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A B S T R A C T   

Background: A growing body of scientific works investigating the physio-pathological mechanisms behind car-
diovascular disease has suggested that vitamin D deficiency could play a key role on its development. However, it 
remains unclear whether its active form (1,25-dihydroxyvitamin D [1,25(OH)2D] is associated with car-
diometabolic risk factors in healthy individuals. The aim of the present study was to investigate the relationships 
of 1,25(OH)2D plasma levels with cardiometabolic risk factors in a sample of healthy sedentary adults. 
Methods: A total of 73 adults (~53% women; 54 ± 5 years old) were included in the current cross-sectional study. 
A sex-specific cardiometabolic risk score (MetScore) was calculated for each subject based on clinical parameters 
(i.e., waist circumference, systolic and diastolic blood pressure, plasma glucose, high-density lipoprotein 
cholesterol, and triglycerides) according to the International Diabetes Federation's clinical criteria. Plasma levels 
of 1,25(OH)2D were measured using a DiaSorin Liaison® immunochemiluminometric analyzer. 
Results: No significant association was detected between 1,25(OH)2D and MetScore (β = 0.037, R2 

= 0.001, p =
0.77), independently of age, sex and fat body mass index. A significant inverse association were observed be-
tween 1,25(OH)2D and waist circumference (β = − 0,303, R2 = 0.092, p = 0.01). These results were consistent 
after controlling by potential confounders. 
Conclusion: In summary, the present results suggest that 1,25(OH)2D plasma levels are not associated with either 
cardiometabolic risk factors or insulin resistance in healthy sedentary adults. However, an inverse association of 
1,25(OH)2D plasma levels with central adiposity was observed in our study sample.   

1. Introduction 

The incidence of chronic cardiometabolic disorders has dramatically 
increased during the last decades representing the leading cause of 
morbidity and mortality in the developed world [9,44,63]. Several 
cardiometabolic diseases (e.g. cardiovascular diseases/CVD or type II 
Diabetes Mellitus/T2DM) are usually initiated by the presence of 
metabolic syndrome (MetS), which is defined as a clustering of 
abnormal physiological conditions (i.e., hypertension, central obesity, 
elevated triglycerides, glycaemic dysregulations, dyslipidaemia, and 
high concentrations of pro-inflammatory biomarkers) [13,16,18,27]. In 
this context, the identification of potential biomarkers capable of detect 
the risk and progression of cardiometabolic disease is a major goal of 

clinical medicine for promoting general health [23,25]. 
Vitamin D is a fat-soluble steroid pro-hormone endogenously syn-

thesized as vitamin D3 (cholecalciferol) in the skin upon exposure to 
ultraviolet B radiation from sunlight and/or obtained from the diet or 
vitamin D supplements as vitamin D2 (ergocalciferol) or vitamin D3 
[30]. These pro-hormones are transported to the liver and subsequently 
hydroxylated producing the biologically inactive 25-hydroxyvitamin D 
[25(OH)D] [40,46]. 25(OH)D requires to be converted in 1,25-dihy-
droxyvitamin D (1,25(OH)2D) by the 1-α-hydroxylase in the kidney to 
be biologically active [40,46]. 1,25(OH)2D, also known as calcitriol, is, 
therefore, the main responsible of vitamin D biological functions 
[40,46]. 

Vitamin D deficiency is highly prevalent in different populations 
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across the world [4, 22,29,34,54], which is mainly due to a decreased 
capacity to synthesize vitamin D from sunlight as well as increased body 
adiposity or low physical activity levels [22,24,57]. Vitamin D status has 
been also linked with a range of extra-skeletal properties (e.g. muscle 
function, cardiovascular homeostasis, nervous function, and immune 
response) beyond its key role on calcium/phosphate homeostasis 
[36,64]. In this sense, a growing body of scientific works investigating 
the physio-pathological mechanisms behind cardiometabolic disorders 
has suggested that vitamin D deficiency could play a key role on its 
development [39,45,50,61]. 

Previous studies have examined whether vitamin D deficiency 
-routinely measured as 25(OH)D– is associated with a higher risk of 
suffering cardiometabolic disease, with controversial findings 
[12,17,31,45,48,55]. However, considerably less attention has been 
paid to the relationship between the biologically active form of vitamin 
D (i.e., 1,25(OH)2D) and cardiometabolic risk factors. Concretely, low 
1,25(OH)2D levels have been linked with glycaemic and lipid alterations 
in patients with psoriasis [49] and acute coronary syndrome [11]. It 
remains unclear, however, whether 1,25(OH)2D levels are associated 
with cardiometabolic risk factors in healthy individuals [66]. Given that 
identifying new potential biomarkers to detect cardiometabolic alter-
ations in still healthy subjects potentially allows the application of 
preventive strategies which are likely preferable to the treatment of 
cardiometabolic diseases already established. Therefore, since it seems 
of scientific importance to determine whether 1,25(OH)2D levels are 

associated with cardiometabolic risk factors in individuals free of 
chronic diseases [14,15]. The present study is aimed to investigate the 
relationships of 1,25(OH)2D plasma levels with cardiometabolic risk 
factors in a sample of healthy sedentary adults. 

2. Materials and methods 

2.1. Study design and participants 

The present study analyzed data from a sample of healthy sedentary 
adults (n = 73 [ ~ 50% women]). The subjects included in this cross- 
sectional study were recruited from the FIT-AGEING study, a random-
ized controlled trial (clinicaltrial.gov: ID: NCT03334357), via social 
networks, electronic media, and leaflets. Data from the baseline 
assessment were collected during September–October 2016/17 at the 
Sport and Health University Research Institute (iMUDS, Granada, Spain) 
and at the “Campus de la Salud” Hospital (Granada, Spain) and, subse-
quently used for the current study. Details concerning to the study 
design, procedures, and inclusion/exclusion criteria have been 
described in detail elsewhere [2]. Briefly, the inclusion criteria were: (i) 
age between 45 and 65 years old, (ii) physically inactive (i.e., <20 min 
on 3 days/week), (iii) stable body weight (i.e., body weight changes <3 
kg) during the previous 3 months, (iv) non-smoker, (v) non-pregnant, 
(vi) no long-term medications, and (vi) no cardiometabolic diseases. 
The FIT-AGEING study was approved by the Ethics Committee on 

Table 1 
Characteristics of participants at baseline.   

N All N Men N Women 

Age (years) 73 54 (5) 34 55 (5) 39 53 (5) 

1,25(OH)2D (pg/ml) 73 40.3 (14.1) 34 38 (13) 39 42 (15) 
Anthropometric and body composition 
Weight (kg) 73 75.5 (15.0) 34 87.3 (11.1) 39 65.3 (9.3)* 
Body mass index (kg/m2) 73 26.7 (3.8) 34 28.3 (3.7) 39 25.3 (3.3)* 
Waist circumference (cm) 73 95.0 (11.8) 34 102.8 (8.9) 39 88.2 (9.7)* 
Fat mass (%) 73 40.1 (9.0) 34 35.0 (8.0) 39 44.5 (7.4)* 
Fat mass (kg) 73 30.1 (8.5) 34 31.0 (9.8) 39 29.2 (7.1) 
Lean mass (kg) 73 43.2 (11.5) 34 53.6 (6.4) 39 34.1 (5.8)* 
Blood Pressure 
Systolic blood pressure (mm Hg) 66 126.9 (15.8) 30 134.0 (14.0) 36 120.9 (14.8)* 
Diastolic blood pressure (mm Hg) 66 81.1 (11.8) 30 85.1 (11.1) 36 77.6 (11.4)* 
Mean blood pressure (mm Hg) 66 104.0 (13.2) 30 109.6 (11.9) 36 99.3 (12.5)* 
Glucose Metabolism 
Plasma glucose (mg/dL) 70 93.6 (11.4) 33 95.0 (13.6) 37 92.3 (8.9) 
Plasma insulin (UI/mL) 70 8.1 (5.7) 33 8.9 (6.7) 37 7.3 (4.5) 
Insulin glucose ratio 70 12.6 (7.6) 33 13.4 (8.1) 37 11.9 (7.1) 
QUICKI 70 0.362 (0.036) 33 0.357 (0.039) 37 0.365 (0.033) 
HOMA-IR 70 1.79 (1.19) 33 1.91 (1,26) 37 1.69 (1.12) 
Lipid Metabolism 
Total cholesterol (mg/dL) 70 206.4 (31.9) 33 200.7 (32.3) 37 211.5 (31.0) 
HDL-C (mg/dL) 70 134.2 (68.2) 33 55.3 (12.9) 37 61.7 (11.1)* 
LDL-C (mg/dL) 70 58.7 (12.3) 33 125.1 (27.9) 37 127.3 (26.6) 
Triglycerides (mg/dL) 70 126.2 (27.1) 33 144.8 (83.7) 37 124.8 (49.9) 
LDL-C/HDL-C 70 2.31 (0.90) 33 2.45 (0.96) 37 2.18 (0.84) 
Triglycerides/ HDL-C 70 2.57 (1.92) 33 3.02 (2.39) 37 2.16 (1.25) 
MetScore 66 − 0.0002 (0.3414) 30 0.0187 (0.3836) 36 − 0.0160 (0.3065) 
Dietary Intake          
Total Energy (kcal/day) 72 2094.9 (478.8) 34 2302.8 (466.6) 38 1909.0 (413.0)* 
Fat (g/day) 72 87.5 (25.0) 34 97.6 (24.4) 38 78.4 (22.2)* 
Carbohydrate (g/day) 72 218.3 (70.2) 34 238.3 (75.0) 38 200.4 (61.1)* 
Protein (g/day) 72 89.0 (34.5) 34 92.4 (30.8) 38 86.1 (37.6) 
Ethanol (g/day) 72 11.2 (13.2) 34 16.2 (16.3) 38 6.6 (7.2) 
Vitamin D (μg/day) 72 5.0 (6.0) 34 3.8 (3.3) 38 6.1 (7.6) 
Calcium (mg/day) 72 763.4 (340.5) 34 867.3 (396.9) 38 670.5 (251.4)* 
Phosphorus (mg/day) 72 1324.7 (558.9) 34 1507.6 (689.6) 38 1161.0 (342.2)* 
Physical activity levels 
Sedentary time (min/day) 70 745.9 (84.8) 33 770.7 (81.4) 37 723.7 (82.6)* 
Total physical activity (min/day) 70 269.5 (75.1) 33 265.2 (79.3) 37 273.3 (72.0) 

Data are shown as means (standard deviation). Abbreviations: QUICKI, quantitative insulin sensitivity check index; HOMA-IR, homeostasis model assessment for 
insulin resistance index; HDL–C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; MetScore, cardiometabolic risk score; PA, physical 
activity. 
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Human Research at the University of Granada and the Regional Gov-
ernment of Andalucía [0838-N-2017]. The study protocols and experi-
mental design were applied following the last revised ethical guidelines 
of the Declaration of Helsinki (last revision guidelines, 2013), with all 
participants providing written informed consent. 

2.2. Anthropometric parameters and body composition 

Body weight and height were measured using a Seca model 799 scale 
and stadiometer (Seca, Hamburg, Germany) to the nearest 0.1 kg and 
0.1 cm, respectively, with participants wearing lightweight clothes and 
barefoot. Body mass index (BMI) was then calculated as weight (kg)/ 
height (m)2. Waist circumference (WC) was registered according to the 
standard procedures of the International Society for the Advancement of 
Kinanthropometry (ISAK) [42], and assessed in a standing position from 
the mid-point between the bottom of the rib cage and the iliac crest at 
the end of a normal expiration. Body composition analysis was per-
formed using a dual-energy X-ray absorptiometer scanner (Discovery 
Wi, Hologic, Inc., Bedford, MA, USA), obtaining lean and fat body mass 
in kg following the manufacture's recommendations. From these mea-
surements, fat BMI (FMI) and lean BMI (LMI) were calculated by the 
following equations: 

FMI = fat body mass [kg]
/

height2 [m]
)

LMI = lean body mass [kg]
/

height2 [m]
)

2.3. Blood pressure (BP) 

Systolic and diastolic BP (SBP; DBP) were measured with an 
Omrom® HEM 705 CP device (Omrom Health-care Co, Kyoto, Japan), 
an automated oscillometric sphygmomanometer that uses an upper arm 
cuff. The measurements were taken from the right arm with participants 
sitting and rested, following the most updated recommendations of the 
European Heart Society [62]. Readings were taken twice and the mean 
was subsequently calculated and used for further analysis. Mean BP was 
calculated using the following formula: (SBP – (DBP/3)) [62]. 

2.4. Blood samples 

The blood samples were taken from the antecubital vein in the 
morning (8:30 AM – 10 AM) after overnight fasting and collected using the 
Vacutainer SST system (Becton Dickinson, Plymouth, UK) in ethyl-
enediamine tetra-acetic acid-containing tubes. All samples were centri-
fuged at 4000 rpm for 7 min at 4 ◦C, aliquoted, and stored at − 80 ◦C 
until further analyses. 1,25(OH)2D plasma levels were measured using a 
DiaSorin Liaison® immunochemiluminometric analyzer (DiaSorin Ltd., 
Wokingham, Berkshire, UK) and expressed in pg/mL. Plasma glucose, 
triglycerides, total cholesterol, high-density lipoprotein cholesterol 
(HDL-C), alanine transaminase (ALT), and γ-glutamyl transferase (γ-GT) 
were determined using an AU5800 absorption spectrophotometer 
(Beckman Coulter, Brea, CA, USA). Plasma insulin was assessed by 
chemiluminescence immunoassay using a UniCel DxI 800 paramagnetic 
particles (Beckman Coulter, Brea, CA, USA). Low-density lipoprotein 
cholesterol (LDL-C) was calculated according to the following equation: 
LDL-C = (total cholesterol) – (HDL-C) – 0.45 x (triglycerides). Addi-
tionally, insulin/glucose, LDL-C/HDL-C, and triglycerides/HDL-C ratios 
were also calculated. 

All blood samples were measured in the same laboratory located 
within the “Campus de la Salud” Hospital (Granada, Spain). All partic-
ipants were requested to abstain from drugs and/or caffeine 24 h before 
blood extraction, to refrain from any physical activity (PA) at moderate 
intensity (24 h before) and/or vigorous intensity (48 h before), and to 
eat a standardized dinner (i.e., egg omelette, boiled rice, and tomato 
sauce). 

Fig. 1. Association of between 1,25(OH)2D with cardiometabolic risk Z-score 
(MetScore), QUICKI and HOMA-IR index. β (standardized regression coeffi-
cient), R2 and P values are for simple linear regression analyses. 
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2.5. Cardiometabolic risk score 

A sex-specific cardiometabolic risk score (MetScore) was calculated 
for each participant based on the clinical guidelines proposed by the 
International Diabetes Federation according to the following factors: 
WC, mean BP, plasma glucose, HDL-C, and TGs [6]. Standardized values 
were calculated for each variable as follows: Standardized values =
(value – mean/standard deviation). The standardized HDL-C values 
were multiplied by − 1 to indicate greater risk with higher values. 
MetScore was determined as the sum of these 5 standardized values 
divided by 5, to account for the number of variables included. This 
approach results in a continuous MetScore with a mean of 0 and a 
standard deviation of 1 by definition, considering lower values as a 
representation of a better cardiometabolic risk profile. 

Quantitative insulin sensitivity check index (QUICKI) [26] was 
calculated from plasma insulin and glucose levels as: 

QUICKI = 1/[log(plasma insulin (UI/mL) )+ log(plasma glucose (mg/dL) ) ]

The homeostasis model assessment for insulin resistance index 
(HOMA-IR) [35] was calculated as: 

HOMA − IR = plasma insulin (UI/mL) x plasma glucose (nmol/L)/22.5  

2.6. Dietary intake 

Dietary intake was collected via three 24-h recalls on non- 
consecutive days (i.e., 2 days during the week and 1 day on the week-
end) by qualified and trained dietitians through face-to-face interviews. 
The interviews were meal sequence-based where the subjects were 
asked to describe the different portion sizes of each food item they 
consumed using a colored photograph guide [32]. Energy, macronu-
trient, and micronutrient intake derived from food consumption were 
calculated using the EvalFINUT® software (FINUT, Granada, Spain), 
which is based on the USDA (United States Department of Agriculture) 
and BEDCA (“Base de Datos Española de Composición de Alimentos”) 
databases. 

2.7. Sedentary behaviour (SB) and PA 

Objectively measured SB and PA were assessed with a wrist-worn 
accelerometer (ActiGraph GT3X+, Pensacola, FL, United States) for 
seven consecutive days (24 h/day) [2]. Participants were requested to 
wear the accelerometers constantly, except during bathing or aquatic 
activities such as swimming. The ActiGraph sampling frequency was 
initialized to store raw acceleration information at a rate of 100 Hz [37]. 
The accelerometry data collection were exported and processed using 

the ActiLife v.6.13.3 software (ActiGraph, Pensacola, FL, United States) 
and the GGIR package (v.1.5-12, https://cran.r-project.org/web/packag 
es/GGIR/) in R software (v.3.1.2, https://www.cran.r-project.org/) 
[19,20]. Time spent at various levels of movement intensity (i.e., 
moderate-vigorous) was determined according to age-specific cut-points 
for Euclidean Norm Minus One [19]. Data from participants with at least 
16 h of daily accelerometer wear time for 4 days (including 1 weekend 
day) were included in the analyses. 

2.8. Statistical analyses 

The Shapiro-Wilk test, visual check of histograms, Q-Q, and box plots 
were used to verify the distribution of all variables. The descriptive 
parameters are reported as mean and standard deviation. Sex differences 
for each variable were performed using an unpaired sample t-test. There 
were no significant sex interactions between 1,25(OH)2D plasma levels 
and all cardiometabolic risk factors (all p > 0.05). The analyses were 
thus performed including both men and women together. 

We conducted simple linear regression models to examine the asso-
ciation between 1,25(OH)2D plasma levels and MetScore, QUICKI, and 
HOMA-IR. Hierarchical regression analyses were subsequently per-
formed in order to check whether 1,25(OH)2D plasma levels predict the 
above-mentioned variables independently of potential confounders 
based on theoretical and statistical considerations. The entry order of 
potential confounder in the hierarchical analysis were as follows: age, 
sex, BMI, FMI, LMI, total energy intake, vitamin D intake, total PA and 
SB. Multiple linear regression analyses were built using the derived 
confounders from the hierarchical regression analyses. Similar analyses 
were conducted to study the association between 1,25(OH)2D plasma 
levels and the remaining cardiometabolic risk factors. 

All analyses were performed using the Statistical Package for Social 
Sciences (SPSS, v. 22.0, IBM SPSS Statistics, IBM Corporation, Armonk, 
NY, USA). Graphical plots were generated using GraphPad Prism 5 
(GraphPad Software, San Diego, CA, USA). Statistical significance was 
defined as p values <0.05 for all analyses. 

3. Results 

The baseline characteristics of the participants are shown in Table 1. 
No significant differences were observed in 1,25(OH)2D plasma levels 
between men and women (p = 0.58). 

Simple linear regression analysis revealed no associations of 1,25 
(OH)2D plasma levels with MetScore (β = 0.037, R2 = 0.001, p = 0.77; 
Fig. 1A), QUICKI (β = 0.011, R2 = 0.001, p = 0.93; Fig. 1B) and HOMA- 
IR (β = 0.005, R2 = − 0.015, p = 0.97; Fig. 1C). 

Based on this hierarchical regression, we discarded LMI, total energy 

Table 2 
Hierarchical regression between 1,25(OH)2D levels with MetScore, QUICKI, and HOMA-IR.   

MetScore QUICKI HOMA-IR  

β R2 

change 
Sig. F 
change 

p β R2 

change 
Sig. F 
change 

p β R2 

change 
Sig. F 
change 

p 

1,25(OH)2D (pg/ml)             
Age (years) 0.183 0.151 0.002 0.17 − 0.315 0.112 0.006 0.02 0.174 0.094 0.012 0.11 
Sex − 0.447 0.001 0.784 0.04 0.252 0.001 0.871 0.24 − 0.473 0.001 0.856 0.31 
Body mass index (kg/m2) − 2.302 0.037 0.108 0.10 0.269 0.055 0.045 0.86 − 0.438 0.005 0.565 0.89 
Fat mass index (kg/m2) 2.295 0.144 0.001 0.045 − 0.417 0.017 0.254 0.73 0.545 0.013 0.339 0.86 
Lean mass index (kg/m2) 1.404 0.027 0.129 0.18 − 0.017 0.001 0.751 0.99 0.047 0.006 0.536 0.93 
Total energy intake (kcal/ 
day) − 0.200 0.017 0.227 0.12 0.160 0.037 0.095 0.22 − 0.268 0.012 0.374 0.48 

Vitamin D intake (μg/day) 0.165 0.016 0.239 0.23 0.228 0.037 0.092 0.09 − 0.173 0.021 0.235 0.19 
Total physical activity time 
(min/day) 

− 0.064 0.004 0.557 0.56 − 0.180 0.031 0.115 0.12 0.067 0.016 0.303 0.23 

Total sedentary time (min/ 
day) 0.017 0.004 0.841 0.95 − 0.052 0.032 0.286 0.85 0.120 0.026 0.413 0.40 

Abbreviations: MetScore, cardiometabolic risk score; QUICKI, Quantitative insulin sensitivity check index; HOMA-IR, homoeostasis model assessment for insulin 
resistance index. β: Standardized regression coefficient; R2; and p value were obtained from the hierarchical multiple linear regression analyses. 
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intake, vitamin D intake, total PA and SB as confounders variables (all p 
> 0.05 and all Sig. F change >0.05), only including age, sex, BMI, and 
FMI as potential confounders (Table 2). The results persisted when the 
analyzes were adjusted for age, sex, BMI, and/or FMI (Table S1; all p ≥
0.59). 

Table 3 shows the associations between 1,25(OH)2D and car-
diometabolic risk factors. A significant slightly negative association was 
observed between 1,25(OH)2D and waist circumference (β = − 0,303, 
R2 = 0.092, p = 0.01), which remained statistically significant after 
adjusting for age, sex, and FMI (Table 3; all p ≤ 0.04). There was a 
significant slightly positive association between 1,25(OH)2D and DBP (p 
= 0.03), which was partially attenuated after adjusting for potential 
confounders (all p ≤ 0.09; Table 3). Similarly, we found a significant 
positive association between 1,25(OH)2D and total cholesterol (β = 267, 
R2 = 0.071, p = 0.03), which was attenuated once age, sex and FMI were 
included in the model (all p ≤ 0.11). No significant association was 
found between 1,25(OH)2D and others cardiometabolic risk factors 
(Table 3; all p > 0.05). 

4. Discussion 

The current study sought to elucidate whether 1,25(OH)2D plasma 
levels are related to cardiometabolic risk factors in sedentary adults free 
of chronic cardiometabolic diseases. Our results show that 1,25(OH)2D 
plasma levels are associated with neither the MetScore nor insulin 
resistance in healthy sedentary adults. However, we observed that 
higher 1,25(OH)2D plasma levels were consistently associated with low 
central adiposity/WC in our study sample. These findings support the 
idea that although 1,25(OH)2D has been proposed as a key factor 
affecting cardiometabolic health in patients with chronic diseases 
[11,49], it seems that 1,25(OH)2D plasma levels are not related to car-
diometabolic risk factors in healthy individuals with adequate values of 
these physiological parameters. 

1,25(OH)2D plays a crucial role in mineral homeostasis and skeletal 
health being its deficiency classically related to rickets in children and 
osteomalacia in adults (M. F. [21]). Although its main function on the 
skeletal system is to modulate calcium and phosphorus metabolism 
through bone resorption, renal retention or intestinal absorption, 
vitamin D metabolites also exert important physiological functions in 
other tissues (P. E. [41]). Indeed, previous studies have reported its 
implication on several chronic pathologies (e.g. skin and autoimmune 
disorders, cancer, T2DM, hypertension, or CVD) [51]. 

Vitamin D deficiency is currently considered as a serious global 
problem [38] being the lower skin synthesis (as a consequence of the 
ageing process) and others environmental (e.g. sunlight exposure, sea-
son, diet or geographical localization) factors its main cause ([7]; M. F. 
[21]). It has been reported that the prevalence of vitamin D deficiency 
depends on age, gender, geographical latitude or ethnicity (M. F. 
[21,60]). Concretely, an increased incidence of vitamin D deficiency has 
been described in elderly individuals with CVD [28]. However, exces-
sive levels of vitamin D have been also associated with CVD-related 
problems [8] including hypercalcemia, hypercalciuria, and kidney 
stones, among others [28,33,53]. 

Several molecular and physiological pathways have been described 
as an explanation of the mechanistic basis of the influence of 1,25 
(OH)2D on cardiovascular function (P. E. [41]). Experimental studies 
have demonstrated the important role of 1,25(OH)2D on the immune 
and inflammatory system during the pathogenesis of CVD, such as 
atherosclerosis, aneurysm development, and other inflammatory 
vascular diseases [10,52,58]. Specifically, Beilfuss et al. showed that 
vitamin D supplementation produced a significant reduction of IL-6 
plasma levels in overweight individuals [5]. Moreover, Amer and 

Table 3 
Association between 1,25(OH)2D and cardiometabolic risk factors.   

All 
(n = 73)  

β  R2  p 

Weight (kg)  
Model 0 − 0.217  0.047  0.07 
Model 1 − 0.054  0.050  0.08 
Model 2 − 0.088  0.593  0.29 
Model 3 − 0.030  0.800  0.59 

Waist circumference (cm)      
Model 0 ¡0.303  0.092  0.01 
Model 1 ¡0.296  0.093  0.01 
Model 2 ¡0.197  0.457  0.03 
Model 3 ¡0.125  0.777  0.04 

Systolic blood pressure (mm Hg)      
Model 0 0.166  0.028  0.18 
Model 1 0.076  0.369  0.45 
Model 2 0.107  0.467  0.26 
Model 3 0.100  0.468  0.31 

Diastolic blood pressure (mm Hg)      
Model 0 0.262  0.069  0.03 
Model 1 0.185  0.324  0.08 
Model 2 0.208  0.380  0.045 
Model 3 0.212  0.380  0.048 

Mean blood pressure (mm Hg)      
Model 0 0.217  0.047  0.08 
Model 1 0.128  0.378  0.21 
Model 2 0.157  0.464  0.10 
Model 3 0.155  0.464  0.12 

Glucose (mg/dL)      
Model 0 − 0.008  <0.001  0.95 
Model 1 − 0.006  <0.001  0.96 
Model 2 0.010  0.016  0.93 
Model 3 0.036  0.036  0.78 

Insulin (UI/mL)      
Model 0 0.185  0.034  0.13 
Model 1 0.133  0.134  0.25 
Model 2 0.147  0.145  0.21 
Model 3 0.193  0.207  0.10 

Insulin glucose ratio      
Model 0 0.147  0.022  0.23 
Model 1 0.085  0.165  0.46 
Model 2 0.091  0.167  0.43 
Model 3 0.135  0.225  0.24 

Total cholesterol (mg/dL)      
Model 0 0.267  0.071  0.03 
Model 1 0.203  0.224  0.07 
Model 2 0.173  0.273  0.11 
Model 3 0.203  0.301  0.06 

Triglycerides (mg/dL)      
Model 0 0.080  0.006  0.51 
Model 1 0.017  0.155  0.88 
Model 2 0.028  0.163  0.81 
Model 3 0.052  0.179  0.66 

HDL-C (mg/dL)      
Model 0 − 0.182  0.033  0.13 
Model 1 − 0.103  0.265  0.34 
Model 2 − 0.129  0.303  0.22 
Model 3 − 0.138  0.305  0.20 

LDL-C (mg/dL)      
Model 0 0.124  0.0.015  0.31 
Model 1 0.038  0.296  0.72 
Model 2 0.020  0.313  0.85 
Model 3 0.034  0.319  0.74 

LDL-C/HDL-C      
Model 0 0.172  0.030  0.15 
Model 1 0.081  0.342  0.43 
Model 2 0.089  0.346  0.38 
Model 3 0.110  0.359  0.29 

Tryglycerides/HDL-C      
Model 0 0.102  0.010  0.40 
Model 1 0.030  0.200  0.78 
Model 2 0.052  0.226  0.64 
Model 3 0.073  0.239  0.52 

Linear regression analyses were performed, unadjusted (Model 0), adjusting for 
age (Model 1), age and sex (Model 2), age, sex and FMI (Model 3). Standardized 

β regression coefficient, adjusted R2, and p value of multiple-regression analysis 
are provided. Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL- 
C, low-density lipoprotein cholesterol. 
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Qayyum reported a negative association between 25(OH)D circulating 
levels and C-reactive protein concentrations in apparently healthy 
adults suggesting its important influence on T cell regulation [3]. On the 
other hand, it has been reported that 1,25(OH)2D exerts a direct effect 
on lipid profile (i.e., via reducing triglyceride levels or ApoA1 expres-
sion) or indirectly by defeating lipolysis through decreasing parathyroid 
hormone release [47,59,65,66]. Furthermore, 1,25(OH)2D also inhibits 
foam cell formation increasing cholesterol efflux [43]. 

Playford et al. demonstrated that circulating 1,25(OH)2D levels were 
inversely associated with markers of visceral adiposity, vascular uptake 
of F-fluorodeoxyglucose (FDG), and coronary plaque burden indepen-
dently of cardiometabolic risk factors in patients with psoriasis [49], 
which partially concur with our current findings. However, while we 
showed a positive association between 1,25(OH)2D plasma levels and 
low central adiposity in sedentary but healthy individuals, no significant 
relationships were obtained between 1,25(OH)2D plasma levels and 
neither the MetScore nor insulin resistance in our study sample. The 
presently observed lack of associations might be explained because our 
study subjects were healthy individuals with 1,25(OH)2D and car-
diometabolic risk-related factors within normal ranges and the relatively 
low duration of the intervention [1]. The 1,25(OH)2D normal values 
obtained in our study sample could be a consequence of their higher sun 
exposure - blood samples at the baseline were collected in September in 
the south of Spain- compared with those obtained by other people living 
in countries far from the equator [56]. Therefore, a potential explana-
tion of why 1,25(OH)2D levels were related to waist circumference but 
not to MetScore may be that an increased waist circumference seems to 
be the prelude to the development of further cardiometabolic risk fac-
tors and insulin resistance. 

4.1. Limitations 

The present study, however, suffers from several limitations. Firstly, 
the cross-sectional design precluded us from making causal conclusions 
about the association of 1,25(OH)2D plasma levels with cardiometabolic 
risk factors. Secondly, based on the inclusion criteria of the present 
study, our findings only apply for healthy sedentary adults (45–65 years 
old); hence, they may not be generalizable to other populations, such as 
older, younger, trained, and/or diseased individuals. Thirdly, we have 
no data on 25-hydroxyvitamin D plasma levels, which would be desir-
able to well-understand our study findings. Finally, since the relatively 
small sample size of the present study, the data should be interpreted 
with caution. 

5. Conclusions 

In summary, the present results suggest that 1,25(OH)2D plasma 
levels are not associated with neither cardiometabolic risk factors nor 
insulin resistance in healthy sedentary adults, independently of several 
confounders. However, an inverse association of 1,25(OH)2D plasma 
levels with central adiposity was observed in our study sample. These 
results have important clinical implications since they suggest that 1,25 
(OH)2D seems to be related to central adiposity in healthy individuals 
with normal values of these physiological parameters but do not to 
others key cardiometabolic risk factors. Our study therefore highlights 
the importance of including the measurement of 1,25(OH)2D when 
investigating the effects of sunlight exposure of vitamin D supplemen-
tation on the prevention and/or treatment of CVD. 
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