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SUMMARY 

Systemic sclerosis (SSc) is a complex rheumatic autoimmune disease 

(AD) with an important genetic and environmental component, characterized 

by the triad of pathological hallmarks: extensive fibrosis of skin and internal 

organs, vascular damage, and altered immune response (including the 

presence of autoantibodies). SSc shows a wide range of phenotypical 

manifestations and heterogeneous clinical characteristics, making it difficult 

to treat. 

The present PhD dissertation is focused on the study of the genetic 

component of SSc. To date, more than 25 loci have been firmly associated to 

SSc by genome-wide association studies (GWAS). Nevertheless, most of these 

studies have been performed in Caucasian population. In order to extent the 

knowledge of the genetic component of SSc, we performed a GWAS in the 

Iranian and Turkish populations, confirming previous associations both 

within the human leukocyte antigen (HLA) region, by performing an extensive 

study of this locus, and outside this region, such as IRF5-TNPO3 and NFKB1. 

We also identified a suggestive association within the GOT1-NKX2.3 locus, 

suggesting NKX2.3 as a potential candidate gene in SSc. In addition, we also 

studied the shared genetic component between SSc and other immune-

mediated disorders through cross-disease meta-GWAS approach. Using this 

strategy, we found four new loci shared with Crohn’s disease (STAT3, IRF1, 

IL12RB2, and ZBTB9-BAK1), and identified the IL-12/IL-23 signaling as one of 

a most common relevant pathway for both diseases. Furthermore, we 

analyzed the genetic component shared among four systemic seropositive 

rheumatic diseases (SSc, rheumatoid arthritis, systemic lupus erythematosus 

and idiopathic inflammatory myopathy) identifying 26 genome-wide 

significant common loci for at least two conditions, of which NAB1, DGKQ, 
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KPNA4-ARL14, LIMK1, and PRR12 had not been reported before, as well as 

determining that the type I IFN signalling pathway and its regulation play a 

more prominent role in these disorders. 

However, one of the main limitations of GWAS is the difficulty to 

identify true causal genes, variants and cell types. Thus, we performed 

functional genomics studies including expression quantitative trait locus 

(eQTL) analysis and chromosome conformation capture studies (promoter 

capture Hi-C, pCHi-C) in order to provide a mechanistic link between non-

coding SSc-associated variants and their target genes. Through the integration 

of GWAS and RNA-seq data we performed the first eQTL analysis in SSc, 

revealing that more than half of the eGenes detected were associated with the 

most important SSc hallmarks and highlighting the crucial role of the 

apoptotic process in SSc. On the other hand, pCHi-C analysis performed in 

CD4+ T cells and CD14+ monocytes from SSc patients and healthy controls, 

revealed cell-type specific interactions between SSc-associated loci and 

previously confirmed causal genes, such as IRF8 in CD14+ monocytes, and 

CD247 and STAT4 in CD4+ T cells, as well as new potential candidate genes, 

especially CXCR5, which plays an important role in the differentiation of 

follicular helper T cells and has been associated with other ADs. 

Finally, drug repurposing analyses performed throughout the 

different conducted studies identified more than 20 drug target genes already 

targeted in similar immune-mediated diseases, thus contributing to the 

potential repositioning of different drugs for its use in systemic sclerosis 

treatment. 
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RESUMEN 

La esclerosis sistémica (SSc) es una enfermedad autoimmune 

reumática compleja, que presenta un fuerte componente genético y ambiental. 

Esta enfermedad está caracterizada por la presencia de fibrosis que puede 

afectar a la piel y a órganos internos, un fuerte daño vascular y una respuesta 

inmunológica alterada (incluyendo la presencia de auto-anticuerpos). 

Además, la SSc muestra un amplio rango de manifestaciones fenotípicas, así 

como características clínicas muy heterogéneas, lo que dificulta su correcto 

tratamiento. 

La presente tesis doctoral se centró en el estudio del componente 

genético subyacente a la SSc. Hasta el momento, se han identificado más de 25 

loci asociados con la susceptibilidad a desarrollar SSc mediante los llamados 

estudios de asociación de genoma completo (GWAS). Sin embargo, la mayoría 

de estos estudios han sido realizados en población caucásica. Con el objetivo 

de conocer mejor las bases genéticas de la SSc en otras poblaciones, 

realizamos un GWAS en pacientes con SSc de origen iraní y turco, confirmando 

las asociaciones previamente descritas, tanto dentro de la región del antígeno 

leucocitario humano (HLA), mediante un estudio en profundidad de la misma, 

como fuera de dicha región, incluyendo IRF5-TNPO3 y NFKB1. Además, 

identificamos una asociación a nivel sugestivo del locus GOT1-NKX2.3, 

apuntando a NKX2.3 como un gen candidato potencial en SSc. También 

quisimos estudiar las bases genéticas compartidas entre la SSc y otras 

enfermedades inmunomediadas a través de un meta-análisis de datos de 

GWAS. Mediante esta estrategia, encontramos cuatro nuevos loci de 

susceptibilidad compartidos con la enfermedad de Crohn (STAT3, IRF1, 

IL12RB2 y ZBTB9-BAK1) e identificamos la ruta de señalizacion IL-12/IL-23 

como una de las principales vías patogénicas comunes a ambas enfermedades. 
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Además, se analizó el componente genético compartido entre cuatro 

enfermedades reumáticas seropositivas (SSc, artritis reumatoide, lupus 

eritematoso sistémico y miopatía inflamatoria idiopática), identificándose 26 

loci de riesgo comunes a al menos dos enfermedades, de los cuales NAB1, 

DGKQ, KPNA4-ARL14, LIMK1 y PRR12 no se habian descrito previamente y 

destacando la señalización del interferón tipo I como una de las vías comunes 

de mayor relevancia entre estas cuatro enfermedades. 

Sin embargo, una de las principales limitaciones de los GWAS es la 

dificultad para identificar los genes, variantes, o tipos celulares causales del 

fenotipo con el que se asocian. Por ello, decidimos realizar estudios de 

genómica funcional, incluyendo el análisis de locus de carácter cuantitativo de 

expresión (eQTLs) y estudios de captura de conformación de la cromatina 

(promoter capture Hi-C, pCHi-C) con el fin de relacionar las variantes 

asociadas con susceptibilidad a desarrollar SSc con sus genes diana. A través 

de la integración de datos GWAS y de secuenciación de ARN, realizamos el 

primer análisis de eQTLs descrito en SSc, observando que más de la mitad de 

los eGenes detectados están asociados con los principales rasgos 

característicos de la SSc, destacando el papel fundamental del proceso de 

apoptosis. Por otro lado, los análisis de conformación de cromatina pCHi-C 

realizados en linfocitos T CD4+ y monocitos CD14+ de pacientes con SSc y 

controles sanos, revelaron la existencia de interacciones específicas de tipo 

celular entre loci asociados a la SSc y genes causales previamente 

confirmados, como es el caso de IRF8 en monocitos CD14+, y CD247 y STAT4 

en linfocitos T CD4+, así como genes candidatos potenciales. Entre estos genes, 

destaca CXCR5, que juega un papel importante en la diferenciación de 

linfocitos T cooperadores foliculares y ha sido previamente vinculado con 

otras enfermedades autoinmunes. 
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Por último, realizamos un análisis de reposicionamiento de fármacos 

en varios estudios incluidos en la presente tesis, gracias a los cuales se 

identificaron más de 20 genes con diana farmacológica que, actualmente, 

están siendo abordados en otras enfermedades inmunomediadas similares, lo 

que indica que estos fármacos podrían ser potencialmente útiles para el 

tratamiento de la SSc. 
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INTRODUCTION 

1. Systemic sclerosis: the complexity of autoimmunity

The immune response is a natural process by which our body defends 

itself against any pathogenic agent that can alter its homeostasis. However, 

this process can be altered, leading to an exacerbated response in the 

presence of a non-pathogenic autoantigen, triggering the autoimmunity 

process. This process is characterized by the loss of tolerance of T and B 

lymphocytes, the line of defense of adaptive immunity, against autoantigens 

of healthy tissues, which it recognizes as pathogens, leading to their 

deterioration (1). 

Aberrant responses against self are implicated in more than 80 

inflammatory disorders, the so-called autoimmune diseases (ADs), 

encompassing a huge spectrum of mostly unknown etiology. The 

autoreactivity of these disorders can range from the presence of circulating 

autoantibodies and minor tissue infiltrates to a strong pathogenic 

autoimmunity with immune-mediated organ injury. Unfortunately, the 

majority of ADs are debilitating, chronic and have no cure. Overall, these 

diseases present a high prevalence (7 - 9 %) in the population with a non-

uniform distribution, preferentially affecting women, and varying between 

ethnic groups (1–3). This, together with their significant morbidity and 

mortality, the high medical cost to society, and their effect on the quality of life 

of patients, make these disorders one of the main challenges for research. 

Most ADs are complex and clinically heterogeneous pathologies, 

strongly influenced by environmental and genetic factors, with a considerable 

epidemiological variability ranging from common (such as type 1 diabetes or 

rheumatoid arthritis) to rare diseases (systemic sclerosis or Sjogren's 

syndrome) (4). Based on the extent of tissue affected, these diseases can be 
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classified into organ specific (such as type 1 diabetes or multiple sclerosis) 

and systemic (for example, rheumatoid arthritis or systemic sclerosis). Even 

when most of ADs are defined as complex diseases with polygenic nature, 

some of them are classified as monogenic diseases, with mutations in genes 

like AIRE, FOXP3, IFIH1, DNASE1, TREX1, C1Q, or C4A, to name but a few, which 

helped to the comprehension of the genetic bases underlying ADs. 

Systemic sclerosis or scleroderma (SSc) is defined as a complex 

chronic AD that affects the connective tissue, characterized by an immune 

imbalance, vascular alterations, and an excessive collagen deposition leading 

to fibrosis of the skin and internal organs (5,6) (Figure 1). Immune imbalance 

in SSc consists of lymphocyte activation, leading to autoantibody production, 

excessive levels of pro-inflammatory cytokines and chemokines, and the 

dysregulation of the innate immune response. The most common symptom 

regarding vasculopathy in SSc patients is called Raynaud’s phenomenon, a 

fibrointimal proliferation of small vessels and vasospastic episodes triggered 

by factors such as cold or stress, that can lead to tissue ischemia. Raynaud’s 

phenomenon is one of the earliest clinical sign of SSc, however, this 

Figure 1. Overview of Systemic sclerosis pathogenesis. 
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microvasculature affection can evolve to such as SSc-related renal crisis (SRC) 

and pulmonary arterial hypertension (PAH), being this lung affection, along 

with pulmonary fibrosis (PF), the leading cause of death (7).  

Endothelial cells (EC) are the main cell type implicated in these 

pathological processes, whose damage results in the activation of 

inflammatory cell infiltration and fibrotic processes, leading to vascular 

remodeling and irreversible structural changes (8–10) (Figure 2). In this line, 

EC apoptotic markers are elevated in the sera of SSc patients, leading to the 

recruitment of inflammatory cells such as fibroblasts and myofibroblasts. The 

etiology of this initial vascular injury is still unknown, but different factors, 

such as autoantibodies, viral infections, and the presence of toxins and 

oxidative stress, are in the spotlight (6). Interestingly, infiltration of 

inflammatory cells occurs more frequently at early stages of SSc and it reduces 

as the fibrotic process emerges. The fibrotic process of SSc is characterized by 

accumulation of fibrous extracellular matrix (ECM) composed of collagen, 

elastin, fibronectin and glucosamine, ultimately leading to loss of organ 

function. Another characteristic of this specific fibrosis is the presence of α-

smooth muscle actin-positive (α-SMA), apoptosis-resistant myofibroblasts in 

the infiltrated tissue (11,12). Initially, it was considered that myofibroblasts 

were derived exclusively from an expansion of resident tissue fibroblasts; 

however, over the years, it has been observed that these cells are derived from 

many sources, including the transformation of adipocytes, activation of 

perivascular pericytes, and trans-differentiation of epithelial and vascular 

endothelial cells (13,14). In this sense, transforming growth factor beta (TGF-

β) is considered the most significant growth factor that is able to trigger these 

epithelial- and endothelial-to-mesenchymal transitions, acting as a key 

regulator of fibrosis (15,16). Different studies have reported deregulated 

levels of TGF-β in skin and lung tissue from SSc patients (17,18), as well as its 

role in SSc pathogenesis in different in vitro and in vivo studies (19). As an 
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example, a TGF-β receptor kinase inhibitor blocked bleomycin-induced lung 

disease in mice (20) and, in another study, the administration of a biological 

inhibitor of TGF-β was found  to block SSc-like graft versus host disease  (21). 

In addition, vascular repair barely occurs in SSc patients, as 

angiogenesis and vasculogenesis processes are defective (8,9). In this regard, 

despite a general increase in many angiogenic factors, the emergence of 

avascular areas becomes more common in later stages of the disease (22). 

Some of the pro-angiogenic factors that have been observed upregulated in 

SSc patients are vascular endothelial growth factor (VEGF), fibroblast growth 

factor-2 (FGF-2) or platelet-derived growth factor (PDGF) (9). In fact, VEGF, 

which plays a central role in development of the blood and lymphatic vascular 

system, is totally disrupted in SSc patients (9,23).   

Figure 2. Summary of pathogenic mechanisms involved in systemic sclerosis. 
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Cross-talk between immune cells and stromal fibroblasts has long 

been considered a major driver of SSc pathogenesis and progression, 

occurring through the release of cytokines or facilitated by direct cell-cell 

contact (24). Both the innate and adaptive immune system are accepted to 

play a fundamental role in SSc pathogenesis (Figure 2). In this regard, it is not 

surprising that immune cells in SSc patients show specific characteristics. 

Lymphocytic infiltration of affected tissues has been observed in the earlier 

stages of disease, in which T cells show an activated phenotype, being also 

found in increased numbers in peripheral blood (25,26). In addition, there are 

many other infiltrated cell types, including dendritic cells and macrophages 

that, interestingly, show an upregulation in type I interferon (IFN) signaling, 

influencing adaptive immune response. Studies measuring the IFN signature 

from whole blood and peripheral blood show a large percentage of SSc 

patients with type I IFN excess (27–29). T cells are the main cell type from 

immune adaptive response involved in SSc pathogenesis. A variety of studies 

have implicated different CD4+ T cells subsets, such as T helper 1 (Th1), Th2, 

Th17, Th22, regulatory T (Treg) cells and T follicular helper cells, as well as 

CD8+ T cells (24).  In this regard, Th2 cells are the most common subset 

identified in SSc infiltrate, characterized by the production of profibrotic 

mediators, such as interleukin (IL)-4, IL-5 and IL-13, which may interact with 

SSc fibroblasts inducing fibrosis (25). In fact, a strong imbalance between 

Th1/Th2 response is classically identified in SSc, observing increased levels 

of Th2 respecting Th1 cytokines (TNF-α, IFN-γ, IL-1 or IL-2).  Although the 

paradigm of Th1/Th2 polarization has long been appreciated, an imbalance of 

Treg/Th17 has become increasingly important in recent years. In this sense, 

some studies indicate that Treg cells can be transformed into 

proinflammatory Th17 in the presence of TGF-β, IL-2 or IL-1β, which could 

explain this imbalance (30). Thus, the re-establishment of Th1/Th2 and 

Treg/Th17 balances may lead to the appearance of double-positive CD4+CD8+ 
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T cells that have also been reported to play an important role in SSc 

pathogenesis, showing high levels in skin lesions of SSc patients and secreting 

very large quantities of IL-4 (31). On the other hand, the role of B cells in the 

pathogenesis of SSc has become increasingly apparent in recent years (32). 

Here of, B cells in SSc are hyperactive, observing increased levels of B cell 

activating factor (BAFF) in patients (33). These activated B cells can produce 

profibrotic cytokines, such as TGF-β and IL-6, and induce dendritic cell 

maturation, thus promoting profibrotic Th2 differentiation (32). 

SSc can affect multiple organs. Along with lungs, gastroesophageal 

tract is the most affected tissue in SSc patients, but also the kidneys and heart 

are usually affected. Any area of the gastrointestinal tract can be affected, 

although esophageal involvement is the most common (5). On the other hand, 

lung involvement (both PAH and PF or interstitial lung disease, ILD) 

constitutes the leading cause of death in SSc, followed by SRC (5). The 

frequency of cardiac involvement is probably underestimated, certainly 

contributing to sudden death in patients associated with undercurrent sepsis 

(34). Other non-lethal manifestations of SSc include telangiectasia, calcinosis, 

Raynaud’s phenomenon, digital ulcers, fatigue, and musculoskeletal and other 

chronic pain syndromes. 

Although SSc is described as a heterogeneous disease, patients are 

usually stratified into two major clinical forms based on the extent of skin 

involvement: limited cutaneous (lcSSc) and diffuse cutaneous (dcSSc) disease. 

lcSSc fibrosis affection is restricted to hands, forearms, face and feet, and is 

characterized by a slower disease progression, with Raynaud’s phenomenon 

appearing after several years. This subtype is also characterized by high ratio 

of pulmonary hypertension affection as well as the appearance of the CREST 

(calcinosis, Raynaud’s phenomenon, esophageal dysmotility, sclerodactyly, 

and telangiectasia) syndrome, being also the most prevalent form affecting 
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approximately 65% of patients. On the other hand, dcSSc have an extensive 

affection and a more aggressive and generalized fibrosis course, with an early 

onset of Raynaud’s phenomenon and capillary destruction. In addition, this 

form of the disease is not limited to skin, affecting other visceral organs. dcSSc 

is associated with higher mortality rates, with a percentage of survival of 15% 

in 12 years as compared to 50% in the case of lcSSc (35–37). 

The presence of autoantibodies is also a major SSc hallmark, and a 

numerous list of them have been described in SSc over the past decades (38). 

Nevertheless, only antinuclear antibodies (ANAs) are included in the 

classification criteria for SSc, as >90% of SSc patients present at least one of 

the three major subtypes, namely: anti-topoisomerase 1 antibodies (ATAs), 

anticentromere antibodies (ACAs), and anti-RNA polymerase III antibodies 

(ARAs). The remaining patients (3-11%) present rare autoantibodies or are 

negative for the presence of these three main subtypes. ANA patterns are 

generally mutually exclusive, allowing patients to be stratified early and 

providing the basis to manage a stratified approach (39). The prevalence of 

ATAs or anti-Scl-70 antibodies in SSc patients is reported to be between 20-

30%. Furthermore, increased levels of ATAs are mainly associated with dcSSc 

and severe organ involvement, such as ILD (40,41). On the other hand, ACAs 

prevalence rounds about  20-40% and are more specific for lcSSc, being also 

associated with a longer disease duration and a better prognosis, as well as a 

higher risk of PAH (42,43). ARA+ prevalence is quite lower, rounding 10-20%. 

ARAs are developed in around 20% of dcSSc patients, and its presence 

indicates a high risk of rapid progression of skin thickening and SRC 

development (44–46).  

SSc presents a high mortality rate, greater than any other rheumatic 

disease, with a high unmet medical need (5). It is considered a rare disease 

with a prevalence that varies substantially around the world, ranging from 7 
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to 700 cases per million, showing interstudy discrepancies (47). In this regard, 

lower estimated prevalence (<150 per million) have been observed in 

Northern Europe and Japan, while higher estimates are observed in Africa, 

Southern Europe, North America and Australia (276-443 per million) (48). 

Additionally, a North-to-South gradient has been reported in the European 

population (49,50). The risk to suffer SSc is also ethnic dependent, affecting 

more to black populations and Asians as compared to whites (47,51). 

Interestingly, a Native American tribe, the Choctaws, present the highest SSc 

prevalence described to date (660 per million) (52). It is also worth 

mentioning that, as occurs in other ADs and connective tissue disorders, the 

development of SSc is sex dependant and is much more common in women 

than in men, ranging from 3:1 to 12:1 (53). Nevertheless, male patients show 

a higher age-adjusted mortality in most studies (47). 

 

2. Environmental component of systemic sclerosis 

As previously stated, the etiology of systemic sclerosis is complex and 

still remains unclear. In this sense, it is thought to be caused by environmental 

factors influencing genetically susceptible individuals, thus triggering the 

onset of the disease and affecting its progression and severity (Figure 3). In 

this section we will review the current knowledge of environmental factors, 

as genetic component will be deeply addressed in further sections.  

Little is known about the environmental, life-style and dietary factors 

that could trigger the disease, and its importance in the onset of SSc is still not 

robustly established due to methodological limitations, such as small sample 

size. Nevertheless, the main environmental factors known can be divided into 

three categories: (A) chemical agents, including particularly occupational 
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agents; (B) biological agents, such as infections and dietary contaminants; and 

(C) physical agents, including ultraviolet and ionizing radiation, as well as 

electric and magnetic fields. 

2.1. Chemical agents 

Silica dust released from fractured silica crystals was one of the first 

agents associated with the development of SSc. First reports identified SSc 

clusters in Scottish stonemasons date back to 1914 (54). Further studies 

performed years later observed similar patterns in South African gold miners, 

and North American coal miners, pointing to crystalline silica as the causal 

factor (55,56), In this regard, a more recent study performed by Haustein et al 

(57) points to 25 to 50 times increased SSc risk in individuals exposed to 

crystalline silica than those not exposed. In spite of its long known association 

Figure 3. Summary of etiological factors influencing systemic sclerosis, determined  
by environmental and genetic components. 
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with SSc, pathological mechanisms underlying this association remain 

unclear. Nevertheless, it is known that silica acts as a strong T cell adjuvant, 

and thus, could lead to tissue damage and inflammatory response in 

genetically predisposed individuals (58). Additionally, different studies 

indicated that silica administration leads to activation of T and B cells, 

autoimmunity related apoptosis, and fibroblast proliferation (59,60). 

In addition, organic solvents have been reported to increase SSc risk. 

To date, their applications are increasingly diversified, with more and more 

occupations associated with the exposition to organic solvents (61). First 

associations date from the 1950s (62) and further meta-analyses performed 

in recent years, as the one reported by Kettaneh et al (63), showed an 

increased risk (almost double) to develop SSc in individuals exposed to 

organic solvents than in controls, being this risk greater in men than in 

women. Additionally, occupational exposure to solvents acts as a predictive 

parameter of SSc severity. In this regard, it has been observed that SSc patients 

exposed to organic solvents exhibited dcSSc and microangiopathy more 

frequently than non-exposed individuals (64). As with silica, the role of 

solvents in pathological pathways of SSc remains unclear. Nevertheless, it is 

thought that the linkage of organic solvents with nucleic acids and proteins 

could result in immune disruption, initiating cellular and humoral 

autoimmune responses and stimulating fibrogenic responses,  leading to an 

increased risk of SSc (65). 

The exposition of subjects to asbestos, used due to heat resistance 

occurring in construction and mining, is highly correlated with the risk of 

developing different ADs, including SSc (66). Particularly, individuals exposed 

to amphibole, a kind of asbestos,  developed ANAs more often than non-

exposed individuals (67). In this regard, intratracheal injection of amphibole 

asbestos in rodents showed an induced synthesis of ANAs and modifications 
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in serum cytokines (68,69), observing increased concentrations of IL-17 

triggered by other cytokines, such as IL-6 or TGF-β (70). 

There are other industrial agents, such as welding fumes, epoxy resins, 

vinyl chloride, or formaldehyde that have been related to SSc. On the other 

hand, many other non-occupational chemical factors reported no association 

with SSc, such as drug consumption, implants (silicone, prosthesis, contact 

lenses), smoking, or dyeing hair (61). 

2.2. Biological agents 

Infections are the main associated factor within this group. Several 

infectious mechanisms have been described, triggering autoimmune response 

via EC damage, self-reactive antibodies and molecular mimicry processes 

(71). In this regard, parvovirus B19 has been speculated to play a role in SSc, 

as it has been detected in bone marrow biopsies of more than half of SSc 

patients, showing an increased prevalence in skin tissue from patients as 

compared to controls. This fact highlights the possibility that parvovirus B19 

may play a role in the formation of skin tissue abnormalities in the disease 

(72,73). The herpesvirus family, including cytomegalovirus (CMV) and 

Epstein-Barr virus (EBV), are related to SSc onset due to their ability to infect 

fibroblasts and ECs, with consequent autoimmunity alterations via molecular 

mimicry (74,75) In this regard, IgG from SSc patients recognises the protein 

UL94 from CMV, inducing the apoptosis of ECs through its union with the EC 

surface integrin-NAG-2 protein complex (74). Remarkably, in vitro studies 

have reported the capacity of EBV to infect SSc fibroblasts persistently and to 

induce the dysregulation of the innate immune response (76). Moreover, 

Helicobacter pylori may be involved in the development of SSc through 

endothelial damage and vascular changes (71). Indeed, an increased 

prevalence of H. pylori has been observed in SSc patients as compared to 
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healthy subjects (77,78). 

Dietary factors can play a role in ADs development. One classical 

example could be celiac disease, produced by gluten ingestion. Nevertheless, 

based on currently published studies, there is no strong evidence to show that 

food and dietary contaminants play a role in SSc. Some of these studies 

include: exposure to complex food in infants, breast-feeding, alcohol 

consumption, or consumption of food chemicals, dyes and additives (61). 

2.3. Physical agents 

Physical agents, including ultraviolet and ionizing radiation, and 

electric and magnetic fields, are becoming a growing target as etiological 

factors of different ADs. In this sense, different authors observed an 

association between ultraviolet exposure and the risk of developing multiple 

sclerosis, as well as between ionizing radiation and the development of 

Grave’s disease and autoimmune thyroiditis (57). However, no studies have 

been performed yet trying to assess the association of these factors with SSc. 

 

3. The multifactorial genetic component of systemic sclerosis 

The main risk factor associated with the development of SSc is the 

occurrence of the disease in a close relative. This fact highlights the deep 

importance of the genetic component in SSc. In this regard, having a sibling 

with SSc represents the major indicator of risk to suffer from the disease (with 

a 15-19 fold increase over the general population), and having other first-

degree familiar suffering from SSc suppose a fold increase of 13-15 (79,80). 

Indeed, it has been detected a high autoantibody concordance, particularly in 

ANAs, between twins and in SSc multi-case families. On the other hand, low 
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concordance was observed for SSc in these twin studies (81,82). In addition, 

as previously mentioned, ancestry has a relevant role in SSc susceptibility, 

which supports the role of the genetic component of the disease.  

However, as it happens in other autoimmune and rheumatic diseases, 

the genetic component of SSc is not clear, as it is not inherited in a mendelian 

fashion. As a complex disease, the estimation of SSc heritability is difficult, and 

its real importance in the development of the disease remains controversial. 

In order to estimate missing heritability in complex diseases, Lee et al (83) 

developed the GREML method, which is based on the assumption that more 

genotype sharing between non-related subjects should result in a greater 

phenotypic concordance. Through this methodology, our group performed a 

study in which the SSc estimated heritability on the observed scale (ho2), 

defined as the proportion of variance explained in case-control studies by 

associated genetic variants, was of 0.39 and 0.44 in two different cohorts (84). 

It is worth mentioning that significant genetic variants associated with SSc 

only account for ~20% of the estimated SSc heritability, which indicates that 

there are still other loci to be associated with SSc.  

On the other hand, over the past few years, other heritable changes 

that influence gene expression without altering the DNA sequence have been 

discovered. These epigenetic factors corresponding to the interaction of 

environmental and genetic components are known to contribute to the risk of 

SSc. The knowledgement acquired about the complex genetic component of 

SSc, from the first candidate gene studies to the last epigenetic analyses will 

be afforded in this section. 

3.1. Genotyping studies 

As a complex disease, first studies performed in order to unravel the 
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genetic component of SSc were based on the pursuit of genetic markers that 

may be associated with the disease. In this sense, single nucleotide 

polymorphisms (SNPs) are the most studied genetic markers. SNPs are 

changes in single base pairs of the DNA sequence occurring between 

individuals that commonly have two alleles. The minor allele frequency (MAF) 

must be above 1% in the overall population to be defined as SNP. These 

mutations occur once every 1000 nucleotides on average, meaning 4 to 5 

million SNPs in a single individual. To date, more than 80 million SNPs have 

been discovered in different populations (85). Variants with a MAF below 1% 

would be considered as rare variants.  

In order to study the association of these genetic marks with a certain 

phenotype, it is necessary to perform case-control studies. These are 

epidemiological studies in which cases (individuals affected by a specific 

phenotype) are compared to controls (which are non-affected individuals). In 

this specific case, the frequency of the minor allele of a SNP is compared 

between cases and controls and, if the difference is statistically significant, the 

SNP is considered to be associated with the disease. This kind of studies can 

be designed based on previous knowledge about the disease, by analyzing 

selected polymorphisms from interesting regions, the so-called candidate 

gene studies, or can be hypothesis free, in which a huge quantity of SNPs are 

interrogated. Candidate-gene studies were first developed, starting with the 

selection of a particular locus or polymorphisms based on the possible 

functional implication of a position or region in SSc. In this regard, variants 

located in coding or regulatory regions are preferentially studied over non-

coding regions. Chose targets are also based on their association with other 

ADs, autoimmunity, inflammation, fibrosis, or vascular function in previous 

studies. Thus, the selection of candidate genes is determined by previous 

publications and partial scientific knowledge, and are directed by the 

researchers. However, candidate gene studies can be a powerful tool to 
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analyze the contribution of determined loci, especially when the cohorts 

analyzed are large enough.  

In the specific case of SSc, initial candidate gene studies comprised 

small cohorts, leading to low statistical power, and thus few genetic 

susceptibility loci were identified apart from the human leukocyte antigen 

(HLA) region, the strongest and best-known region associated with ADs. 

These associated regions correspond with IRF5 and STAT4, being some of the 

firmest susceptibility regions identified outside the HLA (86). On the other 

hand, the advances in genotyping technologies and the recruitment of ever 

increasing cohorts of patients and controls, as well as the cheapening of these 

technologies, led to the possibility of genotyping a considerable amount of 

SNPs simultaneously (87). In this regard, genome-wide association studies 

(GWAS) performed in well-powered cohorts became a revolution to find 

plenty of associations across the genome with different diseases. The design 

of the genotyping arrays used to perform these analyses are based on the 

known linkage disequilibrium (LD) patterns of the genome and haplotype 

structure, in order to optimize the number of variants to be included with the 

maximum coverage by genotyping a few hundred thousand of variants. This 

strategy presents a series of advantages as compared to previous candidate 

gene association studies: it is a hypothesis-free approach, in which the 

associations observed are not focused on a specific region of interest, and at 

the same time, it is a hypothesis generating approach, since the novel 

discovered loci may involve new pathways that can be studied in further 

analysis. Another methodology that has improved the technology of GWAS is 

the genotype imputation process. Through these imputation algorithms, 

scientists are capable of inferring non-genotyped variants (missing 

genotypes) based on nearby observed genotypes, by comparing them with 

haplotypes of reference panels (88). The number of SNPs tested for 

association is now increased through these in silico genotypes, which 
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improves the power of the study and facilitates meta-analyses and the ability 

to fine-map or identify causal variants. Nevertheless, due to the large number 

of tests performed, a restrictive multiple testing correction threshold must be 

taken into account in order to avoid false-positive associations. In this sense, 

the standardized significance threshold for GWASs is established at p-value  < 

5x10-8, corresponding to Bonferroni correction for one million independent 

tests (SNPs) (89). The replication of the results obtained in GWASs in 

independent cohorts is mandatory, as the associated variants tend to show 

inflated effects (Figure 4).  

 

Figure 4. Overview steps for conducting GWAS (Modified from Uffelman et al, Nat. 
Rev. Methods Primers. 2021) 
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The first SSc GWAS was performed in 2009 in Korean population. 

Nevertheless, due to a low sample size, only SNPs in the HLA-DPB region were 

associated with SSc susceptibility, specifically with ATA+ and ACA+ patients 

(90). In 2010, a much larger GWAS performed in European populations, in 

which our group was involved, was published (91). In this study, CD247 was 

identified as a new associated locus in SSc, also confirming other previously 

associated loci, including IRF5, STAT4, and the HLA region, at the genome-

wide significance level. Notably, CD247 was robustly replicated in French 

population in a subsequent study (92). In 2011, a third GWAS performed in 

SSc patients and controls from France identified TNIP1, PSORS1C1 and RHOB 

as novel risk loci in SSc (93). However, in a later replication study, our group 

confirmed TNIP1 as a risk locus for SSc, but failed to replicate the reported 

associations within PSORS1C1 and RHOB, thus highlighting the importance of 

including replication cohorts and a large enough sample size in this kind of 

studies (94). On the other hand, in these published GWASs, many SNPs did not 

reach the genome-wide significance level but remained in the grey zone, 

defined as SNPs with a p-value between 5x10-5 and 5x10-8. In this regard, 

subsequent follow-up studies have helped to identify new associations by 

focusing on regions of interest that could reach significance when they are 

approached independently. Through this focus on certain regions, it is 

possible to analyze specific signals in larger cohorts without an extra 

economic cost. This approach has been applied in SSc, successfully identifying 

new associated loci at the genome-wide level of significance, such as IL12RB2, 

CSK, PPARG, IL12RB1 and TYK2 (95–98).  

Even when the design of GWAS arrays include an increasing number 

of SNPs, most of them have modest effect sizes. This missing heritability is 

characteristic from highly polygenic and complex diseases, such as SSc, which 

can be affected by different rare variants. In this sense, odds ratio (OR) for 

most of the SNPs range from 1.1 to 1.4 approximately, explaining just a small 
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proportion of the disease (99). It is proposed that missing heritability could 

lie in specific regions of the genome that may not be well covered by GWAS 

arrays, or could belong to rare variants with a large effect size that are difficult 

to identify. With the purpose of overcoming this problem, the Immunochip 

array was created. This custom genotyping platform contains almost 200,000 

variants, including SNPs and other insertion-deletions, of particular interest 

in immune-mediated diseases, with a dense coverage of 186 autoimmunity 

loci and the HLA region (100). In addition, the price of Immunochip is much 

lower than most of the GWAS chips, enabling groups to finance genotyping of 

very large cohorts. Thanks to this, Immunochip platform has significantly 

contributed to the discovery of many genetic loci in different ADs. Particularly 

in SSc, the first Immunochip study, published by our group, identified three 

new susceptibility loci for SSc, including DNASE1L3, IL12A, and ATG5, 

implicating new pathological pathways for the disease, such as autophagy or 

apoptosis (101). In this sense, thanks to the great coverage of the HLA region, 

our group was able to further dissect the long-known association between this 

region and SSc, highlighting six polymorphic amino acid positions in HLA-

DRB1, HLA-DPB1, and HLA-DQA1, and seven SNPs independently associated 

(101). Another Immunochip study was published the same year including 

data from an Australian cohort, confirming part of the reported associations 

observed in our study (102). 

It is worth noting that despite the advances obtained in the 

understanding of the genetic basis of SSc thanks to GWAS and Immunochip, 

the number of well-established loci associated with the disease was relatively 

low (15 loci) (103) as compared with other systemic ADs such as rheumatoid 

arthritis (RA) or systemic lupus erythematosus (SLE), reaching more than 100 

and 80 associated loci, respectively (104,105). These differences are due to 

the low prevalence of SSc which makes it difficult the recruitment of large 

cohorts and, consequently, the achievement of enough statistical power to 
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detect small association signals. To partially overcome this problem, our 

group recently published the largest GWAS in SSc performed to date, in which 

14 independent European cohorts were meta-analyzed. Almost 10,000 SSc 

patients and 18,000 controls were included in the analysis, reaching a total of 

27 independent associated signals, including 13 new risk loci (106). Some of 

the prioritised genes such as DDX6 or FLNB highlight the importance of 

fibrotic and vasculopathy pathways in the pathogenesis of the disease. In 

addition, a posterior fine-mapping study of the HLA region performed in the 

same cohorts highlighted nine SNPs, nine classical alleles, and seven amino 

acids that modelled the observed associations with SSc, being the largest HLA 

analysis performed to date in SSc (107). This study confirmed the association 

of the two main HLA class II classical alleles related with SSc, HLA-DRB1*11:04 

and HLA-DPB1*13:01, and revealed a novel association within HLA class I 

corresponding to HLA-B*08:01 (107). 

In recent years, meta-analyses of GWAS (meta-GWAS) have facilitated 

the discovery of tons of new susceptibility loci, as they combine data from 

multiple studies of relatively small sample size, thus increasing the statistical 

power and the chance to identify significant associations (108). One of the 

most interesting uses of meta-GWAS in autoimmunity is the search for its 

shared genetic component. Scientific evidence has demonstrated that more 

than half of genome-wide significant AD-associations are shared by at least 

two distinct ADs (109,110). In this regard, cross-disease meta-GWAS, which 

combine GWAS data from different diseases as a single phenotype, have 

identified new susceptibility loci shared between SSc and SLE (111) and 

between SSc and RA (112). Furthermore, this approach has been applied to 

combine genomic data from multiple immune-mediated diseases in the same 

meta-analysis, leading to the discovery of more than 30 new shared 

susceptibility loci (113–115). During the period of this thesis we have applied 

this approach to identify the genetic overlap between SSc and Crohn's disease 
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(CD) in a study comprising more than 5,700 SSc patients, 4,500 CD patients, 

and 14,500 healthy controls (116). Even though SSc and CD present 

apparently unrelated phenotypic traits, several lines of evidence support the 

existence of a shared genetic component between them. First of all, results 

from large-scale genetic studies performed in each individual disease have 

shown a genetic overlap between SSc and CD, with several genetic risk loci 

common to both conditions, such as IRF8, TYK2, STAT4, and GSDMA/IKZF3, as 

well as the HLA region (106,117). Additionally, there is an important fibrotic 

component in both diseases. Even when fibrosis is one of the primaries 

hallmarks of SSc, it also appears in CD and is one of the main reasons that leads 

to a necessity of surgical intervention in the distal part of the small intestine 

(118,119). In this line, it has been observed an increased risk of idiopathic 

pulmonary fibrosis (IPF) in individuals affected by CD (120), being this 

fibrosis of the lungs one of the most common complications in SSc, leading to 

ILD (121). Furthermore, we applied a more complex approach including 

GWAS data from four systemic seropositive immune-mediated inflammatory 

diseases (IMIDs) including SSc, SLE, RA, and idiopathic inflammatory 

myopathies (IIM), comprising more than 11,600 cases and 19,700 healthy 

controls (122). These four systemic rheumatological IMIDs are heterogeneous 

diseases of the connective tissue that share clinical and epidemiological 

manifestations as well as life-threatening complications (123). The common 

genetic component of these conditions has not been previously assessed 

systematically, although the overlap of associated genes is elevated when 

performing a pairwise comparison (115). Autoantibody production is the 

main feature of these diseases, comprising additionally a broad deregulation 

of the innate and adaptive immune response. However, the low prevalence of 

most of these diseases hinders the collection of large datasets that makes 

possible to attain sufficient statistical power. Therefore, our study aimed to 

combine previously published GWAS datasets—all from European descent 
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populations—to identify shared genetic aetiologies among systemic 

seropositive rheumatological IMIDs in a systematic fashion. Both cross-

disease meta-GWAS have been included in the present PhD dissertation 

(116,122). 

Despite the fact that GWASs have attempted to discover hundreds of 

susceptibility loci for different ADs, the large majority of research to date have 

been performed with samples of Caucasian or European-descent population 

(Figure 5). This European bias has important implications for risk prediction 

of diseases in different populations (124). In this regard, most of GWAS arrays 

as well as the Immunochip are designed for use in white European population, 

being less informative for other ethnic groups (100). In the case of SSc, some 

studies have described HLA region associations in different non-European 

populations such as African-americans, Koreans, or Mexicans, identifying 

Figure 5. Ancestry of GWAS participants over time, as reported by GWAS catalog  
(199)(Extracted from Martin et al, Nat Genet. 2019) 
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different classical alleles associated with the disease depending on the 

population (90,125,126). In addition, the first transethnic meta-analysis 

published in SSc, including Japanese and European populations, identified two 

new non-HLA susceptibility genes: GSDMA and PRDM1 (127). Thus, with the 

purpose to identify new susceptibility loci and discern the genetic landscape 

of SSc in different non-European populations, we decided to perform, for the 

first time, an extensive GWAS and HLA region analysis in SSc patients from 

Iranian and Turkish populations, including more than 800 cases and 1,400 

healthy controls (128). The results of this study will be approached in the 

present PhD dissertation. 

Thanks to the advances performed from early discoveries of familial 

aggregation to the latest large-scale cross-disease meta-analyses (Figure 6), 

a total of 30 loci outside the HLA region have been firmly associated to SSc to 

date (Table 1). Most of the SSc susceptibility loci robustly replicated are 

involved in innate and adaptive immune response, as well as in autophagy and 

apoptosis pathways. Regarding innate immunity, type I IFN signaling is the 

most overrepresented pathway, including four interferon regulatory factors 

(IRFs) (Table 1). On the other hand, several genes related with adaptive 

immune response are also overrepresented in SSc risk loci, including TNFSF4, 

which is involved in B and T cell proliferation and survival; or CD247, which 

Figure 6. Timeline of major advances made in genetics of systemic sclerosis 
(Extracted from Acosta-Herrera et al, Curr Rheum Rep. 2019) 



INTRODUCTION 

41 

forms part of the T cell receptor (TCR) complex. Furthermore, Jak/STAT and 

IL12/23 signaling pathways are also overrepresented in SSc risk loci, 

including genes such as TYK2, which encondes a tyrosine kinase that mediates 

signaling of IL-12 family cytokines; or IL12A and IL-12 receptor B genes 

(IL12RB1, IL12RB2) (Table 1). Other important processes implicated in SSc 

pathology such as autophagy and apoptosis, were also overrepresented at the 

genetic level. In this sense, DNASE1L3 plays an important role in in DNA 

fragmentation during apoptosis, and GSDMA/B present an important role in 

pyroptosis, a form of cell death triggered by inflammatory signals.  

As it has become clear, genotyping studies have been crucial to better 

understand the genetic background of SSc and other ADs. Nevertheless, most 

of the SNPs associated with the disease in large-scale genotyping studies map 

to non-coding regions of the genome, which are in fact enriched in regulatory 

marks, such as enhancer regions (129). Thus, the next step after defining a 

new locus is to identify the causal variants and the mechanism of action 

underlying those disease-associated variants, thus allowing the translation of 

genetic findings to the clinic (130). During the last five years, a paradigm shift 

has occurred, in which genotyping studies are being combined with different 

other technologies to create a multi-omic approach that better explains the 

genetic component of complex diseases, such as SSc, through a holistic view 

(131). In this regard, many different approaches have emerged along with 

genotyping studies that help elucidate the molecular basis of SSc, such as 

transcriptomics or different epigenomic studies (DNA methylation, histone 

modification, chromatin interaction, etc). 
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Table 1. Non-HLA susceptibility loci firmly associated with systemic sclerosis to date. 

Locus Chr Gene name 
Innate immune response 

IRF4 6 Interferon Regulatory Factor 4 

IRF5-TNPO3 7 Interferon Regulatory Factor 5 
Transportin 3 

IRF7 11 Interferon Regulatory Factor 7 
IRF8 16 Interferon Regulatory Factor 8 

PRDM1 6 PR/SET Domain 1 
TNFAIP3 6 Tumor necrosis factor Alpha Induced Protein 3 

TNIP1 5 TNFAIP3 Interacting Protein  
NFKB1 4 Nuclear Factor Kappa B Subunit 1 

Adaptive immune response 
TNFSF4 1 Tumor necrosis factor Superfamily Member 4 
CD247 1 T-Cell Receptor T3 Zeta Chain 

CSK 15 C-Terminal Src Kinase 
PTPN22 1 Protein Tyrosine Phosphatase Non-Receptor Type 22 
STAT4 2 Signal Transducer and Activator Of Transcription 4 

BLK 8 BLK Proto-Oncogene, Src Family Tyrosine Kinase 
IL-12 Signaling Pathway and cytokines 

IL12A 3 Interleukin 12A 
TYK2 19 Tyrosine Kinase 2 

IL12RB1 19 Interleukin 12 Receptor Subunit Beta 1 
IL12RB2 1 Interleukin 12 Receptor Subunit Beta 2 

Apoptosis and Autophagy Pathways 
DNASE1L3 3 Deoxyribonuclease 1 Like 3 

ATG5 6 Autophagy Related 5 

RAB2A-CHD7 8 Member RAS Oncogene Family 
Chromodomain Helicase DNA Binding Protein 7 

GSDMA 17 Gasdermin A 
GSDMB 17 Gasdermin B 

Vascular homeostasis, fibrosis and others 
PPARG 3 Peroxisome Proliferator Activated Receptor Gamma 
NAB1 2 NGFI-A Binding Protein 1 
DDX6 11 DEAD-Box Helicase 6 
DGKQ 4 Diacylglycerol Kinase Theta 

POGLUT1-
TIMMDC1-CD80-

ARHGAP31 
3 

Protein O-Glucosyltransferase 1 
Translocase of Inner Mitochondrial Membrane Domain 

Containing 1 
Cluster of Differentiation 80 

Rho GTPase Activating Protein 31 
TSPAN32, CD81-

AS1 11 Tetraspanin 32 
Cluster of Differentiation 81 Antisense RNA 1 

NUP85-GRB2 17 Nucleoporin 85 
Growth Factor Receptor Bound Protein 2 
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3.2. Transcriptomic studies 

Genome-scale gene expression data allow us to infer, from messenger 

RNA (mRNA) expression measurements, different pathways that are 

implicated in a specific tissue, cell type, or other kind of samples. Microarrays 

were the first platforms used to scan the expression levels of thousands of 

genes at the same time from multiple affected tissues in SSc patients, including 

skin (132–134), lung (135,136), blood (137,138), or esophagus (139). One of 

the main features that can be drawn from these data is the enormous 

heterogeneity of molecular processes that are altered in SSc patients. Gene 

expression studies from skin biopsies revealed inflammatory and fibrotic 

signatures. Surprisingly, nearly identical gene expression patterns were 

observed in biopsies from lesional and non-lesional skin, highlighting the 

systemic nature of the disease in which non affected tissues can show 

aberrant gene expression (134). Similar results were observed in a 

comparison between upper and lower esophagus (139) A more recent study 

analyzed gene expression in multiple tissues through a novel multi-network 

approach, finding key similarities in the fibrotic- and immune-related 

expression patterns, and also implicating alternative macrophage activation 

in lung tissue (140). 

Nevertheless, most of the SSc gene expression datasets are performed 

in whole tissue samples that are in fact composed of a mixture of different cell 

types, making it difficult to assess the specific role of a cell type in the 

pathogenesis of the disease. In this regard, different functional genomic 

networks have emerged in order to study the interactions of cell type- and 

tissue-specific genes (141). In this sense, the combination of gene expression 

data with other datasets is necessary to create functional genomic networks 

that can extract specific cell type signals and meaningful pathways from whole 

tissue studies. A study published by Mahoney et al, in which authors 
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connected gene expression from three independent SSc skin datasets with 

susceptibility SNPs observed in GWAS, represents a good example of this 

(142). Interestingly, authors observed that risk SNPs identified in SSc were 

almost exclusively connected with gene expression data in the immune 

system context (142). This type of study represents a good approach to 

connect GWAS signals and transcriptomic data. Indeed, the analysis of these 

signals in the context of gene expression in cells or tissues has allowed a better 

understanding of human genetics through the study of expression 

quantitative trait locus (eQTLs) (143). Briefly, an eQTL is a locus that explains 

part of the genetic variance of a gene expression phenotype, involving a direct 

association test between genetic markers and gene expression levels. eQTLs 

are usually categorized depending on the distance between the associated 

SNP and the interacting gene, usually describing regulatory regions as cis 

(proximal), for those interactions within 1 Mb (megabase) distance, and trans 

(distant), for those at least 5 Mb distance or those occurring between different 

chromosomes (Figure 7). In this line, an eQTL analysis performed in 

monocyte-derived macrophages from SSc patients suggested that the 

contribution of the risk variant rs3894194, associated with SSc in a previous 

GWAS, can be mediated by GSDMA expression in macrophages, a gene 

implicated in pyroptosis, which is intimately related with inflammation 

processes (144). 

On the other hand, the majority of gene expression analyses 

performed to date in SSc are based on microarray technology, which has a 

limited potential as compared with next-generation sequencing (NGS) 

techniques. Indeed, RNA sequencing (RNA-seq), based on NGS technology, 

presents a much higher resolution and deep-coverage, as well as high 

sensitivity at the extreme of gene expression ranges and low sensitivity to 

background noise, making it a much more accurate tool for transcriptomics 

studies (145). The largest RNA-seq profiling of SSc patients performed to date 
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was carried out in whole blood samples from a large well-characterized 

European cohort in the context of the PRECISE systemic autoimmune diseases 

(PRECISESADS) project, including a total of 162 patients and 252 controls 

(146). In this study, the analysis of differentially expressed genes between 

patients and controls indicated a deregulation of important pathways 

implicated in SSc pathogenesis, such as type I IFN, toll-like receptor cascade, 

and platelet degranulation and activation. Our group has taken part in the 

PRECISESADS project, in which different systemic ADs have been 

characterized at the molecular level, including genotyping and RNA-seq data. 

In this regard, we performed an eQTL analysis in more than 300 SSc patients 

and 500 controls, integrating GWAS and RNA-seq data in order to provide a 

mechanical link between SSc associated variants and their effect on gene 

expression (147). The results obtained in this study are part of the present 

Figure 7. Example of eQTL action in cis and trans. (Extracted from Westra et al, 
Biochim Biophys Acta Mol Basis Dis. 2014) 
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PhD dissertation. 

It is also worth mentioning the contribution of the recently developed 

single-cell RNA sequencing (scRNA-seq) studies in revealing complex and rare 

cell populations in different ADs through the obtention of high-resolution 

sequencing on individual cells (148) In the specific case of SSc, a few studies 

have emerged exploring the main cell types associated with its pathogenesis: 

fibroblasts (149,150) and T cells (151). One of these studies revealed that 

SFRP2/DDP4-expressing progenitor fibroblasts are the main cell population 

that differentiates to pathogenic SSc myofibroblasts, driven by upstream 

transcription factors including STAT1, RUNX1 or IRF7 (149). Another study 

performed on CD4+ T cells identified several subsets of tissue-resident and 

recirculating T cells in skin from SSc patients, highlighting a distinct CXCL13+ 

T cell subset expressing a T follicular helper gene signature that promotes B 

cell responses within inflamed skin (151). 

3.3. Epigenomic studies 

The definition of what epigenetics is has broadly changed over the 

decades. Nowadays, it is usually defined as the study of heritable changes that 

affect gene expression independent of altering the nucleotide sequence itself. 

These crucial regulatory events are involved in how DNA is packed and how 

chromatin is structured, thus coordinating gene transcription during different 

physiological processes, but also in pathological processes. Common 

epigenetic mechanisms include DNA methylation, histone modifications, and 

regulation by non-coding RNAs. All of these epigenetic mechanisms have been 

proved to affect the main cell types involved in the pathogenesis of SSc, 

including immune cells, ECs, and fibroblasts (103,152). DNA methylation has 

been extensively studied in CD4+ T cells from SSc patients, observing co-

stimulatory molecules, such as CD70, CD40L and CD11a, to be upregulated in 
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these cell types due to hypomethylation at their promoter regions, as well as 

a global hypomethylation in IFN-associated genes (153). In the case of SSc 

dermal fibroblasts, it has been documented that only 6% of differentially 

methylated CpG sites were shared between dcSSc and lcSSc, observing in both 

cases a general hypomethylation as compared with controls (153). Histone 

modifications also play a fundamental role in CD4+ T cells from SSc patients, 

in which global reduction of H3K27me3, a repressor mark, was observed 

(154). The first study examining histone modifications in monocytes from SSc 

patients through chromatin immunoprecipitation (ChIP-seq) and combining 

it with RNA-seq, showed that genome-wide distribution of H3K4me3 and 

H3K27ac marks, related with activation of transcription and enhancer regions 

respectively, were altered in patients as compared with controls (155) 

Furthermore, variations in these histone marks correlated with genes 

enriched for immune, IFN and antiviral response pathways, presenting also 

an overlap with binding sites for transcription factors of the IRF and STAT 

family. As opposed to CD4+ T cells, elevated H3K27me3 has been reported in 

fibroblasts from dcSSc patients, generating an overexpression of Fra2, a pro-

fibrotic transcription factor (156). 

Many of these epigenetic events lead to chromatin conformation 

modifications, which translate in gene expression changes. These changes can 

be partially explained by non-coding DNA sequences that act as regulatory 

elements, which determine where and when genes are turned on or off. 

Depending on its location and function, regulatory elements include 

promoters, enhancers, insulators, and silencers (157). The promoter region is 

located near the start of a gene, serving as a union site for RNA polymerase II 

and transcription factors, and acting as the starting point for gene 

transcription. On the other hand, enhancer regions are usually located 

thousands of bp away from transcription start sites (TSS), acting as binding 



 

48 

sites for transcription factors in order to increase transcription level of genes 

(157). 

As previously stated, the majority of SNPs associated with SSc, as well 

as many other immune-mediated conditions, map to non-coding regions of the 

genome that are enriched in enhancer elements, which are cell-type specific 

(130,158). These regulatory elements can interact with genes located 

hundreds of kilobases away, bypassing nearby genes in many cases, or even 

located in other chromosomes (159), making spatial chromatin organisation 

a key mechanism in regulating gene expression. 

Genetic studies have the potential to be translated into the clinic 

(novel drug targets, drug repositioning, personalized medicine, disease and 

treatment response prediction, etc), but this potential has not been fully 

realised because of the limitations of GWAS and other high-throughput 

genotyping studies, that is the identification of causal genes, variants and cell 

types (160). Thus, the actual challenge remains in linking disease-associated 

regions with the true genes that are regulating and the specific cell types 

involved, in order to point to the mechanisms of regulation and the biological 

pathways implicated in genetically susceptible patients (130). In this regard, 

many three-dimensional genome architecture techniques have emerged, such 

as chromosome conformation capture (3C), and subsequent variants 

(161,162). The most powerful technique developed to date, Hi-C (high-

throughput chromosome conformation capture) allows the genome-wide 

identification of chromosomal interactions within a cell population (163). 

Nevertheless, the creation of high-resolution maps capable of identifying 

interactions between regions of interest (such as loci of interest and gene 

promoters) would need extremely deep sequencing (164). A more recent 

technique, capture Hi-C (CHi-C) allows to specifically enrich chromosomal 

regions of interest, such as disease risk loci (region CHi-C) or promoters 
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(promoter CHi-C, pCHi-C) from Hi-C libraries in a cost-effective way (165) 

(Figure 8). This technique has been successfully applied in different cell types 

to link enhancers and non-coding disease variants to potential target genes 

(166) as well as to identify disease causal genes and potential drugs for 

repositioning in ADs using cell lines (167,168) Since the regulation of gene 

expression is highly context specific, it is essential to apply these technologies 

to primary cells isolated from patients, to better define the biological 

mechanisms implicated in disease. In this regard, the largest GWAS performed 

to date in SSc by our group was implemented with chromatin interaction 

experiments, concretely through high-resolution maps of enhancer-promoter 

Figure 8. Schematic workflow of promoter capture Hi-C (Modified from Schoenfelder 
et al, J Vis Exp. 2018) 
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interactions generated by H3K27ac HiChIP in human CD4+ T cells from 

healthy donors, identifying 43 robust target genes (106). Another study 

recently published by our group integrated methylation and gene expression 

data to identify differentially methylated CpG positions and differentially 

expressed genes in CD4+ T cells from SSc patients and healthy controls, which 

were confirmed using previously published pCHi-C data, and also combined 

with SSc GWAS data (169). Thus, we decided to apply pCHi-C technology in 

two of the most relevant cell types in SSc pathogenesis: CD4+ T cells and CD14+ 

monocytes primary cells from SSc patients and healthy controls in order to 

annotate gene targets within known SSc-associated GWAS loci. We also 

integrated these data with RNA-seq to create a multi-omic approach in order 

to identify interactomic and transcriptomic differences between cell types and 

disease states that could be of interest in the pathogenesis of SSc. Results from 

this study have been consequently included as part of this PhD dissertation. 

Genotyping, transcriptomic, and epigenomic studies, taken together, 

along with characterization studies (CRISPR/Cas9, luciferase assays, etc) 

comprise a spectrum from early association studies to their functional 

consequences. The combination of different functional genomics approaches 

is proving to be useful in the identification of potential causal variants and 

genes in autoimmunity. In this sense, the whole process, from early discovery 

of genetic associations through candidate gene or genome-wide association 

studies to the validation and functional repercussions of these signals, has 

become a holistic and essential strategy (Figure 9). The results of the present 

PhD dissertation represent an example of this process, helping us to unravel 

the complex genetic component of SSc. 
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Figure 9. Overview of the spectrum of techniques covered by functional genomics 
(Extracted from González-Serna et al, Genes (Basel). 2020).  
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OBJECTIVES 

The general aim of the present doctoral thesis was to further 

investigate the genetic component of systemic sclerosis (SSc) to unravel its 

pathological mechanisms. 

The specific objectives were: 

1. To identify novel loci associated with the susceptibility to SSc and

determine if these loci are associated with the main clinical

characteristics

2. To validate previously associated genetic markers in different

populations.

3. To further investigate the shared genetic component between SSc

and other autoimmune pathologies, such as Crohn’s disease or

rheumatoid arthritis.

4. To identify differentially expressed genes between SSc patients

and controls.

5. To functionally link genetic variants associated with SSc with its

gene target through expression quantitative trait locus (eQTLs)

analysis and chromosome conformation capture techniques.



MATERIAL AND METHODS, RESULTS, AND 
DISCUSSION 

Chapter 1: Analysis of the genetic component of 
systemic sclerosis in Iranian and Turkish populations 
through a genome-wide association study 
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1.1. Material and methods 

1.1.1. Study population 

A series of 834 patients diagnosed with SSc (547 from Iran and 287 

from Turkey) and 1,455 unaffected and unrelated controls (830 from Iran and 

625 from Turkey) were included in this study. All case samples fulfilled the 

American College of Rheumatology classification criteria for SSc (35,37). 

Written informed consent was obtained from all the participants. The study 

was approved by local ethical committees from the different participant 

centers, in accordance to our institution (Spanish Research Council) ethical 

committee, and with the Helsinki Declaration of 1975, as revised in 1983. 

Clinical information regarding subtypes of SSc, and presence of ACA 

and ATA were collected. The clinical information was selected based on 

previous genetic studies determining specific associations with SSc subtypes 

or autoantibodies status (Table 1.1). Some SSc patients showed other 

complex forms of the disease that could not be classified into dcSSc or lcSSc. 

1.1.2. Genotyping 

Genomic DNA was extracted from saliva samples or whole blood by 

standard methods. The GWAS genotyping of the SSc cases and controls was 

performed as follows: the Iranian and Turkish SSc cases, together with 136 

Turkish controls were genotyped using the Illumina Infinium HumanCore-

12v1 BeadChip. The remaining Turkish controls were genotyped using the 

Illumina HumanOmni1-Quad v1 BeadChip. The control group from Iran was 

genotyped using the Illumina Infinium CoreExome-24 BeadChip.  
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Table 1.1. Number of subjects and SNPs in the Iranian and Turkish GWASs. 

Number of subjects 
Iran Turkey 

Before QC After QC Before QC After QC 
SSc  547 505 287 259 

lcSSc  180 165 128 115 
dcSSc 301 278 122 111 
ACA  30 30 58 47 
ATA  384 356 115 102 

Healthy Controls  830 770 625 573 
Number of SNPs 

Genotyped  279,616 242,501 236,155 186,435 
Imputed  8,467,723 6,313,908 7,369,344  5,885,622 

Meta-analysis 5,698,748 
SSc systemic sclerosis, dcSSc diffuse cutaneous systemic sclerosis, lcSSc limited cutaneous 
systemic sclerosis, ACA anti-centromere antibody, ATA anti-topoisomerase antibody, SNP 
single nucleotide polymorphism, QC quality control. 

1.1.3. Quality control 

We applied the same quality control (QC) criteria for both the Iranian 

and the Turkish GWAS data. SNPs and subjects with call rates lower than 98% 

and 95%, respectively, were removed using PLINK V.1.9 (170). SNPs with 

MAFs lower than 0.01 and those that were not in Hardy-Weinberg equilibrium 

(HWE; p-value<0.001) were also excluded. In addition, one subject per 

duplicate pair and per pair of first-degree relatives was also removed via the 

Genome function in PLINK V.1.9 with a Pi-HAT threshold of 0.4. Principal 

component (PC) analyses were performed to identify and exclude outliers 

based on their ethnicity by using PLINK V.1.9, and the GCTA64 and R-base 

under GNU Public license V.2. We calculated the 10 first PCs using 

approximately 100,000 quality-filtered independent SNPs. Those subjects 

showing more than six standard deviations (SD) from the cluster centroids 

were considered as outliers. After QC, 764 SSc patients (505 from Iran and 259 
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from Turkey) and 1,343 controls (770 from Iran and 573 from Turkey) were 

included in the analysis. A total of 242,501 and 186,435 genotyped SNPs 

remained after QC filtering of the Iranian and Turkish data sets, respectively 

(Table 1.1). 

1.1.4. Imputation of GWAS data 

Imputation was performed using the Michigan Imputation Server 

(MIS) (171). The software SHAPEIT (172) was used in order to estimate the 

haplotypes, and the European panel in the Haplotype Reference Consortium 

(HRC) r1.1 (173) was used as reference population for both Turkish and 

Iranian genotyped data. Imputation was carried out in individual chunks of 

50,000 Mb covering whole-genome regions with a probability threshold for 

merging genotypes of 0.9, to maximize the quality of imputed variants. 

Imputed data were also subjected to the above-mentioned QC filters in PLINK 

V.1.9. A total of 6,313,908 and 5,885,622 SNPs were finally analyzed in the

Iranian and Turkish GWASs, respectively (Table 1.1).

1.1.5. Human leukocyte antigen (HLA) imputation 

Considering the previous reported strong HLA association with SSc, a 

more extensive analysis of the HLA region was conducted in the Turkish and 

Iranian cohorts. We extracted the extended major histocompatibility complex 

(MHC) region (29,000,000 to 34,000,000 bp in chromosome 6) from the non-

imputed data and imputed a total of 424 classical HLA alleles at two- and four-

digits, 7,261 SNPs and 1,276 polymorphic amino acids. We used the SNP2HLA 

method with the Beagle software package (174) and a reference panel 

collected by the Type 1 Diabetes Genetics Consortium composed of 5,225 

individuals of European origin (175). Alleles and amino acids with call rates 

<95%, and SNPs showing deviation from HWE (p-value<0.001), were 

removed using PLINK V.1.9. 
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1.1.6. Statistical analysis 

The statistical analyses were performed with PLINK and R. First, the 

Iranian and Turkish cohorts were independently analyzed by logistic 

regression on the best-guess genotypes (>0.9 probability) assuming an 

additive model and including the first 10 PCs as covariates. ORs and 95% 

confidence intervals (CIs) were calculated according to Woolf’s method. 

Genomic-inflation factor (λ) was estimated in both the Iranian and Turkish 

cohorts. The value of λ for an equivalent study of 1,000 cases and 1,000 

controls (λ1,000) was also calculated. We also performed a stratified analysis 

considering the different clinical and serological features (dcSSc, lcSSc, 

ACA+SSc and ATA+SSc). Subsequently, the Iranian and the Turkish GWAS data 

sets were combined by inverse variance weighted fixed effects meta-analysis 

to integrate the two independent association studies. Cochran’s Q and I2 tests 

were used to measure the heterogeneity of the ORs across studies. SNPs 

showing association p-values <5.0×10−8 were regarded as significant, and 

those showing p-values < 1.0×10−5 were regarded as suggestive associations. 

The presence of independent effects was examined using a stepwise logistic 

regression by conditioning on the lead SNP and the first 10 PCs. 

Regarding the HLA region, to determine the influence of the 

polymorphic amino acid positions on disease susceptibility, an omnibus 

association test was carried out in the Iranian and Turkish cohorts as 

described (176). A null generalized linear model was established, including 

the 10 first PCs as covariates. Next, an alternative model, including the same 

variables and all the possible alleles in the analyzed amino acid positions was 

built. Finally, to compare both models, a likelihood ratio test was conducted. 
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1.2. Results 
Following QC and imputation, a total of 5,698,748 SNPs in 764 SSc 

patients (505 from Iran and 259 from Turkey) and 1,343 controls (770 from 

Iran and 573 from Turkey) were analyzed. The final λ showed minimal 

evidence of population stratification in the Iranian and Turkish cohorts 

(λ=1.02 in both cases). Additionally, we calculated λ1,000 with consistent 

results in the Iranian (λ1,000=1.03) and Turkish (λ1,000=1.04) cohort.  

As shown in Figure 1.1, a high association peak corresponding to the 

HLA class II region reached the GWAS significance threshold (5x10-8) in both 

the Iranian and Turkish cohorts. Specifically, for the Iranian cohort, the top 

associated signal belonged to the SNP rs9268923 (p-value=6.55x10-18, 

OR=2.29) (Figure 1.1A). Out of the HLA region, some suggestive associations 

were found, highlighting the IRF5-TNPO3 (interferon regulatory factor 5-

transportin 3) and the NFKB1 (Nuclear Factor Kappa B Subunit 1) loci (Table 

1.2), which represent previously reported susceptibility loci for SSc. The top 

associated signal for the IRF5-TNPO3 locus corresponded to the SNP 

rs17424921 (p-value =5.28x10-5, OR=1.64) located in an intergenic region and 

5’ upstream from the TNPO3 gene. In our dataset, this SNP is in strong LD 

(r2=0.92) with rs10488631 (p-value=6.15x10-5, OR=1.62), a SNP previously 

associated to SSc (91,177) that is located in the intergenic region between 

IRF5 and TNPO3. Regarding the NFKB1 locus, the top associated SNP was the 

intronic variant rs4648133 (p-value=1.52x10-5, OR=1.48). Interestingly, this 

SNP is in moderate LD (r2=0.73) with rs1598859 (p-value=6.23x10-3, 

OR=1.27), previously associated to SSc and located in an intronic position of 

the NFKB1 gene (96). 

In the Turkish cohort (Figure 1.1B), the top associated SNP within the 

HLA class II region was rs34297496 (p-value =9.46x10-9, OR=2.16). Out of the 

HLA region, one signal corresponding to the SNP rs7095491 reached the 
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suggestive level of significance (p-value =5.17x10-7, OR=1.88). This SNP is 

located in an intergenic region between GOT1 (glutamic-oxaloacetic 

transaminase 1) and NKX2.3 (NK2 Homeobox 3). This locus was specifically 

associated in the Turkish cohort and did not reach the suggestive level of 

significance in either the Iranian cohort (p-value=3.14x10-2, OR=0.89) or the 

meta-analysis (p-value=3.21x10-1, OR=1.07). 
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Figure 1.1. Manhattan plot of the GWAS results from the Iranian cohort (A), Turkish 
cohort (B) and meta-analysis (C). The values on the y-axes denote the -log10 
transformed p-values. Genomic position for each SNP for 22 autosomes are plotted on 
the x-axis. The red line denotes the a priori threshold for genome-wide significance (p 
-value= 5x10-8). The suggestive level of significance (p-value = 1x10-5) is highlighted in
blue.
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1.2.1. Meta-analysis 

Subsequently, we decided to perform a meta-analysis in order to 

identify susceptibility loci to SSc with moderate effect sizes in the Iranian and 

the Turkish cohorts, independently. The HLA class II region was the highest 

association peak observed in the meta-analysis (Figure 1.1C), and the top 

associated signal belonged to the SNP rs28746976 (p-value=1.41x10-23, 

OR=2.09). Out of the HLA region, two signals corresponding to the IRF5-

TNPO3 and NFKB1 loci almost reached the genome-wide significance 

threshold (Table 1.2). The top associated signals corresponded to the same 

SNPs observed in the Iranian cohort for both loci, IRF5-TNPO3 rs17424921 (p-

value=1.34x10-7, OR=1.68) and NFKB1 rs4648133 (p-value=3.11x10-7, 

OR=1.47) (Figure 1.2).  

1.2.2. HLA analysis 

In order to extensively analyze the association of the HLA region with 

SSc in both the Iranian and the Turkish populations, a comprehensive HLA 

imputation was performed. As stated above, a strong association signal was 

observed within the HLA class II region in both the Iranian and the Turkish 

GWAS data sets (Table 1.3). Regarding the Iranian cohort, the top associated 

signal belonged to the classical allele HLA-DRB1*11:04 (p-value=2.10x10-24, 

OR=3.14). After controlling for HLA-DRB1*11:04, an independent secondary 

effect was found in the HLA-DPB1 region. Specifically, the top associated 

signal was the HLA-DPB1*13:01 allele (p-value=5.37x10-14, OR=5.75). No 

additional independent associations were observed after conditioning on 

both signals, DRB1*11:04 and DPB1*13:01 (Figure 1.3). Significant insights 

were found in the ATA+SSc patients vs. controls stratified analysis, as a 

stronger association between the HLA-DRB1*11:04 and the disease was 

evident (p-value=2.49x10-34, OR=4.92). In addition, after controlling for this 

classical allele, the HLA-DPB1*13:01 also showed a stronger association (p- 
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Figure 1.2. Locus zoom plot for IRF5-TNPO3 and NFKB1 regions. The p-values for 
association (−log10 values) of each SNP are plotted against their physical position on 
chromosome 7 and 4 for IRF5-TNPO3 and NFKB1 regions, respectively. 

value=6.44x10-21, OR=10.60). We also performed a stratified analysis 

comparing ATA+SSc vs. ATA-SSc, showing a strong association of the HLA-

DRB1*11:04 with ATA+SSc (p-value= 2.69x10-14, OR=5.06). After conditioning 

on HLA-DRB1*11:04, the HLA-DPB1*13:01 allele also showed statistically 

significant association with ATA+SSc (p-value= 5.02x10-8, OR=10.21). In the 



Chapter 1: GWAS in Iranian and Turkish populations 

64 

Turkish cohort, DRB1*11:04 (p-value=4.90x10-11, OR=2.93) showed the most 

significant association, and no independent secondary effects were found 

after controlling for this HLA classical allele (Figure 1.4).  

Subsequently, specific amino acid positions that could be responsible 

for the association observed for these classical alleles were examined by 

means of an omnibus test. The most relevant amino acid positions for disease 

risk in the Iranian cohort were the positions 58 (PLRT =6.24x10-24) and 67 (PLRT 

=5.76x10-22) of the HLA-DRβ1 molecule (Table 1.4), which were in strong LD 

(r2=0.83). After conditioning on the strongest association (position 58), 

position 76 (PLRT =1.57x10-13) of the HLA-DPβ1 protein remained 

independently associated. None of the other signals remained significant after 

conditioning on positions 58 and 76 of the HLA-DRβ1 and HLA-DPβ1 

molecules, respectively. The most associated amino acid residues for the 

previously mentioned positions were Glu (p-value=5.39x10-22, OR=2.57) and 

Phe (p-value=1.08x10-20, OR=2.38) in positions 58 and 67 of the HLA-DRβ1 

molecule, respectively, and Ile (p-value=1.52x10-12, OR=4.60) in position 76 of 

the HLA-DPβ1. In the case of the Turkish cohort, the position 58 of the HLA-

DRβ1 molecule was the only signal reaching the significance threshold (PLRT 

=4.96x10-8) (Table 1.3), being Ala the most associated amino acid residue in 

that position (p-value=9.42x10-8, OR=2.13).  
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Figure 1.3. Manhattan plot representation of the results of the conditional logistic 
regression analysis of the HLA region in Iranian patients with SSc. (A) Unconditioned 
test of the HLA region. (B) Results after conditioning on the HLA-DRB1*11:04 classical 
allele. (C) Results after conditioning on the HLA-DRB1*11:04 and DPB1*13:01 alleles. 
The red/green color gradient represents the effect direction of each analyzed variant 
(red for risk and green for protection). The size of the diamonds indicates the degree 
of linkage disequilibrium with the classical allele HLA-DRB1*11:04 and DPB1*13:01 in 
A and B, respectively. The red line represents the genome-wide level of significance 
(p-value = 5x10-8). 
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Figure 1.4. Manhattan plot representation of the results of the conditional logistic 
regression analysis of the HLA region in Turkish patients with SSc. (A) Unconditioned 
test of the HLA region. (B) Results after conditioning on the HLA-DRB1*11:04 classical 
allele. The red/green color gradient represents the effect direction of each analyzed 
variant (red for risk and green for protection). The red line represents the genome-
wide level of significance (p-value = 5x10-8). 
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1.3. Discussion 

As previously stated in the Introduction section, the study of the 

genetic background of diseases in different non-Caucasian population in order 

to break the existing European bias for risk prediction represents a major 

challenge. In this regard, this study represents the first SSc GWAS performed 

in Iranian and Turkish populations. Given the relevance of the HLA region in 

SSc predisposition and the lack of information about the role of HLA genes in 

SSc in Iranian or Turkish populations, an extensive analysis of the HLA region 

was performed. The HLA class II region was identified as the most strongly 

associated locus to SSc in both Middle Eastern populations. Interestingly, the 

HLA-DRB1*11:04 classical allele showed the most significant association in 

both ancestries. These data reinforce the role of the HLA-DRB1*11:04 allele in 

the SSc susceptibility previously reported in different ethnic populations, 

including Caucasians (125,178,179), African-Americans (125) and Mexicans 

(126). Furthermore, these results suggest for the first time that this effect 

could be driven by the amino acid Glu-58. Nevertheless, amino acid Phe-67, 

which is in high LD with Glu-58 in our study, has been previously set as a 

relevant amino acid in SSc susceptibility (101). There is no functional 

implication described in the literature for these two amino acids so we cannot 

assure which one is leading the association. In addition, after conditioning on 

HLA-DRB1*11:04, the classical allele HLA-DPB1*13:01, which has been 

reported as a susceptibility allele in Caucasians (125) and Koreans (90), 

remains significant in the Iranian cohort. Our results also suggest that the 

association between HLA-DPB1*13:01 and SSc could be driven by amino acid 

Ile-76, which is in line with previous results (101). Interestingly, amino acid 

position 76 is part of the binding pocket of the HLA-DPβ1 molecule (180). It 

should be noted that, in previously mentioned studies, associations of HLA-

DRB1*11:04 and HLA-DPB1*13:01 with SSc were explained by its strong 

correlation with ATA. This specific correlation with ATA+SSc patients was 
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verified in our stratified analysis. In this sense, the association of HLA-

DRB1*11:04 and HLA-DPB1*13:01 classical alleles with the global disease 

could be owing to a clinical predominance of ATA+SSc patients in the Iranian 

population. On the other hand, the lack of association of HLA-DPB1*13:01 with 

the ATA+SSc subgroup in the Turkish cohort could be due to its lower sample 

size as compared with the Iranian cohort. Due to the low allele frequency of 

HLA-DPB1*13:01 in our Turkish samples (4%), small changes in the sample 

size can result in huge changes in the statistical power; e.g., considering an 

OR= 3.2 and an allele frequency of 4%, the statistical power in the Turkish 

cohort was 25% whereas in the Iranian cohort was 85%. 

Outside of the HLA region, two suggestive associations at the IRF5-

TNPO3 and NFKB1 loci were found. IRF5-TNPO3 was one of the first risk loci 

identified in SSc. This association has been replicated in various studies and 

ethnicities (91,106,181,182), indicating that it is a firm susceptibility factor 

for SSc and other ADs such as SLE and RA (183,184). On the other hand, the 

NFKB1 locus was identified as a SSc susceptibility gene in a previous GWAS 

meta-analysis and subsequently confirmed in a candidate gene approach 

analysis in a Caucasian population (96,185). Nevertheless, until the posterior 

release of the largest meta-GWAS in SSc performed to date (106), our study 

represented the strongest association described for this locus, being 

performed in a much smaller sample size, which emphasize the importance of 

performing large-scale genotyping studies in different populations in order to 

discover new associated loci. NF-κB has been broadly described as controlling 

the inflammatory process, and its role in autoimmunity is widely accepted 

(186). Furthermore, the interaction of NFKB1 with other well-defined 

susceptibility genes in SSc, such as TNFAIP3 (Tumor Necrosis Factor Inducible 

Protein A20) (187), which encodes a protein that inhibits NF-κB activation, 

suggests that it could be a good candidate gene to be involved in SSc. 

Regarding the Turkish cohort, a suggestive level associated signal 
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corresponding to the GOT1-NKX2.3 locus emerged. This locus is a well-

established signal associated with other immune-mediated diseases, such as 

ulcerative colitis and CD (188,189), suggesting a potential role of the GOT1-

NKX2.3 locus in autoimmunity. Notably, the strongest association reported for 

the GOT1-NKX2.3 locus in both studies (rs4409764) is in strong LD (r2=0.93) 

with the top associated SNP observed in our Turkish cohort (rs7095491). 

NKX2.3 (Nirenberg-Kim (NG) 2 homeobox 3) is a homeodomain transcription 

factor essential for the correct development of spleen and small intestine 

(190,191). Interestingly, this gene is expressed in microvascular endothelial 

cells, and its overexpression has been associated with both CD and ulcerative 

colitis through truncated regulation of VEGF signaling and the production of 

endothelin-1 (190,191). These processes are intimately related with SSc 

vasculopathy, which highlights NKX2.3 as a good candidate gene contributing 

to SSc pathogenesis. 

Despite the successful identification of SSc susceptibility genes in 

Iranian and Turkish populations, our study had some limitations. In this 

regard, larger cohorts could help to elucidate whether the two suggestive 

associations observed in the meta-analysis (IRF5-TNPO3 and NFKB1) reach 

the genome-wide significance threshold. Nevertheless, the results for four of 

the six most relevant SSc non-HLA associations reported by Carmona et al 

(192) in a Turkish population were very similar to our GWAS results (Table

1.5), highlighting the reproducibility of our study.

In summary, our results confirm the previously reported association 

of the HLA region with SSc susceptibility and show two non-HLA associations 

almost reaching the genome-wide significance threshold, in Iranian and 

Turkish populations. This study sheds light on the unexplored genetic 

background of SSc in these populations, which contributes to a better 

understanding of the genetic structure and pathogenesis of the disease. 
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Table 1.5. Comparative of the results obtained in Turkish population in four SSc hits. 
In this table are shown the results obtained by Carmona et al (192) and our Turkish 
GWAS. 

SNP Gene Study p-value OR 

rs10488631 IRF5-TNPO3 
Turkish GWAS 3.05E-03 1.66 

Carmona et al 1.32E-05 1.76 

rs3821236 STAT4 
Turkish GWAS 3.60E-02 1.34 

Carmona et al 6.50E-02 1.21 

rs9373839 ATG5 
Turkish GWAS 8.86E-01 1.02 

Carmona et al 6.72E-01 1.06 

rs2056626 CD247 
Turkish GWAS 6.93E-03 0.71 

Carmona et al 2.20E-03 0.75 
SNP single nucleotide polymorphism, OR odds ratio, GWAS genome-wide 
association study. 
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2.1. Material and methods 

2.1.1. Study population 

A series of 5,734 patients diagnosed with SSc, 4,588 CD patients, and 

14,568 healthy controls of European origin were enrolled in this study. Figure 

2.1 and Supplementary Table S2.1 detail the cohorts included in the 

different stages of the study.  

SSc GWAS dataset: In the discovery phase, we included GWAS data 

from 2,281 SSc cases and 4,410 healthy controls from Spain, USA, Germany 

and the Netherlands, all of them included in a previous study (91).  

CD GWAS dataset: The CD discovery cohort was composed of 1,988 

cases and 2,978 healthy controls from the UK, included in the CD GWAS 

performed by the Welcome Trust Case Control Consortium (WTCCC) (193). 

Replication cohorts: To confirm the results obtained in the discovery 

phase, genotyping data of the selected polymorphisms were obtained from 

GWAS data from 3,453 SSc cases and 3,602 controls, and 2,600 CD cases and 

3,578 controls. Specifically, the SSc replication cohort included three 

independent case/control sets from Spain, USA, and Italy. Regarding the CD 

cohort, case/control sets were recruited from Spain, USA and Germany, all of 

them from previously published GWASs (194–196).  

The control population consisted of unrelated healthy individuals that 

were recruited in the same geographical regions as patients. Genotyping 

information of each cohort is included in Supplementary Table S2.1. 

All SSc cases were defined based on the 1980 preliminary and 2013 

classification criteria of American College of Rheumatology (35,37) or based 

on the presence of at least 3 out of 5 CREST features typical for SSc. All CD 
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cases were defined based on a confirmed diagnosis of CD using conventional 

endoscopic, radiological and histopathological criteria (197). 

2.1.2. Quality control and imputation 

All GWAS data were QC filtered prior imputation. SNPs and subjects 

with success call rates lower than 95% were removed using PLINK V.1.9 

(170). SNPs showing a deviation from the Hardy–Weinberg equilibrium (p-

value<0.001) and minor allele frequencies <1% were also excluded. In 

addition, one subject per duplicate pair and per pair of first-degree relatives 

was also removed via the Genome function in PLINK V.1.9 with a Pi-HAT 

threshold of 0.4. Principal component analysis (PCA) was performed in order 

to identify and exclude outliers based on their ethnicity by using PLINK V.1.9 

and the GCTA64 and R-base under GNU Public license V.2. We estimated the 

first five PCs using ~100.000 quality-filtered independent SNPs (r2<0.15). 

Figure 2.1. Schema of the study design. 
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Outliers were defined as individuals who deviated more than six standard 

deviations from the centroid of their population. The number of SNPs before 

and after QC for each cohort is summarized in Supplementary Table S2.1. 

Imputation was performed using the Michigan imputation Server 

(171). The software SHAPEIT (172) was used in order to estimate haplotypes, 

and the European panel of the HRC r1.1 (173) was used as the reference panel 

for both SSc and CD genotype data in the discovery phase. Individual chunks 

of 50.000 Mb were used to carry out the imputation, covering whole-genome 

regions with a probability threshold for merging genotypes of 0.9, thus 

maximizing the quality of the imputed variants. Imputed data were also 

subjected to the above-mentioned QC filters in PLINK V.1.9. The total number 

of SNPs imputed for each cohort is summarized in Supplementary Table 

S2.1. 

2.1.3. Statistical analysis 

Statistical analyses were performed with PLINK V.1.9. 

Discovery phase: Each GWAS case/control cohort was independently 

analyzed by logistic regression assuming an additive model with the first five 

PCs as covariates, as a correcting method for population stratification. ORs 

and 95% CIs were calculated according to Woolf’s method. Subsequently, SSc 

datasets were meta-analysed by the inverse variance-weighted method. Sex 

chromosomes were excluded from the analysis.  

In order to detect common signals for SSc and CD with the same effect, 

either risk or protection, summary statistics of each disease were then meta-

analyzed applying the inverse variance method. To identify common signals 

for SSc and CD with opposite effect, the direction of association was flipped in 

the CD dataset (1/OR instead of OR) before the SSc-CD meta-analysis. 

Subsequently, we selected SNPs that showed a p-value < 1 x 10-5 in the SSc-
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CD meta-analysis and showed nominal significance (p-value < 0.01) with each 

disease separately, as well as no significant heterogeneity in the SSc meta-

analysis (Cochran’s Q test > 0.05 and heterogeneity index I2 < 50%).  

The strongest associated SNP within each locus was selected for the 

replication phase. Genetic variants were annotated using variant effect 

predictor (VEP) (198) and their previous association with SSc and/or CD was 

explored using Immunobase (http://www.immunobase.org) and the GWAS 

catalog (199). 

Replication phase: Replication cohorts were analysed by logistic 

regression for the previously selected SNPs. Finally, combined analysis of the 

SSc and CD discovery and replication cohorts was performed using the inverse 

variance method. After the replication phase, we considered as statistically 

significant those signals that showed a p-value < 0.05 in each disease 

separately in the replication phase and a p-value < 5 x 10-8 in the SSc-CD cross-

disease meta-analysis including both discovery and replication datasets.  

The statistical power of the SSc-CD combined meta-analyses (both 

discovery and discovery+replication) was determined as described by Skol et 

al (200).  

Independence analysis: For those SSc-CD common loci identified, for 

which an association with any of the analysed diseases was already reported, 

we evaluated the independence between pleiotropic signals and genetic 

variants previously associated with SSc and/or CD at the genome-wide 

significance level according to Immunobase and the GWAS Catalog. For this 

purpose, we used LDlink (201), a tool that provides LD data between 

polymorphisms across a variety of ancestral populations. Only the European 

ancestry was taken into account for the LD analysis.  
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In addition, since one of the shared genetic risk loci was located close 

to the extended MHC region, we decided to test the independence between 

our new common signal and the main SSc and CD HLA associations.  For this, 

we imputed SNPs, classical HLA alleles and amino acids across the extended 

MHC region (29,000,000 to 34,000,000 bp in chromosome 6) using the 

SNP2HLA method with the Beagle software package (174) and the Type 1 

Diabetes Genetics Consortium reference panel (175). HLA imputation of the 

CD discovery cohort was not possible due to the low coverage of this region 

included in the platform used for the genotyping of this dataset. For the SSc 

discovery cohort, the presence of independent effects within the extended 

MHC region was examined using a stepwise logistic regression by 

conditioning on the top independent signals. 

2.1.4. Functional annotation 

We assessed the potential regulatory function of the SSc-CD common 

susceptibility variants identified by means of in silico eQTL analysis using 

Haploreg v4.1.  Haploreg v4.1 is a tool for exploring annotations at variants on 

haplotype blocks, providing a large collection of regulatory information, 

capable of the functional assignment onto any set of variants derived from 

GWAS or sequencing studies (202). We only included eQTLs found in tissues 

with relevance in SSc and/or CD. 

2.1.5. Protein-protein interaction and gene set enrichment analysis 

In order to identify interactions among proteins encoded by the SSc 

and CD common risk loci, we decided to construct a protein-protein 

interaction (PPI) network using the STRING database V.11.0 (203). This 

software provides a critical assessment and integration of PPI, including 

functional (indirect) as well as physical (direct) associations. The interaction 

confidence score was set in 0.9, which is the highest score calculated as a 
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combined probability from different evidences of interactions corrected for 

the probability of observing an interaction by random chance. 

In addition, gene ontology (GO) was applied to perform an enrichment 

analysis in order to determine whether certain biological processes are 

overrepresented in the set of SSc-CD common genes. 

 

2.2. Results 

2.2.1. Meta-analysis and replication 

Following QC and imputation, we performed a meta-analysis 

considering both diseases as a single phenotype. A total of 5,994,231 SNPs 

overlapped between all GWAS datasets in the discovery phase. In the 

discovery cross-disease meta-analysis, the statistical power to detect an 

association at a p-value of 1x10-5 (MAF=20% and OR=1.2) was 80%. In the 

discovery+replication meta-analysis, the statistical power to detect an 

association at a p-value of 5x10-8 (MAF=20% and OR=1.2) was 100%. 

When we combined GWAS data from SSc and CD under the assumption 

that alleles had the same effect in both diseases, genetic variants at 13 loci 

fulfilled the replication criteria (p-value < 1x10-5 in the SSc-CD meta-GWAS 

and p-value < 0.01 in each disease-specific analysis) (Figure 2.2A and 

Supplementary Table S2.2). One of these common signals was located 

within the IRF8 region, a known genetic risk locus shared between SSc and CD, 

and, therefore, it was not considered in subsequent analyses. On the other 

hand, we performed the analysis under the assumption that alleles had 

opposite directions in both diseases, identifying 12 loci that fulfilled all 

criteria for the replication phase (Figure 2.2B and Supplementary Table 

S2.3). 
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To confirm these associations, the strongest associated SNP within 

each locus was selected for validation in additional sample sets. According to 

the criteria established for the replication analysis (genome-wide significance 

in the combined analysis including both discovery and replication sets, and 

Figure 2.2. Manhattan plot representing the results of the cross-disease meta-
analysis including systemic sclerosis and Crohn’s disease, considering same allelic 
effects (A) and opposite allelic effects (B). Loci selected for replication are marked in 
black. Significance threshold at the genome-wide significance level is marked with a 
red line. Established significance threshold for the cross-disease meta-analysis (p-
value < 1x10-5) is marked with a blue line.  
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nominal statistical significance in each disease-specific replication analysis), 

we identified a total of 4 genetic variants showing a pleiotropic effect in SSc 

and CD: two intronic variants located within IL12RB2 and STAT3, a SNP close 

to IRF1, and an intergenic variant at 6p21.31 located between ZBTB9 and 

BAK1 (Table 2.1). It is remarkable that an opposite allelic effect in both 

disorders was observed for all these new common signals. 

Three of these shared risk loci have been previously associated with 

one of the analysed diseases, IL12RB2 with SSc and IRF1 and STAT3 with CD. 

Shared genetic variants at the IRF1 and STAT3 loci identified in our study were 

linked to those polymorphisms previously associated with CD (r2> 0.40). In 

the case of IL12RB2, it is an established genetic risk locus for SSc but, in 

addition, the IL23R gene, located within this same genomic region, is a known 

susceptibility gene for CD. However, LD analysis evidenced that the 

pleiotropic variant identified in our study (rs6659932) was independent of 

the IL23R SNPs previously associated with CD (Supplementary Table S2.4). 

On the other hand, the intergenic variant at 6p21.31 (rs68191) is 

located close to the extended MHC region. Considering this, we decided to test 

the independence between our new common signal and the main HLA 

associations observed in the SSc and CD discovery cohorts. In the case of CD, 

independence between signals could not be checked due to the low coverage 

of the HLA region. Regarding SSc, two independent signals were observed 

after conditional regression analysis, HLA-DPB1*1301 (p-value=1.77x10-19, 

OR=2.79) and HLA-DRB1*1104 (p-value=1.21x10-12, OR=1.83). After 

controlling for these two classical alleles, the SSc-CD common signal remained 

significant in the SSc discovery cohort (p-value=8.15x10-3; conditioned p-

value=2.78x10-2).  
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2.2.2. Functional effect on gene expression 

Subsequently, we used the HaploReg database to explor wether the 

most strogly associated polymorphism of each shared locus acted as an eQTL. 

As shown in Supplementary Table S2.5, all the pleiotopic SNPs identified in 

our study appeared to affect gene expression levels. Shared genetic variants 

at the IL12RB2 (rs6659932) and STAT3 (rs4796791) loci affected expression 

levels of IL12RB2 and STAT3, respectively, whereas the pleiotropic SNP of the 

IRF1 locus (rs2548998) acted as an eQTL for IRF1 and SLC22A5. Interestingly, 

the intergenic polymorphism at the MHC extended region (rs68191) affected 

gene expression levels of TAPBP.  

2.2.3. Protein-protein interaction and enrichment analysis 

Finally, we also evaluated the connectivity at the protein interaction 

level among the genetic risk loci shared between SSc and CD, including genes 

whose expression levels were affected by the pleiotopic polymorphisms 

identified in our study, that is IRF1, SLC22A5, STAT3, IL12RB2 and TAPBP, as 

well as loci associated in previous studies with both SSc and CD, including 

STAT4, TYK2, IRF8, GSDMA and IKZF3. GSDMA and IKZF3 belong to the same 

LD block, however GSDMA has been set as the most probable candidate gene 

of this locus in SSc and IKZF3 for CD (127,188). Thus, we decided to keep both 

genes for PPI and enrichment analyses.  

The PPI network involved 9 of the 10 common proteins included in the 

analysis, except for SLC22A5 (Figure 2.3). We observed a strongly significant 

PPI enrichment (p-value < 1x10-6), indicating that these proteins have more 

interactions than would be expected for a random set of proteins of similar 

size.  

To further evaluate this connection, we performed a gene ontology 

enrichment analysis in biological processes. In this regard, we observed 29 
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statistically significant over-represented biological processes (p-value < 

0.05). The most significantly over-represented pathways were related to 

interleukin-mediated signaling, especially those related with the IL-12 family 

and the type I IFN signaling pathway (Table 2.2). 

Figure 2.3. STRING protein-protein interaction network connectivity among 
genetic risk loci shared between systemic sclerosis and Crohn’s disease 
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2.3. Discussion 

Through the first comprehensive study of the genetic component 

shared between SSc and CD, we have identified four loci that contribute to 

suceptibility to both disorders. Of these, one had not been previously 

associated with any of the diseases under study (an intergenic locus at 

6p21.31), whereas the remaining three represent established genetic 

risk loci for one but not the other condition. 

Although all these pleiotropic SNPs are located in non-coding regions, 

functional annotation indicated that they act as regulatory variants affecting 

expression levels of either the gene where they mapped or close genes in cell 

types or tissues of relevance in the pathogenesis of SSc and/or CD. In this 

regard, pleiotropic variants appeared to influence expression levels of the 

IL12RB2, IRF1, SLC22A5, STAT3, and TAPBP genes (Supplementary 

Table S2.5) Most of these genes are key players of the immune 

response: IL12RB2 encodes a subunit of the IL-12 receptor complex 

implicated in Th1 differentiation; STAT3 encodes a transcription factor that is 

essential for the differentiation of Th17 cells; IRF1 encodes a transcriptional 

regulator of type I IFN and IFN-inducible genes; and TAPBP is crucial for 

optimal peptide loading on the MHC class I molecule. In addition, the 

pleiotropic variant affecting IRF1 levels also regulates the expression 

of SLC22A5, which encodes an organic cation transporter involved in the 

active cellular uptake of carnitine. 

Interestingly, PPI analysis evidenced a number of non-random 

connections among the SSc-CD common genes, including both shared risk loci 

previously described and comon genes identified in our study, which indicates 

overlap among the pathways involved in the pathogenesis of these two 

disorders. Specifically, the IL-12 family signaling pathways, including IL-35, 

IL-23, IL-12, IL-21, and IL-27-mediated signaling, were particularly 
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compelling. This family of cytokines plays a crucial role in shaping immune 

responses, differentiation of naive T cells towards different types of effector 

cells, as well as in the regulation of effector cell functions (204) (Figure 2.4). 

In this sense, IRF1, STAT3, and IL12RB2 play a particularly interesting role in 

Th1/Th17 regulation. Moreover, the type I IFN signaling pathway was also 

enriched among the set of SSc-CD common genes. As previously stated, 

increased expression and activation of IFN-inducible genes, known as 

interferon signature, has been extensively reported in SSc (205) and several 

IRFs, including IRF5, IRF4, and IRF8, have been involved in its susceptibility 

(84,106), thus supporting the role of IRF1, previously associated with CD but 

not with SSc, as a new susceptibility gene for this last condition. 

Figure 2.4. Implication of the new shared associated genes in IL-12 pathway 
and naive T cell differentiation (Modified from Unutmaz et al, Nat Immunol. 
2018) 
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Considering these results, both IL-12 family and type I IFN signaling 

pathways could represent interesting therapeutic targets for both SSc and CD. 

Indeed, ustekinumab, a monoclonal antibody to the p40 subunit common to 

IL-12 and IL-23, has been recently approved in the EU and the USA to treat 

patients with CD and, therefore, this drug could be repositioned to treat SSc. 

However, it should be advised that all the pleiotropic variants identified in our 

study showed opposite allelic effects in the two analysed disorders, thus 

highlighting the complex effects that shared associations have on disease 

outcomes. This could be due to the fact that consequences of genetic variants 

are influenced by the cell type. For example, as previously indicated, the 

shared genetic variant at IL12RB2 influenced its gene expression levels; 

however, whereas the minor allele (which conferred risk to SSc in our study) 

correlated with an increased gene expression in whole blood, the major allele 

(which conferred risk to CD) had the same effect (increased IL12RB2 

expression) in fibroblasts, according to Genotype-Tissue Expression project 

(GTEx) data (206). In addition, the effect on gene expression of the pleiotropic 

SNP located within the 5q31.1 region was also cell type specific, influencing 

IRF1 expression levels in lymphoblastoid cells and SLC22A5 levels in other 

tissues, and, therefore, this SNP could have a different biological implication 

in both diseases. Indeed, higher expression levels of OCTN2, the protein 

encoded by SLC22A5, have been found in inflamed regions of the intestinal 

epithelium compared with non-inflamed areas, and a role of this protein in the 

intestinal homeostasis has also been reported (207); whereas, given the 

relevance of the type 1 IFN signaling pathway in SSc, the IRF1 gene seems a 

more plausible candidate to be involved in SSc susceptibility. Considering this, 

it is possible that an effective treatment for SSc could have a detrimental effect 

on CD, and conversely. As previously mentioned, we observed discordant 

associations for variants located in genes implicated in IL-23 and Th1 

differentiation pathways. In this context, IL-17-specific antibody therapy, 
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effective in psoriasis and with promising effects on SSc (208,209), has been 

proven to exacerbate CD (210). This could be due to a deficient Th17 

activation in CD owing to mutations in STAT3, which could lead to hyper-IgE 

syndrome, typically associated with extracellular fungal and bacterial 

infections (211). Interestingly, according to our results, the STAT3 rs4796791 

variant confers protection to CD and risk to SSc, which could lead to an 

exacerbate reaction in CD patients carrying this variant when treated with 

anti-IL17 therapy. 

Interestingly, it has been reported a reduced incidence of CD in 

patients with SSc (212,213). Although the causes of this phenomenon are not 

clear, our results suggest that identical genetic risk factors could have 

different or even opposite functional effects in both diseases. These ‘flip-flop’ 

associations have been extensively observed across different comparative 

analyses (214). In this regard, a cross-disease meta-analysis including CD and 

type 1 diabetes (215) identified two variants, IL27 rs4788084 and IL10 

rs3024505, with opposite effects in these two conditions. Furthermore, a 

meta-analysis of 6 different immune-mediated disorders showed that 14% of 

overlapped variants were discordant regarding the risk allele across diseases 

(216). These results suggest that predisposition to related diseases may be 

regulated by different dose balance of genes and genomic elements in relevant 

biological pathways, as well as how these differences affect a specific cell type, 

as previously mentioned. In this sense, differences across cell types in 

transcription regulation mediated by epigenetic factors, such as methylation 

or histone modifications, as well as derived changes in chromatine 

conformation, could influence these opposite effects for the same allele in 

different diseases (217). It is, therefore, crucial to know the cell types in which 

genetic variants are acting to be able to elucidate their role on the 

pathogenesis of the disease.
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Supplementary Table S2.4. Linkage disequilibrium between the systemic sclerosis-
Crohn’s disease common signal at IL12RB2 (rs6659932) and the IL23R 
polymorphisms previously associated with Crohn’s disease. 

SNP single nucleotide polymorphism, LD linkage disequilibrium. 

Supplementary Table S2.5. Potential role of the lead pleiotropic polymorphisms as 
expression quantitative trait loci (eQTLs) in tissues of relevance for the diseases 
under study. 

Region Locus SNP Correlated 
gene Tissue p-value Study 

5q31.1 IRF1 rs2548998 
SLC22A5 

Whole Blood 2.95E-07 [1] 

Esophagus - Mucosa 5.09E-06 [1] 
Cells - Transformed 

fibroblasts 6.82E-06 [1] 

Lymphoblastoid 
cells 4.94E-07 [2] 

IRF1 Lymphoblastoid 
cells 1.33E-06 [2] 

1p31.3 IL12RB2 rs6659932 IL12RB2 
Cells - Transformed 

fibroblasts 3.41E-13 [1] 

Whole Blood 5.47E-07 [1] 

17q21.2 STAT3 rs1026916* STAT3 Whole Blood 1.99E-20 [3] 

6p21.31 ZBTB9/BAK1 rs68191 TAPBP Whole Blood 4.04E-06 [3] 
*Proxy SNP of the strongest associated polymorphism, rs47967941 (r2=0.99).
SNP single nucleotide polymorphism.
[1] GTEx Consortium. Science. 2015;348(6235):648-60.
[2] Lappalainen T, et al. Nature. 2013;501(7468):506-11 
[3] Westra HJ, et al. Nat Genet. 2013;45(10):1238-43.

LD with rs6659932 

SNP Position r2 D' Study accession
number 

rs7517847 1:67215986 0.0051 0.1372 GCST003044 
rs11581607 1:67242007 0.0059 0.1328 GCST004132 
rs11465804 1:67236843 0.0124 0.1854 GCST000207 
rs11209026 1:67240275 0.0059 0.1328 GCST001396 
rs11805303 1:67209833 0.0043 0.2282 GCST000042 
rs76418789 1:67182913 0.0004 1 GCST002094 
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3.1. Material and methods 

3.1.1. Study population 

This study was conducted using 12,132 affected subjects and 23,260 

controls of European descent population. All of them were included in 

previously published GWAS as summarized in Supplementary Table S3.1 

(91,218–222). Briefly, a total of 3,255 SLE cases and 9,562 ancestry matched 

controls were included from six countries across Europe and North America 

(Spain, Germany, Netherlands, Italy, UK, and USA). All of the included patients 

were diagnosed based on the standard American College of Rheumatology 

(ACR) classification criteria (223). Previously described GWAS data from 

2,363 SSc cases and 5,181 ancestry matched controls were included in the 

study (four case-control collections from Spain, Germany, Netherlands and 

USA). All the patients met the ACR Preliminary criteria for the classification of 

SSc or had at least 3 of the 5 CREST features (35,37). A total of 4,804 RA cases 

and 3,793 ancestry matched controls were included from Sweden, UK and 

USA, obtained from the Epidemiological Investigation of RA (EIRA) project 

(http://www.eirasweden.se), the WTCCC data repositories, 

(http://www.wtccc.org.uk/), and the North American Rheumatoid Arthritis 

Consortium (NARAC), respectively. All the patients met the ACR criteria for 

the diagnosis of RA (224) or were diagnosed by board-certified 

rheumatologists. IIM GWAS data were obtained in collaboration with the 

MYOGEN consortium, comprising 1,710 cases and 4,724 ancestry matched 

controls from Europe and North America (Spain, Sweden/Netherlands, Czech 

Republic/Hungarian, USA and UK). The inclusion criteria were defined by 

proximal weakness, myopathy on electromyography, muscle biopsy 

consistent with idiopathic inflammatory myopathy or elevated serum muscle 

enzymes, and the presence of Gottron’s papules/sign or heliotrope rash, with 
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exclusion of other causes of muscle disease per Bohan and Peter criteria 

(225). 

3.1.2. Quality control and imputation 

Unified QC of the 18 case-control collections was conducted 

separately, based on stringent criteria using PLINK v.1.9 (170). Given that 

related and/or duplicated subjects may have been recruited for different 

studies, genome-wide relatedness was assessed and one individual from each 

pair was removed. Samples with <95% of successfully called genotypes were 

removed. 

Further, SNPs with genotyping call rate <98%, MAF <1% and deviating 

from HWE with a p-value <0.001 in the control group were removed. To 

control for possible population stratification, we performed PC analysis using 

GCTA64 and R-base software under GNU Public license v.2. For that, the first 

ten PCs were calculated for each individual and those samples found >6 

standard deviations from the cluster centroids of each set were considered 

outliers and were removed from the analyses. 

Imputation of autosomal SNPs was conducted in the Michigan 

Imputation Server using Minimac3 (171). The software SHAPEIT (172) was 

used for haplotype reconstruction and the HRC r1.1 (173) was used as the 

reference population.  

3.1.3. Statistical analysis 

Disease-specific association testing: Association testing for allele 

dosages was performed using EPACTS software 

(https://genome.sph.umich.edu/wiki/EPACTS) adjusting by the first two or 

five PCs as appropriate. Additionally, prior to the meta-analysis, each 

individual study was adjusted by their specific inflation factor. This was 
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performed by multiplying each standard error by the square root of the 

calculated inflation factor. 

Cross-disease meta-analysis: meta-analysis was conducted with 

METASOFT (226). Fixed-effects or random-effects model was applied 

depending on study heterogeneity (Cochran’s Q test p-value). The lead and 

most significant SNP outside the extended MHC region, was selected to 

perform sequential conditional association analyses to confirm statistical 

independence of associations. These analyses were carried out with the 

software GCTA-COJO (227,228), using the summary statistics from the SSc, 

SLE, RA and IIM meta-analysis, with the GCTA “--cojo-cond” option within a 

10 Mb window. A secondary signal was considered if within this window there 

were additional SNPs with a conditioned p-value passing a Bonferroni 

correction.  

Variant annotation: To annotate the association signals we utilized 

SNPnexus (229). If a SNP mapped in a coding/non-coding gene region 

(introns, exons, UTRs), we reported the candidate gene identified by 

SNPnexus. If the SNP was upstream, downstream, or intergenic, the most 

“likely” gene was manually curated in a 500kb window and assigned based on 

the observed LD block and if there were evidences of previous association 

signals with ADs or other immune-related phenotypes. 

Model search to identify the diseases contributing to the lead signal: we 

conducted an exhaustive disease-subtype model search with the R statistical 

software package ASSET (230), utilizing each case-control collection 

separately. This subset-based meta-analysis explores all possible subsets of 

diseases for the presence of true association signals, while adjusting for the 

required multiple testing. 
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Novelty of the variants: the observed associations were used to query 

the NHGRI-EBI GWAS catalog and the Phenopedia and Genopedia from HuGE 

Navigator (231). The phenopedia database was queried by disease (search 

terms: “systemic sclerosis”, “systemic lupus erythematosus”, “rheumatoid 

arthritis”, and “myositis”) and the genopedia by gene name based on the 

annotations from SNPnexus and previously described gene prioritization. 

Variants were classified as “new” if they had never been associated before 

with a single disease at the genome-wide significance level. 

Functional enrichment analysis: to characterize the functional, cellular 

and regulatory contribution of the associated SNPs, we conducted a non-

parametric enrichment analysis with GARFIELD (232). This software 

combines summary statistics with functional annotations from the ENCODE 

(233) and Roadmap Epigenomics (158) projects by calculating a fold

enrichment, and assessing their significance via permutation testing while

accounting for LD, MAF and local gene density. Functional annotation included

genetic elements (GENCODE), DNase hypersensitivity sites (DHS),

transcription factor binding sites (TFBS), histone modifications and

chromatin states.

To determine whether any of the lead variants was an eQTL the online 

tools HaploReg v.4.1 (202) and the GTEx project (206) were queried. 

Additionally, the Capture HiC plotter (234) tool was used to display physical 

interactions between restriction fragments containing the variants and the 

gene promoters. This catalog of promoter-interacting regions aims to explain 

how the transcriptomic control of the genome works. The query was 

performed using the two promoter-capture datasets contained in the tool and 

their different cell types. Only the interactions between associated variants 

and reported genes affected by eQTLs were carried forward in the analyses. If 

there was no overlap with the genes modulated by the eQTLs, the resulting 
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interacting genes were flagged as putative candidates for the diseases. The 

five new shared risk SNPs were queried as well and several putative 

candidates were found (Supplementary Figure S3.1). 

Drug Target Enrichment Analysis: in order to assess if associated genes 

were enriched in drug targets, the target genes of eQTLs that overlapped with 

pCHi-C data were used to model a PPI network using STRING V.11.0 (203). 

When possible, the interaction confidence score was set in 0.9, which is the 

highest score calculated as a combined probability from different evidences of 

interactions corrected for the probability of observing an interaction by 

random chance. These protein products from the risk genes and those in 

direct PPI with them were then used to query the OpenTargets Platform (235) 

for drug targets. Additionally, the same platform was searched for drugs 

indicated, or in different phases of drug development, for the treatment of SSc, 

SLE, IIM and RA. Then, Fisher’s exact test was used to calculate if the results 

of the meta-analysis were significantly enriched in pharmacologically active 

drug targets. To such purpose, we used gene-products related and unrelated 

to the analyzed disease, drug targets indicated for the disease and coding 

genes of the genome that are potentially druggable. The Drugbank database 

(236) and ClinicalTrials.gov (https://clinicaltrials.gov/) were searched for 

drugs that are currently in development for the treatment of RA and for 

information on publicly and privately supported clinical studies on SSc, SLE 

and IIM. 

3.2. Results 
3.2.1. Cross-disease meta-analysis and disease contribution 

Following sample QC and imputation, a total of 11,678 cases and 

19,704 non-overlapping controls were included in the genome-wide meta-

analysis of 6,450,125 SNPs across the four diseases. The mean concordance 

rate among imputed and true genotypes was 0.999±0.0003. The final λ 
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showed minimal evidence of population stratification in the meta-analysis 

(λ=1.025). Moreover, we calculated λ1,000 with consistent results 

(λ1,000=1.025). Summary of sample/variant QC are shown in 

Supplementary Table S3.1. 

The global meta-analysis revealed 42 non-HLA significantly associated 

loci. Subsequent conditional analyses showed that 26 SNPs were independent 

(Figure 3.1). Seventeen variants were meta-analyzed under a fixed effects 

model, whereas 9 with random effects based on study heterogeneity. 

To comprehensively explore the combinations of diseases 

contributing to the associations we applied a subset-based meta-analysis 

implemented in ASSET. Our model search yielded 26 SNPs associated with at 

least two IMIDs (Table 3.1). All of these variants were imputed in at least one 

dataset.

Figure 3.1. Meta-analysis results for the four systemic immune-mediated inflammatory 
diseases (IMIDs). The red line depicts the genome-wide significance threshold (p-
value=5×10−8). A total of 26 SNPs were independently associated with at least 2 systemic 
IMIDs. Most of the signals map to known susceptibility loci in autoimmunity 
(eg, PTPN22, STAT4, TNPO3, FAM167A-BLK) and five loci represent new shared 
susceptibility factors across IMIDs (underlined). 



RESULTS 

101 

  
 Ch

r 
Po

si
ti

on
a  

SN
P 

Ge
ne

b  
Fu

nc
ti

on
al

it
yc

 
Ef

fe
ct

 
Al

le
le

 
O

R 
(C

I 9
5%

) 
M

et
a-

An
al

ys
is

 
p-

va
lu

ed
 

Co
ch

ra
n’

s 
p-

va
lu

e 
Co

nt
ri

bu
ti

ng
 

D
is

ea
se

e  
 

1 
67

80
23

71
 

rs
66

59
93

2 
IL

12
RB

2 
In

tr
on

ic
 

C 
0.

85
 (0

79
-0

.9
1)

 
6.

08
E-

11
 

1.
02

E-
02

 
II

M
, S

LE
, S

Sc
 

 

1 
11

43
03

80
8 

rs
66

79
67

7 
PH

TF
1-

RS
BN

1 
In

te
rg

en
ic

 
A 

1.
34

 (1
.2

1-
1.

49
) 

2.
30

E-
28

 
2.

14
E-

04
 

II
M

, R
A,

 S
LE

 
 

1 
11

43
77

56
8 

rs
24

76
60

1 
PT

PN
22

 
Co

di
ng

 
(m

is
se

ns
e)

 
G 

0.
75

 (0
.6

7-
0.

83
) 

1.
74

E-
28

 
1.

06
E-

04
 

IIM
, R

A,
 S

LE
 

 

1 
11

44
33

94
6 

rs
12

17
39

3 
AP

4B
1 

In
tr

on
ic

 
A 

0.
89

 (0
.8

5-
0.

92
) 

5.
21

E-
09

 
4.

91
E-

01
 

II
M

, R
A,

 S
LE

, 
SS

c 
 

1 
17

33
37

74
7 

rs
24

22
34

5 
TN

FS
F4

-
LO

C1
00

50
60

23
 

In
tr

on
ic

 
A 

1.
11

 (1
.0

5-
1.

18
) 

2.
55

E-
08

 
6.

00
E-

03
 

II
M

, S
LE

, S
Sc

 
 

1 
18

35
32

58
0 

rs
17

84
95

02
 

N
CF

2 
Co

di
ng

 
(m

is
se

ns
e)

 
T 

1.
36

 (1
.1

6-
1.

59
) 

3.
93

E-
15

 
2.

84
E-

04
 

II
M

, S
LE

 
 

2 
19

15
64

75
7 

rs
74

46
00

 
N

AB
1*

 
3’

Do
w

ns
tr

ea
m

 
T 

0.
88

 (0
.8

5-
0.

92
) 

7.
07

E-
11

 
7.

60
E-

01
 

II
M

, R
A,

 S
LE

, 
SS

c 
 

2 
19

19
33

28
3 

rs
13

38
94

08
 

ST
AT

4 
In

tr
on

ic
 

C 
1.

27
 (1

.2
0-

1.
34

) 
3.

10
E-

17
 

3.
99

E-
01

 
II

M
, S

LE
, S

Sc
 

 

2 
19

19
73

03
4 

rs
10

17
42

38
 

ST
AT

4 
In

tr
on

ic
 

A 
0.

73
 (0

.6
7-

0.
80

) 
2.

76
E-

42
 

4.
31

E-
07

 
II

M
, S

LE
, S

Sc
 

 

3 
58

18
36

36
 

rs
35

67
74

70
 

DN
AS

E1
L3

 
Co

di
ng

 
(m

is
se

ns
e)

 
A 

1.
22

 (1
.1

4-
1.

30
) 

4.
96

E-
09

 
6.

78
E-

01
 

II
M

, S
LE

, S
Sc

 
 

3 
16

03
12

92
1 

rs
11

28
46

13
7 

KP
N

A4
-A

RL
14

* 
In

te
rg

en
ic

 
T 

1.
27

 (1
.1

7-
1.

37
) 

1.
42

E-
08

 
9.

55
E-

01
 

II
M

, R
A,

 S
LE

, 
SS

c 
 

4 
96

57
20

 
rs

13
10

18
28

 
DG

KQ
* 

In
tr

on
ic

 
G 

1.
11

 (1
.0

7-
1.

16
) 

1.
32

E-
08

 
2.

29
E-

01
 

II
M

, R
A,

 S
LE

, 
SS

c 
 

5 
15

04
38

47
7 

rs
49

58
88

0 
TN

IP
1 

In
tr

on
ic

 
A 

1.
16

 (1
.1

0-
1.

22
) 

1.
45

E-
11

 
2.

61
E-

01
 

II
M

, R
A,

 S
LE

, 
SS

c 
 

5 
15

98
87

33
6 

rs
24

31
09

8 
PT

TG
1-

M
IR

31
42

H
G 

In
te

rg
en

ic
 

G 
1.

12
 (1

.0
5-

1.
20

) 
4.

91
E-

12
 

1.
42

E-
01

 
SL

E,
 S

Sc
 

 

SN
P 

si
ng

le
 n

uc
le

ot
id

e 
po

ly
m

or
ph

is
m

, O
R 

od
ds

 ra
tio

, C
I c

on
fid

en
ce

 in
te

rv
al

. 

Ta
bl

e 
3.

1.
 T

w
en

ty
-s

ix
 in

de
pe

nd
en

t v
ar

ia
nt

s a
ss

oc
ia

te
d 

at
 th

e 
ge

no
m

e-
w

id
e 

si
gn

ifi
ca

nc
e 

le
ve

l (
p-

va
lu

e 
<5

×1
0−8

) i
n 

th
e 

m
et

a-
an

al
ys

is
. 



Chapter 3: Meta-analysis in four systemic seropositive rheumatic diseases 

102 

Ch
r 

Po
si

ti
on

a  
SN

P 
Ge

ne
b  

Fu
nc

ti
on

al
it

yc
 

Ef
fe

ct
Al

le
le

 
O

R 
(C

I 9
5%

) 
M

et
a-

An
al

ys
is

 p
-

va
lu

ed
 

Co
ch

ra
n’

s 
p-

va
lu

e 
Co

nt
ri

bu
ti

ng
 

D
is

ea
se

e  

6 
10

65
69

27
0 

rs
80

27
91

 
PR

DM
1-

AT
G5

 
In

te
rg

en
ic

 
C 

0.
87

 (0
.8

3-
0.

92
) 

3.
65

E-
12

 
1.

13
E-

01
 

SL
E,

 S
Sc

 

6 
13

82
43

73
9 

rs
58

72
18

18
 

TN
FA

IP
3 

3’
Do

w
ns

tr
ea

m
 

T 
1.

64
 (1

.4
6-

1.
84

) 
4.

64
E-

23
 

1.
65

E-
01

 
II

M
, S

LE
, S

Sc
 

7 
73

53
79

02
 

rs
19

31
07

68
5 

LI
M

K1
* 

3’
Do

w
ns

tr
ea

m
 

C 
1.

52
 (1

.2
7-

1.
83

) 
3.

21
E-

09
 

1.
18

E-
01

 
RA

, S
LE

, S
Sc

 

7 
12

85
89

63
3 

rs
10

95
42

14
 

IR
F5

 
3U

TR
 

T 
1.

18
 (1

.1
3-

1.
23

) 
6.

63
E-

17
 

3.
64

E-
01

 
II

M
, R

A,
 S

LE
, 

SS
c 

7 
12

86
47

94
2 

rs
13

23
83

52
 

TN
PO

3 
In

tr
on

ic
 

T 
1.

44
 (1

.3
0-

1.
60

) 
1.

47
E-

38
 

2.
12

E-
01

 
SL

E,
 S

Sc
 

8 
11

34
18

80
 

rs
27

36
33

7 
FA

M
16

7A
-

BL
K 

In
te

rg
en

ic
 

C 
1.

23
 (1

.1
7-

1.
30

) 
4.

86
E-

22
 

1.
29

E-
01

 
II

M
, R

A,
 S

LE
, 

SS
c 

11
 

63
36

89
 

rs
79

29
54

1 
SC

T-
DR

D4
 

In
te

rg
en

ic
 

G 
0.

89
 (0

.8
3-

0.
95

) 
2.

14
E-

10
 

4.
98

E-
04

 
II

M
, R

A,
 S

LE
, 

SS
c 

12
 

11
28

71
37

2 
rs

11
06

63
01

 
PT

PN
11

 
In

tr
on

ic
 

T 
1.

11
 (1

.0
7-

1.
15

) 
4.

20
E-

08
 

5.
86

E-
01

 
II

M
, S

LE
, S

Sc
 

16
 

85
99

44
84

 
rs

35
92

90
52

 
IR

F8
 

In
te

rg
en

ic
 

T 
0.

83
 (0

.7
8-

0.
88

) 
1.

71
E-

09
 

4.
69

E-
01

 
II

M
, S

LE
, S

Sc
 

19
 

10
46

25
13

 
rs

11
08

57
25

 
TY

K2
 

In
tr

on
ic

 
A 

0.
88

 (0
.8

3-
0.

92
) 

2.
65

E-
10

 
1.

86
E-

01
 

II
M

, S
LE

, S
Sc

 
19

 
50

12
12

74
 

rs
76

24
61

07
 

PR
R1

2*
 

In
tr

on
ic

 
G 

1.
28

 (1
.1

4-
1.

43
) 

3.
36

E-
08

 
1.

50
E-

02
 

II
M

, S
LE

, S
Sc

 

22
 

21
98

50
94

 
rs

57
54

46
7 

YD
JC

 
5’

Up
st

re
am

 
G 

1.
20

 (1
.1

3-
1.

27
) 

1.
24

E-
13

 
8.

59
E-

02
 

II
M

, R
A,

 S
LE

, 
SS

c 

Ta
bl

e 
3.

1.
 T

w
en

ty
-s

ix
 in

de
pe

nd
en

t v
ar

ia
nt

s a
ss

oc
ia

te
d 

at
 th

e 
ge

no
m

e-
w

id
e 

si
gn

ifi
ca

nc
e 

le
ve

l (
p-

va
lu

e 
<5

×1
0−8

) i
n 

th
e 

m
et

a-
an

al
ys

is
 (c

on
tin

ua
tio

n)
. 

a A
cc

or
di

ng
 to

 N
CB

I b
ui

ld
 G

RC
h3

7/
hg

19
. 

b V
ar

ia
nt

 lo
ca

liz
at

io
n 

ba
se

d 
on

 th
e 

ne
ar

es
t g

en
e.

 
c F

un
ct

io
na

lit
y 

ob
ta

in
ed

 fr
om

 S
N

Pn
ex

us
. 

d R
es

ul
ts

 o
f m

et
a-

an
al

ys
is

 e
ith

er
 u

nd
er

 a
 fi

xe
d 

(C
oc

hr
an

’s 
Q 

te
st

 p
-v

al
ue

≥0
.0

5)
 o

r a
 ra

nd
om

 e
ffe

ct
 (C

oc
hr

an
’s 

Q 
te

st
 p

-v
al

ue
<0

.0
5)

. 
e D

is
ea

se
 co

nt
ri

bu
tin

g 
to

 th
e 

as
so

ci
at

io
n 

ob
se

rv
ed

 b
y 

th
e 

su
bs

et
 m

et
a-

an
al

ys
is

 m
et

ho
d 

w
ith

 A
SS

ET
. 

Th
e 

di
se

as
es

 fo
r w

hi
ch

 th
is

 lo
cu

s h
as

 n
ev

er
 b

ee
n 

re
po

rt
ed

 b
ef

or
e 

at
 g

en
om

e-
w

id
e 

si
gn

ifi
ca

nc
e 

le
ve

l a
re

 sh
ow

n 
in

 b
ol

df
ac

e.
 

*D
en

ot
es

 n
ov

el
 lo

ci
 in

 th
e 

st
ud

y.
 

Al
l t

he
 v

ar
ia

nt
s i

n 
th

e 
ta

bl
e 

w
er

e 
im

pu
te

d 
in

 a
t l

ea
st

 o
ne

 o
f t

he
 1

8 
ca

se
-c

on
tr

ol
 co

lle
ct

io
ns

. 



RESULTS 

103 

Among these 26 associations we found several key players in 

autoimmunity; interestingly ten of these associations (38%) have never been 

reported before for SSc, eight (31%) for SLE and RA, and 20 (77%) for IIM. 

Remarkably, five SNPs have not been reported previously for any of the 

diseases under study and thus constitute new shared risk loci in systemic 

seropositive rheumatic IMIDs (Table 3.1). These five new genomic 

associations include: the rs744600 SNP in the 3’ region of the NGFI-A binding 

protein 1 (NAB1) gene (OR for the T allele=0.88, 95%CI=0.85-0.92, p-

value=7.07x10-11), and the intronic SNP rs13101828 mapping in the gene 

Diacylglycerol kinase theta (DGKQ) (OR for the G allele=1.11, 95%CI=1.07–

1.16, p-value=1.32x10-8). Of note, both genes have been previously associated 

with a chronic autoimmune liver disease (237,238). The intergenic SNP 

rs112846137, maps between the genes Karyopherin subunit alpha 4 (KPNA4) 

and the ADP ribosylation factor like GTPase 14 (ARL14) (OR for the T 

allele=1.29, 95%CI=1.07–1.56, p-value=1.42x10-8). Interestingly, the gene 

ARL14 showed a suggestive association in a pharmacogenomic GWAS of 

response to methotrexate in RA patients (239). In addition, we observe the 

associated SNP rs193107685 located in the 3’ region of the LIM domain kinase 

1 (LIMK1) gene (OR for the C allele=1.52, 95%CI=1.27–1.83, p-value=3.81x10-

9). The protein encoded by this gene regulates actin polymerization, a critical 

process in the activation of T cells (240). Finally, the SNP rs76246107 is 

located in an intron of the gene Proline rich 12 (PRR12) (OR for the G 

allele=1.28, 95%CI=1.14–1.43, p-value=3.36x10-8), which was associated with 

fibrinogen concentration (241), and is an active regulator of the inflammatory 

response (242). 
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3.2.2. Associated loci and their functional enrichment on regulatory 

elements 

To assess whether the associated variants lie in coding and non-coding 

regulatory and cell-type-specific elements of the genome, we performed an 

enrichment analysis with GARFIELD. The results obtained showed marked 

enrichment patterns mainly in blood cells and skin cells, with 247 significant 

enrichments (p-value ≤ 5×10−05) (Supplementary Figure S3.2). Table 3.2 

summarizes the main enrichment results. Specifically, we found that the 

majority of associated variants were enriched in DHS hotspots in blood, as 

depicted in Figure 3.2. This functional category included a repertoire of cells 

from the immune system, such as B-lymphocytes (fold enrichment 

(FE)=11.68, empirical p-value (pemp) < 1×10−05), T-lymphocytes (FE=10.42, 

pemp < 1×10−05), including T helper (FE=7.81, pemp < 1×10−05), T CD8+ 

(FE=7.61, pemp < 1×10−05), and natural killer (FE=11.36, pemp < 1×10−05) 

cells, and monocytes (FE=8.99, pemp < 1×10−05). In line with this enrichment, 

disease-associated SNPs were enriched in enhancers (FE=14.99, pemp < 

1×10−05), within TSS (FE=14.87, pemp < 1×10−05), and on TFBS (FE=12.20, 

pemp < 1×10−05) in the B-lymphocyte cell line GM12878. Additionally, the 

highest enrichment was observed in the histone modifications H3K9ac 

(FE=14.02, pemp < 1×10−05), and H3K27ac (FE=10.81, pemp < 1×10−05) in the 

B-lymphocyte cell line, which are positively associated with gene activation.

Although these modifications are increased in the promoters of active genes,

the latter has been shown to be associated with active enhancers (243).

Moreover, enrichment was observed in H3K4me1,2,3 sites, which usually

surround TSS and are also positively correlated with gene expression (243).
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Figure 3.2. GARFIELD functional enrichment analyses in DNase hypersensitivity sites 
(DHS) hotspots. The wheel plot shows functional enrichment in systemic immune-
mediated inflammatory diseases within DHS hotspot regions in encode and roadmap 
epigenomics. The radial axis depicts the FE calculated at different meta-analysis p-
value thresholds. The font size is proportional to the number of cell types from the 
tissue, mainly enriched in blood cell types including a repertoire of immune cell lines. 
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Table 3.2. Summary of the most enriched functional annotations for the SNPs 
associated in the cross-disease meta-analysis at the genome-wide significance 
threshold (p-value <5x10-8). 

aFunctional categories from the Encode and Roadmap Epigenomics. 
bNumber of LD-pruned annotated variants passing the meta-analysis threshold. 
cNumber of LD-pruned annotated variants in the reference dataset UK10K project. 
dNumber of LD-pruned variants passing the meta-analysis threshold. 
eAll enrichments with an associated empirical p-value < 1x10-5 

GM12878 B-Lymphocyte, GM06990 B-lymphocyte, lymphoblastoid, NHEK Normal Human 
Epidermal Keratinocytes. TFBS transcription factor binding site, TSS transcription start site. 

3.2.3. Expression quantitative trait loci (eQTL) and associated variants 

In silico analysis of eQTLs revealed the role of 16 of the lead SNPs as 

eQTLs in whole blood, lymphoblastoid cell lines, transformed lymphocytes, 

skeletal muscle and transformed fibroblasts derived from European 

individuals from HaploReg v.4.1 (Table 3.3). Focusing on new associated 

variants, the T allele of the SNP rs744600 increases NAB1 gene expression in 

lymphoblastoid cell lines (p-value=1.30x10-34), and HIBCH expression in 

Categorya Tissue Cell types Type NAnnot 
Threshb 

N 
Annotc 

N 
Threshd 

Fold 
Enrichmente 

Chromatin 
States Blood 

GM12878 Enhancer 13 10,944 33 14.99 

GM12878 TSS 12 10,182 33 14.87 

Footprints Blood GM06990 Footprints 8 3,153 33 32.02 

Histone 
modifications Blood 

GM12878 H3K9ac 21 18,903 33 14.02 

GM12878 H3K27ac 22 25,674 33 10.81 

GM12878 H2AFZ 22 25,824 33 10.75 

GM12878 H3K4me3 17 25,365 33 8.46 

GM12878 H3K4me2 23 34,807 33 8.34 

GM12878 H3K4me1 25 39,871 33 7.91 

GM12878 H3K79me2 16 25,683 33 7.86 

Hotspots 
Blood GM06990 Hotspots 23 24,839 33 11.68 

Skin NHEK Hotspots 25 54,667 33 5.77 

Peaks Blood GM06990 Peaks 13 6,433 33 25.50 

TFBS Blood GM12878 TFBS 19 19,65 33 12.20 
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skeletal muscles (p-value=8.09x10-7). The G allele of rs13101828 increases 

DGKQ expression in whole blood (p-value=3.29x10-45), lymphocytes (p-

value=5.23x10-19), fibroblasts (p-value=4.44x10-6), lung cells (p-

value=8.42x10-28) and several other tissues. The A allele of rs76246107 

reduce ALDH16A1 expression in lung cells (p-value=6.45x10-6). Reassuringly, 

14 of the 16 (87%) reported eQTLs showed a physical interaction between the 

SNP and the promoter of 15 of the genes affected by the eQTLs (Table 3.3), as 

suggested by CHi-C data. These independent evidences propose a mechanistic 

approach to understand the modulation of gene expression. 

3.2.4. Drug target enrichment analysis 

Genetic associations have the potential to improve the rates of success 

in the development of new therapies. We assessed if the protein-products 

from disease associated eQTLs and their direct PPI partners were enriched 

with pharmacologically active targets. We identified as eQTLs and PPIs 608 

proteins for SSc, 630 for SLE, 632 for IIM, and 413 for RA, based on data on 

drugs at any stage of development collected from the Open Targets Platform 

(235). Using this information, for SSc, we found that 23 out of 73 (32%) 

proteins are targeted by drugs being studied for the disease (OR=16.80, p-

value=1.41x10-18). Similarly, 7 out of 25 (28%) proteins related to IIM and 13 

out of 146 (9%) proteins related to SLE are addressed by drugs in 

consideration for IIM and SLE (OR=13.40, p-value=4.62x10-6, OR=3.38, p-

value=2.85x10-4, respectively) (Supplementary Table S3.2).  

On the other hand, we found that five of the loci identified in our meta-

analysis interact with 17 genes that are considered drug targets, six of which 

are used for the treatment of these diseases (Table 3.4). 
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Table 3.3. Summary of the eQTL results in European samples for the SNPs 
independently associated in the meta-analysis. 

New associated SNPs found in our meta-analysis are shown in boldface. 
*Designates those SNPs where a physical interaction has been observed in promoter Capture
Hi-C data in relevant immune cells.
SNP single nucleotide polymorphism.

SNP Allele Source Gene Tissue p-value 
rs6659932* C GTEx2015 v6 IL12RB2 Whole blood 3.72E-11 
rs6679677* A Westra 2013 PTPN22 Whole blood 4.84E-10 
rs2476601* G Westra2013 PTPN22 Whole blood 3.36E-10 

rs1217393* A 

GTEx2015 v6 AP4B1 Skeletal muscle 5.45E-07 
GTEx2015 v6 HIPK1 Whole blood 7.71E-09 
Westra 2013 PHTF1 Whole blood 9.56E-05 
Westra 2013 PTPN22 Whole blood 2.67E-10 
Westra 2013 RSBN1 Whole blood 1.41E-10 

rs744600* T 
GTEx2015 v6 HIBCH Skeletal muscle 8.09E-07 

Lappalainen 2013 NAB1 Lymphoblastoid cell line 1.30E-34 

rs13389408 C 
GTEx2015 v6 

GLS 
Skeletal muscle 3.42E-09 

Westra 2013 Whole blood 2.98E-07 
rs35677470* A GTEx2015 v6 PXK Skeletal muscle 7.08E-06 

rs13101828 G GTEx2015 v6 DGKQ 

Whole blood 9.28E-45 
Transformed lymphocytes 1.21E-25 
Transformed fibroblasts 9.78E-07 

Lung 8.42E-28 
rs4958880* A Westra 2013 TNIP1 Whole blood 1.09E-03 

rs10954214* T 
GTEx2015 v6 

IRF5 
Whole blood 2.56E-16 

Lappalainen 2013 Lymphoblastoid cell line 7.54E-31 
rs13238352* T Lappalainen 2013 IRF5 Lymphoblastoid cell line 2.88E-13 

rs2736337* C GTEx2015 v6 

FAM167A Whole blood 2.90E-26 
FAM167A Transformed fibroblasts 1.90E-18 
FAM167A Transformed lymphocytes 2.10E-15 

BLK Whole blood 5.30E-13 

rs2736337* C GTEx2015 v6 
BLK Transformed fibroblasts 1.30E-11 
BLK Transformed lymphocytes 3.30E-06 

rs7929541* C GTEx2015 v6 TMEM80 Transformed fibroblasts 1.22E-11 

rs11085725* T GTEx2015 v6 
TYK2 Whole blood 2.30E-06 

TMED1 Whole blood 8.80E-06 
rs76246107* A GTEx2015 v6 ALDH16A1 Lung 6.45E-06 
rs5754467* G GTEx2015 v6 UBE2L3 Whole blood 4.68E-06 
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Table 3.4. Summary of the plausible target gene products with drug indications in 
systemic IMIDs. 

aBased on our meta-analysis, diseases contributing to the observed association. The diseases 
where the association of this variant has never been reported before at genome-wide 
significance level are shown in boldface. 
bDrugs from the OpenTarget platform with their corresponding target. 
cCurrent indication of the reported drug. Non-immune mediated diseases were omitted. 
SNP single nucleotide polymorphism. 

Associated 
SNP 

Gene 
product 

Association 
resultsa Drugsb Targets Disease 

indicationc 

rs6659932 IL12RB2 IIM, SLE, SSc 

Canakinumab IL1B RA 
Anakinra IL1R1 RA 

Tofacitinib JAK 
kinases RA 

rs13389408 GLS IIM, SLE, SSc Azathioprine PPAT RA, SLE 
rs13101828 DGKQ IIM, RA, SLE, SSc Orlistat LIPF -- 

rs2736337 FAM167A-
BLK IIM, RA, SLE, SSc 

Nintedanib PDGFRB SSc 
Dasatinib BLK -- 
Imatinib ABL1 -- 

Osimertinib EGFR -- 
Vandetanib EPHA1 -- 
Fingolimod S1PR1 -- 
Bosutinib SRC -- 

rs11085725 TYK2 IIM, SLE, SSc 

Tofacitinib JAK 
kinases RA 

Tocilizumab IL6R RA, SSc 
Interferon 
Apha-2B IFNAR1 -- 

Idelalisib PIK3CD -- 
Ruxolitinib JAK1 -- 
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3.3. Discussion 

Genetic factors play an important role in the development of more 

than 80 IMIDs identified so far (244). Comorbidity of these diseases, increased 

familial clustering and shared risk variants have been widely documented 

(245). However, to date, these shared loci have been identified by simple 

comparison between studies, and just recently they have been determined by 

rigorous and systematic analysis (246). In the present study, we identified five 

unreported shared loci associated with systemic seropositive rheumatic 

IMIDs. This is the first large-scale meta-analysis, including more than 11,000 

cases and 19,000 non-overlapping controls aiming to improve our knowledge 

regarding the genetic resemblances among these conditions. The present 

results will be discussed with a particular focus on their contribution to SSc 

pathogenesis knowledge. 

Our results show that 85% of the associated variants were shared by 

at least three diseases. Interestingly, for several known RA 

susceptibility loci, the contribution of RA was limited. In this case, most of the 

associated variants were independent to the ones previously reported. Among 

the new associated SNPs, the signals mapping to NAB1, DGKQ and KPNA4-

ARL14 were associated to all of the diseases under study, whereas those 

mapping LIMK1 and PRR12 were associated with three of the diseases, 

excluding IIM and RA, respectively. NAB proteins are known to interact with 

early growth response family members and act as corepressors induced by 

type I IFN (247). In addition to SSc, the IFN signature has been previously 

implicated in these diseases (248–250). Interestingly, two IFN regulatory 

factors (IRF5 and IRF8) previously associated to the conditions under study, 

were associated in the meta-analysis. Additionally, the associated SNP 

mapping to NAB1 is an eQTL in lymphoblastoid cell line, which evidences its 

role in disease pathogenesis. Furthermore, the SNP associated in our study is 
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correlated with the variant rs16832798 in European population, which has 

been recently associated to SSc in a large-scale meta-GWAS, pointing to NAB1 

as the most probable candidate gene (106). The DGKQ protein mediates cell 

signal transduction and can indirectly enhance the epidermal growth factor 

receptor signalling activity (251). This pathway regulates cell proliferation 

and migration, and its expression is augmented in the vasculature of patients 

with SSc with pulmonary involvement (252). Moreover, the risk allele was 

associated with an increased expression of the gene in lymphocytes, 

fibroblasts and lung. In the same line as NAB1, the association of DGKQ has 

been recently described in SSc by López-Isac et al (106) through the SNP 

rs11724804, which is in high LD with the index SNP in our study. In addition, 

this gene was associated with Sjögren's syndrome, a related connective tissue 

disease (253). Remarkably, rs193107685 and rs112846137 interact 

physically with the promoters of the LIMK1 and ARL14 genes, respectively, in 

dendritic cells (Supplementary Figure S3.1), which supports the 

increasingly important contribution of dendritic cells in the pathogenesis of 

SSc (254). The protein encoded by the gene ARL14 is a GTPase involved in the 

recruitment of MHC class II containing vesicles and control the movement of 

dendritic cells along the actin cytoskeleton (255). In the same way, the protein 

encoded by LIMK1 regulates many actin-dependent processes, including the 

assembly of the immune synapse between T cells and antigen presenting cells 

(256), an expected biological process involved in seropositive IMIDs, as well 

as cytoskeletal dynamics and cytotoxicity in NK cells (257). Finally, the 

gene PRR12 has been previously associated with fibrinogen concentrations 

(242). Fibrinogen is considered a high-risk marker for vascular inflammatory 

diseases and is considered an accurate predictor of cardiovascular diseases 

(242,258). Moreover, this molecule is an active player in the coagulation 

cascade, responsible for the spontaneous formation of fibrin fibrils. In this 
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regard, cardiovascular events and fibrosis are the most life-threatening 

complications described in SSc, IIM and SLE (5,259,260). 

In addition to these new associated loci reported in all included 

diseases, there are also 6 other loci that have never been associated with SSc 

before the performance of this study. These loci correspond to AP4B1, 

TNFSF4-LOC100506023, PTTG1-MIR3142HG, SCT-DRD4, PTPN11, and YDJC. 

Among these, the association of the TNFSF4-LOC100506023 locus have 

subsequently been confirmed by López-Isac et al (106). This locus has 

previously been suggested to be associated with SSc through different 

candidate gene studies (261,262), especially in subsets of patients positive for 

lcSSc and ACA, but it never reached the genome-wide level of significance. In 

this sense, 3 out of 11 (27.2%) loci associated for the first time with SSc in this 

study, have been confirmed in the largest meta-GWAS of SSc performed to 

date (106). Thus, it would be of great importance the replication of the other 

associated loci in order to confirm new susceptibility genes that could be 

implicated in SSc pathology. For example, PTPN11, which encodes the protein-

tyrosine phosphatase non-receptor type 11, represents a good candidate gene 

as tyrosine phosphatases play a key role in the immune dysregulation of SSc 

(263). Concretely, PTNP11 is involved in IL-4 signaling, one of the main 

secreted cytokines by activated Th2 cells in SSc, leading to activation of 

fibroblasts and their differentiation to myofibroblasts (264). It is also worth 

mentioning that the rs5754467 SNP on the YDJC locus represents an eQTL of 

UBE2L3, a susceptibility gene for multiple autoimmune diseases which 

encodes the ubiquitin-conjugated enzyme that facilitates activation of 

proinflammatory NF-κB signaling (265). 

The associated SNPs observed in our study are highly enriched in 

functional categories in B and T cells, natural killer and monocytes, 

highlighting the relevance of these cells in systemic seropositive rheumatic 
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IMIDs. Beyond whole blood, the skin is the other tissue with significant 

functional categories, which is not surprising given the nature of these 

connective tissue diseases. Moreover, epithelial cells could transdifferentiate 

into mesenchymal cells and eventually contribute in fibrotic processes (15). 

In fact, patients with SSc are usually stratified according to the extent of skin 

involvement. On the other hand, the histone modifications observed are 

consistent with the ones reported in previous studies, where histone 

hyperacetylation have been described in synovial tissues in RA, in B cells in 

SSc and in CD4+ T cells in SLE (243). Finally, the independent associated SNPs 

act as eQTLs in relevant tissues (Table 3.3) and in silico data from pCHi-C 

experiments showed the potential mechanisms in which most eQTLs 

modulate gene expression. Interestingly, all new associated SNPs interact 

with the promoters of surrounding genes, suggesting them as putative 

candidates with a role in the pathophysiology of these conditions. 

The prevalence of SSc, SLE and IIM is low and there are no specific 

treatments for these diseases in comparison with RA. In the case of SSc, 

Tocilizumab is the only biologic drug approved for its use in SSc-associated 

interstitial lung disease (266). Therefore, given our current knowledge on the 

use of genetic findings in drug target validation and drug repurposing, we 

evaluated if drugs currently indicated for RA had the potential to be used in 

any of the other IMIDs under study. Our meta-analysis revealed that 

ten loci overlap with known RA risk genes. For instance, the gene-product 

of TYK2 is targeted directly by Tofacitinib, which inhibits janus kinases 

(https://www.drugbank.ca/drugs/DB08895) or indirectly through the IL-6 

family signalling pathway by targeting the IL-6 receptor with Tocilizumab 

(https://www.drugbank.ca/drugs/DB06273). Both drugs are currently 

indicated for patients with moderate to severe RA who respond poorly to 

disease-modifying antirheumatic drugs. As TYK2 is associated with SSc, SLE 

and IIM, it is a good candidate for therapy repositioning in these diseases. As 
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a proof of concept, Tofacitinib is currently on trial for SLE (clinical trial 

identifier: NCT03288324), SSc (NCT03274076) and dermatomyositis 

(NCT03002649). Overall, we found that five of the loci identified in our meta-

analysis interact with 17 genes that are considered drug targets, six of which 

are used for the treatment of these diseases (Table 3.4). Another interesting 

candidate for drug repurposing is Imatinib, a kinase inhibitor that targets 

ABL1, which interacts with the gene product of BLK, a known locus associated 

with SSc and RA (Table 3.4). Imatinib is currently being tested for SSc 

(NCT00555581) and RA (NCT00154336). 

As compared with previous cross-disease studies of ADs, our study has 

the strength of analysing systemic seropositive rheumatic diseases, which is a 

more consistent clinical phenotype those previously investigated, where 

mixed seropositive and seronegative disease as well as systemic and organ-

specific conditions were combined (114,115). The study of a more 

homogenous phenotype allowed us to determine that the type I IFN signalling 

pathway and its regulation play a more prominent role in these conditions 

than in others, based on the associations observed in NAB1, TYK2, PTPN11, 

IRF5 and IRF8. Additionally, we performed a genome-wide scan to identify 

shared genetic aetiologies, as opposed to the study performed by Ellinghaus et 

al (114), whose analyses were limited to the 186 autoimmune disease-

associated loci implemented in the Immunochip platform. The study 

performed by Li et al (115), which was also a meta-analysis of GWAS data, was 

focused on paediatric autoimmune diseases, whereas our study was on a new 

combination of diseases in adult population. In addition, there is a posterior 

meta-analysis of Immunochip data performed in our laboratory incluing four 

seropositive diseases; including SSc, RA, celiac disease, and type 1 diabetes 

(113). In this study, authors identified 38 shared risk variants, many of them 

overlapping our results, including two of the new shared loci observed in our 

study (NAB1 and YDJC), as well as many other shared loci associated with 
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autoimmunity, such as PTPN22, NAB1, STAT4, DNASE1L3, IRF5 or TYK2, to 

mention but a few. These results partially confirm the associations observed 

in our study. 

In summary, this is the first study to investigate shared common 

genetic variation in four systemic seropositive rheumatic IMIDs in adults. We 

identified 26 genome-wide significant independent loci associated with at 

least two diseases, of which five loci had not been reported before. The shared 

risk variants and their likely target genes are functionally enriched in relevant 

immune cells and significantly enriched in drug targets, indicating that it may 

assist drug repositioning among genetically related diseases based on 

genomics data. 
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3.4. Supplementary Data 
3.4.1. Supplementary Figures 

Supplementary Figure S3.1. Circular view of the interactions from the new shared 
risk SNPs with genes nearby obtained from Promoter Capture Hi-C data in relevant 
immune cell types. Interactions are displayed as connecting lines depending on the 
confidence of the interaction. Grey lines are below threshold in the tissue. Only 
genes with maximum interaction score are reported. 
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Supplementary Figure S3.2. Plots from the functional enrichment analysis with 
GARFIELD at different thresholds of p-values from the meta-analysis. Functional 
categories from the ENCODE project and Roadmap Epigenomics. 

TFBS Chromatin states 

FAIRE Footprints 

Histone modifications Peaks 
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3.4.2. Supplementary Tables 

Supplementary Table S3.1. Summary of the study design, utilized samples, and analyzed 
variants in the study. 

N (Ca/Co) 
postQC 

Genotyping 
platform 

Genotyped 
SNPs after 

QC 

Imputed 
SNPs  

Utilized 
PC 

Genomic 
inflation 
factor (λ) RA 

Sweden 1893/744 
Illumina 550K, 
Illumina 317K  

293.631 7.618.025 2 1,02 
United States 875/1201 446.637 7.589.337 5 1,03 

United 
Kingdom 1827/1427 144.396 7.271.599 5 1,04 

SLE 
Spain 458/499 Illumina 

HumanOmni1Quad 
BeadChip, Illumina 
HumanOmniExpres

sExome 8v1.2, 
HumanHap300v1.1, 

Illumina Human 
Hap550 

727.382 7.370.411 2 1,03 
Germany 199/1136 707.974 7.624.878 2 1,03 

The 
Netherlands 270/1675 709.969 7.494.197 2 1,05 

United 
Kingdom 985/1463 284.361 7.293.654 5 1,05 

Italy 335/957 719.328 7.289.469 2 1,05 
United States 907/3045 152.530 7.339.194 5 1,04 

SSc 
Spain 362/362 

Illumina Human 
CNV370K Beadchip, 

Illumina 550K 

317.348 7.533.253 2 1,03 
Germany 255/658 290.928 7.500.879 2 1,03 

The 
Netherlands 182/631 286.266 7.528.731 2 1,02 

United States 1482/2759 461.068 7.617.902 5 1,04 

IIM 
Czech 

Republic/ 
Hungarian  

316/242 
Illumina 

HumanHap550 
BeadChip, Illumina 

HumanCNV370-
Duo v1 BeadChip, 

Illumina 
Human610-Quad v1 
BeadChip, Illumina 
Human660W-Quad 

v1 BeadChip 

226.643 7.369.026 2 1,01 

Spain 47/253 226.034 7.518.585 2 0,84 
United States 746/1152 220.533 7.551.455 5 1,05 

Swedish/Dutch 120/326 228.315 7.560.114 2 1,00 

United 
Kingdom 445/1177 227.556 7.470.059 2 1,01 

N (Ca/Co): Number of cases and controls. 
Utilized PC: Utilized principal components in the logistic regressions. 
RA rheumatoid arthritis, SLE systemic lupus erythematosus, SSc systemic sclerosis, IIM idiopathic 
inflammatory myopathies, SNP single nucleotide polymorphism, PC principal component, QC 
quality control. 
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Chapter 4: Expression quantitative trait locus (eQTL) 
analysis in systemic sclerosis identifies new 
candidate genes associated with multiple aspects of 
disease pathology 
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4.1. Material and methods 
4.1.1. Study population 

This study included 333 patients of European descent with a diagnosis 

of SSc according to the American College of Rheumatology/European league 

against rheumatism 2013 criteria (37) participating in the PRECISESADS 

project (https://clinicaltrials.gov/ct2/show/NCT02890134). A total of 524 

controls without known AD were selected matching the cases according to age 

and sex. Patients and controls were recruited from 9 countries across Europe: 

Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain and 

Switzerland. Patients and controls were randomly grouped into equal sized 

discovery and validation sets, matching for age, sex, and medication. Table 

4.1 describes the characteristics of both patient and control sets. 

Table 4.1. Cohort charecteristics. 
SSc Controls 

Variable Discovery Validation Discovery Validation 
(n=167) (n=166) (n=262) (n=262) 

Females 85,60% 84,90% 78,20% 78,60% 
Age, years 58.3±13.2 57.4±13.7 46.7±13.1 47.1±13.1 

Age of Onset, years 48.5±13.6 48.9±14.2 
Disease duration, years 10.4±10.0 9.1±7.7 

Raynaud, n (%) 161 (96.4%) 160 (96.4%) 
Lung fibrosis, n (%) 51 (31.1%) 65 (39.1%) 

Intestinal symptoms, n (%) 58 (34.7%) 42 (25.3%) 
Calcinosis, n (%) 37 (22.1%) 33 (19.8%) 

PAH, n (%) 12 (7.2%) 11 (6.6%) 
Arthritis, n (%) 51 (30.7%) 45 (27.1%) 

Dyslipidemia, n (%) 51 (30.7%) 43 (25.9%) 
Sicca syndrome, n (%) 59 (35.3%) 43 (25.9%) 

Immunosuppressants, n (%) 39 (23.3%) 39 (23.5%) 
Prednisone > 5 mg/day, n (%) 39 (23.3%) 37 (22.3%) 

Chloroquien, n (%) 15 (9%) 16 (9.6%) 
Biologicals, n (%) 3 (1.8%) 3 (1.8%) 

No medication, n (%) 102 (61.1%) 103 (62.0%) 
Multiple medications, n (%) 28 (16.8%) 27 (16.3%) 

PAH pulmonary arterial hypertension, SSc systemic sclerosis. 
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 All the patients and controls gave written informed consent for the 

study that was approved by local ethic committees according to standards set 

by International Conference on Harmonization and Good Clinical Practice 

(ICH-GCP) and to the ethical principles that have their origin in the 

Declaration of Helsinki (2013). 

4.1.2. RNA sequencing 

Total RNA was extracted from blood samples using Tempus Spin 

technology (Applied Biosystems) and depleted of alpha- and beta-globin 

mRNAs using globinCLEAR protocol (Ambion) and 1 μg of total RNA as input. 

400 ng of globin-depleted total RNA was used for library synthesis with 

TruSeq Stranded mRNA HT kit (Illumina). Libraries were quantified using 

qPCR with PerfeCTa NGS kit (Quanta Biosciences), and equimolar amounts of 

samples from the same 96-well plate were pooled. Four pools were clustered 

on a high output flowcell (two lanes per pool) using HiSeq SR Cluster kit v4 

and the cBot instrument (Illumina). Subsequently, 50 cycles of single-read 

sequencing were performed on a HiSeq2500 instrument using HiSeq SBS kit 

v4 (Illumina). The clustering and sequencing steps were repeated for three 

runs to generate enough reads per sample. Raw sequencing data were 

preprocessed using the software bcl2fastq, FastQC tools (267) and Cutadapt 

(268) to remove 3’ end nucleotides below 20 Phred quality score and

extraneous adapters, additionally reads below 25 nucleotides after trimming

were discarded. Reads were then aligned to the UCSC Homo sapiens reference

genome (Build hg19) using STAR v2.5.2b (269) and 2-pass mapping with

default alignment parameters. Gene level expression estimates (Transcripts

Per Million, TPM and read counts) were produced using RSEM v1.2.31 (270).

A sample would pass the RNA single QC if: (i) the number of reads mapped to

the genes was more than 7 million and (ii) the RNA integrity number (RIN)

value was higher than 7.
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4.1.3. Genotyping 

Genomic data were obtained using Illumina SNP-chip platforms 

HumanCore-12-v1, InfiniumCoreExome-24v1-2 and InfiniumCoreExome-

24v1-3. Only SNPs typed on all three platforms were used for imputation and 

analysis. Samples were subject to strict quality filtering using PLINK V1.9 

(170) (SNPs with genotyping call rate <98% and deviating from HWE with a

p-value <0.001 were removed) and analyzed for ancestry and identity using

Frappe (271), PLINK and REAP (272). Samples were removed if they had less

than 55% European ancestry, and Pi_hat scores greater 0.5. Imputation was

done on the Michigan Imputation Server and imputed using Minimac4 (273)

with Eagle v2.4 (274) for phasing. Imputed data was quality filtered using a

QC score cut-off of 0.7 and each data subset (SSc and controls) was filtered for

MAF < 0.05 and HWE p-value < 0.001.

4.1.4. eQTL detection 

Data preparation: RNA-Seq and genetic data were checked to exclude 

mismatching samples by sex prediction and genotype mismatches using an in-

house pipeline. To assess sex concordance, sex prediction was done for 

genetic data by PLINK v1.9 and for transcriptome data using specific sexual 

chromosome gene fractions. Regarding genotype concordance, genotypes 

were obtained from the RNA-Seq datasets using GATK best practices for RNA-

Seq variant calling. In average, ~1,500 SNPs obtained from RNA-Seq variant 

calling procedure were also present in the Illumina Genotyping platforms. The 

concordance between the genotype and RNA-Seq variant calling was sought 

to be the highest across all potential pairs of comparisons in order to pass the 

quality criteria (in general, samples that fulfilled the criteria presented more 

than 1.8 times concordance than the next second pair).  
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Normalization: In short, bias from the genetic background were 

removed by calculating residuals using the first 3 PCs of the genetic data as 

predictors for the RNA-Seq data. Then, the inter-sample correlation of these 

residuals was calculated. A dataset-specific number of PCs of the inter-sample 

correlation was used to remove confounding influences in a linear manner 

and calculate gene expression residuals. The number of PCs used (SSc: 18 

CTRL: 20) was optimized to yield the maximal number of eQTLs per dataset. 

PCs that showed a genetic influence were not used for cleaning.  

Analysis and validation: The analysis was limited to 4,539 candidate 

SNPs that showed at least a suggestive level of association to SSc (p-value < 

1x10-5) in a recent meta-GWAS published by our group (106). All SNPs with 

high LD (>= 0.8) were added to the candidate SNPs summing 13,253 SNPs in 

total for eQTL analysis.  

The matrix eQTL R package (275) was used for the analysis, fitting a 

linear regression model that tests the influence of the number of risk alleles 

on gene expression residuals obtained by correcting for potential non-genetic 

confounders through a strategy described by Westra et al (276) using 

principal components. Analyses were focused on the identification of cis-

eQTLs in a window of 1 million base pairs around the TSS of a gene. eQTLs 

were identified for each group separately to avoid interaction effects. A False 

Discovery Rate (FDR) lower than 0.05 was applied to declare significant 

genetic effects on gene expression. eQTLs were considered as validated if 

found in two sets, using a stringent cutoff (FDR < 0.05) in one set and a 

nominal p-value cutoff (p-value < 0.05) in the other.  

To create a “cross-validated” set of eQTLs, the same strategy as above 

was followed, only that here the first set were eQTLs found using all SSc 

samples and the second set were eQTLs detected from all control samples. 

Again, a cross-validated eQTL had to be detected at high stringency in one set 
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(FDR < 0.05) and at with at least nominal stringency in the other set (nominal 

p-value < 0.05). In the first pass eQTLs and eGenes were detected for SNPs

associated to SSc. In the second pass we detected eQTLs for all SNPs within 1

Mb of distance to an eGene detected in the first pass, including SNPs with no

association to SSc.

SSc specific eQTLs: SSc eQTLs were called “SSc specific” if the eQTL was 

found validated using both SSc subsets and not found in any of the two control 

datasets, the joined control dataset or the cross-validated dataset at a nominal 

cutoff level of 0.1. Although none of the “SSc specific” eQTLs were found 

directly in public eQTL databases from healthy subjects (206,276), 27% of 

these eQTLs had proxy SNPs which were found with their respective gene in 

one of these databases and were therefore no longer considered SSc-specific. 

4.1.5. Analysis of SSc patients without immunomodulating medication 

For the subset of SSc patients which had no known medication, the 

analysis was repeated following the discovery and replication strategy 

described above (same selection of patients for the discovery and   replication 

cohort and well-balanced subsets concerning sex, age, and medication) to find 

more SSc specific eQTLs. Beta values and p-values of both analyses (all 

patients vs patients without drugs) were highly correlated (r2 > 0.95) as 

expected and only 15 eQTLs of 11,252 validated eQTLs (patients without 

drugs) were found new (with FDRallSSCpatients>0.05). 11 of those 15 had 

FDRallSSCpatients < 0.065 and can be considered as missed by a small statistical 

margin, which leaves 4 eQTLs as new with FDRallSSCpatients>0.23. Three of these 

eQTLs are associated to DXO expression and one to TAMM41. When analyzing 

SSc specific eQTLs using this subset of patients, 28 additional eQTLs were 

found for 10 genes, which were missed before by a very small margin, due to 

statistical cutoffs. Given the small changes and the lack of a “smoking gun 

pointing towards SSc” the whole analysis was not included in the results 
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section as a separate point but rather included as a subpoint to the analysis of 

SSc specific eQTLs. 

4.1.6. Stepwise linear regression and comparison of r-square values 

Independent eQTL signals that influence the expression of a gene were 

determined following a stepwise linear regression procedure using 1) only 

eQTLs with an SSc associated SNP or 2) all eQTLs detected. Forward selection 

was repeated until no additional signal was detected at a nominal level of 

significance (p-value < 0.05). This was done for all SNP – eGene combinations 

where an eQTL was found in one or more of our datasets at a level FDR < 0.1. 

Stepwise linear regression was performed using a) only cases b) only controls 

or c) both. R-square values (called expression variance explained – EVE) were 

calculated for each gene for all of the combination above (1 & 2 & a/b/c) using 

the lm/summary function of R.  

4.1.7. Differential expression analysis 

The edgeR package (277) in R was used to calculate differential 

expression in 7 different cell types (neutrophils, monocytes, B lymphocytes, 

CD4+ lymphocytes (memory and naive), CD8+ lymphocytes and natural killer 

cells) using cellular composition of whole blood as a covariate as estimated 

from the expression profiles using CIBERSORT (278), using default 

parameters and no previous normalization. Additional covariates were 

disease, sex, age and medication and the interactions age:cells, 

medication:cells, disease:sex, disease:age. EdgeR was used with tagwise 

dispersion estimates and the function glmFit with robust=TRUE was used to 

calculate coefficients. Differential expression was determined by glmLRT. 

Differential expression for each cell type was visualized using the jtools v0.4.5 

package in R. 
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Differential expression data from skin and lung tissues was obtained 

either from the publication tables (132,136) or by using the default analysis 

in GEO (279) :GEO2R with the dataset GSE58095 comparing all patients 

versus all controls. 

4.1.8. Transcription factor binding site analysis 

eQTLs in general are enriched for TFBS, and many TFBS show 

overlapping patterns. To restrict the number of eQTL SNPs for analysis, only 

SNPs which are part of the best expression models obtained by step-wise 

linear regression analysis explained above were analyzed. To allow for 

statistical fluctuations, SNPs which are in high LD (LD > 0.95) with the best 

expression model SNPs were included. The selection of SNPs to be tested for 

TFBS was called mSNPs. After obtaining all potential TFBS for these mSNPs 

we scored the effect of each mSNP on binding of the TF. As there is no gold 

standard for this score, TFBS enrichment for a range of scores was calculated. 

If the enrichment was significant at a level of FDR < 0.1 for at least three scores 

from the range, the overall enrichment of the particular TFBS was regarded as 

significant. To calculate enrichment, the Fisher test with a random selection 

of 50,000 eQTLs from the GTEx database V7 (206) was used as a background 

(matched for MAF and distance to TSS). 

TFBSTools 1.24.0 (280) was used to detect TFBS with default settings 

using position weight matrices (PWM) from JASPAR2018 (281). A score which 

models how the different alleles of the mSNPs affects binding of the TF was 

calculated as positions within the TFBS are not of equal importance, as is 

reflected by the PWMs. Comparing the scores for the two alleles we can rank 

mSNPs for each TF. In detail, the information content (IC) was calculated for 

each position of the TFBS. The IC was then multiplied by the PWM to obtain a 

weighted score (ICWS) per base and position of the TFBS. Positions with high 

IC have usually a high weight for only one base in the PWM while positions 
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with low IC have similar weights for each base. For each mSNP we calculated 

the ICWS for each allele and calculated their difference called DICWS. mSNPs 

with a high DICWS are more likely to affect the binding of their respective TF 

than mSNPs with a low DICWS. 

There is no gold-standard cutoff for the DICWS and, therefore, we 

calculated the enrichment using a range of cutoffs of the DICWS. The cutoff 

was applied to both the mSNPs and to the random selection of 50,000 GTEx 

eQTL SNPs which was used as a background to calculate the Fisher test 

statistic. The random selection of GTEx eQTL SNPs, initially more than 50,000, 

was filtered to obtain a random selection which had the same MAF 

distribution as the mSNPs and the same distance to the nearest TSS 

distribution. 

4.1.9. Drug-target analysis 

2,384 different drugs and their 1,138 different target genes were 

extracted from the Open Targets database (235). Medication used for 

rheumatic and skin related diseases was extracted using the keywords 

“Rheumatic”, “Arthritis”, “Lupus”, “Sjogren”, “Scleroderma”, “Dermatitis”, 

“Psoriasis”, “Arteriosclerosis”, “Myositis”, “Behcet”, “Chondritis”, “Spondylitis”, 

“Gout”, “Tendinopathy” from the same database leading to 542 drugs currently 

used to treat these diseases. Drugs are classified into six types (Antibody, 

Enzyme, Oligonucleotide, Oligosaccharide, Protein, Small molecule) and their 

mechanism of action enables to group their targets into receptors and kinases. 

4.1.10. Tissue enrichment analysis 

Some eQTLs have been found to be tissue and condition specific, while 

most eQTLs are found in many tissues under many conditions. An enrichment 

analysis will therefore detect significant enrichment/overlap between any 
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two tissues. A baseline enrichment of blood eQTLs was calculated for all 

tissues separately using the GTEx database V7. The enrichment of the blood 

eQTLs obtained in this study was tested to observe if it was even higher as the 

baseline enrichment for all tissues using a z-test. In detail, the baseline 

enrichment was calculated using Fisher’s test and the data from the GTEx V7 

meta-analysis using a mvalue cutoff > 0.8 to determine eQTLs present for each 

tissue. A Z-test was used to compare the difference between two ORs. The z-

score was calculated z = delta / SE(delta) which is normally distributed. Here 

delta = difference of log odds and SE(delta) = sqrt(SE12 + SE22). SE1 and SE2 

were calculated as sqrt(1/TP + 1/FP + 1/TN + 1/FN) with TP=true positive, 

FP=false positive, TN=true negative and FN=false negative as taken from the 

contingency table. 

4.1.11. Pathway enrichment analysis 

As described above, by comparison of their expression variance 

explained, eGenes were grouped and those with a) high or intermediate 

impact of SSc genetics and b) low impact of SSc genetics, were analyzed for 

enriched pathways using Gene Ontology analysis from www.innatedb.com. 

Biological processes were considered enriched if their multiple-testing 

corrected p-value was < 0.05. 

4.2. Results 

4.2.1. Study design, gene and eQTL numbers, and comparison to 
external datasets 

We aimed to explore the cis-genetic effects of SSc associated risk loci 

on expression in SSc and control datasets to detect potential disease-specific 

eQTLs and to model gene expression variation for gene prioritization. 

Prioritized genes were analysed for SSc hallmarks and drug repurposing and 
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selected eQTLs were analysed for TFBS and tissue enrichment. Figure 4.1 

gives an overview of all analyses performed.  

Figure 4.1. Experimental design. The upper part describes the different datasets 
obtained by our eQTL analyses (green   boxes). The lower part (blue boxes) describes 
the flow of subsequent analyses performed with these datasets. Upper part: Healthy 
controls (Ctrl) and systemic   sclerosis (SSc) subjects were equally split into 
discovery and replication set matched by sex, age and medication. eQTLs were called 
validated if found in two sets using a string end cutoff (FDR < 0.05) in one set and a 
nominal p-value cutoff (p-value< 0.05) in the other. eQTLs found using all SSc or all 
Ctrl subjects (at FDR < 0.05) were called “cross-validated” if found also in the other 
group (at nominal p-value < 0.05). Datasets were compared to external eQTL 
databases (depicted as black arrows) to determine the different levels of stringency 
of our setup. Comparisons made to detect potential SSc specific eQTLs are shown as 
red arrows. Lower part: eQTLs validated in SSc patients were tested for enrichment 
in GTEx tissues other than blood. All eQTLs obtained at nominal level (p-value<0.01) 
were used for stepwise-modeling (forward selection) to calculate the expression 
variance explained to prioritize genes, which were analysed for SSc hallmarks and 
potential drug repurposing. Model SSc eQTLs were used to calculate transcription 
factor binding site enrichment. 
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18,507 and 38,600 replicated cis-eQTLs were identified in SSc patients 

and controls, respectively, affecting the expression of 137 and 200 genes 

(eGenes), respectively. After validating across groups of eQTLs found in all SSc 

patients with eQTLs found in controls, and vice versa, a total of 49,123 eQTLs 

were identified, influencing 236 eGenes with a median of 73 eQTLs per gene. 

The maximal number of eGenes detected in any of the datasets at nominal 

level (p-value < 0.01) was 565, among them 64 long non-coding RNAs like 

XXbac-BPG181B23.7, TAPSAR1 or HCG11. 

The eQTLs of a) both discovery sets, b) cross-validated eQTLs, and c) 

the intersect of validated control and validated SSc eQTLs were compared 

against the GTEx database. We found 66%, 15%, and 8% unknown eQTLs, 

respectively, which depicts the different levels of stringency of our setup. Of 

interest, 95% of eQTLs in our whole blood dataset, which overlap GTEx, were 

found in multiple tissues according to GTEx. 

4.2.2. SSc specific eQTLs 

eQTLs replicated in SSc whole blood were compared to eQTLs 

observed in control datasets with low stringency (nominal p-value < 0.1). We 

found 59 eQTLs from 16 genes potentially specific to SSc. Repeating our 

analysis with a subset of patients, which did not receive immuno-modulating 

drugs, revealed 28 additional eQTLs and 6 additional genes. In depth 

comparison to known blood eQTLs from healthy controls (GTEx V7) 

(276,282) and their proxies (r2>0.8) excluded 24 eQTLs (27%) from being 

SSc-specific. Careful examination suggested eQTLs from HLA-B, NCR3, RAF1, 

NEU1, HLA-DQA1, HLA-DOB, HID1 and IER3 to be the best candidates for SSc-

specific eQTLs (Figure 4.2). 
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Figure 4.2. Expression quantitative trait loci found in patients with systemic sclerosis 
(blue) but not in controls (gray). Residual expression levels, determined using 
principal components analysis, of the genes HLA– B (A), NCR3 (B), IER3 (C), and RAF1 
(D) are shown for the indicated genotypes in controls and SSc patients. The number of 
minor alleles, the risk genotype, and single nucleotide polymorphisms are indicated 
on the x- axis. Data are shown as box plots. Each box represents the 25th to 75th 
percentiles. Lines inside the boxes represent the median. Lines outside the boxes 
represent the 10th and 90th percentiles. Dots represent individual subjects.
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4.2.3. Enrichment of blood eQTLs in tissues affected by disease 

We explored if the validated blood eQTLs can be interpreted in other 

contexts beyond immunity. The GTEx database provides a comprehensive 

overview of eQTL sharing among 49 different tissues. Using a meta-analysis 

published by GTEx V7, we found that only 6% of eQTLs are tissue-specific, 

81% have been detected in at least 5 tissues, and 15% are present in more 

than 90% of tissues. This clearly shows that eQTLs detected in blood can be 

interpreted functionally in other tissues. Indeed, 95% of the GTEx-known 

eQTLs detected in this study are found in at least 10 different tissues apart 

from blood. We investigated whether the eQTLs identified in our study were 

enriched in the GTEx eQTLs of non-blood tissues to test our assumptions on 

interpretability beyond the context of whole blood.  

A significant enrichment was found in 19 tissues (Figure 4.3), the 

majority of which can readily be interpreted in the context of SSc, as the 

disease affects many tissues like lungs, heart, and esophagus.  
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4.2.4. Expression variance explained (EVE) can be used to prioritize SSc 

eQTLs and SSc eGenes 

While many eGenes with an SSc-specific eQTL can probably explain 

the pathogenesis of SSc at least partially, we decided to focus on the candidate 

eGenes that are most affected by SSc genetics. 

To measure the influence of genetics on gene expression, we used a 

stepwise modeling procedure to obtain independent eQTLs per gene and 

Figure 4.3. Enrichment of blood expression quantitative trait loci in disease-relevant 
tissues in patients with systemic sclerosis. Asterisks inside the bars indicate the level 
of significance adjusted for multiple testing (false discovery rate), corresponding to 
the values shown on the right. 
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calculate the EVE. Comparing the EVE using only SSc-specific eQTLs (EVESSc) 

against the EVE using all eQTLs (EVEall; including eQTLs unrelated to SSc) we 

obtain a measure (ratio) of how much EVE can be attributed to SSc genetics. 

As shown in Figure 4.4A, for 104 eGenes (18%) highlighted in red, the EVE 

differed by less than 30%. In orange, 130 of eGenes (23%) showed stronger 

differences in EVE, but with an EVESSc still above 0.05. The remaining 331 

eGenes depicted in blue had low EVESSc (< 0.05), and the EVE differed by more 

than 30%. This comparison distinguished three groups with high, 

intermediate, and low influence of SSc genetics (Figure 4.4A). 

Three groups of eGenes were identified based on the impact that SSc 

genetics had on their expression. We analyzed these groups for enriched 

pathways (FDR < 0.05), and biological processes from gene ontology, and 

found that 52% (122 of 233) of eGenes in the high- or intermediate-impact 

group were located in immune-related pathways, as compared to eGenes in 

the low-impact group (only 17% of eGenes). An in-depth review of the 

literature and gene ontologies helped us assign 66 and 31 eGenes to SSc-

related biological processes linked to fibrosis and vasculopathy, respectively. 

Many of these eGenes belong to the high- or intermediate-impact group 

(Figure 4.4B - D). The eGenes on whose expression SSc genetics have an 

intermediate or high impact are most likely to shed light on the complex 

pathology of this disease. 
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4.2.5. SSc eGenes grouped by the hallmarks of SSc pathogenesis 
Three features of SSc pathogenesis can be attributed to 134 of the 233 

eGenes (58%) for which SSc genetics had an intermediate-to-high impact on 

Figure 4.4. Gene expression variance explained by expression quantitative trait loci 
(eQTLs) can distinguish levels of influence of systemic sclerosis (SSc) genetics on 
expression and prioritize genes affected by eQTLs. The expression variance explained 
(r2) by eQTLs associated with SSc in a recent genome- wide association study (using 
single nucleotide polymorphisms (SNPs) with association p-value < 10−5) (106) was 
plotted against the expression variance explained by all eQTLs found within 1 Mb of a 
gene, whether or not they were associated with SSc. A, Groups of eGenes showing 
strong (red), intermediate (yellow), or weak (blue) influence of SSc genetics. B– D, 
Same eGenes as shown in A. Highlighted are eGenes related to B, fibrosis (yellow), C, 
vascular processes (red), and D, immunity (blue). The eGenes not related to any of 
these hallmarks are depicted in black. 
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expression, namely: alteration of immune response, fibrosis, and 

vasculopathy (Table 4.2). The genes implicated in innate and adaptive 

immune-cell processes represent the largest subgroup, with 122 eGenes. 

Interestingly, 27 HLA eGenes and 8 eGenes related to IFN pathways were 

identified, including important SSc-associated susceptibility loci dysregulated 

in SSc (142,205,283). Furthermore, there were 27 SSc eGenes associated with 

biological processes related to fibrosis, and 16 eGenes related to vasculopathy 

or angiogenesis. These pathways are considered to be potential targets of 

future disease-modifying therapies for SSc (284). Of interest, we also found 25 

eGenes related to apoptotic processes, which support the hypothesis of a 

relevant role of apoptosis in SSc (285). 

4.2.6. Differential expression of SSc eGenes in disease-affected tissues 

Given that the SSc-specific eQTLs detected in whole blood were 

observed to be enriched in other tissues affected by the disease, we decided 

to analyze the expression of the prioritized 233 SSc eGenes in the skin, lungs, 

and seven blood cell types using public datasets (132,136) (GSE58095) and 

our whole blood dataset, with deconvolution of blood cell compositions. The 

data are presented in Table 4.2. 

One hundred five SSc eGenes (45%) were found to be differentially 

regulated in one of the tissues investigated. A total of 57 SSc eGenes (24%) 

were downregulated in one of the three tissues investigated, whereas 55 SSc 

eGenes (24%) were upregulated. In addition, 40 SSc eGenes (17%) were 

differentially expressed in the skin of SSc patients. A total of 11 eGenes (5%) 

were found to be differentially regulated in the lung samples and lung 

fibroblast cultures of SSc patients. Differential expression analysis of seven 

blood cell types in SSc revealed 72 SSc eGenes (31%), most of which (99%) 

showed a consistent direction of regulation (up / down) in at least 5 cell types. 
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Table 4.2.  Differentially expressed eGenes associated with hallmarks of SSc. 

*Adjusted p-value < 0.1 for all values shown.
SSc systemic sclerosis, FC fold change.

Impact of SSc 
genetics on 
expression 

SSc Hallmarks 
Differential 

expression (log2FC)* 
Gene Immunity Fibrosis Vascular Blood Skin Lungs 
AGER high + - + -5.31 - - 
BLK high + - - - 0.1 - 
C2 high + - - - 0.45 - 

C4A high + - - -19.33 - - 
C4B high + - - -19.57 - - 

CCHCR1 high + - - -4.58 - - 
CFB high + - - - 0.4 - 

DDAH2 high + - + -4.28 - - 
HLA-B high + - - -4.49 - - 

HLA-DPA1 high + - - - 0.34 1.07
HLA-DQA1 high + - - - - 1.04
HLA-DQB1 high + + - - 0.48 -
HLA-DRA high + - - - 0.29 1.09

HLA-DRB5 high + - - - - 1.25
HLA-DRB6 high + - - - 0.29 -

HSPA1B high + - - -7.14 - - 
LST1 high + - - -5.72 0.23 - 
LTB high + + - -7.68 0.64 - 

LY6G5C high + - - -9.78 0.11 - 
MICA high + - - -6.29 - - 
MICB high + - - - 0.21 - 
NCR3 high + - - -9.71 - - 
NEU1 high + - - - 0.15 - 

NOTCH4 high + + + - 0.23 - 
RAB2A high + - - - -0.21 - 
RNF5 high + - - -4.84 - - 
TAP1 high + - - - - 1.23
TNXB high + + - -7.01 - -
AIF1 intermediate + - - -5.32 - -

CCDC104 intermediate + - - -3.71 - -
CD151 intermediate + - - -6.94 0.3 - 
CD247 intermediate + - - -4.27 - - 
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Table 4.2.  Differentially expressed eGenes associated with hallmarks of SSc 
(continuation). 

*Adjusted p-value < 0.1 for all values shown.
SSc systemic sclerosis, FC fold change.

Impact of SSc 
genetics on 
expression 

SSc Hallmarks  
Differential 

expression (log2FC)* 
Gene Immunity Fibrosis Vascular Blood Skin Lungs 
CD40 intermediate + + + - 0.19 - 
CTSB intermediate + + - - 0.4 1.14 

ELMO1 intermediate + - - 5.56 - - 
ERAP1 intermediate + - + 5.11 - - 
FLNB intermediate + + - 3.43 0.13 - 

GTF2H4 intermediate + - - - 0.19 - 
HLA-A intermediate + - - - 0.25 1.06

HLA-DMA intermediate + - - - 0.36 1.05
HLA-DMB intermediate + - - - 0.32 1.05
HLA-DOA intermediate + - - 5.42 0.2 - 

HLA-F intermediate + - - -4.63 - - 
HLA-H intermediate + - - - 0.23 0.99

HSPA1L intermediate + - - -4.42 -0.14 - 
IDUA intermediate + + - - 0.26 - 
IER3 intermediate + - + - - 1.15 
IFI30 intermediate + + - -3.78 - - 
MPI intermediate + - - -2.73 - - 

MSRA intermediate + - - - 0.15 - 
PSMB8 intermediate + + + -4.49 - - 
PSMB9 intermediate + - - 0.29 - 

PXK intermediate + - - 2.91 - - 
RXRB intermediate + - - - 0.15 - 

SUMO2 intermediate + - - - -0.21 - 
TAPBP intermediate + - - - 0.24 - 
TNPO3 intermediate + - - 5.64 - - 
TUBB intermediate + - - - 0.16 - 

UBE2L3 intermediate + - - -2.25 - - 
UNC119B intermediate + + - 2.33 - - 

CLIC1 intermediate - + - -2.9 - - 
FLOT1 intermediate - + - -4.9 0.28 - 
PHF1 intermediate - + - -3.38 - - 
RPS18 intermediate - + - -9.34 - - 

SYNGAP1 intermediate - + - 3.5 - - 
UQCC2 intermediate - + - -5.03 - - 
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4.2.7. Results of transcription factor binding site analysis 

We investigated TFBS enrichment in SSc eQTLs. Only the independent 

eQTLs included in the models that best predicted eGene expression, as 

determined by stepwise linear regression, were included. Then, TFBS 

enrichment was estimated, as compared to genome-wide eQTLs from the 

GTEx database, to control for the fact that all TFBS motifs are highly enriched 

in eQTL sites in general. 

Of the 537 TFBS profiles assessed (281), 24 (5%) were stably enriched 

in best-model SSc eQTLs. The TFs were of different classes, with five 

homeodomain TFs, four TFs of the T-box type, four C2H2 TFs, and two GATA 

TFs, to name but those with multiple members of the same class. Of the 24 

TFs, we found ten and 16 TFs expressed in whole blood and skin, respectively, 

of which 5 TFs were differentially regulated (FDR < 0.1) in skin, lungs or blood 

cells from SSc patients (Table 4.3). KLF4 and ID4 were downregulated in skin, 

TBX4 was upregulated in lungs, and ELF1, and MGA were upregulated in 

almost all the seven blood cell types assessed (Figure 4.5). 

Table 4.3.  Differentially expressed transcription factors with enriched binding sites 
in SSc- associated eQTLs in expression models. 

Differential expression 
(log2FC)* 

Gene TF class Blood Skin Lung 
ELF1 Ets 4.68 - - 
MGA T-box 4.3 - - 
KLF4 C2H2 ZF - -0.36 - 
ID4 bHLH n.e. -0.23 - 

TBX4 T-box n.e. - 0.74
*Adjusted p-value < 0.1 for all values shown. 
TF transcription factor, FC fold change, n.e. not expressed.
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Figure 4.5.  Differential expression of the transcription factors ELF1, MGA, KLF4, and 
ID4 in patients with systemic sclerosis (SSc) compared to controls. A and B, Residual 
expression of ELF1 in neutrophils (A) and MGA in monocytes (B) from controls and 
SSc patients. Values on the x- axis are the percentage of cells investigated per patient 
as obtained from the Cell- type Identification by Estimating Relative Subsets of 
Known RNA Transcripts (CIBERSORT) algorithm. ELF1 and MGA were up- regulated 
in SSc patient tissues. C and D, Log2 expression of KLF4 (C) and ID4 (D) in skin from 
controls and SSc patients. KLF4 and ID4 were down- regulated in SSc patient tissues. 
Data are shown as box plots. Each box represents the 25th to 75th percentiles. Lines 
inside the boxes represent the median. Lines outside the boxes represent the 10th 
and 90th percentiles. Dots represent individual subjects. 
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4.2.8. Drug repurposing 

We explored whether any of the 233 eGenes prioritized in the present 

study encode target proteins of drugs being tested in ongoing clinical trials, as 

reported on the OpenTargets platform (235). We observed that 15 of the 233 

eGenes (6.4%) overlapped with pharmacological targets of which TNF 

(NCT01670565), BLK (NCT00764309) and TUBB (NCT03198689) have been 

tested in clinical trials in SSc patients. 

Next, we tested whether medications used for other immune-

mediated diseases (105 antibody-targeted, 48 kinase inhibitor-targeted, and 

195 receptor-targeted drugs; see material and methods) addressed the 

proteins coded by the SSc eGenes. We found five additional SSc eGenes: LTA, 

LTB, IL12A, CD40 and RXRB. Further investigation beyond immune system-

related targets revealed ERAP1 and ERAP2, which can be addressed by 

aminopeptidase inhibitors. 

Expression analysis in whole blood, skin and lung tissues revealed that 

six of the ten drug-target SSc-specific eGenes are differentially regulated in 

blood cells and/or skin of SSc patients (Table 4.4). ERAP1 was upregulated in 

blood cells of SSc patients, whereas LTB was downregulated. LTB, CD40, RXRB, 

BLK, and TUBB were upregulated in the skin of SSc patients. 

In summary, seven genes that have been considered for the treatment 

of conditions similar to SSc are potential candidates for study in clinical trials 

on SSc. 
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Table 4.4. Drug target genes with eQTLs detected for SNPs with association to SSc 
and their differential expression in tissues affected by SSc. These eGenes are 
candidates for clinical trials and drug repurposing. 

*Adjusted p-value < 0.1 for all values shown. 
SSc systemic sclerosis, FC fold change.

Gene 

Likely 
impact of 

SSc genetics 

SSc Hallmark 
Differential 
expression 
(log2FC)* 

Fibrosis Vascular Immunity Blood Skin Lung 
BLK high - - + - 0.1 - 

CD40 intermediate + + + - 0.19 - 
ERAP1 intermediate - + + 5.11 - - 
ERAP2 intermediate - + + - - -
IL12A high - - + - - -
LTA high + - + - - -
LTB high + - + -7.68 0.64 -

RXRB intermediate - - +  - 0.15 -
TNF high + - + - - -

TUBB intermediate  - - + - 0.16 -
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4.3. Discussion 

In this study, the integrated analysis of expression and genetic data in 

a large SSc cohort identified novel eQTLs in whole blood of SSc patients, which 

are enriched in disease-relevant tissues. We found 64 eQTLs potentially 

specific to SSc, which were not found in either our cohort of healthy controls 

or any of the public blood eQTL databases (GTEx V7) (276,282). This finding 

suggests that additional mechanisms exist that render these eQTLs active in 

disease and neutral in healthy subjects. The most likely explanation is the 

differential expression of transcription factors associated with a disease, as 

has been suggested previously (217,286). Indeed, we showed that of the 24 

transcription factors associated with SSc by our analysis of TFBS enrichment, 

≥5 were differentially expressed in disease-relevant tissues. The eQTL 

analysis of the most likely associated SSc risk loci, prioritizing genes (eGenes) 

where SSc eQTLs explain >5% of expression variance, led to a strong 

enrichment of immunity-related genes, vasculopathy, and fibrosis. Finally, the 

findings were integrated with current knowledge of SSc pathology, thereby 

identifying useful candidates for drug repurposing. 

One of the main findings of the present study is that we could assign 

more than half of the eGenes (n = 134) to hallmarks of SSc pathogenesis. 

Interesting candidates were related to immune system processes, fibrosis, 

and vascular pathologies. Immune system processes highlighted eGenes 

like CD247 or BLK, both of them previously associated with SSc and several 

ADs, such as RA or SLE (91,106,184). Regarding IFN-associated eGenes, we 

identified IRF5 and the IL12 receptors, IL12RA and IL12RB, which are well-

established SSc risk loci, and are also associated with other ADs such as RA, 

SLE, and myositis, as described in chapter 3 (106,184). With regard to fibrosis, 

TNXB encodes a member of the tenascin family of extracellular matrix 

glycoproteins which is implicated in the regulation of the production and 
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assembly of certain types of collagen (287). TNXB is also the main causative 

gene in Ehlers-Danlos syndrome, a connective tissue disorder characterized 

by altered skin elasticity, among other symptoms (288). The eGenes 

associated with vasculopathy or angiogenesis included NOTCH4, a non-classic 

HLA gene in the class II region that regulates NOTCH1 and has previously been 

associated with SSc (177,289), and CD151, which is linked to vascular stability 

and neo-angiogenesis (290). Notch signaling has been demonstrated to 

contribute to collagen overproduction and fibroblast activation in SSc and 

fibrotic animal models, leading to a potential target pathway for future 

therapies in SSc fibrosis (291,292). Nevertheless, NOTCH4, unlike other Notch 

receptors, lacks detectable signaling capacity; acting through the inhibition of 

NOTCH1 signaling instead, when both receptors are expressed in the same 

cells (293). On the other hand, Notch signaling, and predominantly Notch1, 

promotes angiogenesis (294) being the development of abnormal 

angiogenesis one of the most important hallmarks of SSc. In this regard, 

previous studies in Notch1 -/- mutant mice models indicate an essential role of 

Notch1 signaling in the endothelium during vascular development (295). The 

lower expression of NOTCH4 associated with SSc risk allele could lead to a lack 

of inhibition of NOTCH1 signaling, promoting abnormal angiogenesis and thus 

contributing to the vasculopathy and late loss of angiogenesis associated with 

SSc. Finally, regarding inflammatory processes, C4A and C4B are part of the 

complement system affected by active disease in a number of ADs (296). 

Interestingly, a recent study demonstrated the relevance of the copy number 

and resulting expression levels of C4A and C4B, as well as their contribution 

to sex-biased vulnerability in autoimmunity (297). In this regard, the eQTLs 

described in our study could be acting either as a proxy to C4A-C4B copy 

numbers or as an additional mechanism regulating the complex variation of 

complement genes. 
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Interestingly, we found 25 eGenes related to apoptosis processes. 

Previous genetic studies have indicated that apoptosis is an important 

mechanism of the disease, revealing the association of some genes, such 

as DNASE1L3 or TNFAIP3, with a higher risk of SSc (101,298). We confirm 

here DNASE1L3, which plays an important role in DNA fragmentation during 

apoptosis (299), as an interesting candidate. Another eGene observed with a 

particular role in apoptosis was BAK1, which encodes for Bcl-2 antagonist or 

killer (BAK), one of the principal proapoptotic proteins of the mitochondrial 

pathway (300). Interestingly, a recent study showed that dermal fibroblasts 

derived from patients with SSc become particularly susceptible to apoptosis 

induced by mimetic drugs of proapoptotic protein Bcl-2 homology 3, a direct 

activator of BAK, reducing the fibrotic process (301). Thus, even though the 

specific pathogenic process of apoptosis in SSc is still unknown, our results 

support its role in SSc, which could be key to reversing fibrosis as part of the 

tissue regeneration process. 

Regarding SSc specific eQTLs, the eGene NCR3 highlights for its 

potential implication in SSc pathogenesis. NCR3 encodes a natural cytotoxicity 

receptor implicated in the activation of NK cells. Interestingly, the protein 

encoded interacts with CD247, an important T cell receptor widely associated 

with SSc pathogenesis. In addition, Yau et al described a 33-kb region in the 

MHC III region overlapping the eQTL SNP of our study which regulates NCR3 

expression and contributes to increased autoimmune disease risk (302). 

Within these eQTLs found exclusively in SSc patients we identified an eQTL 

for HLA-DRB1, which is in fact the strongest candidate HLA gene predicting 

disease development (107). 

It is noteworthy that 50% of the SSc eGenes associated with SSc 

hallmarks overlap with >1 group. This is not surprising, given that, for 

example, fibrosis, angiogenesis, and inflammation are closely linked, which 



Chapter 4: eQTL analysis in systemic sclerosis 

148 

demonstrates the complexity of the pathogenesis of SSc. Alternatively, there 

was significant enrichment of eQTLs in 19 tissues, most of them interpretable 

in the context of SSc, which affects tissues such as lungs, cardiac tissue, and 

esophagus (5). Surprisingly, we found that tyrhoid was the strongest enriched 

tissue. In line with this, the most common endocrine problem associated with 

SSc is thyroid disease, and several studies have documented that this disorder 

occurs in approximately 12% of SSc patients due to fibrosis of the thyroid 

gland (303). In addition, autoimmune regulator (AIRE) gene polymorphisms 

previously linked to SSc has been associated with autoinmune thyroiditis 

(304). Thus, our results emphasize the potential role of thyroid tissue in SSc 

pathogenesis. 

A total of 24 transcription factor binding sites were stably enriched in 

best-model SSc-specific eQTLs. In this regard, the transcription factor ELF1 

(E74-like ETS transcription factor 1) deserves special mention, as it was also 

found to be differentially up-regulated in almost all 7 blood cell types 

assessed. ELF1 belongs to the ETS family of transcription factors that regulate 

the expression of a wide range of genes and play an important role in immune 

cell development and function and in angiogenesis (305,306). This 

transcription factor activates the expression of several T cell genes. One of 

them is the gene encoding the ζ chain of the TCR, a molecule with a primary 

function in the transduction of intracellular signals that influence positive and 

negative selection of T cells upon TCR ligation (307). On the other 

hand, ELF1 also plays an important role in B cells by cooperating with 

members of the activator protein 1 family of transcription factors to activate 

the 3′ immunoglobulin heavy-chain enhancer upon IgM stimulation, which 

could contribute to class-switch recombination (308). Of note, our enrichment 

analysis of TFBS should be interpreted with caution as the independence 

assumption of Fisher’s exact test might not be fully met, since stepwise 
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modeling does not necessarily generate independent loci for enrichment 

analysis. 

Candidate eGenes identified here overlap with eQTL analyses 

performed in other ADs, further supporting our results and manifesting the 

shared genetic component of autoimmune disorders. Some eGenes, such 

as BLK, GSDMB, and ORMDL3, which have been described to be involved in RA 

(309), KRT8P46, GSDMB, and ORMDL3, involved in multiple sclerosis 

(310), ANO9 and BLK, in SLE (311), and GSMDA, GSDMB, and ORMDL3 in type 

1 diabetes (312), were also significantly associated in our study. 

Given the surprisingly high amount of candidate genes that warrant 

further studies, it is important to address the limits of this study. First, this 

study focused on bulk RNA-Seq and identified eQTLs present in the most 

abundant blood cell types. Although tools like CIBERSORT can successfully 

estimate the abundance of various cell types present, the number of samples 

needed to identify cell-specific eQTLs even in the most abundant cell types, 

using bulk RNA-Seq are still prohibitive (276). Second, although we highlight 

genes for which interpretation in the context of the disease is best understood 

in tissues other than blood, single-cell studies in SSc-affected tissues are 

needed to confirm and expand our findings. Last, we did not distinguish 

between the most common forms of SSc (limited cutaneous and diffuse 

cutaneous), nor did we analyze data on autoantibodies, as data were only 

available for a subset of the samples and would have severely diminished the 

sensitivity of our analysis. 

The validation of the eQTLs identified from peripheral blood 

mononuclear cells (PBMCs) in other tissues as presented in the GTEx 

database, opens the way to cautiously use blood eQTLs as a proxy to detect 

eQTLs that most likely exert their main effect in tissues other than blood. 
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Interestingly, Beretta et al recently observed a strong enrichment of several 

IFN-related pathways in the first whole blood transcriptome profiling 

performed in a large cohort of SSc patients (146). Furthermore, a recent 

analysis of whole transcriptome expression in the skin of patients with early 

diffuse SSc revealed a high prevalence of both innate and adaptive immune 

cell activity (313). These results are concordant with the clear enrichment of 

immunity-related eGenes observed in our study and represent a support of 

the use of PBMC expression data as surrogate markers of organ disease. 

To sum up, this is the first eQTL analysis performed in PBMCs of SSc 

patients, revealing that more than half of the eGenes detected were associated 

with the most important SSc hallmarks and highlighting the apoptotic process. 

Furthermore, we identified enriched motifs for transcription factors in SSc 

eQTLs that are differentially regulated in blood, skin, or lungs. Our results 

highlight the role of the clinical features and tissues involved in SSc, adding a 

new layer of complexity and contributing to a better understanding of SSc 

pathogenesis. 
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5.1. Material and methods 

5.1.1. Isolation of CD4+ T cells and CD14+ monocytes 

Primary CD4+ T cells and CD14+ monocytes were collected from 10 SSc 

patients and 5 healthy individuals (cohort characteristics are described in 

Supplementary Table S5.1) with informed consent and with ethical 

approval. All SSc patients were diagnosed according to the American College 

of Rheumatology/European Alliance of Associations for Rheumatology 2013 

criteria (37). PBMCs were isolated from 70 ml blood samples using Ficoll 

density gradient centrifugation. EasySep Human CD14+ Positive Selection Kit 

(StemCell Technologies) was used to isolate CD14+ cells from PBMCs and, 

subsequently, Easysep CD4+ T Cell Isolation Kit (StemCell Technologies) was 

used to isolate CD4+ T cells from the remaining PBMCs, according to the 

manufacturer’s instructions.  

5.1.2. Promoter capture Hi-C probe design 

First, gene annotations for 18,755 protein coding genes were 

extracted from Ensembl’s genebuild database version 97 GRCh38.  The TSS for 

each gene was located using the first base of the gene coordinates with respect 

to gene orientation. Capture regions were identified by mapping the TSS 

coordinates to the in silico digested (Arima Hi-C) genome and extracting the 

fragments containing the TSS coordinates as well as the fragments directly 

upstream and downstream. Therefore, each TSS is represented by a total of 3 

contiguous restriction fragments. The average length of the 3 consecutive 

restriction fragments for each TSS is 786bp and the median is 927bp, with a 

range of 54-4174bp. If the length of the restriction fragment is no more than 

700bp, the entire restriction fragment is covered by the probes. If the length 

is more than 700bp, then the middle part will not be in the probe design. Using 

this final set of restriction fragments, a BED file was prepared for input into 



MATERIAL AND METHODS 

153 

the SureDesign (Agilent) probe design web tool. Probes were designed using 

a 1X tiling approach, with moderate repeat masking and maximum 

performance boosting optimized for the SureSelect XT HS and XT Low Input 

capture workflows. 

5.1.3. Capture Hi-C library generation 

5-10 million isolated CD4+ T cells and CD14+ monocytes were 

crosslinked for 10 min in 1% formaldehyde and agitated at room temperature, 

the reaction was then quenched with ice cold 0.125 M glycine for 5 min. 

Crosslinked cells were washed in ice-cold PBS, and the supernatant was 

discarded, the pellets were then stored at -80ºC. 

Each Hi-C library was prepared from fixed cells following the Arima 

HiC kit (Arima Genomics) and the KAPA HyperPrep kit (KAPA Biosystems), 

following the manufacturer’s protocol. Briefly, crosslinked cells were lysed, 

and DNA was digested by two different restriction enzymes and ligated.  The 

ligated DNA was reverse-crosslinked and fragmented by sonication (Covaris 

S220), followed by DNA size selection, biotin enrichment, adaptor ligation, 

and final library amplification. A quality control step to determine the number 

of PCR cycles needed for library amplification was performed for each library 

using the NEBNext Library Quant kit (NEBNext). Final quality and quantity 

were assessed by the Bioanalyzer 2100 (Agilent) and Qubit (Thermo Fisher) 

systems. 

Hi-C samples were then hybridized with the SureSelect custom 

capture library by following Agilent SureSelectXT HS reagents and protocols. 

Briefly, target regions are hybridized with designed probes, followed by 

capture enrichment of these regions through streptavidin pulldown using 

Dynabeads MyOne Streptavidin T1 (ThermoFisher, ref: 65601). Post-capture 
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amplification was carried out using nine PCR cycles. Final quality and quantity 

were assessed by the Bioanalyzer 2100 and Qubit systems. 

5.1.4. Promoter capture Hi-C (pCHi-C) sequencing and processing 

Sequencing for 30 prepared pCHi-C libraries was performed using five 

lanes of Illumina NovaSeq S4 flow cell on Illumina NovaSeq6000, generating 

150 bp paired-end reads, and leading to an average of 500 million reads per 

sample (Novogene Company LTD). Sequencing data was filtered and the 

adapters were removed using fastp v0.19.4 (314). Subsequent mapping with 

GRCh38 and filtering was performed with HiCUP v0.7.4 (315) and bowtie2 

v2.3.2 (316), taking as maximum and minimum di-tag lengths 700 and 100, 

respectively. Only intrachromosomal interactions were included in the 

analysis, and off-target di-tags where neither end mapped to a targeted 

fragment were removed (statistics in Supplementary Table S5.2). 

Significant chromatin interactions were identified using CHiCAGO v1.13.1 

(317) using a threshold of CHiCAGO score > 5 in different conditions; cell type: 

CD4+ T cells (n=15 biological replicates) and CD14+ monocytes (n=15); cell

type and disease state: CD4+ T cells from SSc patients (n=10) and healthy

controls (n=5), and CD14+ monocytes from SSc patients (n=10) and healthy

controls (n=5). PCA was performed in each cell type in order to detect

potential biases and the two first PCs were plotted using R 3.6.1

(Supplementary Figure S5.1). Libraries generated using the Arima Hi-C

protocol have different characteristics from the original CHi-C protocol, for

this reason, several changes were made to the analysis. The restriction

fragments were binned for the analysis as follows: every 20 consecutive

restriction fragments were binned into one bin; if a baited region was

encountered, a separate bin was created for the baited region that includes

the 3 captured fragments and the fragment before and after for a total of 5

fragments per region captured. Consecutive baits were merged into a single
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bait. This design led to a baitmap of 17,313 baited regions, capturing 18,630 

promoters. Default settings were used for the CHiCAGO pipeline, except for 

design file parameters minFragLen and maxFragLen, set to 140 and 20000, 

respectively. The weights of the model used by CHiCAGO in the defined 

conditions were re-estimated using the function “fitDistCurve.R” included in 

CHiCAGO package after running the pipeline on a merged file including the 

total 30 samples.  

In order to detect enrichment of features in the interactions obtained 

with CHiCAGO for each cell type, narrowPeak bed files of H3K4me3 and 

H3K27ac were obtained as follows: H3K4me3 (ENCODE; ENCFF828YVL) and 

H3K27ac (ENCODE; ENCFF790PVU) in primary CD4+ naive T cells; H3K4me3 

(ENCODE; ENCFF651GXK) and H3K27ac (ENCODE; ENCFF471QGU) in 

primary CD14+ monocytes. The “peakEnrichment4Features” function from 

the CHiCAGO package was used to detect enrichment of each feature in pCHi-

C data. Finally, Chicdiff v0.6 (318) R package was used to detect differential 

interactions between different conditions: CD4+ T cells vs CD14+ monocytes; 

SSc patients vs healthy controls CD4+ T cells; and SSc patients vs healthy 

controls CD14+ monocytes. Code was modified to include age, sex, and disease 

status (only in cell type comparison) as covariates. For each comparison, only 

those interactions with CHiCAGO score > 5 in at least one condition were 

included in the differential analysis. Differential interactions with a weighted 

adjusted p-value < 0.05 were identified as significant. Spearman’s rank-order 

correlation was performed to test the correlation of log2 fold change values in 

differential interactions between patients and controls in CD4+ T cells and 

CD14+ monocytes. 

5.1.5. RNA-seq library generation 

A total of 0.5 million purified cells was resuspended in 700 uL Qiazol 

lysis reagent (QIAGEN) to isolate RNA, then 140 uL of chloroform was added. 



Chapter 5: Promoter capture Hi-C analysis in T cells and monocytes 

156 

After centrifugation at 12000 x g for 15 min, approximately 350 uL of the 

upper layer containing the RNA was transferred and mixed with 525 uL of 

100% ethanol. RNA isolation was continued from this point using the RNeasy 

microkit (QIAGEN) reagents and protocol. Final quantity was assessed by 

Qubit fluorimeter. Libraries for RNA-seq were prepared using Illumina Truseq 

Stranded Total RNA reagents and protocol, except for CD4+ and CD14+ 

samples from Control 1, for which library preparation failed. Library quality 

and quantity was assessed by Bioanalyzer. The 28 libraries generated were 

sequenced using three lanes on Illumina HiSeq4000, generating 75 bp paired-

end reads, and leading to an average of 30 million reads per sample (Genomics 

Facility, University of Manchester). 

5.1.6. RNA-seq data processing 

RNA-seq reads were quality trimmed and adapters were removed 

using fastp v0.19.4 (314). Reads were then mapped using STAR v2.7.3a (269) 

on the GRCh38 genome with GENCODE annotation v32. Reads were de-

duplicated with Picard tools v2.22.2

(http://broadinstitute.github.io/picard/) and then counted using HTSeq 

v0.12.3 (319) (Supplementary Table S5.3). Final count matrices were 

analysed in R 3.6.1, using edgeR v3.28.1 (277) to perform normalization and 

differential expression analysis. Three differential expression comparisons 

were performed: CD4+ T cells vs CD14+ monocytes; SSc patients vs healthy 

controls in CD4+ T cells; and SSc patients vs healthy controls in CD14+ 

monocytes. Age, sex, and disease status (only in cell type comparison) were 

used as covariates. Only those genes with a mean of more than 1 log2 

transformed counts per million (CPM) across all samples were included in 

further analysis, for a total of 11,221 coding genes. Differentially expressed 

genes were called with an adjusted p-value of 0.1 (FDR 10%). Due to the 

extreme differences in expression regarding the CD4+ vs CD14+ comparison, 
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only those with an absolute value of log2 fold change (|log2FC|) > 2 and FDR < 

5% were taken in further analysis. Functional enrichment analyses were 

performed with g:Profiler (320) with default settings, taking gene ontology 

and biological pathways as data sources. 

5.1.7. Linking differential expression and differential interactions in CD4+ 

T cells vs CD14+ monocytes 

Genes corresponding with the promoter end of significant differential 

interactions observed between CD4+ and CD14+ cells were overlapped with 

those differentially expressed. One-sided Fisher’s exact test was performed in 

order to calculate the enrichment of genes with differential interactions in 

those differentially expressed. In this set of overlapping genes, Spearman’s 

rank-order correlation was performed to test the correlation of log2 fold 

change values in differential interactions and differential expression. The log2

fold change value for each gene with differential interactions was obtained as 

the median log2 fold change value of all interactions corresponding to a 

specific promoter. Finally, in order to test the distribution of log2 fold change 

values, a binomial exact test was performed on a subset of overlapping genes 

obtained adding a more stringent cutoff, including only those differentially 

interacting genes with an absolute value of median log2FC > 2 for each gene. 

Functional enrichment analyses were performed with g:Profiler (320) with 

default settings, taking gene ontology and biological pathways as data sources. 

5.1.8. Defining SSc-associated GWAS loci 

All independent non-MHC SSc-associated signals were selected from 

the largest meta-GWAS performed to date (106). We defined 23 regions based 

on LD data and SNP proximity from the total of 27 independent signals 

described in this GWAS. First, we took all SNPs associated at the genome-wide 

significant level (p-value < 5x10-8) (427 SNPs) as well as those SNPs in high 
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LD with them (r2 > 0.8) from the meta-GWAS datasets (106) using PLINK v1.9 

(170), resulting in a total of 1,505 SNPs. To facilitate pCHi-C analysis, 

independent signals corresponding to the same locus were grouped. These 

grouped independent signals interacted with the same promoters, and did not 

represent a change if they were taken as separated loci. The window ranges 

and total number of SNPs in each of the 23 final loci are specified in 

Supplementary Table S5.4. 

5.1.9. Defining enhancers and TADs in CD4+ T cells and CD14+ monocytes 

In order to define enhancer regions, chromHMM v1.22 annotations 

(321) from 9 CD4+ T cells (BSS00183, BSS00185, BSS00186, BSS00188,

BSS00189, BSS00190, BSS00191, BSS00192 and BSS00274) and 4 CD14+

monocytes (BSS00178, BSS00179, BSS00180, and BSS00181) were

downloaded from the EpiMap project (322). For each cell type, enhancer

regions were defined as those with state number from chromHMM

corresponding to enhancer activity (7, 8, 9 ,10, 11, and 15) present in at least

one sample. Topologically associated domains (TADs) definition for CD4+ T

cells and CD14+ monocytes was obtained from Javierre et al (166).

5.1.10. Overlap among pCHi-C, SSc-associated GWAS loci, and enhancer 

regions 

In order to prioritize certain interactions observed in pCHi-C data of 

particular interest in SSc GWAS loci, the SNP set previously defined in 

“Defining SSc-associated GWAS loci'' was overlapped with enhancer regions 

of each cell type using the GenomicRanges (323) package implemented in R 

3.6.1 (Supplementary Table S5.4). This new SNP set was then overlapped 

with the promoter interacting regions (PIRs) of significant pCHi-C 

interactions, defining candidate interacting genes as those in which their PIR 

overlaps with our significant SSc SNP set and enhancer regions. One-sided 
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Fisher’s exact test was performed in order to calculate the enrichment of the 

SNP set in CD4+ T cells and CD14+ monocytes enhancer regions. A test for 

equality of proportions or two proportion z-test (“prop.test” in R 3.6.1) was 

performed to calculate the enrichment of SNPs overlapping enhancer regions 

between cell types, correcting by total number of base pairs covered by 

enhancer regions for each cell type. For each candidate interacting gene, the 

median of log2FC values and weighted adjusted p-values was calculated taking 

all differential interactions with the PIR overlapping our SSc SNP set and 

enhancer regions. Functional enrichment analyses were performed for the 

sets of interacting genes observed in CD4+ T cells and CD14+ monocytes with 

g:Profiler (320) using default settings, taking gene ontology and biological 

pathways as data sources. 

5.1.11. Visualization tools 

The WashU Epigenome browser (324) was used to plot pCHi-C 

interactions, enhancer regions defined by chromHMM and H3K27ac peaks 

(from EpiMap  samples previously defined), and TADs (from Javierre et al 

(166)) in CD4+ T cells and CD14+ monocytes.  

5.1.12. Drug target analysis 

In order to assess if genes interacting with SSc GWAS loci in CD4+ T 

cells and CD14+ monocytes presented potential drug targets that could be 

repurposed for their use in SSc, those genes interacting with PIR overlapping 

SSc-associated SNPs and enhancer regions, were used to model a PPI network 

using STRING v11 (203) with the highest interaction confidence score (>0.9), 

calculated as a combined probability from different evidences of interactions 

corrected for the probability of observing a random interaction. Protein 

products from these genes and those in direct PPI with them were used to 

query the OpenTargets Platform (235) for drug targets. Additionally, the same 
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platform and the Drugbank database (236) were searched for information on 

clinical studies of drug targets of interest in SSc. Only drug targets with at least 

completed phase III clinical trials in SSc and/or similar immune-mediated 

diseases were included in the results. 

5.2. Results 

We generated pCHi-C data for CD4+ T cells and CD14+ monocytes from 

10 SSc patients and 5 healthy controls. CHiCAGO was used to identify 

significant promoter interactions (CHiCAGO score > 5) for each cell type and 

disease condition (Supplementary Table S5.5) and Chicdiff was used to 

identify differential interactions between cell types, and between disease 

conditions for each cell type. A total of 81,624 and 74,853 significant 

interactions corresponding to 8,193 and 7,024 captured promoters were 

identified in CD4+ T cells and CD14+ monocytes, respectively. In addition, 

71,213 significant differential interactions (weighted adjusted p-value < 0.05) 

corresponding to 8,223 captured promoters were obtained in the comparison 

between cell types. Through integration with published ChIP-seq data, we 

found that PIRs were enriched in H3K27ac and H3K4me3 histone marks from 

primary CD4+ naive T cells and CD14+ monocytes (Figure 5.1), suggesting that 

promoters mostly interact with regulatory active regions such as enhancers. 

5.2.1. Differential interactions and expression between SSc patients and 

healthy controls 

One of the main aims of this study was to identify specific interactions 

that could be present in SSc patients but not in healthy controls, or vice versa, 

and thus, identify specific genes interacting with enhancer regions and SSc-

associated loci that could be of interest in SSc pathology. With this in mind, a 
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total of 4,858 significant differential interactions (weighted adjusted p-value 

< 0.05) were identified between SSc patients and healthy controls in CD4+ T 

cells, corresponding to 1,526 captured promoters. Despite this, any significant 

differential interactions in CD14+ monocytes were detected. Further analysis 

of the differential interactions in CD4+ T cells revealed that their presence 

could be due to a possible bias as all of them showed scores just above 

significance threshold (median weighted adjusted p-value = 2.2x10-2) as 

compared with differential interactions between cell types (median weighted 

adjusted p-value = 2.16x10-10), and PCA showed some potential batch effect 

particularly in controls from CD4+ T cells (Supplementary Figure S5.1). In 

addition, taking those genes with differential interactions in CD4+ T cells, gene 

set enrichment analysis showed no particular pathway of interest in SSc 

pathology.  Nevertheless, a significant positive correlation was found in log2FC 

Figure 5.1. Enrichment of features within promoter interacting regions (PIRs) of 
pCHi-C interactions. Peak locations of H3K4me3 and H3K27ac (ENCODE) in primary 
CD4+ naive T cells and CD14+ monocytes were tested against promoter interacting 
regions (PIRs) of interactions using the “peakEnrichment4Features” function of 
CHiCAGO package. The graphs show the number of overlaps with the feature in the 
interaction data (yellow) vs the mean number of overlaps in 100 sampled interactions 
from the non-significant pool (blue). Error bars correspond to the 95% confidence 
interval. 
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values from SSc vs controls differential interactions between both cell types 

(Spearman’s rank correlation p-value = 5.22x10-173, rho = 0.35) 

(Supplementary Figure S5.2). On the other hand, none of the 23 loci (defined 

in “Material and Methods”) corresponding to SSc GWAS associated regions 

showed significant differences at the interaction level between patients and 

controls. A lack of statistical power could be the main reason of these negative 

results, probably caused by a sample size not large enough to identify slight 

differences. Besides, a total of 62 and 63 differentially expressed genes (FDR 

< 0.05) were identified between patients and controls in CD4+ T cells and 

CD14+ monocytes, respectively (Supplementary Tables S5.6 and S5.7). In 

the case of CD4+ T cells, we observed significant enrichment in terms related 

with immune response such as “positive regulation of immune system 

process” or “leukocyte activation” (Supplementary Table S5.8). However, 

we could not identify any functional enrichment regarding the 63 genes 

differentially expressed in CD14+ monocytes. 

5.2.2. Linking differential expression and differential interactions in CD4+ 

T cells vs CD14+ monocytes 

Due to the inconclusive results observed in the comparison between 

SSc patients and healthy controls, we decided to look at general differences at 

the interaction and expression levels between cell types, without taking 

disease state into account. On this subject, a total of 19,125 protein coding 

genes were analyzed in the RNA-seq data, of which 9,795 were identified as 

differentially expressed between CD4+ T cells and CD14+ monocytes. 

Subsequently, 2,257 strongly differentially expressed genes were obtained 

(FDR < 0.05, |log2FC| > 2), of which 919 and 1,338 genes were overexpressed 

in CD4+ T cells and CD14+ monocytes, respectively. Overrepresentation 

analyses showed that each group of genes is, as expected, significantly 

enriched in terms related with T cells and monocytes specific pathways, 
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including gene ontology terms such as “T cell activation” and “T cell 

differentiation” in CD4+ T cells, and “leukocyte activation” in CD14+ monocytes 

(Supplementary Tables S5.9 and S5.10). In addition, we observed that 

differentially expressed genes are in fact significantly enriched in 

differentially interacting genes (fisher exact test p-value = 3.54x10-37, OR = 

1.77). Furthermore, from the total of 1,209 differentially expressed genes 

overlapping differentially interacting genes, we observed that genes 

overexpressed in a specific cell type significantly correlated with increased 

number of interactions in that cell type, and vice versa (Spearman’s rank 

correlation p-value = 1.04x10-197, rho = 0.73).  

Finally, we applied a more stringent cutoff in differentially interacting 

genes (|log2FC| > 2), leading to a total of 97 differentially expressed genes 

overlapping differentially interacting genes. In this subset, only 2 of the 97 

genes were not distributed as expected; whilst 23 and 72 genes were 

overexpressed and presented an increased number of interactions in CD4+ T 

cells and CD14+ monocytes, respectively (exact binomial test p-value 

=6.01x10-26, probability of success = 98%) (Supplementary Figure S5.3). In 

this regard, overrepresentation analysis performed in the subset of 23 genes 

(CD4+ T cells) showed an enrichment in T cell related terms (Supplementary 

Table S5.11), including important genes in T cell differentiation and 

activation such as BCL11B or LEF1. On the other hand, the subset of 72 genes 

corresponding to CD14+ monocytes showed an enrichment in monocyte 

related and other terms (Supplementary Table S5.12), including important 

genes in macrophage differentiation and modulation of monocyte 

inflammatory response such as PADI2, S100A8 and CXCL8. Thus, our results 

demonstrate the importance of using different cell types to define promoter 

interactions and how they are linked with the expression of important genes 

for those cell types. In this regard, we decided to define significant interactions 
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that linked SSc-associated loci with promoters in CD4+ T cells and CD14+ 

monocytes. 

5.2.3. SSc-associated loci and CD4+ / CD14+ promoter interactions 

To identify new potential target genes associated to SSc, as well as the 

potential implication of different cell types in those associations, we 

performed a multi-omic approach overlapping 23 regions defined based on 

the most powerful SSc meta-GWAS performed to date (106) with enhancer 

regions and our pCHi-C data. From the total of 1,505 SNPs, including those 

associated with SSc at the genome-wide significance level (p-value < 5x10-8) 

and their proxies (r2 > 0.8), 445 (29.6%) and 284 (18.9%) overlapped with 

enhancer regions from CD4+ T cells and CD14+ monocytes, respectively. As 

expected, the GWAS SNP set was significantly enriched in both CD4+ and 

CD14+ enhancer regions (one-sided Fisher’s exact test p-value = 5.91x10-133, 

OR = 4.86 in CD4+ T cells; p-value = 1.63x10-56, OR = 3.27 in CD14+ monocytes). 

In addition, significant differences in the number of SNPs overlapping CD4+ 

and CD14+ enhancer regions were identified (two proportion z-test p-value = 

0.001), observing a stronger overlap with CD4+ T cell enhancer regions as 

compared with those from CD14+ monocytes. These GWAS SNPs within 

enhancer regions were overlapped with PIRs from pCHi-C, obtaining a total of 

398 and 109 significant interactions in CD4+ T cells and CD14+ monocytes, 

respectively (Supplementary Table S5.4). The promoter ends of those 

interactions correspond to 46 genes, with a total of 40 and 27 interacting 

genes in CD4+ T cells and CD14+ monocytes, respectively (Table 5.1).  
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The physical interaction maps presented here identify 39 new 

potential candidate genes and confirm 7 genes which have been associated by 

classical GWAS methods using proximity. Differential expression and 

differential interaction data for each of the 46 genes and baited promoters, 

respectively, are available in Supplementary Tables S5.13 and S5.14. 

Interestingly, some SSc confirmed genes such as IRF8, STAT4, or CD247, 

showed cell type specific interactions (Figures 5.2-4). The IRF8 locus (Figure 

5.2) provides a good example in which interactions between SNPs 

overlapping enhancer regions (represented by H3K27ac mark peaks) and 

IRF8 promoter are exclusively found in one cell type and are associated to 

differential gene expression between cells, in this case corresponding to 

CD14+ monocytes, that showed a much higher expression of IRF8 (log2FC = -

4.47, FDR = 3.11x10-72). In the case of STAT4 (Figure 5.3), we did not detect 

significant interactions between SNPs overlapping enhancer regions and gene 

promoter in CD14+ monocytes. On the other hand, significant interactions 

with the STAT4 promoter were identified in CD4+ T cells, corresponding with 

a TAD specific for CD4+ T cells that is not found in monocytes. In addition, 

STAT4 showed a significantly higher expression in CD4+ T cells as compared 

with CD14+ monocytes (log2FC = 7.05, FDR = 1x10-304). We also found 

significant interactions in this same locus with the promoter of NABP1 in CD4+ 

T cells, located 600 kb downstream, crossing TAD boundaries in both cell 

types. Here, we identified a significant differential expression of NABP1 

(log2FC = -0.31, FDR = 2.86x10-3), slightly overexpressed in CD14+ monocytes. 

Cell type specific interactions were also observed for the CD247 locus (Figure 

5.4), in which significant interactions between SNPs and CD247 promoter 

were evident only in CD4+ T cells, with an increased expression of this gene in 

CD4+ T cells as compared with CD14+ monocytes (log2FC = 7.49, FDR = 

3.99x10-210). Furthermore, significant interactions with the promoters of 

CREG1 were identified in the same locus in CD4+ T cells. In this regard, we 
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observed an overexpression of CREG1 in CD14+ monocytes (log2FC = -3.68, 

FDR = 1.32x10-325). 

On the other hand, we identified new potential candidate genes 

interacting with SSc-associated SNPs by GWAS historically associated with the 

closest gene. One of these examples correspond to the DDX6 locus (Figure 

5.5) in which we found significant interactions between SNPs overlapping 

enhancer regions and not only DDX6, but also other potential candidate genes 

including CXCR5, UPK2, and IFT46;ARCN1 (shared capture bait) promoters  in 

CD4+ T cells. In the case of CD14+ monocytes only a significant interaction with 

the CXCR5 promoter was found. All of these interactions are intra-TAD, except 

for the one including the IFT46;ARCN1 promoters. In addition, we observed a 

significantly higher gene expression of CXCR5 (log2FC = 3.21, FDR = 1.05x10-

9) and DDX6 (log2FC = 1.14, FDR = 2.38x10-83) in CD4+ T cells, while ARCN1

showed a slight overexpression in CD14+ monocytes (log2FC = -0.21, FDR =

3.69x10-3). IFT46 was not significantly differentially expressed (log2FC = 0.25,

FDR = 1.08x10-1) (UPK2 differential expression could not be tested due to low

expression levels).

In order to identify what pathways could be driving disease in the two 

different cell types, we performed a functional enrichment analysis including 

the genes interacting with SSc-associated loci for each cell type. In CD4+ T cells, 

the set of 40 interacting genes observed showed enrichment in virus response 

and pancreatic carcinoma (Supplementary Table S5.15). In accordance with 

this, a higher incidence of cancer in SSc patients compared with the general 

population has been suggested in several studies (325). On the other hand, the 

set of 27 interacting genes observed in CD14+ monocytes showed enrichment 

in tyrosine kinase activity (Supplementary Table S5.16), which plays an 

important role in fibrosis, and has been related with SSc pathogenesis, being 
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tyrosine kinase inhibitors one of the most promising antifibrotic therapies for 

SSc and other fibrotic diseases (326). 

Figure 5.2. Promoter capture Hi-C (pCHi-C) interactions and gene expression in the IRF8 locus. 
(A) Genomic coordinates (GRCh38) are shown at the top of the panel. The tracks include RefSeq 
genes (NCBI), systemic sclerosis (SSc)-associated SNPs from López-Isac et al (106) and their 
proxies (r2>0.8), topologically associating domains (TADs) (shown as bars), SNPs overlapping 
promoter interacting regions (PIRs) and enhancer regions, enhancer regions as defined by 
chromHMM, H3K27ac signal, and pCHi-C significant interactions (CHiCAGO score > 5) (shown as 
arcs) in CD4+ T cells (blue) and CD14+ monocytes (red). The highlighted region in red includes all 
the SSc-associated SNPs LD block. (B) Gene expression level of IRF8 from CD4+ T cells and CD14+ 
monocytes in counts per million (CPM). (C) Chicdiff bait profiles were generated for the IRF8 
gene. The plot shows the raw read counts versus linear distance from the bait fragment as mirror 
images for CD4+ T cells and CD14+ monocytes. Other-end interacting fragments are pooled and 
color-coded by their adjusted weighted p-value. Significant differentially interacting regions 
detected by Chicdiff overlapping SSc-associated SNPs and enhancer regions are depicted as red 
blocks. 
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Figure 5.3. Promoter capture Hi-C (pCHi-C) interactions and gene expression in the STAT4 
GWAS locus. (A) Genomic coordinates (GRCh38) are shown at the top of the panel. The tracks 
include RefSeq genes (NCBI), systemic sclerosis (SSc)-associated SNPs from López-Isac et al 
(106) and their proxies (r2>0.8), topologically associating domains (TADs) (shown as bars),
SNPs overlapping promoter interacting regions (PIRs) and enhancer regions, enhancer regions
as defined by chromHMM, H3K27ac signal, and pCHi-C significant interactions (CHiCAGO score 
> 5) (shown as arcs) in CD4+ T cells (blue) and CD14+ monocytes (red). The highlighted region
in red includes all the SSc-associated SNPs LD block. (B) Gene expression level of STAT4 and
NABP1 from CD4+ T cells and CD14+ monocytes in counts per million (CPM). (C) Chicdiff bait
profiles were generated for the STAT4 and NABP1 genes. Plots show the raw read counts versus
linear distance from the bait fragment as mirror images for CD4+ T cells and CD14+ monocytes. 
Other-end interacting fragments are pooled and color-coded by their adjusted weighted p-
value. Significant differentially interacting regions detected by Chicdiff overlapping SSc-
associated SNPs and enhancer regions are depicted as red blocks.
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Figure 5.4. Promoter capture Hi-C (pCHi-C) interactions and gene expression in the CD247 
locus. (A) Genomic coordinates (GRCh38) are shown at the top of the panel. The tracks include 
RefSeq genes (NCBI), systemic sclerosis (SSc)-associated SNPs from López-Isac et al (106) and 
their proxies (r2>0.8), topologically associating domains (TADs) (shown as bars), SNPs 
overlapping promoter interacting regions (PIRs) and enhancer regions, H3K27ac signal, 
enhancer regions as defined by chromHMM, and pCHi-C significant interactions (CHiCAGO 
score > 5) (shown as arcs) in CD4+ T cells (blue) and CD14+ monocytes (red). The highlighted 
region in red includes all the SSc-associated SNPs LD block. (B) Gene expression level of CD247 
and CREG1 from CD4+ T cells and CD14+ monocytes in counts per million (CPM). (C) Chicdiff 
bait profiles were generated for the CD247 and CREG1 genes. Plots show the raw read counts 
versus linear distance from the bait fragment as mirror images for CD4+ T cells and CD14+ 
monocytes. Other-end interacting fragments are pooled and color-coded by their adjusted 
weighted p-value. Significant differentially interacting regions detected by Chicdiff overlapping 
SSc-associated SNPs and enhancer regions are depicted as red blocks. 
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Figure 5.5. Promoter capture Hi-C (pCHi-C) interactions and gene expression in the DDX6 
GWAS locus. (A) Genomic coordinates (GRCh38) are shown at the top of the panel. The tracks 
include RefSeq genes (NCBI), systemic sclerosis (SSc)-associated SNPs from López-Isac et al 
(106) and their proxies (r2>0.8), topologically associating domains (TADs) (shown as bars), 
SNPs overlapping promoter interacting regions (PIRs) and enhancer regions, enhancer regions 
as defined by chromHMM, H3K27ac signal, and pCHi-C significant interactions (CHiCAGO score 
> 5) (shown as arcs) in CD4+ T cells (blue) and CD14+ monocytes (red). The highlighted region 
in red includes all the SSc-associated SNPs LD block. (B) Gene expression level of CXCR5, DDX6, 
ARCN1, and IFT46 from CD4+ T cells and CD14+ monocytes in counts per million (CPM). (C) 
Chicdiff bait profiles were generated for the CXCR5, DDX6, IFT46;ARCN1 (shared capture bait), 
and UPK2 genes. Plots show the raw read counts versus linear distance from the bait fragment 
as mirror images for CD4+ T cells and CD14+ monocytes. Other-end interacting fragments are 
pooled and color-coded by their adjusted weighted p-value. Significant differentially interacting 
regions detected by Chicdiff overlapping SSc-associated SNPs and enhancer regions are 
depicted as red blocks. 
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5.2.4. Drug repurposing in SSc 

From the 46 genes that present PIRs overlapping significant SSc-

associated SNPs and enhancer regions, we identified a total of 21 drugs with 

interest in SSc targeting protein products in strong PPI with 13 of those genes 

(five of them specific for CD4+ T cells interactions) (Table 5.2). Fifteen of these 

drugs correspond to potential drug targets already in use, or at least in 

completed clinical phase III, in other similar immune-mediated diseases that 

could be repurposed for SSc treatment, such as metformin or dimethyl 

fumarate. Apart from new potential drug targets, tocilizumab was one of the 

drugs highlighted in our analysis, which in fact represents the only biological 

drug approved by FDA for its use in SSc-associated interstitial lung disease 

(266). We also identified five drugs which present advanced clinical trials 

developed in SSc (tofacitinib, nintedanib, bosentan, methylprednisolone and 

mycophenolic acid). 
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Table 5.2.  Summary of potential targets for drug repurposing in systemic sclerosis based 
on pCHi-C data. 

GWAS 
locus 

pCHi-C 
interacting 

genes 

Cell type 
with 

interactions 

Genes in 
strong 

PPI 
Targeted drug Disease indication$ 

CD247 CREG1 CD4+ T cells TUBB4B Colchicine Osteoarthritis, 
Advanced fibrosis 

FLNB-
DNASE1L3

-PXK 
RPP14 

CD4+ T cells,      
CD14+ 

monocytes 

KEAP1 Dimethyl Fumarate 
Psoriasis, Multiple 

sclerosis, 
Disseminated sclerosis 

AGTR1 Candesartan Type 1 Diabetes 

HSPA8 Forigerimon Systemic lupus 
erythematosus 

NFKB1 

NFKB1 CD4+ T cells 

IL12B Ustekinumab 
Psoriasis,  Crohn´s 
disease, Ulcerative 

colitis 

IL1R1 Anakinra Rheumatoid arthritis 

IL23A Tildrakizumab Psoriasis 

JAK2 Tofacitinib 

Systemic sclerosis, 
Rheumatoid arthritis, 

Ulcerative colitis, 
Interstitial lung 

disease, Takayasu 
Arteritis 

NR3C1 Methylprednisolone* 

Rheumatoid arthritis, 
Crohn´s disease, 

Psoriatic arthritis, 
Ulcerative colitis, 
Behcet´s syndrom 

UBE2D3 
CD4+ T cells, 

CD14+ 
monocytes 

KEAP1 Dimethyl Fumarate 
Psoriasis, Multiple 

sclerosis, 
Disseminated sclerosis 

RAB2A-
CHD7 

SDCBP CD4+ T cells 
IMPDH1 Mycophenolic acid* 

Systemic lupus 
erythematosus, 

Immunosupresion 

TUBB4B Colchicine Osteoarthritis, 
Advanced fibrosis 

CHD7 CD4+ T cells PPARG Mesalamine Crohn's disease, 
Ulcerative colitis 

Only related immune-mediated diseases were included. All clinical trials at least in completed phase 
III. 
*These drugs present phase III or lower clinical trials in systemic sclerosis.
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Table 5.2.  Summary of potential targets for drug repurposing in systemic sclerosis based 
on pCHi-C data (continuation). 

GWAS 
locus 

pCHi-C 
interacting 

genes 

Cell type 
with 

interactions 

Genes in  
strong 

PPI 
Targeted drug Disease indication$ 

DDX6 CXCR5 
CD4+ T cells, 

CD14+ 
monocytes 

S1PR3 Fingolimod Multiple sclerosis, 
Disseminated sclerosis 

CSK 

CSK 
CD4+ T cells, 

CD14+ 
monocytes 

FLT4 Nintedanib 

Systemic sclerosis, 
Idiopathic pulmonary 

fibrosis, Interstitial lung 
disease 

COX5A 
CD4+ T cells, 

CD14+ 
monocytes 

NDUFB10 Metformin Type 1 Diabetes,  Type 2 
Diabetes 

IKZF3-
GSDMB 

IKZF3 CD4+ T cells 
JAK1 Baricitinib Rheumatoid arthritis 
JAK3 Upadacitinib Rheumatoid arthritis 

IL2RA Basiliximab Type 1 Diabetes 

ERBB2 
CD4+ T cells, 

CD14+ 
monocytes 

IL6R Tocilizumab 

Systemic sclerosis, 
Rheumatoid arthritis, 

Juvenile idiopathic 
arthritis, Giant cell 

arteritis 

JAK 
kinases Tofacitinib 

Systemic sclerosis, 
Rheumatoid arthritis, 

Ulcerative colitis, 
Interstitial lung disease, 

Takayasu Arteritis 

IL12RB1 

PIK3R2 CD4+ T cells 

ADRA1B Epinephrine Crohn's disease 
AGTR1 Candesartan Type 1 Diabetes 

EDNRA Bosentan 

Systemic sclerosis, 
Idiopathic pulmonary 

fibrosis, Pulmonary 
arteria hypertension 

JAK1 Baricitinib Rheumatoid arthritis 

JAK 
kinases Tofacitinib 

Systemic sclerosis, 
Rheumatoid arthritis, 

Ulcerative colitis, 
Interstitial lung disease, 

Takayasu Arteritis 

PDGFRB Nintedanib 

Systemic sclerosis, 
Idiopathic pulmonary 

fibrosis, Interstitial lung 
disease 

RAB3A 
CD4+ T cells, 

CD14+ 
monocytes 

HSPA8 Forigerimod Systemic lupus 
erythematosus 

$Only related immune-mediated diseases were included. All clinical trials at least in completed phase 
III. 
*These drugs present phase III or lower clinical trials in systemic sclerosis.
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5.3. Discussion 

Our investigation integrates four dimensions for the study of SSc 

genetics; GWAS, chromatin conformation, gene expression, and cell-

specificity. In this regard, our findings are complementary to previously 

published data and stress the importance of cell type in the functional 

interpretation of GWAS associations. Through the first pCHi-C analysis in SSc, 

we identified new target genes, and confirmed others, for SSc-associated loci 

in two of the main cell types associated with the disease, CD4+ T cells and 

CD14+ monocytes. Previous studies have acknowledged the potential of 

chromosome conformation capture to infer potential candidate genes through 

the analysis of Hi-ChIP data in CD4+ T cells (106,327). Our study provides the 

next step: comparative studies in two disease relevant cell types and supports 

future comparisons in multiple cell types by creating the first pCHi-C dataset 

on T cells and monocytes in SSc. 

One of the new candidate genes observed in pCHi-C data corresponds 

to CXC chemokine receptor type 5 (CXCR5) within the DDX6 locus (Figure 

5.5). CXCR5 plays an important role in the differentiation of follicular helper 

T (Tfh) cells, and is highly expressed in CD4+ and CD8+ T cells (328). In 

addition, a recently published study observed that Tfh cells (CD4+CXCR5+PD-

1+) are increased in SSc, and correlate with the severity of the disease (329). 

In line with the above, interactions with the promoter of this gene were 

identified specifically in CD4+ T cells in our study, and transcript levels showed 

an upregulation in this cell type. Furthermore, CXCR5 has been associated 

through GWAS with other similar immune-mediated diseases, such as RA or 

inflammatory bowel disease (184,330). Thus, CXCR5 represents a good 

candidate gene contributing to SSc pathology, with a particular interest in 

CD4+ T cells. Another interesting example is found in the RAB2A-CHD7 locus, 

a recently discovered locus associated with SSc (106). Within this region, we 
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observed significant interactions between SSc-associated SNPs and the closest 

gene, CHD7, in CD4+ T cells. CHD7 is a chromatin remodeler that has been 

associated with lymphocyte (and other immune-related cells) counts in blood 

through GWAS (331), and has been previously proposed as a probable 

candidate gene in SSc (106). Regarding the IL12A locus, we found long-range 

interactions between SSc-associated SNPs by GWAS and the promoter of SMC4 

in CD14+ monocytes. SMC family genes play a central role in organizing and 

compacting chromosomes. In this line, a recent study showed that SMC4 

promotes an inflammatory innate immune response, which is directly 

associated with monocyte activity, through enhancing NEMO transcription, an 

essential modulator of NF-κB (332). Although IL12A has been traditionally set 

as the most probable candidate gene for this association, we did not observe 

any interaction between SSc-associated SNPs and the promoter of this gene. 

Here, it is important to note the increased difficulty to identify significant 

short-range interactions (< 1 Mb) as background read count levels are 

dependent on the distance between fragments (317). This phenomenon 

represents a limitation in this kind of studies, as most of the GWAS SNPs are 

classically related with the closest gene, being these SNPs located within the 

gene itself in some cases. It is worth mentioning that we did not identify any 

significant interaction overlapping SSc GWAS SNPs in two of the loci most 

classically associated with SSc susceptibility, as are IRF5-TNPO3 or IL12RB2. 

Nevertheless, most of the associated SNPs are located within the gene itself in 

both cases, which means that they could directly affect gene transcription. In 

this sense, new high resolution Hi-C methods should help overcome the 

limitation of detecting very short range interactions (333). This methodology 

is not optimized to be used at the genome-wide level, but could be used as a 

fine mapping to study individual loci in more detail. 

Regarding previously confirmed causal genes associated with SSc, we 

described interactions between the IRF8 promoter and SSc-associated 
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variants that were only present in CD14+ monocytes (Figure 5.2), 

corresponding with an upregulated expression of this gene in CD14+ 

monocytes as compared with CD4+ T cells. This transcription factor plays an 

important role in differentiation and regulation of monocytes and 

macrophages (334). Furthermore, variants in IRF8 have been associated with 

monocyte counts across different populations (335). In this regard, a recently 

published study suggests that a downregulation of IRF8 in monocytes and 

macrophages of SSc patients may affect the fibrotic phenotype of the disease 

(336). In addition, another recent study demonstrated that the deletion of an 

enhancer region corresponding with our SSc GWAS locus in mice model 

decreased Irf8 expression, resulting in an overproduction of inflammatory 

Ly6c+ monocytes (337). Thus, our results confirm the association of this 

candidate gene with SSc through physical chromatin interactions particularly 

in CD14+ monocytes. In the same line, CD247 and STAT4 have been described 

in previous GWAS as main candidate genes associated with SSc (91,106), in 

this case interactions were exclusively found in CD4+ T cells (Figures 5.3-4). 

These findings are in line with literature, as both genes play an important role 

particularly in T cell signaling and differentiation (338,339). Thus, our results 

highlight the importance of associating GWAS signals with the specific cell 

types in which interactions are found, acting as a lead starting point for follow-

up functional studies that can relate these signals with the pathogenesis of the 

disease. 

Another aim of this study was to the identification of differences in the 

interactome between SSc patients and healthy controls. In this regard, we 

identified 4,858 differential interactions between SSc patients and healthy 

controls in CD4+ T cells. However, these signals appeared to be unreliable. 

Unfortunately, we did not identify any significant differential interaction in 

CD14+ monocytes. Our results reveal that 3D chromatin structure is largely 

preserved between SSc patients and healthy controls at least in CD4+ T cells 
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and CD14+ monocytes, which make them difficult to interpret due to lack of 

statistical power and possible bias. Nevertheless, we observed a significant 

positive correlation in differential interaction log2FC values between both cell 

types, which could indicate that the lack of significant differential interactions 

in CD14+ monocytes could be due to a low statistical power, and that CD4+ T 

cells differences may indeed represent a true signal. So far, to our knowledge, 

there is only a published study in which authors attempt to observe 

differences at the interaction level between patients and healthy controls in 

complex disorders, concretely in CD4+ T cells from juvenile idiopathic arthritis 

patients (340). However, authors described almost no differences at the 

interactomic level, which supports our hypothesis and underlines the 

difficulty to describe these subtle differences with current technology and 

resources. Interestingly, it has been shown that subtle differences in 

chromatin interactions may be correlated with large functional effects on gene 

expression (341). Thus, larger studies involving larger sample sizes would be 

of great interest to uncover the potential importance of these differences in 

understanding the implication of different cell types in disease pathology. 

Furthermore, we wanted to describe general differences between cell 

types at the interaction and expression level, without taking disease status 

into account. We observed that overexpressed genes in a specific cell type 

correlated with an increased number of interactions, and that those genes 

were enriched in specific pathways related with T cells and monocytes 

signaling, activation, and differentiation. These results demonstrate that 

interactions are directly related with the expression of important genes 

implicated in cell type specific pathways. In this regard, a recently published 

study observed that disease-associated genes tend to be connected by cell-

type specific interactions (342). Thus, our data presented here will aid future 

studies to identify cell types enriched with interactions overlapping GWAS 

loci.  
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Finally, it should be noted the relevance of this kind of studies to 

effectively point to potential drug targets. In this sense, five (23.8%) of the 

total of 21 drugs of interest identified in our study already present advanced 

clinical trials developed in SSc, and another one, tocilizumab, represents the 

only biological drug approved for its use in SSc. These results support the 

potential for repurposing of the rest of drugs underlined in our study. Among 

them, fingolimid could represent a good example. This drug promotes down-

regulation of sphingosine 1-phosphate (S1P) through S1P receptor 

modulation, blocking the capacity of lymphocytes to egress from lymph nodes 

and thus, reducing autoaggressive lymphocyte infiltration (343).  The protein 

encoded by S1PR3 presents a strong PPI with CXCR5, for which we described 

strong interactions between CXCR5 promoter and SSc-associated GWAS SNPs 

overlapping enhancer regions in the DDX6 locus, specially in CD4+ T cells 

(Figure 5.5). In addition, we observed a significantly higher CXCR5 expression 

in CD4+ T cells as compared to CD14+ monocytes. As previously mentioned, 

our results suggest that SSc-associated SNPs within the DDX6 locus could 

influence susceptibility to the disease through T cell activation and 

dissemination, which is in fact the mechanism of action targeted by fingolimid, 

thus, pointing to CXCR5 as the most likely causal gene for the DDX6 locus in 

SSc, which could constitute a potential drug target through its PPI with S1PR3. 
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5.4. Supplementary Data 

5.4.1. Supplementary Figures 

Supplementary Figure S5.1. Representation of the first two principal components 
(PC) from pCHi-C data for each sample in CD4+ T cells and CD14+ monocytes. The 
percentage of explained variance of each PC is written in brackets. The cos2 gradient 
represents the quality of representation (in percentage) of each sample for these two 
specific PCs. 
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Supplementary Figure S5.2. Correlation of log2FC values from systemic sclerosis 
patients vs healthy control differential interactions between CD4+ T cells and CD14+ 
monocytes. Each gene is represented by a black dot. The regression line is represented 
in blue. 
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Supplementary Figure S5.3. Distribution of the 97 differentially expressed genes 
(|log2FC| > 2) overlapping differentially interacting genes (|log2FC| > 2) in CD4+ T cells 
vs CD14+ monocytes comparison. The blue rectangle represents the region including 
genes which are overexpressed (log2FC > 2) and present more interactions (log2FC > 
2) in CD4+ T cells as compared with CD14+ monocytes. The red rectangle represents
the region including genes which are overexpressed (log2FC < -2) and present more
interactions (log2FC < -2) in CD14+ monocytes as compared with CD4+ T cells.
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5.4.2. Supplementary Tables 

Supplementary Table S5.1. Clinical and demographic data of systemic sclerosis 
patients and healthy controls. 

Identifier Disease status 
Disease 
subtype Age* Sex 

Patient 1 SSc patient Limited 74 Female 
Patient 2 SSc patient Limited 59 Female 
Patient 3 SSc patient Limited 61 Female 
Patient 4 SSc patient Limited 60 Female 
Patient 5 SSc patient Diffuse 48 Female 
Patient 6 SSc patient Diffuse 36 Female 
Patient 7 SSc patient Diffuse 64 Female 
Patient 8 SSc patient Diffuse 54 Female 
Patient 9 SSc patient Diffuse 64 Female 

Patient 10 SSc patient Limited 64 Female 
Control 1 Healthy control - 26 Male 
Control 2 Healthy control - 50 Female
Control 3 Healthy control - 50 Female
Control 4 Healthy control - 60 Male 
Control 5 Healthy control - 56 Female

*Age of individuals when blood extraction was performed
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   Supplementary Table S5.3. Number of reads from RNA-seq data. 

 

 

 

Identifiers Cell type Read pairs  
Unique 
reads 

Duplication 
rate (%) 

Control 2 
CD4+ T cells 20,6 2,1 87,99 

CD14+ monocytes 25,15 17,1 39,76 

Control 3 
CD4+ T cells 29,52 4,87 80,44 

CD14+ monocytes 24,97 18,26 37,63 

Control 4 
CD4+ T cells 33,67 3,38 87,36 

CD14+ monocytes 3,18 2,6 10,71 

Control 5 
CD4+ T cells 37,23 3,51 88,00 

CD14+ monocytes 43,37 21,44 48,95 

Patient 1 
CD4+ T cells 40,12 5,59 82,93 

CD14+ monocytes 37,03 16,59 52,37 

Patient 2 
CD4+ T cells 33,18 2,78 89,23 

CD14+ monocytes 35,17 2,22 91,36 

Patient 3 
CD4+ T cells 28,28 2,52 88,67 

CD14+ monocytes 36,81 8,04 74,23 

Patient 4 
CD4+ T cells 57,28 9,84 78,77 

CD14+ monocytes 31,84 3,29 87,05 

Patient 5 
CD4+ T cells 35,37 15,24 53,80 

CD14+ monocytes 37,53 16,6 52,52 

Patient 6 
CD4+ T cells 38,79 5,2 83,42 

CD14+ monocytes 37,22 9,85 68,80 

Patient 7 
CD4+ T cells 36,38 3,05 89,01 

CD14+ monocytes 36,23 16,24 53,17 

Patient 8 
CD4+ T cells 20,04 0,85 93,60 

CD14+ monocytes 35,35 8,98 70,72 

Patient 9 
CD4+ T cells 27,97 1,27 93,24 

CD14+ monocytes 32,66 3,57 86,49 

Patient 10 
CD4+ T cells 29,5 2,32 89,61 

CD14+ monocytes 32,37 17,42 46,70 
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Supplementary Table S5.4. Number of SSc GWAS SNPs and significant interactions 
in each locus. 

Locus Chr Start (bp) End (bp) 
N SSc 
GWAS 
SNPs 

N SSc GWAS SNPs 
+ enhancer 

overlap

N significant 
interactions (SSc 

GWAS SNPs + 
Enhancer overlap) 

CD4+ CD14+ CD4+ CD14+ 
1 1 67326053 67448804 27 10 1 0 0 
2 1 167445635 167465040 20 20 11 28 0 
3 1 173337507 173391947 99 3 2 0 0 
4 2 190642047 190698201 28 18 5 31 4 
5 2 191035723 191108308 30 21 2 14 0 
6 3 58084620 58482701 157 17 37 2 19 
7 3 119384733 119546340 28 1 0 1 0 
8 3 160002484 160030580 54 14 13 0 13 
9 4 960523 990021 12 5 4 6 6 

10 4 102477892 102615256 119 97 16 108 10 
11 5 151064651 151080486 17 6 8 0 0 
12 6 106181815 106339294 59 14 1 0 0 
13 7 128933913 129095960 128 26 35 0 0 
14 8 11474517 11544554 42 13 13 0 0 
15 8 60638547 60664239 11 1 0 3 0 
16 11 554659 619789 22 9 6 0 0 
17 11 2311894 2363262 80 3 0 3 0 
18 11 118704617 118875175 120 31 24 47 4 
19 15 74739180 75148328 216 68 54 133 38 
20 16 85932852 85979945 46 21 27 0 12 
21 17 39747478 39933464 104 22 12 15 1 
22 17 75193533 75279345 61 16 9 0 0 
23 19 18068862 18093031 25 9 5 7 2 

1505 445 285 398 109 
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Supplementary Table S5.5. Number of significant pCHi-C interactions and captured 
promoters identified by group. 

Cell type Group N of biological 
replicates 

Significant 
interactions* 

N of captured 
promoters 

CD4+ T cells 
Total 15 81624 8193 

Patients 10 67573 7356 
Controls 5 89794 9315 

CD14+ 
monocytes 

Total 15 74853 7024 
Patients 10 64333 6654 
Controls 5 67041 7908 

    *Significant interactions are defined as those with CHICAGO score > 5 

 

 
Supplementary Table S5.6. Differentially expressed genes in SSc vs. controls CD4+ T 
cells. 

Gene log2FC log2CPM FDR 
GPR15 -2,86 5,53 4,57E-05 
NUAK2 -3,44 6,33 4,57E-05 
LRRN3 -2,53 5,57 2,08E-04 
RPS4Y1 -11,63 5,30 2,08E-04 
DDX3Y -11,47 5,13 2,08E-04 
KDM5D -11,10 4,76 2,08E-04 
USP9Y -10,75 4,41 2,14E-04 

UTY -9,26 2,90 6,12E-04 
MOSPD2 -1,07 4,48 7,00E-04 
GPR55 -1,38 3,69 3,25E-03 
PRKY -8,53 4,06 8,17E-03 

PLXNB2 1,93 2,64 1,89E-02 
ZNF208 -0,88 4,24 1,92E-02 
B3GAT1 4,72 3,94 2,39E-02 
C1orf21 4,45 3,55 2,88E-02 

TMEM184C -0,63 4,53 2,88E-02 
ITGAX 2,94 2,77 2,88E-02 

FGFBP2 5,63 5,29 3,03E-02 
HLA-DPB1 1,28 4,91 3,05E-02 

IL6R -0,50 8,21 3,38E-02 
CALR 0,43 8,39 3,84E-02 

FCRL6 4,51 4,69 3,87E-02 
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TRPS1 0,60 5,03 3,87E-02 
GSE1 0,72 6,18 3,87E-02 

ASF1A -0,48 5,21 3,88E-02 
GZMH 5,05 6,00 4,24E-02 
RAB31 1,86 2,14 4,33E-02 
BEX3 0,92 4,44 6,33E-02 

TP53INP2 1,59 3,27 6,46E-02 
NBPF15 -0,52 7,13 6,83E-02 
ADGRG1 4,32 5,44 6,83E-02 
VPS9D1 0,47 5,40 6,83E-02 

TP53INP1 0,66 7,26 6,83E-02 
ZNF419 -0,79 3,87 6,83E-02 
SNTB1 0,87 5,28 6,83E-02 
ZEB2 3,43 5,48 6,83E-02 
VAV3 1,15 4,52 6,83E-02 

C12orf75 1,12 4,68 6,83E-02 
FGR 2,93 4,32 6,83E-02 

YBX3 1,42 3,77 6,99E-02 
ZMIZ1 0,65 6,07 7,00E-02 
YIPF4 -0,48 5,84 7,39E-02 
FCRL3 1,07 5,99 7,39E-02 
FADS2 3,26 3,14 7,39E-02 
LGR6 4,52 2,51 7,39E-02 
CD36 5,11 0,98 7,39E-02 

ADAM28 1,62 2,24 7,39E-02 
MS4A1 1,52 3,59 7,39E-02 
VCAN 2,25 2,40 7,39E-02 

TMEM119 1,85 1,87 8,43E-02 
NECTIN2 4,41 0,39 8,43E-02 

CDC42BPB -0,69 4,49 8,83E-02 
GNLY 3,78 6,66 8,83E-02 

ITGAM 2,40 5,55 8,83E-02 
CD74 0,67 8,65 9,17E-02 
IL7R -0,41 11,12 9,17E-02 

DUSP6 1,53 2,87 9,23E-02 
PIK3AP1 1,72 2,79 9,23E-02 
FBLN5 -1,24 4,31 9,23E-02 
GFOD1 1,54 3,14 9,23E-02 
COL5A3 -1,04 4,24 9,52E-02 

GNB4 2,15 1,55 9,52E-02 
CPM Counts per million, FC fold change, FDR false discovery rate. 
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Supplementary Table S5.7. Differentially expressed genes in SSc vs. controls CD14+ 
T cells. 

Genes log2FC log2CPM FDR 
SEMA6B -3,14 3,26 8,26E-05 
CLEC10A -1,03 6,08 7,16E-04 

STAG3 -1,93 0,13 2,78E-03 
RPS4Y1 -12,01 3,77 8,56E-03 
KDM5D -11,29 2,79 9,34E-03 

CTTNBP2 -2,29 1,75 9,34E-03 
DDX3Y -9,83 3,60 1,68E-02 

CSRNP2 -0,57 4,25 1,68E-02 
UTY -9,74 0,80 1,68E-02 

CHAMP1 -0,59 4,15 1,68E-02 
TBCC 0,62 4,51 1,68E-02 

RHPN1 -1,29 1,18 2,67E-02 
USP9Y -8,53 -0,31 4,17E-02 
ACCS -0,99 5,00 4,17E-02 

TIGD2 -0,92 1,94 4,23E-02 
ZNF552 -0,75 2,75 4,23E-02 
ZNF613 -1,02 2,07 4,23E-02 

CYP4F22 2,40 2,85 4,23E-02 
FAM118B -0,56 4,54 4,93E-02 

PRKY -8,03 0,51 5,27E-02 
SUOX -0,47 4,33 5,27E-02 
FPR3 -1,37 3,85 5,27E-02 
AHRR -4,28 2,37 5,27E-02 
ZNF2 -1,12 1,48 5,27E-02 

CMTM6 0,40 8,51 5,27E-02 
CAD -0,54 4,51 5,27E-02 
BBS2 -0,48 5,48 5,28E-02 
DBR1 -0,67 3,90 5,28E-02 

NUAK2 -1,92 5,91 5,82E-02 
RAB5IF 0,51 4,85 5,82E-02 
SLAMF7 1,31 5,75 5,82E-02 

POLH -0,61 3,24 5,82E-02 
MSH6 -0,54 4,64 5,82E-02 

LGALS1 0,49 8,01 5,82E-02 
MRC1 -1,21 2,43 6,59E-02 

GADD45B 0,86 6,27 6,59E-02 
GBP2 0,75 8,52 6,59E-02 

KLF10 1,12 7,94 6,59E-02 
RBM12B -0,56 4,32 6,59E-02 
RNF149 0,48 8,41 6,59E-02 
TMEM79 -0,72 3,21 6,59E-02 
UBALD2 0,70 6,57 6,59E-02 
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RSL24D1 0,37 6,76 6,70E-02 
APOL1 0,64 5,54 6,70E-02 
STX11 0,53 8,61 6,70E-02 

ZNF793 -2,26 -0,96 6,70E-02 
CLU 2,02 4,12 6,70E-02 

ZNF737 -1,11 1,39 6,70E-02 
TMEM86A -0,81 3,19 6,70E-02 

BRD8 -0,69 5,22 7,23E-02 
ZNF577 -0,64 3,57 7,23E-02 

FXR2 -0,55 4,97 7,41E-02 
ZC3H13 -0,49 6,43 7,53E-02 
SMURF1 0,52 5,51 7,92E-02 
FKBP1C 1,31 2,38 7,98E-02 
GPR174 1,65 2,08 8,91E-02 
MFHAS1 0,95 1,70 8,91E-02 
EHHADH -0,89 1,45 9,44E-02 
ZNF160 -0,60 4,76 9,81E-02 
RAP1B 0,44 7,44 9,81E-02 

CDKN2D 0,77 6,74 9,81E-02 
PID1 -0,77 6,57 9,81E-02 

ZNF132 -1,47 0,59 9,92E-02 
CPM Counts per million, FC fold change, FDR false discovery rate. 
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Supplementary Table S5.8. Gene set enrichment analysis of differentially expressed 
genes in SSc vs. controls CD4+ T cells. 

Source Term name Term id Adjusted
p-value 

GO:BP cell migration GO:0016477 1,78E-03 
GO:BP positive regulation of immune system process GO:0002684 5,04E-03 
GO:BP positive regulation of leukocyte activation GO:0002696 6,96E-03 
GO:BP cell motility GO:0048870 7,85E-03 
GO:BP localization of cell GO:0051674 7,85E-03 
GO:BP positive regulation of cell activation GO:0050867 8,77E-03 
GO:BP leukocyte activation GO:0045321 1,27E-02 
GO:BP positive regulation of response to stimulus GO:0048584 1,80E-02 
GO:BP positive regulation of gene expression GO:0010628 1,82E-02 
GO:BP B cell proliferation GO:0042100 2,42E-02 
GO:BP locomotion GO:0040011 3,29E-02 
GO:BP immune effector process GO:0002252 4,67E-02 
GO:BP cell adhesion GO:0007155 4,93E-02 
GO:CC side of membrane GO:0098552 6,91E-05 

GO:CC cell surface GO:0009986 5,13E-04 
GO:CC external side of plasma membrane GO:0009897 9,00E-04 
GO:CC endocytic vesicle membrane GO:0030666 6,00E-03 

GO:CC integral component of lumenal side of 
endoplasmic reticulum membrane GO:0071556 1,53E-02 

GO:CC lumenal side of endoplasmic reticulum 
membrane GO:0098553 1,53E-02 

GO:CC endocytic vesicle GO:0030139 1,69E-02 
GO:CC cell periphery GO:0071944 1,95E-02 
GO:CC lumenal side of membrane GO:0098576 3,56E-02 
KEGG Hematopoietic cell lineage KEGG:04640 6,45E-05 

WP Apoptosis-related network due to altered 
Notch3 in ovarian cancer WP:WP2864 1,02E-02 

Only significant terms with adjusted p-value < 0,05 were included. 
GO:BP Gene ontology biological process, GO:CC Gene ontology cellular component, KEGG KEGG 
pathways, REAC Reactome pathways, WK WikiPathways. 



Chapter 5: Promoter capture Hi-C analysis in T cells and monocytes 

194 

Supplementary Table S5.9. Gene set enrichment analysis of overexpressed genes in 
CD4+ T cells. 

Source Term name Term id Adjusted
p-value 

GO:MF T cell receptor binding GO:0042608 4,46E-04 

GO:MF 
phosphotransferase activity, alcohol group as 

acceptor GO:0016773 8,56E-04 
GO:MF kinase activity GO:0016301 1,03E-03 
GO:MF beta-catenin binding GO:0008013 1,80E-03 
GO:MF interleukin-2 receptor activity GO:0004911 4,65E-03 
GO:BP T cell activation GO:0042110 1,42E-26 
GO:BP T cell differentiation GO:0030217 1,89E-23 
GO:BP lymphocyte activation GO:0046649 2,21E-22 
GO:BP lymphocyte differentiation GO:0030098 6,06E-22 
GO:BP positive regulation of leukocyte cell-cell adhesion GO:1903039 1,27E-20 
GO:CC immunological synapse GO:0001772 3,00E-11 
GO:CC plasma membrane GO:0005886 1,19E-09 
GO:CC cell surface GO:0009986 1,00E-07 
GO:CC alpha-beta T cell receptor complex GO:0042105 3,95E-07 
GO:CC T cell receptor complex GO:0042101 5,07E-06 
KEGG T cell receptor signaling pathway KEGG:04660 2,51E-11 
KEGG Th1 and Th2 cell differentiation KEGG:04658 1,91E-08 
KEGG Th17 cell differentiation KEGG:04659 3,40E-08 

KEGG 
PD-L1 expression and PD-1 checkpoint pathway 

in cancer KEGG:05235 2,72E-07 
KEGG Primary immunodeficiency KEGG:05340 2,42E-06 

REAC Generation of second messenger molecules 
REAC:R-HSA-

202433 1,52E-06 

REAC 
Translocation of ZAP-70 to Immunological 

synapse 
REAC:R-HSA-

202430 4,56E-06 

REAC TCR signaling 
REAC:R-HSA-

202403 6,40E-06 

REAC 
Binding of TCF/LEF:CTNNB1 to target gene 

promoters 
REAC:R-HSA-

4411364 8,07E-05 

REAC Costimulation by the CD28 family 
REAC:R-HSA-

388841 8,58E-05 
WP T-Cell antigen Receptor (TCR)  Signaling Pathway WP:WP69 2,43E-10

WP 
T-Cell antigen Receptor (TCR) pathway during

Staphylococcus aureus infection WP:WP3863 1,44E-08 
WP T-Cell Receptor and Co-stimulatory Signaling WP:WP2583 9,93E-08 
WP Cancer immunotherapy by PD-1 blockade WP:WP4585 1,67E-05 

Only first five terms of each source with adjusted p-value < 0,05 were included. 
GO:MF Gene ontology molecular function, GO:BP Gene ontology biological process, GO:CC Gene 
ontology cellular component, KEGG KEGG pathways, REAC Reactome pathways, WK 
WikiPathways.
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Supplementary Table S5.10. Gene set enrichment analysis of overexpressed genes 
in CD14+ monocytes. 

Source Term name Term id Adjusted 
p-value

GO:MF immune receptor activity GO:0140375 4,93E-11 
GO:MF identical protein binding GO:0042802 4,91E-10 
GO:MF lipid binding GO:0008289 1,29E-09 
GO:MF carbohydrate binding GO:0030246 9,96E-09 
GO:MF pattern recognition receptor activity GO:0038187 2,46E-08 
GO:BP myeloid leukocyte activation GO:0002274 4,31E-90 
GO:BP cell activation involved in immune response GO:0002263 3,06E-79 

GO:BP 
leukocyte activation involved in immune 

response GO:0002366 4,27E-78 
GO:BP leukocyte activation GO:0045321 3,14E-77 
GO:BP leukocyte degranulation GO:0043299 7,48E-76 
GO:CC intracellular vesicle GO:0097708 2,26E-61 
GO:CC cytoplasmic vesicle GO:0031410 4,62E-61 
GO:CC secretory granule GO:0030141 6,88E-56 
GO:CC vesicle GO:0031982 5,66E-51 
GO:CC secretory vesicle GO:0099503 3,33E-49 
KEGG Tuberculosis KEGG:05152 6,86E-15 
KEGG Phagosome KEGG:04145 5,11E-14 
KEGG Leishmaniasis KEGG:05140 1,49E-13 
KEGG Lysosome KEGG:04142 1,53E-13 
KEGG Rheumatoid arthritis KEGG:05323 1,58E-11 

REAC Neutrophil degranulation 
REAC:R-HSA-

6798695 1,63E-60 

REAC Immune System 
REAC:R-HSA-

168256 1,67E-52 

REAC Innate Immune System 
REAC:R-HSA-

168249 2,26E-50 

REAC Toll-like Receptor Cascades 
REAC:R-HSA-

168898 8,14E-10 

REAC Interleukin-10 signaling 
REAC:R-HSA-

6783783 5,02E-09 
WP TYROBP Causal Network WP:WP3945 3,53E-14 
WP Microglia Pathogen Phagocytosis Pathway WP:WP3937 5,62E-08 
WP IL1 and megakaryocytes in obesity WP:WP2865 5,75E-08 
WP Vitamin D Receptor Pathway WP:WP2877 6,52E-06 
WP Human Complement System WP:WP2806 2,49E-05 

Only first five terms of each source with adjusted p-value < 0,05 were included. 
GO:MF Gene ontology molecular function, GO:BP Gene ontology biological process, GO:CC Gene 
ontology cellular component, KEGG KEGG pathways, REAC Reactome pathways, WK 
WikiPathways.
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Supplementary Table S5.11. Gene set enrichment analysis of overexpressed genes 
overlapping genes with differential interactions in CD4+ T cells. 

Source Term name Term id Adjusted 
p-value

GO:BP T cell differentiation in thymus GO:0033077 3,65E-03 
GO:BP mononuclear cell differentiation GO:1903131 1,77E-02 
GO:BP T cell differentiation GO:0030217 2,26E-02 

GO:BP 
somatic diversification of T cell receptor 

genes GO:0002568 2,34E-02 

GO:BP 
somatic recombination of T cell receptor 

gene segments GO:0002681 2,34E-02 
GO:BP T cell receptor V(D)J recombination GO:0033153 2,34E-02 

REAC 
Binding of TCF/LEF:CTNNB1 to target gene 

promoters 
REAC:R-HSA-

4411364 1,17E-02 

REAC RUNX3 regulates WNT signaling 
REAC:R-HSA-

8951430 1,17E-02 

WP 
Thymic Stromal LymphoPoietin (TSLP) 

Signaling Pathway WP:WP2203 3,21E-03 

WP 
ncRNAs involved in Wnt signaling in 

hepatocellular carcinoma WP:WP4336 2,18E-02 

WP 
LncRNA involvement in canonical Wnt 

signaling and colorectal cancer WP:WP4258 3,35E-02 
WP Wnt Signaling Pathway and Pluripotency WP:WP399 3,65E-02 

WP 
DNA Damage Response (only ATM 

dependent) WP:WP710 4,52E-02 
WP Wnt Signaling WP:WP428 4,88E-02 

Only significant terms with adjusted p-value < 0,05 were included. 
GO:BP Gene ontology biological process, KEGG KEGG pathways, REAC Reactome pathways, WK 
WikiPathways. 
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Supplementary Table S5.12. Gene set enrichment analysis of overexpressed genes 
overlapping genes with differential interactions in CD14+ monocytes. 

Source Term name Term id Adjusted
p-value 

GO:MF opsonin binding GO:0001846 1,30E-02 
GO:MF complement binding GO:0001848 3,73E-02 
GO:BP response to lipid GO:0033993 3,66E-07 
GO:BP leukocyte activation GO:0045321 5,57E-07 
GO:BP myeloid leukocyte activation GO:0002274 6,33E-07 
GO:BP cell activation GO:0001775 9,04E-07 
GO:BP response to oxygen-containing compound GO:1901700 3,25E-06 
GO:CC endomembrane system GO:0012505 1,31E-03 
GO:CC cytoplasmic vesicle GO:0031410 6,31E-03 
GO:CC intracellular vesicle GO:0097708 6,52E-03 
GO:CC tertiary granule GO:0070820 6,97E-03 
GO:CC secretory granule GO:0030141 1,27E-02 
KEGG Malaria KEGG:05144 1,70E-04 
KEGG Rheumatoid arthritis KEGG:05323 3,08E-03 
KEGG IL-17 signaling pathway KEGG:04657 3,82E-03 
KEGG Legionellosis KEGG:05134 8,58E-03 
KEGG Leishmaniasis KEGG:05140 2,13E-02 

REAC Neutrophil degranulation 

REAC:R-
HSA-

6798695 1,11E-03 

REAC Regulation of TLR by endogenous ligand 

REAC:R-
HSA-

5686938 2,20E-02 

REAC Immune System 
REAC:R-

HSA-168256 3,14E-02 

REAC Innate Immune System 
REAC:R-

HSA-168249 3,49E-02 

WP 
Platelet-mediated interactions with vascular 

and circulating cells WP:WP4462 9,71E-03 
WP LTF danger signal response pathway WP:WP4478 1,61E-02 
WP Lung fibrosis WP:WP3624 3,50E-02 
WP TYROBP Causal Network WP:WP3945 3,50E-02 
WP Spinal Cord Injury WP:WP2431 3,96E-02 

Only first five terms of each source with adjusted p-value < 0,05 were included. 
GO:MF Gene ontology molecular function, GO:BP Gene ontology biological process, GO:CC Gene 
ontology cellular component, KEGG KEGG pathways, REAC Reactome pathways, WK 
WikiPathways.



Chapter 5: Promoter capture Hi-C analysis in T cells and monocytes 

198 

Genes with very low expression that were not analyzed are represented as NA. 
CPM Counts per million, FC fold change, FDR false discovery rate. 

Supplementary Table S5.13. Differential expression corresponding to genes with 
significant interactions overlapping SSc GWAS loci in CD4+ T cells vs CD14+ 
monocytes. 

Chr GWAS locus Gene  log2FC  log2CPM FDR 

1 CD247 CD247 7,49 7,26 4,00E-210 
CREG1 -3,68 6,98 1,32E-325 

2 NAB1 

MFSD6 0,29 5,73 2,29E-02 
NEMP2 2,03 3,63 3,16E-61 
HIBCH 0,33 3,46 7,38E-03 
INPP1 -1,88 3,85 1,29E-39 

2 STAT4 STAT4 7,05 6,43 1,00E-304 
NABP1 -0,31 7,08 2,86E-03 

3 FLNB -DNASE1L3-PXK RPP14 0,13 4,03 2,46E-01 
KCTD6 -0,99 3,14 3,51E-12 

3 POGLUT1-TIMMDC1-
CD80- ARHGAP31 

TMEM39A -0,65 4,95 1,03E-11 
POGLUT1 0,41 5,23 6,48E-05 

3 IL12A SMC4 1,12 5,89 9,27E-34 
IFT80 2,38 3,98 1,35E-114 

4 DGKQ 
GAK -0,34 7,52 1,74E-08 

TMEM175 -0,28 5,65 5,64E-03 
FGFRL1 0,25 4,68 1,50E-01 

4 NFKB1 

SLC39A8 1,84 4,38 3,18E-26 
NFKB1 0,04 7,21 5,86E-01 

UBE2D3 -0,50 8,69 3,89E-17 
CISD2 0,30 4,03 1,73E-02 

SLC9B1 NA NA NA 
BDH2 1,94 3,43 6,09E-35 

8 RAB2A-CHD7 
ASPH -1,62 5,25 5,49E-37 

SDCBP -2,92 8,31 1,14E-117 
CHD7 2,58 5,73 1,51E-59 

11 TSPAN32,CD81-AS1 TSSC4 -0,32 5,15 7,88E-05 

11 DDX6 

CXCR5 3,21 3,14 1,05E-09 
UPK2 NA NA NA 
DDX6 1,14 8,08 2,38E-83 
IFT46 0,25 2,71 1,08E-01 
ARCN1 -0,21 6,96 3,69E-03 

15 CSK 

CSK -0,97 8,39 1,38E-28 
CLK3 -0,18 7,26 4,00E-03 
ULK3 1,50 6,32 4,45E-47 

SCAMP2 -0,38 7,32 8,05E-11 
MPI 1,56 5,30 3,50E-82 

FAM219B 0,38 6,30 1,03E-06 
COX5A -1,03 5,95 3,84E-46 

C15orf39 -3,64 7,55 2,83E-169 
16 IRF8 IRF8 -4,47 7,28 3,11E-72 

17 IKZF3-GSDMB 
IKZF3 5,58 7,12 1,16E-34 
ERBB2 1,82 2,04 1,34E-18 
PSMD3 -0,58 6,47 2,06E-20 

19 IL12RB1 PIK3R2 NA NA NA 
RAB3A 0,70 1,56 1,09E-02 
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Supplementary Table S5.14. Differential interaction values corresponding to genes 
with significant interactions overlapping SSc GWAS loci in CD4+ T cells vs CD14+ 
monocytes. 

Chicdiff median values per 
baited promoter 

Chr GWAS locus Baited gene 
promoters  log2FC log2FC SE weighted p-

adjusted 

1 CD247 CD247 2,29 0,09 2,51E-129 
CREG1 0,54 0,09 1,76E-08 

2 NAB1 
MFSD6 0,73 0,08 2,03E-21 
NEMP2 0,26 0,08 2,81E-03 

HIBCH;INPP1 -0,63 0,10 6,49E-11 

2 STAT4 STAT4 2,07 0,11 1,73E-70 
NABP1 0,96 0,10 2,73E-20 

3 FLNB -DNASE1L3-
PXK 

RPP14 0,52 0,10 4,58E-06 
KCTD6 0,60 0,07 7,08E-26 

3 POGLUT1-TIMMDC1-
CD80- ARHGAP31 TMEM39A;POGLUT1 0,46 0,10 1,45E-05 

3 IL12A SMC4;IFT80 -1,28 0,12 1,27E-23 

4 DGKQ GAK;TMEM175 -0,16 0,11 1,77E-01 
FGFRL1 -0,19 0,08 1,92E-02 

4 NFKB1 

SLC39A8 1,24 0,09 2,45E-40 
NFKB1 1,31 0,11 7,82E-30 

UBE2D3;CISD2 0,85 0,12 7,61E-12 
SLC9B1 0,38 0,13 2,90E-03 
BDH2 -0,09 0,09 2,35E-01 

8 RAB2A-CHD7 
ASPH 1,38 0,13 1,26E-25 

SDCBP 0,84 0,17 5,19E-06 
CHD7 0,11 0,07 1,71E-01 

11 TSPAN32,CD81-AS1 TSSC4 -0,38 0,09 8,43E-05 

11 DDX6 

CXCR5 0,97 0,09 1,70E-26 
UPK2 0,87 0,13 1,30E-10 
DDX6 1,56 0,12 2,63E-37 

IFT46;ARCN1 0,00 0,10 1,00E+00 

15 CSK 

CSK 0,28 0,11 4,33E-02 
CLK3 0,00 0,10 1,00E+00 
ULK3 0,53 0,13 7,81E-05 

SCAMP2 0,41 0,07 1,37E-07 
MPI 0,27 0,08 2,12E-03 

FAM219B 0,42 0,09 1,32E-05 
COX5A 0,74 0,09 3,02E-13 

C15orf39 -1,61 0,13 2,50E-34 
16 IRF8 IRF8 -1,27 0,09 1,19E-39 

17 IKZF3-GSDMB 
IKZF3 2,07 0,12 1,98E-67 
ERBB2 0,83 0,11 8,29E-13 
PSMD3 1,89 0,19 3,75E-24 

19 IL12RB1 PIK3R2 0,52 0,16 2,99E-03 
RAB3A -0,37 0,12 1,69E-03 

FC fold change, SE standard error.
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Supplementary Table S5.15. Gene set enrichment analysis of genes interacting with 
SSc GWAS loci overlapping enhancer regions in CD4+ T cells. 

Source Term name Term id Adjusted p-
value 

GO:MF protein C-terminus binding GO:0008022 2,49E-02 
KEGG Pancreatic cancer KEGG:05212 3,50E-02 
KEGG Epstein-Barr virus infection KEGG:05169 4,90E-02 

Only first five terms of each source with adjusted p-value < 0,05 were included. 
GO:MF Gene ontology molecular function, KEGG KEGG pathways.

Supplementary Table S5.16. Gene set enrichment analysis of genes interacting with 
SSc GWAS loci overlapping enhancer regions in CD14+ monocytes. 

Source Term name Term id Adjusted p-
value 

GO:MF 
transmembrane receptor protein tyrosine 

kinase activity GO:0004714 7,22E-03 
GO:MF protein tyrosine kinase activity GO:0004713 1,22E-02 

GO:MF 
transmembrane receptor protein kinase 

activity GO:0019199 1,25E-02 
GO:MF protein kinase activity GO:0004672 3,16E-02 

Only first five terms of each source with adjusted p-value < 0,05 were included. 
GO:MF Gene ontology molecular function.
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GENERAL DISCUSSION 

The study of systemic complex ADs, such as SSc, represents a major 

challenge at the genetic level, as the pathogenesis is lead by the sum of 

different factors that, at the same time, do not affect an organ or tissue in 

particular, but the whole organism. Currently, much effort is dedicated to 

address the study of these diseases through genetic approaches, from the 

identification of point mutations to the relationship and regulation of different 

genome regions, and their consequences in different cellular pathways of 

interest. Through the last decade, formerly misnamed “junk DNA” has become 

increasingly relevant, as mutations in non-coding regulatory regions can 

modulate the expression of a great number of genes, acting as major drivers 

of human diseases, and thus, generating several regulatory changes that can 

not be approached by reductionist methodologies (344). 

The present PhD dissertation provides evidences of the importance of 

each step concerning genetic studies in complex polygenic diseases, in which 

the discovery of a new association by genotyping studies represents only the 

starting point of a large and intrincate path. In this section, we will briefly 

discuss how the different results described throughout the five chapters 

complement and complete, as well as future perspectives and critical next 

steps in the field of SSc genetics. 

As previously mentioned, the study of the genetic basis of ADs in non-

European populations represents a major challenge nowadays (124). In this 

regard, it is worth mentioning the results obtained in the GWAS performed on 

turkish population, approached in chapter 1 of the present thesis. In this 

study, we identified a suggestive signal corresponding to the GOT1-NKX2.3 

locus, very close to the genome-wide significance threshold. As this locus has 

been previously associated to CD and ulcerative colitis, we checked if the index 



  

202 

SNP (rs7095491) reached the statistical threshold in the cross-disease meta-

GWAS performed in SSc and CD (chapter 2). Interestingly, this SNP showed a 

suggestive level of association in the meta-analysis of the discovery cohort (p-

value = 2.03x10-6, OR = 1.15). Nevertheless, this association may be leaded by 

the CD cohort (p-value = 3.59x10-7, OR = 1.25), as compared with the SSc 

cohort (p-value= 5.10x10-2, OR = 1.07), which present a weaker association. 

Furthermore, the SNP rs7095491 acts as an eQTL of NKX2.3 in thyroid tissue 

(p-value = 3.10x10-10) according to the GTEx database (206), which is in fact 

the most enriched tissue observed in our SSc eQTL analysis (chapter 4), 

highlighting the potential implication of thyroid tissue in the pathogenesis of 

the disease. Although replication in independent cohorts is needed in order to 

determine if this locus represents a true genetic risk factor for, it is of great 

importance to remark the potential of performing genomic studies in different 

populations in order to identify new associated loci and to confirm previous 

signals. 

On the other hand, in the cross-disease meta-GWAS including SSc and 

CD, we identified ZBTB9-BAK1 associated for the first time with both 

disorders as a shared risk (chapter 2). The index SNP of this region, rs68191, 

affected BAK1 gene exepression, acting as an eQTL in skin (p-value = 7.10x10-

6) and musculoskeletal tissue (p-value = 1.10x10-4) according to the GTEx 

database (206), both tissues specially affected in SSc patients. Interestingly, 

our whole blood eQTL study in SSc pointed to BAK1 (chapter 4) as one of the 

main eGenes whose expression is affected by SSc-associated SNPs related with 

apoptosis, highlighting the potential implication of this process in SSc 

pathogenesis. In this regard, the SNP rs68191 was not directly associated as 

an eQTL with BAK1 in our eQTL study, but a set of 5 SNPs which best explained 

the expression variance, none of them in high LD with rs68191. It is also worth 

metioning the importance of checking periodically different databases, such 

as GTEx, as the information is constantly updated and new studies performed 
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in different tissues are included, as an example, we could observe that the SNP 

rs68191 acts as an eQTL of BAK1 thanks to this approach. 

Regarding the new shared associations across systemic seropositive 

IMIDs described in chapter 3, 11 of them were new for SSc, including DGKQ. 

Notably, we observed that DGKQ expression was deeply influenced by SSc 

genetics in our eQTL analysis (chapter 4). Furthermore, the association of this 

locus with SSc was confirmed in a posterior large meta-GWAS performed by 

López-Isac et al (106). Nevertheless, we could not identify physical 

interactions between this locus and the promoter of DGKQ in our pCHi-C 

analysis, at least in CD4+ T cells and CD14+ monocytes. As most of the SSc-

associated SNPs within this locus are intronic, it is probable that regulation of 

DGKQ gene expression by these SNPs is mediated through other mechanisms 

different to the direct interaction with the promoter region. Interestingly, 

physical interactions between SSc-associated variants within the DGKQ locus 

and the promoter region of FGFRL1 were identified in our pCHi-C analysis. 

This gene encodes a fibroblast growth factor (FGF) receptor implicated in the 

FGF signaling pathway, which has a crucial role in homeostasis and in 

regulating differentiation, proliferation and apoptosis of various cell types, 

including fibroblasts, which play a crucial role in SSc pathogenesis (345). In 

addition, this signaling pathway is implicated in fibrosis and inflammation of 

multiple tissues, leading to PF among other complications (345), which is 

commonly developed by SSc patients (5). In addition, FGF downstream 

signaling pathway includes the STAT signaling, which has been largely 

associated with SSc (326). Thus, SNPs associated with SSc in the DGKQ locus 

could be interacting with the FGFRL1 promoter and, at the same time, be 

influencing DGKQ expression through other mechanisms. This highlights the 

importance of avoiding the classical association of one locus-one candidate 

gene, and underlines the complexity and pleiotropy of human gene regulatory 

variants. 
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Drug repurposing is one of the common approaches followed on the 

studies included in the present thesis. The implementation of this strategy 

among ADs is still difficult because of our limited knowledge about the 

pathogenesis of these disorders. However, recent genomic studies are being 

very useful to identify new pathways and targets for this repurposing. 

Through this strategy, we have identified more than 20 target genes for drugs 

already indicated in other similar immune-mediated diseases that could be 

repurposed for SSc treatment. Among these, tofacitinib was identified as a 

potential drug to be repurposed in SSc in two of our studies (chapter 3 and 5), 

and, in fact, this drug is now in clinical trials for SSc. Other interesting drug 

target genes identified in our studies are ERAP1 and ERAP2 (chapter 4), which 

are key regulators of the peptide repertoire displayed by MHC I to circulating 

T cells and NK cells (346), and can be targeted by aminopeptidases inhibitors. 

In addition, these genes have recently been pointed out as potential 

therapeutic targets for ADs (347). 

As it has been described throughout the present dissertation, it is 

through the combination of GWAS data with different functional genomics 

techniques (such as eQTL analysis or chromosome conformation capture), 

that associated variants can be linked with causal genes. pCHi-C analysis can 

partially be used to validate cis-eQTL associations. In this respect, it is 

important to mention that all eQTLs and pCHi-C analyses approached in the 

present dissertation were performed taking into account only cis interactions. 

However, it has recently been suggested that approximately 70% of 

heritability in mRNA expression in complex diseases is due to trans-eQTLs 

(348,349). The difficulty to interpret trans regulation results is one of the 

major challenges that have to be approached in future studies, evidencing the 

complex interactive network existing in the genome. In this regard, as these 

are not direct physical interactions, a SNP could be influencing the expression 

levels of certain gene through an unkown intermediate step. It is thus of great 
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importance to trace other changes in the homeostasis of the cell that could 

connect trans regulation through other omic studies, such as proteomics or 

metabolomics. 

In the shorter term, a critical step is to functionally test the 

interactions identified between SSc-associated SNPs and their target genes 

through genome editing tools, such as CRISPR/Cas9. Recent studies have 

demonstrated that this technology can be used to investigate and validate 

pathological mechanisms of ADs proposed by different genomic approaches. In 

this line, it is worth mentioning a CRISPR/Cas9 screening study developed in 

primary human T cells in which the authors identified genes regulating the TCR 

response after stimulation (350). The combination of CRISPR/Cas9 with other 

characterization and functional genomics techniques constitutes the perfect 

toolset to uncover mechanistic insights of potential functional variants. In this 

regard, a recent study combining CRISPR/Cas9 and luciferase assays with Hi-C 

and CHi-C data identified the allele rs13239597-A, which is strongly associated 

with SSc and SLE, as an allele-specific enhancer regulating IRF5 expression 

(351). Thus, one of the main next steps that should be approached by our group 

would be the experimental characterization of the new SSc-associated loci, in 

order to check if gene expression changes can be detected in those genes 

interacting with the loci of interest. 

Another promising strategy would be applying single-cell technology 

to different functional genomics studies in SSc. In this line, our group is 

currently working on a scRNA-seq study in Th17 cells and fibroblasts from SSc 

patients, two of the most relevant cell types in SSc pathogenesis. Through this 

approach, we would be able to detect specific cell subpopulations of particular 

interest in the disease, as well as to characterize their gene expression 

signature, and to identify dysregulated pathways. Performing different 

chromosome conformation capture techniques and eQTL analyses in these 
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particular cell types would also help us improving our knowledge of how SSc-

associated loci interact and regulate gene expression.  
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CONCLUSIONS 

1. The previously reported association of the HLA region with systemic 

sclerosis was confirmed in the Iranian and Turkish populations, lead by 

the HLA-DRB1*11:04 and HLA-DPB1*13:01 classical alleles. A suggestive 

association for two previously SSc-associated loci in Europeans, IRF5-

TNPO3 and NFKB1, was also evidenced.  

 

2. GOT1-NKX2.3, a genetic risk factor for other immune-mediated diseases, 

emerged as a potential candidate locus associated with systemic sclerosis 

susceptibility in the Turkish population. 

 

3. The analysis of the shared genetic component between systemic sclerosis 

and Crohn’s disease identified four novel shared risk loci, IL12RB2, IRF1, 

ZBTB9-BAK1, and STAT3, not previously associated with systemic 

sclerosis, except for IL12RB2.  

 
4. Functional enrichment analysis identified the IL-12/IL-23 signaling as 

one of the most relevant common pathways between systemic sclerosis 

and Crohn’s disease. 

 
5. The study of the genetic pleiotropy among four systemic seropositive 

immune-mediated inflammatory diseases identified 26 common loci for 

at least two conditions, of which NAB1, DGKQ, KPNA4-ARL14, LIMK1, and 

PRR12 had not been reported before.  

 
6. The pleiotropic variants identified among the four analyzed disorders 

and their likely target genes are functionally enriched in relevant immune 

cells, highlighting the type I interferon signaling as the most relevant 

common pathway. 
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7. More than half of the 233 eGenes detected in the expression quantitative 

trait locus (eQTL) analysis were associated with the most important 

systemic sclerosis hallmarks, highlighting the crucial role of the apoptotic 

process.  

 
8. Systemic sclerosis specific eQTLs showed enrichment in motifs for 

transcription factors, which were differentially regulated in disease 

relevant tissues including skin, blood and lungs. 

 
9. Physical interaction maps revealed cell-type specific interactions 

between systemic sclerosis-associated loci and previously confirmed 

causal genes, such as IRF8 in CD14+ monocytes, and CD247 and STAT4 in 

CD4+ T cells. In addition, interactions between the DDX6 locus and CXCR5 

gene promoter highlight the potential role of this gene in systemic 

sclerosis pathogenesis. 

 

10. Our results revealed that 3D chromatin structure is largely preserved 

between systemic sclerosis patients and healthy controls in CD4+ T cells 

and CD14+ monocytes. 

 
11. Through the different studies conducted, more than 20 drug target genes 

already targeted in similar immune-mediated diseases were identified, 

thus contributing to the potential repositioning of different drugs for its 

use in systemic sclerosis treatment. 
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CONCLUSIONES 

1. La asociación de la region HLA con esclerosis sistémica identificada en 

estudios previos, fue confirmada en población iraní y turca, estando 

dirigida esa asociación por los alelos clásicos HLA-DRB1*11:04 y HLA-

DPB1*13:01. También se detectó una asociación a nivel sugestivo de dos 

loci previamente asociados con esclerosis sistémica en población 

europea: IRF5-TNPO3 y NFKB1. 

 

2. GOT1-NKX2.3, un factor de riesgo genético asociado a otras enfermedades 

inmunomediadas, representa un locus de susceptibilidad potencial para 

el desarrollo de esclerosis sistémica en población turca. 

 

3. Mediante el análisis del componente genético común a la esclerosis 

sistémica y la enfermedad de Crohn, se identificaron cuatro nuevos loci 

de riesgo compartidos: IL12RB2, IRF1, ZBTB9-BAK1, y STAT3, de los 

cuales únicamente IL12RB2 se había asociado previamente con la 

esclerosis sistémica. 

 

4. El análisis de enriquecimiento en rutas moleculares, de acuerdo al 

componente genético compartido, evidenció la ruta de señalizacion IL-

12/IL-23 como una de las principales vías patogénicas comunes a la 

esclerosis sistémica y la enfermedad de Crohn. 

 

5. El estudio del componente genético compartido entre cuatro 

enfermedades sistémicas inflamatorias inmunomediadas identificó 26 

loci de riesgo comunes a, al menos, dos de estas enfermedades, de los 

cuales NAB1, DGKQ, KPNA4-ARL14, LIMK1 y PRR12 no han sido descritos 

previamente. 
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6. Las variantes de susceptibilidad compartidas entre las cuatro 

enfermedades analizadas y sus posibles genes diana están enriquecidas 

funcionalmente en células del sistema inmunitario relevantes para estas 

enfermedades, destacando la señalización del interferón tipo I como una 

de las vías comunes de mayor relevancia. 

 

7. Más de la mitad de los 233 eGenes detectados en el análisis de locus de 

caracter cuantitativo de expresión (eQTL) están asociados con los 

principales rasgos característicos de la esclerosis sistémica, destacando 

el papel crucal del proceso de apoptosis. 

 

8. Los eQTLs específicos de la esclerosis sistémica presentan un 

enriquecimiento en motivos de union de factores de transcripción, los 

cuales están regulados diferencialmente en tejidos implicados en la 

patología de la enfermedad, incluyendo piel, sangre y pulmones. 

 

9. El estudio de las interacciones físicas del ADN reveló la existencia de 

interacciones específicas de tipo celular entre loci asociados a la 

esclerosis sistémica y genes causales previamente confirmados, como es 

el caso de IRF8 en monocitos CD14+, y CD247 y STAT4 en linfocitos T CD4+. 

Además, las interacciones detectadas entre el locus DDX6 y el promotor 

del gen CXCR5 indican la potencial relevancia de este gen en la 

patogénesis de la enfermedad. 

 

10. Nuestros resultados revelan que la estructura tridimensional de la 

cromatina en linfocitos T CD4+ y monocitos CD14+ está preservada en 

gran medida entre pacientes con esclerosis sistémica y controles sanos.  
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11. A través de los diferentes estudios llevados a cabo, se identificaron más 

de 20 genes con diana farmacológica que, actualmente, están siendo 

abordados en otras enfermedades inmunomediadas similares, lo que 

indica que estos fármacos podrían ser potencialmente últiles para el 

tratamiento de la esclerosis sistémica. 
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