rock)) A
(storedSample rov1 soil) A (= (bat_usage rovi) 3) A (= (battery rovi) 20) A

(= (distance wp1 wp2) 10) A (= (distance wp1 wp3) 5) A (= (distance wpz wp1) 10) A
(= (distance wpz wp3) 15) A (= (distance wp3 wp1) 5) A (= (distance wp3 wpz) 15)A
(connected wp1 wp3) A (connected wp3 wp1) A (connected wpi wpz) A

(connected wp2 wp1) A (connected wp2 wp3) A (connected wp3 wp2)

4 (= (in rovi wp1)) A (= (in rovi wpz)) A (in rovi wp3) A

(— (sample wpz soil)) A (— (sample wp3 rock)) A (storedSample rovi rock) A
(storedSample rov1 soil) A (= (bat_usage rovi) 3) A (= (battery rovi) 15) A

(= (distance wp1 wpz) 10) A (= (distance wp1 wp3) 5) A (= (distance wpz wp1) 10) A
(= (distance wpz wp3) 15) A (= (distance wp3z wp1) 5) A (= (distance wp3 wpz) 15)A
(connected wp1 wp3) A (connected wp3 wp1) A (connected wpi wpz) A

(connected wp2 wp1) A (connected wp2 wp3) A (connected wp3 wpz)

5 (in rovi wpi) A (- (in rovi wpz2)) A (= (in rovi wp3)) A

(= (sample wpz soil)) A (— (sample wp3 rock)) A (storedSample rovi rock) A
(storedSample rov1 soil) A (= (bat_usage rov1) 3) A (= (battery rovi) o) A

(= (distance wp1 wp2) 10) A (= (distance wp1 wp3) 5) A (= (distance wpz wp1) 10) A
(= (distance wpz wp3) 15) A (= (distance wp3z wp1) 5) A (= (distance wp3 wpz) 15)A
(connected wp1 wp3) A (connected wp3 wp1) A (connected wpi wp2) A

(connected wp2 wp1) A (connected wp2 wp3) A (connected wp3 wp2)

(b) States list

Table 2.3: Extract of a rover’s domain plan trace.
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limited space.

This new format for plan traces (see Table 2.4) is similar to those initially pro-
posed (in that it is composed of a list of actions followed by a list of states), but it
also contains a new block that stores information about the static relationships of
the problem’s world. In a planning problem, a static relationship is defined as a re-
lation that remains unchanged throughout the execution of the plan, as opposed to
a dynamic relationship, which evolves. The new plan traces separate all the static
relationships from the states, including them in a new information block at the end
of the file. This eliminates predicate redundancy, substantially reducing the size of
the traces as a lot of repeated information is erased. Given that the static relations
represent constants, we can assume that, if they do not appear in the initial state
of the problem, they do not exist. This leads to the possibility of encoding them
according to the CWA. As indicated earlier, the CWA considers all predicates that
are not defined explicitly in a state as false. For practical purposes, this leads to
only defining in the new plan traces those static relations that are true or have a
numeric value in the initial state, which further reduces the number of predicates
contained in them. Compared to the trace in Table 2.3, the newly formatted plan
trace presented in Table 2.4 takes up 50.4% less space. This proportion of space
saved increases as the size of the plan trace increases.

Finally, when creating the plan traces used in the different experimental pro-
cesses presented in this document, the following procedure is used: Starting from
an initial state, a planning domain and a plan, we take as state [0] of the trace the
aforementioned initial state, and we create the rest of the states [i] sequentially on
the basis of applying action q; to state [i — 1]. To do this, the elements of [i — 1]
are carried over to [i] and modified according to the addition and deletion lists of
the action q;. In the specific case of the traces defined with the second proposed
format, an extra step is taken to detect and separate static relations from dynamic
relations. This is done by observing all the states of the trace in search of those el-
ements whose value does not vary throughout the trace, and then extracting them
from the states and including them in their own block in the plan trace.

Background knowledge. Along with the plan traces, an AML technique may
be fed with information about the model to be learned. This information is the so
called “background knowledge”. The concept of background knowledge [ ]
is heterogeneous and encompasses a wide array of different information. Roughly
speaking, all knowledge related to the model to be learned is considered “back-
ground knowledge”, including information about the ontology. For the sake of un-
derstanding, we will sort the background knowledge into two categories according
to its origin:

1. Implicit background knowledge. This kind of knowledge is contained in the
plan traces and, after some processing, can be extracted and used by the AML
techniques. Examples of implicit information are task headers, predicates, or
the type of those parameters (if any).

2. Explicit background knowledge. This kind of knowledge is exogenous to the
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Pre-state Post-state Action
[ 1 (move rovi wp1 wpz)
1 2 (sampleSoil rovi wpz)
2 3 (move rovi wpz wp3)
3 4 (sampleRock rovi wp3)
4 5 (move rovi wp3 wp1)
(a) State transitions
Index Predicates
(in rovi wp1) A (- (in rovi wpz)) A (= (in rovi wp3)) A
o (sample wpz soil) A (sample wp3 rock) A

(— (storedSample rovi rock)) A (- (storedSample rovi soil)) A
(= (battery rovi) 100)

(= (in rovi wp1)) A (in rovi wp2) A (= (in rovi wp3)) A

1 (sample wpz soil) A (sample wp3 rock) A

(— (storedSample rov1 rock)) A (- (storedSample rov1 soil)) A
(= (battery rovi) 70)

(= (in rovi wp1)) A (in rovi wp2) A (= (in rovi wp3)) A

2 (— (sample wpz soil)) A (sample wp3 rock) A

(— (storedSample rovi1 rock)) A (storedSample rov1 soil) A
(= (battery rovi) 65)

(= (in rovi wp1)) A (- (in rovi wp2)) A (in rovi wp3) A

3 (— (sample wpz soil)) A (sample wp3 rock) A

(— (storedSample rov1 rock)) A (storedSample rov1 soil) A
(= (battery rovi) 20)

(= (in rovi wp1)) A (- (in rovi wp2)) A (in rovi wp3) A
4 (— (sample wpz soil)) A (— (sample wp3 rock)) A
(storedSample rov1 rock) A (storedSample rovi soil) A
(= (battery rovi) 15)

(in rovi wp1) A (= (in rovi wpz)) A (= (in rovi wp3)) A
5 (— (sample wpz soil)) A (— (sample wp3 rock)) A
(storedSample rov1 rock) A (storedSample rovi soil) A
(= (battery rovi) o)

(= (bat_usage rov1) 3) A (= (distance wp1 wp2) 10) A
(= (distance wp1 wp3) 5) A (= (distance wpz wp1) 10) A

Static (= (distance wpz wp3) 15) A (= (distance wp3 wp1) 5) A
Relations | (= (distance wp3 wpz) 15) A (connected wp1 wp3) A
(connected wp3 wp1) A (connected wp1 wp2) A
(connected wpz wp1) A (connected wpz wp3) A
(connected wp3 wpz)

(b) States list

Table 2.4: Updated rover’s domain plan trace with static relations.
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plan traces and is provided additionally to the plan traces. Explicit informa-
tion provides extensive insight about the domain being learned that can be
obtained from nowhere else. An incomplete action model (i.e. an action
model that lacks some preconditions or effects) would be an example of ex-
plicit information.

All AML techniques need background information to a greater or lesser extent
to work properly, and its availability (provided either by implicit or explicit sources)
reduces the effort required for them to work. For example, an AML technique that
receives plan traces without the task header information would need to find pat-
terns among pre-states and post-states in order to infer them by itself, which is a
harder learning task. Conversely, an AML that knows beforehand the goal of every
action will only need to find a suitable collection of predicates that achieves it, thus
easing the whole process.

2.4.2 Action model learning paradigms

In the previous sections, we have talked about how the characteristics of the inputs
and outputs influence the learning process of AML techniques by either facilitat-
ing or complicating it, but without going into detail about these processes. This
section aims to shed some light on the subject by explaining the most common
learning paradigms used in the state-of-the-art, as well as showing practical exam-
ples of each of them. For each strategy, a bird’s eye view will be given of its general
operation, input data necessary to make it work and the type of output produced. In
addition, we will relate the aforementioned learning paradigms to state-of-the-art
AML techniques from the literature, highlighting their strengths and weaknesses
in each case.

Inductive learning

Inductive learning-based AML techniques do not differ in their core functionality
from the inductive learning ML techniques presented earlier. Inductive learning
techniques need a set of hypotheses, a set of examples and, optionally, background
knowledge; their output is a set of rules consisting of elements from the set of hy-
potheses that explain all input examples and do not contradict the background in-
formation. Inductive learning is one of the most important learning paradigms in
machine learning, and a wide array of learning techniques are based on it.

Although this entirely depends on each particular inductive learning technique,
we can generalise the strengths of the paradigm as:

+ Able to learn models from scratch.

+ Able to deal with logical, categorical and numerical information.

« High resilience to uncertainty.

« Given the existing number of approaches based on this paradigm, it is not

difficult to find one that meets the requirements of a particular learning task.
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In contrast, weaknesses include:
« Learned models may not make sense from a human point of view.

« Because of its blind learning, it is very dependent on the information con-
tained in the input traces.

Inductive learning is the jack-of-all-trades paradigm, standing out when ad-
dressing learning problems about which we do not have prior information [ ]
It is useful when learning domains with high expressiveness, and its ability to find
models for subsets of the input data allows it to detect non-deterministic effects.
In addition, it allows incomplete or noisy data to be used as input in the absence
of explicit information. As we noted earlier, inductive learning is one of the most
widespread learning paradigms, and this is represented below with many different
implementations:

« PELA | ] is a technique based on the use of decision trees. For each
action of the problem, PELA generates a decision tree from the plan traces
used as input. From each of these decision trees, the algorithm extracts an
action model. PELA can compile the decision trees into action models with
conditional or probabilistic effects as needed. To obtain the models, PELA
uses the TILDE algorithm [ ].

» Jiménezetal. [ ] address the learning task using regression trees. The
implementation of regression trees allows this technique to learn effects with
numerical information. This is achieved by fitting a regression tree for each
numerical fluent in the input data. Then, these trees are converted into con-
ditional effects by assigning values to the modelled fluents according to the
values of the rest of the input attributes.

« LOCM algorithms. The LOCM family of algorithms refers to 3 different al-
gorithms, based on the same learning technique: LOCM [ ], LOCM2
[ ]and NLOCM [ ]. LOCM is an AML technique that learns from a
set of plans without information about the intermediate states of the execu-
tion. LOCM relies on the use of finite state machines to learn static relations
among the objects of the action headers of the input plans. For each object,
a single finite state machine is fitted. These static relations are used to cre-
ate the action models. This limits the complexity of the relations that can be
learned using the algorithm. LOCM2 overcomes this by learning set finite
state machines for each object, improving the coverage of possible domains
that can be learned. NLOCM iterates on the solution proposed in LOCM2
to provide a technique capable of learning planning domains with action
costs. Each plan is assigned a cost, and by using constraint programming
techniques NLOCM is able to infer the cost of each separate action.

« Opmaker and Opmaker2. Opmaker [ ] implements a mixed learning
process based on plan traces and user interaction. Given an action, the user
must indicate the state resulting from applying it, and Opmaker calculates its
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action model. To support this interaction, Opmaker makes use of the GIPO
[ ] algorithm. Opmaker2 [ ] is the natural evolution of Op-
maker and presents a set of procedures to automatically infer information
that previously had to be supplied by the user. These procedures combine a
series of heuristics to infer the resulting states from the input data.

« FAMA|[ ] compiles the learning task as if it were a planning task. So, for
each action, it defines a planning domain and a problem from the input plan
traces. The domain contains a set of operators that add preconditions and
effects to the action being learned and another set of operators to validate it.
The plan obtained by solving the planning problem contains the information
needed to build the desired action model.

« Pasulaetal. [ ] approaches its learning process based on modelling the
world using probabilistic relational rules. To this end, the learning algorithm
is implemented in a three-level greedy search algorithm that i) learns a set
of rules, ii) induces input/output relations between the rules learned in the
previous step and iii) extracts the parameters of the action models from the
output relations. In [ ], the authors present an evolution of this con-
cept, improving the learning process to allow the inclusion of noise in the
input data. The action models learned by both algorithms contain stochastic

effects.
» Zettlemoyer et al. [ ] proposes a learning method similar to that de-
fined in Pasula et al. [ ] which, after learning the probabilistic rela-

tional rules, applies a process to learn background knowledge. This process
iteratively builds increasingly complex concepts, testing their usefulness by
comparing them with previously learned rules. This method can learn mod-
els of actions with probabilistic effects using noisy input data.

» Mourao et al. | , ] learn action models by fitting a collection
of models using support vector machines and combining them in a single
model. The learned models contain descriptions of the states on which a
given action applies. Once all the different models are combined into a single
model, it is used to generate the output STRIPS action model. This work is
similar in its approach to the learning problem to the contributions proposed
in this manuscript, and is able to work with uncertainty in the input data.

« AMAN [ ] fits a set of models that represent all possible situations de-
fined in the plan traces. Then, assuming that these models are noisy, it cre-
ates a graphical model that captures the relationships between the actions
and states of the trace. This model is used to ‘predict’ what a noise-free trace
would look like, and with it discard the erroneous elements of the model set.
The authors presented a new version of the algorithm [ ] capable of
working with plan traces with parallel actions or disordered elements.

Special mention should be made of inductive learning methods that integrate
reinforcement learning like LOPE [ ], acomprehensive planning/execution/
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learning process (Figure 2.3) that employs reinforcement learning to learn the mod-
els of its actions. Starting from an uninformed model, LOPE generates a plan that
it must execute to achieve a proposed goal. It then executes that plan and calculates
the difference between the states predicted during the making of the plan and those
it observes of the world as it goes about its work. These differences are used as a
reward function and propagated to the action models, refining them step by step.

MAX-SAT based learning

MAX-SAT [ ] is a mathematical problem which consists in determining the
maximum number of clauses in a logical formula that can be satisfied by assigning
truth values to their variables. There is a variant of the problem that considers that
each clause has a given weight, and the objective of the problem is to maximise
the sum of the weights of the satisfied clauses. The benchmark MAX-SAT solv-
ing strategy is DPLL (Davis-Putnam-Logemann-Loveland) [ ], which solves
this problem by selecting a variable, assigning it a value and checking the num-
ber of clauses satisfied by this choice. In case it finds a worse solution, the DPLL
backtracks and selects another truth value until the whole solution space hsa been
explored. In order to work, DPLL needs a logical formula in CNF (conjunctive nor-
mal form) format, and it returns the selection of pairs <variable, value> that satisfy
the largest number of clauses in the formula (or the weight of the clauses in the case
of the weighted MAX-SAT). Among their strengths are:

« Despite being an NP-hard problem, there is a rich literature on highly effi-
cient approximations and variations of DPLL.

« It can work with certain levels of uncertainty, especially incompleteness.
Weaknesses include:
« It can only learn problems with logical information.

AML techniques based on this technique do their work by taking input traces
and background knowledge, and creating from them a logical formula in CNF for-
mat. This formula is solved by a MAX-SAT solver, and its output is compiled into a
valid action model.

« ARMS [ ] presents an iterative process where in each step it creates a
logical formula for each action in the domain. These formulas have as clauses
the predicates of the intermediate states of the traces used as input. In addi-
tion, ARMS infers a number of extra constraints from implicit background in-
formation. These constraints represent the ordering relationship between ac-
tions, or the semantics of the STRIPS model when representing action mod-
els. Once the formulas are constructed, it solves them with a weighted MAX-
SAT solver and builds the action models with those clauses that have the most
coverage.
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« RIM|[ ]isan algorithm that essentially works in the same way as ARMS.
The main difference between the two approaches is that RIM starts from a
partially learned model. From this model, it defines a series of constraints
that, together with those it generates in a process similar to ARMS, allow it
to be enriched and refined.

« LAMMAS | ] is another algorithm like ARMS, but with the focus on
traces obtained in a multi-agent environment. In addition to the limitations
generated by ARMS, LAMMAS includes other limitations of its own to rep-
resent the coordination of agents to achieve a goal.

Markov Logic Networks based learning

Markov logic networks are a form of knowledge base representation that combines
first-order logic with probabilities. Using this knowledge base in this representa-
tion, a given world can be evaluated in such a way that the fewer elements of the
knowledge base it contravenes, the more feasible it is. In this representation, each
element of the knowledge base is a logical formula with an associated weight. This
weight indicates how much a world is penalised if it does not meet the condition
represented by the formula. Knowledge bases represented by a Markov logic net-
work can be used in two ways: (i) to test the feasibility of a logical formula under
certain circumstances or (ii) to extract a template of the “most feasible world” by
taking those conditions with the highest weights. Among their strengths are:

« Ability to faithfully represent uncertainty and stochastic behaviour.
« Efficiency in the representation of very large knowledge bases.

« The internal presentation format of the formulas is very similar to STRIP-
S/PDDL.

Weaknesses include:
« Itislimited to representing only logical information.

Similar to the way MAX-SAT-based techniques work, solutions based on Markov
logic networks create a knowledge base from past information as input and extract
information from it. The best example of these techniques is LAMP [ ].
LAMP takes the input plan traces and, as previously discussed, creates a knowl-
edge base from them, encoding a logical formula for each state transition. Once
the knowledge base is created, it generates a set of candidate formulas from im-
plicit background knowledge (namely, the predicates and action headers) that are
evaluated against the knowledge base. The formula with the highest probability is
selected, and the set of action models is created from it.
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Transfer learning

Transfer learning [ ] is a learning paradigm that studies how to apply learned
knowledge from one problem to another similar problem. The philosophy behind
this paradigm is to reuse previously acquired knowledge to solve problems where
it is costly to obtain sufficient input data. Starting from a solved problem (called
source) and a small set of input data from the problem to be solved (called target),
transfer learning techniques apply a series of strategies to modify the source to be
able to process the input data. This modification can be done in several ways: by
assigning weights to the source elements and adjusting them, by selecting which
characteristics or parameters of the source best represent the input data and creat-
ing a model from them, or by mapping the knowledge of the source with a transla-
tor. Among their strengths are:

« Requires a smaller amount of input data.

« Ability to work with uncertainty.
Weaknesses include:

« The overall quality of the learned domains depends on the quality of the
source problem.

« Itis necessary to have a similar problem previously solved.

The translation of a Transfer Learning problem into an AML problem is trivial:
Given a source planning domain and a set of plan traces, a process must be found
that allows the source domain to process these traces. Once the process is applied,
the source domain can be easily transformed into the target domain. An example of
such a technique is TRAMP [ ]. TRAMP encodes the input plan traces and the
source domain as logical formulas. These formulas are used to create a knowledge
base using Markov Logic Networks. Once the knowledge base is built, it generates a
set of candidate formulas to link the logic formulas belonging to the plan traces with
the formulas obtained from the source domain. After finding a suitable candidate
formula, it proceeds to apply the changes encoded in it on the source domain in
order to obtain the domain that encodes the plan traces.

2.5 The GVG-AI framework

Finally, the contribution presented in Chapter 5 makes use of the development
environment created for the General Video Game Artificial Intelligence (GVG-AI)
[ ] competition as a source of input data to be used to generate action mod-
els. GVG-Al is framed within the research in Artificial General Intelligence [ ],
more specifically in the development of General Video-Game Playing techniques
[ , ], a collection of techniques which belong to the field of Artifi-
cial General Intelligence. Artificial General Intelligence studies the development
of so-called “general” Al agents, i.e., agents whose intelligence can be applied to
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many different types of problems. Extrapolating this to the sub-area of General
Game Playing, we can define the area as a set of techniques that are concerned with
developing artificial agents capable of playing a large number of different video
games without a priori knowledge about them. The event that boosted this area
of knowledge was the General Game Playing Competition, held from 2004 to 2012
[ ]. In this competition, participants were provided with a low-level descrip-
tion of the games in the competition, and they had to design their own representa-
tion of the mechanics needed to play them, with the one who achieved the highest
score emerging as the winner. Due to the restrictions on the representation used in
the competition, the games used in the competition were mainly board games or
puzzle games.

In 2013, Bellemere et al. [ ] presented a framework for evaluating gen-
eral Al agents using Atari 2600 video games. This framework significantly increased
the complexity of the represented games and of the environment-agent interactions
(mainly due to the fact that these must be in real-time). One year later, the first
GVG-AI competition was held, presenting a new framework and a new standard
for game representation that allows for the design of any classic video game up to
Nintendo Entertainment System games. After this brief historical review, the next
pages will present the GVG-AI environment and its particularities.

2.5.1 GVG-AI

The GVG-AI | , ] competition was created by a team of researchers
from the University of Essex, the New York University and Google DeepMind to
evaluate general Al agents. Since its conception, the competition has been run
as part of several international conferences and, to enter it, a competitor simply
needs to implement a controller in the GVG-AI framework ' and submit it to the
competition web-page. In order to develop and test the controllers, a set of public
games are included with the framework; however, when evaluating it, the evalu-
ation committee will use a set of unpublished test games (which is renewed pe-
riodically). All games used are inspired by classic arcade games from the 8os/90s
and have different victory conditions, scoring mechanisms, game-play and sprites.
Currently, the game corpus amounts to more than 160 games and is distributed
among several tracks. Each track presents different types of challenges. At the
time of writing, the GVG-AI competition has multiple competition tracks available
for single-player games [ ], multiplayer games [ ], game level gen-
eration [ ], game learning and game rule generation. PlanMiner-C draws
its knowledge from an agent implemented for the first track, the single-player video
games track. Over time, GVG-AI has become the benchmark for the development
of general Al techniques, allowing a rapid advancement of the research field in
recent times [ ] and even being used for teaching tasks [ 1.

'Available at http://www.gvgai.net/
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Game Agents

An agent developed for the GVG-AI competition is a piece of JAVA software de-
signed to return an action that tells the avatar what to do in each step of the game
execution. During the competition, agents are allowed a certain amount of time to
think about what action to perform, and, if the agent fails to return a valid action
within that time, it is automatically disqualified. In the last competition held (in
2018), the time limit was 50 milliseconds, but if the agent did not return an action
in less than 40 milliseconds their action was invalid and the avatar remained inac-
tive until the next game step. Before the game starts, the agent is called for the first
time (through its java constructor) to initialise its internal components; during this
first step, the agent has 1 second to configure what it deems appropriate. The time
limitation for determining the avatar’s course of action makes an exhaustive search
of the problem search space impractical, greatly limiting the techniques that can be
implemented in the agent.

Each time an agent is called, it is provided with information about the world
(called observation) and a time-stamp to manage its own execution). Since agents
do not have access to the game definition, the framework encapsulates all the infor-
mation they need in the observations of the world. At the time the agent is called,
the observation given to it represents a snapshot of the world in a given moment.
This observation contains statistics about the agent (its position, its score, its re-
sources, its available actions...), about the game map (size, shape, topology...) and
about the rest of the elements that conform the game (obstacles, NPCs, prizes...).
In addition, an observation is a simulable model, so given an action, it can be ap-
plied to the observation of the world to check how it would change after executing
it. An agent can perform this simulation as many times as it wants, as long as it
does not exceed the maximum execution time set by the competition. Regardless
of the game, an agent can always return the following actions: UP, DOWN, LEFT,
RIGHT, USE and NULL. These actions are linked to the directional arrows and the
space bar of the keyboard.

VGDL

All games used in GVG-AI are written in the Video-Game Description Language
(VGDL) [ , | format. VGDL is a declarative ASCII representation for
2D video games in the style of those programmed for the Atari 2600 and Com-
modore 64. VGDL has the power to express a wide variety of different games where
an avatar (representing a player or agent) interacts with game elements to win.
These interactions allow for the definition of action, adventure or puzzle games,
both deterministic and stochastic. This separation allows to test artificial agents,
but also to develop techniques of procedural generation of levels or game rules.
Similar to a planning problem that requires a domain and a problem separated
in different files, a game defined in VGDL consists of a file with its description
and one or more levels. On the one hand, the video game description is divided
into 4 blocks: the SpriteSet, the InteractionSet, the LevelMapping and the Termi-
nationSet. The SpriteSet describes all the objects in the video game, as well as their
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WWWWW
WZAWW
WW. . W
W.11W
wwk . w
WWWWW

(a) ASCII representation. (b) Graphical representation.

Figure 2.4: VGDL example.

properties and types. The InteractionSet determines the rules that govern the game,
indicating how the objects defined in the previous block interact with each other.
The LevelMapping indicates how to represent the SpriteSet objects in the level files,
creating a map that links each object with an ASCII symbol. Finally, the Termina-
tionSet defines the victory and defeat conditions of the game. On the other hand,
the levels are composed of a 2D grid of ASCII symbols, formed according to the in-
formation contained in the LevelMapping of the definition file. Figure 2.4 presents
an example of a level file together with its graphical representation.
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Chapter 3

Learning Planning Domains
from Plan Traces

3.1 Introduction

Despite the advances in Action Model Learning (AML), the techniques presented
in the previous chapter are insufficient to learn planning domains with enough ex-
pressiveness to cover the capabilities of the more recent versions of PDDL, such as
the handling of numerical information or the inclusion of arithmetical or relational
expressions. This limits the application of these techniques, as they can not learn
domains expressive enough to deal with real-world problems.

In the state-of-the-art there is only a handful of approaches [ , ]
capable of working with numerical information, although they present quite im-
portant deficiencies that hinder their implementation. On the one hand, Lanchas
etal. [ ] is unable to generalise over the input data, creating artificial condi-
tional structures which are difficult for a human being to interpret and which could
be simplified by using a single more interpretable arithmetic expression. This issue
provokes an increase in complexity and size of the actions learned as the number of
distinct values that a given fluent has in the input data grows. On the other hand,
Gregory et al. [ ] can only learn costs associated with actions, and they must
be fixed values. This restriction narrows the scope of application of the approach,
invalidating the implementation of this technique in any problem with more than
one fluent (cost of actions is represented as a single fluent in planning domains),
problems whose fluents are not explicitly linked to actions, or in problems with
actions that do not modify the fluents by a fixed value after execution.

From the point of view of the implementation of AML techniques in complex
AP problems, these limitations are very problematic. The shortcomings in the ex-
pressiveness of the models that can be learned make the application of these tech-
niques unfeasible, even for some benchmark domains from the literature. An ex-
ample of an unlearnable domain would be the Rovers domain presented through-
out Chapter 2 of this document. For example, the move action is impossible to learn
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by the approaches named above. NLOCM would be unable to learn the decrement
of the fluent (battery ?r) as it is not a fixed decrement and depends on other fluents.
Lanchas et al. are able to learn the decrement, but replace it with a very large set
of conditional effects that hinder the human interpretability of a domain. Finally,
neither approach would be able to learn the relational expressions (explained later
in this chapter). The system presented in this manuscript was conceived with the
idea of overcoming these problems.

The aim of this chapter is to describe our proposal —called PlanMiner—in de-
tail. The PlanMiner methodology is designed as a pipeline of machine learning
techniques with the objective of learning STRIPS planning domains enriched with
preconditions and effects with arithmetic and relational expressions supported by
the PDDL 2.1 version.

The learning process of PlanMiner relies on fitting a series of classification mod-
els from which to extract the preconditions and effects of the actions being learned.
These classification models are obtained by using a classifier, which is fed the infor-
mation contained in plan traces used as input to the algorithm. PlanMiner prepro-
cesses these traces with a two-step method: (i) formatting the information in the
traces into a data structure understandable by the most widespread classification
algorithms in the literature (i.e. attribute-value matrices as described in section
2.3.2), and (ii) inferring new information with which to enrich these matrices.

Because PlanMiner bases its learning process on the fitting of a series of classi-
fication models, it greatly benefits from the advantages of XAI techniques. Given
the high interpretability of the models obtained in the intermediate steps of the
learning pipeline, PlanMiner can directly represent the relevant information of the
preconditions and effects of the action models. This considerably alleviates the
work required to learn them. Moreover, in the information obtainment steps, XAl
techniques allow for the generation of more interpretable expressions (via symbolic
regression) that better represent the behaviours of the action models being learned.

The rest of the chapter is structured as follows: first, we will describe the algo-
rithm presented in this chapter. This description will detail their most important
components, depicting how they fit in the learning strategy presented in this docu-
ment. In the same section (subsection 3.2.1), PlanMiner will be explained in-depth.
Second, we will present the experimentation carried out to validate PlanMiner, in
comparison with several state-of-the-art AML techniques. This experimentation
shows that PlanMiner outperforms such AML techniques in the experiments pro-
posed. Finally, the last section of this chapter contains the final remarks.

3.2 PlanMiner

The methodology presented in this chapter consists in a technique for learning
planning domains from plan traces by using various machine learning techniques.
The main idea behind this approach is to obtain the meta-state of the pre-states
and post-states, and, from these meta-states generate the preconditions and effects
of each action. A meta-state is a characterisation of the states associated with each
action being learned. As previously mentioned, this whole process is designed as a
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Dataset Classification models
Extraction acquisition
Traces New Features Planning domain Domain
Discovery generation

Figure 3.1: The learning pipeline of PlanMiner

pipeline (see Figure 3.1) that links the different techniques needed in the learning
process.

In order to make use of machine learning techniques, the first step in the pipeline
is to extract the information contained in the plan traces and format it into datasets.
This step is essential, as plan traces are not a data structure that is understandable
by the vast majority of ML techniques. These datasets are then pre-processed to in-
fer new knowledge from them and enrich them. During this process, our method-
ology makes use of symbolic regression techniques to learn arithmetic-logical ex-
pressions that explain the evolution of the different fluents along with the execu-
tion of the input plan traces. These enriched datasets are used as the input to a
classification algorithm, from which a series of classification models are extracted.
These models contain the information about the meta-states of the pre-state and
post-state actions, which are post-processed to translate them into PDDL format
and generate the action schemes of the planning domain being learned.

This methodology turns the knowledge acquisition problem into a classification
problem. This reduction is due to one of the basic design concepts that were taken
into account when designing this solution. As we know, three elements are needed
to define an action: a Header that indicates the name of the action and its parame-
ters, a Pre block that represents those elements that must be true in a state to make
an action applicable, and an Eff list that describes the changes that are applied. As-
suming that we have a priori information about the Header, our methodology only
needs to learn Pre and Eff. Learning Pre consists in detecting the common elements
in all the states on which the action to be learned was applied. In other words, it
consists in finding all the features that characterise the pre-state of a given action.
Learning Eff is an identical process, but with an extra step: once the characterisa-
tion of the post-states is obtained, it must be compared with the characterisation
of the pre-states. By comparing both meta-states it is possible to determine what
steps must be taken to transform the pre-state into post-states, ergo what is the set
of steps that must be taken to change the world once an action has been performed.

In chapter 2 of this dissertation report we have presented several solutions that
employ a similar approach, but without the use of classification algorithms for the
task of meta-state characterisation. Using classification techniques for this task has
three major advantages for our methodology.

The first is that they allow us to deal with both categorical and numerical in-
formation, which increases the expressiveness of the learned models. The second
is the resilience of these techniques to uncertainty, allowing our approach to work
even with low-quality data. The third is that the use of these techniques makes it
possible to obtain extra information that explicitly shows the reason why an action
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model has certain preconditions and effects.

3.2.1 PlanMiner Overview

The methodology (see Algorithm 6) presented in this chapter was the first one to
implement the concept of learning planning domains by applying classification
techniques from plan traces, and the first contribution presented in this manuscript.
The algorithm, named [ ], performs the following tasks in the different
steps of its pipeline:

1. Dataset Extraction. Takes a set of input plan traces and outputs a collec-
tion of datasets. Data structures used as input to typical machine learning
algorithms are not in PDDL format, so a translation process must be carried
out in order to convert the input plan traces to datasets.

2. Discovery of new features. After taking the information contained in the
datasets generated in the previous step, PlanMiner applies symbolic regres-
sion techniques to generate new features and enrich them. This step is cru-
cial, because new knowledge must be explicitly encoded in the datasets to
enable PlanMiner to learn arithmethic and relational expressions.

3. Classification models acquisition. With the datasets as input, PlanMiner
relies on a classification algorithm to fit a classification model for each one.
The hypotheses contained in the classification models define the key features
to model a set of intermediate states.

4. Planning domain generation. Finally, the classification models are pro-
cessed to get a set of action models. In order to obtain an action schema,
preconditions and effects are extracted from each classification model. The
final output of PlanMiner is a PDDL domain obtained by joining the learned
action models.

In order to illustrate the whole learning process, throughout this section various
examples will be shown based on Rovers domain (Table 2.3).

3.2.2 Data Set Extraction

In this first stage on the learning process (steps 3 and 4 in algorithm 6), PlanMiner
takes the actions and states contained in each plan trace provided as input and
adapts them to a typical classification input data structure. To achieve this, our
procedure first takes each action a contained in the input plan traces and extracts
a state transition (s;, a, ;). $; is a snapshot of the world just before executing the
action (pre-state), while s, is an observation of the world just after executing the
action (post-state). A given state can be the pre-state in a state transition and a post-
state in a different one. In Listing 3.1 we show an example of a state transitions for
the action (goto rovi wp1 wpz) extracted the plan trace depicted in Table 2.3. In
this example, we can see how the states o and 1 are related to the action 1 of the
example plan trace.
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Algorithm 6 PlanMiner Algorithm overview
Input: PT: Set of Plan Traces
Output: AM: Set of Action Models
1: Initialises stDict as an empty dictionary
2: for all Plan trace pt in PTs do
3. for all Different action act in the pt do

for all key act in stDict do
dat < dataset created using stDict[act]
10:  Detect new features from dat and extend dat with them
11:  Fit a classification model cModel using dat as input
12:  Generate action model am from cModel
132 AM <« AMUam
14: end for
15: return AM

4 Extract state transitions st of act in pt
5: stDict[act] < stDict[act] U st

6: end for

7. end for

8:

9:

Action: (goto rovi wp1 wpz)

« pre-state: (atrovi wpi) A (= (at rovi wp2)) A
(= (at rovi wp3)) A (- (scanned wp3)) A
(= (bat_usage rovi) 3) A (= (energy rovi) 450) A
(= (dist wp1 wpz) 50) A (= (dist wp2 wp3) 80)

« post-state: (- (atrovi wpi)) A (at rovi wpz) A
(= (at rovi wp3)) A (— (scanned wp3)) A
(= (bat_usage rov1) 3) A (= (energy rovi) 300) A
(= (dist wp1 wpz) 50) A (= (dist wp2 wp3) 80)

Listing 3.1: State transition of the (goto rov: wp1 wpz) action.

Once the state transitions for a given action have been extracted, the algorithm
calculates the schema form [ ] of every state (Algorithm 7). Schema forms
are calculated by selecting a state transition and taking each instance of the pa-
rameters in its action and replacing it with a given token every time it appears as
an argument in any of the predicates of its associated states. When every parame-
ter has been substituted by a token, irrelevant predicates are erased from the states.
Irrelevant predicates are predicates that have not undergone at least one substi-
tution during the translation into schema form. An exception to this rule are the
predicates with no arguments, which are always considered relevant. As will be
explained in section 3.2.4, the classification algorithm will choose from among the
relevant predicates in order to keep the ones needed to model the states. The ex-
ample shown in Listing 3.2 displays the schema form of the states associated with
the generic action (goto ?arg1 ?argz ?arg3) before erasing irrelevant predicates (un-
derlined). As can be seen, the actions have been equated with the independence of
their parameters, and each occurrence of rov1, wpl and wp2 has been erased. In
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Algorithm 7 Action schematisation process

Input: transSet: set of states transitions
Output: transSet: set of states transitions

1: for all sTrans € transSet do
actionH <« take the action header from sTrans
pre-state < take the pre-state from sTrans
post-state < take the post-state from sTrans
for all parameter € actionH do
token « create a token name for parameter
for all predicate € pre-state do
substitute every occurrence of parameter in predicate with token
end for
for all predicate € post-state do
substitute every occurrence of parameter in predicate with token
end for
13:  end for
14: end for
15: return sTrans

e XN 2w R RN

=
N R O

order to group all transitions according to the action to which they are linked, the
state transitions in schema form are stored in a dictionary stDict, whose key is the
name of the action appearing in said state transition and its value is the transition
itself.

Action: (goto ?arg1 ?argz ?arg3)

« pre-state: (at 2argi ?argz) A (- (at ?arg1 ?arg3)) A
(= (at 7arg1 wp3)) A (= (scanned wp3)) A
(= (bat_usage ?arg1) 3) A (= (energy ?arg1) 450) A
(= (dist ?argz ?arg3) 50) A (= (dist ?arg3 wp3) 80)

« post-state: (—(at ?arg1 ?argz)) A (at ?arg1 ?arg3) A
(= (at 7arg1 wp3)) A (- (scanned wp3)) A
(= (bat_usage ?arg1) 3) A (= (energy ?arg1) 300) A
(= (dist ?argz ?arg3) 50) A (= (dist ?arg3 wp3) 80)

Listing 3.2: Schema form of a (goto ?arg1 ?argz ?arg3) action.

A dataset is created for every different action in the plan traces. Two actions
are different if their headers (the action’s name plus arguments after applying the
schematisation process) are different. The datasets contain the information en-
coded in the states of the state transitions; this information (defined in predicates
and fluents) is encoded in the datasets as attributes. Each instance of a dataset is
a state, and its values are the values associated with each predicate: a logical value
if the predicate is a logic value or a number if the predicate is numerical. The in-
stances of the dataset are categorised by assigning them a class label given by the
relation of the state they belong to with the action whose dataset is being modelled
(i.e. pre-state or post-state), thus creating a binary classification problem. In order

64



3.2. PLANMINER

(at ?arg1 ?arg2) (at 7arg: ?arg3) (bat_usage ?arg1) (energy ?arg1) (dist ?arg2 ?arg3) (scanned ?arg3) Class
True False 3 450 50 MV pre — state
False True 3 300 50 MV post — state
True False 3 300 80 False pre — state
False True 3 60 80 False post — state
True False 3 230 75 MV pre — state
False True 3 5 75 MV post — state
True False 3 400 35 True pre — state
False True 3 295 35 True post — state
True False 5 400 75 MV pre — state
False True 5 25 75 MV post — state
True False 5 500 50 False pre — state
False True 5 250 50 False post — state
True False 3 315 105 True pre — state
False True 3 o 105 True post — state
True False 5 500 80 MV pre — state
False True 5 100 8o MV post — state
True False 3 46 15 False pre — state
False True 3 1 15 False post — state

Table 3.1: Dataset associated with the (goto ?arg1 ?argz ?arg3) action.

to fill each dataset, the state transitions associated with a given action are taken,
and its states are stored as instances of the dataset. These instances are labelled
according to their role in a certain state transition, which may lead to the appear-
ance of the same state with slightly different information in several instances of
the dataset. In those cases where a predicate that is modelled as an attribute in
the dataset does not appear in a given state, the value assigned in its instance is
a Missing Value (MV) token. For example, the predicate (scanned ?x) is part of
the relevant predicates of the action (goto ?arg1 ?argz ?arg3), but it is missing in
many of the concrete state transitions of such action in the plan traces. Therefore,
its absence in such states is represented as an MV. This leads to the adherence to
the Open World Assumption for the interpretation of value absences in an instance
[ ]. Table 3.1 shows how the state transitions of the (goto ?arg1 ?argz ?arg3)
actions defined in Table 2.3 are displayed as an attribute-value matrix. As can be
seen, each state in the state transitions is included as an instance in the dataset,
where its predicates are displayed as attributes; the class label defines its role in the
state transition. Note that state 1 (Table 2.3) appears twice in the dataset (instances
2 and 3) with different values and different class label.

3.2.3 Discovery of new features

At the previous stage of the methodology, PlanMiner created a set of datasets. As
the only information accessible to PlanMiner about the ontology of the problem is
the actions’ headers contained in the plan traces, the options of the methodology
are limited. In order to overcome this handicap, PlanMiner tries to acquire new
knowledge from scratch. This stage (step 5 in the algorithm) is the most crucial in
the whole learning process as, without this new knowledge, the process of learning
expressions (whether arithmetical or relational) among the elements of the learn-
ing problem would be impossible. Creating new features using brute force is not
a viable option because there is a risk of uncontrolled increase in the size of the
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learning problem. Also, when trying to learn relations among the elements of the
dataset (and hence the predicates of the planning problem) an excessive creation
of knowledge will lead to the emergence of spurious relations. Spurious relations
contain useless information that makes the resolution of the learning problem very
difficult; for example, a spurious relation drawn from example Table 3.2 would be
one that indicates that (bat_usage ?arg1) must be smaller than (dist ?argz ?arg3) in
the meta-states of the pre-states. To overcome this, we divide the process of discov-
ering new features into 3 steps:

1. Calculation of the difference between the numerical attributes of the dataset
before and after executing an action. This step will produce new synthetic
attributes (containing information about how a variable changes throughout
the execution of a plan) that will be added to the dataset.

2. Fitting of arithmetic expressions that model the differences of the numerical
attributes.

3. Discovery of the relational expressions that link the different elements of the
problem.

Before advancing to the next step, the new information is filtered to detect useless
or redundant information. This helps to keep the over-information produced in
every step under control.

Changes in numerical attributes

As a beginning step, prior to being able to learn complex information, we calcu-
late the set of A values associated with each numerical attribute of the dataset.
A(attribute) is defined as

5i €A 5i = xpre,attribute - xpost,attribute

where pre and post are the instances of the states associated with the ith state transi-
tion. If X, e, artribute OF Xpost,attribute 2T€ Missing, ; cannot be calculated and is substituted
by a Missing Value token.

Once the A values have been obtained, we can discriminate those attributes
that contain helpful information and are worthy of further exploration during the
information discovery process. A A(attribute) is irrelevant to the learning process
if every &; is equal to 0. An irrelevant A(attribute) means that its associated at-
tribute is not affected by a given action and is discarded before the next step begins.
Relevant A values are included in the dataset as a new attribute. Table 3.2 shows
an example of the calculation of A values. This table contains a description of how
the fluents evolve after executing a goto action; note that, out of the three fluents
considered, only A(energy?argl) is relevant.
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A(bat_usage?argl)  A(energy?argl) | A(dist?arg2 ?arg3)
3—-3=0 300 — 450 = —150 50-50=0
3—-3=0 60 — 300 = —240 80—-80=0
3—-3=0 5—230=-225 75=75=0
3—-3=0 295 — 400 = —105 35—-35=0
5-5=0 25 —400 = -375 75=75=0
5-5=0 250 — 500 = —250 50-50=0
3—-3=0 0—315=-315 105—-105=0
5—-5=0 100 — 500 = —400 80—-80=0
3—3=0 1—46 = —45 15—-15=0

Table 3.2: A values extracted from the dataset contained in Table 3.1

Fitting of arithmetic expressions

At this point in the process of knowledge acquisition, by using the calculated A val-
ues, PlanMiner would be able to infer how a fluent varies after executing a given
action, but only if it changes by a fixed value (linear functions). More complex
changes in the attributes (those that, for example, are explained by algebraic func-
tions) require new and more complex solutions to be identified. As explained ear-
lier (Section 2.3.1), regression analysis is the discipline of machine learning devoted
to predicting the correlation of a numerical value with the other variables of a given
problem. In this context, it can be used by PlanMiner to set a A value as the target
variable and, using regression techniques, create an expression that fits it from the
rest of predictive variables in the dataset.

PlanMiner implements the symbolic regression algorithm through an informed
graph search algorithm [ ] with the objective of incrementally building a
valid expression that fits the problem’s goal. An overview of the symbolic regression
algorithm implemented can be seen in Algorithm 8. In short, the algorithm creates
the root node from an empty expression (@) and a set of numerical attributes passed
as input (dataset dat) and, by adding new operators and operands to existing nodes,
creates new states that represent new formulas. New formulas are added to a pool
of created formulas. The algorithm selects a new formula from the pool and repeats
the process until a formula that is suitable for the set of target values is found.

In order to guide the search, for a state that represents the arithmetic expression
X, the algorithm uses a heuristic function

h(x, Goal) = 100% * MAPE(pred(x), Goal) * | x|

, where MAPE (Mean Absolute Percentage Error) is a measure of difference be-
tween two continuous variables (pred(x) and Goal) and is calculated as

I
2'12‘1’“ |pred(x); — goal;|
MAPE(pred(x), Goal) = Goal;

, Where pred(x) are the forecast values obtained with the arithmetic expression x
paired with the Goal set of values. Finally, Ix| is the size of the arithmetic expression
(the number of operands and operators in the expression).
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Algorithm 8 Symbolic regression algorithm
Input: dat: Dataset
Output: f: arithmetic expression
1: Set f as @ arithmetic expression

: open < generate successor nodes from f
: end « False
: while end = False do
successor < node in open with the lowest h function value
open < open - SUccessor
if h(successor) < threshold Vv timeout then

end < True
else

if h(successor) < h(f) then

f « successor

12: end if
13: open < open U generate successor nodes from successor
14: endif
15: end while
16: return f

L PN 2w R RN

=
= O

New states are created from a parent state by adding an operand paired with an
operator to the arithmetic expression defined in it. Arithmetic operators used by
the regression algorithm are {+, —, *, /}, while operands may be a constant integer
or an attribute from the dataset. For each iteration of the algorithm, every possi-
ble combination of operators and operands is used to create new successor states.
The search ends when a state with a heuristic value close zero is found or a cer-
tain amount of time has passed. The stop value for the heuristic function and the
timeout settings can be found in the experimental setup section (i.e. Section 3.3).

If the search algorithm is not able to find a suitable expression within the al-
lotted time, the A value associated is erased from the dataset. This is due to the
supposition that, if the search algorithm is incapable of finding a viable pattern in
the elements of the A value, then it is full of arbitrary values and no useful infor-
mation can be extracted from it. If a suitable formula is found, the A value used
as the goal is updated with it in the dataset. Figure 3.2 presents a brief example
of a search process for A(energy ?argl), where visited nodes (orange), expanded
nodes (blue) and goal nodes (red) are shown in the figure. The formulas created in
each node are displayed in the table on the right, as well as their heuristic values.
Those heuristic values are calculated by using the information contained in Table
3.1. As can be seen, the heuristic values decrease as the candidate formulas are
increasingly similar to the target formula.
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State Expression h(node)
So (4] oo
N 1 298.375
S, 2 296.75
S3 3 295.125
S12 (distance?argi?argz) 200
S13 (distance?argi1?argz) + 1 198.375
Sia (distance?argi?argz) + 2 196.75
S31 (distance?argi?argz) — 9 214.625
S3z (distance?argi?argz) * 2 100
Sar (distance?argi?argz) = (bat_usage?arg1) 0

Figure 3.2: Search graph of the A(energy?argl) expression.

Creation of relational expressions

As the final step of the new features discovery process, the relational expressions are
created through a straightforward procedure. This procedure takes two numerical
attributes of the dataset and creates a new one by pairing them with a relational
operator. The relational operators used by our algorithm are {=, <, >, }.

Finally, the relevance of the new logical attributes must be checked. The rele-
vance of a logical attribute is calculated by testing if every value in the new attribute
is different. If the truth value of the relational expression remains constant, i.e., all
rows in the attribute have the same value (either true or false), the attribute can be
discarded, as it contains no useful information. Relevant attributes are included in
the dataset. In Table 3.3, we present a new attribute created from the (energy?argi1)
and A(energy?argl) fluents contained in the dataset of Table 3.1. This Table shows
how this new feature evolves over successive executions of the goto action.

3.2.4 Classification models acquisition

In order to characterise an action, PlanMiner needs to know (i) which elements
hold in the state to be able to apply the action (preconditions) and (ii) which preex-
isting state elements change as a result of applying the action (effects).

(i) Obtaining the preconditions can be approached as a classification problem,
since what PlanMiner looks for is which elements are common to all the
states where that action was applied, i.e., to all the pre-states. Therefore, it
consists in finding all features that characterise the pre-states of a given ac-
tion.

(i) Obtaining the effects also poses a problem of classification since we want
to find which features belong to the post-states. This reduces the problem to
fitting a model with every shared feature of the instances labelled as pre-states
in the dataset, and consequently, fitting a model with every shared feature of
the instances labelled as post-states in the dataset.
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(energy 2arg1) A(energy?argl) | (>(energy ?argi) A(energy?argl))
450 150 True
300 150 True
300 240 True

60 240 False
230 225 True

5 225 False
400 105 True
295 105 True
400 375 True
25 375 False
500 250 True
250 250 False
315 315 True

0 315 False
500 400 True
100 400 False
46 45 True

1 45 False

Table 3.3: Example attribute (>(energy ?arg1) A(energy?argl))

PlanMiner boasts complete independence of the algorithms used in model learn-
ing. For the sake of the usability of the methodology, PlanMiner imposes a restric-
tion on the format of the models learned. This restriction is to use rules in the for-
mat presented in section 2.3.3, and is intended to enable the definition of a proper
process to translate a classification model into an action model. Throughout the
rest of the document, whenever a reference is made to “classification models”, we
will refer to a set of rules and vice versa.

IF

(at ?argi ?argz) = True A (at ?argi ?arg3) = False A
(bat_usage ?argi) = 3 A

(> (energy ?arg1) A(energy ?argi)) = True

THEN pre-state

IF

(at ?argi ?argz) = False A (at ?argi ?arg3) = True A
(bat_usage ?argi) = 3 A

A(energy ?argi) =

(dist ?arg2 ?arg3) * (bat_usage ?argi)

THEN post-state

Listing 3.3: Classification models of the (goto ?arg1 ?argz ?arg3) action.

PlanMiner requires that there be a single rule for modelling pre-states and a
single rule for post-states. In case any classification algorithm generates more than
one rule for a label, these rules must be combined into a single rule. This is done
by applying a proprietary statistical process, which is defined in section 4.2.3, as it
is a fundamental procedure of the contribution proposed in Chapter 4. In addition,
every classification algorithm uses its own internal models and, in order to continue
the execution of PlanMiner, they must be transformed into rules. The process of
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converting the different classification models is an ad-hoc procedure that depends
on the classification algorithm used. These processes have already been described
in the relevant subsections of Section 2.3.

Listing 3.3 presents the classification model of the (goto ?arg1 ?argz ?arg3) ac-
tion learned using the NSLV classification algorithm. These models are fitted to
the information shown in Table 3.1 plus the information added in the different
processes of the previous subsection. In this example, the “Attr is val” pairs that
define the antecedents of the example rules can be seen, as well as the class labels
that represent the meta-states of the pre-states and post-states.

3.2.5 Planning domain generation

The datasets extracted from the plan traces, enriched with the newly discovered
knowledge and added to them, contain information about the examples that repre-
sent states of the world. These examples have been generalised into a collection of
features (defined as a rule) with the information needed to represent all of them.
Classification rules define a meta-state with every shared feature from each state.
Nonetheless, to be able to use these meta-states to learn the preconditions and ef-
fects of a given action, PlanMiner must change their format into PDDL.

In accordance with the way PlanMiner is designed, the methodology must trans-
late a classification rule into a description of the world written in PDDL. Given the
similarities of both models (recall Section 3.1), this process is trivial. On one hand,
arule’s antecedent contains a set of tuples <X, A> linked by a conjunction operator.
Each tuple represents the value A of the problem’s attribute X. On the other hand,
PDDL displays world states as a set of predicates linked by a conjunction operator.

(at 7arg1 ?arg2) A

(— (at ?arg1 ?arg3)) A

(= (bat_usage ?arg1) 3) A

(>(energy ?arg1)

_) (*
(distance ?arg1 ?arg2)
(bat_usage ?arg1)
)
)

IF

(at ?arga ?arg2) = True A

(at 7arg1 ?arg3) = False A

(bat_usage ?arg1) =3 A

(>(energy ?arg1) A(energy ?arg1)) = True
THEN pre-state

(= (at ?arg1 ?arg2)) A

IF (at 7arg1 ?arg3) A
(at ?arg1 ?arg2) = False A (= (bat_usage ?arg1) 3) A
(at ?arg1 ?arg3) = True A (decrease (energy ?arg1)
(bat_usage ?arg1) = 3 A —_ (*
A (energy ?arg1) = (distance ?arg1 ?arg2)
(dist ?arg2 ?arg3) * (bat_usage ?arg1) (bat_usage ?arg1)
THEN post-state )
)

Listing 3.4: Pre-state and Post-state meta-state from the rules of Listing 3.3.
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An example of the translation process can be seen in Listing 3.4. In this Listing
we can see how the different elements of the rules are represented in the form of
a predicate, linked by the conjunction operators. In addition, when creating the
meta-states, the A(attribute) is also translated by the expression calculated in the
previous features discovery step.

As said earlier, tuples <X, A> represent the essential predicates that define a
state of the world. Those states contain the minimum essential information to
model all the pre- or post-states for every appearance of the action of the plan traces.
From these states, the preconditions and effects of the action are extracted.

Action preconditions are the set of features of the world that must hold in or-
der to apply the action, and so this set can be obtained directly by displaying the
information of the pre-state model as a conjunction of predicates. Action effects
represent how the action changes the world, and thus they must be obtained by
computing the steps necessary to transform the pre-state into the post-state. These
steps are the addition and deletion list of logical predicates and the assignment/in-
crement/decrement of continuous values of numerical predicates. By comparing
the pre-state and post-state we can check which logical predicates must be added
(false in the pre-state but true in the post-state) and deleted (true in the pre-state but
false in the post-state). Including increments and decrements of numerical fluents
is a straightforward process as A values explicitly contain this information, and so
they only need to be translated into the PDDL format. In Listing 3.5 we illustrate
this whole process: for example, you can see how (bat_usage?argi) does not appear
in the effects of the action, as it is the same in both the meta-state of the pre-states
and the post-states.

Preconditions:
(at 7arg1 ?argz)) A
(= (at ?7arg1 ?arg3)) A
(=(bat_usage ?arg1) 3) A
(>(energy ?arg1)
(* (distance ?arg1 ?arg2) (bat_usage ?arg1)))

Effects:
(= (at 7arg1 ?arg2)) A
(at ?arg1 ?arg3) A
(decrease (energy ?arg1)
(* (distance ?arg1 ?arg2) (bat_usage ?arg1)))

Listing 3.5: Preconditions and Effects learned from the models of Figure 3.4.

3.3 Experiments and Results

This section is devoted to the experimental process through which PlanMiner has
been validated. The aim of this experimentation is to demonstrate the usefulness of
PlanMiner in learning planning domains, as well as to test its robustness to incom-
pleteness. A full description of the results, along with the measurements and met-
rics outlined below, can be found in the Appendix B. From here on, PlanMiner(X)
will denote a version of PlanMiner that uses a classification algorithm X.
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This section is divided into 4 subsections. In the first one, the experimental
setup is defined: it details the structure of the experimentation, the data used and
the evaluation metrics. The second subsection defines the algorithms employed
during the experimentation, either as state-of-the-art benchmark algorithms or clas-
sification algorithms to test PlanMiner. Finally, the last two subsections contain
the results of the experimentation and the discussion of those results using STRIPS
and numerical domains, respectively. The section that contains the results of the
STRIPS domains is split into two parts: the first part draws a comparison among
the different classification algorithms of PlanMiner, while the second part com-
pares the best version of PlanMiner with the state-of-the-art algorithms.

3.3.1 Experimental Setup

To test the usability of PlanMiner, two batteries of experiments are defined. The
first one is designed to test PlanMiner’s capabilities by trying to learn STRIPS plan-
ning domains, while the second one is designed to test PlanMiner’s ability to learn
planning domains with numerical information domains. Each experiment uses
its own input data. The domains used and their characteristics can be seen in Ta-
ble 3.4. This Table shows the domains used in the experimental process. These
domains have been selected from the third International Planning website Com-
petition *. On this site, additional information about the different versions of the
problems (included STRIPS and Numerical) can be found. The original description
of the domains (in STRIPS and numerical versions) used in this experimentation
has been transcribed in Appendix A since they are used to establish the metric that
indicates the degree to which the extracted domain matches the original. The do-
mains’ characteristics (from left to right) are the number of actions of the domains,
the number of parameters of the actions, the number of logic predicates, the num-
ber of numerical predicates (if any), and the maximum number of parameters of
the predicates.

The data used as input in the experimentation has been generated from the
implementation of the domains of Table 3.4 of the International Planning Compe-
tition [ ]. For each domain, a set of 100 problems is generated, which are
solved using a state-of-the-art planner —specifically, the FF planner [ ] —.
Plan traces are generated from the plans that solve these problems, and are then
used as input to the algorithms tested in the experimentation. The plan traces are
modified by removing some of their elements in order to perform the experimenta-
tion with incomplete input data. These elements are predicates and fluents of the
randomly selected trace states.

For each battery of experiments, the domains learned with the different algo-
rithms are evaluated both syntactically and semantically. On the one hand, the
syntax of the learned domains is evaluated by comparing them with the original
domains and measuring their differences. On the other hand, the semantics of the
learned domains are measured by checking whether they can correctly perform the
same job as the original domains.

'https://www.icaps-conference.org/competitions/
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Domain |Actions| max action |logical| max predicate
arity |predicates] arity
BlocksWorld 4 2 5 2
Depots 5 4 6 2
DriverLog 6 4 6 2
ZenoTravel 5 3 4 2
(a) STRIPS domains.
Domain |Actions| max action |logical | |numerical] max predicate
arity |predicates| | predicates| arity
Depots 5 4 6 4 2
DriverLog 6 4 6 4 2
Rovers 10 4 26 2 3
Satellite 5 4 8 6 2
ZenoTravel 5 3 2 8 2

(b) Numerical domains.

Table 3.4: Input domains characteristics

The syntactic evaluation of the domains is carried out by calculating the F-
Score, precision and recall of the domains. The F-Score of a domain is a measure
of the average accuracy of the domain, is calculated from the precision and recall
of the domain, and indicates how similar the learned domain is to the reference
domain. The precision of a domain indicates how many elements are left over
compared to the original planning domain, while the recall measures how many
elements are left over. The aggregate value of these metrics for a particular domain
is measured by calculating their average value for each action in that domain. For-
mally, these metrics are defined as follows:

Precision(a;) * Recall(a;)
Precision(a;) + Recall(a;)

F-Score(a;) = 2

Precision(a;) = %
3 tp(a;)
Recalllay) = sty

where F-Score is the harmonic mean between precision and recall for an action a;,
tp is the number of elements appearing correctly in a;, fp is the number of elements
left over in a;, and fi is the number of elements missing in a;. These elements can
be either preconditions or effects.

The semantic evaluation of domains is tested by assessing whether they are
valid. A domain is valid if, after reproducing a plan over an initial state, it obtains
the target state of the problem solved by that plan. In order to make the assessment
of domain validity as unbiased as possible, the problems used during the validation
process —called test problems —are distinct from the problems defined to generate
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the input plan traces. To determine if a domain is valid, it must be validated with all
test problems. During this experimentation process, validation is performed with
the VAL [ ] tool of the International Planning Competition. Finally, it is worth
noting that, for every experiment, a comparative graph of the results of the algo-
rithms used in it will be included, as well as a table detailing the validation results
of the algorithms used in the experimental process.

The randomised inclusion of incompleteness can artificially affect the results.
To prevent this from altering the results excessively during experimentation, 10-
Fold Cross-Validation [ ] (10F-CV) has been used. 10F-CV is a technique that
consists in segmenting a dataset into several partitions (named folds), creating 10
subsets of training data from them and fitting a model to each of them, so that the
overall model performance fitted to the overall dataset is computed as the average
performance of each of the models fitted to each training subset. In addition to the
training subsets, 10 validation subsets are generated to compute the performance of
the models independently. The generation of the aforementioned subsets is done
by splitting into 10 chunks, taking 1 of them as a validation subset and combining
the rest to form a training subset. This process is repeated 9 more times, each time
selecting a different partition as a validation subset until the desired ten pairs (train-
ing subset, validation subset) are obtained. In this experimentation, the training
subsets are used to obtain planning domains (which are evaluated syntactically),
while the validation subsets are used during the semantics evaluation process.

3.3.2 Algorithms used in the experiments

During the experimental process, different versions of PlanMiner have been evalu-
ated, where each one uses a different algorithm to generate the classification mod-
els. The aim of this is to test the feasibility and robustness of the learning pipeline
regardless of the learning engine used in it. The classification algorithms used in
this experimentation are ID3 [ ], Ca.51[ ], RIPPER [ ] and NSLV
[ ]. A brief description of these algorithms can be found in Chapter 2.

In addition to classification algorithms, a set of state-of-the-art AML algorithms
was selected as reference algorithms for the experimental process. These algo-
rithms are ARMS | ], AMAN [ ], OpMakerz2 [ ] and FAMA
[ ]. Due to the limitations of these algorithms for learning planning do-
mains with numerical information, they are only used during experimentation with
STRIPS domains.

In these experiments, the parameters of PlanMiner, FF-Metric, VAL and the
reference algorithms are set as default as noted by its authors in their reference
works. Table 3.5 displays these parameters and their impact on a given algorithm’s
performance. If an algorithm does not appear in the mentioned table it is because
it requires no parameter setup at all before execution. With regard to the different
parameter settings, we include a brief description of them and their impact on the
performance of the given algorithms (except for PlanMiner, as this information has
already been given in the relevant sections above). That said, for each algorithm the
parameter settings are:
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PlanMiner parameters Value
Symbolic Regression acceptance threshold | o0.02
Symbolic Regression timeout 300
MetricFF parameters
H weight
G weight
ARMS parameters
Probability threshold 0.7
AMAN parameters
Number of iterations 1500

Table 3.5: Settings of the different algorithms during the experimentation process.

+ Metric-FF. MetricFF’s parameters weigh the components of the heuristic
that governs the internal search process of the planner. These weights change
the importance that MetricFF gives to the estimated cost to the goal (k) and
the cost of the current explored path (g) when guiding the search process.
These parameters have been set to 1 to avoid interference with the search
process, giving the same weight to both elements of the heuristic.

« ARMS. The probability threshold of ARMS is used to filter which information
contained in the input plan traces is considered as a constraint when build-
ing the logic formulas used to learn action models. The lower the threshold,
the more information is considered. This increases the computation time of
ARMS, but it may consider in the learning process information with a low
appearance rate in the input data, which can sometimes be useful. The prob-
ability threshold value (0.7) is recommended by the authors of ARMS as the
best value that balances the amount of information processed and the results
of the algorithm.

« AMAN. AMAN iteratively builds a set of action models from a partial set
data extracted from the input plan traces. Increasing the number of iterations
leads to an increase in the amount of sets of action models generated. This
naturally increases the probability of finding the best set of action models
possible, but at the cost of a longer computation time. The authors recom-
mend 1500 iterations as the most efficient way to obtain good results.

3.3.3 STRIPS domains results
Comparison of classification algorithms

The experimental process begins by studying how the selected classification algo-
rithm affects the performance of PlanMiner. Figure 3.3 shows these performances
in terms of F-Score, while Table 3.6 shows the validity results of the battery of ex-
periments. Figure 3.3 represents the degree of incompleteness of the plan traces in
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Figure 3.3: Performance comparison of PlanMiner using different classification al-
gorithms on STRIPS domains.

the X axis, and the Tables are sorted by domain in order to improve their readability.
This section presents a summarised version of the results. An extended version of
this can be found in Appendix B (specifically in Tables B.s, B.6, B.7 and B.8).

If we look closely at the results the figure 3.3 we can see the following:

+ BlocksWorld. PlanMiner (NSLV) consistently produces the best results through-
out the experimentation, with perfect results until those more complex ex-
periments where it drops slightly, but still remains above 98% F-Score. Plan-
Miner (ID3), (C45) and (RIPPER) show similar behaviour among themselves,
although inferior to NSLV. Their performance gradually but steadily falls as
the complexity of the experiments increases. Initially, the F-Score of these
algorithms is between 80-75%, dropping to 70-60 points in the more complex
experiments.

« Depots. As with BlocksWorld, PlanMiner (NSLV) leads the performance
ranking with results above 95% F-Score with the lowest possible amount of
data. PlanMiner (ID3) and (RIPPER) suffer a sharp initial F-Score drop of
around a 10% of performance when incompleteness is found in the plan traces;
the behaviour of the algorithms leads to final results of 65% F-Score for the
experiments with 9o% of predicates missing. Finally, PlanMiner (C45) has an
initial F-Score of 74% which drops below 61% in the last experiments, with a
constant performance drop throughout the whole experimentation.

+ DriverLog. PlanMiner (C45), (RIPPER) and (NSLV) show similar behaviour,
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dropping slightly throughout the experimentation as input data is removed.
PlanMiner (C45) and (RIPPER) show a slightly steeper drop in the final ex-
periments, showing a 5% F-Score difference in both classifiers, in contrast to
the 2% lost by NSLV. Finally, PlanMiner (ID3) shows a stronger drop initially,
which slows down slightly with the more complex experiments.

+ ZenoTravel. PlanMiner (NSLV)’s results are perfect at the beginning of the
experimentation, remain unchanged with certain levels of incompleteness,
and drop slightly in the experiments with the minimum possible informa-
tion (around 2%). The rest of the algorithms perform similarly, with large
drops in F-Score throughout the experimentation (especially when some in-
completeness is found in the plan traces) that cause them to lose around 25%
F-Score between the results with complete data and the results with more
incomplete data. PlanMiner (ID3) starts the experimentation with a 65% F-
Score, dropping to 45% in the more complex experimentation.

PlanMiner is strongly influenced by the classification algorithm used in its core,
with large differences in performance depending on which algorithm is used. These
differences between the best and worst results can be as large as 60 percentage
points in some experiments. On the one hand, we find that PlanMiner struggles
to maintain an F-Score above 80% when incompleteness is found in the input data.
Moreover, ID3, C45 and RIPPER present performance drops when a percentage of
predicates are erased. This seriously hinders the performance in the rest of the ex-
periments, leading to results below 50% in some experiments. On the other hand,
the best classification algorithm —i.e. NSLV— clearly outperforms its rivals. The
results show that, when learning STRIPS-like domains, PlanMiner (NSLV) exhibits
high resilience to incompleteness, maintaining stable F-Score values, as opposed to
the performance of the other algorithms. This gap in performance between NSLV
and the other classification algorithms can be attributed to one particularity of
NSLV: its ability to generate descriptive rules. As previously mentioned, descrip-
tive rules contain all the information necessary to model the examples of a given
class. The ability of NSLV to obtain complete representations of the meta-states
greatly improves the performance of PlanMiner, as we have seen in this experi-
mentation. On the other hand, this quality comes with a drawback: in case a state
element always appears, it will be considered as necessary for the modelling of the
state. These errors are called over-information errors and can be seen in Depots
or DriverLog, where, despite complete data availability, the F-Score results are not
100%. Over-information errors occur when there are predicates that can be inferred
from other elements. For example, in the aforementioned domains, we find that
the locations that make up the world are bidirectionally connected; therefore, for
a given pair of elements A and B, there exist two equivalent predicates to indicate
that A is connected to B. NSLV’s advantage of obtaining all the elements that define
the meta-states causes it to learn both predicates —as one of them is redundant in
most cases, this lowers the accuracy of the learned actions.

The validity results can be found in Table 3.6. Recapping, Validity is the met-
ric (calculated using the tool from the International Planning Competition named
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Table 3.6: Validity Results

VAL) that measures whether domains are semantically correct, i.e., whether they
can resolve the plans from which they emerged.

This metric presents results in agreement with those seen for the F-Score. Va-
lidity is a very demanding metric, as a single wrong precondition or effect in an
action can cause the whole domain to be invalid. Moreover, the fault tolerance
of the validity metric is asymmetric, punishing errors in effects much more than
in preconditions, and recall problems much more than precision problems. That
is, a surplus precondition is much less damaging to validity than a missing effect.
PlanMiner suffers from the problem described above and, depending on the classi-
fication algorithm used, obtains very different outcomes. While the classification
algorithm RIPPER is unable to obtain a single valid domain, PlanMiner (ID3) and
(C45) learn valid domains when no incompleteness is included in the plan traces;
regarding PlanMiner (NSLV), it outperforms all the classification algorithms as it
obtains valid domains in every single situation. The clear superiority of NSLV will
lead to it being chosen as the classification algorithm in the following experiments.

State-of-the-art algorithms comparison

The next aspect to be studied in the experimentation is how PlanMiner (NSLV)
—the highest-performing version of PlanMiner— compares to the reference algo-
rithms. Figure 4.6 presents a comparative graph that displays the F-Score of these
algorithms. Additionally, in Table 4.4 the validity results of the battery of experi-
ments are shown. For the sake of readability, it is worth saying that the X-axis of
the Figure 4.6 represents the degree of incompleteness of the input plan traces and
that the Tables group the data displayed by the planning domain being learned. The
next lines are a summarised version of the experimental results; the full version can
be found in Appendix B (specifically in Tables B.1, B.2, B.3 and B.4).
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Figure 3.4: Performance comparison of between PlanMiner and state-of-the-art al-
gorithms on STRIPS domains.

If we look closely at the results the figure 3.4 we can see the following:

+ BlocksWorld. PlanMiner (NSLV) and FAMA achieve the best results through-
out the experimentation, presenting only a small drop in the most complex
experiments where the results presented are above 98% F-Score. The AMAN
and ARMS benchmark algorithms remain above the 9o% F-Score threshold
even in the most complex experimentation with similar behaviour, while OPMaker-
2 performance drops below the 85% mark.

« Depots. PlanMiner (NSLV) and FAMA lead the performance ranking with
results above 95 percent F-Score on the lowest possible amount of data. AMAN
does not drop below the 9o percent threshold in the most complex cases, but
Opmaker2 and ARMS (especially ARMS) suffer a sharp drop in quality with
50 percent of predicates missing, bringing their F-Score to around 80%.

» DriverLog. The quality of the results for PlanMiner (NSLV) remains almost
unchanged throughout the experimentation (losing only 2 points of F-Score
at 9o% of incompleteness), with results of 98%. The rest of the algorithms
(except ARMS) show similar behaviour, with a stable drop in performance of
10% between the initial result with complete data and the more complex ex-
periments. ARMS, on the other hand, shows an F-Score loss of 20 percentage
points at 9o% incompleteness compared to its value with half of the missing
data.
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Domain Incompleteness Algorithm
ARMS FAMA OpMakerz AMAN PM (NSLV)
0% v v v v v
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0% v X v v v
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Table 3.7: Validity Results

+ ZenoTravel. PlanMiner (NSLV)’s results are perfect at the beginning of the
experimentation, remain unchanged with certain levels of incompleteness,
and drop slightly in the experiments with the minimum possible informa-
tion. ARMS and FAMA experience a slight drop of 2-3 F-Score percentage
points when including some incompleteness in the input data, but then re-
main stable until the last experiment, where they lose 10 percentage points
of F-Score (a little more in the case of ARMS).

As evidenced by the results, PlanMiner (NSLV) boasts a higher overall per-
formance than the reference algorithms. In the worst cases, PlanMiner (NSLV)
matches the performance of the benchmark algorithms, but, in the best situations,
the F-Score gap in favour of PlanMiner grows as wide as 30 percentage points.
Among the reference algorithms, we can see that FAMA presents the best results
overall. This is due to the high resilience of the algorithm to incompleteness, which,
faced with missing input data, is able to obtain good results (an exception to this
rule is DriverLog, where the algorithm makes many over-information errors that
negatively impact its F-Score). On the other side of the coin are the other state-of-
the-art algorithms, which, depending on the problem, obtain different results (and
usually below the performance of FAMA or PlanMiner (NSLV)).

The validity results can be found in Table 3.7 overall, we can see that the bench-
mark algorithms ARMS, FAMA, and AMAN have no trouble learning valid do-
mains except in certain experiments with a certain set of domains or with high
levels of incompleteness. The exception to this rule is OPMaker2, which is rather
lacking in this regard, and FAMA, which struggles in the DriverLog domain. As
previously discussed, validation measures whether domains are semantically cor-
rect, i.e., whether they can correctly reproduce plans of a given domain. A syn-
tactic error may not invalidate a domain if it still allows the reproducibility of the
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plans (even if the domain has lost “quality” by missing or excess elements). This
is what happens with ARMS, FAMA and AMAN, which, although the F-Score of
their domains is far from perfect, are able to obtain valid domains. OpMaker2 (and
FAMA with the DriverLog domain), on the other hand, suffers from too many prob-
lems during the learning process (highlighted by a lower F-Score than the rest of
the reference algorithms) that do influence this reproducibility, thus rendering the
learned domains invalid.

3.3.4 Numerical domains results

Finally, the experimentation also studies how the chosen classification algorithm
affects the performance of PlanMiner when the planning domains have numerical
information. The classification algorithms used in these experiments are shared
with the previous set of experiments with the exception of ID3. The results of this
experimentation are divided between Figure 3.5 and Table 3.8. First, Figure 3.5
contains a graph that compares the algorithms in terms of F-Score, while Table
3.8 contains the validity results of PlanMiner with the different classification al-
gorithms. In order to improve the readability of the results, Figure 3.5 displays
the degree of incompleteness of the plan traces in the X-axis, and Table 3.8 sorts
the results by the domain from which they were obtained. This section presents a
summarised version of the results. An extended version can be found in Appendix
B (specifically in Tables B.g, B.10 and B.11).
If we look closely at the results the figure 3.5 we can see the following:

« Depots. PlanMiner (NSLV) shows results above 96% F-Score throughout
most of the experimentation, with no noticeable loss of performance until
the most complex experimentation. PlanMiner (C45) starts the experimen-
tation with results above 9o F-Score percentage points but quickly drops off
when some incompleteness is encountered. PlanMiner (RIPPER) behaves
similarly to PlanMiner (NSLV), but with a much worse overall performance,
with results below 80%.

+ DriverLog. PlanMiner (NSLV)’s results remain stable at around 95% F-Score,
with little variation despite the levels of incompleteness; however, with the
increased scarcity of input data, it suffers a drop of about 10 percentage points.
PlanMiner (C45) loses 25 percentage points as soon as incompleteness is in-
cluded in the input data, but, after this initial drop, it stabilises during the rest
of the experimentation. PlanMiner (RIPPER) does not suffer such a sharp
drop, but its results in general are below those of the other algorithms.

» Rovers. PlanMiner (NSLV) and (C45) start from the same point when learn-
ing the Rovers domain. Both approaches fare similarly, with PlanMiner (NSLV)
performing slightly better overall. PlanMiner (RIPPER) has worse initial re-
sults but ends up matching PlanMiner (C45) with 50% of missing data.

« Satellite. PlanMiner (NSLV) shows a stable 99% F-Score performance against
certain levels of incompleteness; nonetheless, as the complexity of the ex-
periments increases this performance drops by 10%, but stabilises again on
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Figure 3.5: Performance comparison of PlanMiner using different classification al-
gorithms on Numerical domains.
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the more complex experiments. PlanMiner (C45) has an initial score of 88%,
which gradually drops to 78 in the most complex experiment. Finally, Plan-
Miner (RIPPER) loses 30 percentage points of F-Score when confronted with
noise, and this drop continues in the rest of the experimentation until the
results of the approximation reach 60 percent with the most complex exper-
imentation.

« ZenoTravel. With some differences in their performance, PlanMiner (NSLV),
(C45) and (RIPPER) perform similarly, with a steady drop in performance as
the experimental conditions become more severe. The difference between
the best performing approach (9o% F-Score, NSLV) and the worst (75%, RIP-
PER), of 15 percentage points, remains constant throughout the experiment.

Similar to the experimentation with STRIPS domains, NSLV demonstrates a
clear dominance over the other classification algorithms, and, except for specific
experiments, shows a clear resilience to incompleteness. Even so, all classifiers
present a similar problem in the experiments: the rapid deterioration (and poor per-
formance) of the precision metric. This is due to problems of (i) over-information
of the data (mentioned earlier) and (ii) data bias. (i) Over-information affects do-
mains where there are predicates that can be inferred from other predicates. These
predicates are redundant and therefore erroneous, which reduces the performance
of the domains even though they do not affect their validity. Depots, DriverLog,
and ZenoTravel are the domains most affected by this problem. For example, in
Zenotravel we have a situation where, when a person is on a plane, he cannot be
in a city, and vice versa. This means that by only stating that the person is on a
plane, the information about not being in a city can be omitted. When learning the
different elements of the action models, PlanMiner cannot automatically perform
this concept inference (as it does not have the necessary expert knowledge to do so),
so it would learn both relationships. (ii) The problem of data bias occurs when the
data does not present a certain diversity of information, which causes PlanMiner
to work with spurious relationships. This problem is exacerbated as access to the
data is restricted, and when taken to the extreme it causes actions to lose their gen-
eralisation, thus rendering them useless. Rovers, Satellite, and ZenoTravel are the
domains where this problem is most prevalent. For example, locations representing
the world are often related in a bidirectional way. As discussed in previous chap-
ters, this means that to represent a link between location A and B, two predicates
((connected A B) and (connected B A)) can be used. During the learning process,
PlanMiner obtains both, although from a human standpoint one of them is redun-
dant. These issues hinder the overall performance of the algorithm, whose weak-
ness surfaces through the precision metric, which shows results one step below the
recall metric.
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. Algorithm

Domain Incompleteness PM (C4.5) PM (RIPPER) PM (NSLV)

0% v X v

Depots 10% X X v

p 50% X X v

90% X X v

0% X X v

. 10% X X v

DriverLog 0% X X v

90% X X X

0% X v v

Rovers 10% X X 4

50% X X X

90% X X X

0% X v v

. 10% X X v

Satellite 0% X X v

90% X X X

0% X X v

10% X X v

ZenoTravel 0% X X X

90% X X X

Table 3.8: Validity Results

In terms of validity, the problems presented earlier only affect PlanMiner (NSLV)
in more complex experiments, i.e., experiments with a 9o% incompleteness or ex-
periments with the Rovers and ZenoTravel domains. In the former, the lack of data
prevents PlanMiner (NSLV) from distinguishing between correct and erroneous
predicates and ends up causing the loss of validity of the learned domains. In the
latter, the large number of predicates and fluents defined in the domains causes
precision bias errors even with complete data. By removing information from the
input data, these errors are triggered and ultimately lead to the loss of validity of
the learned planning domains.

3.4 Conclusions

This chapter has presented PlanMiner, a novel AML technique capable of learning
planning domains that make use of preconditions and effects with arithmetic and
relational expressions. This technique has been implemented as a pipeline of ma-
chine learning methods, which aims to obtain a set of classification models from
which the preconditions and effects of an action model can be extracted. To achieve
this goal, PlanMiner is given a set of plan traces from which it extracts information
about the states of the world. This information is enriched through various ma-
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chine learning processes and then used as the input of a classification algorithm
that generates the models mentioned above. PlanMiner has been validated with
domains obtained from the IPC, comparing its results with other existing state-of-
the-art solutions. In the proposed experimentation, PlanMiner, when NSLV was
used in its core as the classification algorithm, has demonstrated clear superiority
in terms of performance over state-of-the-art algorithms, as well as a high capacity
to learn planning domains under conditions of high input data sparsity.
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Chapter 4

Learning Planning Domains
from Noisy Plan Traces

4.1 Introduction

Noise is one of the key elements that most frequently affects data taken from real-
world sources [ ]. This is because it is very common for the measurement
tools from which such data is obtained to take incorrect data, either because they
suffer from random malfunctions, have measurement errors due to hardware lim-
itations or the conversion of analogue to digital signals, or simply due to human
error. These errors are, in many cases, unavoidable, and algorithms that attempt to
use data obtained from these sources must be designed to cope with this.

PlanMiner makes a number of assumptions during the learning process that
hinder its work dealing with noisy data and, hence, learning planning domains
using input data extracted from the real world. The first of these assumptions is
that the input data is always correct (i.e. noise-free) so the regression models that
are fitted during the information discovery step are also correct (if they exist). This
assumption leads to assume that the datasets are always correct, and, in case an
anomalous element is found among them, it can be accepted without the need to
evaluate it to discern whether it is noise or an uncommon example. The third and
final assumption is that classification algorithms only return a single classification
rule for the pre-state and post-state meta-states (that is to say, a characterisation of
the pre-states and post-states of a single action), which may not be true when noisy
data is used as input. These assumptions improve the efficiency of the algorithm
and increase the performance of PlanMiner when dealing with incomplete data,
but when it comes to using it on noisy problems, they hinder its usage for learning
planning domains.

In order to improve PlanMiner’s resilience to noisy data, PlanMiner-N has been
designed. The purpose of this chapter is to define PlanMiner-N and its compo-
nents. The main contribution of PlanMiner-N with respect to PlanMiner is the
suppression or adaptation of the previously detailed assumptions, implementing
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Dataset New Features Classification models
Extraction Discovery post-processing
Traces Dataset Classification models Planning domain Domain
pre-processing

acquisition generation

Figure 4.1: The learning pipeline of PlanMiner-N

a series of methods to make up for the shortcomings caused by these alterations.
These methods slightly modify the PlanMiner pipeline (see example in Figure 4.1)
to include two extra steps. These steps involve (i) pre-processing of the input data
to detect and remove noise from the input data and (ii) post-processing of the ob-
tained classification rules to detect inconsistencies between them and refine them.
These processes are implemented using a number of statistical and unsupervised
learning techniques. In the state-of-the-art, we can find several solutions capa-
ble of learning action models from noisy input data. Examples of these solutions
are AMAN | , ], Pasula et al. [ |, Zettlemoyer et al. [ ]
or Mourao et al. [ ], which, although they face the challenge of learning
planning domains when there is noise in their input data, they generate planning
domains that have little expressiveness (they are mainly only able to learn STRIPS
domains). PlanMiner-N solves this by implementing PlanMiner’s ability to learn
planning domains whose actions contain arithmetic and relational expressions in
their preconditions and effects.

The rest of the chapter is organised as follows: In the next section, the changes
that PlanMiner-N entails regarding the solution proposed in the previous chapter
will be briefly explained and their impact on the learning process. Then, within
the same section, each of these new methods will be explained in detail and illus-
trated with comprehensive examples of them. Finally, the chapter will end with a
presentation of the experimentation carried out to validate the methods described
above.

4.2 PlanMiner-N

PlanMiner-N [ ] includes two new processes to the pipeline presented in
the previous section. These processes presented extend the PlanMiner algorithm to
improve its resilience against noise. Such methods were designed with the philoso-
phy of enriching the learning pipeline without modifying its key parts. These new
steps developed are the filtering of the noisy input data and the refinement of the
meta-states. In the following lines, we will explain these steps in detail, illustrating
the whole process with examples taken from domain Rovers (defined in Listing 2.1).
This plan traces is a modified noisy trace from the example trace of Listing 2.3. In
this example noisy trace, the erroneous elements are highlighted in bold.
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PLANMINER-N

Algorithm 9 PlanMiner-N Algorithm overview

Input: PT: Set of Plan Traces
Output: AM: Set of Action Models

1:
2:

3:

10:
11:
12:
13:
14:
15:
16:
17:

e 9N 20 R

Initializes stDict as an empty dictionary
for all Plan trace pt in PTs do
for all Different action act in the pt do
Extract state transitions st of act in pt
stDict[act] < stDict[act] U st
end for
end for
for all key act in stDict do
dat < dataset created using stDict[act]
Filter noise from dat #Step added in PlanMiner-N
Detect new features from dat and extend dat with them
Fit a classification model cModel using dat as input
Refine cModel #Step added in PlanMiner-N
Generate action model am from cModel
AM <~ AM Uam
end for
return AM

4.2.1 PlanMiner-N Overview

Algorithm 9 shows PlanMiners-N’s general workflow, highlighting the changes in-
troduced to PlanMiner’s original workflow. PlanMiner-N modifies PlanMiner orig-
inal contribution to enable the latter to operate under noisy input data situations.
As said earlier, PlanMiner-N implements two new steps in the original pipeline of
PlanMiner, performing in each one the following tasks:

1. Plan traces noise filtering. Just after storing the information of the plan
traces in a dictionary whose keys are the action names and their values a set
of associated state transitions, this process is applied. This procedure (step
10 of Algorithm 9) aims to clean the input information. Depending on the
type of data found in a dataset being addressed (either predicates or numer-
ical fluents), a different process is applied. A noise filter based on statistical
filtering is applied to the predicates, which depends on a frequency thresh-
old that determines whether a predicate is noisy or not. Regarding numerical
fluents, we assume that the noise produced is random, so they are discretised
and smoothed to reduce fluctuations in their values. This must be done so
that the other components of the learning pipeline can perform their work
to prevent the influence of the noisy values in its output.

2. Meta-state refinement. As explained above, a meta-state is a characteriza-
tion of the predicates/fluents that can be found in either the pre-state or the
post-state of an action. In the case of information without noise, each char-
acterization is directly obtained and represented as the antecedent of a single
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rule (see Section 3.2.4). However, when addressing noisy datasets, the classi-
fication model initially obtained (step 12 of Algorithm 9) may contain several
characterizations (i.e. it can found several rules) for either the pre-state or
post-state of an action. The Meta-state refinement (step 13 of Algorithm 9)
solves this, enforcing the constraint that only two meta-states are needed, by
combining the elements of the rules intially learned.

4.2.2 Plan traces noise filtering

The noise filtering process of PlanMiner-N aims to detect and delete anomalous er-
roneous information from the input data. The original PlanMiner algorithm takes
the input data and preprocesses it to adjust the format of the data (i.e. dataset ex-
traction) and to enrich it (i.e. discovery of new knowledge), PlanMiner-N intro-
duces a new element to that preprocessing with the filtering of the input data. This
new element is included between the two previous ones, and, as previously men-
tioned, its purpose is to reduce or alleviate as much as possible the noise problems
that the input data may have.

Due to the nature of the information contained in the input data, we need to
apply different techniques to it, since the noise treatment for the nominal values
of the predicates is different from the noise treatment of the real values of the flu-
ents. The only type of noise that affects predicates is outliers, while fluents are also
affected by random noise. In the example noisy trace of Listing 4.1 we can see an
outlier in the logical predicates in predicate (at rov: wpz) of state [0], an example
of random noise in the numerical predicates in fluent (= (at rov1) 3.25) of the same
state, and an example of outlier in the fluents in element (= (dist wpz wp3) 380) of
state [2]. This problem with the different types of noise conditions the techniques
defined in PlanMiner-N, causing the input data preprocessing step to be applied dif-
ferently for each type of input data, as there is no jack-of-all-trades preprocessing
technique to deal with noise.

On the one hand, for noise in the logical predicates, PlanMiner-N implements
statistical filtering in order to detect outliers and eliminate them. This filtering stud-
ies the distribution of the different truth values of each predicate along the traces,
counting their frequency of occurrence. Then, if a truth value has an anomalously
low frequency of occurrence, it is marked as noisy and removed. This process can
be implemented because there are no conditional or stochastic behaviours in the
learned actions. If such behaviours existed, we would not be able to discern be-
tween those outlier truth values or those that are related to an infrequent, but cor-
rect, non-deterministic behaviour (this issue will be tackled in Chapter 5).
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#Actions
[o][1] (gotoroviwpiwpz)
[1][2] (gotorovi wpzwp3)

#States

[o] (atroviwpi) A (atroviwpz) A
(- (at rovi wp3)) A (—(scanned wp3)) A
(= (bat_usage rovi) 3.25) A (= (energyrovi) 450) A
(= (dist wp1 wpz) 50) A (= (dist wpzwp3) 8o0)

[1] (=(atroviwp1)) A (atroviwpz) A
(= (atroviwp3)) A (scanned wp3) A
(= (bat_usage rovi) 3) A (= (energy rovi) 299) A
(= (dist wp1 wpz) 50) A (= (dist wpzwp3) 8o0)

[2] (= (atroviwp3)) A (- (atroviwpi)) A
(= (atrovi wpz)) A (- (scanned wp3)) A
(= (bat_usage rovi) 3) A (= (energyrovi)60) A
(= (dist wp1 wpz) 50) A (= (dist wpz wp3) -8000)

Listing 4.1: Example of a noisy plan trace

On the other hand, for numerical predicates, PlanMiner-N bases the noise fil-
tering on a discretisation technique [ ] that groups the different elements of
a fluent under a series of discrete labels that replace them. In ML, discretisation is
the process by which a set of continuous variables is transformed into a finite set
of discrete variables. The benefits of discretisation [ ] include categorising
data for the sake of understandability, reducing the number of possible values of an
attribute to improve the performance of ML algorithms, or, most relevant to the so-
lution presented in this chapter, “smoothing” the discretised data. This smoothing
process reduces fluctuations in the input data caused by random noise. By gather-
ing similar elements under a single label, we do not only reduce the random noise
of the data, but we can also isolate those data that are not similar to any other, i.e.,
the outliers.

This new preprocessing step is a powerful tool that can improve greatly the per-
formance of the whole learning process, but, its major drawback is that it directly
affects the execution of PlanMiner-N, increasing the amount of time that it requires
to work. The preprocessing step is applied directly to the datasets extracted from
the plan traces. The examples designed to illustrate the new methods start from the
dataset of Table 4.1, a dataset created from the plan trace presented in Listing 2.1.
In this table, in the (bat_usage ?arg1) attribute, examples of outliers (-4) or random
noise (5.05) can be observed.

Logical values noise treatment

Once the datasets have been created, the first action done by PlanMiner-N is to
tackle noise in the logical attributes in the dataset. This is performed by PlanMiner-
N by implementing a statistical filter to detect anomalies in the data. This filter is
implemented over a collection of frequency tables that survey how the information
is distributed in the dataset. These frequency tables measure the importance that
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(at ?arg1 ?arg2) (at 7arg: ?arg3) (bat_usage ?arg1) (energy ?arg1) (dist ?arg2 ?arg3) (scanned ?arg3) Class
True True 3.25 450 50 MV pre — state
False True 3 299 50 MV post — state
True False 3 300 -8000 True pre — state
False False 3 6000 86 False post — state
True False 3 230 75 MV pre — state
False True 3 5 75 MV post — state
True True 2.97 400 35 True pre — state
False True 3 295 33 False post — state
True False 5 400 75 False pre — state
False True 5.05 -50 75 True post — state
True False 5 500 50 False pre — state
True True 5 250 50 False post — state
True False 3 315 1005 True pre — state
False True 3 -0.5 105 True post — state
True False -4 500 80 MV pre — state
False True 5 100 8o MV post — state
True False 3 46 15 False pre — state
False True 3 10001 15 False post — state

Table 4.1: Noisy dataset associated with the (goto ?arg1 ?argz ?arg3) action.

each value has in a given attribute. In the case of finding an anomaly in these
measures, it is filtered out and erased from the dataset. An anomaly is a value with
an abnormally low importance.

The filter (Algorithm 10) implemented in PlanMiner-N operates as follows: Start-
ing from a single dataset, the filter fixes a class label (either pre-state or post-state)
and creates a sub-dataset with only the information of the fixed label. Using this
sub-dataset, the filter creates a frequency table for each different logical attribute.
These frequency tables measure the number of times a given attribute takes a cer-
tain value. For a certain attribute, if the relative number of times a value appears is
below a threshold, then it is considered irrelevant. Irrelevant attributes are consid-
ered as there is no useful information to be extracted from it, thus they are counted
as noise. The deletion of a value is realised by selecting its appearances in the at-
tribute’s column and replacing them for missing values tokens. Since internally the
pipeline components follow the OWA, the inclusion of a non-determined missing
value does not influence the method of operation of the algorithm. Once a sub-
dataset has been processed, the other class label is selected and the procedure is
repeated. Figure 4.2 presents an example with the frequencies of the predicates
from the example dataset presented in Table 4.1. In this example, it can be seen
graphically the frequency rate of their values. Those values that do not exceed the
threshold set by PlanMiner-N (defined by the green bar) will be eliminated.

The threshold set to filter noisy elements of the dataset can impact heavily on
the performance of the process. In case of dealing with a situation where an at-
tribute displays a non-noisy value with a low appearance rate, a very high threshold
value may lead to detecting it as noise, and, therefore, erasing it. The absence of this
value may hinder the later learning processes, including, in fact, an artificial extra
noise. On the other side, a low threshold value may work the other way around,
setting as “uncommon examples”, noisy values. This issue would make the filtering
process useless.
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Algorithm 10 Statistical noise filter overview

Input dat: Dataset
Output dat: Dataset

1: for all Class label cLabel in dat do

2:  Initializes subDat as empty Dataset
3. for all Instance i in dat whose class is cLabel do
4 Include i in subDat
5. end for
6: for all Instance i in subDat do
7 for all attribute attr in subDat do
8: tCount — count number of True values of attr
9: fCount — count number of False values of attr
10: __ (Count < threshold then
tCount+ f Count
11: Erase all True values in attr
12: end if
13: if __fCount < threshold then
tCount+ fCount
14 Erase all False values in attr
15: end if
16: end for

17: end for

18:  Update dat with the information of subDat
19: end for

20: return dat

Numerical values noise treatment

After filtering the logical outliers, PlanMiner-N proceeds to process the numerical
information in the input data. The variety of data contained in a noisy numerical
attribute makes the use of a filter process like the one shown before inviable.

Even in a noise-free environment, a numerical continuous attribute may dis-
play wide range of different values. A statistical filter would not work correctly in
this kind of situation, marking as noise the majority of values. PlanMiner-N imple-
ments an alternative filtering process (Algorithm 11) to deal with the noise in the
numerical values. This filter takes as input a dataset, selects a numerical attribute,
and extracts every element from it. The values extracted are then used as input of
a discretisation algorithm that processes and groups them. Finally, the discretised
values substitute the original values of the attribute.

The discretisation algorithm must produce a set of finite discrete elements from
the collection of values used as input. PlanMiner-N achieves this using a clustering
technique. The discretisation process groups the input elements into a set of clus-
ters, and calculates the output discrete set of values as the mean element of each
cluster. Given that the characteristics of the data are unknown a priori (the number
of data points, their distribution, ...), the algorithm can not use a predefined num-
ber of clusters to fit the data. This provokes that PlanMiner-N must find the best
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Figure 4.2: Frequency rates of the values of each predicate of the dataset presented
in Table 4.1. Each graph represent a predicate and its values. The green line repre-
sents the threshold that determines whether a value is considered noisy.

Algorithm 11 Numerical noise filter overview

Input dat: Dataset
Output dat: Dataset

1: Initializes elems as empty list of numbers
: for all attribute attr in dat do
elems < elems U values list of attr
end for
newAttr « discretize elems
Update dat with the information of newAttr
return dat

N YR wN

number of clusters automatically. PlanMiner-N implements a top-down divisive
hierarchical clustering technique [ ] to achieve this. This type of clustering
methodology starts from every value in a single cluster and divides it recursively
into smaller clusters. The principle on which these techniques are based is to in-
crementally create a larger number of clusters that better fit the data.

The clustering technique defined in PlanMiner-N (see Algorithm 12) follows a
hierarchical, recursive divide-and-conquer strategy that works as follows:

1. Taking a single cluster with every element, the discretisation technique mea-
sures its quality.

2. If the quality of the cluster does not meet a certain acceptance criterion, the
cluster is split into two new smaller clusters.

3. Then, the process of measuring and splitting of the clusters is applied to the
new clusters.

This process is repeated recursively until there’s no more clusters to split. If,
during the process a cluster with a single element is found, the process marks it
as outlier, and thus, the algorithm discards it. Cluster splitting is realised using a
classical clustering algorithm. This algorithm will try to separate the elements of
the cluster in two different groups. This task is realised in PlanMiner-N with the
K-means clustering algorithm (explained in Section 2.3.4).
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Algorithm 12 Discretization algorithm overview

Input Dat: Set of data points, AC: acceptance criterion
Output C: Set of Clusters

split « Halve Dat using K_means algorithm
C<{
for all cluster in split do
if Quality(cluster) >= AC then
if |cluster| > 1 then
C « C U cluster
end if
else
C « C u divide cluster calling the discretisation process recursively
end if
: end for
: return C

2 9N 2R W N-R

=
N B O

The quality of a cluster quality(cluster) measures how cohesive the values of a
cluster are, as well as the size of the clusters. Cluster’s quality is defined as the
weighted arithmetic mean of both metrics:

quality(C;) = a = silI(C;) + 8 * nSTD(C;)

where sill is the index of the silhouette of the cluster C;, and nSTD is the normalised
standard deviation of C;. Both functions are standard cluster quality measures, ex-
plained in Section 2.3.4 of this manuscript. These two metrics separately provide
useful information about the quality of a cluster, but using them alone would be
counterproductive. On the one hand, the silhouette index tends to benefit evenly
distributed clusters. For example, when dealing with data that is homogeneously
distributed, focusing only on the silhouette index would make our process to pro-
mote fit a set of wide clusters covering the entire range of data, but, that would
represent poorly the data assigned to them. On the other hand, the single use of
the standard deviation would lead to the generation of a large set of very tight clus-
ters, which, taken to the extreme, could generate a cluster for each different value
passed as input. These clusters would represent perfectly the datapoint assigned to
them but would make the whole discretisation process useless too. Finally, « and
B are weights for the measures. These weights allow the fine-tuning of the quality
function, giving more asymmetric importance to the measures when calculating
the quality of a given cluster.

The combination of both metrics allows PlanMiner-N to obtain the best pos-
sible clusters, avoiding the problems described above. The main impediment to
this combination of metrics is that there are differences between the behaviour of
the metrics and their values ranges. Cluster standard deviation is a metric whose
scores range in the interval (0, oo], while the silhouette index is bounded in the
interval [—1,1]. In addition, the best values of Cluster standard deviation are the
values close to zero, this is opposite to silhouette index where the highest values are
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Figure 4.3: Example of discretisation. The x-axis shows the different values taken
by (bat_usage ?arg1) in the dataset presented in Table 4.1, while the y-axis shows
the frequency of occurrence of these values.

the bests scores. Given the behaviour of the metrics, a slightly worse score in the
cluster’s standard deviation may override a much better silhouette index. In order
to lessen this issue and combine both metrics, PlanMiner-N adjusts the silhouette
index by taking the opposite of the score obtained, and adding 1 to it. This trans-
formation changes silhouette index results to the interval [0, 2] where zero is the
best possible value. This makes both indexes combinable in a single metric whose
range is [0, oo], where Zero is the best result. Figure 4.3 shows the data points and
clusters of the (bat_usage ?arg1) fluent. This example presents graphically how the
values closer to “3” are grouped in the same cluster, while those closer to “5” are
grouped in another different cluster. The value near “-3” is marked as an outlier
and therefore is ignored in the next stages of PlanMiner-N’s execution.

4.2.3 Meta-states refinement

As we have stated before, when dealing with noisy data, we cannot be sure that
after extracting a classification model for a given dataset we will get a unique char-
acterisation for the pre-states and another for the post-states (i.e. a rule set with two
rules, one for each meta-state). Given the characteristics of the AML process pre-
sented in this document, it is necessary that this condition is always fulfilled. This
is because a deterministic action model has only one rule for pre-state and one for
post-state. In order to fulfil this constraint, PlanMiner-N implements this classifi-
cation model refinement process, which merges a ruleset obtained from a classifi-
cation algorithm, that characterises a single action, into a a pair of rules (one for the
pre-state and other for the post-state). This process is performed before attempting
to extract the preconditions and effects of the actions of the domain being learned.
In addition, it presents an extra difficulty, as the multiple rules that can be learned
by classification algorithms for each action may present inconsistencies between
them. This is because the classification algorithms may have adjusted elements of
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some of the rules to noisy information, detecting this is paramount for the correct
learning of the planning domains.

The process implemented in PlanMiner-N to deal with this issue aims to (i)
obtain the number of meta-states needed by PlanMiner to function correctly and (ii)
detect inconsistencies in them. Prior to the application of said process, PlanMiner-
N divides the ruleset in two sets, separating the rules that represent the meta-states
of the pre-state from those that model the post-state. It then applies the refinement
process to each collection of rules separately, obtaining a single rule for each.

This procedure decomposes the model (the ruleset obtained by the classifica-
tion algorithm) to evaluate its elements (which are rules) using a statistical method.
Once decomposed the rulesets, PlanMiner-N creates a repository with elements ob-
tained, and evaluates them, allowing the detection of strange elements that can be
considered noise and detecting inconsistencies between these elements. The Meta-
state refinement method implements a set of procedures to study and resolve these
issues automatically.

The evaluation method is implemented a as a two-step strategy that:

1. An anomaly detection strategy is applied to the elements of the rules’ an-
tecedents of a given ruleset, filtering those atypical elements found.

2. The remaining elements are studied in order to detect conflict between them,
combining them in a single rule in the process.

Finally, to clarify that, in the end, the meta-state refinement method generates
only the rules necessary for the learning process to proceed (i.e. two rules).

Filtering of irrelevant features

The main objective of the filtering procedure (Algorithm 13) is to detect those el-
ements of the rule antecedents that have an anomalously low frequency of occur-
rence. Marking them as noisy and discarding them for the rest of the procedure.
Briefly recalling, each rule in the ruleset is defined as a conjunction of features
< attr,val > that has a weight associated with it. This weight indicates the per-
centage of examples of a given class covered by the rule in question.

That said, the implemented in PlanMiner-N to filter irrelevant features of the
rules works as follows: Starting from a ruleset that contains several rules, it decom-
pose the antecedents of each rule by separating the features that define them and
computing its support value. The support of a feature is calculated by adding the
weight of every rule in which it appears.

Once each feature has been extracted, all those that do not exceed a certain
threshold are filtered out. Filter(rules_feat) marks and discards those features that
are considered irrelevant. The criterion for marking a feature as irrelevant is given
by the feature whose support value is higher, which is taken as the reference value.
Finally, the filtering process sorts the set of features from highest to lowest accord-
ing to their support value.
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Algorithm 13 Irrelevant features filtering Algorithm

Input: rules: Ruleset

Output: rules_feat: Ordered set of features

rules_feat « {}

for all Rule rule in rules do
for all Features elem in the antecedent of rule do

rules_feat « rules_feat U elem

end for

end for

Filter(rules_feat)

Short(rules_feat)

return rules_feat

e XN 2R R NR

Algorithm 14 Meta-state Refinement Algorithm

Input: rules_feat: Ordered set of features
Output: rule: Rule

1: rule « {}

2: while rules_feat is not empty do

3:  elem < Top feature of rules_feat

4. Delete elem from rules_feat

5. if stat does not conflicts with some element of rule then
6: Add elem to rule antecedent

7 else

8: SolveConflict(rule,elem)

9. endif

10: end while
11: return rule

Conflict resolution

Once the irrelevant attributes have been filtered and ordered out, the rest of them
are combined in a single rule (Algorithm 14). This is done by taking the features in
descending order and including them in an empty rule incrementally. During this
process, PlanMiner-N may find a situation where a feature being included shares
the attribute attr with another feature already included in the rule, but with a dif-
ferent value val.

This is called a feature conflict and occurs when the classification algorithms
fits a rule to a specific set of data that is inconsistent with other rule. When a con-
flict is found, PlanMiner-N may face two course of actions: delete the feature with
the lowest support (by considering that feature noisy) or delete both features (as
considering that the whole feature is irrelevant to model the meta-state).

SolveConflict(rule,elem) determines said course of action by calculating a confi-
dence interval and checking how the difference between the features’ support value
—-namely A(s,, s,) —interact with it. The confidence interval is calculated as:
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Figure 4.4: Support values of goto action’s classification model.

[—0.1 % S,0.1 % S]

where S as the mean support value between s, and s,.

If A(s,,s,) is within that interval the difference is considered significant, and
then, PlanMiner-N can conclude that the feature with the less support can be dis-
carded. Otherwise, both characteristics are discarded and are not included in the
rule that is being built. If no conflict of features arises, the feature is added to the
antecedent of the rule being constructed.

In the example presented in Figure 4.4 we can see the support values of the
classification rules that describe the pre-states of the (goto ?arg1 ?argz ?arg3) ac-
tion. Those elements which support value is lesser than the threshold (defined by
the red line) are erased. In this example we find a feature conflict with the elements
(scanned arg3) = False and (scanned arg3) = True, in which both would be erased.

4.3 Experiments and Results

This section is devoted to the presentation of the experimental process of PlanMiner-
N’s validation. The aim of this experimentation is to demonstrate the robustness of
the new methods implemented in PlanMiner to deal with noisy input data, as well

as compare the performance of PlanMiner-N with state-of-the-art AML algorithms.

A full description of the results, as well as the measurements and metrics outlined

above, can be found in the Appendix C. In the following lines, when referring to a

version of PlanMiner or PlanMiner-N that uses a given classification algorithm, we

will refer to it as PlanMiner(X) or PlanMiner-N(X) respectively, where X denotes

the classification algorithm used.

The section is divided into 3 subsections: In the first one, the experimental
setup will be described. Finally, the last subsections shows the results of the ex-
perimentation and the discussion of these results. Furthermore, the first experi-
mental subsection is divided into two parts, the first part contains a comparison
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PlanMiner-N parameters Value
Statistical noise filtering threshold 5%
Cluster’s quality alpha 0.6
Cluster’s quality beta 0.4
Cluster’s acceptance criterion 0.05
Irrelevant features detection threshold | o0.05

Table 4.2: Settings of the different algorithms during the experimentation process.

between the different classification algorithms of PlanMiner-N, while the second
part compares the best version of PlanMiner-N with the state-of-the-art algorithms.
For each block, a comparative graph of the results of each of the algorithms used
in it is included, as well as a table detailing the validation results of the algorithms.

4.3.1 Experimental Setup

The experimentation presented here has been set identically to the experimenta-
tion of the previous chapter, and aims to validate the processes implemented in
PlanMiner-N in order to design a noise-resistant action model learning algorithm.
Both experimentations consist of two batteries of experiments, with the same input
data, metrics and reference algorithms. The only two differences between the ex-
perimentations are (i) the inclusion of noise and (ii) the setting of new parameters
added to PlanMiner-N.

Noise inclusion

The inclusion of noise differs between the experiments, as STRIPS-only domains
only contemplate the noise produced by outliers, this type of noise will be the only
one included in them. On the other hand, in the domains with numerical informa-
tion, we must include both outliers and random noise. Similarly to the process of
incompleteness inclusion, an element of a state is selected randomly and is modi-
fied. If the selected element is a predicate, its truth value is substituted by its con-
trary. If the selected element is a fluent, there’s a 50% chance to substitute it by a
random value or modified using a Gaussian distribution. The Gaussian distribution
used for each fluent is centred in the value of the fluent and has variance 1.

New parameters settings

A number of new parameters governing the operation of the new PlanMiner-N
components have been presented throughout the presentation of the technical con-
tribution made in this chapter. For the sake of reproducibility of the experiments
performed to evaluate the performance of PlanMiner-N, we provide the parameter
settings used in this section. These parameters can be found in Table 4.2, and a de-
tailed explanation of them can be found in the relevant sections presented earlier
in this chapter.
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Figure 4.5: Performance comparison of PlanMiner-N using different classification

algorithms on STRIPS domains.

4.3.2 STRIPS domains
Comparison of classification algorithms

The experimental process begins by studying how the selected classification algo-
rithm affects the performance of PlanMiner. Figure 4.5 shows these performances
in terms of F-Score, while Table 4.3 shows the validity results of the battery of exper-
iments. The Figure 4.5 fixes in X-axis the incompleteness degree of the plan traces,
and Tables are shorted by domains in order to improve their readability. This sec-
tion presents a summary version of the results. An extended version of this can be
found in Appendix C (specifically in the Tables C.5, C.6, C.7, C.8, C.10, C.11, C.12
and C.13).
If we look closely at the results the figure 4.5 we can see the following:

+ BlocksWorld. PlanMiner-N (NSLV) shows perfect results throughout the
whole experimentation and is impervious to the effects of noise. Compared
to PlanMiner (NSLV), PlanMiner-N (NSLV) shows almost 25% higher F-Score
in the noisiest experiment. These differences also occur between PlanMiner-
N (ID3) and PlanMiner (ID3), PlanMiner-N (C45) and PlanMiner (C45), and
between PlanMiner-N (RIPPER) and PlanMiner (RIPPER), with an average
variation of 10% throughout the experimentation. In the most complex ex-
periments, NSLV performs better than ID3, C45 and RIPPER.

» Depots. As with BlocksWorld, PlanMiner-N (NSLV) has a high resistance
to noise, which is unchanged throughout the experimentation. PlanMiner
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(NSLV), on the other hand, suffers a severe drop in performance when some
noise is included, which puts its F-Score almost 30 points below PlanMiner-
N. The rest of the algorithms have similar behaviour to PlanMiner (NSLV),
suffering from a performance drop when noise is included in the plan traces.
PlanMiner-N shows values around 15-20% higher than PlanMiner using the
same classification algorithm.

« DriverLog. The difference between PlanMiner-N (NSLV) and PlanMiner
(NSLV) when dealing with some noise is 15% F-Score, a difference that in-
creases to 30% using data with 20% noisy elements. PlanMiner-N (ID3) and
PlanMiner(ID3) suffer an initial drop in performance (more pronounced in
PlanMiner), but then stabilise and remain unchanged even at the highest
noise levels. Using the C45 and RIPPER classification algorithms, similar
behaviour to NSLV is observed, but not as marked with PlanMiner-N show-
ing unchanged in the initial experiments, but dropping slightly in the final
ones. Even so, the drops are much smaller than those seen with PlanMiner.

« ZenoTravel. PlanMiner-N (NSLV) obtains perfect results until it encoun-
ters 10% and 20% noise, where it drops to 98% and 96% F-Score respectively.
PlanMiner (NSLV) drops from 100% F-Score to 74% when encountering some
noise, this drop continues (although somewhat more controlled) throughout
the experimentation, presenting results below 77% F-Score in the more com-
plex experimental assumptions. The results of PlanMiner-N with ID3, C45
and RIPPER behave similarly to PlanMiner-N (NSLV), showing some noise
resilience compared to their PlanMiner counterparts which lose a lot of per-
formance when encountering some noise.

In general, all algorithms exhibit identical behaviour with a large drop in perfor-
mance when noise is included in the plan traces with the exception of PlanMiner-n
(NSLV). Since the PlanMiner algorithm is not designed to work with noisy infor-
mation, severe performance losses are to be expected for it. On the other hand,
PlanMiner-N, the approach tested in this experimentation, presents far better re-
sults than PlanMiner as expected too. PlanMiner-N shows some resistance to noise,
but, as seen in the experimentation of the previous chapter, its performance is
highly dependent on the classification algorithm used in the learning pipeline. This
difference in the performance of PlanMiner-N can be seen in that, while experi-
ments performed with NSLV remain somewhat stable throughout the experiment,
those using the ID3 classifier, for example, show a drop of 10-12 points when noise
isincluded in the plan strokes. This is due to the fact that, because of NSLV’s ability
to obtain descriptive rules from the datasets (i.e. rules that contain all the informa-
tion necessary to represent a set of examples), the algorithm is able to generate sets
of rules that fully explain the input information (including noisy examples). What
is a priori a loss of generalisation of the algorithm is a blessing for PlanMiner-N, as
it gives it extensive knowledge about the data, helping it to filter out the noise in
the data. The other algorithms do not enjoy this advantage, providing less informa-
tion to the learning algorithm. This means that PlanMiner is not able to correctly
refine the models obtained with them. Nevertheless, if we compare PlanMiner and
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Table 4.3: Validity Results

PlanMiner-N using the same classifier, we see the clear superiority of the latter over
the former regardless of the classification algorithm used. Using the ID3 classifica-
tion algorithm, PlanMiner shows F-Score values below 30% in some experiments,
while PlanMiner-N obtains 15 points more F-Score in the same experiments. With
C.45 and RIPPER, PlanMiner-N shows an improvement of around 20% over Plan-
Miner throughout the experimental process. Although the biggest difference in
performance can be observed with NSLV, since while PlanMiner obtains 58% F-
Score results, PlanMiner-N obtains perfect results. This indicates that the changes
made in PlanMiner-N are effective in addressing the learning problem using noisy
input data.

In the experiments without noisy elements, the validity results are identical to
those of the experiments in the previous chapter: those algorithms able to obtain
valid planning domains with complete data can learn planning domains with noise-
free data. This is because without noise and incompleteness the input data are es-
sentially the same, and PlanMiner-N performs the identically as PlanMiner in the
absence of noise in the plan traces. It is when noise is included in the input data
that these results begin to diverge, as steep performance drops cause the invalid-
ity of the domains learned by the bulk of the learning algorithms. As a reminder,
validity is very sensitive to some domain deficiencies. The lack of a single effect
renders the domain totally invalid, and the performance drops of the algorithms
are so pronounced that these shortcomings arise everywhere. The exception to
this rule is PlanMiner-N (NSLV) which demonstrates its supremacy over all other
approaches by learning valid planning domains even in the most complex experi-
ments. PlanMiner-N (NSLV) only fails to obtain valid domains with DriverLog and
ZenoTravel in the experiments with the highest percentage of noise. In the case of
the DriverLog domain, the invalidity is caused by the creation of a series of spuri-
ous preconditions that prevent the correct replication of the test problems, while in
the case of ZenoTravel the problem that causes the invalidity is the lack of an effect
with a low occurrence rate, which is erroneously detected as noisy by the algorithm
and eliminated.
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Figure 4.6: Performance comparison of between PlanMiner-N and state-of-the-art
algorithms on STRIPS domains.

Finally, in terms of time efficiency, PlanMiner-N is around 10-20% slower than
PlanMiner. This is due to the need to study and apply the noise filter to all predi-
cates, which consumes computational resources.

State-of-the-art algorithms comparison

Next, the experimental process is going to study how PlanMiner-N (NSLV) -the
version of PlanMiner with the highest performance- performs in comparison to
the reference algorithms. Figure 4.6 presents a comparative graph that displays the
F-Score of these algorithms. Additionally, in Table 4.4 the validity results of the
battery of experiments are shown. For the sake of readability, to say that the X-axis
of the Figure 4.6 represents the degree of incompleteness of the input plan traces
and that the Tables group the data displayed by the planning domain being learned.
The next lines are a summarised version of the experimental result, the full version
can be found in Appendix C (specifically in the Tables C.1, C.2, C.3 and C.4).
If we look closely at the results the figure 4.6 we can see the following:

« BlocksWorld. The benchmark algorithms suffer a steep drop throughout
the experimentation, with results 20 to 30 points below the initial values with
noise-free data. Of these, OPMakerz is the worst performer, while ARMS and
AMAN maintain similar performance. FAMA, on the other hand, suffers
the least from the initial performance drop, but its results worsen severely as
the complexity of the experiments increases. PlanMiner-N (NSLV), on the
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other hand, performs better than all of them, obtaining 100% F-Score results
regardless of the experiment performed.

+ Depots. Starting from similar initial results, when including noisy data in the
input data, the performance of the benchmark algorithms drops by almost 25
points. FAMA and AMAN show some stability in subsequent experiments,
while the rest of the state-of-the-art algorithms continue to lose performance
down to around 50% F-Score. In contrast, PlanMiner-N (NSLV) suffers a neg-
ligible drop in F-Score throughout the experimentation, maintaining a much
higher performance than the benchmark algorithms.

» DriverLog. The benchmark algorithms show differences of up to 50 points
between their initial results and those obtained in the more complex experi-
ments. As usual, the steepest drops are found in the first experiments, when
noise is included in the plan traces. In these experiments, the benchmark
algorithms lose 20-25% F-Score. PlanMiner-N (NSLV) maintains a clear su-
periority over all benchmark algorithms.

« ZenoTravel. The benchmark algorithms present behaviour with large ini-
tial drops and constant, but more controlled drops as the experimental con-
ditions are tightened. Of these, AMAN maintains a somewhat more stable
behaviour, with more constant drops than the other benchmark algorithms.
In the experiments with a higher percentage of noisy elements in the in-
put data, the benchmark algorithms show results close to 50% F-Score, with
the exception of AMAN, whose final results are around 70 points. However,
PlanMiner-N (NSLV) shows results almost 30 points higher than AMAN.

The benchmark algorithms perform poorly when faced with noise in the input
data. This behaviour was to be expected, since, with the exception of AMAN, none
of these algorithms was expressly designed to work under noisy situations. There-
fore, PlanMiner-N (NSLV) outperforms these algorithms in all experiments. The
difference in performance between PlanMiner-N (NSLV) and the reference algo-
rithms ranges from 10-30 points in the experiments with the lowest percentage of
noise, to 30-60 points in the experiments with the highest percentage of noise. In
terms of performance, second place is held by FAMA and AMAN. When faced with
noise, both algorithms suffer a significant loss in performance. AMAN maintains
a certain resilience to noise from that point on, showing little variability in results
since then, while FAMA does not enjoy this benefit, but its initial performance loss
is smaller than AMAN’s. This causes FAMA to show slightly better average results.
This causes FAMA to show somewhat better average results than AMAN.

As in the previous experimentation with the different versions of PlanMiner,
the generalised loss of performance of the algorithms when noise is included has a
negative impact on the validity results of the domains learned with them. Without
noise, the benchmark algorithms perform similarly to what we saw in Chapter 3 of
this document, but when noise is included, this is no longer true, as the multiple
errors in the planning domains negatively affect the validity of the domains.
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Table 4.4: Validity Results

4.3.3 Numerical domains

Finally, the experimental process studies how the selected classification algorithm
affects the performance of PlanMiner-N when learning planning domains with nu-
merical information. The classification algorithms used in this experimentation are
the same used in the last experimental process, except for ID3. The results of this
experimentation are divided between the Figure 4.7 and the Table 4.5. First, Fig-
ure 4.7 contains a graph that compares the algorithms in terms of F-Score, while,
Table 4.5 contains the validity results of PlanMiner with the different classifica-
tion algorithms. In order to improve the readability of the results, Figure 4.7 set
the incompleteness degree of the plan traces in the X-axis, and Table 4.5 shorts the
results given the domain from which they were obtained. This section presents a
summary version of the results. An extended version of this can be found in Ap-
pendix C (specifically in the Tables C.14, C.15, C.16, C.17, C.18 and C.19).

If we look closely at the results in Figure 4.7 we can see the following:

« Depots. PlanMiner-N (NSLV) maintains 88% F-Score levels even in the com-
plex experiments, losing less than 10% F-Score compared to the noiseless re-
sults. PlanMiner (NSLV) on the other hand suffers a drop of 20 using 3% of
noisy elements, its final performance is below 70% F-Score in the experiments
with 20% of noisy information. PlanMiner-N (C45) suffers a large F-Score
loss of 13 points in the experiment with 5% noisy data, which stabilises some-
what in the following experiments. PlanMiner (C45), on the other hand, suf-
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Figure 4.7: Performance comparison of PlanMiner-N using different classification
algorithms on Numerical domains.
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fers a steady drop in performance, bringing its final F-Score below 40 points.
PlanMiner-N (RIPPER) and PlanMiner (RIPPER) show the biggest difference
of all the algorithms, since, where PlanMiner-N (RIPPER) remains constant
throughout the experimentation, suffering only F-Score losses in the more
complex experiments, PlanMiner (RIPPER) drops steadily.

DriverLog. The results of PlanMiner-N (C45), PlanMiner-N (RIPPER) and
PlanMiner-N (NSLV) is similar regardless of the classification algorithm used.
All approaches show a slight drop in F-Score throughout the experimenta-
tion, with intervals where the F-Score loss is zero. In general, these approxi-
mations lose on average 6 F-Score points between the experimentation with-
out noisy data and the one with more noisy data. On the other hand, the
experimentation on PlanMiner (C45), PlanMiner (RIPPER) and PlanMiner
(NSLV) shows a steep F-Score drop of more than 20 points when noise is
included. PlanMiner (C45) and PlanMiner (NSLV) moderate this tendency
a little to reach an F-Score of around 55% in the final experiments, Plan-
Miner (RIPPER) on the other hand does not, reaching values below 40 F-
Score points.

Rovers. PlanMiner-N (NSLV) is little affected by noise, suffering a signifi-
cant F-Score loss of 5 points in the experimentation with 5% noisy data. In the
rest of the experimentation, the F-Score loss is minimal. PlanMiner (NSLV)
loses 40% F-Score when noise is found in the input traces, a big contrast when
compared to the results of PlanMiner-N (NSLV). Although the other propos-
als behave similarly, the F-Score loss of PlanMiner (NSLV) is the most pro-
nounced in the whole experiment. PlanMiner-N (C45) performs at 72 points,
compared to PlanMiner (C45) at 51 points, and PlanMiner-N (RIPPER) with
a final F-Score of 73%, 20 points higher than PlanMiner (RIPPER).

Satellite. Similar to DriverLog, the results of PlanMiner-N (C45), PlanMiner-
N (RIPPER) and PlanMiner-N (NSLV) show a similar trend: a slight but steady
drop in F-Score as the experimental assumptions become more complicated.
These algorithms show F-Score drops of 11% in the more complex experi-
ments compared to the no noise experiment. The results of the PlanMiner
experiment show drops of 25 points with the C45 classifier and RIPPER, and
more than 40 points with NSLV when faced with some noise. PlanMiner
(NSLV) maintains the results in the rest of the experimental assumptions,
leaving its final performance at 48 points, while PlanMiner (C45) and Plan-
Miner (RIPPER) obtain an F-Score of 58% and 49% respectively.

ZenoTravel. PlanMiner-N (NSLV) remains unchanged at certain noise lev-
els, with an F-Score of 89% at 3% noise. PlanMiner-N (NSLV) loses around
11% F-Score in the more complex experimentation. PlanMiner (RIPPER) and
(C45) lose some F-Score until experimentation with 5% noise, but while Plan-
Miner (C45) shows some resistance to noise, (RIPPER) loses performance
steadily. On the other hand, PlanMiner (NSLV), PlanMiner (C45) and Plan-
Miner (RIPPER) show a large initial drop, followed by a certain stabilisation
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of the results. The F-Score value in the most complex experiments is 30 points
PlanMiner (RIPPER), 40 points PlanMiner (C45) and 47 points PlanMiner
(NSLV).

PlanMiner demonstrates some “natural resistance” to noise in this experiments,
showing somewhat better results than the experiments with STRIPS domains. Still,
the difference in performance between the version of PlanMiner presented in this
chapter and the previous version is remarkable. Using the C.45 classifier, PlanMiner-
N performs around 30 points better than PlanMiner, which can reach up to 50
points difference in certain planning domains. On the other hand, with the RIPPER
classification algorithm, it maintains in all experiments a higher performance than
70% with PlanMiner-N, while with PlanMiner it reaches values around 30 F-Score
points. Finally, with NSLV the same process is repeated (i.e. F-Score differences
close to 4%), although aggravated with very significant decreases in performance
simply by including noise. This contrasts sharply with PlanMiner-N (NSLV) which
remains relatively unperturbed by noise, far outperforming the other approaches
tested in the experiment. The aforementioned “natural resistance” to noise is given
by the way the feature discovery component works, namely it is a product of the
design of the symbolic regressor. Since the symbolic regressor does not seek exact
results, but rather takes approximate (but as close to exact as possible) results as cor-
rect, the effect of the inclusion of certain noisy elements is diluted. Although these
elements increase the error of the expression that is being learned, it is possible that
the expression meets the acceptance criteria of the algorithm and is accepted by the
learning algorithm. Unfortunately, this method is not infallible, and if insufficient
datais available or if there are outliers with the potential to greatly perturb the error
calculation, PlanMiner is unable to correctly learn the target expression. The in-
clusion of noise treatment methods increases this resistance, not so much because
they influence the behaviour of the regression algorithm, but because they alter the
noise problem and shift it to an incompleteness problem. As seen in the empirical
studies in Chapter 3, incompleteness is highly tolerated by PlanMiner (and thus by
PlanMiner-N) improving greatly the performance of the algorithm. Looking at the
evolution of the accuracy and recall metrics of the algorithms throughout the ex-
perimentation (these results can be consulted in Appendix C), we can see how noise
affects the first metric much more than the second. This is because any amount of
noisy elements not addressed by the noise filtering processes triggers the bias prob-
lems described in the previous chapter. As we have seen in previous experiments,
the property of NSLV to generate descriptive rules plays in its favour against bias
problems. This particular case is no exception, and it is the main reason why NSLV
performs better than the other classifiers.

Validity experiments show again the effectiveness of the methods implemented
in PlanMiner-N for dealing with noise. If we compare the results of PlanMiner and
PlanMiner-N, we see that PlanMiner’s “natural resistance” to noise when learn-
ing numerical domains is not infallible and does not guarantee obtaining valid do-
mains. The reason for this is as previously indicated in the experimentation of this
and the previous chapter: the validity criteria are very demanding, and a single er-
roneous effect causes the entire planning domain to be invalid. PlanMiner can meet
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Table 4.5: Validity Results

these criteria in some experiments (using the RIPPER classification algorithm), but
generally, this is not true. PlanMiner-N on the other hand does, at least under cer-
tain noise levels.

In terms of time efficiency, PlanMiner-N is 2% slower than PlanMiner, even out-
performing it in some experiments. This is because, in the face of noise, PlanMiner
may spend much more time trying to fit an arithmetic expression (even using all
the time allowed for this and reaching the timeout threshold), which compensates
for the time spent by PlanMiner-N in applying the different anti-noise processes
implemented.

4.4 Conclusions

This chapter has presented PlanMiner-N, an AML technique built over the Plan-
Miner algorithm with the objective of implementing its learning capabilities under
situations of noisy input data. Several methods have been developed over the orig-
inal PlanMiner’s learning pipeline with the aim of automatically detect and treat
noisy elements in both the input data and the intermediate models used during the
learning process. These new methods i) preprocess the input data of PlanMiner-N
and ii) post-process the meta-states generated by the classification algorithms used
during the learning process. i) The first method studies the information contained
in the input data aiming to discern those erroneous elements contained in the plan
traces in order to filter them. And ii) the second method refines the meta-states
trying to find inconsistencies between them and implementing a process to clean
them. PlanMiner-N has been validated with domains obtained from the IPC, com-
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paring its results with other existing state-of-the-art solutions and with PlanMiner.
In the proposed experimentation, PlanMiner-N has demonstrated clear superiority
in terms of performance to state-of-the-art algorithms, as well as a high capacity
to learn planning domains under conditions of high input data sparsity. In com-
parison to PlanMiner, the new methods have been proven useful to deal with noise
input data, improving largely the algorithms performance.
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Chapter 5

Learning conditional action
models from plan traces

5.1 Introduction

The PlanMiner methodology was created with the goal of learning as expressive
planning domains as possible, in order to implement them in real-world problems.
The PlanMiner-N research presented in the previous chapter, explored the devel-
opment of techniques to improve PlanMiner’s resilience to poor quality input data,
a common problem when extracting data from real-world sources, but, not explor-
ing new ways of improving the expressiveness of domains learned by PlanMiner
(with respect to numerical and relaltional expressions). This issue greatly limits
the ability to implement the domain learner on problems closer to the real world.

The work presented in this chapter tackles this issue, introducing a novel action
model learning technique able to learn planning domains a step ahead in terms of
expressivity in comparison to those learned by PlanMiner. This work is a new vari-
ant of the original version of PlanMiner called PlanMiner-C, a learning algorithm
for action models with conditional effects. Conditional actions are a type of plan-
ning action whose effects depend on the context in which they are applied, varying
the result of their execution depending on certain aspects of the world to which
they are applied.

As a preliminary step to implementing this technique in real-world problems,
PlanMiner-C is designed to learn action models from information extracted from
virtual videogame environments (specifically the GVG-AI environment | ]
presented in Section 2.5 of Chapter 2). Our solution can use logs of agent executions
trying to solve different scenarios (different game levels for many videogames), with
the aim of being able to replicate their behaviour in a planning domain that could
be used by a deliberative agent controlled by a planning engine. In GVG-AI, it
is easy to find a conditional behaviour, for example, when pressing the USE key.
Once this key is pressed, the consequences of the action executed by the automated
player depends on the object the agent holds. Moreover, the vast majority of real-
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Dataset Classification models
Extraction acquisition -
Traces New Features Conditional action models Domain
Discovery generation

Figure 5.1: The learning pipeline of PlanMiner-C

world processes tend to have behaviours that vary depending on the context of the
world or simple randomness, and designing a tool able to manage them is a major
breakthrough in the action model learning field.

PlanMiner-C includes several modifications (outlined in Figure 5.1) to the orig-
inal PlanMiner algorithm, overcoming its limitations, in order to handle the ex-
istence of actions with multiple behaviours depending on the context where they
are applied. These modifications include i) a new method to handle input data, ii)
a novel discovery of new features step, iii) a new classification model generation
strategy and iv) a new PDDL domain generation process.

(i) The first modification is due to the need to deal with a larger volume of data
than seen so far in PlanMiner and the use of a new encoding format for the
input plan traces. In Chapter 2, Section 2.4.1 we already discussed this prob-
lem of data size, and how a better solution had to be found to optimise the
format of the traces. To recapitulate, the execution logs extracted from GVG-
AI are composed of the actions UP, DOWN, LEFT, RIGHT, and USE (of a
concrete object), executed by the automated player in a game, with pre-states
and post-states containing raw observations from this environment. The ob-
servations represent the game objects that can be found in each cell of the
game. For example they provide information on the cell where the avatar is
located, or the game object the avatar holds, or where the walls are, etc. This
information can be straightly translated into instantiated literals (this transla-
tion is detailed in Section 5.4), and therefore into plan traces ready to be used
by the PlanMiner’s pipeline. But for a planner to properly work and solve
problems in these types of domains (tile-based worlds) it is necessary to de-
duce the cells’ connectivity relation from the observations for each concrete
game level. Since PlanMiner assumes the OWA (Open World Assumption,
if a literal is not present in a state its truth value is considered unknown) it
would be necessary to encode in the plan traces additional literals to repre-
sent which cells are not connected with a given cell. This encoding would
generate an extremely large volume of information that would make the pro-
cessing of plan traces intractable. In order to improve this encoding, a new
trace format was implemented (described in Chapter 2, Section 2.4.1 along
with an example) that separated static relations (those elements that are im-
mutable throughout an execution, for example the connectivity relation be-
tween tiles) from dynamic relations (those elements that vary throughout an
execution) to handle and encoding them independently. The modifications
made in PlanMiner-C are aimed at adapting the process of reading plan traces
to this new reality on the input data.
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(ii) Secondly, since we are addressing how to learn conditional actions, the dif-
ferent patterns that can be found in the datasets due to actions’ situation-
dependend effects must be taken into account when discovering new knowl-
edge from the input data. PlanMiner-C rebuilds the original symbolic regres-
sion method implemented in the original algorithm with the goal of facing
this issue and guide the learning process.

(iii) Thirdly, actions with multiple situation-dependent behaviours will have mul-
tiple meta-states associated with it (i.e. multiple rules associated with each
action which explain its multiple situation-dependent effects). PlanMiner’s
original learning method was not designed for this reality. Therefore, we have
redesigned the new classification models generation strategy, in order to op-
timise the rule generation method to handle several rules explaining the dif-
ferent behaviours of a single action model.

(iv) Finally, since an action with multiple behaviours is represented with more
than one rule set (although obtained from a single dataset), it is necessary
to implement a new PDDL generation process. This process has the goal of
study the classification models obtained (i.e. the different rule sets) and out-
puts a single action model with conditional effects.

As previously mentioned, the GVG-AI environment has been used as the source
from which to extract input data for PlanMiner-C. It should be noted that, due to
the particularities of the GVG-AI environment, when measuring the quality of the
data used, we find that we cannot apply the experimental methodology applied for
PlanMiner and PlanMiner-N. This is due that this experimental processes need a
reference planning domains to measure the learning domains. When learning from
data extracted from a GVG-AI agent execution, there is no reference domains, so
the mentioned experimental methodology can not be applied. This issue have led to
the need to overcome the challenge of designing and proposing a new experimental
process to measure PlanMiner-C performance.

Finally, it is worth noting that during the development of PlanMiner-C we dis-
covered a possible way to learn action models with stochastic effects (such as those
used by PPDDL). In due course, this way will be briefly pointed out and explained,
but because it is outside the scope of the PlanMiner-C proposal, it will not be further
explored or evaluated in the experimental sections (see Section 5.4) of this chapter).

The rest of the chapter is organised as follows: First, the learning requirements
of the task ahead will be presented, illustrating them with several examples. Sec-
ond, the PlanMiner-C algorithm will be presented, exposing the shortcomings of
PlanMiner when dealing with the challenge ahead, in addition to the full descrip-
tion of the changes made in the solution proposed in this Chapter. Third, the ex-
perimentation will be presented to prove the capabilities of PlanMiner-C trying to
learn planning domains from data extracted from the GVG-AI environment. And,
fourth, the conclusions drawn during the whole chapter will be exposed.
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Pre-state Post-state Action
o 1 (RIGHT a1 c16 c17)
1 2 (RIGHT a1 c16 c17)
2 3 (UPai1ci17c12)
3 4 (USE a1 c17c12)
4 5 (UPai1c17c12)

(a) State transitions
Index Predicates
(=(posXa1)3)A((=(posYa1) 1) A (rockIn c12) A
0 (— (orien_U a1)) A (orient_D a1) A (— (orient_R a1)) A

(— (orient_L a1)) A (= (hasGem a1) o) A (gemlIn c7)

(=(posXa1)3) A ((=(posYa1) 1) A (rockIn c12) A
1 (= (orien_U a1)) A (= (orient_D a1)) A (orient_R a1) A
(— (orient_L a1)) A (= (hasGem a1) o) A (gemlIn c7)

(=(posX a1) 3) A ((=(posY a1) 2) A (rockIn c12) A
2 (= (orien_U a1)) A (= (orient_D a1)) A (orient_R a1) A
(— (orient_L a1)) A (= (hasGem a1) o) A (gemlIn c7)

(=(posX a1) 3) A ((=(posY a1) 2) A (rockIn c12) A
3 (orien_U a1) A (= (orient_D a1)) A (- (orient_R a1)) A
(= (orient_L a1)) A (= (hasGem a1) o) A (gemlIn c7)

(=(posXa1)3)A((=(posYa1)2) A (— (rockIn c12)) A
4 (orien_U a1) A (- (orient_D a1)) A (— (orient_R a1)) A
(— (orient_L a1)) A (= (hasGem a1) o) A (gemlIn c7)

(=(posXa1)2) A ((=(posYa1) 2) A (— (rockIn c12)) A
5 (orien_U a1) A (= (orient_D a1)) A (- (orient_R a1)) A
(— (orient_L a1)) A (= (hasGem a1) o) A (gemlIn c7)

(=(row c12) 2) A (=(col c12) 2) A (=(row c16) 3) A
(=(col c16) 1) A (=(row c17) 3) A (=(col c17) 2) A

Static (conn_U ci12c7) A (conn_D c12 c17) A (conn_R c12 c13) A
Relations | (conn_Lcizc11) A (conn_Uc16 c11) A (conn_D c16 c21) A
(conn_R c16 c17) A (conn_L c16 c15) A (conn_U c17 c12) A
(conn_D c17 c22) A (conn_L c16 c15) A (conn_R c17 c18) A
(conn_L c17 c16)

(b) States list

Table 5.1: Extract from a Boulder Dash videogame plan trace.
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5.2 Learning requirements

Initially, when we start to face the challenge of improving the expressiveness of
learned patterns, an attempt was made using PlanMiner and PlanMiner-N with
no success. During this attempt, information extracted from GVG-AI was used as
input to the algorithms, but the action models obtained were useless. Despite the
initial failure, a series of important requirements were detected that needed to be
taken into consideration. These requirements were:

« Handling of anomalous observations in the input data. In a similar
situation as the one that PlanMiner-N faces, there may be atypical observa-
tions in the input data taken from the GVG-AI environment. But, contrary
to as it occurs with PlanMiner-N, these observations cannot be automatically
flagged as erroneous and discarded, as they come from uncommon but valid
behaviours. This means that all these behaviours must be taken into account,
studied and, if necessary, modelled in the output domain of the algorithm.

+ Handling of multiple rules for each meta-state. When faced with anoma-
lous behaviour in the input data, a new requirement arose from the way in
which the preconditions and effects of the action models are learned by Plan-
Miner (and PlanMiner-N). The requirement is that there can be several meta-
states for the pre-state or post-state of the action models. This issue has al-
ready been discussed in the Chapter 4 and, also, the need for learning algo-
rithms proposed throughout this manuscript to accept only one rule for each
meta-state was commented. This requirement imposed by PlanMiner, which
clashes head-on with the real needs of the learning problem presented by the
data extracted from GVG-AI, was the main culprit for the initial failure of the
learning algorithms.

« Handling of static relations. Last but not least, a rather large obstacle was
found in the plan trace format initially proposed for PlanMiner and PlanMiner-
N. This obstacle made the plan traces as they were conceived so far obsolete,
leading to the design and development of a new plan trace format (both for-
mats are defined in Chapter 2 of this document). The trigger for this error
was the existence of large amounts of static relationships in the input data
that led to even small runs of GVG-AI taking up huge amounts of disk space,
making their processing intractable in practice.

The processes implemented during the development of PlanMiner-C, and pre-
sented in this chapter, aim to create a learning process able to learn action models
with conditional effects. But, in order to do so, apart from satisfying the above
described requirements, these new processes have to overcome a number of as-
sumptions made in the original design of PlanMiner. In the previous chapter, we
discussed the weaknesses of PlanMiner in dealing with noisy data, and that these
weaknesses were caused by a number of assumptions made to improve the per-
formance of the learning pipeline. To recap, these assumptions implied that: (i)
the input data is always correct, and (ii) that, for each single action model, there is

117



CHAPTER 5. LEARNING CONDITIONAL ACTION MODELS...

only one rule that explains its preconditions and effects (i.e. that fits its pre-states
and post-states). In the same way that under noisy scenarios these assumptions
prevented the correct learning of the action models (discussed in depth in Chapter
4), under conditional behaviours such assumptions hinder the learning process,
although for reasons different from those that affect the PlanMiner-N algorithm,
which are explained in the following.

(:action RIGHT
:parameters (?a — avatar ?c1 ?c2 — cell)
:precondition (and
(= (posX ?a) (col ?c1))
(= (posY ?a) (row ?c1))
(not (wallln ?c2))
(conn_R ?c1 ?c2)
)
:effect (and
(when
(and (orient_U ?a))
(and (not (orient_U ?a)) and (orient_R ?a))
)
(when
(and (orient_D ?a))
(and (not (orient_D ?a)) and (orient_R ?a))
)
(when
(and (orient_L ?a))
(and (not (orient_L ?a)) and (orient_R ?a))
)
(when
(and (orient_R ?a))
(and (increase (posY ?a) 1))

)
Listing 5.1: Boulder Dash’s videogame action with conditional effects

When learning planning domains with conditional actions, the first assumption
implies in PlanMiner that the data can be prejudged, by supposing that anomalous
data can be discarded as erroneous. This contradicts the premise that conditional
effects may have an asymmetric (and very low) appearance rate and disrupts any
attempt at learning such type of effects. For example, looking at the conditional
action RIGHT from the Boulder Dash videogame (presented in Listing 5.1), we can
see that the function (posY ?arg1) varies depending on the context of execution.
The main function of this action is to increment (posY ?arg1) when it is executed,
i.e. to update the position of the avatar indicating that it has moved to the left, but,
as can be seen, this is not always the case. If the avatar is not facing left at the time
the action is executed, its effect will be to orient it. This means that most of the time
when this action is executed, its effects will have no repercussion on (posY ?arg1).
Assuming that the anomalous behaviour (i.e. (posY ?arg1) is increased by 1) can
be ignored without studying their nature, would mean that the conditional effect
of the action would not be learned, since this observations would be detected as
erroneous, and discarded. Furthermore, forcing that there is only one regression
model that explains the behaviour of the function (posY ?arg1) would lead to the
models of the two behaviours seen above being learned incorrectly, as the resulting
model would mix both behaviours (i.e. resulting in a model that will try to represent
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/ Pre-states bate; d ™\

/ Post-stater |
: :> RIGHT |:> —]
/ \ Post-state

Figure 5.2: Scheme of the meta-states of the move action

Pre-state: | Pre-states

both the increments of 1 and the situations where there is no changes).

On the other hand, the assumption that there is only one rule defining the pre-
states or post-states forces PlanMiner to require neither more nor less than that this
information in order to function properly. As explained in the last chapter, when
dealing with noisy input data, this could not be assured, so PlanMiner-N imple-
mented a meta-state refinement process to filter and combine several rules into a
single rule, compelling this requirement to be met. When modelling conditional
actions, it is possible to ensure 100% that this condition will be unfulfilled, since a
single action will have several meta-states for either the pre-state or the post-state
associated.

In the example seen above (in Listing 5.1), the RIGHT action would have asso-
ciated four meta-states for the pre-state and two meta-states for the post-state (see
scheme presented in Figure 5.2). On the one hand, the first collection of meta-
states would represent the different situations provoked by the orientation of the
avatar (each orientation has its own pre-state meta-state), while, on the other hand,
the second pair of meta-states could represent those situations where (posY ?arg1)
changes (or not). The meta-states of the same type would share many elements,
but would contain key differences relative to the situations they represent.

Particularly, to note that the information about the values of (posY ?arg1) con-
tained in the two meta-states of the post-states is crucial. From this information it
can be extracted how said fluent changes, and, when used with the features discov-
ery process, different regression models can be extracted as indicated in the previ-
ous paragraph. Trying to reduce the number of meta-states to fit the requirements
of PlanMiner, as is done in PlanMiner-N, is counterproductive, as it would lead to
the loss of important information of conditional action models.

5.3 PlanMiner-C

PlanMiner-C, follows the schema presented in Figure 5.1 and outlined above, meet-
ing the requirements indicated in the previous section. In the following lines, we
will explain the steps described earlier in detail, illustrating the whole process with
examples taken from the videogame Boulder Dash (defined in Table 5.1).
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5.3.1 Overview

Algorithm 15 shows PlanMiners-C’s general workflow, highlighting the changes
realised to PlanMiner’s original workflow. PlanMiner-C redesigns PlanMiner orig-
inal contribution to create a novel learning process able to learn action models with
conditional effects. As said earlier, PlanMiner-N modifies four steps in the original
pipeline of PlanMiner, performing in each one the following tasks:

« Dataset Extraction. Based on the same foundations as the original extrac-
tion process, PlanMiner-C extracts a set of state transitions with information
about the actions and their associated states, and then, but augments them
with relevant knowledge about the static relationships of the world (step 5 of
Algorithm 15). The results of this process are then formatted and displayed
as a dataset.

« Discovery of new information. Accounting for the diversity that can ex-
ist in the data, this process (Algorithm 15 step 11) is able to fit multiple re-
gression models to a target dataset (PlanMiner fits a single regression model).
Based on the original symbolic regression algorithm of PlanMiner, PlanMiner-
C makes use of sequential covering techniques to find the different regres-
sion models in a collection of data. These models can be used then to feed
the datasets, allowing the correct learning of situation-dependent arithmetic
and relational expressions, which are crucial to maintain the expressiveness
of the planning domains learned by PlanMiner-C.

«+ Classification models acquisition. As exposed earlier, due to the charac-
teristics of the domains that PlanMiner-C tries to learn (domains with con-
ditional actions), learning a single rule for the pre-state and another for the
post-state makes the learning process unable to learn situation-dependent ef-
fects for the actions. The approach implemented in PlanMiner-C (step 12 of
Algorithm 15) attempts to tackle this problem with a two-step learning pro-
cess. This process first learns a single model with two rules, each explaining
the common parts of both the pre-state and post-state of an action. Then, it
proceeds to find the differences between the instances of the dataset, group-
ing the instances in different collections, and tries to adjust specific rules for
each of them. This two-step method divides the final rule set obtained into
two categories: the general rule model and the specific rules models, and im-
proves the learning capabilities of PlanMiner-C avoiding the generalisation
of the classification models and thus, the loss of important information.

« Planning domain generation. Finally, last but not least, the meta-states
are processed to generate from them the action models in PDDL format. To
realize this, PlanMiner extracts from them the preconditions and effects that
define the goal action model. Since the restriction that indicates that there is
only single a meta-state for the pre-states and the post-states is no longer met,
PlanMiner-C (step 13 of Algorithm 15) must implement different a trans-
lation method than the one presented in PlanMiner. In this new method,
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Algorithm 15 PlanMiner-C Algorithm overview

Input: PT: Set of Plan Traces
Output: AM: Set of Action Models

Initializes stDict as dictionary
for all Plan trace pt in PTs do
for all Different action act in the pt do
Extract state transitions st of act in pt
Include static relations of pt in st
stDict[act] < stDict[act] U st
end for
end for
for all key act in stDict do
dat « dataset created using stDict[act]
Infer new knowledge from dat and add it
Fit a set classification models cModel using dat as input
Generate action model am from cModel
AM <~ AMUam
: end for
return AM

2 9N 2R W N-R
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PlanMiner-C contemplates different translation schemes for each different
combination of meta-states that can be found. The aforementioned transla-
tion schemes are selected after evaluating the rulesets learned in the previous
step and seeing which one best fits the information contained in them.

5.3.2 Dataset Extraction

First, PlanMiner-C reads the input plan traces and generates a collection of datasets
from them. The change in the format of the input plan traces, which allows for the
differentiation between dynamic and statics relations, is a significant improvement
in its space efficiency, and optimises the way in which the data is organised, but it
requires an adaptation process in the original dataset extraction method in order to
let the algorithm manage correctly the new plan traces.

The addition of static relations as a separate entity leads PlanMiner-C to define
a new encoding process for the state transitions. In PlanMiner-C a state transition
of an action is defined as a tuple (s;, a, s,, ¥), where the elements sy, a, s, denote
respectively the pre-state, the action and the post-state. And r is the set of static
relations of the world as it appears in a given input plan trace. Listing 5.2 presents
an example of the state transition of the action (RIGHT a1 c16 c17)), where we can
see clearly its different elements.

Action: (RIGHT a1 c16 ¢17)
« pre-state: (= (posXai1)3)A ((=(posYa1) 1) A (vockIn ciz) A

(— (orien_U a1)) A (orient_D a1) A (- (orient_R a1)) A
(= (orient_L a1)) A (= (hasGem a1) o) A (gemlIn c7)
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« post-state: (= (posXa1)3) A ((=(posYa1) 1) A (rockIn c12) A
(- (orien_U a1)) A (- (orient_D a1)) A (orient_R a1) A
(= (orient_L a1)) A (= (hasGem a1) o) A (gemlIn c7)

« Static Relations: (=(row c12)2) A (=(col c12) 2) A (=(row c16) 3) A (=(col c16) 1) A
(=(row c17) 3) A (=(col c17) 2) A (conn_U c12 c7) A (conn_D ci1z2 c17) A
(conn_R c12 c13) A (conn_L c12 c11) A (conn_U c16 c11) A (conn_D c16 c21) A
(conn_R c16 c17) A (conn_L c16 c15) A (conn_U c17 c12) A (conn_D c17 c22) A
(conn_L c16 c15) A (conn_R c17 c18) A (conn_L c17 c16)

Listing 5.2: State transition of the (RIGHT a1 ci6 ciy) action showing static
relations.

Once the states transitions have been extracted, PlanMiner-C proceeds to com-
pute the schema form of each of them, following the same procedure as PlanMiner,
but now considering the set of static relations. Recall that this process consists of
the following steps:

1. For each instantiated parameter in action’s header, replace its occurrences in
the literals of the pre-state, post-state and static relations by a token repre-
senting a variable.

2. Removeirrelevant literals (i.e. those predicates and fluents whose parameters
have not been fully substituted by a variable).

Once this action has been performed, PlanMiner-C includes all the remaining pred-
icates in the static relations in both the pre-state and post-state, merging the infor-
mation of the dynamic and static relations. After this, PlanMiner-C removes r from
the state transition, resulting in the original schema form (see Listing 5.3) presented
in Chapter 3.

Action: (RIGHT ?arg1 ?argz ?arg3)

« pre-state: (= (posX ?arg1) 3) A ((= (posY ?arg1) 1) A
(= (orien_U ?arg1)) A (orient_D ?arg1) A (— (orient_R ?arg1)) A
(= (orient_L ?arg1)) A (= (hasGem ?arg1) o) A (=(row ?argz) 3) A (=(col ?argz) 1) A
(=(row ?arg3) 3) A (=(col ?arg3) z) A (conn_R ?argz ?arg3) A (conn_L ?arg3 ?argz)

« post-state: (= (posX ?arg1)3) A (= (posY ?arg1) 1) A
(= (orien_U ?arg1)) A (— (orient_D ?arg1)) A (orient_R ?argi) A
(— (orient_L ?arg1)) A (= (hasGem ?arg1) o) A (=(row ?argz2) 3) A (=(col ?argz) 1) A
(=(row ?arg3) 3) A (=(col ?arg3) 2) A (conn_R ?argz ?arg3) A (conn_L ?arg3 ?argz)
Listing 5.3: Schema form of a (RIGHT ?arg1 ?argz ?arg3) action with static relations
highlighted in blue, after removing irrelevant literals.

Finally, as exposed in section 2.4.1, the new plan traces encode the dynamic
and static relations follow different world assumptions. Dynamic relations follow
the OWA, meaning that if a value of an element is not explicitly set, it is considered
unknown. Static relations follow the CWA, meaning that those elements not set ex-
plicitly as true are interpreted as false . In the process of creating a dataset from the
state transitions, this influences how the gaps produced in the columns of a dataset
by the lack of information in a state are filled. When facing dynamic relations, if
a literal is missing in a state, it is replaced by a “missing value” token, but when
dealing with static relations, since they follow the CWA, PlanMiner-C fills the lack
of information with False.
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A(row ?arg2) A(col ?7arg2) A(row ?arg3) A(col?arg3) A(posX ?argi) A(posY ?arg1)

3-3=0 4—-4=0 3-3=0 5-5=0 3-3=0 4—-4=0
2-2=0 2-2=0 2-2=0 3—-3=0 2-2=0 3—-2=1
4—-4=0 0-0=0 4—-4=0 1-1=0 4-4=0 0-0=0
2-2=0 0-0=0 2-2=0 1-1=0 2-2=0 0-0=0
2-2=0 0-0=0 2-2=0 1-1=0 2-2=0 1-0=1
3-3=0 1-1=0 3-3=0 2-2=0 3-3=0 1-1=0
3-3=0 2-2=0 3-3=0 3-3=0 3-3=0 3-2=1
4—-4=0 3—-3=0 4—-4=0 4—-4=0 4—-4=0 3-3=0
0-0=0 3-3=0 0-0=0 4—-4=0 0-0=0 3-3=0

Table 5.2: A values extract

5.3.3 Discovery of new features

Once the datasets have been generated, a knowledge discovery process is performed.
In chapter 3 it was explained that this process was divided into 3 sub-processes: the
calculation of the A value sets associated with each dataset fluent, the fitting of sym-
bolic regression models to discover arithmetic expressions that explain the A value
sets, and the creation of relational expressions that relate the different attributes of
the datasets. PlanMiner-C modifies only the symbolic regression models learning
procedure, keeping the other two unchanged.

PlanMiner-C implements a sequential covering algorithm (see Algorithm 16)
to, iteratively, adjusts arithmetic expressions that cover a subset of instances of the
goal set of values. Starting from a collection of data extracted from a given dataset,
and a set of A values defined as the target, the method proceeds as follows:

1. PlanMiner-C uses the symbolic regression algorithm originally implemented
in PlanMiner, trying to find an arithmetic expression that perfectly matches a
subset of the goal values.To do so, it explores the search space of the problem
until it finds a formula with error o for at least 1 instance of the dataset (step
3 of Algorithm 16).

2. Once a candidate formula is found, it includes it in a set of formulas and
deletes the examples covered by it from the dataset (steps 4 and 5 of Algorithm
16).

3. After adding an expression to the set of candidate formulas, the whole set is
checked for duplicates within the candidate formulas (step 6 of Algorithm
16).

PlanMiner-C repeats this process until all instances of the dataset have been cov-
ered or a timeout of 300s has elapsed. In Table 5.2 we can see the goals sets extracted
from the example plan trace presented in Table 5.1, as can be seen, A(posY ?arg1))
has two different behaviours: A more common one that keeps the fluent unchanged,
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Algorithm 16 Symbolic regression algorithm for conditional actions

Input: dat: Dataset
Output: f: set of arithmetic expressions

1: Set f as @ set of arithmetic expressions

2: while not ( dat totally covered) A not timeout do
3:  canditateF « fit arithmetic expression for dat

4 f < fUcanditateF

s:  Delete instances covered by canditateF in dat

6:  Update f by removing redundant expressions

7. end while

8: return f

and a scarce one that increases it by 1 point. On the other hand, the rest of the flu-
ents presents the same behaviour every time the action is executed (namely, not
changing after executing the action).

The expressions obtained by the symbolic regressor are considered candidates
until they are returned by the regression algorithm. This is because they are suscep-
tible to being replaced by a better expression learned in later runs of the symbolic
regression method. An expression e, (x) is better than an expression e,(x) if the
following condition holds:

e1(x), ex(x) € f = Supp(ex(x)) C Supp(e(x))

where Supp(e,(x)) and Supp(e,(x)) are, respectively, the support set of the expres-
sions e,(x) and e,(x) and f is the collection of candidate expressions. The support
set of an expression is computed by collecting all the examples covered by it.

Summarising, if the expression Supp(e,(x)) from f covers the same examples
than Supp(e,(x)) from f, it is considered better, and therefore Supp(e,(x)) can be
deprecated. The process is realised during the step 6 of Algorithm 16, and its goal is
to avoid overfitting the expressions found in early runs of the method, by replacing
very specific expressions with more generic ones.

Finally, in order to guide the symbolic regression algorithm, PlanMiner-C im-
plements a new heuristic h(x, goal) to measure the goodness of node x with rep-
resenting the goal set of objective values. This new heuristic is a two-components
multi-criteria evaluation function guided by a lexicographer order.

That is to say, the first value of the heuristic guides the execution of the algo-
rithm, indicating which nodes are the best (i.e. which expression being learned best
represent the goal values), but in the case of a tie between some nodes, the second
component of the evaluation function is taken into account to break the said tie.
h(x, goal) is computed as

h(x, goal) = (Supp(x(goal)), h'(x, goal))

where Supp(x(goal)) is the support of the expression represented in the x node and
h'(x, goal) its heuristic value as defined in PlanMiner’s discovery of new features
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Algorithm 17 PlanMiner-C rule extraction algorithm

Input: dat: Dataset
Output: RSL: set of classification rules

1: Set RSL as @ ruleset

2: for all class label label in dat do

32 subDat « extract all examples of class label in dat

4 genRule « fit rule that cover every example of subDat
s:  Erase attributes of sDat modeled in genRule

6:  Fit a classification model espRules using sDat as input
7: RSL < RSL cup Combine genRule and espRules

8: end for

9: return RSL

step. The heuristic uses an optimisation criterion (max, min), i.e. it tries to max-
imise the first component and minimise the second. When selecting an expression
during the symbolic regression procedure, that the heuristic will choose those func-
tions with the highest support while trying to reduce its error.

The process returns an empty rule set in case one of the following two assump-
tions occurs: (i) the computation time allotted to the execution (300 seconds) runs
out or (ii) the set of expressions obtained after covering all the objectives does not
reach a minimum quality threshold. The quality measure set to determine the ac-
ceptance of an expressions candidate set is the mean support rate of the expressions.
The support rate of an expression is calculated as the percentage of instances cov-
ered of the total by it. Given the case that the mean support rate of all expressions is
below 25%, the whole candidate set is deprecated. Finally, in the case of obtaining a
set of regression models, these are included in the initial dataset as new attributes
of the same, in the same way as in PlanMiner. Once the attributes are included,
the execution proceeds to the next step of the new information discovery method,
following the original execution of the algorithm.

5.3.4 Classification models extraction

Similarly to the original PlanMiner algorithm, the entire learning pipeline showed
so far isintended to prepare the datasets containing the input information for use in
a classification algorithm capable of extracting a model representing the pre-state
and post-states associated with the actions of the domain being learned. PlanMiner
was designed to extract one single model for each state type, and as previously men-
tioned, it is not possible to correctly learn conditional actions with that constraint.
Therefore, PlanMiner-C implements a new process (presented in Algorithm 17) ca-
pable of returning multiple models for each state type.

This new procedure consists of a two-step method that divides the learning pro-
cess into (i) learning the common elements to each and every example of the dataset
and b) learning the specific elements that differentiate those examples.

First, the common elements are defined in a classification model called general
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rule that contains all the information shared between all instances of a given collec-
tion of meta-states of the same type (namely pre-state or post-states meta-states), in
other words, the general rule contains those elements of the different meta-states
of a given kind that are always equal among them. This is achieved by forcing the
classification algorithm used in the learning process to output a single classification
model for each class label in the dataset.

General Rule

IF

(posX ?argi) = (row ?arg2) A (posX ?argi) = (row ?arg3) A
(orien_R ?argi) = True A (orien_L ?argi) = False A

(orien_U ?argi1) = False A (orien_D ?argi) = False A

(conn_R ?argz2 ?arg3) = True A (rockIn ?arg3) = False A
(wallln ?arg3) = False

THEN post-state

Specific Rule (I)

IF

(posY ?argi) = (col ?arg2) A (posX ?argi) # (row ?arg3) A
A(posY ?argi) = o

THEN post-state

Specific Rule (II)

IF

(posY ?argi) # (col ?argz2) A (posX ?argi) = (row ?arg3) A
A(posY ?argi) =1

THEN post-state

Listing 5.4: Classification models of the (RIGHT ?arg1 ?argz ?arg3) action model
post-states.

Secondly, said datasets are updated by deleting the components found in the
general rule, thisis achieved by selecting the attributes of the elements that form the
general rule, and erasing from the datasets the information contained about them
(namely, by deleting the columns representing these attributes). The remaining
dataset is then used as input to the classification algorithm, with the goal to fit
a series of classification models that sort its instances in different subsets. These
models are called specific rules and contain the elements that make a meta-state of
a given type, different from the other meta-states of the same type. A specific rule,
combined with the common rule, creates a full meta-state for a pre-state or post-
state. Listing 5.4 shows a set of rules of the post-state meta-states of the (RIGHT
2arg1 ?argz ?arg3) action. The general rule contains the information common to
the post-states, as explained in section 5.2 of this chapter, while the specific rules
contain the differences from those indicated in the aforementioned section.

Throughout the development of this method, we determined that the classifi-
cation algorithm performed better if it only had to fit models for a single class at a
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time. Therefore, a process was defined to separate the dataset samples into two data
subsets (one for each class label in the problem) and run the method independently
on each of them.

For a given dataset, the product of this method is a ruleset containing several
rules of each class (pre-state or post-state). These rules are obtained by combining
the general rule of a given class with the rules specific to that class. Each of these
rules represents a meta-state for a particular behaviour of the action linked to the
input dataset. In case that no specific rules are obtained for a given class, it will be
represented in the output ruleset with its general rule. Finally, indicate that there
is no limit to the number of specific rules that can be learned for a given class.

5.3.5 Conditional action models generation

Finally, PlanMiner-C takes the rulesets generated by the classification model ex-
traction process, and creates a set of action models according to the information
contained in them. Due to the possibility that more than one meta-state may exist
for the pre-states or post-states, PlanMiner-C applies one of a variety PDDL transla-
tion schemes to the ruleset. In order to do so, the algorithm studies how the ruleset
is defined, applying one PDDL translation scheme or another as needed. This task
is easy to perform, as you only have to count the number of rules for the pre-state
and post-state contained in the ruleset. As noted in the introduction of this chapter,
when designing PlanMiner-C we detect the possibility of learning stochastic action
models using it. In this section, we will highlight how this can be done, as there
is a configuration of rules that represent these kinds of actions. To recap, saying
that this way was not further explored in later stages of PlanMiner-C development,
and that it remains as Future Work to improve the learning process performance.
The possible situations that PlanMiner-C may encounter depend on the number of
pre-states and post-states obtained in the classification models generation step:

« Case 1: If the number of rules for the pre-state meta-state is 1 and the number
of rules for the post-state meta-state is 1, the action being learned is consid-
ered to be Non-conditional Deterministic.

«+ Case 2: If the number of rules for the pre-state meta-state is 1 and the number
of rules for the post-state meta-state is n, the action being learned is consid-
ered to be Stochastic.

+ Case 3: If the number of rules for the pre-state meta-state is n and the num-
ber of rules for the post-state meta-state is 1, the action being learned is con-
sidered to be Conditional Deterministic of type I.

« Case 4: If the number of rules for the pre-state meta-state is n and the num-
ber of rules for the post-state meta-state is n, the action being learned is con-
sidered to be Conditional Deterministic of type II.

These cases, and PlanMiner-C’s model generation schemes, are as follows:
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Case 1: Non-conditional Deterministic action. Starting from a single meta-
state for the pre-state R}J,e and a single meta-state for the post-state R},os ¢» PlanMiner-
C creates a non-conditional deterministic action model (i.e. an action that always
behave the same). To do so, it calculates the preconditions of the action by taking
the pre-state meta-state, and the effects by calculating the difference A(Rll,re, Rgl)ost)
between the pre-state and post-state meta-states (i.e. what things are missing or
surplus in the pre-state to obtain the post-state). This is the base case of the learn-

ing approach of PlanMiner.

Pre-state rules Rbre

Post-state rules R)

Preconditions Rbre

1 1 — 1 1 1 1
Effects ARpre: REo51) = (Rbre = Rbos) U (Rposy = Rpre)

Case 2: Stochastic STRIPS action. In the case of finding a ruleset with a single
meta-state R}, for the pre-state but a collection of meta-states Rpos¢» Rposts -+ Rpost
for the post-state, PlanMiner-C considers it to be a non-deterministic action model.
Regardless of the context of the world, these action models have random behaviour,
making some changes in the world or others in an uncontrolled way. In order to
obtain a stochastic action model, PlanMiner-C calculates the preconditions of the
action by taking the meta-state of the pre-state, and the different sets of effects by
calculating the difference A(R},re, R;,OS[) between the meta-states of the post-states
and those of the pre-state (i.e. what things are missing or surplus in the pre-state to
obtain the post-state). Each set of effects is assigned a probability of running equal
to the support of the post-state meta-state related to it.

Pre-state rules Rbre

Post-state rules Rl . RZ,. . Ry
Preconditions Rbre

Effects

1 . 1 1 = 1 1 1 1
* #Rpost' A(RPVE’Rpost) = (Rpre _Rpost) v (Rpost _Rpre)

2 . 1 2 —(rl 2 2 1
° #Rpost' A(Rpre’Rpost) = (Rpre - Rpost) v (Rpost - RPVE)

n . 1 n —(rl n n 1
* #Rpost' A(Rpre’Rpost) = (RPVE - Rpost) v (Rpost - Rpre)

Case 3: Conditional actions (I) If during the meta-state fitting process, the clas-
sifiers return a ruleset with several models Rll,re, Rlz,re, ... Ry for the pre-state, but
only one post-state Réost, PlanMiner-C faces a situation where a conditional ac-
tion models must be extracted. To do this, it calculates the preconditions of the
action by taking the meta-states of the pre-states and extracting their common el-
ements. For the effects, the algorithm it calculates the difference A(R;,re, Rllmt) be-
tween the meta-state of the post-state and each meta-state of the pre-states set (i.e.
what things are missing or surplus in each pre-state to obtain the post-state). Each
effects block is assigned a trigger condition calculated from the specific elements
of the pre-state model used to calculate them. These specific elements are those
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elements that differentiate the given pre-state meta-state from the other pre-state
meta-states.

Pre-staterules  RpreRpre-Rpre _ _ _ _ _ _ _ _ _ ___ _____________
- 1

Post-state rules &l

Preconditions RbreNR3ren .0 Rire

. Rére - (Rplare n szare NN RPre) > A(Rglare’R;l)ost) = (R}17re - R;I)ost) v (R;l)o:t - R;17re)

* Rjre— (Rpre N Rpren . NRPre) ~ ARPre, Rposy) = (Rpre = Rpos) U (Rh o5y = Rpre)

* Rpre— (Rpre N Rpren . NRPre) ~ ARPre, Rbosy) = (Rpre = Rpos) U (Rh o5y = Rfre)

Case 4: Conditional actions (II) The last situation contemplated by PlanMiner-
C is the case where several meta-states of pre-states Rll,re, Rlz,,e, ... Rpy. and post-
states Rbosrs Rposts - Rpose €xist in the same ruleset. In this situation, PlanMiner-C
determines that the action to be learned is a conditional action model. Given that
there is an unknown number of meta-states of both types, before performing the
translation process, PlanMiner-C must match the pre-state and post-state models in
order to link them and correctly extract the effects of the action model. Due to the
processes that are implemented along the learning pipeline, information about the
precedence of states is lost, and, in order to continue the process of generating the
action models, this information must be retrieved, by matching the meta-states of
the pre-states and post-states with each other. PlanMiner-C performs this matching
by traversing the plan traces and looking for correspondences between pre-state
and post-states. The correspondence of a pair meta-states is calculated by finding
the number of state transitions of the plan traces are represented by them (i.e. if the
pre-state meta-state fits the pre-state and post-state meta-state fits the post-state).
Those pre-state and post-states with the highest correspondence rate are matched.

Once this process is done, PlanMiner-C calculates the preconditions Rll,,e N
Rlz,re N ... N Ry, of the action by taking the meta-states of the pre-state and extract-
ing their common elements. For the effects, it first calculates all elements common
to the post-states. With both the common elements of the pre-states and the post-
states meta-states, PlanMiner-C proceeds to calculate the addition and subtraction
lists A(Rpre N R3ye N ... N Riyve, Rpost N Rpose N ... N Rpyg) of the common effects of
the action model. Once the common effects have been generated, the algorithm
calculates the difference A(Rli,,e, R;ost) between each meta-state pair of a post-state
and a pre-state (i.e. what things are missing or surplus in each pre-state to obtain
the post-state). Each effects block is assigned a trigger condition calculated from
the specific elements of the pre-state model used to calculate them. These specific
elements are those elements that differentiate the given pre-state meta-state from
the other pre-state meta-states.
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Pre-state rules Rbre: R3re: - Rire
Post-state rules R}, RZ,5. - Ry
Preconditions RbreNR3ren...0 Rire
| Effects A(Rbre N Rdro e RirerRhos 1 R205 1t R0 |

* Rbre—(Rbre N Rren - RpPre) = ARpre: Rbost) = (Rbre = Rpos) U (Rposy = Rpre)

. R;Zare - (R;lare anzare N "‘R{;re) I A(R;zare’R;Z)ust) = (Rl%re - Rlz’ﬂst) v (RIZN’S[ - R;27r3>

* Rpre~(RpreNREren--NRpre) — ARPre: RN o6t = (RPre = RP561) U (RP oy — Rbre)

5.4 Experimentation and Results

This section is dedicated to showing the experimental process that PlanMiner-C
has undergone to demonstrate its viability. The aim of this experimentation is to
demonstrate PlanMiner-C’s ability to learn planning domains from data extracted
from the GVG-AI videogame environment. In this experimentation, it has been
decided to use only the NSLV as a classification algorithm in the learning process.
NSLV has been selected among the classification algorithms presented along with
this document as it is the one that has shown the best performance throughout the
experimentation carried out in previous chapters. The rest of the section is divided
into two blocks: the first one will present the experimental setup, indicating how
the input data for PlanMiner-C has been extracted from GVG-Al, the quality metric
applied as a measure and the games used in the experimental setup; the second
block contains the results of and the evaluation of the experiment, describing in
detail the domains learnt throughout the experimental process.

5.4.1 Experimental setup

In order to test the capabilities of PlanMiner-C, the experimental process presented
in these lines measures the scenario solving capacity in video games of the GVG-
Al environment. Due to the characteristics of the experimentation, when measur-
ing the quality of the domains learned by PlanMiner-C we cannot apply the same
methodology and metrics as those applied to PlanMiner and PlanMiner-N in the
previous chapters. This is due to two limiting factors caused by using as source of
the input data the GVG-AI environment. The first of these factors is the lack of
a reference domain to compare the output of PlanMiner-C. The lack of a correct
domain predefined by a human operator impedes the calculation of metrics used
so far in this document (i.e. Precision, Recall and F-Score). The other factor that
affects the experimental process here is heir to the first factor, and that is, that there
are no plans to solve the scenarios of the GVG-AI videogames, which makes the use
of standard validation tools (i.e. VAL) impossible. As a solution to this problem,
in this experimentation, we propose to compare the success of the plans generated
with directly in the GVG-AI environment.

130



5.4. EXPERIMENTATION AND RESULTS

Evaluation process

The experimental evaluation process defined to compare the learned domains with
the GVG-AI environment is implemented with the following philosophy:

1. Use the domains learned to obtain plans to solve a scenario.
2. Introduce the plans into a game agent and execute them step by step.
3. Observe if the agent solves the scenario successfully.

This process is implemented in a 2-step domain validation scheme: that first,
makes a learning step, and, second, implements a validation method. On the one
hand, to perform the domain learning process, a GVG-AI video game is taken and
15 scenarios are generated for it. Then, 1 execution trace is obtained for each sce-
nario by observing an agent explore them. Finally, these traces are used as input for
PlanMiner-C, which learns a planning domain. In order, to obtain the aforemen-
tioned plan traces, an agent has been implemented which tries to solve the pro-
posed scenarios. This method records the executions of the agents, storing the list
of actions carried by it, as well as a collection of observations of the game world.
These observations are taken each time an action is executed by the agent. The
agent implemented for experimentation has 3 different modes of operation:

« Random walk. At each tick of GVG-AI'’s execution, the agent returns a ran-
dom action.

+ MCTS guided. The agent’s Al is governed by a Monte-Carlo search algo-
rithm [ ] that evaluates the current game state and chooses the best
action at each tick.

« Teleoperated. The agent is controlled by a human operator who guides its
movements and actions at each tick.

Each operation mode implemented has been used during the experimental pro-
cess to obtain different plan traces, with the aim to obtain knowledge about a wide
variety of standard behaviours. Additionally, in order to test whether the modifica-
tions made in PlanMiner-C make it retain its resilience to incompleteness, the plan
traces obtained are stripped of a percentage of randomly selected elements, as seen
in the experimental process of Chapter 3.

On the other hand, the domain validation process takes the domain learned
using PlanMiner-C and obtains a plan for each of the game scenarios used in the
previous step. These plans obtained solve the planning problems that represent the
scenarios. Namely, they solve the scenarios. To solve the planning domains, the
FF-Metric [ ] planning engine was used. Once the problems for each scenario
have been solved, they are translated into a GVGAI interpretable format for a game
agent to execute them step by step. If at the end of the execution the scenario has
been solved correctly by the agent, the domain success is accounted.

The metric used to measure the quality of the domains is said domain success.
For each scenario, this metric measures the percentage of correctly solved scenarios
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for the domain being evaluated. In order to prevent elements such as randomness
from affecting the results, five sets of game traces are generated for each video game.
These traces are obtained by trying to solve each game scenario five times using the
agent in a given operation mode. The domain success score is the average success
score of the five subsets of traces.

Translation Procedure of GVG-AI observations to PDDL

5.4 Throughout the experimental process, it is necessary to translate the informa-
tion from the observations into PDDL. This is done by means of a set of ontologies
designed ad-hoc for each video game, which aim to map the knowledge from one
format to another. GVG-AI observations are formed by a collection of state vari-
ables that define the world and must be traversed one by one to put them into the
appropriate format. Depending on the internal structure that each game follows
to represent the knowledge of its observations, the translation process should be
approached differently. The ontologies present a set of guidelines indicating how
each of the state variables should be translated into PDDL format. This translation
process must be performed to correctly encode the input plan traces and to generate
the problems that represent the scenarios used in the experimentation. The trans-
lation process for each of these tasks is different, as each task receives a different
input and output:

« Plan traces are created by taking the raw GVG-AI traces generated by the
agent (recapitulating a list of actions performed plus a list of observations
taken from GVG-AI), passing directly to PDDL format the actions of the trace
and comparing the information contained in the observations with a given
ontology.

« Planning problems are defined by taking the first observation of the game
(i.e. the one defined in the VGDL file that defines the scenario) and collecting
all the objects that appear in that initial state to define them in their own
block. Finally, the objective is defined in a generic way depending on the
videogame that is being addressed.

GVG-AI games used

The videogames selected to study the capabilities of PlanMiner-C learning planning
domains with conditional actions and numerical information are Bait, Zelda and
Boulderdash. Tables 5.3, 5.4 and 5.5 contain information about these games and
its ontologies. These tables present a small descriptive picture of the game and a
description of the game, and also describe in detail said PDDL ontology. For the
sake of readability, the ontology is divided in several blocks. These blocks describe
i) the world’s objects types, ii) the dynamic relations of the videogame, and iii) its
static relations.
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Description The objective of this game is to reach the goal, collecting a key first.
and goals The player can push boxes around to open paths. There are holes in the
ground that kill the player, but they can be filled with boxes (and both
hole and box disappear). The player can also collect mushrooms that
give points. Directional actions move the avatar through the world,
while the use action has no function.
Ontology
Objects
Avatar Represents the player in the game world
Cell Represents a location on the map
Dynamic Relations
(posX A;) Indicates the row in which the player is located in the game world
(posY A;) Indicates the column in which the player is located in the game world
(orientx A;) Indicates the direction in which the avatar A, is facing (Up, Down, Left
or Right). There are 4 different predicates, one for each orientation
(hasKey A;)  Indicates whether the avatar A, has a key
(keyIn C) Indicates whether in a cell C, there is a key
(wallln Cy) Indicates whether in a cell C, there is a wall
(holeln Cy) Indicates whether in a cell C, there is a hole
Static Relations
(row Cy) Indicates the row of the grid that the Cell C, occupies

(column C)
(conny C; C,)

(exitIn Cy)

Indicates the column of the grid that the Cell C, occupies

Indicates whether Cell C, and Cell C, are connected and in which di-
rection the connection is made (Up, Down, Left or Right). There are 4
distinct predicates, one for each orientation

Indicates if there is an output in Cell C,

Table 5.3: Bait description and PDDL ontology
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Description  The avatar must find a key in a maze to open a door and exit. The

and goals player is also equipped with a sword to kill enemies existing in the
maze. The player wins if it exits the maze, and loses if it is hit by an
enemy. 2 points for killing an enemy, 1 for collecting the key, and
another point for reaching the door with it. —1 point if the avatar is
killed. The directional actions move the avatar through the world,
while the use action is for using the sword.

Ontology
Objects

Avatar Represents the player in the game world

Monster Represents the monsters in the game world

Cell Represents a location on the map

Dynamic Relations

(posX Ay) Indicates the row in which the player or monster is located in the
game world

(posY A;) Indicates the column in which the player or monster is located in the
game world

(orientx Ap) Indicates the direction in which the avatar A, is facing (Up, Down,
Left or Right). There are 4 different predicates, one for each orienta-
tion

(hasKey A;) Indicates whether the avatar A, has a key

(keyIn C) Indicates whether in a cell C, there is a key

Static Relations
(row Cy) Indicates the row of the grid that the Cell C, occupies

(column C,)
(conny C; Cy)

(wallln Cy)
(exitIn Cy)

Indicates the column of the grid that the Cell C, occupies

Indicates whether Cell C, and Cell C, are connected and in which
direction the connection is made (Up, Down, Left or Right). There
are 4 distinct predicates, one for each orientation

Indicates whether in a cell C, there is a wall

Indicates if there is an output in Cell C,

Table 5.4: Zelda description and PDDL ontology
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Description  The avatar must dig in a cave to find at least 10 diamonds, with the

and goals aid of a shovel, before exiting through a door. Some heavy rocks may
fall while digging, killing the player if it is hit from above. There are
enemies in the cave that might kill the player, but if two different
enemies collide, a new diamond is spawned. 2 points are awarded
for each diamond collected, and 1 point every time a new diamond
is spawned. —1 point is given if the avatar is killed by a rock or an
enemy. The directional actions move the avatar through the world,
while the use action is for using the shovel.

Ontology
Objects

Avatar Represents the player in the game world

Monster Represents the monsters in the game world

Cell Represents a location on the map

Dynamic Relations

(posX A;) Indicates the row in which the player or monster is located in the
game world

(posY A;) Indicates the column in which the player or monster is located in the
game world

(orientx A;) Indicates the direction in which the avatar A, is facing (Up, Down,
Left or Right). There are 4 different predicates, one for each orienta-
tion

(hasGem A;)  Indicates the number of gems the avatar has taken A,

(keyIn C;) Indicates whether in a cell C, there is a key

Static Relations
(row Cy) Indicates the row of the grid that the Cell C, occupies

(column C)
(conny C; C,)

(wallln Cy)
(exitIn Cy)

Indicates the column of the grid that the Cell C, occupies

Indicates whether Cell C, and Cell C, are connected and in which
direction the connection is made (Up, Down, Left or Right). There
are 4 distinct predicates, one for each orientation

Indicates whether in a cell C, there is a wall

Indicates if there is an output in Cell C,

Table 5.5: Boulderdash description and PDDL ontology
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Incompleteness

Agent Mode 0% 10% 50% 90%

Random walk | 98% 96% 89% 80%

Bait MCTS guided | 100% 100% 95% 88%
Teleoperated | 100% 100% 99% 97%
Mixed 100% 100% 100% 100%

Random walk | 100% 73% 0% 0%

Zelda MCTS guided | 100%  82% 0% 0%
Teleoperated | 100% 92% 86%  81%

Mixed 100% 98% 91% 85%

Random walk | 89%  81% 72%  63%

MCTS guided | 94% 86% 78% 70%
Boulderdash Teleoperated | 100% 99% 94% 89%
Mixed 100% 100% 97% 91%

Table 5.6: PlanMiner-C experimental results

5.4.2 Results and discussion

This section is subdivided into 3 blocks, one for each videogame used in the experi-
mental process. In each block, a table with the results and a detailed description of
them is included. The experiments are separated given the operation mode used by
the agent that generates its input plan traces. Additionally, we include an extra ex-
periment realised by gathering random plan traces of the later experiments (these
experiments are tagged as “mixed operation mode”).

« Bait Using data obtained with the agent in “Random Walk” mode, PlanMiner-
C has problems in solving some scenarios, even with complete data. These
problems are compounded by tightening the experimental conditions (i.e. in-
creasing the percentage of missing data), failing to solve at least 3 scenarios
out of the 15 proposed at 9o% incompleteness. The other three operational
methods show no problems in learning planning domains that solve the pro-
posed scenarios, even under certain levels of incompleteness. At 50% incom-
pleteness, the traces obtained with “MCTS guided” and “Teleoperated” pre-
vent PlanMiner-C from obtaining a planning domain that solves certain sce-
narios, and as the percentage of elements removed from the traces increases,
the number of unsolvable scenarios increases. On the other hand, the do-
mains obtained using the “Mixed” mode of operation do not present problems
in solving the proposed scenarios, regardless of the percentage of incomplete-
ness of the input data.

« Zelda At the beginning of the experimentation, the data obtained with the
“Random Walk” mode allows PlanMiner-C to generate domains that solve
all the proposed scenarios, but the inclusion of incompleteness in the input
data deteriorates the quality of the data very quickly. With 50 per cent missing
data, the input data gaps lead to critical failures in the planning domains that
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impede the scenarios from being solved. The traces obtained by the “MCTS
guided” mode show a similar, but less severe, behaviour, losing success rate in
a much smoother way as the experimental conditions are hardened. On the
other hand, the domains obtained from the data generated using the “Teleop-
erated” and “Mixed” modes maintain a certain resilience to incompleteness
(especially those generated with “Mixed”). At 10 per centincompleteness, the
domains show a performance of 92% and 98 per cent, which, although grad-
ually degrading, does not fall below an 80% success rate in the most complex
experiments.

« Boulderdash The initial results of PlanMiner-C using input data from the
“Random Walk” and “MCTS guided” modes are not perfect even using data
without incompleteness. As seen with the Zelda video game, PlanMiner-C
results deteriorate severely when incompleteness is included in these data,
but this time without reaching critical levels that prevent scenario resolution.
The data generated by the “Teleoperated” and “Mixed” modes mean that the
planning domains obtained with PlanMiner-C present more stable results,
maintaining around a 100% success rate even with some levels of incomplete-
ness. In the most complex experiments, the performance of PlanMiner-C
with such data is above go points (solving 13/14 scenarios of the proposed
ones).

Discussion

Looking closely at the results, it is clear that the data obtained using the “Random
Walk” mode of operation is of lower quality than that generated by the other modes
of operation, causing PlanMiner-C to fail to correctly learn planning domains and
to be more affected by incompleteness in more complex experiments. The random
movements performed by “Random Walk” can explore options that would not nor-
mally be explored by chance alone, but are not certain to probe the options needed
to correctly solve the scenarios. This makes the data obtained by this mode of oper-
ation more susceptible to incompleteness, as by removing elements from the traces,
some vital (and already sparse) information may be lost.

The “MCTS guided” and “Teleoperated” modes of operation do not present this
problem, since their movements are aimed at achieving the objective set by a given
video game. In the case of the data obtained by the “Teleoperated” mode, the re-
sults of PlanMiner-C are qualitatively superior to those of “MCTS guided” due to
the presence of a human agent defining the strategy of the game agent to solve the
game. This human agent is able to design higher quality designs than those ob-
tained by the MTCS algorithm, which positively affects the PlanMiner-C results.
Unfortunately, both modes of operation have a deficiency that does not exist in the
“Random Walk” mode, and that is that they do not explore some moves because
they are “useless” for solving the scenarios. As previously mentioned, Random
Walk could perform such moves simply by luck.

The use of plan traces that combine all implement agent behaviours in “Mixed”
mode is the one that has given the best results. Combining the existence of se-
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quences of actions aimed at accomplish the scenario’s objectives (from the “MCTS
guided” and “Teleoperated” modes) with a wider variety of behaviours in the traces
(from the “Random Walk” mode) yields the best possible results. These results not
only have the best average performance but are also relatively resistant to the in-
clusion of incompleteness in the input data. Appendix D presents a collection of
planning domains learned using the “Mixed” mode of operation.

5.5 Conclusions

This chapter has presented PlanMiner-C, an AML technique that rebuilds the Plan-
Miner algorithm with the objective of learning planning domains with conditional
effects. PlanMiner-C has been reworked several methods of the original learning
pipeline with the aim of detecting different patterns of behaviours in the input data
in order to code them correctly in conditional execution structures. The redesigned
methods i) implement a new procedure for handling the input data, ii) change the
feature discovery strategy, iii) alter the way in which the classification algorithms
are used in the pipeline and iv) reformulate the process of generating planning do-
mains. i) The new procedure was designed to accommodate the algorithm to the
new plan trace format used to encode large volumes of input data. ii) The modified
feature discovery process allows for the learning of multiple patterns that represent
the varied behaviours that conditional effects can have. iii) The redesigned classifi-
cation model generation method optimises the behaviour of PlanMiner to correctly
handle meta-states represented by multiple rules. And, finally, iv) the redesigned
PDDL generation strategy is able to handle those meta-states defined by multiple
rules and obtain a valid action model. PlanMiner-C has been validated using data
extracted from the GVG-AI environment, checking if it is able to generate planning
domains able to solve its scenarios. In the proposed experimentation, PlanMiner-C
has demonstrated its ability to learn planning domains with conditional effects that
can solve videogame scenarios of the GVG-AI competition.
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Chapter 6

Final Remarks

In the field of Knowledge Engineering, methods that apply knowledge acquisition
techniques to automatic planning have gained relevance in recent years due to the
complexity of defining a planning domain capable of modelling convoluted pro-
cesses. In the initial chapters of this document, we provided a literature review of
the Action Model Learning research area, showing its benefits and relevance within
the broader discipline of AI while highlighting its problems and shortcomings.

Throughout this dissertation, we have presented a series of innovative contri-
butions to the knowledge area of AML. These contributions are designed with the
dual aim of (i) being able to increase the expressiveness of the domains that can
be elicited with AML techniques, while (ii) creating an approach that is resilient to
uncertainty in the input data. These contributions have achieved the proposed ob-
jectives by basing their learning process on the use of multiple well-known data
mining techniques, with a special emphasis on XAI techniques. Our contribu-
tions have been tested with state-of-the-art models of the research areas we are
concerned with, and, as far as possible, have been compared against cutting-edge
AML algorithms. During these empirical studies, the contributions presented in
this document have demonstrated a superb performance in the tasks at hand.

In Chapter 1, 3 objectives were proposed for the thesis, from each of which a
significant contribution has been made. These three contributions have been pre-
sented throughout this manuscript and are PlanMiner and two sub-versions of it:
PlanMiner-N and PlanMiner-C. The achievements of each of them (as well as a
brief summary of each contribution) are:

PlanMiner. The PlanMiner methodology (presented in Chapter 3)is our primary
contribution to the field of AML. It is implemented as a pipeline of machine learn-
ing techniques and is able to learn STRIPS planning domains that use preconditions
and effects with arithmetic and relational expressions, even under conditions of
high input data sparsity. PlanMiner’s learning process is based on obtaining a set of
classification models (which represent the pre-states and post-states of the actions.)
from which the preconditions and effects can be extracted. To do so, the algorithm
starts from a set of plan traces that are used (after being previously formatted as
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a dataset) as input to a symbolic regressor that obtains new information usable to
enrich the input data, then, by using a classification algorithm, the aforementioned
classification models are extracted. The addition of new information to the input
data allows the learning of arithmetic-relational expressions in the aforementioned
classification models. PlanMiner was tested with domains extracted from the Inter-
national Planning Competition, which are used in the proposed experimentation
as a template to generate input data with which to attempt replication. During ex-
perimentation, PlanMiner demonstrates that it is able to learn both pure STRIPS
domains and planning domains with numerical information. Furthermore, during
the experimentation, PlanMiner shows a high tolerance to incompleteness, gener-
ating planning domains with high quality even under extreme input sparsity situ-
ations.

PlanMiner-N. In order to improve PlanMiner’s resistance to uncertainty, the
PlanMiner-N (detailed in Chapter 3 of this document) solution was designed as pro-
possed as a contribution of the state-of-the-art of the Action Model Learning field.
This solution takes the original PlanMiner pipeline and includes in it a number of
extra methods to deal with noisy data. The task of these methods is to (i) pre-process
the input data to detect and remove noise from it, and (ii) refine the classification
models obtained during the learning process. These methods are designed to com-
plement the other components of the PlanMiner learning process without altering
them. To do their job properly, these new methods are implemented on top of a
number of unsupervised learning techniques (e.g. cluster analysis) and statically
methods. The performance of PlanMiner-N was tested in an experimental process
similar to that used in PlanMiner, using input data extracted from the same plan-
ning domains, as well as compared to the same benchmark algorithms. From the
experimental study, it can be seen that the changes made to the PlanMiner method-
ology have been effective in dealing with noisy information, as PlanMiner-N shows
a significant performance improvement not only with respect to the original algo-
rithm, but also with respect to the reference algorithms, and is able to learn valid
planning domains even in the most complex experimental scenarios.

PlanMiner-C. The latest contribution presented is the PlanMiner-C algorithm
(see Chapter 5). This solution is the product of an alternative line of work to the
one that gave birth to PlanMiner-N, and, where PlanMiner-N focused on improv-
ing PlanMiner’s capabilities in the face of uncertainty from low-quality input data,
PlanMiner-C aimed to improve the expressiveness of the learned action models.
With this end in mind, PlanMiner-C was designed to learn STRIPS and numerical
planning domains with conditional and stochastic effects, modifying major com-
ponents of PlanMiner to fit the new learning scenarios. These modifications in-
volve updating the input data handling component, designing new discovery of
features and classification model generation strategies, and implementing a new
PDDL domain generation process. To test the capabilities of PlanMiner-C, a frame-
work for the development of General Game Playing techniques called GVG-AI was
used to obtain information about agent executions in a set of simulated environ-
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ments. Then with this information PlanMiner-C tried to replicate the behaviour of
the agents in a planning domain able to work correctly in the said environments.
The results indicate that PlanMiner-N is able to learn planning domains capable
of solving scenarios for the video games used in the experimentation, even under
certain levels of incompleteness.

6.1 Future lines of research

As mentioned at the beginning of this document, the development of this doctoral
thesis shows the first steps of a more ambitious work: to create an AML algorithm
that can be implemented in the real world. To achieve this long-term objective, 3
sub-goals were defined at the beginning of the doctoral work, and, although the
algorithms of the PlanMiner family have achieved them, there is still much room
for improvement to reach the long term aforementioned objective. To improve the
proposed contributions presented above, we envisage the following lines of future
research:

Line 1: Learning of planning domains with stochastic behaviours. In Chap-
ter 5, we briefly presented the possibility that PlanMiner-C can learn planning do-
mains with stochastic behaviours. Since we have already implemented the proce-
dures for this algorithm proposed to be able to learn these types of domains, we
consider that it would be fruitful to propose an experimental process to measure
the capabilities of PlanMiner-C in this topic. Depending on the results of this ex-
perimentation, we would study the possibility of moving forward in this line of
development, defining a fine-tuning strategy to accommodate the learning process
of the algorithm, or, if not, we would detect the weak points of our solution in order
to define a strategy to tackle them.

Line 2: Extension of the rule learning strategy of PlanMiner-C. Through-
out the experimentation presented in this document (especially in the experimen-
tation of Chapters 3 and 4) it has been shown that the selection of the classification
algorithm used within the learning pipeline greatly influences (for better and for
worse) the final results of the solution. Therefore, we consider that it would be in-
teresting to explore the a way to mix the method proposed in Chapter 5 to obtain
classification rules and NSLV (the classification algorithm which performed the
best in Chapters’ 3 and 4 experimental processes), in order to expand their func-
tionalities and obtain a new classifier designed entirely to fit PlanMiner’s necessi-
ties. Throughout the experimentation carried out in this thesis, we have gathered a
lot of information about the successes and failures of the classification algorithms
used with the different versions of PlanMiner, that gave us a great insight to com-
bine their virtues in a proprietary rule learning algorithm for PlanMiner in order
to improve its overall performance and prepare it to more complex experimental
scenarios.
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Line 3: Combination of the methods proposed in this document. Each of
the three approaches presented in this manuscript follows its own line of work, ex-
perimenting with its own data and under its own circumstances, albeit PlanMiner-
N and PlanMiner-C are derived from PlanMiner. Because of this, the result of this
thesis are 3 different algorithms, which work under different assumptions. Creat-
ing a line of work that allows converging the research carried out so far in a single
algorithm is a priority for future research lines. The result of the merge of the three
approaches would be a version of the PlanMiner that combines the properties of
the different contributions, i.e. a solution capable of learning planning domains
with arithmetic-relational expressions and conditional and stochastic effects and
with resistance to both incompleteness and noise conditions.

Line 4: Learning planning domains with temporal information. Finally,
in order to further increase the complexity of the planning domains obtained using
the PlanMiner family of algorithms, the idea of studying the feasibility of learn-
ing temporal planning domains is proposed as new research line. In Chapter 2
the ability of PDDL 2.2 to manage temporal information was mentioned, but since
the scope of application of PlanMiner lies outside this area of knowledge, it was
not further explored. We consider that, in the future, it would be interesting to
explore it and trying to learn temporal planning domains. A temporal planning
domain is a domain formed by actions that take a given time to complete (called
durative actions), in contrast to the actions learned in the domains proposed in this
manuscript, which are considered to be executed instantaneously. This way of con-
ceiving actions is a major paradigm shift for PlanMiner, but the development of a
tool capable of obtaining this kind of planning domains would, in the long run, put
the algorithm on the threshold of learning from real-world data.

6.2 Publications associated with the thesis

Throughout the development of the thesis, a series of scientific works have been
developed, the full list of publications associated with the thesis is presented below.

6.2.1 Publications in international journals

o José A Segura-Muros, Raul Pérez, Juan Ferndndez-Olivares. Discovering re-
lational and numerical expressions from plan traces for learning action mod-
els. Applied Intelligence, 51, 1-17, 2021.

. José A Segura-Muros, Juan Fernandez-Olivares, and Raul Pérez. Learning
Numerical Action Models from Noisy Input Data. Preprint (arXiv:2111.04997,
KBS:KNOSYS-D-21-04341), 2021.
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6.2.2 Publications in national and international conferences

« José A Segura-Muros, Ratl Pérez, Juan Ferndndez-Olivares. Learning HTN
Domains using Process Mining and Data Mining techniques. In Workshop
on Generalized Planning, ICAPS-17), 2017.

José Angel Segura-Muros, Juan Fernandez-Olivares. Integration of an auto-
mated hierarchical task planner in ros using behaviour trees. In 6th Inter-
national Conference on Space Mission Challenges for Information Technology,
SMC-IT 2017, 2017.

« José A Segura-Muros, Raul Pérez, Juan Ferndndez-Olivares. Using Inductive
Rule Learning Techniques to Learn Planning Domains. In International Con-
ference on Information Processing and Management of Uncertainty in Knowledge-
Based Systems, IPMU 2018, 2018.

. José A Segura-Muros, Raul Pérez, Juan Ferndndez-Olivares. Learning nu-
merical action models from noisy and partially observable states by means of
inductive rule learning techniques. In Knowledge Engineering for Planning
and Scheduling, KEPS-18, 2018.

« José A Segura-Muros, Raul Pérez, Juan Ferndndez-Olivares. Learning Plan-
ning Action Models with Numerical Information and Logic Relationships Us-
ing Classification Techniques. In Conference of the Spanish Association for
Artificial Intelligence, CAEPIA 2018, 2018.
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Appendix A

Domains used in the
experimental setups

A.1 STRIPS domains

A.1.1 BlocksWorld

(define (domain BLOCKS)
(:requirements :strips)
(:predicates (on ?x ?y)

(ontable ?x)
(clear ?x)
(handempty)
(holding ?x)
)

(:action pick—up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
ceffect
(and (not (ontable ?7x))
(not (clear ?7x))
(not (handempty))
(holding ?x)))

(:action put—down
:parameters (?x)
:precondition (holding ?x)
reffect
(and (not (holding ?x))
(clear ?x)
(handempty)
(ontable ?x)))

(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
reffect
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(and (not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
ceffect
(and (holding 7x)
(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y)))))

Listing A.1: BlocksWorld STRIPS planning domain

A.1.2 Depots

(define (domain Depot)
(:requirements :typing)
(:types place locatable — object
depot distributor — place
truck hoist surface — locatable
pallet crate — surface)

(:predicates (at ?x — locatable ?y — place)
(on ?x — crate ?y — surface)
(in ?x — crate ?y — truck)
(lifting ?x — hoist ?y — crate)
(available ?x — hoist)
(clear ?x — surface))

(:action Drive

:parameters (?x — truck ?y — place ?z — place)
:precondition (and (at ?x ?y))

reffect (and (mot (at ?x ?y)) (at ?x ?z)))

(:action Lift
:parameters (?x — hoist ?y — crate ?z — surface ?p — place)
:precondition (and (at ?x ?p) (available ?x) (at ?y ?p) (on ?y ?z) (
clear ?y))
reffect (and (mot (at ?y ?p)) (lifting ?x ?y) (mot (clear ?y)) (mnot (
available ?7x))
(clear ?z) (mnot (on ?y ?z))))

(:action Drop
:parameters (?x — hoist ?y — crate ?z — surface ?p — place)
:precondition (and (at ?x ?p) (at ?z ?p) (clear ?z) (lifting ?x ?y))
reffect (and (available ?x) (mot (lifting ?x ?y)) (at ?y ?p) (mot (
clear ?z)) (clear ?y)
(on ?y ?z)))

(:action Load

:parameters (?x — hoist ?y — crate ?z — truck ?p — place)
:precondition (and (at ?x ?p) (at ?z ?p) (lifting ?x ?y))
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:effect (and (not (lifting ?x ?y)) (in ?y ?z) (available ?x)))

(:action Unload

:parameters (?x — hoist ?y — crate ?z — truck ?p — place)
:precondition (and (at ?x ?p) (at ?z ?p) (available ?x) (in ?y ?z))
reffect (and (mot (in ?y ?z)) (mot (available ?x)) (lifting ?x ?y)))

Listing A.2: Depots STRIPS planning domain

A.a.3 DriverLog

(define (domain driverlog)
(:requirements :typing)
(:types location locatable — object
driver truck obj — locatable

)
(:predicates
(at ?obj — locatable ?loc — location)
(in ?o0bji1 — obj ?0bj — truck)
(driving ?d — driver ?v — truck)
(link ?x ?y — location) (path ?x ?y — location)
(empty ?v — truck)

(:action LOAD-TRUCK
:parameters
(?0bj — obj
?truck — truck
?loc — location)
:precondition
(and (at ?truck ?loc) (at ?obj ?loc))
ceffect
(and (not (at ?obj ?loc)) (in ?obj ?truck)))

(:action UNLOAD-TRUCK
:parameters
(?0bj — obj
?truck — truck
?loc — location)
:precondition
(and (at ?truck ?loc) (in ?obj ?truck))
ceffect
(and (not (in ?o0bj ?truck)) (at ?obj ?loc)))

(:action BOARD-TRUCK
:parameters
(?driver — driver
?truck — truck
?loc — location)
:precondition
(and (at ?truck ?loc) (at ?driver ?loc) (empty ?truck))
reffect
(and (not (at ?driver ?loc)) (driving ?driver ?truck) (mot (empty ?
truck))))
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(:action DISEMBARK-TRUCK
:parameters
(?driver — driver
?truck — truck
?loc — location)
:precondition
(and (at ?truck ?loc) (driving ?driver ?truck))
reffect
(and (not (driving ?driver ?truck)) (at ?driver ?loc) (empty ?truck)

))

(:action DRIVE-TRUCK
:parameters
(?truck — truck
?loc—from — location
?loc—to — location
?driver — driver)
:precondition
(and (at ?truck ?loc—from)
(driving ?driver ?truck) (link ?loc—from ?loc—to))
ceffect
(and (not (at ?truck ?loc—from)) (at ?truck ?loc—to)))

(:action WALK

:parameters
(?driver — driver
?loc—from — location
?loc—to — location)
:precondition
(and (at ?driver ?loc—from) (path ?loc—from ?loc—to))
reffect

(and (not (at ?driver ?loc—from)) (at ?driver ?loc—to)))

Listing A.3: DriverLog STRIPS planning domain

A.1.4 ZenoTravel

(define (domain zeno—travel)

(:requirements :typing)

(:types aircraft person city flevel — object)
(:predicates (at ?x — (either person aircraft) ?c — city)

(in ?p — person ?a — aircraft)
(fuel—level ?a — aircraft ?1 — flevel)
(next ?11 ?12 — flevel))

(:action board
:parameters (?p — person ?a — aircraft ?c — city)

:precondition (and (at ?p ?c)

(at ?a ?c))
reffect (and (nmot (at ?p ?c))
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(in ?p ?a)))

(:action debark
:parameters (?p — person ?a — aircraft ?c — city)

:precondition (and (in ?p ?a)
(at ?a ?c))
reffect (and (not (in ?p ?a))
(at ?p ?2¢)))

(raction fly
:parameters (?a — aircraft ?c1 ?c2 — city ?l1 ?l2 — flevel)

:precondition (and (at ?a ?c1)
(fuel—level ?a ?11)
(next ?l2 ?11))
:effect (and (not (at ?a ?c1))
(at ?a ?c2)
(not (fuel—level ?a ?11))
(fuel—level ?a ?12)))

(:action zoom
:parameters (?a — aircraft ?ci ?c2 — city ?11 ?1l2 ?13 — flevel)

:precondition (and (at ?a ?c1)
(fuel—level ?a ?11)
(next ?12 ?11)
(next ?13 ?12)
)
:effect (and (not (at ?a ?c1))
(at ?a ?c2)
(not (fuel—level ?a ?11))
(fuel—level ?a ?13)

(:action refuel
:parameters (?a — aircraft ?c — city ?1 — flevel ?l1 — flevel)

:precondition (and (fuel-—level ?a ?1)
(next ?1 ?11)
(at ?a ?c))
:effect (and (fuel—level ?a ?11) (not (fuel—level ?a ?1))))

Listing A.4: ZenoTravel STRIPS planning domain

A.2 Numeric domains

A.2.1 Depots

(define (domain Depot)
(:requirements :typing :fluents)
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(:types place locatable — object
depot distributor — place
truck hoist surface — locatable
pallet crate — surface)

(:predicates (at ?x — locatable ?y — place)
(on ?x — crate ?y — surface)
(in ?x — crate ?y — truck)
(lifting ?x — hoist ?y — crate)
(available ?x — hoist)
(clear ?x — surface)

(: functions
(load_limit ?t — truck)
(current_load ?t — truck)
(weight ?c — crate)
(fuel—cost)

)

(:action Drive

:parameters (?x — truck ?y — place ?z — place)

:precondition (and (at ?x ?y))

:effect (and (not (at ?x ?y)) (at ?x ?z)
(increase (fuel—cost) 10)))

(:action Lift
:parameters (?x — hoist ?y — crate ?z — surface ?p — place)
:precondition (and (at ?x ?p) (available ?x) (at ?y ?p) (on ?y ?z) (
clear ?y))
reffect (and (mot (at ?y ?p)) (lifting ?x ?y) (mot (clear ?y)) (mot (
available ?x))
(clear ?z) (mot (on ?y ?z)) (increase (fuel—cost) 1)))

(:action Drop
:parameters (?x — hoist ?y — crate ?z — surface ?p — place)
:precondition (and (at ?x ?p) (at ?z ?p) (clear ?z) (lifting ?x ?y))
reffect (and (available ?x) (mot (lifting ?x ?y)) (at ?y ?p) (mot (
clear ?z)) (clear ?y)
(on ?y ?z)))

(:action Load

:parameters (?x — hoist ?y — crate ?z — truck ?p — place)

:precondition (and (at ?x ?p) (at ?z ?p) (lifting ?x ?y)
(<= (+ (current_load ?z) (weight ?y)) (load_limit ?z)))

reffect (and (mot (lifting ?x ?y)) (in ?y ?z) (available ?x)
(increase (current_load ?z) (weight ?x))))

(:action Unload

:parameters (?x — hoist ?y — crate ?z — truck ?p — place)

:precondition (and (at ?x ?p) (at ?z ?p) (available ?x) (in ?y ?z))

reffect (and (mot (in ?y ?z)) (mot (available ?x)) (lifting ?x ?y)
(decrease (current_load ?z) (weight ?x))))

Listing A.5: Depots numeric planning domain
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A.2.2 DriverLog

(define (domain driverlog)
(:requirements :typing :fluents)
(:types location locatable — object
driver truck obj — locatable)

(:predicates
(at ?obj — locatable ?loc — location)
(in ?obji1 — obj ?o0bj — truck)
(driving ?d — driver ?v — truck)
(link ?x ?y — location) (path ?x ?y — location)
(empty ?v — truck)

)
(:functions (time—to—walk ?11 ?1l2 — location)
(time—to—drive ?11 ?l2 — location)
(driven)
(walked))

(:action LOAD-TRUCK
:parameters
(?0bj — obj
?2truck — truck
?loc — location)
:precondition
(and (at ?truck ?loc) (at ?obj ?loc))
reffect
(and (not (at ?obj ?loc)) (in ?obj ?truck)))

(:action UNLOAD-TRUCK
:parameters
(?0bj — obj
?truck — truck
?loc — location)
:precondition
(and (at ?truck ?loc) (in ?o0bj ?truck))
ceffect
(and (not (in ?o0bj ?truck)) (at ?obj ?loc)))

(:action BOARD-TRUCK
:parameters
(?driver — driver
?truck — truck
?loc — location)
:precondition
(and (at ?truck ?loc) (at ?driver ?loc) (empty ?truck))
ceffect
(and (not (at ?driver ?loc)) (driving ?driver ?truck) (mot (empty ?
truck))))

(:action DISEMBARK-TRUCK
:parameters
(?driver — driver
?truck — truck
?loc — location)
:precondition

151



APPENDIX A. DOMAINS USED IN THE EXPERIMENTAL SETUPS

(and (at ?truck ?loc) (driving ?driver ?truck))

ceffect
(and (not (driving ?driver ?truck)) (at ?driver ?loc) (empty ?truck)
))
(:action DRIVE-TRUCK
:parameters
(?truck — truck
?loc—from — location
?loc—to — location
?driver — driver)
:precondition

(and (at ?truck ?loc—from)

(driving ?driver ?truck) (link ?loc—from ?loc—to))

ceffect

(and (not (at ?truck ?loc—from)) (at ?truck ?loc—to)
(increase (driven) (time—to—drive ?loc—from ?loc—to))))

(:action WALK

:parameters
(?driver — driver
?loc—from — location
?loc—to — location)
:precondition
(and (at ?driver ?loc—from) (path ?loc—from ?loc—to))
reffect

(and (not (at ?driver ?loc—from)) (at ?driver ?loc—to)
(increase (walked) (time—to—walk ?loc—from ?loc—to))))

Listing A.6: DriverLog numeric planning domain

A.2.3 Rovers

(define (domain Rover)
(:requirements :typing :fluents)
(:types rover waypoint store camera mode lander objective)

(:predicates (at ?x — rover ?y — waypoint)
(at_lander ?x — lander ?y — waypoint)
(can_traverse ?r — rover ?x — waypoint ?y — waypoint)

(equipped_for_soil_analysis ?r — rover)
(equipped_for_rock_analysis ?r — rover)
(equipped_for_imaging ?r — rover)
(empty ?s — store)
(have_rock_analysis ?r — rover ?w — waypoint)
(have_soil_analysis ?r — rover ?w — waypoint)
(full ?s — store)

(calibrated ?c — camera ?r — rover)

(supports ?c — camera ?m — mode)
(available ?r — rover)
(visible ?w — waypoint ?p — waypoint)
(have_image ?r — rover ?0 — objective ?m — mode)

(communicated_soil_data ?w — waypoint)
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(communicated_rock_data ?w — waypoint)
(communicated_image_data ?0 — objective ?m — mode)
(at_soil_sample ?w — waypoint)
(at_rock_sample ?w — waypoint)
(visible_from ?0 — objective ?w — waypoint)

(store_of ?s — store ?r — rover)
(calibration_target ?i — camera ?0 — objective)
(on_board ?i — camera ?r — rover)

(channel_free ?1 — lander)
(in_sun ?w — waypoint)

)
(:functions (energy ?r — rover) (recharges) )

(:action navigate
:parameters (?x — rover ?y — waypoint ?z — waypoint)
:precondition (and (can_traverse ?x ?y ?z) (available ?x) (at ?x ?y)
(visible ?y ?z) (>= (energy ?x) 8)
)
ceffect (and (decrease (energy ?x) 8) (mot (at ?x ?y)) (at ?x ?z)
)
)

(:action recharge

:parameters (?x — rover ?w — waypoint)

:precondition (and (at ?x ?w) (in_sun ?w) (<= (energy ?x) 80))
:effect (and (increase (energy ?x) 20) (increase (recharges) 1))

)

(:action sample_soil

:parameters (?x — rover ?s — store ?p — waypoint)

:precondition (and (at ?x ?p)(>= (energy ?x) 3) (at_soil_sample ?p) (
equipped_for_soil_analysis ?x) (store_of ?s ?x) (empty ?s)

reffect (and (mot (empty ?s)) (full ?s) (decrease (energy ?x) 3) (
have_soil_analysis ?x ?p) (mnot (at_soil_sample ?p))
)

)

(:action sample_rock

:parameters (?x — rover ?s — store ?p — waypoint)

:precondition (and (at ?x ?p) (>= (energy ?x) s5)(at_rock_sample ?p) (
equipped_for_rock_analysis ?x) (store_of ?s ?x)(empty ?s)

ceffect (and (mot (empty ?s)) (full ?s) (decrease (energy ?x) 5) (
have_rock_analysis ?x ?p) (mot (at_rock_sample ?p))
)

)

(:action drop
:parameters (?x — rover ?y — store)
:precondition (and (store_of ?y ?x) (full ?y)

)
reffect (and (mot (full ?y)) (empty ?y)

)
)
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(:action calibrate
:parameters (?r — rover ?i — camera ?t — objective ?w — waypoint)
:precondition (and (equipped_for_imaging ?r) (>= (energy ?r) 2)(
calibration_target ?i ?t) (at ?r ?w) (visible_from ?t ?w)(on_board
?2i 7r)
)

reffect (and (decrease (energy ?r) 2)(calibrated ?i ?r) )

(:action take_image
:parameters (?r — rover ?p — waypoint ?0 — objective ?i — camera m —
mode)
:precondition (and (calibrated ?i ?r)
(on_board ?i ?r)
(equipped_for_imaging ?r)
(supports ?i m)
(visible_from ?o0 ?7p)
(at ?2r ?p)
(>= (energy ?r) 1)

reffect (and (have_image ?r ?0 ?m)(mnot (calibrated ?i ?r))(decrease (
energy ?r) 1)

)

(:action communicate_soil_data

:parameters (?r — rover ?1 — lander ?p — waypoint ?x — waypoint ?y —
waypoint)

:precondition (and (at ?r ?x)(at_lander ?1 ?y)(have_soil_analysis ?r ?
p)

(visible ?x ?y)(available ?r)(channel_free ?1)(>= (
energy ?r) 4)
)
:effect (and (not (available ?r))(mot (channel_free ?1))
(channel_free ?1) (communicated_soil_data ?p)(available ?r)(decrease (
energy ?r) 4)

)

(:action communicate_rock_data

:parameters (?r — rover ?1 — lander ?p — waypoint ?x — waypoint ?y —
waypoint)

:precondition (and (at ?r ?x)(at_lander ?1 ?y)(have_rock_analysis ?r ?

p)(>= (energy ?r) 4)
(visible ?x ?y)(available ?r)(channel_free ?1)
)

:effect (and (not (available ?r))(mnot (channel_free ?1))

(channel_free ?1)

(communicated_rock_data ?p)(available ?r)(decrease (energy ?r) 4)
)

)
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(:action communicate_image_data

:parameters (?r — rover ?l1 — lander ?0 — objective ?m — mode ?x —
waypoint ?y — waypoint)

:precondition (and (at ?r ?x)(at_lander ?1 ?y)(have_image ?r ?o0 ?m)(
visible ?x ?y)(available ?r)(channel_free ?1)(>= (energy ?r) 6)

:effect (and (not (available ?r))(not (channel_free ?1))
(channel_free ?1)
(communicated_image_data ?0 ?m)(available ?r)(decrease (energy ?r) 6)

)
)

)
Listing A.7: Rovers numeric planning domain

A.2.4 Satellite

(define (domain satellite)
(:requirements :typing :fluents :equality)
(:types satellite direction instrument mode)
(:predicates
(on_board ?i — instrument ?s — satellite)

(supports ?i — instrument ?m — mode)
(pointing ?s — satellite ?d — direction)
(power_avail ?s — satellite)

(power_on ?i — instrument)

(calibrated ?i — instrument)
(have_image ?d — direction ?m — mode)
(calibration_target ?i — instrument ?d — direction))

(:functions (data_capacity ?s — satellite)
(data ?d — direction ?m — mode)
(slew_time ?a ?b — direction)
(data—stored)
(fuel ?s — satellite)
(fuel—used)
)

(:action turn_to
:parameters (?s — satellite ?d_new — direction ?d_prev — direction)
:precondition (and (pointing ?s ?d_prev)
(not (= ?d_new ?d_prev))
(>= (fuel ?s) (slew_time ?d_new ?d_prev))
)
:effect (and (pointing ?s ?d_new)
(not (pointing ?s ?d_prev))
(decrease (fuel ?s) (slew_time ?d_new ?d_prev))
(increase (fuel—used) (slew_time ?d_new ?d_prev))

)
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:action switch_on
:parameters (?i — instrument ?s — satellite)

:precondition (and (on_board ?i ?s)
(power_avail ?s)
)
:effect (and (power_on ?i)
(not (calibrated ?i))
(not (power_avail ?s))

action switch_off
:parameters (?i — instrument ?s — satellite)

:precondition (and (on_board ?i ?s)
(power_on ?i)
)
:effect (and (not (power_on ?i))
(power_avail ?s)

)

raction calibrate
:parameters (?s — satellite ?i — instrument ?d — direction)
:precondition (and (on_board ?i ?s)
(calibration_target ?i ?d)
(pointing ?s ?d)
(power_on ?i)

:effect (calibrated ?i)

raction take_image
:parameters (?s — satellite ?d — direction ?i — instrument ?m — mode
)
:precondition (and (calibrated ?i)
(on_board ?i ?s)
(supports ?i 7m)
(power_on ?i)
(pointing ?s ?d)
(power_on ?i)
(>= (data_capacity ?s) (data ?d 7m))
)

:effect (and (decrease (data_capacity ?s) (data ?d ?m)) (have_image
?2d ?m)
(increase (data—stored) (data ?d ?m)))

Listing A.8: Satellite numeric planning domain
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A.2.5 ZenoTravel

(define (domain zeno—travel)

(:requirements :typing :fluents)

(:types aircraft person city — object)

(:predicates (at ?x — (either person aircraft) ?c — city)
(in ?p — person ?a — aircraft))

(:functions (fuel ?a — aircraft)
(distance ?c1 — city ?c2 — city)
(slow—burn ?a — aircraft)
(fast—burn ?a — aircraft)
(capacity ?a — aircraft)
(total—fuel—used)

(onboard ?a — aircraft)

(zoom—limit ?a — aircraft)

)

(:action board
:parameters (?p — person ?a — aircraft ?c — city)
:precondition (and (at ?p ?c)
(at ?a ?c))
:effect (and (not (at ?p ?c))
(in ?p ?a)
(increase (onboard ?a) 1)))

(:action debark
:parameters (?p — person ?a — aircraft ?c — city)
:precondition (and (in ?p ?a)
(at ?a ?c))
:effect (and (not (in ?p ?a))
(at ?p ?c)
(decrease (onboard ?a) 1)))

(:action fly
:parameters (?a — aircraft ?ci ?c2 — city)
:precondition (and (at ?a ?c1)
(>= (fuel ?a)
(% (distance ?c1 ?c2) (slow—burn ?a))))
:effect (and (not (at ?a ?c1))
(at ?a ?c2)
(increase (total—fuel—used)
(+ (distance ?c1 ?c2) (slow—burn ?a)))
(decrease (fuel ?a)
(% (distance ?c1 ?c2) (slow—burn ?a)))))

(:action zoom
:parameters (?a — aircraft ?ci ?c2 — city)
:precondition (and (at ?a ?c1)
(>= (fuel ?a)
(% (distance ?c1 ?c2) (fast—burn ?a)))
(<= (onboard ?a) (zoom-limit ?a)))
:effect (and (not (at ?a ?c1))
(at ?a ?c2)
(increase (total—fuel—used)
(% (distance ?c1 ?c2) (fast—burn ?a)))
(decrease (fuel ?a)
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(% (distance ?c1 ?c2) (fast—burn ?a)))

:action refuel

:parameters (?a — aircraft ?c — city)

:precondition (and (> (capacity ?a) (fuel ?a))
(at ?a ?c¢)

reffect (and (assign (fuel ?a) (capacity ?a)))

Listing A.9: ZenoTravel numeric planning domain
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Appendix B

PlanMiner’s experimental
results

B.1 STRIPS domains

B.1.1 ARMS

+ BlocksWorld. ARMS is hardly affected by incompleteness. At 50% missing
data the precision drops 2 points, and at 90% it drops 5 points. The recall does
not vary in these experiments, which means that the F-Score only varies by
3 points throughout the experiment. This leads to the domains learned by
ARMS always being valid.

« Depots. The algorithm remains resilient to incompleteness even in the most
complex experimentation, with little or no variation in results. At 90% incom-
pleteness, the algorithm loses 17% precision and 11% recall, which causes the
F-Score to drop 11 points and the learned domains to become invalid.

« DriverLog. Up to 10 per cent incompleteness, the algorithm maintains the
validity of the domains despite the 10 point loss of precision. In more com-
plex experiments the metrics drop by more than 20 points, dragging the F-
Score down to 66%. In earlier experiments, the domains are no longer valid
due to recall drops to 50% missing data.

» ZenoTravel. Similar to what happens in the Driverlog domain, ARMS goes
from perfect results to losing 10% precision and 2% recall when removing a
certain number of data (which causes a drop in F-Score of 3 points when
removing input data and the invalidity of the learned domains). The results
remain stable until the last experiments where the precision and recall drop
by 25 and 8 points respectively. In these experiments, ARMS shows an F-
Score of 77
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Domain Incompleteness | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.9576 0.0000 1.0000 0.0000 0.9783 0.0078
BlocksWorld 10% 0.9310 0.0000 1.0000  0.0000 0.9642 0.0000
50% 0.9310 0.0148 1.0000 0.0000 0.9642 0.0000
90% 0.8883 0.0159 1.0000 0.0000 0.9408 0.0089
0% 0.9629 0.0000 0.9629 0.0000 0.9629 0.0000
10% 0.9214 0.0159 0.9556 0.0165 0.9381 0.0162
Depots
50% 0.9000 0.0159 0.9334 0.0165 0.9163 0.0162
90% 0.7372 0.0209 0.8296 0.0561 0.7798 0.0287
0% 1.0000 0.0000 0.9642 0.0000 0.9818 0.0000
DriverLog 10% 0.8941 0.0129 0.9642 0.0000 0.9278 0.0070
50% 0.8405 0.0523 0.9285 0.0252 0.8819 0.0384
90% 0.6239 0.0708 0.7142 0.0874 0.6644 0.0683
0% 1.0000 0.0000 0.9000  0.0000 0.9387 0.0000
10% 0.9070 0.0340 0.8846 0.0000 0.9034 0.0331
ZenoTravel 50% 0.8993 0.0329 0.8846 0.0344 0.8916 0.0158
90% 0.7525 0.0834 0.8000 0.0631 0.7741 0.0646

Table B.1: ARMS Results

Domain Incompleteness | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
BlocksWorld 10% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
50% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
90% 0.9700 0.0319 0.9556  0.0405 0.9625 0.0327
0% 0.9778 0.0202 0.9629  0.0000 0.9702 0.0099
Depots 10% 0.9640 0.0357 0.9629 0.0000 0.9632 0.0178
50% 0.9566 0.0396 0.9556 0.0165 0.9558 0.0244
90% 0.9483 0.0193 0.9481 0.0202 0.9481 0.0155
0% 0.7812 0.0310 0.8428 0.0407 0.8108 0.0351
. 10% 0.7565 0.0360 0.8214 0.0564 0.7872 0.0416
DriverLog
50% 0.7429 0.0307 0.8071 0.0541 0.7735 0.0402
90% 0.7180 0.0261 0.7642 0.0597 0.7397 0.0371
0% 0.9259 0.0000 0.9615 0.0000 0.9433 0.0000
ZenoTravel 10% 0.8718 0.0157 0.9384 0.0210 0.9036 0.0084
50% 0.8479 0.0354 0.9384 0.0210 0.8907 0.0275
90% 0.7722 0.0525 0.8230  0.0210 0.7961 0.0321

Table B.2: FAMA Results

B.1.2 FAMA

+ BlocksWorld. Even the most complex experimentation FAMA maintains its
precision, recall and F-Score results up to the most complex experimentation.
In these experiments, the algorithm loses around 4% F-Score, with a further
drop in precision. These results make the learned domains valid.

« Depots. The algorithm maintains the precision results, with a slight drop
throughout the whole experimentation. The recall on the other hand remains
unchanged up to the experiments with the smallest amount of input data.
This resilience to incompleteness is shown in the F-Score difference between
the best and worst results, which is 94.8%, and in the validity of the learned
domains.
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Domain Incompleteness | uPrecision oPrecision wuRecall oRecall uF-Score oF-Score
0% 0.9060 0.0181 0.9259 0.0000 0.9158 0.0092
BlocksWorld 10% 0.8983 0.0279 0.9112 0.0202 0.9044 0.0194
50% 0.8853 0.0425 0.9037 0.0202 0.8941 0.0282
90% 0.8382 0.0325 0.8445 0.0405 0.8411 0.0346
0% 0.9230 0.0649 0.9556 0.0482 0.9386 0.0546
10% 0.9230 0.0649 0.9556 0.0482 0.9386 0.0546
Depots
50% 0.9026 0.0643 0.9334 0.0482 0.9167 0.0472
90% 0.8148 0.0492 0.8445 0.0844 0.8280 0.0565
0% 0.9133 0.0172 0.9000  0.0298 0.9063 0.0159
. 10% 0.9104 0.0201 0.8714  0.0407 0.8902 0.0271
DriverLog 50% 0.8760 0.0476 0.8571 0.0564 0.8661 0.0496
90% 0.8289 0.0335 0.8214 0.0437 0.8241 0.0243
0% 0.8538 0.0245 0.9384 0.0000 0.8938 0.0145
ZenoTravel 10% 0.8346 0.0361 0.9230 0.0210 0.8762 0.0203
50% 0.7639 0.0312 0.7923 0.0344 0.7773 0.0243
90% 0.7535 0.0401 0.7769 0.0688 0.7643 0.0499

Table B.3: OPMaker2 Results

+ DriverLog. The algorithm starts from an F-Score metric of 81 points, which
drops to 73% in the more complex experiments. These drops affect both pre-
cision and recall, and are constant throughout the experiment, but are most
noticeable at the beginning and end of the experiment. Because of this, none
of the domains learned by FAMA are valid.

« ZenoTravel. FAMA loses 5 and 3 percent precision in the experiments with
10 and 50 percent missing predicates, while its recall drops slightly at the be-
ginning of the experimentation (3 percent) and is maintained until the exper-
imentation with 9o percent incompleteness. In the final experiments, both
metrics drop and end up placing the F-Score at 79%. These drops in precision
end up hurting domain validity, and FAMA is unable to learn valid domains
from 10 percent missing predicates.

B.1.3 OPMaker2

+ BlocksWorld. In the initial experiments, the algorithm shows good resis-
tance to the incompleteness of the input data, losing around 2% precision
and recall until the experiments with half of the input data. In those experi-
ments with a higher level of incompleteness, these metrics show a large drop,
with the F-Score at 84 points. Although the biggest performance loss of the
algorithm occurs in the final experiments (and accounts for half of the to-
tal performance loss), OPMaker2 only manages to learn valid domains with
complete data.

« Depots. The algorithm remains impervious to incompleteness up to the ex-
periments with 9o percent missing data, losing neither precision nor recall
except at 50 percent incompleteness where it drops by 2 percent. In the more
complex experiments, its precision and recall suffer a severe g percent drop
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Domain Incompleteness | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.9568 0.0144 0.9777 0.0331 0.9668 0.0159
BlocksWorld 10% 0.9434 0.02773 0.9629  0.0370 0.9522 0.0104
50% 0.9302 0.0448 0.9556 0.0309 0.9418 0.0228
90% 0.9136 0.0459 0.9259 0.0261 0.9194 0.0324
0% 0.9642 0.0000 1.0000 0.0000 0.9818 0.0000
10% 0.9279 0.0236 0.9481 0.0331 0.9376 0.0216
Depots
50% 0.9138 0.0319 0.9407 0.0496 0.9266 0.0358
90% 0.8915 0.0570 0.9112 0.0721 0.9006 0.0601
0% 0.9443 0.0182 0.9642  0.0000 0.9541 0.0092
. 10% 0.9112 0.0257 0.9428  0.0319 0.9262 0.0149
DriverLog 50% 0.8356 0.0648 0.8857 0.0298 0.8590 0.0407
90% 0.7479 0.0580 0.8142 0.0638 0.7782 0.0483
0% 0.9207 0.0248 0.8846 0.0384 0.9017 0.0209
ZenoTravel 10% 0.8882 0.0294 0.8538 0.0172 0.8707 0.0160
50% 0.8482 0.0302 0.8153 0.0501 0.8309 0.0347
90% 0.7723 0.0445 0.7307  0.0543 0.7506 0.0475

Table B.4: AMAN Results

in performance, bringing the F-Score to 82 percent. The initial resistance to
incompleteness makes the domains learned up to 10% of missing data valid.

« DriverLog. By removing input data, the algorithm is affected by a small per-
centage. In these experiments, it loses 3% performance in both precision and
recall. Both metrics continue to drop throughout the experimentation, but
where recall drops by 2 percent and 3 percent in later experiments, precision
drops by 4 percent and 5 percent. This is reflected in the F-Score making it
present at 82 points at 9o% incompleteness. Although the algorithm shows
some signs of resistance to incompleteness, it is only able to learn valid do-
mains with complete data.

« ZenoTravel. The OPMaker2 metrics show stable results before and after ex-
perimentation with half of the data missing. In these experiments, precision
and recall drop by about 10 points. The final F-Score of the algorithm is 75%,
and due to the results of the initial metrics, OPMaker2 is not able to learn
valid domains.

B.1.4 AMAN

« BlocksWorld. AMAN shows resistance to incompleteness, losing 4% preci-
sion and 2% recall in total over the course of the experiment. This drop is
gradual but increases slightly in the more complex experimentation. The F-
Score is 4 points below the results obtained using complete data, while the
domains are valid regardless of the quality of the input data used.

« Depots. In the first experiments, both precision and recall drop by 4 percent

and 6 percent when incompleteness is included. These drops are reiterated
throughout the experimentation but are much more moderate. In the final
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Domain Incompleteness | uPrecision oPrecision wuRecall oRecall uF-Score oF-Score
0% 0.8053 0.0331 0.8482 0.0527 0.8214 0.0438
BlocksWorld 10% 0.7036 0.0669 0.8482 0.0442 0.7775 0.0557
50% 0.6833 0.0880 0.8093 0.0782 0.7474 0.0798
90% 0.6309 0.1604 0.7451 0.8095 0.6905 0.1109
0% 0.8139 0.0555 0.9739  0.0341 0.8939 0.0445
Depots 10% 0.7444 0.0888 0.8488 0.0839 0.7924 0.0852
50% 0.7217 0.1286 0.8488 0.0839 0.7881 0.1029
90% 0.6003 0.1119 0.6853 0.1111 0.6491 0.1112
0% 0.7221 0.0223 0.7326  0.0034 0.7259 0.0115
. 10% 0.7047 0.0364 0.7283 0.0198 0.7182 0.0274
DriverLog 50% 0.6226 0.0765 0.7073 0.0516 0.6633 0.0623
90% 0.6028 0.191 0.6876 0.0823 0.6450 0.0900
0% 0.6436 0.0555 0.6654 0.0387 0.6533 0.0456
ZenoTravel 10% 0.4978 0.0696 0.5327  0.0473 0.5177 0.0541
50% 0.4223 0.0683 0.4855 0.0483 0.4570 0.0589
90% 0.4074 0.0943 0.4803 0.0783 0.4414 0.0823

Table B.5: ID3 Results

experiments, the F-Score is 9o points. In terms of validity, despite the initial
drop in metrics, all domains are valid.

+ DriverLog. The learned domains maintain certain levels of resilience in the
first experiments, losing 3 percent precision and 2 percent recall at 10 per-
cent incompleteness. In the latter experiments, the metrics drop to a greater
degree, especially precision, which is 20 percent below these initial experi-
ments. This results in the F-Score dropping by 14% with respect to the initial
result. After the metrics drop with half of the input data, the domains are no
longer valid.

+ ZenoTravel. The metrics fall steadily throughout the experimentation in
steps from 4 percent precision and 3 percent recall to go percent missing data.
In these experiments, both metrics drop 7 points. This leads to the algorithm
losing a lot of performance, bringing its F-Score 25 points below its initial
value. The validity of the domains is only true for those obtained from the
complete data.

B.1.5 PlanMiner (ID3)

» BlocksWorld. Although the precision drops by 10% when some incomplete-
ness is encountered, recall is not affected by incompleteness until experimen-
tation with half of the missing data (where it drops by 4 points). This brings
the F-Score to 77 points. In more complex experiments both precision and re-
call continue to drop, bringing the overall performance of ID3 to 69% F-Score.
Because of this, only domains obtained with complete data are valid.

« Depots. Similar to the previous domain, the algorithm suffers from the ini-
tial inclusion of incompleteness, initially dropping 7 points in precision and
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Domain Incompleteness | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.8046 0.0545 0.8453 0.0384 0.8214 0.0438
BlocksWorld 10% 0.7457 0.0776 0.8027 0.0392 0.7775 0.0557
50% 0.7025 0.0999 0.7889 0.0532 0.7474 0.0798
90% 0.6463 0.1436 0.7400 0.0816 0.6905 0.1109
0% 0.8864 0.0665 0.9024 0.0285 0.8939 0.0445
Depots 10% 0.7746 0.1073 0.8175 0.0599 0.7924 0.0852
50% 0.7523 0.1336 0.8110 0.0662 0.7881 0.1029
90% 0.5998 0.1526 0.6923 0.0782 0.6491 0.1112
0% 0.8045 0.0100 0.8285  0.0078 0.8130 0.0089
DriverLog 10% 0.8045 0.0100 0.8285 0.0078 0.8130 0.0089
50% 0.7778 0.0667 0.8222 0.0423 0.7930 0.0577
90% 0.7142 0.103 0.7978 0.0656 0.7509 0.0818
0% 0.8346 0.0322 0.8593 0.0242 0.8435 0.0287
ZenoTravel 10% 0.8023 0.0723 0.8456 0.0382 0.8201 0.0512
50% 0.7094 0.0783 0.7864 0.0398 0.7485 0.0596
90% 0.6885 0.0915 0.7664 0.0564 0.7217 0.0778

Table B.6: C45 Resultados

13 in the recall score, bringing the F-Score to 79 points. Both metrics sta-
bilise slightly in later experiments but fall again in those experiments with
the highest number of missing data. With these drops, the F-Score for the
ID3 variant of PlanMiner is 64 points. PlanMiner’s poor performance with
the ID3 classification algorithm means that no domain learned is valid.

« DriverLog. The recall remains stable, even for the most complex experi-
ments, losing only 3% of its original value up to that point. On the other
hand, the precision drops the most in the experiments with 10 and 50% miss-
ing data, where it drops to 62% precision. Due to the resilience of the recall
to incompleteness, the F-Score is maintained until the experiments with half
of the missing data, but at 50% incompleteness its F-Score is 66% and at 90%
incompleteness it is 64%. As with the Depots experiments, neither domain is
valid due to the overall performance of the algorithm.

« ZenoTravel. The initial precision results are 64%, which is very low com-
pared to the results with complete data from the rest of the approaches con-
sidered in this experimentation. Moreover, by including incompleteness, these
results drop by an extra 15%. This behaviour is repeated with recall, which
stands at 53 points only when some incompleteness is included. As the ex-
perimentation features get harder, the metrics drop even further, with the
F-Score dropping to a minimum of 44 points at 9o% incompleteness. This
behaviour means that domain validity is not fulfilled in any learned domain.

B.1.6 PlanMiner (C4.5)

+ BlocksWorld. The performance of the algorithm drops by about 5% when
incompleteness is included. Although this drop is repeated throughout the
rest of the experimentation for precision, recall remains stable up to the most
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Domain Incompleteness | uPrecision oPrecision wuRecall oRecall uF-Score oF-Score
0% 0.7700 0.0573 0.7728  0.0373 0.7714 0.0438
BlocksWorld 10% 0.7023 0.0735 0.7486 0.0365 0.7275 0.0557
50% 0.6647 0.1027 0.7227 0.0513 0.6974 0.0798
90% 0.6055 0.1473 0.7040 0.0876 0.6405 0.1109
0% 0.7365 0.0417 0.7765 0.0475 0.7523 0.0445
Depots 10% 0.7037 0.0975 0.7663 0.0775 0.7384 0.0857
50% 0.6467 0.1245 0.7294 0.0853 0.6885 0.1029
90% 0.5737 0.1476 0.6738 0.0834 0.6219 0.1142
0% 0.7553 0.0167 0.7781 0.0078 0.7630 0.0089
DriverLog 10% 0.7553 0.0683 0.7781 0.0438 0.7630 0.0548
50% 0.7183 0.0782 0.7726 0.0448 0.7430 0.0577
90% 0.6649 0.0972 0.7488 0.0647 0.7009 0.0818
0% 0.7823 0.0447 0.8298 0.0184 0.8035 0.0287
ZenoTravel 10% 0.7573 0.0703 0.8117 0.0368 0.7801 0.0512
50% 0.6548 0.0797 0.7540 0.0404 0.7085 0.0596
90% 0.6094 0.0974 0.7476 0.0584 0.6817 0.0778

Table B.7: RIPPER Results

complex experiments. This behaviour takes the F-Score from 82% in the ex-
periments with complete data to 69% with 9o% missing elements. Still, no
learned domain is valid.

Depots. In Depots, the C.45 variant of PlanMiner shows performance drops
at 10 and 9o per cent incompleteness, with a levelling off in the experiments
in between. These drops are 10 and 14 points on average and lead to an F-
Score of 64%. Due to the drops, only the domain learned with complete data
is valid.

DriverLog. Up to the most advanced experimentation, the precision and
recall metrics remain invariant. Precision drops by 3 points at 50 per cent
incompleteness, and in more complex experiments it drops by 7 per cent,
while recall drops by 3 per cent. The final F-Score in these experiments is 75
per cent, and, despite the stability of the algorithm in the initial experiments,
no domain obtained with it is valid.

ZenoTravel. The algorithm shows a significant drop in performance in the
experiments with half the input data. In the previous and subsequent experi-
ments, both precision and recall show slight losses but tend to remain stable.
This leads to an initial F-Score of 84% and in the more complex experiments
72%, but experimentation at 50% incompleteness accounts for 83% of the to-
tal F-Score difference. The generalised performance of the algorithm leads to
no domain being valid.

B.1.7 PlanMiner (RIPPER)

» BlocksWorld. Throughout the experiment, there are repeated drops in the
precision of 6 or 7 points and the recall of 2 or 3 points as the experimental
conditions are tightened. Starting from an F-Score of 77%, this decreasing
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performance behaviour causes the overall performance to decrease by 5% at
each step of the experimental process. The domains learned by the algorithm
are not valid.

« Depots. In initial experiments with 10 per cent incompleteness, the algo-
rithm’s performance suffers somewhat (precision drops by 3 per cent and
recall suffer an ignorable drop), and presents some resilience to incomplete
data. In the more complex experiments, this drop becomes more severe, with
precision losses of 6 and 7 at 50 and 9o per cent incompleteness and recall
losses of up to 3 per cent in the more complex experiments. The F-Score
ranges from 75% in experiments with all data to 62% in those experiments
with the highest level of incompleteness, with the greatest loss of perfor-
mance in the final experiments. PlanMiner with the RIPPER classification
algorithm is unable to learn valid planning domains.

« DriverLog. Up to experimentation with 50 percent incompleteness, the al-
gorithm is resilient, after which point it loses almost 4 points of precision.
With 9o% missing data, its precision is 66%, and recall drops to 74%. Con-
sequently, the F-Score shows little change throughout the experimentation,
showing a difference of 6 points between the best and worst results. Unfor-
tunately, due to the low performance of the algorithm initially, none of the
domains learned are valid.

« ZenoTravel. The main loss of performance is in the experimentation with
half of the missing data. In this experimentation PlanMiner using the RIP-
PER classification algorithm loses 10 percent precision and 6 percent recall.
Throughout the rest of the experiment, precision drops steadily (but to a
lesser extent), and recall remains almost unchanged. The F-Score only drops
by 2 points with respect to the full data, but in the experiments, with half of
the input data, these drops account for 8 percent of the final F-Score result.
Of all the domains learned by the algorithm, none is valid.

B.1.8 PlanMiner (NSLV)

« BlocksWorld. El algoritmo presenta resultados del 100% hasta la experi-
mentacion con el 50% de incompletitud. En esta experimentacion se pierde
un 2% de precision, aunque el recall no se mantiene al 100%. El resultado fi-
nal es de 96 de precision y 98 de recall puntos al 9o% de incompletitud. Estos
buenos resultados llevan a que todos los dominios sean validos.

« Depots. Similar to the experimentation with the BlocksWorld domain, up
to 50 percent incompleteness PlanMiner using the NSLV sorting algorithm.
In this experiment, it loses 1 point of precision, and in more complex exper-
iments it loses 5 points compared to experiments with complete data. On
the other hand, recall remains at 100% regardless of the data used as input.
These results mean that the F-Score goes from 98% in the experiments with-
out incompleteness to 95% in the more incomplete experiments and that the
domains learned by the algorithm are always valid.
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Domain Incompleteness | uPrecision oPrecision wuRecall oRecall uF-Score oF-Score
0% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
BlocksWorld 10% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
50% 0.9790 0.0309 0.9925 0.0165 0.9854 0.0150
90% 0.9596 0.0528 0.9851 0.0202 0.9713 0.0260
0% 0.9736 0.0000 1.0000 0.0000 0.9867 0.0000
10% 0.9736 0.0000 1.0000 0.0000 0.9867 0.0000
Depots
50% 0.9639 0.0217 1.0000 0.0000 0.9815 0.0114
90% 0.9181 0.0506 1.0000 0.0000 0.9567 0.0279
0% 0.9334 0.0000 1.0000  0.0000 0.9655 0.000
DriverLog 10% 0.9273 0.0134 1.0000  0.0000 0.9622 0.0071
50% 0.9146 0.0171 0.9928 0.0159 0.9520 0.0148
90% 0.8206 0.0686 0.9857 0.0195 0.8946 0.0453
0% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
10% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
ZenoTravel
50% 0.9916 0.0186 0.9769 0.0516 0.9840 0.0357
90% 0.9365 0.0492 0.9769 0.0210 0.9553 0.0198

Table B.8: NSLV Results

 DriverLog. precision drops by 10 percent precision in the more complex ex-
periments, in stark contrast to the behaviour so far where it only loses one
precision point in total. The recall of the algorithm suffers similar behaviour,
only much lighter (only dropping by 2 percent in the final experiments). This
causes the F-Score to be stable throughout the experimentation except at 90%
incompleteness where it drops 6 points due to the algorithm’s drop in preci-
sion. However, this drop in performance does not affect the validity of the
domains.

« ZenoTravel. The algorithm maintains a high resilience to incompleteness,
starting from perfect precision and recall results. In the most complex ex-
perimentation, the precision result is 93 points, while the recall result drops
to 97%. This leads to an F-Score 4.5 points below the results obtained using
complete data, but this drop does not preclude the validity of the learned do-
mains.

B.2 Numerical domains

B.2.1 PlanMiner (C4.5)

« Depots. The algorithm exhibits a drop in precision at 10-point incomplete-
ness, which is repeated in experiments with 50% missing data. Recall, on the
other hand, is not affected by the first levels of incompleteness, dropping only
at 50% incompleteness, where it loses 9 points. Both metrics stabilise in the
more complex experiments and cause the F-Score to lose 10 points of perfor-
mance in the experimentation with half the input data. Learned domains are
only valid in experiments with complete data.

« DriverLog. The algorithm contemplates a serious drop in its metrics by in-
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Domain Incompleteness | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.9055 0.0263 0.9295 0.0201 0.9187 0.0239
10% 0.8084 0.0285 0.9295 0.0201 0.8617 0.0243
Depots
50% 0.7137 0.0294 0.8140 0.0222 0.7642 0.0257
90% 0.7137 0.0294 0.8140 0.0222 0.7642 0.0257
0% 0.8538 0.0453 0.8916 0.0273 0.8790 0.0338
. 10% 0.6004 0.0890 0.6899 0.0413 0.6451 0.0638
DriverLog 50% 0.6004 0.0890 0.6899 0.0413 0.6451 0.0638
90% 0.6004 0.0890 0.6899 0.0413 0.6451 0.0638
0% 0.8665 0.0340 0.8803 0.0109 0.8759 0.0229
Rovers 10% 0.8345 0.0372 0.8756 0.0133 0.8513 0.0251
50% 0.5318 0.0466 0.5926 0.0198 0.5601 0.0283
90% 0.4073 0.0492 0.4895 0.0322 0.4468 0.0377
0% 0.8457 0.0307 0.8894 0.0246 0.8638 0.0270
. 10% 0.7735 0.0389 0.8535 0.0249 0.8129 0.0318
Satellite
50% 0.7246 0.0482 0.8457 0.0258 0.7879 0.0338
90% 0.6838 0.0628 0.8283 0.0483 0.7604 0.0538
0% 0.8172 0.0325 0.8353 0.0136 0.8215 0.0288
ZenoTravel 10% 0.7847 0.0472 0.8288 0.0273 0.8086 0.0359
50% 0.6183 0.0603 0.6753 0.0436 0.6419 0.0527
90% 0.4803 0.0692 0.5687 0.0473 0.5261 0.0568

Table B.g: C45 Results

cluding incompleteness. This drop is 25 points of precision and 21 points of
recall, but from this experimentation, they remain unchanged. The F-Score
ends up at 64 points in the most complex experiments. No domain learned
by the algorithm is valid.

Rovers. After a slight loss of performance in the experiments with 10 per
cent incompleteness (3 per cent precision and o.5 per cent recall), the al-
gorithm is unable to maintain its results and loses 30 per cent performance
when removing half of the input data. In the more complex experiments, it
again suffers a 10-12% drop in metrics, which brings the F-Score to 44 points.
Due to the poor performance of the algorithm, none of the domains learned
by the algorithm are valid.

Satellite. The algorithm shows a constant drop in performance throughout
the experimentation. Throughout this experimental process, no noticeable
drops are shown in any of the more complex experiments. The drop-in preci-
sion is more marked than the drop in recall, which remains more stable. This
behaviour makes the F-Score difference between the simplest and the most
complex experimentation 10 points. Finally, domain validity does not hold,
regardless of the data used as input.

ZenoTravel. Similar to Rovers, the algorithm shows some resilience to in-
completeness initially but suffers severe performance losses in the final ex-
periments. The precision of the domains learned by the algorithm is 61 points
at 50% incompleteness and 48 points at 9o%, while recall drops to 67 points
and 56 points in these experiments. This causes the F-Score to drop by 15% in
the experimentation with half of the data and by 12% in the experiments with
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Domain Incompleteness | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.7552 0.0237 0.7787 0.0181 0.7636 0.0193
10% 0.7376 0.0398 0.7752 0.0317 0.7561 0.0353
Depots
50% 0.7139 0.0623 0.7710 0.0509 0.7486 0.0559
90% 0.6682 0.0858 0.7487 0.0694 0.7000 0.0749
0% 0.6162 0.0355 0.6582 0.0311 0.6366 0.0338
. 10% 0.5835 0.0561 0.6271 0.0505 0.6012 0.0538
DriverLog 50% 0.5377 0.0676 0.5962  0.0595 0.5617 0.0638
90% 0.4472 0.0882 0.5272 0.0782 0.4861 0.0838
0% 0.7353 0.0020 0.7989 0.0010 0.7636 0.0015
10% 0.7162 0.0094 0.7323 0.0056 0.7486 0.0072
Rovers
50% 0.5172 0.0373 0.5985 0.0201 0.5561 0.0258
90% 0.4146 0.0382 0.5108 0.0214 0.4619 0.0272
0% 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
Satellite 10% 0.6651 0.0503 0.7452 0.0407 0.7099 0.0457
50% 0.6083 0.0617 0.6874 0.0490 0.6467 0.0557
90% 0.5440 0.0854 0.6449 0.0702 0.5999 0.0757
0% 0.7450 0.0006 0.7672 0.0004 0.7573 0.0005
ZenoTravel 10% 0.6883 0.0008 0.7251 0.0004 0.7003 0.0006
50% 0.5437 0.0236 0.6005 0.0251 0.5795 0.0246
90% 0.4126 0.0242 0.4936 0.0259 0.4509 0.0266

Table B.10: RIPPER Results

90% incompleteness, in addition to the fact that none of the learned domains
are valid.

B.2.2 PlanMiner (RIPPER)

« Depots. Due to the stability of the precision and recall of even the most com-
plex experiments, the F-Score of the learned domains only drops by 1% until
they are reached. From 50% incompleteness in the input data, the precision
drops by 2 points, while the recall remains almost unchanged. At 9o% incom-
pleteness, these drops become steeper and result in a loss of 5 points and 3
points of precision and recall respectively. The F-Score in the most complex
experiments is 70 points, but no domain obtained with the RIPPER classifier
is valid.

DriverLog. Initially, the algorithm performs below 70% (61% precision and
65% recall). These values drop gradually over the course of the experiments,
showing a large drop in the experiments up to those performed with the
smallest possible number of data. This drop represents a loss of 9 points of
precision and 6 points of recall and places the final F-Score at 48 points. Given
the overall performance of the algorithm, no domain is valid.

Rovers. At 50% incompleteness, the algorithm has a 20-point drop in preci-
sion and a 14-point drop in recall. This results in an F-Score drop of 20% in
these experiments. At go per cent incompleteness, performance drops again,
but only a 10 per cent loss in precision and an 8 per cent loss in recall. The
final F-Score values are 46%, with the exception of the domain learned with
the complete data, the domains learned by the algorithm are not valid.
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Domain Incompleteness uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.9623 0.0000 1.0000 0.0000 0.9707 0.0000
10% 0.9539 0.0114 1.0000  0.0000 0.9637 0.0059
Depots
50% 0.9494 0.0223 0.9966 0.0102 0.9621 0.0148
90% 0.8842 0.0248 0.9690 0.0210 0.9125 0.0151
0% 0.9184 0.0176 0.9804 0.0180 0.9486 0.0175
DriverLog 10% 0.9073 0.0322 0.9730  0.0273 0.9397 0.0264
50% 0.8954 0.0364 0.9662  0.0236 0.9290 0.0321
90% 0.7841 0.0508 0.9601 0.0278 0.8626 0.0365
0% 0.7756 0.0000 1.0000 0.0000 0.8730 0.0000
10% 0.7747 0.0039 1.0000  0.0000 0.8729 0.0022
Rovers
50% 0.4588 0.0314 0.8671 0.0220 0.5995 0.0399
90% 0.3501 0.0458 0.8098 0.0361 0.4887 0.0274
0% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
. 10% 0.9932 0.0146 0.9933 0.0145 0.9938 0.0095
Satellite
50% 0.8576 0.0360 0.8530 0.0339 0.8522 0.0243
90% 0.8523 0.0796 0.8334 0.0866 0.8448 0.0826
0% 0.8128 0.0000 1.0000 0.0000 0.8965 0.0000
ZenoTravel 10% 0.7037 0.0269 1.0000 0.0000 0.8252 0.0180
50% 0.6206 0.0750 0.7154 0.0217 0.6625 0.0422
90% 0.5212 0.0972 0.6761 0.0217 0.5858 0.0658

Table B.11: NSLV Results

« Satellite. With precision results of 100 per cent initially, the algorithm loses
44 performance points when incompleteness is included. This is repeated
with recall, where it drops by 25% in these experiments. During the rest of
the experimentation these drops are constant but in a much more moderate
way. In the experiments with 9o% incompleteness, domain precision is 54%
and recall 64% (which translates into an F-Score of 59%). As expected, only
the domain with complete data is valid.

« ZenoTravel. The precision and recall of the algorithm show similar be-
haviours: with a constant drop in performance with a particularly steep drop
in the more complex experiments. This behaviour causes the difference be-
tween the best and worst results to be 33 points for precision and 27 points
for recall, and the F-Score values in the most complex experiments to be 45%.
No domain learned by this approach is valid.

B.2.3 PlanMiner (NSLV)

« Depots. Depots results show a flawless recall score. In contrast, the precision
drops by 1% in the experiments up to the most complex experiments where it
drops by 8 points. This causes the F-Score to suffer from the precision values,
dropping by 6 points throughout the experimentation (down to a 91% F-Score
in the last experiments). However, these errors do not prevent all learned
domains from being perfect.
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» DriverLog. The algorithm shows resilience to incompleteness while main-
taining a precision of around 90% and a recall of over 96% even for experi-
ments with the lowest number of elements. In these experiments the preci-
sion drops by 11% and the recall by 2%, presenting an F-Score of 86% in them
and making the learned domains invalid.

» Rovers. Precision and recall remain unchanged in the first experiments. In
experiments with 50% incompleteness, the precision drops by 32 points and
recall by 15 points, and in experiments, with 9o% incompleteness, the metrics
drop by 10 points and 6 extra points. The F-Score drops from 87% to 48%
in the most complex experiments, with a drop of almost 30 points at 50%
incompleteness, and this drop impedes the validity of the learned domains.

« Satellite. Starting from perfect precision and recall, the inclusion of in-
completeness hardly affects the results. Only the most complex experiments
present a stumbling block to the algorithm, where it drops by 15%. This hurts
the F-Score with go per cent incompleteness, which drops to 84 per cent, and
the validity, which presents valid domains up to that experimentation.

« ZenoTravel. At each step of the experimental process, the precision drops
by 10%, in contrast to the recall of the algorithm which remains at 100% until
the experiments with 50% incompleteness. From these experiments onwards
the recall drops by almost 30 points to 71 points. This drop-in recall severely
affects the F-Score, which suffers a serious loss of performance (from 82% to
66%) and the validity of the domains.
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Appendix C

PlanMiner-N’s experimental
results

C.1 STRIPS domains

C.1.1 ARMS

« BlocksWorld. By including noise, the algorithm loses a not inconsiderable
amount of performance. This loss is 25 per cent in precision and 17 per cent
in recall, which materialises in a drop in F-Score from 97 to 76 points. The
metrics remain more stable throughout the rest of the experimentation (los-
ing only 2 per cent F-Score) until the one that uses as input data with 20 per
cent noisy information. In these experiments, precision is 56 points and re-
call 72, 13 and 8 points lower respectively. ARMS is unable to learn valid
domains except those obtained with complete data.

« Depots. Noise negatively affects the algorithm, causing a 30-point loss in
precision and a 9-point loss in recall. This drop continues throughout the
rest of the experimentation in a milder form, but with a spike at 10% noise.
In this experiment, the performance of the algorithm is 44 points of precision
and 71 points of recall. In the more complex experiments, again, the drop is
much more moderate, with a 5 and 4 point drop in metrics, respectively. The
F-Score in the final experiments is 53 points, and none of the domains learned
by ARMS using noisy data are invalid.

« DriverLog. ARMS shows a difference of 56 precision and 47 recall points
between the noiseless and the noisiest results. The biggest drop is between
experimentation with 3 and 10 per cent noisy data, where precision drops by
30 and 14 points, and recall by 9 and 11 points. In the most complex exper-
iments, the F-Score ends up with a value of 39%. Finally, only the domain
obtained with complete data is valid.
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.9636 0.0152 0.9858 0.0022 0.9781 0.0075
BlocksWorld 3% 0.7175 0.0476 0.8183 0.0256 0.7645 0.0326
5% 0.7102 0.0703 0.8130 0.0514 0.7648 0.0599
10% 0.6952 0.0738 0.8099 0.0553 0.7400 0.0615
20% 0.5647 0.0797 0.7243 0.0585 0.6402 0.0668
0% 0.9564 0.0000 0.9762 0.0000 0.9624 7 0.000
3% 0.6574 0.0197 0.8853 0.0130 0.7383 0.0165
Depots
5% 0.5827 0.0214 0.8205 0.0138 0.7164 0.0170
10% 0.4482 0.0352 0.7182 0.0214 0.5792 0.028
20% 0.3936 0.0726 0.6726 0.0482 0.5396 0.058
0% 0.8254 0.0000 0.9995 0.0000 0.9753 0.0000
DriverLog 3% 0.6488 0.0011 0.8193 0.0048 0.7278 0.0076
5% 0.5723 0.0457 0.7990 0.0313 0.6812 0.0384
10% 0.3637 0.0824 0.6001 0.0523 0.4896 0.0671
20% 0.2674 0.1243 0.5235 0.0715 0.3934 0.0950
0% 0.8828 0.0000 0.9897 0.0000 0.9386 0.0000
ZenoTravel 3% 0.6265 0.0200 0.7848 0.0100 0.7033 0.0150
5% 0.5789 0.0395 0.7723 0.0273 0.6918 0.0334
10% 0.4262 0.0833 0.7284 0.0457 0.5743 0.064
20% 0.4052 0.1222 0.7059  0.0732 0.5240 0.098

Table C.1: ARMS Results

« ZenoTravel. With initial precision and recall results of 88% and 98%, when
noise is included, these metrics drop 26 points in precision and 18 points in re-
call. When noise is added, the algorithm again suffers a severe drop, bringing
precision to 36 points and recall to 60 points. In the final experiments, these
drops continue, resulting in an F-Score of 52 points when noise is added. Due
to the behaviour of the algorithm, only the domain obtained with complete
data is valid.

C.i1.2 FAMA

» BlocksWorld. In the experiments with some noise (3% and 5% of erroneous
elements), the algorithm stands at 72 points. The recall, on the other hand,
maintains some resilience to noise, losing only 2% of performance in these
experiments. In later experiments, the metrics drop to 59 points (precision)
and 81 (recall), bringing the final F-Score to around 67%. Due to the poor
performance of precision at the start, no domain obtained is valid, even at
low noise levels

« Depots. It starts with an initial precision of 96 points, but drops to 70 points
when some noise is included; this behaviour is repeated with recall, where
it starts with a score of 98 points and drops to 86 points. These drops are
repeated constantly and repeatedly throughout the experimentation. This
means that, with 20% noisy data, precision and recall are 59% and 81% respec-
tively, and therefore the F-Score is 71 points. As expected, the only domain
that is valid is the one learned with complete data.
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
3% 0.7242 0.0526 0.9862 0.0244 0.8582 0.0387
BlocksWorld
5% 0.7242 0.0526 0.9862 0.0244 0.8582 0.0387
10% 0.6625 0.0676 0.8462 0.0286 0.7572 0.0383
20% 0.5990 0.0701 0.7553 0.0303 0.6762 0.0395
0% 0.9642 0.0215 0.9856 0.0115 0.9725 0.0160
3% 0.7047 0.0317 0.8681 0.0169 0.7726 0.0258
Depots
5% 0.6783 0.0320 0.8400 0.0172 0.7623 0.0251
10% 0.6399 0.0462 0.8329 0.0267 0.7429 0.0285
20% 0.5962 0.0984 0.8101 0.0537 0.7126 0.0784
0% 0.7625 0.0245 0.8467 0.0086 0.8073 0.0166
DriverLog 3% 0.5283 0.0314 0.6611 0.0193 0.5928 0.0252
5% 0.4977 0.0317 0.6580 0.0199 0.5859 0.0259
10% 0.4751 0.0399 0.6203 0.0213 0.5524 0.0282
20% 0.3463 0.0573 0.5461 0.0350 0.4485 0.0415
0% 0.9051 0.0000 0.9690 0.0000 0.9387 0.0000
ZenoTravel 3% 0.5941 0.0232 0.8172 0.0779 0.7033 0.0157
5% 0.5988 0.0455 0.8062 0.0213 0.6918 0.0332
10% 0.4751 0.0786 0.7250 0.0567 0.5943 0.0647
20% 0.3892 0.1251 0.5941 0.0861 0.4940 0.1028

Table C.2: FAMA Results

+ DriverLog. The algorithm has two major performance losses at 3% and 20%
noise. The first large loss is a 24-point drop in precision and a 15-point drop in
recall, which puts the F-Score 21 points below its initial experimental value.
The second drop is a 13-point loss in precision and a 9-point loss in metrics,
bringing the F-Score in the most complex experiments to 44 points. No do-
main learned by FAMA is valid.

ZenoTravel. Similar to the other domains, the algorithm suffers severe per-
formance losses initially and in the more complex experiments. When noise
is included, precision drops 31 points, while recall drops to 81 points. At 10
and 10 noise, the precision drops to 47 and 38 points, while the recall drops to
72 and 59 points. The F-Score of the domains obtained in the more complex
experimentation is 49%. Only the domain obtained with non-noisy data is
valid.

C.1.3 OPMaker2

« BlocksWorld. With a precision of 87% using data without noise, OPMaker2
loses 23 points of precision when noise is included. Similar behaviour can be
observed for recall, which drops 19 points from its initial value. As the ex-
perimentation progresses, the precision drops repeatedly as the experimen-
tal conditions are tightened, while the recall shows some stability. Unfortu-
nately, in the experiments with 20% noise, the recall suffers a serious loss of
performance. In the latter experiments, the precision of the algorithm is 50
points, the recall 56 points and, consequently, the F-Score 53 points. The only
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.8748 0.0168 0.9584 0.0453 0.9199 0.0102
BlocksWorld 3% 0.6481 0.0237 0.7654 0.0073 0.7083 0.0154
5% 0.6320 0.0252 0.7500  0.0127 0.6972 0.0174
10% 0.5827 0.0292 0.7029 0.0138 0.6463 0.0188
20% 0.5061 0.0465 0.5659 0.0212 0.5361 0.0393
0% 0.8926 0.0215 0.9736 0.0090 0.9376 0.0152
3% 0.7597 0.0228 0.9153 0.0097 0.8325 0.0158
Depots
5% 0.6425 0.0247 0.8006 0.0102 0.7249 0.0174
10% 0.5591 0.0323 0.6951 0.0165 0.6201 0.0247
20% 0.4872 0.0740 0.6606 0.0347 0.5749 0.0542
0% 0.8787 0.0195 0.9300 0.0110 0.9372 0.0157
DriverLog 3% 0.6357 0.0200 0.7551 0.0118 0.6999 0.0155
5% 0.6202 0.0321 0.7261 0.0175 0.6752 0.0243
10% 0.5878 0.0386 0.7191 0.0223 0.6503 0.0386
20% 0.5453 0.0533 0.6172 0.0237 0.5763 0.0308
0% 0.8562 0.0160 0.8932 0.0147 0.8972 0.0150
ZenoTravel 3% 0.6578 0.0166 0.6976 0.0141 0.6737 0.0158
5% 0.5428 0.0285 0.6079 0.0202 0.5746 0.0233
10% 0.5202 0.0463 0.6003 0.0226 0.5632 0.0357
20% 0.4921 0.0748 0.5752 0.0581 0.5303 0.0655

Table C.3: OPMaker2 Results

valid domain obtained by the algorithm is the one learned using noise-free
input data.

Depots. With 3% noisy input data the algorithm loses 24 precision points and
6 recall points. During the rest of the experimentation, the precision drops by
10% until the end, presenting results in the most complex experimentation
of 48 points, while the recall behaves the same, presenting final results of
66 points. In the experiments with the highest number of noisy data, the
algorithm presents an F-Score of 57%. After the severe drops in precision
when noise is included, the domains of the algorithm are invalid.

DriverLog. As in the previous domains, the algorithm shows a large drop
in performance, with a 24% drop in precision and an 18% drop in recall. In
subsequent experiments, the algorithm’s performance continues to drop, but
in a much more moderate way. This trend is broken with recall, which, in the
more complex experiments, loses an extra 10% of performance. This leads to
an F-Score of 57 points for the algorithm in these experiments. The perfor-
mance of OPMaker3 prevents domains learned with noisy data from being
valid.

ZenoTravel. With an initial precision and recall of 85 and 89 points, the algo-
rithm drops to 65 and 69 points when noise is included in the input data. Ex-
perimenting with 5 per cent noise, the algorithm’s performance drops again
to around 10 per cent on both metrics. After this experimentation, these
drops moderate and stabilise. In the most complex experiments, the algo-
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.9282 0.0000 1.0000 0.0000 0.9663 0.0000
BlocksWorld 3% 0.7438 0.0175 0.7849 0.0135 0.7623 0.0156
5% 0.7275 0.0216 0.7849 0.0135 0.7560 0.0173
10% 0.7037 0.0221 0.7849 0.0135 0.7463 0.0187
20% 0.6628 0.0451 0.7684 0.0242 0.7178 0.0322
0% 0.9899 0.0000 1.0000  0.0000 0.9955 0.0000
3% 0.7062 0.0181 0.7678 0.0129 0.7361 0.0153
Depots
5% 0.6437 0.0224 0.7501 0.0138 0.7281 0.0175
10% 0.6172 0.0236 0.7252 0.0142 0.7005 0.0187
20% 0.5426 0.0523 0.6867 0.0427 0.6627 0.0489
0% 0.9241 0.0250 0.9889 0.0000 0.9529 0.0122
DriverLog 3% 0.6951 0.0186 0.7732 0.0128 0.7323 0.0156
5% 0.6068 0.0192 0.7097 0.0145 0.6503 0.0178
10% 0.5192 0.0336 0.6331 0.0247 0.5784 0.0282
20% 0.4501 0.0460 0.5959 0.0333 0.5290 0.0399
0% 0.8201 0.0157 0.9882 0.0055 0.9001 0.0135
ZenoTravel 3% 0.8045 0.0128 0.9487 0.0188 0.8782 0.0158
5% 0.7881 0.0203 0.9085 0.0146 0.8403 0.0179
10% 0.7172 0.0335 0.8793 0.0238 0.7889 0.0283
20% 0.6275 0.0748 0.7674 0.0471 0.6959 0.0536

Table C.4: AMAN Results

rithm has an F-Score of 53%. Finally, domain validity is not satisfied in any
of the domains learned using noisy input data.

C.i1.4 AMAN

» BlocksWorld. The precision of the algorithm drops by 18 when including
some noise in the input data, and its recall by 22 points. Throughout the
experimentation, the precision continues to drop repeatedly but much more
slightly (in steps of 2%), while the recall stabilises. In the more complex ex-
periments, both metrics suffer a small, somewhat steeper drop (6 per cent
for precision and 2 per cent for recall), bringing the algorithm’s F-Score to 71
points. Due to the performance of the algorithm, only the domain obtained
with noise-free data is valid.

Depots. The algorithm’s metrics start with a value above 97% (specifically
98% for precision and 100% for recall), but when some noise is included in
the input data its performance drops 28 points and 24 points respectively. As
the complexity of the experiments increases, the overall performance of the
algorithm drops by around 2 per cent in each experiment. This leads to an
F-Score of 66% in the most complex experiment. AMAN is unable to learn
valid domains except those obtained with complete data.

DriverLog. Similar to the Depots domain, the behaviour of the algorithm
can be summarised as follows: A large initial performance loss along with a
series of much smaller drops in subsequent experiments. But, in contrast to
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.7102 0.0602 0.7778 0.0281 0.7463 0.0414
BlocksWorld 3% 0.5356 0.0647 0.5991  0.05591 0.5667 0.0560
5% 0.5102 0.0692 0.5990 0.0637 0.5510 0.0666
10% 0.4789 0.0885 0.5701 0.0680 0.5263 0.0772
20% 0.3035 0.0982 0.4283 0.0717 0.3642 0.0837
0% 0.6362 0.0492 0.6785 0.0216 0.6574 0.0382
Depots 3% 0.4182 0.1198 0.4753 0.0701 0.4477 0.0992
5% 0.3836 0.1426 0.4602 0.0891 0.4223 0.1166
10% 0.3255 0.1602 0.4227 0.1071 0.3757 0.1336
20% 0.2872 0.1756 0.4072 0.1328 0.3452 0.1535
0% 0.6973 0.0273 0.7534 0.0002 0.7259 0.0115
. 3% 0.6535 0.0663 0.7398 0.0271 0.6802 0.0472
DriverLog 5% 0.6102 0.0982 0.6952 0.0387 0.6582 0.0628
10% 0.5174 0.1206 0.6527 0.0604 0.5853 0.0945
20% 0.4277 0.1655 0.6298 0.0709 0.5287 0.1125
0% 0.6262 0.0672 0.6882 0.0292 0.6533 0.0456
ZenoTravel 3% 0.3882 0.0891 0.4882 0.0454 0.4224 0.0674
5% 0.3387 0.0900 0.4579 0.0501 0.3952 0.0739
10% 0.2725 0.1126 0.4511 0.0794 0.3627 0.0932
20% 0.1781 0.1621 0.4192 0.0871 0.2967 0.1264

Table C.5: PlanMiner (ID3) Results

Depots, AMAN suffers another severe performance loss in the more complex
experiments in the recall metric. That said, the algorithm’s F-Score starts the
experiment at 95 points and drops to 73 in the experiments with 3% noise. At
10% noise, its performance is 57 points, and in the experimentation with the
highest number of noisy elements, it drops to 52 points. Given this behaviour,
only the domain obtained with complete data is valid.

« ZenoTravel. Until experimentation with 10 per cent noise, the algorithm’s
precision drops by 2 per cent in each experiment. Recall starts with better
results compared to precision, but in the previously named experiments, its
performance loss is 4 points at each step. In the experiments with 10% noise,
the precision drops by 7 points, in contrast to the recall performance loss of
only 3 points. In the more complex experiments, the overall performance of
the algorithm brings the F-Score of the algorithm to 69 points. As the only
valid set of learned domains are those obtained using non-noisy data.

C.1.5 PlanMiner (ID3)

« BlocksWorld. precision drops from 71 points to 53 when noise is included,
while recall drops from 77 to 59 points in that experiment. In subsequent ex-
periments, the results drop slightly (about 2 points performance in the met-
rics), but in the experimentation with 20% of noisy data, the performance
of the algorithm is severely impaired. In these experiments, precision loses
17% of its performance, while recall loses 15%. The F-Score of the algorithm
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ranges from 74 points in the noiseless experiments to 36 points in the noisy
experiments, and no learned domain is valid.

« Depots. The precision suffers an initial drop in precision of 22 points, which
stabilises slightly in the following experiments. This stabilisation is main-
tained until the experiments with 10% noisy data, after which it drops re-
peatedly to 28 points. The recall, on the other hand, starts the experimen-
tation showing performance of 67%, but the loss of noise inclusion in the
plan traces reduces it by 20 points. In later experiments the recall continues
to drop steadily but much more slightly, showing results of 40% in the more
complex experiments. The significant loss of performance at the beginning
of the experiment causes the F-Score to drop by 21% when faced with noise.
At 5% noise, this drop slows down, with a reduction in the metric of only 2
points, but is repeated in subsequent experiments until the value of the met-
ric reaches 34 points. The behaviour of the algorithm leads to the fact that no
learned domain is valid.

» DriverLog. In the initial experiments (3% and 5% of noisy elements in the
plan traces) the algorithm suffers performance drops of 4% (in the case of
precision) and 3% (in the case of the recall). In the more complex experiments
(10 and 20% of noisy items) the metrics suffer steeper drops, which put the
metrics at 42 and 62 points for precision and recall respectively. Due to these
drops, the F-Score in the experimentation with 20% noise is 52 points. None
of the learned domains are valid.

« ZenoTravel. Initial precision results drop by 24% when noise is included,
while recall drops by 20%. On the one hand, precision continues to drop
steadily throughout the experimentation, falling by 5 per cent until the most
complex experimentation, where it drops by 10 points. On the other hand,
recall suffers a 3 per cent drop in performance but shows some stabilisation
in the experiments with 10 per cent of noisy elements. The behaviour of the
algorithm means that, with an initial F-Score of 65 points, when noise is in-
cluded in the plan traces, it drops by almost 20 points. As the experimental
features get harder, the F-Score drops further to 29 points in the experiments
with the highest number of noisy elements. These F-Score values indicate
that none of the domains learned by PlanMiner (ID3) are valid.

C.1.6 PlanMiner-N (ID3)

« BlocksWorld. precision drops from 70 points to 53 when noise is included,
while recall suffers a performance loss of 7 points. In further experimenta-
tion, the algorithm continues to suffer constant drops in performance. In the
case of precision, these drops are slightly aggravated in the experimentation
with 10 per cent of noisy predicates, where it loses 10 per cent of its perfor-
mance. In the case of recall, the drops are 1 or 2 per cent at most. This leads to
the F-Score dropping by g per cent when noise is included, and then continu-
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.7072 0.0602 0.7891 0.0274 0.7463 0.0414
BlocksWorld 3% 0.5991 0.0664 0.7101 0.0302 0.6562 0.0432
5% 0.5701 0.0720 0.7100  0.0369 0.6425 0.0437
10% 0.5142 0.0969 0.6925 0.0538 0.6039 0.0721
20% 0.4782 0.1035 0.6732 0.0690 0.5758 0.0728
0% 0.6174 0.0424 0.6974  0.0201 0.6574 0.0382
3% 0.4683 0.0681 0.6183 0.0291 0.5383 0.0472
Depots
5% 0.4493 0.0902 0.6093 0.0591 0.5293 0.0783
10% 0.3887 0.1009 0.5887 0.0684 0.4887 0.0892
20% 0.2954 0.1293 0.5254  0.0901 0.4154 0.1119
0% 0.7082 0.0281 0.7491 0.0002 0.7259 0.0115
. 3% 0.6719 0.0357 0.7300 0.0086 0.7003 0.0297
DriverLog 5% 0.6502 0.0538 0.7238 0.0283 0.6945 0.0461
10% 0.6126 0.0981 0.7193 0.0548 0.6680 0.0737
20% 0.5983 0.1142 0.7083 0.0604 0.6537 0.0855
0% 0.6229 0.0643 0.6848 0.0282 0.6533 0.0456
ZenoTravel 3% 0.5029 0.0682 0.5839 0.0348 0.5432 0.0509
5% 0.4583 0.0744 0.5613 0.0380 0.5101 0.0535
10% 0.4281 0.0795 0.5400 0.0397 0.4842 0.0682
20% 0.3891 0.1022 0.5139 0.0442 0.4582 0.0783

Table C.6: PlanMiner-N (ID3) Results

ing to lose up to 3 per cent in the more complex experiments. The behaviour
of the algorithm results in no learned domain being valid.

Depots. The performance of the algorithm suffers two large drops in per-
formance in the experimentation, one in the experimentation with 3% noisy
elements and one in the experimentation with 20% noisy elements. In these
experiments, precision drops by 15 and 10 points respectively, while recall
drops by 9 and 6 points. In the rest of the experiments performance drops,
but in a much more controlled way. The initial drop in performance brings
the F-Score to 53 points, 12 points less than in the experiments without noise,
and in the more complex experiments it ends up at 41 points. The overall
performance of the algorithm indicates that none of the learned domains are
valid.

DriverLog. PlanMiner-N (ID3) shows a constant performance loss behaviour.
This performance loss does not have large peaks of precision and recall loss

but remains stable and constant throughout the experimentation. Precision

drops by around 3% in each experiment, while recall decreases at a rate of
1/2 points at each step of the experimental process. The difference between

the F-Score result in the experiments with non-noisy data and those with a

higher proportion of noisy items is 7%. Although the performance of the al-

gorithm is better with respect to the other domains, no domain learned by it

is valid.

ZenoTravel. Similar to BlocksWorld, the algorithm shows severe drops in
the first experiments, which are repeated more moderately in the more com-
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.8001 0.0649 0.8384 0.0229 0.8157 0.0425
BlocksWorld 3% 0.7278 0.0742 0.7862 0.0349 0.7532 0.0528
5% 0.7023 0.0784 0.7920 0.0398 0.7476 0.0582
10% 0.6655 0.0985 0.7749 0.0582 0.7163 0.0757
20% 0.5839 0.1325 0.7248 0.0974 0.6620 0.1114
0% 0.8738 0.0552 0.9137 0.0391 0.8939 0.0445
3% 0.5082 0.1191 0.6239 0.0794 0.5672 0.0932
Depots
5% 0.4501 0.1584 0.5757  0.0994 0.5189 0.1202
10% 0.4001 0.1784 0.5484 0.1185 0.4736 0.1435
20% 0.3283 0.1929 0.4882 0.1309 0.4010 0.1656
0% 0.7730 0.0175 0.8530 0.0002 0.8130 0.0089
. 3% 0.7114 0.0547 0.8114 0.0576 0.7614 0.0528
DriverLog 5% 0.6698 0.0644 0.7898 0.0682 0.7298 0.0638
10% 0.6074 0.0883 0.7474 0.0884 0.6774 0.0836
20% 0.5462 0.1184 0.7062 0.1142 0.6262 0.1163
0% 0.8162 0.0361 0.8782 0.0158 0.8435 0.0287
ZenoTravel 3% 0.7349 0.0580 0.8301 0.0394 0.7842 0.0475
5% 0.6900 0.0621 0.8295 0.0402 0.7634 0.0545
10% 0.6028 0.0895 0.7847 0.0482 0.6936 0.0663
20% 0.5382 0.1256 0.7555 0.0393 0.6478 0.0934

Table C.7: PlanMiner (C45) Results

plex ones. This leads to a 12-point drop in precision when including noise
in the input data and a 10-point drop in the recall. For the remainder of the
experiment, the metrics drop-in steps of 5 and 2 respectively, as the experi-
mental characteristics are tightened. The F-Score initially drops by 11%, and
at each step of the subsequent experimental process, it drops by around 3%,
while domain validity is not met for any domain learned by the algorithm.

C.1.7 PlanMiner (C4.5)

» BlocksWorld. With an initial precision of 8o per cent, PlanMiner(C45) loses
8 per cent precision when some noise is encountered, while recall drops 4
points from its results on the noiseless data. Throughout the experimenta-
tion, the metrics continue to fall, with a spike in the performance loss of 8
per cent for precision and 5 per cent for recall in the more complex exper-
iments. The F-Score in the more complex experiments stands at 66%, and
none of the domains obtained using the algorithm are valid.

Depots. precision suffers an initial drop of 37 points when noise is included
in the plan traces, and recall is reduced by 29 points. In even the most com-
plex experiments, the precision decreases in steps of 5 per cent, while recall
decreases in steps of 4 per cent. In experiments with 20% of noisy elements,
both metrics decrease by around 7%. In the experiments with more noise,
the final result is 40 F-Score points, and the only valid domain set is the one
obtained using non-noisy plan traces.
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.8062 0.0542 0.8295 0.0382 0.8157 0.0425
BlocksWorld 3% 0.7398 0.0605 0.7902 0.0455 0.7624 0.0561
5% 0.7235 0.0894 0.7820 0.0592 0.7526 0.0638
10% 0.6901 0.0992 0.7777  0.0500 0.7372 0.0782
20% 0.6384 0.1485 0.7304 0.7239 0.6803 0.1127
0% 0.8683 0.0672 0.9282 0.0222 0.8939 0.0445
Depots 3% 0.8091 0.0792 0.8693 0.0306 0.8352 0.0523
5% 0.7588 0.0784 0.8385 0.0384 0.7978 0.0589
10% 0.7135 0.1021 0.7900 0.0694 0.7527 0.0836
20% 0.6074 0.1382 0.7243 0.0785 0.6620 0.1003
0% 0.8005 0.0150 0.8247 0.0029 0.8130 0.0089
DriverLog 3% 0.7982 0.0492 0.8211 0.0098 0.8125 0.0270
5% 0.7982 0.0492 0.8211 0.0098 0.8125 0.0270
10% 0.7639 0.0864 0.8093 0.0284 0.7845 0.0569
20% 0.7109 0.1094 0.7770 0.0882 0.7418 0.0957
0% 0.8252 0.0353 0.8635 0.0185 0.8435 0.0287
ZenoTravel 3% 0.8091 0.0400 0.8580 0.0244 0.8352 0.0385
5% 0.7839 0.0549 0.8542 0.0378 0.8272 0.0461
10% 0.7458 0.0629 0.8376 0.0449 0.7946 0.0572
20% 0.7233 0.0984 0.8252 0.0585 0.7773 0.0703

Table C.8: PlanMiner-N (C45) Results

« DriverLog. Starting from an initial precision of 77 points and a recall of
85 points, when noise is included, both metrics are 71 points and 81 points
respectively. Precision continues to decrease by 5 or 6 points throughout
the rest of the experiment, reaching 54 points in the most complex experi-
ment. Recall, on the other hand, drops by around 3 to 4 percentage points
and presents final results of 70 percentage points. Consistent with the other
two metrics, the F-Score suffers a very strong loss of performance initially,
which moderates during the rest of the experimentation. The final F-Score
value is 62%. None of the domains learned by the algorithm is valid.

« ZenoTravel. The algorithm shows a significant decrease in precision and
recall in the initial and final experiment sections. When noise is included
in the plan traces, the precision drops 8 points and the recall 4 points. In
the experiments with 5% noise, the drops are slightly slowed down in both
metrics but are accentuated again in the final experiments. The precision in
the most complex experiments is 53 points and the recall is 75 points. This
causes the final F-Score of the algorithm in these experiments to be 64%, and
given its overall behaviour, no set of learned domains is valid.

C.1.8 PlanMiner-N (C34.5)

« BlocksWorld. After the initial performance loss of 7 and 3 precision and
recall points respectively, the algorithm greatly reduces the performance loss
in subsequent experiments. The precision drops by around 2% until the most
complex experiments, while the recall drops in steps of 1%. In experiments
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with a higher percentage of noisy items, both metrics drop by about 5 per
cent. The F-Score shows a difference of 13 points between the best and worst
experimental results, even though none of the learned domains are valid.

« Depots. With an initial precision of 86% and an initial recall of 92%, both
metrics drop by 6 points. In subsequent experiments, this behaviour is re-
peated with more moderate decreases of 4 and 3 per cent respectively for
precision and recall. In the more complex experiments, the drops in perfor-
mance worsen, bringing the performance of the metrics to 6o points (preci-
sion) and 72 points (recall). These final drops bring the F-Score of the algo-
rithm to 66 points. Due to these initial drops, the only valid set of domains is
the one obtained with non-noisy input data.

+ DriverLog. PlanMiner-N (C45) has some noise resilience with the Driver-
Log domain. The precision drops 0.2 points when noise is included, main-
taining these results until the experiments with 10% of noisy elements, and
the recall drops 0.3 points until the aforementioned experiments. From these
experiments onwards, the precision drops by 3% and 5% in the more complex
experiments, while the recall drops by 2% and 3% in the more complex exper-
iments. In the most complex experiments, the F-Score ends up at 74%. Of all
the domains learned by the algorithm, none is valid.

+ ZenoTravel. Initially, PlanMiner(C45) obtains 82% precision, which drops
to 80% and 78% in the experiments with 3% and 5% noisy predicates. In these
experiments, the recall decreases by 1 point. In the experiments with 10%
noisy elements, the performance suffers a steeper drop of 4 and 2 points in the
metrics. The metrics in more complex experiments, the value of the metrics
leads to the F-Score ending up at 77%. Finally, domain validity is not met in
any of the domains learned.

C.1.9 PlanMiner (RIPPER)

» BlocksWorld. PlanMiner (RIPPER) loses 12 points of precision out of 76
points obtained with non-noisy input data. This drop is repeated repeatedly
as data is removed from the input plan traces in 5% steps, down to results
of 47 precision points with the noisiest input data. Meanwhile, recall suffers
an 8-point decrease in performance when noise is included, with subsequent
experiments losing 1 per cent performance, except in experiments with 20
per cent noisy elements, where it drops 3 points. Due to this behaviour, the
F-Score is 57 points in the most complex experiments, and none of the learned
domains are valid.

« Depots. In experiments with 3 per cent noisy elements, precision drops by
g per cent, while recall decreases by 7 per cent. Up to the experimentation
with 10 per cent noisy data, the metrics drop much more slightly, with a 3 per
cent and 1 per cent loss in precision respectively. In the more complex exper-
iments, the algorithm again suffers a significant loss of performance, with
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Table C.9: PlanMiner (RIPPER) Results

Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.7672 0.0453 0.8009 0.0284 0.7863 0.0361
BlocksWorld 3% 0.6492 0.0898 0.7212 0.0606 0.6811 0.0706
5% 0.5949 0.1024 0.7197 0.0858 0.6524 0.0972
10% 0.5584 0.1300 0.7034 0.0944 0.6336 0.1152
20% 0.4792 0.1549 0.6794 0.1132 0.5782 0.1367
0% 0.7454 0.0532 0.7666 0.0384 0.7553 0.0445
Depots 3% 0.6559 0.0995 0.6985 0.0701 0.6747 0.0852
5% 0.6210 0.1006 0.6829 0.0882 0.6582 0.0997
10% 0.5655 0.1575 0.6443 0.1183 0.6047 0.1367
20% 0.5494 0.1794 0.6494  0.1344 0.5952 0.1584
0% 0.7442 0.0103 0.7882 0.0006 0.7630 0.0089
. 3% 0.6833 0.0561 0.7603 0.0982 0.7273 0.0759
DriverLog 5% 0.6395 0.0685 0.7558 0.1058 0.6926 0.0852
10% 0.5772 0.0725 0.7285 0.1173 0.6587 0.0994
20% 0.5183 0.0998 0.6947 0.1590 0.6036 0.1253
0% 0.7862 0.0333 0.8276 0.0045 0.8035 0.0287
ZenoTravel 3% 0.6282 0.0792 0.7181 0.0541 0.6637 0.0678
5% 0.5833 0.1063 0.7005 0.0657 0.6426 0.0849
10% 0.4598 0.1285 0.6182 0.0899 0.5371 0.1006
20% 0.3991 0.1636 0.5974 0.1085 0.4936 0.1363

Table C.10: PlanMiner (RIPPER) Results

metrics dropping to 54 (precision) and 64 (recall) points. The F-Score of the
algorithm stabilises at around 59% in the experimentation with 10% of noisy
elements and remains at these values until the end of the experimentation.
The domains learned by PlanMiner (RIPPER ) are not valid.

DriverLog. It shows a 23-point difference in precision between the results
obtained with the noiseless data and those obtained with the noisier input
data. The largest losses in performance are in the experimentation with 3%
noisy data (a drop of 6 points) and the experimentation with 3% noisy data
(a drop of 6 points). Recall shows drops of 2-3% across the experiments, but
no noticeable decrease in any of the experiments. The behaviour of recall
means that the F-Score buffers the performance drops suffered by precision.
Nevertheless, its value in the most complex experiments is 60 points, and no
domain obtained with the algorithm is valid.

ZenoTravel. Throughout the experimentation, the precision of the algo-
rithm drops steadily. Initially, it suffers a 16-point loss in precision when
noise is included in the input data, but in later experiments, these drops
amount to a loss of up to 8 points in some experiments. Recall, on the other
hand, exhibits two large performance losses, followed by intervals of stabil-
isation of the metric. The drops are found in the experiments with 3% and
10% of noisy items. This behaviour leads to the F-Score dropping steadily
throughout the experimental process, with two large drops accentuated in
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.7681 0.0462 0.8023 0.0285 0.7863 0.0361
BlocksWorld 3% 0.7098 0.0591 0.7640 0.0363 0.7300 0.0441
5% 0.6744 0.0788 0.7551 0.0383 0.7182 0.0571
10% 0.6329 0.0842 0.7494 0.0646 0.6843 0.0725
20% 0.5995 0.1323 0.7162 0.0938 0.6571 0.1117
0% 0.7264 0.0561 0.7886 0.0362 0.7553 0.0445
Depots 3% 0.6694 0.0772 0.7840 0.0573 0.7157 0.0639
5% 0.6092 0.1003 0.7802 0.0888 0.6935 0.0925
10% 0.5993 0.1293 0.7782 0.1073 0.6861 0.1159
20% 0.5011 0.1485 0.7073 0.1246 0.6046 0.1396
0% 0.7502 0.0093 0.7749 0.0074 0.7630 0.0089
DriverLog 3% 0.7385 0.0482 0.7559 0.0239 0.7462 0.0350
5% 0.7262 0.0649 0.7483 0.0494 0.7351 0.0512
10% 0.6895 0.0952 0.7445 0.0528 0.7175 0.0746
20% 0.6895 0.0952 0.7445 0.0528 0.7175 0.0746
0% 0.7845 0.0362 0.8263 0.0146 0.8035 0.0287
ZenoTravel 3% 0.7482 0.0572 0.8085 0.0383 0.7736 0.0402
5% 0.7192 0.0603 0.7932 0.0473 0.7528 0.0526
10% 0.6500 0.0792 0.7782 0.0374 0.7172 0.0588
20% 0.6142 0.1092 0.7349 0.0602 0.6792 0.0821

Table C.11: PlanMiner-N (RIPPER) Results

the experiments indicated above. The F-Score of the domains obtained in
the most complex experiments is 49%, and none of the domains learned by
PlanMiner (RIPPER) is valid.

C.1.10 PlanMiner-N (RIPPER)

» BlocksWorld. Throughout the experimentation, there are repeated drops
in precision and recall of 4 or 5 points and 1 or 2 points, respectively, as the
experimental conditions are tightened. The values of the metrics in the most
complex experiments are 59 points (precision) and 71 points (recall), while
the F-Score performs 65%. Of all the domains learned by the algorithm, none
is valid.

Depots. At the beginning of the experimental process, the algorithm suf-
fers a 6-point loss of precision while recall remains unchanged. The metrics
maintain some resilience to noise in later experiments up to the more com-
plex ones. In these experiments, precision again suffers a 9-point drop, and
recall suffers an 8-point drop. The F-Score ranges from 75% in the experi-
ments with all data to 60% in the experiments with higher levels of noise.
Due to the behaviour of the other metrics, the biggest loss of performance
occurs in the final experiments and accounts for half of the lost F-Score. No
domain learned by the algorithm is valid.

DriverLog. Even in experiments with 10% of noisy elements, precision and
recall drop by 3 points. In later experiments, precision drops by 5 points in
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
BlocksWorld 3% 0.8923 0.0400 0.9164  0.0405 0.9034 0.0327
5% 0.7012 0.0602 0.8983 0.0805 0.8011 0.0595
10% 0.6677 0.0645 0.8787 0.0854 0.7766 0.0612
20% 0.6384 0.0723 0.8285 0.0851 0.7602 0.0666
0% 0.9724 0.0000 1.0000  0.0000 0.9863 0.0000
3% 0.6856 0.0750 0.7211 0.1416 0.6947 0.0324
Depots
5% 0.6674 0.0919 0.7145 0.0397 0.6404 0.0378
10% 0.5645 0.0555 0.7074 0.0358 0.6294 0.0598
20% 0.4912 0.0289 0.6355 0.0814 0.5828 0.0596
0% 0.9500 0.0000 1.0000  0.0000 0.9750 0.0000
DriverLog 3% 0.8642 0.0280 0.8381 0.0385 0.8544 0.0287
5% 0.7228 0.0438 0.7939 0.0428 0.7550 0.0433
10% 0.6430 0.0794 0.7821 0.0745 0.7217 0.0628
20% 0.6272 0.0828 0.7696 0.1154 0.7015 0.0853
0% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
ZenoTravel 3% 0.6925 0.0882 0.8679 0.0479 0.7451 0.0492
5% 0.6538 0.0659 0.8472 0.1236 0.7230 0.0739
10% 0.6382 0.0585 0.7358 0.0765 0.7111 0.0831
20% 0.6310 0.0582 0.6931 0.1194 0.6577 0.0918

Table C.12: PlanMiner (NSLV) Results

each set of experiments, while recall remains stable at around 74%. From
the experiments with 10% of noisy elements onwards, the F-Score shows re-
silience to noise, standing at around 71%. The domains obtained by the algo-
rithm are not valid.

« ZenoTravel. The difference in precision between experiments with non-
noisy data and those with a higher percentage of noisy elements in the input
plan traces is 17 points. During the experimentation, the greatest loss of pre-
cision is found in the experimentation with 10 per cent noise, where it drops
by 6 per cent. The difference in recall between the noiseless and noisier exper-
iments is 9 per cent, with the greatest loss of performance (4 per cent) found
in the more complex experiments. The F-Score of the learned domains ends
up at 67 points, 13 points lower than in the noiseless experiments. In no ex-
periment with the ZenoTravel domain is the validity of the learned domains
fulfilled.

C.1.11 PlanMiner (NSLV)

« BlocksWorld. The precision drops from 100 to 89 when noise is included,
while recall drops from 100 to 91. The precision again suffers a severe loss of
performance in the experiments with 5% of noisy elements, which accounts
for 19% of the algorithm’s performance. In subsequent experiments, the al-
gorithm drops by 3 per cent at each step of the experimental process. The
recall, on the other hand, maintains certain stability until the most complex
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experiments, decreasing only by 1/2% until this experimentation. In the ex-
periments with a higher percentage of noisy elements, the recall loses 5%
of its performance. The F-Score presents a difference of 24 points between
the best results (100% F-Score using non-noisy elements) and the worst re-
sults (76% F-Score in the most complex experimentation), this drop is mainly
concentrated in the experiments with 3% and 5% of noisy elements, where
it drops by 10% in each of them. With non-noisy input data, the results of
the perfect metrics, so the validity is fulfilled in them, but, from these exper-
iments onwards the validity is not fulfilled.

« Depots. The algorithm loses 29 precision points and 27 recall points by in-
cluding some noise in the input data. With 10 per cent of noisy data, the pre-
cision drops again by 10 per cent, while recall only drops significantly again
(by 7 points) in the more complex experiments. After an initial drop of 28 F-
Score points in the experiments using information with 3% noisy elements,
the algorithm contains its performance loss, showing decreases of 4% in each
step of the experimental process. The only domains learned by the algorithm
that are valid are those learned with non-noisy data.

» DriverLog. Initially, precision and recall decrease by 9 points and 17 points
respectively. In later experiments, precision decreases by 14 and 8 points,
while recall maintains a more moderate decreasing behaviour (losing 7 of
performance in total until the end of the experiment). In the most complex
experiments, the F-Score stands at 70 points, 27 points below its initial ex-
perimental value. Due to this difference in performance, the validity of the
domains is only fulfilled for those obtained from non-noisy data.

» ZenoTravel. PlanMiner(NSLV) obtains perfect results for both precision and
recall with non-noisy input data, but, by including some noise, both metrics
suffer a serious loss of performance. This drop means a 31-point decrease in
precision and a 14-point decrease in recall. As the complexity of the exper-
iments increases, the metrics continue to drop much more moderately. On
the one hand, the precision of the domains drops by about 3% at each step
of the experimental process, while, on the other hand, the recall drops by 2%
(with the exception of a 9-point drop in the experiments with 10% noise in
the plan traces). This leads to an F-Score in the most complex experiments of
65 points, 35 points below its initial value, and only domains obtained with
non-noisy data are valid.

C.1.12 PlanMiner-N (NSLV)

+ BlocksWorld. PlanMiner-N (NSLV) presents no problem in learning plan-
ning domains from noisy data, presenting perfect results throughout the ex-
perimentation and obtaining valid domains at all stages of the experimental
process.

187



APPENDIX C. PLANMINER-N’S EXPERIMENTAL RESULTS

Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
BlocksWorld 3% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
5% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
10% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
20% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
0% 0.9729 0.0000 1.0000  0.0000 0.9862 0.0000
Depots 3% 0.9726 0.0282 1.0000 0.0000 0.9867 0.0222
5% 0.9721 0.0434 1.0000  0.0000 0.9869 0.0501
10% 0.9702 0.0686 1.0000 0.0000 0.9852 0.0618
20% 0.9695 0.0688 1.0000 0.0000 0.9845 0.0862
0% 0.9505 0.0000 1.0000  0.0000 0.9755 0.0000
DriverLog 3% 0.9505 0.0000 1.0000  0.0000 0.9755 0.0000
5% 0.9473 0.0223 1.0000  0.0000 0.9747 0.0132
10% 0.9396 0.0336 1.0000 0.0000 0.9733 0.0186
20% 0.9327 0.0411 0.9867 0.0983 0.9648 0.0537
0% 1.0000 0.0000 1.0000  0.0000 1.0000 0.0000
3% 1.0000 0.0206 1.0000  0.0000 1.0000 0.0000
ZenoTravel
5% 1.0000 0.0287 1.0000  0.0000 1.0000 0.0000
10% 0.9604 0.0348 1.0000 0.0000 0.9846 0.0187
20% 0.9102 0.0572 1.0000  0.0000 0.9553 0.0262

Table C.13: PlanMiner-N (NSLV) Results

« Depots. Even in the most complex experimentation, the algorithm shows no
noticeable loss of precision or recall (the latter with values of 100% through-
out the experimental process). In the experimentation with 20% of noisy in-
put data, the precision drops 0.3 points. This slight loss of precision affects
the F-Score by causing it to lose 0.2 points from its initial value but does not
affect the validity of the learned domains.

DriverLog. With experimentation with 20% of noisy elements, the precision
drops by 2%. This is not the only loss of performance that the algorithm suf-
fersin the experimentation, but, in the previous experiments, the loss is only 1
point of the metric in total. The recall also drops by 2 points in the more com-
plex experiments, but unlike the precision, the recall remains unchanged for
the rest of the experiment. PlanMiner-N (NSLV) has no problems in learning
valid domains, except in the experiments with a higher percentage of noisy
items, where the decrease in recall negatively affects the validity of the items.

ZenoTravel. The algorithm obtains perfect results in all experimentation up
to the most complex experiments. In these experiments, the precision drops
by 4 points, although the recall is not affected. Both F-Score and validity
are slightly affected by the loss of precision, the former dropping 3 points in
the most complex experiments, and making the domains obtained in these
experiments invalid.
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.8946 0.0000 0.9124 0.0000 0.9129 0.0000
Depots 3% 0.7471 0.0621 0.8007 0.0459 0.7738 0.0575
5% 0.6144 0.1013 0.6936 0.0669 0.6532 0.0848
10% 0.4363 0.1224 0.5340 0.0613 0.4894 0.0927
20% 0.3078 0.1561 0.4116 0.1156 0.3610 0.1308
0% 0.9029 0.0000 0.9345 0.0000 0.9224 0.0000
DriverLog 3% 0.6506 0.0811 0.7088 0.0393 0.6706 0.0632
5% 0.5821 0.0117 0.6582 0.0755 0.6228 0.0957
10% 0.5108 0.1294 0.6290 0.0884 0.5703 0.1096
20% 0.4174 0.1577 0.5334  0.1113 0.4677 0.1361
0% 0.8196 0.0000 0.8592 0.0000 0.8395 0.0000
3% 0.7520 0.1044 0.8493 0.0423 0.7999 0.0791
Rovers
5% 0.7248 0.1179 0.8430 0.0507 0.7836 0.0829
10% 0.5900 0.1319 0.7562 0.0710 0.6767 0.1002
20% 0.5411 0.1649 0.6273 0.1084 0.5287 0.1347
0% 0.9505 0.0000 0.1000  0.0000 0.9740 0.0000
Satellite 3% 0.6933 0.0554 0.7648 0.0257 0.7243 0.0477
5% 0.6564 0.0959 0.7582 0.0557 0.6958 0.7386
10% 0.5927 0.1158 0.7098 0.8533 0.6462 0.1001
20% 0.5006 0.1351 0.6439 0.9565 0.5727 0.1172
0% 0.8511 0.0000 0.8758 0.0000 0.8688 0.0000
ZenoTravel 3% 0.5799 0.1195 0.6346 0.0790 0.6020 0.0927
5% 0.4930 0.1444 0.5746 0.1031 0.5383 0.1263
10% 0.4172 0.1530 0.5183 0.1142 0.4655 0.1319
20% 0.3381 0.1622 0.4564 0.1200 0.3998 0.1478

Table C.14: PlanMiner (C45) Results

C.2 Numerical domains

C.2.1 PlanMiner (C4.5)

« Depots. The algorithm loses 15 per cent precision in both the experimenta-
tion with 3 per cent noisy elements and the experimentation with 5 per cent
noisy elements. These drops remain constant, but slightly more moderate
during the rest of the experimentation until results in the more complex ex-
perimentation reach 30 per cent. Recall falls by around 10 per cent at each
step of the experimental process, with the exception of the experiments with
10 per cent noisy elements, where it falls by 16 per cent. These results lead
to an F-Score in the final experiments of 36 points. In the case of validity,
the algorithm is able to learn valid domains using data with up to 3% noisy
elements.

DriverLog. Starting from an initial precision of go points and a recall of
93, the inclusion of noise in the plan traces causes the metrics to drop to 65
and 7o points respectively. For the remainder of the experimental process,
the metrics continue to fall steadily but in a much more controlled manner.
These drops cause the precision in the more complex experiments to be 41
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points, while the recall value is 53%. In these experiments the F-Score is 46
points, half the F-Score value obtained using non-noisy input data. No do-
main learned using the algorithm is valid.

« Rovers. By including noisy elements in the input plan traces, the precision
drops from 81 points to 75 points. This contrasts with the recall behaviour,
which is only affected by 1 point in these experiments. In the experiments
with 10% noisy data, both metrics suffer a significant decrease of 13% in the
precision of the algorithm and 9% in its recall. The F-Score suffers from severe
performance drops in the more complex experiments, with a value of 52% in
these experiments. Finally, the validity of the learned domains is not met,
regardless of the level of noise contained in the input plan traces.

« Satellite. The precision of the algorithm ranges from 95 points to 50 points
throughout the experimentation. The most remarkable loss of precision (of
26 points) is found at the beginning of the experiment when noise is included
in the plan traces. In later experiments, the precision continues to drop, but
more steadily. This behaviour is repeated with recall, which initially drops
by 24 points, but subsequently moderates its decreases in 5-point steps. The
F-Score difference between the experimentation without noisy elements and
the more complex experimentation is 40 points, and no domain obtained by
the algorithm is valid.

« ZenoTravel. Similar to Satellite, the algorithm shows a large drop in per-
formance initially, which moderates in subsequent experiments. The initial
precision of the algorithm is 85 points, which drops to 57 points when noise
is included and stands at 41 points for input data with 10 per cent noise and
33 points for the noisier experiments. Recall, on the other hand, drops by 24
points initially, which gradually decreases to 45 points. The F-Score shows re-
sults consistent with the behaviour of the metric, with values of 39 points in
the most complex experiments. The algorithm is unable to learn valid plan-
ning domains.

C.2.2 PlanMiner-N (C4.5)

« Depots. The algorithm loses a large amount of precision in experiments with
5% and 20% noise. The recall is not affected by noise in the first experiments,
but from the experiments with 5% of noisy elements onwards, it drops to 14%.
In the more complex experiments, the precision is around 54 points, while the
recall is around 68. Due to the behaviour of the metrics, the F-Score initially
drops by 3 per cent, and in the experiment with 5 per cent noise, it drops by
an extra 14 per cent. These drops are repeated throughout the experimental
process until the metric is at 53%. Given the initial drop in performance,
subsequently learned domains are not valid.

« DriverLog. Starting from an initial precision and recall of 9o and 96 points
respectively, the algorithm loses 18 and 10 points in these metrics throughout
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.8928 0.0000 0.9336 0.0000 0.9121 0.0000
3% 0.8456 0.0419 0.9244 0.0475 0.8888 0.0507
Depots
5% 0.6998 0.0780 0.7872 0.0520 0.7493 0.0634
10% 0.6395 0.0828 0.7583 0.0670 0.6903 0.0729
20% 0.5400 0.1201 0.6855 0.1091 0.6150 0.1107
0% 0.9091 0.0000 0.9615 0.0000 0.9328 0.0000
DriverLog 3% 0.8638 0.0062 0.9570 0.0009 0.9022 0.0064
5% 0.8430 0.0217 0.9478 0.0290 0.8982 0.0253
10% 0.8087 0.0446 0.9290 0.0474 0.8628 0.0487
20% 0.7255 0.0690 0.8657 0.0662 0.7956 0.0691
0% 0.8122 0.0000 0.8524 0.0000 0.8391 0.0000
3% 0.7831 0.0785 0.8491 0.0395 0.8110 0.0527
Rovers
5% 0.7716 0.0823 0.8325 0.0383 0.8033 0.0582
10% 0.7153 0.1081 0.7762 0.0418 0.7425 0.0770
20% 0.6656 0.1283 0.7626 0.0430 0.7181 0.0823
0% 0.9723 0.0000 0.9748 0.0000 0.9745 0.0000
Satellite 3% 0.9265 0.0371 0.9426 0.0186 0.9255 0.0262
5% 0.9061 0.0452 0.9069 0.0202 0.9034 0.0316
10% 0.8615 0.0601 0.8643 0.0221 0.8682 0.0448
20% 0.8289 0.0999 0.8193 0.0392 0.8259 0.0692
0% 0.8606 0.0000 0.8682 0.0000 0.8686 0.0000
3% 0.8481 0.0494 0.8423 0.0061 0.8423 0.0272
ZenoTravel 5% 0.8268 0.0564 0.8236 0.0172 0.8229 0.0366
10% 0.8137 0.0827 0.8173 0.0115 0.8183 0.0593
20% 0.7677 0.1102 0.7605 0.0323 0.7675 0.0739

Table C.15: PlanMiner-N (C45) Results
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the experimentation. The biggest drop in performance is suffered by the met-
rics in the most complex experiments, but throughout the rest of the experi-
ment, each one shows different behaviour. Where precision loses around 4%
of performance as the complexity of the experiment increases, recall shows
some resilience to noise, decreasing by 1 point at most. The F-Score of the
algorithm drops more moderately than precision, until the most complex ex-
perimentation where it loses 5 per cent of its value. Despite the good initial
results, no domain learned by the algorithm is valid.

« Rovers. precision drops 3 points when noise is included in the plan traces,
in subsequent experiments the algorithm maintains some resilience to more
complex experiments. In these experiments, the metric drops 6 points at each
step of the experimental process. Recall, on the other hand, shows resilience
to noise up to the experimentation with 10% of noisy elements. In the more
complex experiments, the metrics are at 76 and 66 points, leading to the F-
Score ending up with values of 71%. No domain learned by the algorithm is
valid.

« Satellite. With precision results of 97% initially, the algorithm loses 5 per-
formance points and 3 recall points by including noise in the input data. In
subsequent experiments, precision drops by 4 per cent at each step of the
experimental process, while recall drops by around 5 per cent in these exper-
iments. As with precision and recall, the F-Score starts with results above
95 per cent and drops by 5 points when noise is included. These drops are
repeated throughout the experimentation until the final F-Score results are
82%. No domain learned by the algorithm is valid.

« ZenoTravel. The difference between the results using non-noisy data and
the results using the noisiest data is 10 points. Precision drops by 2 points,
until the most complex experimentation, where it drops by 5 points. The re-
call behaves in the same way, decreasing in steps of 2% until the experiments
with the highest possible number of noisy elements, where it decreases by
10%. In terms of F-Score, the algorithm performs 76% in the experiments
with the highest noise levels, and in terms of validity, no domain learned by
the algorithm is valid.

C.2.3 PlanMiner (RIPPER)

« Depots. The algorithm loses 22% precision by including noise, while recall
drops by 20%. In subsequent experiments, precision decreases by around 9
percent at each step of the experimental process. Recall shows a similar be-
haviour, but with more moderate drops (6 percent). These drops lead to the
F-Score of the algorithm showing values of 44% in the most complex experi-
ments. Severe drops in performance at the beginning of the experimentation
cause the domains learned by the algorithm to be invalid.

« DriverLog. The initial precision of the algorithm is 88% and drops to 64% as
the complexity of the experiments increases. The recall starts at go percent,
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.8554 0.0000 0.8715 0.0000 0.8659 0.0000
3% 0.6340 0.1281 0.6756 0.1002 0.6522 0.1191
Depots
5% 0.5551 0.1420 0.6174 0.1076 0.5897 0.1250
10% 0.4677 0.1553 0.5435 0.1189 0.5018 0.1395
20% 0.3961 0.1938 0.4993 0.1578 0.4444 0.1761
0% 0.8895 0.0000 0.9001 0.0000 0.9001 0.0000
DriverLog 3% 0.6460 0.1745 0.7274 0.1384 0.6826 0.1529
5% 0.5206 0.1899 0.6444 0.1409 0.5877 0.1677
10% 0.3709 0.1948 0.5133 0.1505 0.4389 0.1795
20% 0.3030 0.2024 0.4642 0.1613 0.3842 0.1832
0% 0.8382 0.0000 0.8591 0.0000 0.8449 0.0000
Rovers 3% 0.6889 0.0634 0.7219 0.0485 0.7051 0.0554
5% 0.6011 0.0971 0.6685 0.0791 0.6306 0.0872
10% 0.5393 0.1386 0.6119 0.9653 0.5772 0.1167
20% 0.4407 0.1553 0.5447 0.1151 0.4992 0.1381
0% 0.9253 0.0000 0.9424  0.0000 0.9425 0.0000
Satellite 3% 0.6670 0.0858 0.7553 0.0476 0.7038 0.0627
5% 0.5981 0.1135 0.7512  0.0773 0.6711 0.0994
10% 0.4259 0.1469 0.6665 0.1002 0.5427 0.1258
20% 0.3246 0.1868 0.6453 0.1195 0.4885 0.1482
0% 0.8333 0.0000 0.8702 0.0000 0.8559 0.0000
ZenoTravel 3% 0.3829 0.1308 0.4650 0.1924 0.4243 0.1646
5% 0.3476 0.1348 0.4636 0.1969 0.4031 0.1664
10% 0.3130 0.1396 0.4595 0.1986 0.3966 0.1698
20% 0.2029 0.1516 0.4022  0.2114 0.3005 0.1834

Table C.16: PlanMiner (RIPPER) Results
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but drops to 72 percent when it encounters noisy elements in the input plan
traces. Both metrics continue to decrease throughout the experimentation,
reaching 30 and 46 points for each metric respectively. The F-Score shows a
difference of 52 points between experiments with non-noisy data and exper-
iments with a higher percentage of noisy items. Finally, despite the initial
values of the metrics, no domain learned by the algorithm is valid.

« Rovers. The algorithm shows a difference of 39 points between the best and
worst precision results, with the largest decrease in precision (of 15%) being
found when noise is included, and the precision keeps dropping throughout
the experimentation. The recall suffers an initial drop of 13 points, which
is repeated throughout the experimental process in steps of 7 points at each
step. This leads to the F-Score oscillating from 84% to 49% throughout the
experiment, and the only set of domains learned are those obtained with non-
noisy data.

« Satellite. With precision results of 92% and recall of 94% initially, the al-
gorithm loses 26 and 19 performance points respectively when noise is in-
cluded. Although the subsequent performance drops are more moderate, in
the more complex experiments the precision ends up at 32 points, while the
recall shows results of 64 points. The F-Score starts with results of 94% and
drops 24 points when noise is included, during the rest of the experimen-
tation the decrease in performance causes the algorithm to show a value of
48%. The algorithm has no problem learning planning domains from non-
noisy data, but when noise is included in the plan traces, it cannot maintain
the validity of the domains learned.

« ZenoTravel. The metrics drop steadily throughout the experimentation. On
the one hand, precision shows a difference of 63 points between domains
learned with non-noisy data and those learned with data with the highest
percentage of noisy information. Of these 63 points, 50 points are lost when
noise is included in the plan traces. On the other hand, recall has an ini-
tial performance loss of 41 points, and in the more complex experiments, the
value of the metric is 47%. Finally, the F-Score results drop 55 points through-
out the experimentation, and the domains learned by the algorithm are not
valid.

C.2.4 PlanMiner-N (RIPPER)

« Depots. The algorithm remains stable until experimentation with 10% of
noisy elements in the input data. From these experiments, the precision
drops 6 points, and the recall drops 4 points. In the more complex exper-
iments, the metrics are 70 and 78 points respectively. The F-Score shows
a difference of 12 points with respect to its initial experimental results, but
none of the domains learned by the algorithm are valid.

« DriverLog. The precision of the algorithm is 88% in the noiseless experi-
ments, which drops to 71% as the complexity of the experiments increases,
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.8390 0.0000 0.8916 0.0000 0.8658 0.0000
Depots 3% 0.8390 0.0000 0.8916 0.0000 0.8658 0.0000
5% 0.8390 0.0000 0.8916 0.0000 0.8658 0.0000
10% 0.7764 0.0494 0.8555 0.0226 0.8125 0.0386
20% 0.7091 0.1220 0.7818 0.1047 0.7499 0.1178
0% 0.8870 0.0000 0.9224  0.0000 0.9001 0.0000
DriverLog 3% 0.8315 0.1004 0.8908 0.0438 0.8609 0.0713
5% 0.8197 0.1057 0.8976 0.0472 0.8598 0.0737
10% 0.7719 0.1107 0.8408 0.0653 0.8139 0.0862
20% 0.7163 0.1281 0.8156 0.0685 0.7695 0.0984
0% 0.8248 0.0000 0.8697 0.0000 0.8448 0.0000
3% 0.8012 0.0316 0.8467 0.0163 0.8297 0.0247
Rovers
5% 0.7867 0.0445 0.8454 0.0243 0.8153 0.0354
10% 0.7436 0.0617 0.8065 0.0271 0.7733 0.0460
20% 0.7045 0.0970 0.7667 0.0345 0.7397 0.0681
0% 0.9236 0.0000 0.9609 0.0000 0.9424 0.0000
Satellite 3% 0.8903 0.0409 0.9328 0.0027 0.9147 0.0269
5% 0.8693 0.0572 0.9092 0.0540 0.8895 0.0319
10% 0.8274 0.0632 0.8719 0.0650 0.8523 0.0334
20% 0.7626 0.0718 0.8469 0.0935 0.8006 0.0460
0% 0.8270 0.0000 0.8837 0.0000 0.8558 0.0000
ZenoTravel 3% 0.7984 0.0315 0.8514 0.0137 0.8263 0.0241
5% 0.7635 0.0497 0.8228 0.0232 0.7964 0.0312
10% 0.7132 0.0462 0.8116 0.0268 0.7619 0.0389
20% 0.6491 0.0525 0.7401 0.0353 0.6995 0.0457

Table C.17: PlanMiner-N (RIPPER) Results
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with the greatest loss of precision concentrated in the last experiments, a drop
of 6 points. Meanwhile, the recall shows a slight loss of 3% up to the experi-
ments with the highest number of noisy elements. In the latter experiments,
the drop in performance is 5 points and places the recall of the algorithm at
81%. The F-Score gradually drops 3/4 points until the experimentation with
20% of noisy elements in the input plan traces. Although the performance
drops are slight compared to other experiments, no domain learned by the
algorithm is valid.

« Rovers. PlanMiner-N (RIPPER) maintains a constant precision decrease of
2 points until the most complex experiments, where it drops by 6 points. Re-
call, on the other hand, loses 2 performance points but remains unchanged
up to the experiments with 10% of noisy elements. In the more complex ex-
periments, recall loses 4 performance points at each step of the experimen-
tal process, which brings the F-Score in these experiments to 73 points. Al-
though the F-Score difference is less than 10%, once the noise is included, the
domains obtained with the algorithm are no longer valid.

Satellite. Initially, the algorithm starts with precision results of 92% and re-
call results of 96%. When noise is included in the plan traces, the precision
and recall decrease by 3 points and these drops are reiterated throughout the
rest of the experimentation up to 76 and 84 points in the most complex ex-
periments. Consequently, the F-Score starts at 94 points, and at each step
of the experimental process, it drops by 3% to 8o points. PlanMiner-N (RIP-
PER) is able to obtain valid domains with input data with 3% and 5% of noisy
information.

+ ZenoTravel. On the one hand, the algorithm shows a difference in preci-
sion between experiments with noise-free data and those with the highest
percentage of noisy data of 18 points. Throughout the experimental process,
the algorithm loses precision in steps of 3 points, except in the most complex
experiments where it loses 6 points. On the other hand, the recall of the al-
gorithm drops 14 points throughout the experimentation, with decreases of
3% as the complexity of the experiments increases. The F-Score stands at 69
points in the most complex experiments, and none of the domains learned
by the algorithm is valid.

C.2.5 PlanMiner (NSLV)

« Depots. PlanMiner’s precision drops 22% when there is some noise in the
input tracks. For the noisiest experiments, this figure drops to 64%. Plan-
Miner has a recall of 100 per cent with the noiseless data, but when there
is some noise, that value drops to 78 per cent. The results remain stable up
to 20% noise and fall to around 2% with the increasing complexity of the ex-
periments. PlanMiner does not get valid planning domains when there is
noise and presents F-Score results below 75 per cent when it encounters some
noise.
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.9490 0.0000 1.0000 0.0000 0.9633 0.0000
3% 0.7244 0.0216 0.7812 0.0686 0.7450 0.0460
Depots
5% 0.7231 0.0281 0.7718 0.0723 0.7364 0.0475
10% 0.7102 0.0419 0.7679 0.0768 0.7067 0.0493
20% 0.6461 0.0478 0.6625 0.0787 0.6901 0.0491
0% 0.9182 0.0000 0.9807 0.0000 0.9487 0.0000
. 3% 0.7677 0.0403 0.6402 0.0375 0.6788 0.0452
DriverLog 5% 0.6942 0.0625 0.6407 0.0601 0.6655 0.0484
10% 0.6354 0.0645 0.6139 0.0928 0.6374 0.0691
20% 0.5725 0.1158 0.5403 0.1023 0.5535 0.0912
0% 0.7756 0.0000 1.0000 0.0000 0.8734 0.0000
3% 0.3574 0.0401 0.7063 0.0317 0.4635 0.0336
Rovers
5% 0.2968 0.0563 0.6601 0.0610 0.4174 0.0402
10% 0.2918 0.0249 0.6554 0.0617 0.4024 0.0427
20% 0.2711 0.0375 0.6341 0.0353 0.3796 0.0646
0% 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
. 3% 0.6818 0.0535 0.4930 0.0435 0.5694 0.0565
Satellite
5% 0.6141 0.0732 0.4403 0.0686 0.4909 0.0594
10% 0.5553 0.0857 0.4072 0.0688 0.4872 0.0695
20% 0.4865 0.0895 0.4077 0.0896 0.4609 0.0777
0% 0.8127 0.0000 1.0000 0.0000 0.8969 0.0000
ZenoTravel 3% 0.4928 0.0433 0.6157 0.0587 0.5464 0.0453
5% 0.4758 0.0439 0.5543 0.0611 0.5107 0.0567
10% 0.4478 0.0567 0.5154 0.0804 0.4774 0.0613
20% 0.4358 0.0701 0.4855 0.0890 0.4588 0.0655

Table C.18: PlanMiner (NSLV) Results
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« DriverLog. PlanMiner loses 34 points of precision on noisy data. This loss
increases further as the complexity of the experiments increases. If the pro-
portion of noisy elements in the entered plan curves is 20 per cent, Plan-
Miner’s recall drops to 57 per cent. PlanMiner’s recall is between 64% and
54%, depending on the complexity of the experiment. Compared to the re-
call results without noise, PlanMiner has a recall loss of 34% at best. As a
result, the F-Score of the domains drops sharply when some noise is added
and shows results of 67% (from the original 94.8% in the experiment without
noise). These results deteriorate to 55% in the more complex experiments.
No range is valid as soon as noise is added.

« Rovers. When PlanMiner is confronted with noise, the precision drops to
35% of the original value of 77%. This shows the same problem as in the ex-
periments with outliers. As a result, PlanMiner achieves an precision of 27%
in the experiments with more noisy data. The recall metrics improve com-
pared to the precision metrics. However, PlanMiner loses 30 recall points
when noise is included. After this sharp drop in recall, PlanMiner worsens
the results in a more stable manner and finally shows a recall of 63%. As
expected, if noise is included in the input data, the F-Score results drop dra-
matically from 87% to 46%. In terms of validity, this means that no noise
learned domain is valid.

« Satellite. Following the same pattern as in the previous experiments, Plan-
Miner suffers from a severe loss of precision when it is confronted with noise.
This loss is reflected in a decrease from 100% to 68% when noise is added. As
the experiments proceed, the precision results drop to 61%, 55% and 48% in
each individual case. PlanMiner’s recall drops to 50 per cent when there is
noise in the input data. This downward trend stabilizes in the experiments
with higher noise. As expected, F-Score results decrease 56% as the noise is
present and gradually decrease to 46% as the complexity of the experiments
increases.

« ZenoTravel. With 3% noisy input data, PlanMiner loses 32% of its precision.
These noise values gradually decrease and stabilize at around 43% precision
for the noisiest input data. As with the precision, the recall of PlanMiner is
also around 61%, with the initial drop in the very steep score being large and
stabilizing in the further course of the experiments. The results of the F-Score
show a logical trend with respect to the results of the other metrics, with a
large initial drop in the metric.

C.2.6 PlanMiner-N (NSLV)

« Depots. PlanMiner-N loses some precision when noise is included and drops
to 93%, but keeps these results until the experiments with input data with 10%
noisy elements. As the complexity of the experiments increases, the precision
drops to 85%. The recall values are between 96% and 88%. The greatest dips
are found in the transition from non-noisy examples to examples with 3% and
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Domain Noise | uPrecision oPrecision uRecall oRecall uF-Score oF-Score
0% 0.9492 0.0000 1.0000 0.0000 0.9637 0.0000
3% 0.9315 0.0742 0.9632 0.0381 0.9467 0.0700
Depots
5% 0.9315 0.0742 0.9275 0.1064 0.9295 0.0913
10% 0.8722 0.0886 0.9009 0.1063 0.8827 0.0919
20% 0.8489 0.1060 0.8847 0.1597 0.8668 0.1007
0% 0.9186 0.0000 0.9802 0.0000 0.9483 0.0000
DriverLog 3% 0.9108 0.0300 0.9734 0.0150 0.9467 0.0181
5% 0.9017 0.0495 0.9534 0.0691 0.9266 0.0415
10% 0.8502 0.0454 0.9474 0.0760 0.9035 0.0475
20% 0.8139 0.0827 0.9239 0.0994 0.8687 0.0727
0% 0.7754 0.0000 1.0000 0.0000 0.8730 0.0000
3% 0.7575 0.0240 0.9067 0.0318 0.8312 0.0333
Rovers
5% 0.7565 0.0371 0.8609 0.0358 0.8173 0.0406
10% 0.6910 0.0400 0.8550 0.0613 0.8022 0.0423
20% 0.6712 0.0565 0.8349 0.0616 0.7791 0.0645
0% 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
Satellite 3% 0.9725 0.0116 0.9734 0.0168 0.9722 0.0159
5% 0.9725 0.0116 0.9734 0.0168 0.9722 0.0159
10% 0.9320 0.0212 0.9732 0.0169 0.9528 0.0196
20% 0.8581 0.0347 0.9584 0.0215 0.8831 0.0295
0% 0.8129 0.0000 1.0000 0.0000 0.8962 0.0000
ZenoTravel 3% 0.8089 0.0168 0.9774 0.0278 0.8927 0.0160
5% 0.7952 0.0279 0.9152 0.0440 0.8485 0.0286
10% 0.7720 0.0440 0.8775 0.0479 0.8193 0.0426
20% 0.7524 0.0506 0.8157 0.0755 0.7815 0.0594

Table C.19: PlanMiner-N (NSLV) Results
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from 3% to 5%. The F-Score of PlanMiner-N in this area is always above 85%.
If PlanMiner-N is faced with some noise, it will lose 1.5 per cent F-Score.
In the following experiments, the F-score gradually decreases, resulting in
invalid domains.

DriverLog. In the first experiments, the precision decreased by 0.8%. In
these more complex experiments, PlanMiner-N loses 5% and 3.5% of preci-
sion at 10% and 20% noise, respectively. The recall results follow the same
trend as the precision results and lose 0.8% recall with 3% noise. At 5% and
10%, the measured values stabilize at around 95% recall. PlanMiner-N suffers
a small additional drop at 20 per cent, which ultimately drops the domain
recall to 92 per cent. The F-Score results are between 94% and 87%, which
shows little variance in the first few experiments. Although the results are
good, the loss of key elements in a certain action of 3% noise degrades the
domains.

Rovers. PlanMiner-N lowers the precision of the learned domains to 75 per
cent with 3% and 5% noise. With 20 per cent noisy elements, the precision
drops to 67 per cent. The recall of PlanMiner-N drops by about 10% when
it is confronted with some noise. For the more complex experiments, the
recall rate increases by more than 5%, albeit gradually. The end result of the
experiment is a recall of 83.4%, 16.6% less than the noiseless data. The F-Score
metric loses 5% F-Score when faced with noise. The loss of F-Score is 81%
when using input data with 5% noisy elements and invalidates the domains.

Satellite. PlanMiner-N shows itself to be noise-resistant at certain noise lev-
els. The precision drops 3% when noise is added but stays at these values
until 10% noisy data occurs. In more complex experiments, the precision of
PlanMiner-N is around 85%. PlanMiner-N’s recall remains unchanged un-
til the noisiest data is used. In the most complex experiments, PlanMiner-N
achieves a recall value of 95.8%. PlanMiner-N achieved an F-Score of 97.2%
up to the experiments that use input data with 10% noise. From these noise
values, the F-Score of the learned domains drops to 95.2% and to 88.3% for
experiments with 10% and 20% noise. The domains are only invalid in the
latter experiment.

ZenoTravel. The precision of the results drops by 0.4 percentage points in
the first experiments. In more complex experiments, PlanMiner-N loses 4.4%
and 6% precision at 10% and 20% noise, respectively. PlanMiner-N keeps the
domain recall between 97% and 81%, depending on the complexity of the
experiments. The F-Score metric is 89.2% when noise is included. At 5%
noise, the F-Score drops by a further 5%, which means that the domains are
no longer valid. This decrease continues in the more complex experiments
up to 78% F-Score.
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PlanMiner-C’s learned

domains

D.1 Bait domain

(define (domain Bait)

(:requirements

requality
:negative—preconditions
:typing

(:types
cell avatar — object

)

(:predicates

(hasKey ?a — avatar)

(conn_R ?c1 ?c2 —
(conn_L ?c1 ?c2 —
(conn_U ?c1 ?c2 —
(conn_D ?c1 ?c2 —

(wallln ?c¢ — cell)

(exitIn ?c — cell)

(keyIn ?c — cell)

(holeIn ?c¢ — cell)
)

(: functions
(row ?c — cell)
(column ?c¢ — cell)

(posX ?a — avatar)
(posY ?a — avatar)

cell)
cell)
cell)
cell)
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)
(:action actUp
:parameters (?a — avatar ?c1 ?c2 ?c3 — cell)
:precondition
(and
(:
(posX ?a)
(row ?c1)
)
(=
(posY ?a)
(column ?c1)
)
)
ceffect
(and
;Caso 1: Empujar muro
(when
(and
(conn_U ?c1 ?c2)
(conn_U ?c2 ?c¢3)
(wallIn ?c2)
(not (wallln ?c3))
(not (holeln ?c3))
(not (keyIn ?c3))
(not (exitIn ?c3))
)
(and
(decrease (posX ?a) 1)
(not (wallln ?c2))
(wallln ?c3)
)
)
;Caso 2: Tapar agujero con muro
(when
(and
(conn_U ?c1 ?c2)
(conn_U ?c2 ?c¢3)
(wallln ?c2)
(holeIn ?c3)
)
(and
(decrease (posX ?a) 1)
(not (wallln ?c2))
(not (holeIn ?c3))
)
)
;Caso 3: Coger llave
(when
(and

(conn_U ?c1 ?c2)
(keyIn ?c2)
(not (wallln ?c2))
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(not (holeIn ?c2))

)

(and
(decrease (posX ?a) 1)
(not (keyIn ?c2))
(hasKey ?a)

)

;Caso 4: Moverse
(when
(and
(conn_U ?c1 ?c2)
(not (wallln ?c2))
(not (holeln ?c2))
(not (keyIn ?c2))
)
(and
(decrease (posX ?a) 1)

)

(:action actDown
:parameters (?a — avatar ?c1i ?c2 ?c3 — cell)
:precondition

(and

(:
(posX ?a)
(row ?c1)

)

(=
(posY ?a)
(column ?c1)

)
ceffect
(and
;Caso 1: Empujar muro
(when
(and
(conn_D ?c1 ?c2)
(conn_D ?c2 ?c¢3)
(wallln ?c2)
(not (wallln ?c3))
(not (holeIn ?c3))
(not (keyIn ?c3))
(not (exitIn ?c3))
)
(and
(increase (posX ?a) 1)
(not (wallln ?c2))
(wallln ?c3)
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;Caso 2: Tapar agujero con muro

(when
(and
(conn_D ?c1 ?c2)
(conn_D ?c2 ?c3)
(wallln ?c2)
(holeIn ?c3)
)
(and
(increase (posX ?a) 1)
(not (wallln ?c2))
(not (holeIn ?c3))
)
)
;Caso 3: Coger llave
(when
(and
(conn_D ?c1 ?c2)
(keyIn ?c2)
(not (wallln ?c2))
(not (holeln ?c2))
)
(and
(increase (posX ?a) 1)
(not (keyIn ?c2))
(hasKey ?a)
)
)
;Caso 4: Moverse
(when
(and
(conn_D ?c1 ?c2)
(not (wallln ?c2))
(not (holeIn ?c2))
(not (keyIn ?c2))
)
(and
(increase (posX ?a) 1)
)
)

(:action actRight
:parameters (?a — avatar ?c1 ?c2 ?c3 — cell)

:precondition
(and
( =
(posX ?a)
(row ?c1)
)
( 3
(posY ?a)
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(column ?c1)

)
)
ceffect
(and
;Caso 1: Empujar muro
(when
(and
(conn_R ?c1 ?c2)
(conn_R ?c2 ?c¢3)
(wallln ?c2)
(not (wallln ?c3))
(not (holeIn ?c3))
(not (keyIn ?c3))
(not (exitIn ?c3))
)
(and
(increase (posY ?a) 1)
(not (wallln ?c2))
(wallln ?c3)
)
)
;Caso 2: Tapar agujero con muro
(when
(and
(conn_R ?c1 ?c2)
(conn_R ?c2 ?c¢3)
(wallIn ?c2)
(holeIn ?c3)
)
(and
(increase (posY ?a) 1)
(not (wallln ?c2))
(not (holeIn ?c3))
)
)
;Caso 3: Coger llave
(when
(and
(conn_R ?c1 ?c2)
(keyIn ?c2)
(not (wallln ?c2))
(not (holeIn ?c2))
)
(and
(increase (posY ?a) 1)
(not (keyIn ?c2))
(hasKey ?a)
)
)
;Caso 4: Moverse
(when
(and
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(conn_R ?c1 ?c2)
(not (wallln ?c2))
(not (holeIn ?c2))
(not (keyIn ?c2))

)

(and
(increase (posY ?a) 1)

)

)

(:action actLeft
:parameters (?a — avatar ?c1i ?c2 ?c3 — cell)
:precondition
(and
(:
(posX ?a)
(row ?c1)
)
(:
(posY ?a)
(column ?c1)

)
reffect
(and
;Caso 1: Empujar muro
(when
(and
(conn_L ?c1 ?c2)
(conn_L ?c2 ?c¢3)
(wallln ?c2)
(not (wallln ?c3))
(not (holeIn ?c3))
(not (keyIn ?c3))
(not (exitIn ?c3))
)
(and
(decrease (posY ?a) 1)
(not (wallln ?c2))
(wallln ?c3)

)

;Caso 2: Tapar agujero con muro
(when
(and
(conn_L ?c1 ?c2)
(conn_L ?c2 ?c3)
(wallln ?c2)
(holeIn ?c3)
)
(and
(decrease (posY ?a) 1)
(not (wallln ?c2))
(not (holeIn ?c3))
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)
)
;Caso 3: Coger llave
(when
(and
(conn_L ?c1 ?c2)
(keyIn ?c2)
(not (wallln ?c2))
(not (holeIn ?c2))
)
(and
(decrease (posY ?a) 1)
(not (keyIn ?c2))
(hasKey ?a)
)
)
;Caso 4: Moverse
(when
(and
(conn_L ?c1 ?c2)
(not (wallln ?c2))
(not (holeIn ?c2))
(not (keyIn ?c2))
)
(and
(decrease (posY ?a) 1)
)
)
)
)
(:action actUse
:parameters (?a — avatar ?c1i ?c2 — cell)
:precondition
(and
(:
(posX ?a)
(row ?c1)
)
(=
(posY ?a)

(column ?c1)

)

)
:effect (and)

Listing D.1: ZenoTravel numeric planning domain

D.2 Zelda domain
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(define (domain Zelda)

(

(

(

:parameters (?a — avatar ?c1i ?c2 — cell)

:requirements
requality
:negative—preconditions
:typing
rtypes
cell avatar — object
:predicates
(hasKey ?a — avatar)
(orient_R ?a — avatar)
(orient_L ?a — avatar)
(orient_U ?a — avatar)
(orient_D ?a — avatar)
(conn_R ?c1 ?c2 — cell)
(conn_L ?c1 ?c2 — cell)
(conn_U ?c1 ?c2 — cell)
(conn_D ?c1 ?c2 — cell)
(wallln ?c¢ — cell)
(exitIn ?c¢ — cell)
(keyIn ?c — cell)
(monsterIn ?c¢ — cell)
:functions
(row ?c — cell)
(column ?c¢ — cell)
(posX ?a — avatar)
(posY ?a — avatar)
raction actUp
:precondition
(and
(:
(posX ?a)
(row ?c1)
)
(posY ?a)
(column ?c1)
)
)
reffect
(and
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(when
(and
(:
(posX ?a)
(row ?c2)
)
(:
(posY ?a)
(column ?c2)
)
(orient_R ?a)
(not (orient_U ?a))
)
(and
(not (orient_R ?a))
(orient_U ?a)
)
)
(when
(and
(:
(posX ?a)
(row ?c2)
)
(:
(posY ?a)
(column ?c2)
)
(orient_L ?a)
(not (orient_U ?a))
)
(and
(not (orient_L ?a))
(orient_U ?a)
)
)
(when
(and
(=
(posX ?a)
(row ?c2)
)
(:
(posY ?a)
(column ?c2)
)
(orient_D ?a)
(not (orient_U ?a))
)
(and
(not (orient_D ?a))
(orient_U ?a)
)
)
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(when
(and
(orient_U ?a)
(conn_U ?c1 ?c2)
(keyIn ?c2)
(not (wallln ?c2))
(not (monsterIn ?c2))
)
(and
(decrease (posX ?a) 1)
(not (keyIn ?c2))
(hasKey ?a)
)
)
(when
(and
(orient_U ?a)
(conn_U ?c1 ?c2)
(not (wallln ?c2))
(not (monsterIn ?c2))
(not (keyIn ?c2))
)
(and
(decrease (posX ?a) 1)
)
)

(:action actDown
:parameters (?a — avatar ?c1i ?c2 — cell)

:precondition
(and
(:
(posX ?a)
(row ?c1)
)
(:
(posY ?a)
(column ?c1)
)
)
reffect
(and
(when
(and
(:
(posX ?a)
(row ?c2)
)
(:
(posY ?a)
(column ?c2)
)

(orient_R ?a)
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(not (orient_D ?a))

)
(and
(not (orient_R ?a))
(orient_D ?a)
)
)
(when
(and
(=
(posX ?a)
(row ?c2)
)
(:
(posY ?a)
(column ?c2)
)
(orient_L ?a)
(not (orient_D ?a))
)
(and
(not (orient_L ?a))
(orient_D ?a)
)
)
(when
(and
(:
(posX ?a)
(row ?c2)
)
(=
(posY ?a)
(column ?c2)
)
(orient_U ?a)
(not (orient_D ?a))
)
(and
(not (orient_U ?a))
(orient_D ?a)
)
)
(when
(and
(orient_D ?a)
(conn_D ?c1 ?c2)
(keyIn ?c2)
(not (wallln ?c2))
(not (monsterIn ?c2))
)
(and

(increase (posX ?a) 1)
(not (keyIn ?c2))
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(hasKey ?a)

)
)
(when
(and
(orient_D ?a)
(conn_D ?c1 ?c2)
(not (wallln ?c2))
(not (monsterIn ?c2))
(not (keyIn ?c2))
)
(and
(increase (posX ?a) 1)
)
)

(:action actRight

:parameters (?a — avatar ?c1 ?c2 — cell)
:precondition
(and
(=
(posX ?a)
(row ?c1)
)
( =
(posY ?a)
(column ?c1)
)
)
ceffect
(and
(when
(and
(:
(posX ?a)
(row ?c2)
)
(:
(posY ?a)
(column ?c2)
)
(orient_L ?a)
(not (orient_R ?a))
)
(and
(not (orient_L ?a))
(orient_R ?a)
)
)
(when
(and

(=
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(posX ?a)
(row ?c2)
)
(=
(posY ?a)
(column ?c2)
)

(orient_U ?a)
(not (orient_R ?a))

)
(and
(not (orient_U ?a))
(orient_R ?a)
)
)
(when
(and
(:
(posX ?a)
(row ?c2)
)
(:
(posY ?a)
(column ?c2)
)
(orient_D ?a)
(not (orient_R ?a))
)
(and
(not (orient_D ?a))
(orient_R ?a)
)
)
(when
(and
(orient_R ?a)
(conn_R ?c1 ?c2)
(keyIn ?c2)
(not (wallln ?c2))
(not (monsterIn ?c2))
)
(and
(increase (posY ?a) 1)
(not (keyIn ?c2))
(hasKey ?a)
)
)
(when
(and

(orient_R ?a)
(conn_R ?c1 ?c2)
(not (wallln ?c2))
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(not (monsterIn ?c2))
(not (keyIn ?c2))

)
(and
(increase (posY ?a) 1)
)
)
)
)
(:action actLeft
:parameters (?a — avatar ?c1i ?c2 — cell)
:precondition
(and
(:
(posX ?a)
(row ?c1)
)
(:
(posY ?a)
(column ?c1)
)
)
ceffect
(and
(when
(and
(:
(posX ?a)
(row ?c2)
)
(=
(posY ?a)
(column ?c2)
)
(orient_R ?a)
(not (orient_L ?a))
)
(and
(not (orient_R ?a))
(orient_L ?a)
)
)
(when
(and
(:
(posX ?a)
(row ?c2)
)
(posY ?a)
(column ?c2)
)
(orient_D ?a)
(not (orient_L ?a))
)
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(and
(not (orient_D ?a))
(orient_L ?a)

)
)
(when
(and
(=
(posX ?a)
(row ?c2)
)
(:
(posY ?a)
(column ?c2)
)
(orient_U ?a)
(not (orient_L ?a))
)
(and
(not (orient_U ?a))
(orient_L ?a)
)
)
(when
(and
(orient_L ?a)
(conn_L ?c1 ?c2)
(keyIn ?c2)
(not (wallln ?c2))
(not (monsterIn ?c2))
)
(and
(decrease (posY ?a) 1)
(not (keyIn ?c2))
(hasKey ?a)
)
)
(when
(and
(orient_L ?a)
(conn_L ?c1 ?c2)
(not (keyIn ?c2))
(not (wallln ?c2))
(not (monsterIn ?c2))
(not (keyIn ?c2))
)
(and
(decrease (posY ?a) 1)
)
)
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(:action actUse
:parameters (?a — avatar ?c1 ?c2 — cell)
:precondition
(and
(:
(posX ?a)
(row ?c1)

(posY ?a)
(column ?c1)

ceffect
(and
(when
(and
(orient_L ?a)
(conn_L ?c1 ?c2)
(monsterIn ?c2)
)
(and
(not (monsterIn ?c2))
)
)

(when
(and
(orient_R ?a)
(conn_R ?c1 ?c2)
(monsterIn ?c2)
)
(and
(not (monsterIn ?c2))
)
)

(when
(and
(orient_U ?a)
(conn_U ?c1 ?c2)
(monsterIn ?c2)
)
(and
(not (monsterIn ?c2))
)
)

(when

(and
(orient_D ?a)
(conn_D ?c1 ?c2)
(monsterIn ?c2)

)

(and
(not (monsterIn ?c2))

)
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Listing D.2: ZenoTravel numeric planning domain

D.3 Boulder Dash

(define (domain Boulder)
(:requirements

requality
:negative—preconditions
:typing

)

(:types
cell avatar — object

)

(:predicates
(hasGem ?a — avatar)

(orient_R ?a — avatar)
(orient_L ?a — avatar)
(orient_U ?a — avatar)
(orient_D ?a — avatar)

(conn_R ?c1 ?c2 — cell)
(conn_L ?c1 ?c2 — cell)
(conn_U ?c1 ?c2 — cell)

(conn_D ?c1 ?c2 — cell)

(wallln ?c¢ — cell)
(exitIn ?c — cell)
(gemIn ?c — cell)
(rockIn ?c — cell)

)

(: functions
(hasGem ?a — avatar)
(row ?c — cell)

(column ?c¢ — cell)

(posX ?a — avatar)
(posY ?a — avatar)

)

(:action actUp
:parameters (?a — avatar ?c1 ?c2 — cell)
:precondition
(and
(= (posX ?a) (row ?c1))
(= (posY ?a) (column ?c1))
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)
ceffect
(and
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_R ?a)
(not (orient_U ?a))
)
(and
(not (orient_R ?a))
(orient_U ?a)
)
)
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_L ?a)
(not (orient_U ?a))
)
(and
(not (orient_L ?a))
(orient_U ?a)
)
)
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_D ?a)
(not (orient_U ?a))
)
(and
(not (orient_D ?a))
(orient_U ?a)
)
)
(when
(and
(orient_U ?a)
(conn_U ?c1 ?c2)
(gemIn ?c2)
(not (wallln ?c2))
(not (rockIn ?c2))
)
(and
(decrease (posX ?a) 1)
(not (gemIn ?c2))
(increase (hasGem ?a) 1)
)
)
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(when
(and
(orient_U ?a)
(conn_U ?c1 ?c2)
(not (wallln ?c2))
(not (rockIn ?c2))
(not (gemIn ?c2))
)
(and
(decrease (posX ?a) 1)
)
)
)
)
(:action actDown
:parameters (?a — avatar ?c1 ?c2 — cell)
:precondition
(and

(= (posX ?a) (row ?c1))
(= (posY ?a) (column ?c1))

)
ceffect
(and
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_R ?a)
(not (orient_D ?a))
)
(and
(not (orient_R ?a))
(orient_D ?a)
)
)
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_L ?a)
(not (orient_D ?a))
)
(and
(not (orient_L ?a))
(orient_D ?a)
)
)
(when
(and

(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_U ?a)

(not (orient_D ?a))
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)
(and
(not (orient_U ?a))
(orient_D ?a)
)
)
(when
(and
(orient_D ?a)
(conn_D ?c1 ?c2)
(gemIn ?c2)
(not (wallln ?c2))
(not (rockIn ?c2))
)
(and
(increase (posX ?a) 1)
(not (gemIn ?c2))
(increase (hasGem ?a) 1)
)
)
(when
(and
(orient_D ?a)
(conn_D ?c1 ?c2)
(not (wallln ?c2))
(not (rockIn ?c2))
(not (gemIn ?c2))
)
(and
(increase (posX ?a) 1)
)
)

(:action actRight
:parameters (?a — avatar ?c1 ?c2 — cell)
:precondition
(and
(= (posX ?a) (row ?c1))
(= posY ?a) (column ?c1))

)
ceffect
(and
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_L ?a)
(not (orient_R ?a))
)
(and

(not (orient_L ?a))
(orient_R ?a)
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)
)
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_U ?a)
(not (orient_R ?a))
)
(and
(not (orient_U ?a))
(orient_R ?a)
)
)
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_D ?a)
(not (orient_R ?a))
)
(and
(not (orient_D ?a))
(orient_R ?a)
)
)
(when
(and
(orient_R ?a)
(conn_R ?c1 ?c2)
(gemIn ?c2)
(not (wallln ?c2))
(not (rockIn ?c2))
)
(and
(increase (posY ?a) 1)
(not (gemIn ?c2))
(increase (hasGem ?a) 1)
)
)
(when
(and
(orient_R ?a)
(conn_R ?c1 ?c2)
(not (wallln ?c2))
(not (rockIn ?c2))
(not (gemIn ?c2))
)
(and
(increase (posY ?a) 1)
)
)
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)

(:action actLeft
:parameters (?a — avatar ?c1i ?c2 — cell)
:precondition
(and
(= (posX ?a) (row ?c1))
(= (posY ?a) (column ?c1))

)
ceffect
(and
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_R ?a)
(not (orient_L ?a))
)
(and
(not (orient_R ?a))
(orient_L ?a)
)
)
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_D ?a)
(not (orient_L ?a))
)
(and
(not (orient_D ?a))
(orient_L ?a)
)
)
(when
(and
(= (posX ?a) (row ?c2))
(= (posY ?a) (column ?c2))
(orient_U ?a)
(not (orient_L ?a))
)
(and
(not (orient_U ?a))
(orient_L ?a)
)
)
(when
(and

(orient_L ?a)
(conn_L ?c1 ?c2)
(gemIn ?c2)

(not (wallln ?c2))
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(not (rockIn ?c2))

)
(and
(decrease (posY ?a) 1)
(not (gemIn ?c2))
(increase (hasGem ?a) 1)
)
)
(when
(and
(orient_L ?a)
(conn_L ?c1 ?c2)
(not (gemIn ?c2))
(not (wallln ?c2))
(not (rockIn ?c2))
(not (gemIn ?c2))
)
(and
(decrease (posY ?a) 1)
)
)

)

(:action actUse
:parameters (?a — avatar ?c1 ?c2 — cell)
:precondition
(and
(= (posX ?a) (row ?c1))
(= (posY ?a) (column ?c1))

)
reffect
(and
(when
(and
(orient_L ?a)
(conn_L ?c1 ?c2)
(rockIn ?c2)
)
(and
(not (rockIn ?c2))
)
)
(when
(and
(orient_R ?a)
(conn_R ?c1 ?c2)
(rockIn ?c2)
)
(and
(not (rockIn ?c2))
)
)
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(when
(and
(orient_U ?a)
(conn_U ?c1 ?c2)
(rockIn ?c2)
)
(and
(not (rockIn ?c2))
)
)
(when
(and
(orient_D ?a)
(conn_D ?c1 ?c2)
(rockIn ?c2)
)
(and
(not (rockIn ?c2))
)
)

Listing D.3: Boulder Dash videogame planning domain
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Acronyms and Abbreviations

N Artificial Intelligence

AML . ... ... ... . ... . Action Model Learning

L Automated Planning

CWA . ... ... L. Closed World Assumption

GVG-AI . ... ... ... ..... General Video Game Al

KE ... ... . 0. .. Knowledge Engineering

ML ... .. . Machine Learning

OWA . . .. .. .. . Open World Assumption

PDDL . ... ... .. ....... Planning Definition Domain Language
PM . ... . PlanMiner

SR . .. Symbolic Regression

STRIPS . . . .. .. .. ... .... Stanford Research Institute Problem Solver
XAL ..o eXplanaible Al
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