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a b s t r a c t

This paper deals with the interaction between microstructures and the appearance or persistence
of singular configurations in the Cauchy problem for the two-dimensional model of incompressible
micropolar fluids. We analyze the case of null angular viscosity and singular initial data, including the
possibility of vortex sheets or measures as initial data in Morrey spaces. Through integral techniques
we establish the existence of weak solutions local or global in time. In addition, the uniqueness and
stability of these solutions is analyzed.
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1. Introduction

The Navier–Stokes equations form the fundamental mathe-
atical model for describing the motion of Newtonian fluids.
ince a wide variety of important fluids are non-Newtonian,
ew theories and mathematical models taking into account the
omplexity of these fluids are necessary. According to the the-
ry of Eringen for micropolar fluids [1], the interaction between
he fluid motion and the rotational motion of micro-particles
lays a key role. These fluids constitute a subclass of simple
icrofluids [2], which exhibit microrotational effects and micro-
otational inertia, and form part of the class of fluids that present
symmetric stress tensors. From a physical point of view [3],
icropolar fluids are those consisting of rigid, randomly ori-
nted (or spherical) particles suspended in a viscous medium,
hose deformation is ignored. Since deformation of particles is
ot taken into account, the model is also suitable for turbulent
otions where the motion of eddies is the dominant factor [4].
oreover, the micropolar fluid models can be considered as an
ssential generalization of the Navier–Stokes equations in the
ense that it allows considering some physical phenomena that
annot be treated by the classical Navier–Stokes approach, given
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that the particles of the fluid are subject to both translational and
rotational motion.

The micropolar models describe accurately the behavior of
fluids with microstructures such as polymeric suspensions, liquid
crystals or biological fluids like blood [3,5,6]. The presence of sin-
gularities and deformations is common in the media which these
fluids go through, where a buildup of white blood cells, choles-
terol, or other particles can promote turbulent effects. Therefore,
turbulences emerge and vorticity could be also generated in
a very small region around these microstructures causing the
appearance of vortex filaments or vortex sheets. This kind of
phenomena make it necessary to consider micropolar fluid mod-
els with singular initial conditions. In this sense, the study of
these fluids and their singularities or concentrations of vorticity is
interesting since their evolution or generation is globally affected
by their microstructures. This not only happens with certain
biological fluids, as said before, but there are numerous industrial
applications such as polymeric suspensions in aerosols (namely,
medicines or the dissolution of fuel droplets in combustion en-
gines) or liquid crystals that contain additives, among many oth-
ers, see [3,5,6]. This functional framework escapes the context
currently dealt with in the literature. Therefore, it becomes a
relevant matter to incorporate to the model the aforementioned
singularities, characterized as measures on curves in the case of
vortex sheets. This type of vorticities is associated with veloci-
ties that are generalized double layer potentials on those curves

defining the vortex sheet. Depending on the regularity of these
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urves, the functional space in which the velocities are initially
efined has less regularity than that in which the problem of
icropolar fluids has been studied to date. The aim of this paper

s to shed some light on the possible appearance or persistence
f singular solutions related to the dynamics of the microstruc-
ure, such as the configuration of vortex sheets, by analyzing
he competition among diffusion, microstructure and convec-
ion in the case of singular configurations in micropolar fluids.
he employed methodology is general enough to be applied to
ther problems such as aggregation or swarming. In addition the
ethod is constructive, and can be a source of inspiration for the

urther development of an efficient numerical method. There are
ther approaches suited for describing the interaction between
icrostructures and fluids, which take into consideration new
ffects such as the aggregation or fragmentation of particles.
hese models give rise to strongly non-linear coupled systems
onsisting of the Navier–Stokes equation for the fluid and the
lasov–Boltzmann equation for the particles, see for instance [7]
nd the references therein. Unlike them, the rotational motion of
he microparticles is inherent to the problem of micropolar fluids
nd responds to strongly nonlinear phenomena. A problem of in-
erest in this direction is how to combine the various phenomena:
otation, aggregation, and fragmentation in the micro and macro
cales.
The micropolar fluid motion is described by the following non-

inear coupled system, where we use boldface letters to denote
ector fields in Rn, n = 2, 3,

∂tu − (ν + κ)∆u − 2κ curl b + ∇p + (u · ∇)u = f ,
∂tb − γ∆b − (α + β)∇ div b + 4κb − 2κ curl u + (u · ∇)b = g,

(1.1)
div u = 0,

together with initial conditions

u(·, 0) = u0, b(·, 0) = b0, (1.2)

and boundary conditions. In the whole space, which is the object
of this work, we replace the boundary condition by the following
condition of decay at infinity

|u(x, t)| → 0 as |x| → +∞, (1.3)

here | · | denotes the norms of Rn. In system (1.1), the un-
nowns u = u(x, t) = (u1(x, t), · · · , un(x, t)), b = b(x, t) =

b1(x, t), · · · , bn(x, t)) and p = p(x, t) represent the linear
elocity field, the microrotational field (interpreted as the angular
elocity field of rotation of particles) and the pressure, respec-
ively. The functions f = f (x, t) = (f1(x, t), · · · , fn(x, t)) and

= g(x, t) = (g1(x, t), · · · , gn(x, t)) are given and denote
the density of external body forces per unit mass and a body
source of moments, respectively. The constants ν, κ , γ , α, β are
viscosity coefficients, where ν is the usual Newtonian viscosity, κ
is called the microrotational viscosity and γ , α, β are the angular
iscosities. If the microrotation of the particles is neglected (κ =

and b = g = 0), we obtain the classical Navier–Stokes system.
The two-dimensional case can be understood as a special case

f the three-dimensional model [8]. To this end, one considers
hat the flow itself and the external fields do not depend on the
3-coordinate. Moreover, assume that the velocity component u3
n the x3-direction is zero and the axes of rotation of the particles
re parallel to the x3-axis, that is, u = (u1(x, t), u2(x, t), 0),

= (0, 0, b3(x, t)), f = (f1(x, t), f2(x, t), 0) and g =

0, 0, g3(x, t)), with x = (x1, x2) ∈ R2. Then, using the
otation u = (u1(x, t), u2(x, t)), b = b3(x, t), p = p(x, t),
= (f1(x, t), f2(x, t)), g = g3(x, t) and

curl u =
∂u2

∂x1
−
∂u1

∂x2
, div u =

∂u1

∂x1
+
∂u2

∂x2
,

curl b =

(
∂b
,−

∂b
)
,

∂x2 ∂x1
2

we can replace u, b, f and g as above into system (1.1) to obtain
the system

∂tu − (ν + κ)∆u − 2κ curl b + ∇p + (u · ∇)u = f ,

∂tb − γ∆b + 4κb − 2κ curl u + (u · ∇)b = g, (1.4)
div u = 0.

Though it is a relatively recent field of research, there are
several references in literature dealing with the mathematical
analysis of micropolar fluids. In bounded regular domains we
highlight the works [9,10], in which the existence of weak so-
lutions in two and three dimensions was proved. In its turn, the
existence and uniqueness of a local and a global strong solution
was shown in [11,12], respectively. The existence of global strong
solutions for small data of the problem (1.1) in bounded domains
is proved in [13] by using a semigroup approach in Lp, 1 <
p < ∞, see also [14]. The case of unbounded domains is less
studied. For the case of exterior domains we highlight [15], where
the authors proved the existence and uniqueness of a strong
solution. For two-dimensional unbounded domains we refer the
work [16] (see also [17]). In the general case of a connected open
set of Rn, existence and uniqueness of weak solutions for the
incompressible micropolar fluid equations are proved in [18].

The works mentioned above have in common the velocity–
pressure formulation approach and the solution in the L2 sense.
However, in the context of fluid dynamics it is interesting to
describe the dynamics in terms of the evolution of the vorticity
field. The vorticity of the vector field v in Rn is defined by curl v
and represents the tendency of fluid to rotate around x ∈ Rn.
For n = 2 the vorticity is a scalar real-valued function given
by ω(x, t) = curl u(x, t), with x ∈ R2 and t ≥ 0. Under
the perspective of computational methods, this approach gains
greater importance, since the vorticity contains all the necessary
information for the reconstruction of the velocity field from the
Biot–Savart law:

u(x, t) = (K ∗ ω)(x, t) =

∫
R2

K (x − y)ω(y, t) d2y, (1.5)

where K is the Biot–Savart kernel, that is,

K (x) =
1
2π

|x|−2(−x2, x1), x ∈ R2. (1.6)

The velocity fields given by (1.5) may include, in particular, the
case of vortex sheets and point sources of vorticity.

Since the generation of vorticity usually occurs in very small
regions, it is natural to consider the initial vorticity concentrated
in a set of zero Lebesgue measure. As a matter of fact, it will be
taken in L1 or, more generally, assumed to be a finite measure. We
refer to the initial configuration of the vorticity as singular initial
data. Our main purpose is to understand how the vorticity evolves
over time. In the Navier–Stokes case, there are several works
dealing with singular initial data, see for instance [19–23] and
the references therein. In [20] the authors constructed a smooth
global solution for the Navier–Stokes model in R2 by considering
the initial vorticity as a linear combination of Dirac masses whose
total variation is small when compared to viscosity. This result
was generalized for the case of a finite measure in [21,23]. On the
other hand, in [19] a global result of well-posedness in L1(R2) was
obtained. In [22], the uniqueness problem in 2D was analyzed for
the case in which the initial vorticity is a finite measure. Here,
the authors were also able to remove the hypothesis about its
size. In 3D we refer to [24–26], where similar results to the 2D
case were obtained under the hypothesis of small initial vorticity.
In addition, an L∞ estimate and decay in time of the velocity
ield were obtained, and the physically relevant case of vortex
heets was also discussed. We recall that the initial data has a
ortex sheet structure if the vorticity can be written as ω = αδ ,
0 S
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here α is the strength and δS is the Dirac measure located on the
urve S. In all these works the parabolic character of the vorticity
quation was of great importance so that the singular data are
ompatible with the considered model.
Turning our attention to the micropolar case, the parabolic

haracter mentioned above was also a key argument in [27],
n the particular case of null angular viscosity (γ = 0), to
rove the global existence and uniqueness of smooth solutions
o (1.4) with initial data in Hs(R2), s > 2. The authors used an

nteresting new quantity, namely Z = ω−
2κ
ν + κ

b, with the goal
f circumventing the recursive relationship that exists between
he angular velocity b and the vorticity ω, and then obtained
stimates in L∞ for both.
The novelty of this paper lies in incorporating to this study the

hysically relevant case of vortex sheets by analyzing the Cauchy
roblem associated with the two dimensional micropolar models
ith zero partial viscosity (γ = 0). More precisely, we study the

existence and uniqueness of mild solutions (see the definition of
mild formulation in (2.10)–(2.11)) to the micropolar fluid models
when the initial condition is chosen to be a bounded function
in L1 or even a measure supported on a curve (vortex sheet).
Furthermore, results about the stability of the problem through
quantitative estimates are included. We are also interested in the
asymptotic behavior of the micropolar fluid motion with respect
to time. In this sense, a time-decaying bound of order t−1/2 is
given in L∞ for the velocity field. This type of study opens up
new possibilities in the ambit of micropolar fluids with different
interaction kernels.

Let us consider the following system in R2:

∂tω − (ν + κ)∆ω + (u · ∇)ω = −2κ∆b + curl f ,
∂tb + 4κb + (u · ∇)b = 2κω + g,

u = K ∗ ω, (1.7)
ω(·, 0) = ω0,

b(·, 0) = b0,

where we have applied the curl operator to the first equation
in (1.4), and taken into account that curl((u · ∇)u) = (u · ∇)ω,
curl(∆u) = ∆ω, curl(∇p) = 0 along with the equivalence
between (1.5) and the system

curl u = ω,

div u = 0,
|u(x, t)| → 0 as |x| → +∞.

We assume, without loss of generality, f = 0 and g = 0.
We also use the standard notation for the Lebesgue and Sobolev
spaces. The usual norm in the space Lp(R2) is denoted by ∥ · ∥p.
If X is a Banach space, T a positive real number or T = +∞

and 1 ≤ p ≤ ∞, we denote Lp(0, T ; X) the Banach space of all
measurable functions v : (0, T ) −→ X such that t ↦→ ∥v(t)∥X is
in Lp(0, T ) with norm

∥v∥Lp(0,T ;X) =

(∫ T

0
∥v(t)∥p

Xdt
)1/p

, if 1 ≤ p < ∞,

and

∥v∥L∞(0,T ;X) = ess sup
t∈[0,T ]

∥v(t)∥X ,

if p = ∞. The space C([0, T ], X) is understood in a similar
manner. On the other hand, it is known that Morrey-type spaces
of measures are suitable for the mathematical formulation of
phenomena that involve, for example, mass concentration as the
initial vorticity profile [28]. Let us recall the definition of these
spaces. Let B(x, R) be the euclidean ball of center x and radius
3

R > 0. We define the Morrey space Mp(Rn) = Mp as the set of
all measures µ satisfying

TVB(x,R)(µ) ≤ CRn/p′

,
1
p

+
1
p′

= 1,

independently of x ∈ Rn and R > 0, where TVB(x,R)(µ) is the
otal variation of µ in the B(x, R). The Morrey space (of functions)
p(Rn) = Mp is defined as the space of locally integrable

unctions f such that

B(x,R)
|f (y)| dny < CRn/p′

, ∀x ∈ Rn, R > 0,

here C is independent of x and R. We highlight that Mp is a
anach space when it is endowed with the norm

µ∥Mp = sup
x∈Rn,R>0

R−n/p′

TVB(x,R)(µ).

n the same way, Mp is a Banach space under the norm

f ∥Mp = sup
x∈Rn,R>0

R−n/p′

∫
B(x,R)

|f (y)| dny.

ote that M1 coincides with the space of finite variation mea-
ures (here denoted M), and M1

= L1. Moreover, M∞
= L∞ with

quivalent norms, and Lp ⊂ Mp, for 1 < p < ∞, with continuous
njection.

In what follows we use C to denote a generic constant inde-
endent of x and t , but still depending on the general data of
he problem. When necessary we shall explicitly indicate certain
ependencies such as C = C(Z, R, . . .).
We now list the main results of this paper:

heorem 1.1. Let ω0, b0 ∈ L1(R2)∩L∞(R2). Then, the system (1.7)
as a unique global mild solution and the inequality

u(·, t)∥∞ ≤ C{(ν + κ)t}−1/2 (1.8)

olds, with t ∈ (0, T ], for all T > 0. Moreover, assume that (ω, u, b)
nd (ω̂, û, b̂) are mild solutions of system (1.7) with initial data
ω0, b0) and (ω̂0, b̂0), respectively. Then, the following inequalities
re verified

∥(u − û)(·, t)∥∞ ≤ Ct−1/2, (1.9)

∥(ω − ω̂)(·, t)∥1 + ∥(ω − ω̂)(·, t)∥∞ + ∥(b − b̂)(·, t)∥1

+ ∥(b − b̂)(·, t)∥∞ ≤ CΠ̂,
(1.10)

here Π̂ = Π̂ (ω0, b0, ω̂0, b̂0) = max{∥ω0 − ω̂0∥1, ∥ω0 − ω̂0∥∞,

b0 − b̂0∥1, ∥b0 − b̂0∥∞} and C > 0 is a constant independent of
ˆ .

heorem 1.2. Let ω0 ∈ M(R2) and b0 ∈ M(R2) ∩ Mp(R2), with
> 2. Then, the system (1.7) has a unique global weak solution such

that

∥u(·, t)∥∞ ≤ C{(ν + κ)t}−1/2, (1.11)

ith t ∈ (0, T ], for all T > 0. Moreover, the solutions are stable in
n analogous sense to (1.9)–(1.10), where now Π̂ depends on the
orms M(R2) and Mp(R2) of the initial data.

Below we summarize the general ideas used to demonstrate
hese results. First, we introduce a new quantity that relates the
orticity and the angular velocity, defined by

= (ν + κ)ω − 2κb. (1.12)

hen, (1.7) is formally equivalent to the following system, which
ill be our main object of study in what follows,

tW − (ν + κ)∆W +
4κ2

W = −(u · ∇)W +
8κ2ν

b,

ν + κ ν + κ
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u = K ∗

(
1

ν + κ
W +

2κ
ν + κ

b
)
,

∂tb +
4κν
ν + κ

b + (u · ∇)b =
2κ
ν + κ

W (1.13)

W (·, 0) = W0 = (ν + κ)ω0 − 2κb0,
b(·, 0) = b0.

The next step consists in considering a regularized problem for
(1.13), obtained by regularizing the initial data and introducing
a time delay in the nonlinear terms. We then deal with mild
solutions. More precisely, we prove uniform estimates for short
times by integral equation techniques. In particular, we prove
L∞ estimates for the velocity field, which allow us to obtain the
existence of solution by compactness arguments. Using the same
ideas, uniqueness and stability are obtained.

Remark 1.1. The pressure field can be recovered by taking into
consideration the incompressibility of the fluid and the velocity
fields (u, b):

∆p = div(f − (u · ∇)u + (ν + κ)∆u + 2κ curl b),

when the derivatives make sense.

This work is organized as follows: In Section 2 we introduce
some notations and basic results that allow to introduce the def-
inition of weak solution and construct the regularized problem,
as well as to obtain the existence of a regularized solution. In
Sections 3 and 4 we prove our main results.

2. The regularized problem

The aim of this section is to introduce the notations and
summarize the basic results that are necessary to follow the
arguments. The following results will be used extensively in this
work to obtain the a priori estimates, see [29,30].

Lemma 2.1. If δ, µ, τ > 0 and t > 0, then

t1−µ
∫ t

0
(t − s)µ−1sδ−1e−τ sds ≤ C, (2.1)

where C = C(µ, δ, τ ) = max{1, 21−µ
}G(δ)(1 + δ/µ)τ−δ and G

denotes the Gamma function.

Lemma 2.2. Given f ∈ Wm,p(Rn) and θ : Rn
→ R satisfying:

1.
∫
Rn
θ (x) dnx = 1,

2.
∫
Rn

xαθ (x) dnx = 0, ∀ |α| ≤ n − 1,

3.
∫
Rn

|x|n|θ (x)| dnx < ∞.

Set θδ(x) =
1
δn θ

( x
δ

)
, δ > 0. Then, ∥f − f ∗ θδ∥p ≤ Cδm∥f ∥Wm,p .

emma 2.3. Let I : R2
→ R2 be the identity map and φ : R2

→

R2 a bijective map such that I − φ ∈ L∞(R2,R2). Then, there exists
a constant C > 0 such that⏐⏐⏐ ∫

R2
(K (x − y) − K (x − φ(y)))ω(y) d2y

⏐⏐⏐
≤ C∥I − φ∥L∞(R2)(1 + | log ∥I − φ∥L∞(R2)|)

(2.2)

holds for every ω ∈ L1(R2) ∩ L∞(R2), where C = C(∥ω∥L1(R2) +

∥ω∥L∞(R2)).

We highlight more properties of the Biot–Savart kernel that
will be useful later on. See [31, Chapter 6], [25, p. 588] and [32,

p. 119] for different proofs.

4

Lemma 2.4.

1. [Hardy–Littlewood–Sobolev inequality] Let 1 < q < p < ∞

with
1
p

+
1
n

=
1
q

+1 and µ ∈ Mp(Rn). Then, K ∗µ ∈ Mq(Rn)

and

∥K ∗ µ∥Mq ≤ C(p)∥µ∥Mp .

2. Consider
1
p

+
1
n
< 1 <

1
q

+
1
n
,

and µ ∈ Mp(Rn) ∩ Mq(Rn). Then, there exists a constant
C > 0 so that

∥K ∗ µ∥∞ ≤ C∥µ∥

(
1
n −

1
q′

)/(
1
q −

1
p

)
Mp ∥µ∥

(
1
p′

−
1
n

)/(
1
q −

1
p

)
Mq .

System (1.7) couples the heat equation and the non-linear
transport equation. Regarding the heat equation, the Duhamel
Principle will be widely used here in order to define a mild
solution to

∂tv − (ν + κ)∆v = h, x ∈ R2, t > 0,
v(·, 0) = v0,

which is explicitly given by

v(·, t) = Γ (·, t) ∗ v0 +

∫ t

0
Γ (·, t − s) ∗ h(·, s)ds,

here

(x, t) =
1

4π (ν + κ)t
exp

(
−

|x|2

4(ν + κ)t

)
is the Heat kernel.

The following result summarize some properties of the heat
kernel Γ in Morrey spaces. See [25, p. 586–590] for the details.

Lemma 2.5. Let 1 ≤ p ≤ q ≤ ∞ and µ ∈ Mp(R2). Then, there
exists a constant C > 0 for which the inequality

∥∂βx Γ (·, t) ∗ µ∥Mq ≤ C{(ν + κ)t}−|β|/2−(1/p−1/q)
∥µ∥Mp , (2.3)

olds, for all t > 0, where β is a multi-index. Moreover, Γ (·, t) ∗

µ → µ, as t → 0, weakly as measures on each fixed open ball and

lim
t→0

∥Γ (·, t) ∗ µ∥Mp = ∥µ∥Mp . (2.4)

If µ ∈ Mp
∩ Mq, 1 ≤ p ≤ q ≤ ∞, then we also have the

following result of interpolation in Morrey spaces

∥µ∥Mr ≤ ∥µ∥
1−θ
Mp∥µ∥

θ
Mq ,

with
1
r

=
1 − θ

p
+
θ

q
and 0 ≤ θ ≤ 1. In particular, all the previous

estimates also hold in Lp spaces.
Now, we recall the classical representation for solutions of the

transport equation.

Lemma 2.6. If v ∈ L∞(0, T ;W 1,∞(R2)) and h ∈ L1(0, T ; Lp(R2)),
the following Cauchy problem for θ = θ (x, t) with initial data
θ0 ∈ Lp(R2), 1 ≤ p ≤ ∞, has a unique solution

∂tθ + div(vθ ) = h, x ∈ R2, t ∈ [0, T ),
div v = 0,
θ (·, 0) = θ0, .

This solution is defined by

θ (x, t) = θ0(X(0; x, t)) +

∫ t

h(X(s; x, t), s)ds,

0
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here the function X(t; x, t0), 0 ≤ t0 < T , denotes the characteris-
tics related to v , that is, the unique solution of the system{ d

dt
X(t; x, t0) = v(X(t; x, t0), t), t ∈ [0, T ),

X(t0; x, t0) = x.

In particular,

∥θ (·, t)∥p ≤ ∥θ0∥p +

∫ t

0
∥h(·, s)∥pds, t ∈ [0, T ). (2.5)

We omit the proof and refer to [33, Chapter 1] and [34, p. 232].
his result can be easily extended to Log-Lipschitz velocity fields

v(x + y, t) − v(x, t)| ≤ C |y|(1 + | ln |y||), (2.6)

for all x, y ∈ R2 and t > 0, which will be our object of study in
this paper.

In order to construct a regularized system to (1.13), we con-
sider two C∞ positive functions ρ(t) and ψ(x) such that

(i) ψ(|x|) = ψ(x) and it is a nonincreasing function of |x|,

(ii)
∫
ρdt = 1 and

∫
ψ d2x = 1,

(iii) supp(ρ) ⊂ [1, 2].

Given ε > 0, we set ρε(t) = ε−1ρ(t/ε), ψε(x) = ε−2ψ(x/ε),
W ε

0 = W0∗ψε and bε0 = b0∗ψε , where ∗ denotes the convolution
in R2. Note that W ε

0 , bε0 ∈ Wm,1(R2) ∩ Wm,∞(R2), for all m ∈ N.
We denote by Π (W0, b0) a constant depending on the norms

of the initial data, either in terms of the L1 and L∞ norms, as
in Section 3, or in terms of the norms in Morrey spaces, as in
Section 4.

Given a function f defined on R2
× R, we set a time-delay

mollification of f , denoted by Mε(f ), defined by

Mε(f )(x, t) =

∫
+∞

2ε
ρε(t − s)f (x, s)ds. (2.7)

By definition of Mε(f ) we obtain

Mε(f )(x, t) = 0, if t ≤ 2ε,

∥Mε(f )(·, t)∥X ≤ max
t−2ε<s<t−ε

∥f (·, s)∥X (2.8)

≤ max
t/2<s<t

∥f (·, s)∥X ,

for any normed space X .
We introduce the following regularized and linearized prob-

lem

∂tW ε
− (ν + κ)∆W ε

+
4κ2

ν + κ
W ε

= −Mε((uε · ∇)W ε) +
8κ2ν

ν + κ
Mε(bε),

uε = K ∗

(
1

ν + κ
W ε

+
2κ
ν + κ

Mε(bε)
)
,

∂tbε +
4κν
ν + κ

bε + (uε · ∇)bε =
2κ
ν + κ

W ε, (2.9)

W ε(·, 0) = W ε
0 ,

bε(·, 0) = bε0.

The main result of this section is

roposition 2.1. The problem (2.9) admits a unique classical
olution (W ε, uε, bε). This solution is C∞ and div uε = 0.

roof. To prove that the above system is uniquely solvable in
2

× [0,+∞) we proceed by induction. We consider the time
nterval Jm = [mε, (m + 1)ε], m ∈ N. By (2.7) the problem
2.9) is reduced to a linear problem on each time interval Jm.
hen, through the semigroup theory, the smoothing effect of the
5

eat equation and classic theory of transport equation, we obtain
mooth solutions W ε , uε , bε in Jm. Since the nonlinear couplings
ssociated to the system for t ∈ Jm+1 are delayed on their values

in t ∈ Jm, the problem is now linear and we can conclude that
there exists a unique smooth solution for the above regularized
problem. Furthermore, uε is divergence-free as consequence of
divK = 0.

Indeed, using (2.7), W ε satisfies

∂tW ε
− (ν + κ)∆W ε

+
4κ2

ν + κ
W ε

= 0,

W ε(·, 0) = W ε
0 ,

for t ≤ 2ε. Then, since W ε
0 ∈ C∞(R2) ∩ L1(R2) ∩ L∞(R2), we

have by the classic theory for the heat equation that there exists
a unique smooth solution W ε(·, t) ∈ C∞(R2) of the above system.

herefore, uε(·, t) =
1

ν + κ
K ∗ W ε is well defined and is C∞(R2)

when t ≤ 2ε. Furthermore, the hypothesis bε0 ∈ C∞(R2) implies
that there exists a unique bε(·, t) ∈ C∞(R2) satisfying the system

∂tbε +
4κν
ν + κ

bε + (uε · ∇)bε =
2κ
ν + κ

W ε, t ≤ 2ε

bε(·, 0) = bε0.

Assume that (2.9) has a unique smooth solution in R2
× Ji,

= 0, 1, . . . ,m. The continuity of this solution allows us to set
he initial data in t = (m + 1)ε as the corresponding solution
f the equivalent system at the upper end of the interval Jm.
oreover, the system for t ∈ Jm+1 is now linear,

tW ε
− (ν + κ)∆W ε

+
4κ2

ν + κ
W ε

= Gε,

uε = K ∗

(
1

ν + κ
W ε

+
2ν
ν + κ

Hε
)
,

∂tbε +
4κν
ν + κ

bε + (uε · ∇)bε =
2κ
ν + κ

W ε,

where Gε(·, t) and Hε(·, t) are defined in a natural way through
the solutions of the previous step. Then, by an induction process,
we have that Gε , Hε ∈ C∞ that implies, via the Duhamel principle,
the existence and uniqueness for W ε(·, t), uε(·, t) and bε(·, t) in
m+1. Thus, the proposition is proved. ■

In order to define the mild formulation of (2.9), note that using
iv uε = 0, we have Mε((uε · ∇)W ε) = Mε(div uεW ε), and, since

Mε commute with the convolution and the differentiation with
respect to x, we obtain

− Γ (·, t − s) ∗ Mε(div uεW ε)(·, s)

= −

∫
R2
Γ (· − y, t − s)

∫
+∞

2ε
ρε(s − τ )

∑
j

∂(uεj W
ε)

∂xj
(y, τ )dτ d2y

=

∫
+∞

2ε
ρε(s − τ )

∫
R2

∑
j

∂Γ

∂xj
(· − y, t − s)(uεj W

ε)(y, τ ) d2ydτ

=

∫
R2

∑
j

∂Γ

∂xj
(· − y, t − s)

∫
+∞

2ε
ρε(s − τ )(uεj W

ε)(y, τ )dτ d2y

=

∑
j

∂Γ

∂xj
(·, t − s) ∗ Mε(uεj W

ε)(·, s).

Therefore, we can write

−Γ (·, t−s)∗Mε((uε ·∇)W ε)(·, s) := ∇Γ (·, t−s)∗Mε(uεW ε)(·, s).
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hen, the mild formulation of the problem (2.9) can be defined
y using the Duhamel Principle and Lemma 2.6 as follows

ε(·, t) = e−
4κ2
ν+κ tΓ (·, t) ∗ W ε

0

+

∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ Mε(uεW ε)(·, s)ds

+
8κ2ν

ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s)Γ (·, t − s) ∗ Mε(bε)(·, s)ds,

(2.10)

uε(·, t) =

(
K ∗

{
1

ν + κ
W ε

+
2κ
ν + κ

Mε(bε)
})

(·, t), (2.11)

bε(·, t) = e−
4κν
ν+κ tbε0(X

ε(0; ·, t))

+
2κ
ν + κ

∫ t

0
e−

4κν
ν+κ (t−s)W ε(X ε(s; ·, t), s)ds, (2.12)

where⎧⎨⎩
d
dt

X ε(t; x, t0) = uε(X ε(t; x, t0), t), t ∈ [0, T ),

X ε(t0; x, t0) = x.

3. Case of initial data in L1 ∩ L∞

In this section, we will present the proof of Theorem 1.1.
he proof is splitted into several parts dealing with existence,
niqueness and stability of solutions. Firstly, we establish the
priori estimates for the sequence (W ε, uε, bε) that was intro-

duced in the previous section and analyze the convergence of this
sequence.

3.1. A priori estimates

Let us see in the following proposition some properties of the
sequence (W ε, uε, bε) for initial data W0, b0 ∈ L1(R2) ∩ L∞(R2).

Proposition 3.1. There exist T ∗
= T ∗(ν, κ,Π (W0, b0)) > 0 and

positive constants C and Cν,κ , such that the following estimates

∥uε(·, t)∥∞ ≤ C{(ν + κ)t}−1/2, (3.1)
∥W ε(·, t)∥1 + ∥W ε(·, t)∥∞ + ∥bε(·, t)∥1 + ∥bε(·, t)∥∞

≤ Cν,κΠ (W0, b0), (3.2)

hold for any time t ∈ (0, T ∗
]. In addition, uε is uniformly bounded

in L∞(0, T ∗
; L∞(R2)).

Remark 3.1. The dependence on ν and κ of the constant Cν,κ
is deduced throughout the proof of the proposition and can be
expressed as

Cν,κ =
1

1 − C̃ν,κ [2T ∗ + C̃]
,

here C̃ν,κ = max{ C
ν+κ

, 8κ2ν
ν+κ

, 2κ
ν+κ

}, C is a positive constant and
˜ is given by (2.1).

roof. In view of Lemma 2.4 and (2.11), we have

uε(·, t)∥∞ ≤
C

ν + κ

{
∥W ε(·, t)∥1 + ∥W ε(·, t)∥∞

+ 2κ
(

max
t/2<s<t

∥bε(·, s)∥1 + max
t/2<s<t

∥bε(·, s)∥∞

) }
,

(3.3)

for all t > 0.
6

Let q = 1 or ∞. Using (2.12) we have

∥bε(·, t)∥q ≤ Π (W0, b0) +
2κ
ν + κ

∫ t

0
e−

4κν
ν+κ (t−s)

∥W ε(·, s)∥qds,

(3.4)

for all t > 0.
Now, combining (2.10), Lemma 2.5 and Eq. (2.8) we have

∥W ε(·, t)∥q ≤ e−
4κ2
ν+κ t∥Γ (·, t) ∗ W ε

0 ∥q

+

∫ t

0
e−

4κ2
ν+κ (t−s)

∥∇Γ (·, t − s) ∗ Mε(W εuε)(·, s)∥qds

+
8κ2ν

ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s)

∥ Γ (·, t − s) ∗ Mε

× (bε)(·, s) ∥q ds

≤ ∥W ε
0 ∥q + C(ν + κ)−1/2

∫ t

0
(t − s)−1/2

× e−
4κ2
ν+κ (t−s)

∥Mε(W εuε)(·, s)∥qds

+
8κ2ν

ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s)

∥Mε(bε)(·, s)∥qds.

Then, we find

∥W ε(·, t)∥q ≤ Π (W0, b0) + C(ν + κ)−1/2
∫ t

0
(t − s)−1/2e−

4κ2
ν+κ (t−s)

× max
s/2<τ<s

∥uε(·, τ )∥∞∥W ε(·, τ )∥qds

+
8κ2ν

ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s) max

s/2<τ<s
∥bε(·, τ )∥qds, (3.5)

for all t > 0.
Combining (3.3)–(3.5), and setting

λ(t) = sup
s≤t

{
∥W ε(·, s)∥1, ∥W ε(·, s)∥∞, ∥bε(·, s)∥1, ∥bε(·, s)∥∞

}
,

we find

λ(t) ≤ C0Π (W0, b0) + C1(ν, κ)tλ(t) + C2(ν, κ)
√
tλ(t)2,

or equivalently

0 ≤ C0Π (W0, b0) +
(
C1t − 1

)
λ(t) + C2

√
tλ(t)2,

where C0 > 1, C1(ν, κ) =
8κ2ν + 2κ
ν + κ

and C2(ν, κ) = C(ν +

κ)−3/2(2κ + 1). Then, choosing T ∗ > 0 small enough such that⎧⎨⎩ T ∗ <
1
C1
,

σ = (C1T ∗
− 1)2 − 4C0Π (W0, b0)C2

√
T ∗ > 0,

(3.6)

nd by continuity of λ, we obtain

≤ λ(t) ≤
1 − C1t −

√
σ

2C2
√
t

≤
1

2C2
√
t
,

for t ∈ (0, T ∗
]. From this we deduce ∥uε(·, t)∥∞ ≤

C(2κ + 1)
ν + κ

λ(t),
> 0, and the estimate (3.1) holds. Now, replacing (3.1) in (3.5)

and adding (3.4) we obtain

∥W ε(·, t)∥q + ∥bε(·, t)∥q ≤ C0Π (W0, b0) + C(ν, κ)
∫ t

0{
(t − s)−1/2s−1/2

+ e−
4κ2
ν+κ (t−s)

+ e−
4κν
ν+κ (t−s)

}
×

{
max ∥W ε(·, τ )∥q + max ∥bε(·, τ )∥q

}
ds.
s/2<τ<s s/2<τ<s
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f λ1(t) = max
s≤t

{
∥W ε(·, s)∥q, ∥bε(·, s)∥q

}
, we have

1(t) ≤ C0Π (W0, b0) + C(ν, κ)λ1(t)

×

∫ t

0

(
(t − s)−1/2s−1/2

+ e−
4κ2
ν+κ (t−s)

+ e−
4κν
ν+κ (t−s)

)
ds

≤ C0Π (W0, b0) + Cν,κM(t)λ1(t),

ith M(t) = 2t + C . Note that Cν,κ fits the expression given in
emark 3.1. Then, if Cν,κM(T ∗) < 1, we have proved (3.2). Since

e know that ∥uε(·, t)∥L∞ ≤
C(2κ + 1)
ν + κ

λ(t) and we have just
proved that λ(t) is uniformly bounded, we deduce that uε(x, t) is
uniformly bounded in L∞. ■

3.2. Passage to the limit and existence of weak solution

The aim of this section is to prove that the a priori estimates
obtained in the preceding section allow to obtain weak solutions
as limit of the solutions of regularized problem (2.9), as ε → 0.
The existence of the limit is based on the Ascoli–Arzelà Theorem
(we refer to [31, Chapter 5]) and the weak-compactness in Lp
tandards.

roposition 3.2. The sequence of solutions (W ε, uε, bε)ε>0 to the
system (2.9) admit a subsequence, still denoted by (W ε, uε, bε)ε>0,
such that

W ε ⇀ W weak-∗ in L∞(0, T ∗
; L∞(R2)), (3.7)

bε ⇀ b weak-∗ in L∞(0, T ∗
; L∞(R2)), (3.8)

uε −→ u uniformly in compact set of R2
× [0, T ∗

]. (3.9)

Proof. Through the estimate (3.2), one gets {W ε
}ε>0 and {bε}ε>0

are bounded in L∞(0, T ∗
; L∞(R2)). Therefore, there exist a subse-

quence and W , b such that (3.7) and (3.8) hold.
In order to obtain (3.9), we use (3.1) and (3.2) to find that

{uε}ε>0 is uniformly bounded in L∞(0, T ∗
; L∞(R2)). Now, we need

to ensure that the family {uε}ε>0 is equicontinuous in time and
space. By (2.6) we obtain the spatial equicontinuity for fixed
time, that is, for all β > 0, there exist δ > 0 such that if
|(x, t) − (y, t)| < δ, then |uε(x, t) − uε(y, t)| < β , for x, y ∈ R2

and t ∈ [0, T ∗
]. In order to deal with the equicontinuity in time,

let us consider t, t + h ∈ [0, T ∗
] with h > 0. We can write

uε(x, t + h) − uε(x, t)

=
1

ν + κ
K ∗

{
W ε(x, t + h) − W ε(x, t)

}
+

2κ
ν + κ

K ∗

{
Mε(bε)(x, t + h) − Mε(bε)(x, t)

}
. (3.10)

By definition of Mε and combining (2.10) and (2.12), we have

K ∗

{
W ε(x, t + h) − W ε(x, t)

}
= K ∗

{
Γ (x, h) ∗ W ε(x, t) − W ε(x, t)

}
+

∫ t+h

t
e−

4κ2
ν+κ (t+h−s)

∇Γ (x, t + h − s) ∗ K ∗ Mε(W εuε)(x, s)ds

+
8κ2ν

ν + κ

∫ t+h

t
e−

4κ2
ν+κ (t+h−s)Γ (x, t + h − s) ∗ K ∗ Mε(bε)(x, s)ds

and

K ∗

{
Mε(bε)(x, t + h) − Mε(bε)(x, t)

}
=

∫
+∞

ρε(t − s)K ∗

{
bε(x, s + h) − bε(x, s)

}
ds,
2ε

7

with

K ∗

{
bε(x, s + h) − bε(x, s)

}
= K ∗

{
e−

4κν
ν+κ (s+h)bε(Xε(s, x, s + h), s) − bε(x, s)

}
+

2κ
ν + κ

∫ s+h

s
e−

4κν
ν+κ (τ−s)K ∗ W ε(Xε(τ , x, τ + h), τ )dτ .

Then, we obtain

|K ∗ {W ε(x, t + h) − W ε(x, t)}|
≤ |K ∗ {Γ (x, h) ∗ W ε(x, t) − W ε(x, t)}|

+

⏐⏐⏐⏐K ∗

{∫ t+h

t
e−

4κ2
ν+κ (t+h−s)

∇Γ (x, t + h − s) ∗ Mε(W εuε)(x, s)ds
}⏐⏐⏐⏐

+

⏐⏐⏐⏐K ∗

{
8κ2ν

ν + κ

∫ t+h

t
e−

4κ2
ν+κ (t+h−s)Γ (x, t + h − s) ∗ Mε(bε)(x, s)ds

}⏐⏐⏐⏐
:= W1 + W2 +

8κ2ν

ν + κ
W3.

In order to estimate W1, applying Lemma 2.2 with θ = Γ we
derive,

W1 = |K ∗ {Γ (x, h) ∗ W ε(x, t) − W ε(x, t)}| ≤ C
√
h, (3.11)

here, for small ε, we have chosen the ε−1 associated with the
1,p norm of W ε(·, t) on the order of ε =

√
h, while for ε

large it is enough to apply the mean value theorem. Thanks to
Proposition 3.1, W2 and W3 can be estimated as follows

W2 =

⏐⏐⏐⏐K ∗

{∫ t+h

t
e−

4κ2
ν+κ (t+h−s)

∇Γ (x, t + h − s) ∗ Mε(W εuε)(x, s)ds
}⏐⏐⏐⏐

≤

∫ t+h

t
∥∇Γ (·, t + h − s)∥1∥Mε(W εuε)(·, s)∥1/2

∞

× ∥Mε(W εuε)(·, s)∥1/2
1 ds

≤ C
∫ t+h

t
(t + h − s)−1/2ds ≤ Ch1/2,

(3.12)

and

W3 =

⏐⏐⏐⏐K ∗

{∫ t+h

t
e−

4κ2
ν+κ (t+h−s)Γ (x, t + h − s) ∗ Mε(bε)(x, s)ds

}⏐⏐⏐⏐
≤

∫ t+h

t
∥K ∗ Mε(bε)(·, s)∥∞ds

≤

∫ t+h

t
max

s/2≤τ≤s
∥bε(·, τ )∥1/2

1 ∥bε(·, τ )∥1/2
∞

ds ≤ Ch.

(3.13)

On the other hand, in order to estimate the second term of (3.10)
note that

|K ∗ {bε(x, s + h) − bε(x, s)}|

≤

⏐⏐⏐K ∗

{
e−

4κν
ν+κ (s+h)bε (Xε(s, x, s + h), s)− bε(x, s)

}⏐⏐⏐
+

⏐⏐⏐⏐ 2κ
ν + κ

∫ s+h

s
e−

4κν
ν+κ (τ−s)K ∗ W ε(Xε(τ , x, τ + h), τ )dτ

⏐⏐⏐⏐
:= B1 +

2κ
B2.
ν + κ
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ow, in order to bound the first term we find

1 =

⏐⏐⏐K ∗

{
e−

4κν
ν+κ (s+h)bε (Xε(s, x, s + h), s)− bε(x, s)

+e−
4κν
ν+κ (s+h)bε(x, s) − e−

4κν
ν+κ (s+h)bε(x, s)

}⏐⏐⏐
≤

⏐⏐⏐K ∗

{
e−

4κν
ν+κ (s+h)bε (Xε(s, x, s + h), s)− e−

4κν
ν+κ (s+h)bε(x, s)

}⏐⏐⏐
+

⏐⏐⏐K ∗

{
e−

4κν
ν+κ (s+h)bε(x, s) − bε(x, s)

}⏐⏐⏐
:= B11 + B12.

Then, we have by Lemma 2.3

B11 =

⏐⏐⏐⏐∫
R2

K (x − y)e−
4κν
ν+κ (s+h)bε (Xε(s, y, s + h), s) d2y

−

∫
R2

K (x − z)e−
4κν
ν+κ (s+h)bε(z, s) d2z

⏐⏐⏐⏐
=

⏐⏐⏐⏐∫
R2

[K (x − y) − K (x − Xε(s, y, s + h))]e−
4κν
ν+κ (s+h)

× bε (Xε(s, y, s + h), s) d2y
⏐⏐

≤ C∥I(·) − Xε(s, ·, s + h)∥∞ (1 + |log ∥I(·) − Xε(s, ·, s + h)∥∞|) ,

here C = C(∥bε(·, s)∥1 + ∥bε(·, s)∥∞) > 0. Since

I(·) − Xε(s, ·, s + h)∥∞ = sup
y

|Xε(s, y, s + h) − I(y)|

= sup
y

|Xε(s, y, s + h) − Xε(s + h, y, s + h)|

= sup
y

⏐⏐⏐⏐∫ s+h

s
uε(Xε(ξ, y, s + h), ξ )dξ

⏐⏐⏐⏐ ≤ Ch,

e obtain

11 ≤ Ch [1 + log (Ch)] , (3.14)

nd

12 =

⏐⏐⏐K ∗

{(
e−

4κν
ν+κ (s+h)

− 1
)
bε(y, s)

}⏐⏐⏐
≤ C

⏐⏐⏐e−
4κν
ν+κ (s+h)

− 1
⏐⏐⏐ ∥bϵ(·, s)∥1/2

1 ∥bϵ(·, s)∥1/2
∞

≤ Ch.

(3.15)

Switching integrals in time with the convolution, taking into
account the bound estimates of W ε and the area preservation
properties of the mapping flow Xε , we also deduce

B2 =

⏐⏐⏐⏐K ∗

{∫ s+h

s
e−

4κν
ν+κ (τ−s)W ε(Xε(τ , x, τ + h), τ )dτ

}⏐⏐⏐⏐ ≤ Ch.

(3.16)

Hence, combining (3.11)–(3.16), the sequence t ↦→ uε(x, t) is
quicontinuous in time allowing to apply Ascoli–Arzelá theorem
o deduce the existence of a subsequence of {uε}ε>0 such that
(3.9) holds. ■

Let us see now that (W , u, b) is a mild solution of system
(1.13):

Definition 3.1. (W , u, b) is a mild solution to (1.13) if it satisfies
the initial data weak-⋆ as t → 0 and

1.

W (x, t) = e−
4κ2
ν+κ t (Γ (·, t) ∗ W0)(x)

−

∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ (uW )(x, s)ds

+
8κ2ν

∫ t

e−
4κ2
ν+κ (t−s)Γ (·, t − s) ∗ b(x, s)ds,
ν + κ 0

8

2.

b(x, t) = e−
4κν
ν+κ tb0(X(0; x, t))

+
2κ
ν + κ

∫ t

0
e−

4κν
ν+κ (t−s)W (X(s; x, t), s)ds,

3.

u(x, t) =
1

ν + κ
K ∗ W (x, t) +

2κ
ν + κ

K ∗ b(x, t),

old, where the equality is understood in the sense of L∞(0, T ∗
;

Lp(R2)) functions, for some appropriate p.

Proposition 3.3. The triple (W , u, b) given by Proposition 3.2 is a
mild solution of system (1.13).

Proof. Let ϕ ∈ C∞

0 (R2
× [0, T ∗)) and Ω = supp(ϕ). (2.10) leads

to∫ T∗

0

∫
R2

W ε(x, t)ϕ(x, t) d2x dt

=

∫ T∗

0

∫
R2

e−
4κ2
ν+κ tΓ (x, t) ∗ W ε

0 (x)ϕ(x, t) d
2x dt

−

∫ T∗

0

∫
R2

[∫ t

0
e−

4κ2
ν+κ (t−s)

× ∇Γ (·, t − s) ∗ Mε(uεW ε)(x, s)ds
]
ϕ(x, t) d2x dt

+
8κ2ν

ν + κ

∫ T∗

0

∫
R2

[∫ t

0
e−

4κ2
ν+κ (t−s)

×Γ (·, t − s) ∗ Mε(bε)(x, s)ds
]
ϕ(x, t) d2x dt.

or the convergence of the l.h.s it is sufficient to consider the
eak-∗ convergence of W ε and for the first term of r.h.s it is
ossible to take the limit by definition of mollifier sequence.
Now, we prove the convergence for the second term of the

.h.s., and the same idea can be used to prove the convergence
or the last term. Thus, we consider∫ T∗

0

∫
R2

[∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ Mε(uεW ε)(x, s)ds
]

× ϕ(x, t) d2x dt := I1 + I2,

here

1 =

∫ T∗

0

∫
R2

[∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ (Mε(uεW ε)

− uεW ε)(x, s)ds]ϕ(x, t) d2x dt

nd

2 =

∫ T∗

0

∫
R2

[∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ (uεW ε)(x, s)ds
]

× ϕ(x, t) d2x dt.

We start proving the convergence to 0 of I1.

|I1| =

⏐⏐⏐⏐⏐
∫ T∗

0

∫ t

0

∫
R2

e−
4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ (Mε(uεW ε)

− uεW ε)(x, s)ϕ(x, t) d2x ds dt
⏐⏐

≤ C(ν, κ, T ∗)∥ϕ∥L∞(0,T∗;L∞(Ω))
ε ε ε ε ε
× ∥M (u W ) − u W ∥L∞(0,T∗;L1(Ω)) → 0,
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here we have used that ∥Mε(uεW ε)−uεW ε
∥L∞(0,T∗;L1(Ω)) ≤ Cε.

ow, we focus on I2. Let us write I2 = I21 + I22, where

21 =

∫ T∗

0

∫
R2

[∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ (uεW ε

− uW ε)(x, s)ds]ϕ(x, t) d2x dt.

and

I22 =

∫ T∗

0

∫
R2

[∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s)

∗uW ε(x, s)ds]ϕ(x, t) d2x dt.

We have that

|I21| =

⏐⏐⏐⏐⏐
∫ T∗

0

∫
R2

[∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ (uεW ε

−uW ε)(x, s)ds] ϕ(x, t) d2x dt
⏐⏐

≤ ∥ϕ∥L∞(0,T∗;L∞(R2))

∫ T∗

0

∫ t

0

× ∥∇Γ (·, t − s) ∗ (uε − u)W ε(·, s)∥L1(Ω) ds dt
≤ C(ν, κ, T ∗)∥ϕ∥L∞(0,T∗;L∞(Ω))∥uε − u∥L∞(0,T∗;L∞(Ω))

× ∥W ε
∥L∞(0,T∗;L1(Ω)) → 0.

On the other hand, by using Fubini theorem and the fact that
W ε ⇀ W weak-∗ in L∞(0, T ∗

; L∞(R2)), we find

22 →

∫ T∗

0

∫
R2

[∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ (uW )(x, s)ds
]

× ϕ(x, t) d2x dt.

These arguments along with the Fundamental Lemma of Calculus
of Variations lead to

W (x, t) = e−
4κ2
ν+κ tΓ (·, t) ∗ W0(x)

−

∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ (uW )(x, s) ds

+
8κ2ν

ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s)Γ (·, t − s) ∗ b(x, s) ds.

(3.17)

The same strategy applied to (2.12) yields∫ T∗

0

∫
R2

bε(x, t)ϕ(x, t) d2x dt =

∫ T∗

0

∫
R2

e−
4κν
ν+κ tbε0

× (X ε(0; x, t))ϕ(x, t) d2x dt

+
2κ
ν + κ

∫ T∗

0

∫
R2

[∫ t

0
e−

4κν
ν+κ (t−s)W ε(X ε(s; x, t), s)ds

]
× ϕ(x, t) d2x dt.

We focus the analysis of the convergence on the term

J =

∫ T∗

0

∫
R2

e−
4κν
ν+κ tbε0(X

ε(0; x, t))ϕ(x, t) d2x dt,

ince for the rest of the terms it is analogous. Using the change
f variables X ε(0; x, t) = y, we can write it as follows∫ T∗

0

∫
R2

e−
4κν
ν+κ tbε0(X

ε(0; x, t))ϕ(x, t)d2x dt

=

∫ T∗

0

∫
R2

e−
4κν
ν+κ tbε0(y)ϕ(X

ε(0; y, t), t) d2y dt

:= J1 + J2,

where

J1 =

∫ T∗ ∫
e−

4κν
ν+κ tbε0(y)(ϕ(X

ε(0; y, t), t) − ϕ(X(0; y, t), t)) d2y dt,

0 R2

9

nd

2 =

∫ T∗

0

∫
R2

e−
4κν
ν+κ tbε0(y)ϕ(X(0; y, t), t) d2y dt.

The term J1 converges to 0 due to the continuity of ϕ (uniform on
compact sets):

|J1| =

⏐⏐⏐⏐⏐
∫ T∗

0

∫
R2

e−
4κν
ν+κ tbε0(y)(ϕ(X

ε(0; y, t), t) − ϕ(X(0; y, t), t)) d2y dt

⏐⏐⏐⏐⏐
≤∥bε0∥L∞

∫ T∗

0

∫
Ω

|ϕ(X ε(0; y, t), t) − ϕ(X(0; y, t), t)| d2y dt → 0.

Since ∥bε0 − b0∥1 → 0, we find

J2 →

∫ T∗

0

∫
R2

e−
4κν
ν+κ tb0(y)ϕ(X(0; y, t), t) d2y dt.

By reverting the change of variable, we obtain

J →

∫ T∗

0

∫
R2

e−
4κν
ν+κ tb0(X(0; x, t))ϕ(x, t) d2x dt.

Then, we conclude

b(x, t) = e−
4κν
ν+κ tb0(X(0; x, t))

+
2κ
ν + κ

∫ t

0
e−

4κν
ν+κ (t−s)W (X(s; x, t), s) ds.

(3.18)

e finish the proof dealing with (2.11)∫ T∗

0

∫
R2

uε(x, t)ϕ(x, t) d2x dt

=

∫ T∗

0

∫
R2

1
ν + κ

K ∗ W ε(x, t)ϕ(x, t) d2x dt

+

∫ T∗

0

∫
R2

2κ
ν + κ

K ∗ Mε(bε)(x, t)ϕ(x, t) d2x dt := N1 + N2.

e prove the convergence of N1 using [35, Proposition 4.16],
hile for N2 we proceed in the same way after adding and
ubtracting bε in the second member of the convolution. Then,
he proof is completed by combining the above inequalities. ■

In order to obtain global existence of mild solution, one can
hen proceed by steps of size T ∗ to obtain the above estimates for
ll t > 0. To do this, we shift the initial time to t = δ < T ∗, and

take T ∗ > 0 as in Proposition 3.1. Then, we have that (3.1) and
(3.2) hold in [δ, T ∗

+ δ] and so on. Then, we have the following
result

Corollary 3.1. If W0, b0 ∈ L1(R2)∩L∞(R2), then the system (1.13)
has a global mild solution, such that for any T > 0

{(ν + κ)t}1/2u ∈ L∞(0, T ; L∞(R2)).

Remark 3.2. Note that in each step described above, the initial
data is more regular and thus, we have a gain in regularity for the
solution obtained (see [36]).

3.3. Uniqueness and stability of solution

Let us take advantage of the results of the previous section
to provide the uniqueness and asymptotic stability results for the
solution of the problem (1.13) with respect to disturbances of the
initial data. Since for both results the techniques are similar to
those used previously, we focus on the uniqueness result and just
state the stability one.

Proposition 3.4. Let W0, b0 ∈ L1(R2) ∩ L∞(R2). Then, there exist
a unique global solution of (1.13) satisfying (1.8).
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roof. We assume that for i = 1, 2, (W i, ui, bi), are solutions of
1.13). We will show thatW 1

= W 2 and b1 = b2 on R2
×(0,+∞).

We set

Z(·, t) = (W 1
− W 2)(·, t),

E(·, t) = (b1 − b2)(·, t).

Note that (Z, E) satisfy the system

∂tZ − (ν + κ)∆Z +
4κ2

ν + κ
Z = −

((
K ∗

( 1
ν + κ

Z +
2κ
ν + κ

E
))

· ∇

)
× W 1

− (u2
· ∇)Z +

8κ2ν

ν + κ
E

∂tE +
4κν
ν + κ

E + (u2
· ∇)E = −

((
K ∗

( 1
ν + κ

Z +
2κ
ν + κ

E
))

· ∇

)
b1

+
2κ
ν + κ

Z

Z(·, 0) = 0,

E(·, 0) = 0,

nd

(·, t) =

∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s)

∗

{
W 1

(
K ∗

(
1

ν + κ
Z +

2κ
ν + κ

E
))}

(·, s)ds

+

∫ t

0
e−

4κ2
ν+κ (t−s)

∇Γ (·, t − s) ∗ (Zu2)(·, s)ds

+
8κ2ν

ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s)Γ (·, t − s) ∗ E(·, s)ds,

E(·, t) =

∫ t

0
e−

4κν
ν+κ (t−s)

∇Γ (·, t − s)

∗

{
b1

(
K ∗

(
1

ν + κ
Z +

2κ
ν + κ

E
))}

(·, s)ds

+
2κ
ν + κ

∫ t

0
e−

4κν
ν+κ (t−s)Z(·, s)ds.

Then, we find

∥Z(·, t)∥1 ≤

∫ t

0
∥ ∇Γ (·, t − s)

∗

{
W 1

(
K ∗

(
1

ν + κ
Z +

2κ
ν + κ

E
))}

(·, s) ∥1 ds

+

∫ t

0
∥∇Γ (·, t − s) ∗ (Zu2)(·, s)∥1ds

+
8κ2ν

ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s)

∥Γ (·, t − s) ∗ E(·, s)∥1ds

≤ C0(ν + κ)−3/2
∫ t

0
(t − s)−1/2s−1/2

×

{
∥Z(·, s)∥1 + 2κ∥E(·, s)∥1

}
ds

+ C0

∫ t

0
(t − s)−1/2s−1/2

∥Z(·, s)∥1ds

+
4κν
ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s)2κ∥E(·, s)∥1 ds,

hat is,

Z(·, t)∥1 ≤ C1

∫ t

0

{
(t − s)−1/2s−1/2

+ e−
4κ2
ν+κ (t−s)

}
×

{
∥Z(·, s)∥1 + 2κ∥E(·, s)∥1

}
ds,
10
with C1 = max
{
C0(ν + κ)−3/2

+ C0,
4κν
ν + κ

}
. Similarly, we have

κ∥E(·, t)∥1 ≤ C2

∫ t

0

{
(t − s)−1/2s−1/2

+ e−
4κν
ν+κ (t−s)

}
×

{
∥Z(·, s)∥1 + 2κ∥E(·, s)∥1

}
ds,

with C2 = max
{
2κC0(ν + κ)−3/2,

4κ2

ν + κ

}
. Therefore, we obtain

Z(·, t)∥1 + 2κ∥E(·, t)∥1

≤ C3

∫ t

0

{
(t − s)−1/2s−1/2

+ e−
4κ2
ν+κ (t−s)

+ e−
4κν
ν+κ (t−s)

}
×

{
∥Z(·, s)∥1 + 2κ∥E(·, s)∥1

}
ds,

here C3 = max{C1, C2}. Setting Υ (t) = sup
s≤t

{
∥Z(·, s)∥1 +

κ∥E(·, s)∥1

}
, t > 0, and following as in Proposition 3.1, we

btain Υ (t) = 0 and the solution of problem (1.13) is unique.
■

Finally, let us summarize the stability result for solutions in
he following proposition.

roposition 3.5. Let W0, b0, Ŵ0, b̂0 ∈ L1(R2) ∩ L∞(R2). Assume
hat the (W , u, b) and (Ŵ , û, b̂) are solution of problem (1.13) with
nitial data (W0, b0) and (Ŵ0, b̂0), respectively. Then, the inequalities
elow are satisfied for t > 0

∥(u − û)(·, t)∥∞ ≤ Ct−1/2, (3.19)

(W − Ŵ )(·, t)∥1 + ∥(W − Ŵ )(·, t)∥∞ + ∥(b − b̂)(·, t)∥1

+ ∥(b − b̂)(·, t)∥∞ ≤ CΠ̂,
(3.20)

here Π̂ = Π̂ (W0, b0, Ŵ0, b̂0) = max{∥W0 − Ŵ0∥1, ∥W0 −

ˆ 0∥∞, ∥b0 − b̂0∥1, ∥b0 − b̂0∥∞} and C > 0 is a constant inde-
endent of Π̂ (see Remark 3.1).

roof. We consider Z = W − Ŵ , E = b − b̂, U = u − û and the
ystem below

tZ − (ν + κ)∆Z +
4κ2

ν + κ
Z = −(U · ∇)W − (û · ∇)Z +

8κ2ν

ν + κ
E,

U = K ∗

(
1

ν + κ
Z +

2κ
ν + κ

E
)
,

∂tE +
4κν
ν + κ

E + (û · ∇)E = −(U · ∇)b +
2κ
ν + κ

Z,

Z(·, 0) = Z0 = W0 − Ŵ0,

E(·, 0) = E0 = b0 − b̂0.

Then, we can proceed as previously. ■

4. Case of measures as initial data

This section deals with a priori estimates for the case W0 ∈

M(R2) and b0 ∈ M(R2) ∩ Mp(R2), with p > 2 fixed, which will
lead us to a theory of existence of weak solutions for the system
(1.13). The main difference with respect to the case of initial data
in L1 ∩ L∞ is how one derives the appropriate a priori estimates.
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First, observe that by W ε(·, t), bε(·, t) ∈ C∞(R)2 ∩ L1(R2) and

uε = K ∗

(
1

ν + κ
W ε

+
2κ
ν + κ

Mε(bε)
)
. We have

url uε(·, t) =
1

ν + κ
W ε(·, t) +

2κ
ν + κ

Mε(bε)(·, t),

that is,

W ε(·, t) = (ν + κ) curl uε(·, t) − 2κMε(bε)(·, t).

Therefore, for 0 < s < t , we can write

−Γ (·, t− s)∗Mε((uε ·∇)W ε)(·, s) = ∇Γ (·, t− s)∗Mε(W εuε)(·, s)
(4.1)

and

− Γ (·, t − s) ∗ Mε((uε · ∇)W ε)(·, s)
= −(ν + κ) curl∇Γ (·, t − s) ∗ Mε(uεuε)(·, s)

− 2κ∇Γ (·, t − s) ∗ Mε(Mε(bε)uε)(·, s), (4.2)

where uεuε =

2∑
i,j

uεi u
ε
j . We have the following result:

Proposition 4.1. There exists T ∗
= T ∗(ν, κ,Π (W0, b0)) > 0 and

positive constants C and Cν,κ such that

∥uε(·, t)∥∞ ≤ C{(ν + κ)t}−1/2,

∥W ε(·, t)∥1 + ∥bε(·, t)∥1 ≤ Cν,κΠ (W0, b0),

{(ν + κ)t}1−
1
p ∥W ε(·, t)∥Mp + ∥bε(·, t)∥Mp ≤ Cν,κΠ (W0, b0),

old for all t ∈ (0, T ∗
].

emark 4.1. The dependence on ν and κ of the constant Cν,κ
s deduced explicitly throughout the proof, and is similar to that
erived in Remark 3.1.

roof. Note that

uε(·, t)∥∞ ≤
e−

4κ2
ν+κ t

ν + κ
∥(K ∗ Γ (·, t)) ∗ W ε

0 ∥∞

+
1

ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s)

∥K ∗ (Γ (·, t − s) ∗ Mε((uε · ∇)W ε))(·, s)∥∞ds

+
8κ2ν

(ν + κ)2

∫ t

0
e−

4κ2
ν+κ (t−s)

∥Γ (·, t − s) ∗ (K ∗ Mε(bε))(·, s)∥∞ds

+
2κ
ν + κ

∥K ∗ Mε(bε)(·, t)∥∞

≤
C

ν + κ
{(ν + κ)t}−1/2

∥W0∥M

+
C

ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s)

∥Γ (·, t − s) ∗ Mε((uε · ∇)W ε)(·, s)∥1/2
1

× ∥Γ (·, t − s) ∗ Mε((uε · ∇)W ε)(·, s)∥1/2
∞

ds

+
8κ2ν

(ν + κ)2

∫ t

0
e−

4κ2
ν+κ (t−s)

∥K ∗ Mε(bε)(·, s)∥∞ds

+
2κ
ν + κ

∥K ∗ Mε(bε)(·, t)∥∞.

Applying Lemma 2.5, we obtain the estimates

∥Γ (·, t − s) ∗ Mε((uε · ∇)W ε)(·, s)∥1

= ∥∇Γ (·, t − s) ∗ Mε(W εuε)(·, s)∥1

≤ C{(ν + κ)(t − s)}−1/2 max
s/2<τ<s

∥uε(·, τ )∥∞∥W ε(·, τ )∥1,

and

∥Γ (·, t − s) ∗ Mε((uε · ∇)W ε)(·, s)∥∞

≤ (ν + κ)∥ curl∇Γ (·, t − s) ∗ Mε(uεuε)(·, s)∥
∞

11
+ 2κ∥∇Γ (·, t − s) ∗ Mε(Mε(bε)uε)(·, s)∥∞

≤ C{(ν + κ)(t − s)}−1 max
s/2<τ<s

∥uε(·, τ )∥2
∞

+ 2κC{(ν + κ)(t − s)}−1/2−1/p

× max
s/2<τ<s

{
∥uε(·, τ )∥∞

(
max

τ/2<η<τ
∥bε(·, η)∥Mp

)}
.

On the other hand, by Lemma 2.4 we have

∥K ∗ Mε(bε)(·, t)∥∞ ≤ C∥Mε(bε)(·, s)∥α1∥M
ε(bε)(·, s)∥1−α

Mp

≤ C max
t/2<s<t

∥bε(·, s)∥α1 max
t/2<s<t

∥bε(·, s)∥1−α
Mp ,

where α =
p − 2

2(p − 1)
∈ (0, 1).

Therefore, combining the above estimates we obtain the fol-
lowing estimate for ∥uε(·, t)∥∞,

∥uε(·, t)∥∞ ≤
C

ν + κ
{(ν + κ)t}−1/2

∥W0∥M

+
C

(ν + κ)1/2

∫ t

0
{(ν + κ)(t − s)}−3/4

× max
s/2<τ<s

∥uε(·, τ )∥3/2
∞

∥W ε(·, τ )∥1/2
1 ds

+
(2κ)1/2C
ν + κ

∫ t

0
e−

4κ2
ν+κ (t−s)

{(ν + κ)(t − s)}−1/2−1/2p

× max
s/2<τ<s

{
∥uε(·, τ )∥∞∥W ε(·, τ )∥1/2

1

×

(
max

τ/2<η<τ
∥bε(·, η)∥1/2

Mp

) }
ds

+
8κ2νC
(ν + κ)2

∫ t

0
e−

4κ2
ν+κ (t−s)

× max
s/2<τ<s

∥bε(·, τ )∥α1 max
s/2<τ<s

∥bε(·, τ )∥1−α
Mp ds

+
2κC
ν + κ

max
t/2<s<t

∥bε(·, s)∥α1 max
t/2<s<t

∥bε(·, s)∥1−α
Mp .

hus,

(ν + κ)t}1/2∥uε(·, t)∥∞

≤ C(ν + κ)−1
∥W0∥M

+ C(ν + κ)−3/2t1/2
∫ t

0
(t − s)−3/4s−3/4

× max
s/2<τ<s

({(ν + κ)τ }1/2∥uε(·, τ )∥∞)3/2∥W ε(·, τ )∥1/2
1 ds

+ (2κ)1/2C(ν + κ)−3/2−1/2pt1/2
∫ t

0
e−

4κ2
ν+κ (t−s)(t − s)−1/2−1/2ps−1/2

(4.3)

× max
s/2<τ<s

{
{(ν + κ)τ }1/2∥uε(·, τ )∥∞∥W ε(·, τ )∥1/2

1

×

(
max

τ/2<η<τ
∥bε(·, η)∥1/2

Mp

) }
ds

+ 8κ2νC(ν + κ)−3/2t1/2
∫ t

0
e−

4κ2
ν+κ (t−s)

× max
s/2<τ<s

∥bε(·, τ )∥α1 max
s/2<τ<s

∥bε(·, τ )∥1−α
Mp ds

+ 2κC(ν + κ)−1/2t1/2 max
t/2<s<t

∥bε(·, s)∥α1 max
t/2<s<t

∥bε(·, s)∥1−α
Mp .

Analogously, we obtain the following estimates for W ε and bε ,
where we assume 1 < 2p(p + 2)−1 < r < 2 and 0 ≤ β ≤ 1 such
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t

∥

∥

S

λ

∥

i

w

hat
1
r

= β +
1 − β

p
:

∥bε(·, t)∥1 ≤ ∥b0∥M + 2κ(ν + κ)−1
∫ t

0
∥W ε(·, s)∥1ds, (4.4)

bε(·, t)∥Mp ≤ ∥b0∥Mp + 2κ(ν + κ)−2+1/p

×

∫ t

0
s−1+1/p

{(ν + κ)s}1−1/p
∥W ε(·, s)∥Mpds,

(4.5)

W ε(·, t)∥1 ≤ ∥W0∥M + C(ν + κ)−1

×

∫ t

0
(t − s)−1/2s−1/2 max

s/2<τ<s
{(ν + κ)τ }1/2

× ∥uε(·, τ )∥∞∥W ε(·, τ )∥1ds

+ 8κ2ν(ν + κ)−1
∫ t

0
max

s/2<τ<s
∥bε(·, τ )∥1ds, (4.6)

and

{(ν + κ)t}1−1/p
∥W ε(·, t)∥Mp

≤ C∥W0∥M

+ C(ν + κ)−1t1−1/p
∫ t

0
(t − s)−1/2−1/r+1/ps−3/2+1/r (4.7)

× max
s/2<τ<s

{
{(ν + κ)τ }1/2∥uε(·, τ )∥∞∥W ε(·, τ )∥β1

× ({(ν + κ)τ }1−1/p
∥W ε(·, τ )∥Mp )1−β

}
ds

+ 8κ2ν(ν + κ)−1/pt1−1/p
∫ t

0
e−

4κ2
ν+κ (t−s) max

s/2<τ<s
∥bε(·, τ )∥Mpds.

etting Π (W0, b0) = max{∥W0∥M, ∥b0∥M, ∥b0∥Mp},

(t) = sup
s≤t

{
{(ν + κ)s}1/2∥uε(·, s)∥∞, ∥W ε(·, s)∥1,

{(ν + κ)s}1−1/p
∥W ε(·, s)∥Mp , ∥bε(·, s)∥1, ∥bε(·, s)∥Mp

}
,

and taking into account Lemma 2.1, we can rewrite the estimates
(4.3)–(4.7) in the following way

{(ν + κ)t}1/2∥uε(·, t)∥∞ ≤ C(ν + κ)−1Π (W0, b0)

+ C
(

(ν + κ)−3/2

+ (2κ)1/2(ν + κ)−3/2−1/2p
)
λ(t)2

+ C(ν + κ)1/2t1/2λ(t),

bε(·, t)∥1 ≤ Π (W0, b0) + 2κ(ν + κ)−1tλ(t),

∥bε(·, t)∥Mp ≤ Π (W0, b0) + 2κ(ν + κ)−2+1/pt1/pλ(t),

∥W ε(·, t)∥1 ≤ Π (W0, b0)+C(ν+κ)−1λ(t)2 +8κ2ν(ν+κ)−1tλ(t),

and
{(ν + κ)t}1−1/p

∥W ε(·, t)∥Mp ≤ CΠ (W0, b0) + C(ν + κ)−1λ(t)2

+ 2ν(ν + κ)1−1/pt1−1/pλ(t).

Therefore,
0 ≤ λ(t) ≤ C0(ν, κ)Π (W0, b0) + C1(ν, κ, p)

×

[
t + t1/2 + t1/p + t (p−1)/p

]
λ(t) + C2(ν, κ, p)λ(t)2,

or equivalently

0 ≤ C0Π (W0, b0)+
{
C1

[
t+t1/2+t1/p+t (p−1)/p

]
−1

}
λ(t)+C2λ(t)2,
12
where C0, C1 and C2 are given by

C0 = C(ν + κ)−1
+ C + 3,

C1 = max
{

C(ν + κ)1/2, 2κ(ν + κ)−1
+ 8κ2ν(ν + κ)−1,

2κ(ν + κ)−2+1/p, 2ν(ν + κ)1−1/p
}

and

C2 = C((ν + κ)−3/2
+ (2κ)1/2(ν + κ)−3/2−1/2p) + 2C(ν + κ)−1.

Thus, for initial data such that 4C0C2Π (W0, b0) < 1, there
exists T ∗ > 0 for which⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C1

[
t + t1/2 + t1/p + t (p−1)/p

]
− 1 < 0,

σ =

{
C1

[
t + t1/2 + t1/p + t (p−1)/p

]
− 1

}2

−4C0C2Π (W0, b0) > 0,

(4.8)

hold for all t ∈ [0, T ∗
]. Indeed, since lim

t→0+
C1

[
t + t1/2 + t1/p

+ t (p−1)/p
]

= 0, there exists δ > 0 such that t ∈ (0, δ) implies

C1

[
t + t1/2 + t1/p + t (p−1)/p

]
< 1 − 2

√
C0C2Π (W0, b0), proving

nequality (4.8) for 0 < T ∗
≤ δ. Therefore, since λ is continuous,

e conclude that 0 ≤ λ ≤
1

2C2
. This completes the proof. ■

With these estimates, all the results from the previous section
can be extended to the case under discussion considering t >
0. However, this solution must be understood in a weak sense,
although a bootstrap a posteriori argument provides that the
solutions will be regular, see [36].

Definition 4.1. Given W0, b0 ∈ M(R2) and T > 0, we say that
(W , u, b), satisfying the initial conditions, is a weak solution of
the system (1.13) if

(i) u = K ∗

(
1

ν + κ
W +

2κ
ν + κ

b
)
,

(ii) The following equalities∫ T

0

∫
R2

(
∂tϕ−(ν + κ)∆ϕ +

4κ2

ν + κ
ϕ + (u · ∇)ϕ

)
dW

= −

∫
R2
ϕ(·, 0) dW0 +

8κ2ν

ν + κ

∫ T

0

∫
R2
ϕ db,∫ T

0

∫
R2

(
∂tφ +

4κν
ν + κ

φ + (u · ∇)φ
)

db

= −

∫
R2
φ(·, 0) db0 +

2κ
ν + κ

∫ T

0

∫
R2
φ dW .

(4.9)

hold for every ϕ ∈ C2
0 (R

2
× [0, T )) and φ ∈ C1

0 (R
2
× [0, T )).

Indeed, taking into account that every uniformly bounded
sequence in L1 admits a subsequence which converges weak-∗
as measures in L∞(0, T ∗

;M(R2)) together with Proposition 4.1,
then an identical argument to that of Proposition 3.2 allows to
conclude the following result.

Proposition 4.2. The sequence (W ε, uε, bε)ε>0 of solutions to
system (2.9) admit a subsequence, still denoted by (W ε, uε, bε) ,
ε>0
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uch that
ε ⇀ W weak-∗ as measures in L∞(0, T ∗

;M(R2)), (4.10)
ε ⇀ b weak-∗ as measures in L∞(0, T ∗

;M(R2)), (4.11)
ε

−→ u uniformly in compact set of R2
× (0, T ∗). (4.12)

roposition 4.3. The triple (W , u, b) given by Proposition 4.2 is a
eak solution of system (1.13).

roof. The regularized solutions (W ε, uε, bε)ε>0 satisfy the sys-
em in the weak form∫ T∗

0

∫
R2

(
∂tϕ − (ν + κ)∆ϕ +

4κ2

ν + κ
ϕ

)
W εd2x dt

+

∫ T∗

0

∫
R2

Mε

((
(uε · ∇)ϕ(x, t)

)
W ε

)
d2x dt

= −

∫
R2
ϕ(·, 0)W ε

0 d2x

+
8κ2ν

ν + κ

∫ T∗

0

∫
R2

Mε(bε)ϕ d2x dt,∫ T∗

0

∫
R2

(
∂tφ +

4κν
ν + κ

φ + (uε · ∇)φ
)
bε d2x dt

= −

∫
R2
φ(·, 0)bε0 dx +

2κ
ν + κ

∫ T∗

0

∫
R2

W εφ d2x dt.

ote that the explicit dependence of the variables (x, t) in the
irst equation for ϕ indicates that the function is not affected
y the time-delay of Mε . From the estimates for W ε and bε in

Morrey spaces (Proposition 4.1), we deduce that the velocity is
equicontinuous in space and time for t > 0. Furthermore, the
estimates in Morrey spaces of functions imply that there are no
concentrations in the diagonal (x = y) towards Dirac masses at
the limit of Mε((K (x − y)W ε(y, t))W ε)(x, t)∇xϕ(x, t), in compact
sets of R2

× R2
× (0, T ∗), as ε → 0. Then, the following

convergence property for the non-linear terms∫ T∗

0

∫
R2

Mε

((
(uε · ∇)ϕ(x, t)

)
W ε

)
d2x dt

→

∫ T∗

0

∫
R2
(u · ∇)ϕ dW

hold true, see [37,38] for similar arguments. Passing to the limit
in the linear terms does not present additional difficulty. Thus,
we have proved the proposition. ■

The nonconcentration argument from the preceding proof and
the convolution properties in Morrey spaces with singular kernels
allow us to deduce the following result.

Corollary 4.1. If W0 ∈ M(R2) and b0 ∈ M(R2) ∩ Mp(R2), with
p > 2, then the system (1.13) has a global weak solution such that
for any T > 0,

{(ν + κ)t}1/2u ∈ L∞(0, T ; L∞(R2)).

Since the uniqueness and stability of solution are entirely
analogous to the previous case, we have proved Theorem 1.2.

In the introduction to this paper we have mentioned the case
of vortex sheets as a motivation to consider initial data in Morrey
spaces. Classically this configuration is associated with vorticity.
Indeed, as mentioned before, let δS be the Dirac measure located
on the curve S in R2, with no end points parametrized by a
piecewise C1 function ζ : I → R2 being I an open real interval,
and α a function on the curve S which represents its density or
strength. In the case of vortex sheet structure of vorticity, the
13
initial data is a measure of the type αδS . These measures belong
to Ms(R2), where s depends on the regularity of α and on the
regularity of the tangent τ to S according to the following result.

Lemma 4.1. If the initial vorticity ω0 is given by αδS and τα ∈

Lp(S)2, with p ≥ 1, then ω0 ∈ Ms(R2), with s =
2p′

2p′ − 1
and p′ is

defined as 1
p′ +

1
p = 1.

Proof. By definition of Dirac delta on a curve, we have

⟨αδS,ϕ⟩ =

∫
I
ϕ(ζ (ξ )) · τ (ζ (ξ ))α(ζ (ξ )) dξ, ∀ ϕ ∈ C0(R2)2,

here · is the inner product. Therefore

VB(x,R)(αδS ) ≤

∫
ζ (I)∩B(x,R)

|ϕ(ζ (ξ ))| |τ (ζ (ξ ))α(ζ (ξ ))| dξ

≤ ∥ϕ∥L∞∥τα∥Lp |ζ (I) ∩ B(x, R)|1/p
′

≤ ∥ϕ∥L∞∥τα∥LpR1/p′

.

hen, for s′ = 2p′ we have
1
s

+
1
s′

= 1 and we conclude that

TVB(x,R)(αδS) ≤ ∥ϕ∥L∞∥τα∥LpR2/s′ and αδS ∈ Ms(R2). ■

5. Conclusions

We have studied the well-posedness and asymptotic behavior
of a two-dimensional incompressible micropolar fluid model with
null angular viscosity in terms of the evolution of the singular
initial vorticity. Using a new quantity relating the vorticity and
the angular velocity as well as integral techniques, we establish
the existence of weak solutions local or global in time. Similar
arguments lead to prove uniqueness and stability of solutions.
The physically relevant case of vortex sheets and, more generally,
the case of measures as initial data in Morrey spaces are included
in this analysis. The combination of diffusion and non-linear
phenomena such as transport and reaction at macro scales, as
well as the influence of the microstructure, is interesting when
studying the propagation or persistence of singularities. In this
case, viscosity helps to regularize macroscopic singular structures
such as vortex sheets, although the microstructure, governed by
a transport equation, is not regularized.

Note that in the particular case of Lipschitz sheets, p = ∞

in Lemma 4.1, the initial vorticity belongs to M2(R2). Also, we
can consider extending the structure of vortex sheet to the initial
configuration of W , which is included in the functional frame-
work studied in this paper. This possibility involves not only the
vorticity, but also affects the microstructure represented by b.
he question of verifying whether conditions for persistence in
ime might exist for this structure, or in general analyzing its
ynamics on the micro-scale associated with b is of great interest,
ut requires some different analysis.
Finally, we mention that this work opens various possibilities

or future research when the interaction kernel is replaced by
thers that include different effects. In particular, it might be
nteresting to study those models that take into account rota-
ional or potential kernels instead of the Biot–Savart one, as done
n [39,40] for the Euler equations. This analysis, together with
ppropriate numerical simulations, allows us to include some
henomena like aggregation or dispersion which are very com-
on in nature, for instance, in swarming or soft microstructure
on-linear phenomena. In the context of swarming, the evolution
f the population density is usually modeled by a convection–
iffusion equation, while for dynamic models we find a coupled
quation of the same type for the velocity field. Thus, we are faced
ith systems that allow a similar treatment to that of the mi-
ropolar fluid models studied here. In particular, after considering
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he estimates obtained above and some of the ideas presented
n [39,40], we can study two-dimensional swarming problems by
xtending the arguments developed in this paper.
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