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Abstract 11 

This study proposes a new methodology to estimate the Atmospheric Boundary Layer Height (ABLH), 12 

discriminating between Convective Boundary Layer and Stable Boundary Layer heights, based on the machine 13 

learning algorithm known as Gradient Boosting Regression Tree. The algorithm proposed here uses a first 14 

estimation of the ABLH derived applying the gradient method to a ceilometer signal and several meteorological 15 

variables to obtain ABLH values comparable to those derived from a microwave radiometer. A deep analysis of 16 

the model configuration and its inputs has been performed in order to avoid the model overfitting and ensure its 17 

applicability. The hourly and seasonal values and variability of the ABLH values obtained with the new algorithm 18 

have been analyzed and compared with the initial estimations obtained using only the ceilometer signal. Mean 19 

Relative Errors (MRE) between the ABLH estimated with the new algorithm and microwave radiometer show a 20 

daily pattern with their highest values during the night-time (stable situations) and their lowest values along the 21 

day-time (convective situations). This pattern has been observed for all the seasons with MRE ranging between -22 

5% and 35%. This result notably improves those ABLH values derived by applying the gradient method to 23 

ceilometer data during convective situations and enables the Stable Boundary Layer height detection at night and 24 

early morning, instead of only Residual Layer top height. Finally, the model performance has been directly 25 

validated in three particular cases: clear-sky day, presence of low-clouds and dust outbreak event. In these three 26 

particular situations, ABLH values obtained with the new algorithm follow the pattern obtained with the 27 

microwave radiometer presenting very similar values, thus confirming the good model performance. In this way 28 

it is feasible by the combination of the proposed method with gradient method, to estimate Convective, Stable and 29 

Residual Boundary Layer height from ceilometer data and surface meteorological data in extended network that 30 

include ceilometer profiling.  31 

1 Introduction 32 

The Atmospheric Boundary Layer (ABL) is defined as the part of the troposphere that is directly influenced by 33 

the presence of the Earth’s surface, and responds to surface forcings with a timescale of about an hour or less 34 

(Stull, 1988). The ABL is the atmospheric region directly affected by turbulent and evapotranspiration processes 35 

and where the air pollutants are dispersed (Stull, 1988). The characteristics of the ABL, and particularly, the ABL 36 

height (ABLH), play a fundamental role in numerous atmospheric areas such as weather forecasting, air quality 37 

and/or numerical modeling (e.g. Cheng et al., 2011). 38 



 

 

The estimation of the ABLH with high temporal resolution is not an easy task, due mainly to its high variability 39 

throughout its daily cycle. Thus, based on an ideal scenario, some instants after the sunrise, the ground surface 40 

temperature begins to increase, due to the positive net radiative fluxes. Such a phenomenon causes the warming 41 

of air masses located at low heights favoring the convective process, and the heat transfer from the surface to 42 

upper atmospheric layers in the troposphere. This process generates a layer known as Convective Boundary Layer 43 

(CBL). Just before the sunset, the CBL becomes a layer called Residual Layer (RL), which is stably stratified and 44 

contains the characteristics from the previous CBL. In conjunction with this process arises from the ground a 45 

thermally stratified layer and endowed of lower heights (in comparison with RL and CBL), denominated Stable 46 

Boundary Layer (SBL). 47 

In the last years remote sensing systems, such as elastic lidars (e.g. Toledo et al., 2017; Bravo-Aranda et al., 2017; 48 

Moreira et al., 2019; Vivone et al., 2021), ceilometers (e.g. Haeffelin et al., 2012; Caicedo et al., 2017; Lee et al., 49 

2019; Uzan et al., 2020; Moreira et al., 2020a; Jiang et al., 2021), Doppler lidars (e.g. Manninen et al., 2018; 50 

Marques et al., 2018; Moreira et al., 2019) and microwave radiometers (e.g. Cimini et al., 2013; Bravo-Aranda et 51 

al., 2017; Moreira et al., 2020a; Jiang et al., 2021) have been widely used to characterize the ABLH. Among these 52 

remote sensing systems, ceilometers have the advantage to be a low-cost and low-maintenance system that  53 

monitors aerosol and clouds layers (Lee et al., 2019). Such characteristics have favored the creation of national 54 

(e.g., Automated LIdar-CEilometer network – ALICEnet (Haefele et al., 2016); Unified Ceilometer Network - 55 

UCN (National Research Council, 2009)) and international networks (e.g., EUMENET-Profiling Program 56 

[https://www.eumetnet.eu/]; E-PROFILE [https://e-profile.eu]; Iberian Ceilometer Network - ICENET) (Cazorla 57 

et al., 2017), which have been dedicated to standardize and expand the activities of ABL monitoring by ceilometer 58 

data. 59 

Ceilometers have been applied in many previous works related to ABLH detection, which vary from short-term 60 

(e.g. Helmis et al., 2012; Bruine et al., 2017; Caicedo et al., 2017) to long-term studies (e.g. Stachlewska et al., 61 

2012; Schween et al., 2014; Moreira et al., 2020), and various mathematical algorithms such as, vertical gradients 62 

(Emeis et al., 2008), wavelet covariance transform (Baars et al., 2008; Granados-Muñoz et al., 2012), STRAT 63 

(STRucture of the ATmosphere) [application of first derivative of the Gaussian filter on Range Corrected Signal 64 

(RCS) profile] (Morille et al., 2007), STRAT-2D [it has same structure of STRAT and includes an edge detection 65 

method based on both vertical and temporal gradients of RCS] (Haeffelin et al., 2012),  STRAT+ [combination 66 

of radiosoundings information and Canny edge detection applied to gradient and variance profiles of RCS] (Pal 67 

et al., 2013), PathfinderTURB [it combines the strength points of gradient and variance of RCS methods and 68 

addresses the layer attribution problem by adopting a geodesic approach] (Poltera et al., 2017), or COBOLT 69 

(COntinuous BOundary Layer Tracing) [a time-height tracking procedure] (Geiß et al., 2017) have been 70 

developed in order to improve the ABLH values derived from them. In spite of this, there are still limitations in 71 

the application of ceilometers for ABLH monitoring. Special difficulties occur in cases considered as complex 72 

such as rainy situations, presence of low clouds, and dust outbreaks. In these situations, the abrupt changes of the 73 

aerosol vertical profile notably differ from the idealized profile on which most of the ABLH detection methods 74 

are based. Although some methods have been proposed to improve the ABLH detection from lidar data in the 75 

situations mentioned above (Bravo-Aranda et al., 2017; Liu et al., 2018), the use of only one wavelength and/or 76 

low signal-to-noise ratio make it difficult to apply such techniques in ceilometers. Another weakness in the 77 

application of ceilometers to obtain ABLH is the difficulty for discriminating between the RL top height (RLH) 78 



 

 

and SBL height (SBLH) during stable periods (Moreira et al., 2020a). This limitation comes from the basis of the 79 

detection procedure applied to ceilometers, based on the vertical profile of the atmospheric aerosol that prevents 80 

the detection of the top of the thermal inversion (SBLH) in this situation. Having in mind these facts, there is still 81 

room for some improvements in the ABLH retrieval with ceilometers on the basis of alternative data processing 82 

of the ceilometer’s output. 83 

Machine learning techniques have been widely applied in the environmental sciences during the last years (e.g. 84 

Cadeddu et al., 2009; McGovern et al., 2017; Bonnin et al., 2018; Vassalo et al., 2020; Moreira et al., 2021). These 85 

ML techniques can account for complex relationships on atmospheric processes and have been successfully 86 

applied in several atmospheric areas, ranging from the estimation of atmospheric parameters such as the mixing 87 

layer height (Bonin et al., 2018) or the analysis of sky-camera images to characterize the aerosol layer (Cazorla 88 

et al., 2008; Cazorla et al., 2009) to predict pollutants concentration (Moreira et al., 2021). Particularly for the 89 

estimation of the ABLH, Jiang et al. (2021) applied machine learning combined GPS radio occultation technology 90 

to build a simulation model to estimate the ABLH, providing reliable results for several months. Krishnamurthy 91 

et al. (2021) proposes a method based on Random Forest algorithm to estimate the ABLH from meteorological 92 

and Doppler lidar data. Such an algorithm provides an improvement of 50%, in the CBLH detection during clear 93 

sky or cloudy conditions, in comparison with a method based on vertical wind speed profiles.  94 

Thus, the main objective of this study is to propose a machine learning algorithm to improve the ABLH 95 

estimations obtained from a ceilometer. To this aim, a Gradient Boosting Regression Trees (GBRT) algorithm 96 

has been trained using as input the ABLH values derived from a ceilometer, surface meteorological data and 97 

ABLH values derived from a co-located microwave radiometer (Moreira et al., 2018; Moreira et al., 2020a). From 98 

this algorithm it is possible to estimate the height of CBL and SBL combining ceilometer and meteorological 99 

surface data. Therefore, application of such methodology can expand ceilometer data applicability, so that it is 100 

possible to discriminate the three main ABL sublayers (CBL, SBL and RL) without acquiring expensive 101 

instruments. These ABLH values derived from the microwave radiometer have been the reference dataset for both 102 

the fitting and validation analysis. The model performance has been assessed analyzing its temporary and seasonal 103 

variability as well as the dependence of its residuals against several meteorological variables. Finally, the model 104 

has been directly validated in three particular cases (clear-sky day, presence of low-clouds and dust outbreak 105 

event).  106 

The paper is organized as follows. First, the experimental site and the instrumentation used in this study have been 107 

described in Section 2. Then, in Section 3 the development and set-up of the machine learning algorithm here 108 

proposed are presented. Next the results of a seasonal analysis as well as the analysis of particular cases are shown 109 

in Section 4, while the main conclusions of this study are discussed in Section 5. 110 

2 Experimental site and instrumentation 111 

The measurements analyzed in this study were recorded at the University of Granada (UGR) station located on 112 

the roof of the Andalusian Institute of Earth System Research (IISTA-CEAMA) at Granada (37.164º N, 3.605º 113 

W, 680 m a.s.l.). These facilities are managed by the Atmospheric Physic Research Group (GFAT) and they are 114 

part of the observatory AGORA (Andalusian Global ObservatoRy of the Atmosphere) in the framework of 115 



 

 

ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure) and of the Iberian Ceilometer Network 116 

(ICENET) (Cazorla et al., 2017). 117 

Granada is a medium sized non-industrialized city in the West Mediterranean region, at the Southeast of Spain, 118 

and presents a large seasonal temperature range associated with its Mediterranean-continental conditions. The city 119 

is characterized by cool winters and hot summers with the most humid period from late autumn to early spring 120 

(AEMET, 2015). This region is usually affected by mineral dust outbreaks from the Sahara desert in summer and 121 

spring (e.g. Guerrero-Rascado et al., 2008, 2009; Bravo-Aranda et al., 2015), and some extreme events have also 122 

occurred in winter (Cazorla et al., 2017; Fernández et al., 2019), but also for more local sources of aerosol particles 123 

such as traffic, domestic-heating or biomass burning in winter time (Titos et al., 2012, 2017). From roughly 124 

February to July, primary biological aerosol particles (pollen-type) are present in the region (e.g., Cariñanos et 125 

al., 2021). To a lesser extent, the area is also affected by advected fresh and aged smoke mainly from the Iberian 126 

Peninsula (Alados-Arboledas et al., 2011) and from North America (Ortiz-Amezcua et al., 2017), respectively. 127 

The combination of all these factors highly affect the local meteorology, and, therefore the ABL detection (Stull, 128 

1988). 129 

A ceilometer Jenoptik model CHM15k was operated at the UGR station. This instrument measures the 130 

backscattered signal of a pulsed Nd:YAG laser emitting at 1064 nm, with an energy per pulse of 8.4 μJ, a repetition 131 

frequency in the range of 5–7 kHz and a laser beam divergence less than 0.3 mrad. The backscattered signal is 132 

received by a telescope with a field of view of 0.45 mrad. The spatial and temporal resolution used were 15 m and 133 

15 s, respectively. The complete overlap of the instrument is found around 1500 m above a.g.l. and its overlap is 134 

90% at 555 m a.g.l., in accordance with the overlap function provided by the manufacturer (Cazorla et al., 2017). 135 

This equipment has been operating continuously since December 2012 and it is part of the Iberian Ceilometer 136 

Network (ICENET), an initiative of the Atmospheric Physics Group of the University of Granada (Cazorla et al., 137 

2017). Measurements recorded with this instrument were employed to derive initial estimations of the ABLH, 138 

ABLHCEIL , as input (feature) of the machine learning algorithm. The range of values to ABLHCEIL [200 – 4500 139 

m] (Table 1) is based on a previous long-term study (2012-2016) presented in Moreira et al. (2020a). 140 

The surface meteorological dataset consists of 1-min data of air temperature (T), relative humidity (RH), 141 

atmospheric pressure (P), and wind speed (WS) measured at the roof of the UGR station facilities and covering 142 

the whole analyzed period 2015-2017. T and RH at this station were monitored by a HMP60 probe manufactured 143 

by Vaisala. This probe has an accuracy of ±0.6 ºC and 2% for T and RH measurements, respectively. In this station 144 

WS was measured by an anemometer model 05103, manufactured by Campbell Scientific, with an accuracy of 145 

±0.3 m/s. Simultaneously, P was monitored by a Vaisala PTB110 barometer with a silicon capacitive sensor 146 

specially designed to guarantee accurate (±0.3 hPa at +20 °C) and stable (±0.1 hPa/year) measurements. Global 147 

horizontal irradiance (G) in the range 280-2800 nm was measured by a CM-11 pyranometer manufactured by 148 

Kipp & Zonen while downward infrared irradiance (IR) in the range of 4000-50000 nm is measured by a Precision 149 

Infrared Radiometer (PIR) manufactured by EPPLEY. Both instruments comply with the specifications for the 150 

first-class WMO pyranometer classification with an accuracy below ± 5 W/m2 for daily measurements. All these 151 

sensors operated following the WMO standard protocols and procedures (WMO, 2013). These measurements and 152 



 

 

magnitudes derived from them were employed as input for the machine learning algorithm developed in this study 153 

as both input (features). 154 

Co-located to the ceilometer, a ground-based passive microwave radiometer (MWR), model RPG-HATPRO G2 155 

(Radiometer Physics GmbH) was operating in the scanning mode in automatic and continuous mode since 156 

November 2011 as part of MWRnet [http://cetemps.aquila.infn.it/mwrnet/] (Rose et al., 2005; Caumont et al., 157 

2016). This instrument measures the sky brightness temperature with a radiometric resolution between 0.3 and 158 

0.4 K root mean square error at 1 s integration time. The MWR uses direct detection receivers within two bands, 159 

22-31 GHz (water vapor - K band) and 51-58 GHz (oxygen - V band), for deriving RH and T profiles, respectively, 160 

by inversion algorithms described in Rose et al. (2005). Both profiles have a range resolution varying between 10 161 

and 200 m in the first 2 km and varying between 200 and 1000 m up to 10 km (Navas-Guzmán et al., 2014). This 162 

change in the profile resolution is associated with an exponential decrease with height of the MWR weighting 163 

functions (Spänkuch et al., 1996). The measurements recorded with this instrument were employed to derive the 164 

reference values (target) of the ABLH, ABLHMRW. In the same way of the ABLHCEIL, the range of values to 165 

ABLHMWR [200 – 4500 m] (Table 1) is based on Moreira et al. (2020a). The application of MWR data to ABLH 166 

detection have been extensively validated with other instruments such as: Doppler lidar (Moreira et al., 2018; 167 

Moreira et al., 2020b), elastic lidar (Granados-Muñoz et al., 2012; Bravo-Aranda et al., 2017; Moreira et al., 2018; 168 

Moreira et al. 2020a) and radiosoundings (Bedoya-Velásquez et al., 2019). Particularly, ABLHMRW has shown to 169 

be less influenced by presence of clouds (Moreira et al., 2020a) and decoupled aerosol layers (Bravo-Aranda et 170 

al., 2017) compared with other devices. Moreover, the MWR temporal resolution of 2 min guarantees the volume 171 

of data required for the development of the machine learning algorithm. 172 

Finally, a database of hourly values of all these variables, listed in Table 1, were built for the period analyzed in 173 

this study, which encompasses three entire years from 2015 to 2017. This final dataset was split in two subsets: 174 

(1) a training subset, formed by measurements recorded along 2015 and 2016, and (2) a validation subset, 175 

composed by measurements taken along 2017. 176 

3 Methodology 177 

3.1 Gradient Boosted Regression Trees  178 

The Gradient Boosting Regression Trees (GBRT) is a supervised non-parametric machine learning technique 179 

widely applied in classification and regression problems (e.g., Friedman 2001; Li et al. 2008; Ye et al. 2009; Chen 180 

et al. 2015; Baturynska et al. 2020). The idea behind boosting is to sequentially fit multiple ‘weak learners’, that 181 

is, simple models that perform relatively poorly with low accuracy (Friedman, 2001). In each iteration, a new 182 

model is proposed using information from the previous model trying to learn from its mistakes and improving 183 

iteration by iteration. In the case of GBRT, the ‘weak learners’ are decision tree models with very few branches. 184 

Because GBRT operates with small models training sequentially, it is a faster process and requires lower memory 185 

consumption than other machine learning techniques such as Random Forests. Additionally, GBRT does not 186 

require the application of advanced normalization techniques on its inputs and enables a combination of different 187 

numerical and categorical data as input. Similarly to the development of other types of atmospheric models, this 188 

machine learning technique requires both independent variables and reference data to build the model. Particularly 189 



 

 

in the machine learning vocabulary independent variables are named as features while the reference data is 190 

denoted as target. The variables used in this study will be detailed described in the next sections. 191 

Figure 1 shows a flowchart that briefly describes the main steps of how an ensemble of trees is created by the 192 

GBRT algorithm. The ensemble consists of M trees built one-by-one. Thus, a first decision tree (Tree1) is trained 193 

using the feature matrix, X (ABLHCEIL and meteorological variables), and the target variable y (ABLHMRW). The 194 

predictions of Tree1 (F1(X)) are used to determine the pseudo-residual errors (r1) of the training set applying the 195 

loss function L (Root Mean Square Error in our case). After that, a second decision tree (Tree2) is trained using X 196 

and r1, which is the new target variable, as inputs. From the Tree2 predictions (F2(X)) the new pseudo-residual r2 197 

are computed and used as input to build an improved third tree. Such a process is repeated M times until the 198 

residuals are minimized and the improvement between consecutive trees is negligible. Finally, FM (X) is obtained 199 

as the combination of the predicted values provided by each m-tree: 200 

𝐹𝑀(𝑋) = 𝐹0(𝑋) + 𝐹1(𝑋)+. . . +𝐹𝑚−1(𝑋) + 𝐹𝑚(𝑋)  (1) 201 

From Fig. 1 it is possible to observe that as more trees are added to the model, there is a progressive tendency to 202 

reduce errors in predictions. A more detailed description of this process, including the most relevant mathematical 203 

aspects, is given in Appendix 1. 204 

3.2.- GBRT set up 205 

3.2.1.- Inputs for the GBRT: features and target variables 206 

The features initially selected to build the GBRT algorithm have been the ABLH obtained from the aerosol vertical 207 

profiles measured with the ceilometer, ABLHCEIL, and set of near-surface meteorological variables which 208 

influence on the ABLH as reported in previous works (e.g. Stull, 1988; Georgoulias et al., 2009; Granados-Muñoz 209 

et al., 2012; Haeffelin et al., 2012 Allabakash and Lim, 2020; Rey-Sanchez et al., 2021)). ABLHCEIL have been 210 

obtained applying the gradient method (Flamant et al., 1997) on the 1-hour averaged range corrected signal (𝑅𝐶𝑆´ ). 211 

Considering the existence of an intense reduction in the aerosol load in the transition region between the ABL and 212 

the Free Troposphere (FT), this methodology estimates the ABLH as the height (z) where the minimum in the 213 

gradient of the 𝑅𝐶𝑆´  profile is detected (Moreira et al., 2020a). Rain cases were flagged by an empirical threshold 214 

and removed (Moreira et al., 2020a). This methodology has been widely applied to numerous ceilometers 215 

belonging to national or international networks such as E-PROFILE (Haefele et al., 2016) or ICENET (Cazorla 216 

et al., 2017). 217 

The initial near-surface meteorological dataset is composed of WS, T, P, RH, G and NR. On one hand, several 218 

authors have reported significant correlations between ABLH and near-surface values of WS, T, P and RH 219 

(Georgoulias et al., 2009; Wang et al., 2009; Allabakash and Lim, 2020; Krishnamurthy et al., 2021). On the other 220 

hand, G accounts for the total energy reaching the surface while NR is a proxy of the brightness temperature of 221 

the atmosphere, highly correlated with its composition. The solar zenith angle (SZA), the hour of the day (H) and 222 

the season (S), have been also included as inputs in order to account for the Sun position and possible daily and 223 

seasonal dependencies. Additionally, the clearness index (kt), estimated as the ratio between the solar radiation at 224 

the top of the atmosphere and the global solar irradiance on the Earth’s surface, has been also initially considered 225 

as a proxy of atmospheric transmissivity and cloudiness, respectively. In addition to their influence of these 226 



 

 

variables on the ABLH they have been chosen because of their wide availability through national and international 227 

meteorological and radiation networks as well as from reanalysis and satellite databases.  228 

In this study, the reference values or target, also included as input in the GBRT algorithm, are the ABLH values 229 

obtained from the MWR (ABLHMWR). Such an ABLH is calculated from the potential temperature profile in an 230 

algorithm that combines gradient and parcel methods, for stable and convective situations, respectively. This 231 

technique has been previously validated with respect to co-located elastic lidar (Granados-Muñoz et al., 2012; 232 

Bravo-Aranda et al., 2017; Moreira et al. 2018) and Doppler lidar (Moreira et al. 2018; Moreira et al., 2020a) 233 

presenting in both comparisons reasonable correlations with a coefficient of determination, R², above 0.7. In a 234 

recent study, Bedoya-Velásquez et al. (2019) performed a validation of MWR data comparing them with 5 years 235 

of radiosonde data at Granada-Spain. Such analysis demonstrated a very low bias in MWR profiles respects 236 

radiosoundings, being this bias from 1.8 to −0.4 K with and standard deviation of 1.1 K for the temperature profiles 237 

and from 3.0 to −4.0% with and standard deviation around 135 for the humidity profiles, under all-weather 238 

conditions and below 2 km a.g.l.. 239 

Additionally, from the MWR potential temperature (θ) profiles, a feature to describe the atmospheric stability 240 

(AtSt) has been defined. Using the comparison criterion presented in Moreira et al. (2020), where each θ profile 241 

is classified as convective, the AtSt categorical feature has been obtained being AtSt = 0 for convective situations 242 

and AtSt = 1 for stable cases. 243 

The initial Dataset is presented in Table 1. Hourly averages of all the relevant variables for the period 2015-2017 244 

have been obtained from their original database, except for the values of H and S which were included as 245 

categorical variables. Additionally, continuous variables have been normalized with respect to their mean values, 246 

in order to homogenize their ranges of variability. Although this is not a required process in GBRT, Krishnamurthy 247 

et al. (2021) have pointed out slight improvements in ABLH detection, mainly at nighttime, when this 248 

normalization is applied. This final dataset was splitted in two subsets: (1) a subset with measurements recorded 249 

in the period 2015-2016 that will be used for the model set-up and training, and (2) a validation subset, composed 250 

by measurements taken along 2017. 251 

3.2.2 Feature selection 252 

In order to verify the relevance of each feature and to avoid data redundancy, as well as excessive complexity in 253 

the model, a selection of the most relevant features from the initial dataset has been performed (Guyon and 254 

Elisseeff, 2003). To this aim, the importance of each feature has been analyzed from two criteria. A first criterion, 255 

namely the Boruta algorithm, estimates the importance of each feature by comparing its influence on the predicted 256 

value with that of its randomly shuffled copies (Kursa et al, 2010). The second criterion, known as Recursive 257 

Feature Elimination (RFE), trains a predetermined model starting with all features in the training dataset, and after 258 

each iteration discards the least important features and refits the model (Yu and Liu, 2003). In this study, the 259 

variables that after being discarted did not cause a 2% reduction in coefficient of determination (R²) were removed.  260 

Both criteria have been applied on the entire database but also a specific feature importance analysis has been 261 

performed in order to account for possible differences in the feature relevance between day- and night-time 262 

situations. Figure 2 shows the relative importance of each feature, during day (a) and night (b), so that as higher 263 

the value obtained, greater is the influence of this variable on the results provided by the ML model. For daytime 264 



 

 

ABLHCEIL and G appear as the most relevant features while T, RH, NR, WS, P and WS show a lower relevance 265 

and are sorted differently by each criteria. In the case of nighttime data, the most relevant feature is the hour (H), 266 

which explains how the model can identify nighttime situations, while the ABLHCEIL takes the second position 267 

and remains as one of the most important features for the model. On the opposite extreme AtSt, S, SZA, kt have 268 

been classified as irrelevant features. This result can be explained by the correlation of these variables with some 269 

of the features classified as relevant. Thus, i.e., all the near-surface meteorological features selected as relevant 270 

present some seasonal dependence making the use of the parameter S redundant. Similarly, AtSt, appears in both 271 

cases, nighttime and daytime, as one of the less relevant features. In the case of our location, this is explained 272 

because nighttime/daytime classification is mostly equivalent to a stable/convective classification, making the 273 

variable AtSt a redundant input. Thus, in a deep analysis of the entire database no stable cases during the daytime 274 

while the 95.5% of nighttime cases are convective. These irrelevant (AtSt, S, SZA, kt) features have not been 275 

included as input in the final GBRT model in order to avoid redundancy in the dataset. 276 

3.2.3 Hyperparameters 277 

GBRT algorithm requires a thorough setup of the so-called hyperparameters (parameters that cannot be updated 278 

during the training process) in order to avoid overfitting in the training dataset. The most relevant hyperparameters 279 

involved in the GBRT proposed in this study are: (1) the maximum depth of each tree, which represents the 280 

maximum number of leaves in each tree, (2) the maximum number of features, which indicate the maximum 281 

number of features inputted in each tree, (3) the learning rate, which indicates the influence of the previous 282 

decision-trees on its successors, and (4) the minimum sample leaf, which represents the minimum number of 283 

samples required to be at a leaf node in the tree.  284 

In this study, the hyperparameters of the baseline model have been obtained from a large group of values randomly 285 

selected over our setup-training subset, over which a cross validation and Bayesian optimization processes 286 

(Frazier, 2018) have been applied using the Python library Scikit-learn (Pedregosa et al., 2011). Then, an empirical 287 

fine-tuning was performed in order to detect the values that provide the best results. From this analysis, the most 288 

suitable value for the maximum depth of each tree has been estimated as 5 while for the maximum number of 289 

features a value of 4 has been selected. These low values of the hyperparameters contribute to reducing the 290 

potential overfitting. A low value has been also obtained for the learning rate (0.0573), which ensures the 291 

improvement of the correction under ceilometer data during stable periods. The optimal minimum sample leaf 292 

value was indicated as 3, avoiding higher values of this parameter that can generate greater smoothing in the 293 

predicted values. 294 

3.3 Model training 295 

Once the inputs and hyperparameters have been determined, the GBRT algorithm has been trained (stage where 296 

the model is fitted) and tested (stage where the model performance is analyzed in terms of accuracy/precision). 297 

As indicated in Section 2, this training has been performed using a two-year dataset (2015-2016) with 5.153 cases. 298 

In order to reduce possible bias, the k-fold cross-validation methodology (James et al. 2013) has been applied. In 299 

this methodology, the dataset is randomly shuffled and divided into k parts, approximately equal. Then, k 300 

iterations are performed and, in each one of them, one group is selected as a test while the others k-1 are used for 301 

training. After k iterations, the chosen performance parameters obtained from each iteration and mean absolute 302 

error are averaged, and such values are considered as the performance parameters of the model. In this work k is 303 



 

 

5 and, consequently, in each iteration an 80% and 20% of the data subset were employed for training and testing, 304 

respectively. Figure 3 illustrates this process.  305 

In the training stage, the model reached a R² of 0.97, which indicates a satisfactory performance and that the 306 

overfitting was avoided. The Mean Absolute Error (MAE) obtained was 127 m. During the test stage, although a 307 

reduction of around 20% in R² (0.76) was observed, the variation of MAE was lower than -2%, resulting in 129 308 

m. 309 

3.4 Analysis 310 

The GBRT algorithm proposed in this study has been validated using data recorded in our station along the entire 311 

2017. Thanks to that, different aspects have been analyzed. On one hand, the general performance of the algorithm 312 

has been assessed analyzing the temporal and seasonal variability of the Mean Relative Error (MRE) among the 313 

ABLHGBRT and ABLHMRW values. This statistic quantifies the mean relative deviation between the target value 314 

(ABLHMRW) and that one provided by the model (ABLHGBRT). The MRE has been estimated by the following 315 

equation:  316 

𝑀𝑅𝐸𝐺𝐵𝑅𝑇(%) = 100 · ∑ (
𝐴𝐵𝐿𝐻𝐺𝐵𝑅𝑇 − 𝐴𝐵𝐿𝐻𝑀𝑅𝑊

𝐴𝐵𝐿𝐻𝑀𝑅𝑊
) (2) 317 

This statistic has been also calculated for the ABLHCEIL values in order to assess the improvement of the algorithm 318 

proposed in this study with respect to the use of the ceilometer alone. 319 

The statistical analysis has been completed with the estimations of the relative Root Mean Squared Error (rRMSE) 320 

defined as: 321 

𝑟𝑅𝑀𝑆𝐸𝐺𝐵𝑅𝑇(%) = 100 · √
1

𝑁
∑ (

𝐴𝐵𝐿𝐻𝐺𝐵𝑅𝑇 − 𝐴𝐵𝐿𝐻𝑀𝑅𝑊

𝐴𝐵𝐿𝐻𝑀𝑅𝑊
)

2

(3) 322 

where n is the number of samples. 323 

In order to identify possible limitations of the proposed algorithm under different atmospheric conditions, 324 

cloudless, stable and convective situations have been differentiated and the MRE values for these situations have 325 

been analyzed. Day- and nighttime have been separated in terms of the solar zenith angle values (SZA), with SZA 326 

< 80º for daytime and SZA > 100º for nighttime. As mentioned above, because of the results of the 327 

convective/stable analysis performed from the AtSt feature, in this study nighttime is equivalent to stable and 328 

daytime is equivalent to convective situations. Additionally, cloudy and cloudless conditions have differentiated. 329 

In this study, clouds have been detected from the intensity of the RCS measured by the ceilometer, which notably 330 

increases in presence of clouds over the instrument. Clouds are detected when the RCS reaches values above 107, 331 

which is the empirical threshold estimated for our station as representative of cloud presence (Moreira et al., 332 

2020a). Day- and nighttime have been separated in terms of the solar zenith angle values (SZA), with SZA < 80º 333 

for daytime and SZA > 100º for nighttime. As mentioned above, because of the results of the convective/stable 334 

analysis performed from the AtSt feature, in this study nighttime is equivalent to stable and daytime is equivalent 335 

to convective situations. 336 



 

 

Moreover, to the MRE values, the analysis of these situations has been performed analyzing R² with respect to 337 

the reference measurements and defined as:    338 

    𝑅2 = 1 −
∑ (𝑥𝑖−𝑥�̂�)2𝑛

𝑖=1

∑ (𝑥𝑖−�̂�)2𝑛
𝑖=1

          (4) 339 

where n number of samples, 𝑥𝑖is the reference values (ABLHMWR), 𝑥�̂� is the estimated value (ABLHGBRT) and, �̂� 340 

is the average of the reference values (ABLHMWR). 341 

Finally, the ABLHCEIL, ABLHGBRT and ABLHMWR were intercompared for three days endowed with specific 342 

atmospheric situations: a) cloudless day, b) low-cloud day, and c) a day under the influence of a Saharan dust 343 

outbreak. These situations have been chosen due to the limitations observed in the ceilometer estimations of the 344 

ABLH, mainly under low-cloud scenarios (Coen et al., 2014) and decoupled aerosol layers (Caicedo et al., 2017), 345 

and will contribute to analyze the improvement of the methodology proposed in this study. 346 

4 Results 347 

4.1 General performance 348 

4.1.1 Temporary and seasonal variability 349 

Figure 4 presents the MRE hourly-averaged ABLHCEIL and ABLHGBRT values for all analyzed cases. Both 350 

ABLHGBRT and ABLHCEIL overestimate the ABLHMWR values although with notably lower percentages in the case 351 

of the GBRT estimations (note the different scales in Figure 4).  Thus, the MREGBRT values (black line) do not 352 

exceed 36% while MRECEIL (magenta line) always has values higher than 30%. In both cases, the MRE values 353 

present a diurnal pattern with their lowest values during the first hours in the afternoon (0% for MREGBRT vs. 30% 354 

for MRECEIL) and their highest values during nighttime (around a 30% for MREGBRT and up to a 200% for 355 

MRECEIL). The higher differences between ABLHCEIL and ABLHMWR, observed during the night and early 356 

morning, occur because the ABLHMWR estimates the SBLH, while the ABLHCEIL detects the RLH (Moreira et al., 357 

2020). From these results, it is possible to observe the possibility of estimating the SBLH from ceilometer data in 358 

combination to surface meteorological information. In addition, from the combination of gradient method and 359 

GBRT is possible to detect SBLH, RLH and CBLH.          360 

Figure 5 presents a comparison among the hourly averaged ABLHGBRT (black line), ABLHMWR (red line), and 361 

ABLHCEIL (magenta line) values. These plots show the expected pattern with lower ABLH values from sunrise to 362 

sunset and higher values during daytime, following a delayed solar cycle pattern (Moreira et al., 2020a). For all 363 

seasons, the ABLHGBRT and ABLHMWR values present high similarity, especially between 09 to 18 UTC, being 364 

all ABLHMWR values within the ABLHGBRT error range (grey shadow). The R² values between ABLHGBRT and 365 

ABLHMWR in each season are always greater than or equal 0.88, in contrast to the seasonal R² values between 366 

ABLHCEIL and ABLHMWR, which are always lower than 0.30. Such values occur because during nighttime and 367 

early morning notable differences are observed between ABLHCEIL and ABLHMWR values because the methods 368 

based on the gradient of aerosol concentration tend to monitor the RLH in these situations. However, in the central 369 

hours of the day ABLHCEIL and ABLHMWR estimates the CBLH. On the other hand, the GBRT method is well 370 

trained to detect the SBLH, in a similar way as the ABLHMWR detects it. As the central hours of the day approach, 371 

the difference is gradually reduced, being minimal at the point where the maximum height of the ABLH is reached. 372 



 

 

Table 2 summarizes the rRMSE values of the GBRT for all cases, as well as for each season, for both day- and 373 

nigh-time (convective/stable) situations. These results confirm the good performance of the model proposed here 374 

with an average rRMSE of 20% for all cases. Summer is the season with the lowest values of rRMSE for both 375 

day- and night-time. The rest of the seasons show similar behavior with rRMSE ranging from a 14% for daytime 376 

in Spring and 26% for nighttime in Autumn. 377 

The daily patterns of the hourly averaged MREGBRT and MRECEIL values, per season, are shown in Fig. 6. The 378 

scales evidence that in all cases MRECEIL are larger than MREGBRT, mainly during night and early morning, as 379 

expected, due to differences in ABLH definition considered by each algorithm. In the case of MREGBRT similar 380 

patterns for the different seasons have been found although with larger errors (in the range 15% to 45%) between 381 

19 - 08 UTC while lower errors (< 15%) occur between 09 to 18 UTC. The highest MREGBRT values are observed 382 

in autumn (Fig. 6d), while the lowest values are estimated in summer (Fig. 6c). On the other hand, the MRECEIL 383 

values show a seasonal pattern, with values higher than 140% between 19 - to 08 UTC, for all seasons, excluding 384 

summer (Fig. 5c). A result that is associated with   the detection of the RL top height by the ceilometer processing 385 

(Moreira et al., 2020a). Between 09 to 18 UTC (period predominantly convective), the MRECEIL has low values, 386 

underestimating the ABLHMWR in some situations (13 to 14 UTC in summer and 14 UTC in autumn). The highest 387 

MRECEIL values are observed in winter (Fig. 6a), while the lowest ones occur in summer (Fig. 6c).  388 

4.1.2 Dependence on atmospheric/meteorological conditions  389 

Table 3 summarizes the R² and MREGBRT values for cloudless, stable and convective situations. In general, 390 

cloudless cases present only a variation of around a 1% for the R² and MREGBRT values with respect to the all-sky 391 

situations, indicating a low dependence of the GBRT algorithm on cloudiness.  Such a result is in accordance with 392 

low relative importance of kt presented in section 3.2.2. When stable and convective cases are not differentiated, 393 

the GBRT model shows its highest values of R²=0.91) and MREGBRT values are around 20%. When convective 394 

and stable cases are differentiated, the highest R² values (0.89) and the lowest values of MREGBRT (11%) were 395 

observed during the convective periods. In daytime situations, and mainly under cloudless conditions, the top of 396 

the aerosol layer coincides with the CBL height due to the absence of the RL (e.g. Eresma et al., 2006; Caicedo 397 

et al., 2017; Moreira et al., 2020a). Stable cases show a slightly lower performance, with R² = 0.75 and MREGBRT 398 

values around 28%, where the lower SBLH values are partially responsible of the rather large MREGBRT. 399 

4.2 Case studies 400 

4.2.1 Case 1: A clear-sky day (24th January 2017) 401 

Figure 8 shows the evolution of the ABLH for a clear-sky day, characterized by the absence of low clouds and a 402 

thick and well-defined aerosol layer. It is observed that ABLHCEIL (magenta stars) represents the RL, from the 403 

beginning of measurement, until around 09:00 UTC. Thus, as CBL begins to increase, the difference between 404 

ABLHCEIL and ABLHMWR decreases, so that they are coincident at 10:00 UTC, and have a difference lower than 405 

350 m between 11:00 and 18:00 UTC. At 19:00 UTC the ABLHMWR presents values clearly decoupled of the top 406 

of the aerosol layer (ABLHCEIL) detecting the SBLH, consequently the differences between ABLHCEIL and 407 

ABLHMWR increase, reaching the maximum at 23:00 UTC (around 1200 m). 408 

For its part, the ABLHGBRT values (black stars) show a very similar behavior with respect to the ABLHMWR values 409 

(red stars). Their higher agreement occurs between 04:00 to 06:00 UTC and 18:00 to 22:00 UTC, showing that 410 



 

 

the GBRT model provides appropriate estimates of the SBLH in the presence of the RL. The highest differences 411 

between ABLHMWR and ABLHGBRT are observed between 10:00 and 17:00 UTC, nevertheless, they are always 412 

lower than 100 m. 413 

4.3.2 Case 2: A day with presence of low clouds (7th February 2017) 414 

Figure 9 shows a case with the presence of low clouds (altitude < 2000 m), which can directly influence the ABLH 415 

detection when using the gradient method with the ceilometer data (Moreira et al., 2020). From 01:00 to 06:00 416 

UTC due to low RL height, ABLHMWR and ABLHCEIL present, in general, a similar behavior with differences 417 

lower than 300 m. At 07:00 UTC, when the first clouds appear, the gradient method tends to overestimate the 418 

ABLHMWR (which is situated at 410 m), increasing the ABLHCEIL values up to 1500 m (cloud base). Due to the 419 

presence of low clouds throughout the day, the ABLHCEIL is estimated at the cloud base overestimating the 420 

ABLHMWR, mainly during the stable period, where the difference between them reaches up to 2000 m at 23:00 421 

UTC. Similar results were observed by Coen et al. (2014) and Caicedo et al. (2017).  422 

In the case of the ABLHGBRT values, from 01:00 to 07:00 UTC ABLHGBRT and ABLHMWR are almost coincident 423 

(differences lower than 20 m). However, between 08:00 and 16:00 UTC the ABLHGBRT overestimates the 424 

ABLHMWR, so that the maximum difference (300 m) is observed at 12:00 UTC. Due to the presence of clouds, 425 

radiative cooling occurs in the region near the base of the cloud, affecting the temperature profile and, 426 

consequently, decreasing the ABLHMWR. On the other hand, the ML model is a combination of a group of 427 

variables, which are not totally affected by the clouds, therefore higher ABLH values are estimated. From 18:00 428 

to 22:00 UTC the ABLHGBRT underestimates the ABLHMWR, with maximum difference (-100 m) being observed 429 

at 20:00 UTC. Despite ABLHGBRT values present differences between -100 and 300 m during the cloudy period 430 

compared to the MWR estimations, such results demonstrate a remarkable improvement in these situations in 431 

comparison ABLHCEIL, which is strongly affected by low clouds. 432 

4.3.3 Case 3: Sahara dust outbreak (21st February 2017) 433 

Estimating ABLH during dust outbreaks is a challenge to methods based on stand-alone vertical aerosol profiles, 434 

mainly when the dust layer is advected in the ABL region (e.g. Granados-Muñoz et al., 2012; Bravo-Aranda et 435 

al., 2017). In these situations, methods to estimate the ABLH based on stand-alone vertical aerosol profiles are 436 

unable to distinguish aerosol layering and the ABLH values tend to be overestimated (Granados-Muñoz et al., 437 

2012), requiring the use of more sophisticated methods such as POLARIS based on depolarization measurements 438 

(Bravo-Aranda et al., 2017). However, due to the technical limitation of ceilometers (described previously in 439 

section 1), applications of techniques that require the use of more than one wavelength cannot be applied. 440 

Resulting in a lack of studies that address the detection of ABLH from ceilometer data during dust outbreaks. 441 

Figure 10 presents the second day of an extreme Sahara dust outbreak registered over the Iberian Peninsula from 442 

20 to 23 February 2017, resulting in values of aerosol optical depth around 2.3 (at 675 nm) in Granada (Fernández 443 

et al., 2019). These values correspond to level 2.0 data provided by AERONET. 444 

In this situation, notable problems can be observed in the ABLHCEIL values. Thus, from 01:00 to 12:00 UTC, 445 

ABLHCEIL is estimated on the top of the dust layer due to the high gradient between this layer and FT. 446 

Consequently, the ABLHCEIL is overestimated, mainly between 01:00 and 07:00 UTC. Between 13:00 and 14:00 447 

UTC, due to a reduction in the height of the aerosol layer, ABLHCEIL is situated close to the ABLHMWR, 448 



 

 

underestimating it by around 200 m. From 15:00 UTC until the end of day, the height of the aerosol layer increases 449 

again, so that ABLHCEIL returns to overestimate the ABLHMWR, resulting in a maximum difference of 2400 m at 450 

23:00 UTC. 451 

Despite the complexity of the situation, ABLHGBRT values present a very high agreement with respect to the 452 

ABLHMWR. A slight overestimation occurs from 02:00 to 14:00 UTC (less than 100 m) and after 19:00 UTC (with 453 

maximum at 22:00 UTC of 200 m). On the other hand, ABLHGBRT underestimate the ABLHMWR from 15:00 and 454 

18:00 UTC, so that the maximum difference (-100 m) is observed at 16:00 UTC. 455 

These results confirm the possibility of estimating reliable ABLH during cases of dust outbreaks using a 456 

ceilometer combined with near-surface meteorological data as input of the machine learning algorithm proposed 457 

in this study. 458 

5 Conclusions 459 

A new methodology to estimate the Atmospheric Boundary Layer Height (ABLH), detecting the Stable Boundary 460 

Layer Height (SBLH) in stable cases, based on the machine learning algorithm known as Gradient Boosting 461 

Regression Tree (GBRT) has been proposed. This algorithm uses as features (independent variables) estimations 462 

of the ABLH derived applying the gradient method to a ceilometer signal (ABLHCEIL) and several surface 463 

meteorological variables. The target (reference) ABLH values in this study have been those estimated from a 464 

microwave radiometer (ABLHMWR). A detailed study of the features and the hyperparameters involved in the 465 

model set-up have been developed in order to avoid the model overfitting and guarantee its good performance 466 

during the training (R² = 0.97; MAE = 127 m ) and test (R² = 0.76; MAE = 129 m) stage.  467 

The proposed new algorithm has been validated using the entire year 2017. The model performance analysis has 468 

shown a daily pattern in the MREGBRT values, with their highest values during the night-time (stable situations) 469 

and their lower values along the day-time (convective situations). Minimum differences between ABLHGBRT and 470 

ABLHMRW appears, during the central hours of the day and first hours in the afternoon, when the ABL presents is 471 

higher height. This pattern has been observed for all seasons with MREGBRT ranging between -5% and 35%. A 472 

remarkable improvement is observed with respect to the MRECEIL values, which show similar daily patterns but 473 

range between 36% and 190%.  474 

The new model has been analyzed under different atmospheric conditions revealing no dependence of the 475 

algorithm on cloudiness conditions. Small differences have been observed between stable and convective 476 

situations. Thus, while MREGBRT is around 11% in convective situations, these values increase up to 28% in the 477 

case of stable situations. Nevertheless, for both cases R² values are above 0.75 for stable and convective 478 

atmospheres and take a value of 0.91 when all conditions are considered. These results confirm the robustness of 479 

the GBRT algorithm presented in this study.  480 

Three particular cases, namely a clear-sky day, a day with presence of low-clouds and dust outbreak event, have 481 

been chosen due to analyze and overcome the limitations observed in the ABLHCEIL, particularly in the dust-482 

outbreak events for which the gradient method is highly inefficient. In general, in these three particular situations 483 

ABLHGBRT shows very similar values and behavior than the ABLHMRW, confirming the good model performance 484 

and a remarkable improvement with respect to the ABLHCEIL in complex situations, and enabling the SBLH 485 

detection. Therefore, the combination of GBRT and gradient method enables the detection of SBLH, CBLH and 486 



 

 

RLH from ceilometer data together with surface meteorological information. Such results can be easily applied to 487 

well-established ceilometers networks over the world, just adding low cost surface meteorological sensors, which 488 

typically are available in these stations. 489 
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Table 1. Group of input variables initially considered along with the instrument used to measured them and the 735 

range of variation of each variable during the period of study. 736 

Instrument/Algorithm Variable Range 

Ceilometer/Gradient Method ABLHCEIL 200 m - 4500 m 

MWR/Gradient and Parcel 

Method 

ABLHMWR 200 m - 4500 m 

HMP60 Temperature (T) 0 - 42 ºC 

 Hour (H) Categorical Variable 

 Season (S) Categorical Variable 

 Stability (AtSt) Categorical Variable (0-1) 
HMP60 Relative Humidity (RH) 4.7 - 91 % 

Barometer PTB110 Pressure (P) 920 - 952 hPa 

Anemometer 05103 Wind Speed (WS) 0 - 5 m/s 

Pyranometer CM-11 Global Radiation (G) 0 - 1016 W/m² 

Pyrgeometer PIR Net Radiation (NR) -167 - (-1) W/m² 

Blanco-Muriel et al. (2001) Solar Zenith Angle (SZA) 14 - 165 º 

Iqbal (1983) Clearness Index (kt) 0 - 1 

 737 

 738 

Table2. rRMSE of the GBRT for all cases, as well as for each season, for both day- and nigh-time 739 

(convective/stable) situations.  740 

 All cases Winter Spring Summer  Autumn 

 Day Night Day Night Day Night Day Night Day Night 

rRMSEGBRT (%) 15 25 18 24 14 25 10 20 15 26 

 741 

 742 

Table 3. MRE and R² of the GBRT algorithm under cloudless and all-cloud-type conditions. Additionally, for 743 

each category, stable, convective and all-stability conditions have been differentiated. Number of cases on each 744 

category have been included in order to prove their representativeness. 745 

 All Cases Cloudless Cases 

 Stable Convective All cases Stable Convective All cases 

Number of cases 1284 1579 2863 398 600 998 

R² 0.75 0.89 0.90 0.75 0.89 0.91 

MREGBRT (%) 28.0 11.1 20.9 27.5 10.2 19.1 

 746 



 

 

 747 
Figure 1 - GBRT flowchart. X, y, and L represent the feature matrix, target variable, and loss-function, 748 

respectively. rN and FN indicate de n-nth pseudo-residual error and prediction. 749 

 750 

 751 

Figure 2 - Feature relative importance classification/ranking applying the Recursive Feature Elimination (RFE) 752 

method, for day (a) and night (b) situations. 753 

 754 

 755 
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 757 
Figure 3 - Scheme of input dataset (left) and k-fold cross-validation methodology (right). 758 

 759 

 760 

 761 

Figure 4 – Hourly Mean Relative Error for all the analyzed cases applied in the GBRT algorithm (black) and the 762 

gradient method to the ceilometer data (pink). It should be highlighted the important difference between the scales 763 

required for each methodology. 764 
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 766 



 

 

 767 

Figure 5 - Comparison between the hourly ABLH average measured (red line) and those predicted by the GBRT 768 

algorithm (black line) and the ceilometer (pink) for (a) winter, (b) spring, (c) summer, and (d) autumn. The dark 769 

shadow represents the GBRT model standard deviation. 770 

 771 

 772 

Figure 6 - Hourly Mean Relative Error for all the analyzed cases applied in the GBRT algorithm (black) and the 773 

gradient method to the ceilometer data (pink) during (a) winter, (b) spring, (c) summer, (d) autumn. 774 
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 778 

Figure 8 - Comparison among the hourly values of ABLHGBRT (black stars), ABLHMWR (red stars) and of 779 

ABLHCEIL (pink stars) at January 24, 2017. 780 
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 783 

Figure 9 - Comparison among the hourly values of ABLHGBRT (black stars), ABLHMWR (red stars) and ABLHCEIL 784 

(pink stars) at February 7, 2017. 785 
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 787 

Figure 10 - Comparison among the hourly values of ABLHGBRT (black stars), ABLHMWR (red stars) and ABLHCEIL 788 

(pink stars) at February 21, 2017. 789 
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