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a b s t r a c t

Given a compact Riemannian manifold with density M without boundary and
the real line R with constant density, we prove that isoperimetric regions of large
volume in M × R with the product density are slabs of the form M × [a, b]. We
previously prove, as a necessary step, the existence of isoperimetric regions in any
manifold of density where a subgroup of the group of transformations preserving
weighted perimeter and volume acts cocompactly.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and preliminaries

In recent years, isoperimetric problems have been considered in manifolds with density. One of the most
interesting spaces of this type is the Gauss space, the Euclidean space Rn with the Gaussian density

(x) := exp(−π|x|2). Borell [6] and Sudakov and Tirel’son [29] independently proved in 1974 and 1975
that half-spaces minimize perimeter under a volume constraint for this density. A new proof was given
in 1983 by Ehrhard [10] using symmetrization. In 1997 Bobkov [4] proved a functional version of this
isoperimetric inequality, later extended to the sphere and used to prove isoperimetric estimates for the unit
cube by Barthe and Maurey [2]. Following [4], Bobkov and Houdré [5] considered “unimodal densities”with
finite total measure on the real line. These authors explicitly computed the isoperimetric profile for such
densities and found some of the isoperimetric solutions. Gromov [14,15] studied manifolds with density as
“metric measure spaces” and mentioned the natural generalization of mean curvature obtained by the first
variation of weighted area. Bakry and Ledoux [1] and Bayle [3] proved generalizations of the Lévy–Gromov
isoperimetric inequality and other geometric comparisons depending on a lower bound on the generalized
Ricci curvature of the manifold. Isoperimetric comparison results in manifolds with density were considered
by Maurmann and Morgan [17]. Existence of isoperimetric sets in Rn with density under various hypotheses
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n the growth of the density were proven by Morgan and Pratelli [23] and Milman [18], see also De Philippis,
ranzina and Pratelli [8]. For regularity of isoperimetric regions with density see Sect. 3.10 in paper of
organ [19] and see also Pratelli and Saracco [24]. Boundedness of isoperimetric regions was studied by
inti and Pratelli [7] and Pratelli and Saracco [25]. Symmetrization techniques in manifolds with density
ere developed by Ros [27] and Morgan et al. [22].
For nice surveys on manifolds with density the reader is referred to [3,20,21] and the references therein.
In this paper, (M, g,Ψ) will denote a manifold with density without boundary, where g is a Riemannian

etric on M and Ψ : M → R is a smooth function. We define the weighted volume of a set by

volΨ (E) :=
∫

E

eΨdM, (1.1)

here dM is the Riemannian volume element on (M, g). The weighted area of a smooth hypersurface Σ is
efined by

areaΨ (Σ ) :=
∫
Σ

eΨdΣ , (1.2)

here dΣ is the Riemannian area element on Σ .
If E ⊂ M , we define the weighted perimeter of E in the manifold with density (M, g,Ψ) by

PΨ (E) := sup
{∫

E

divΨ X dM : X ∈ X∞
0 (M), |X| ⩽ 1

}
, (1.3)

here X∞
0 (M) is the set of smooth vector fields on M with compact support and

divΨ (X) = div(eΨX), (1.4)

and div is the Riemannian divergence in (M, g). If E has smooth boundary Σ , then PΨ (E) = areaΨ (Σ ),
ee [23].

Given a manifold with density, we shall denote by Isom(M, g,Ψ) the group of isometries of (M, g)
reserving the function Ψ (i.e., maps f : M → M such that Ψ ◦ f = Ψ). Such isometries preserve the
eighted area and volume.
The isoperimetric profile of (M, g,Ψ) is the function I : [0, +∞) → R+ defined by

I(v) = inf{PΨ (E) : volΨ (E) = v}. (1.5)

A set E ⊂ M of finite weighted perimeter is isoperimetric if PΨ (E) = I(volΨ (E)). This means that E

minimizes the weighted perimeter under a weighted volume constraint. Regularity of isoperimetric sets was
considered by Morgan and Pratelli [23].

Given a manifold with density (M, g,Ψ), we shall consider the cylinders with density (M ×Rk, g×g0,Ψ ×
1), where Rk is k-dimensional Euclidean space with its standard Riemannian metric g0, and (Ψ × 1)(p, x) =
Ψ(p) for every (p, x) ∈ M ×Rk. Given v ∈ Rk, we define tv : M ×Rk → M ×Rk by tv(p, x) := (p, x + v) for
any (p, x) ∈ M × Rk. The set G := {tv : v ∈ Rk} is contained in Isom(M × Rk, g × g0,Ψ × 1). In case M is
a compact manifold, the quotient of M × Rk by Isom(M × Rk, g × g0,Ψ × 1) is the compact base M of the
product. We focus in this paper in the case k = 1.

The aim of this paper is to prove that isoperimetric sets in (M × R, g × g0,Ψ × 1) are slabs of the form
M × [a, b], where a, b ∈ R, a < b. This result is proven in Theorem 3.3 in Section 3. As a necessary previous
step in our proof we must show existence of isoperimetric regions in manifolds with density such that the
action of Isom(M, g,Ψ) is cocompact, that is, the quotient (M, g,Ψ)/ Isom(M, g,Ψ) is compact, like in the
case of the cylinders considered in Section 3. The proof of existence is based on Galli and Ritoré’s in contact
sub-Riemannian manifolds, see [12]. Since this proof has now become standard, we check in Section 2 that
the main ingredients are available: a relative isoperimetric inequality for uniform radii, see Theorem 2.3; the
2
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oubling property, see Theorem 2.4; and a deformation result for sets of finite perimeter, see Theorem 2.5.
n Theorem 3.3 we characterize the isoperimetric regions of large volume in a cylinder with density M × R,
here M is a compact Riemannian manifold with density, the real line R is endowed with a constant density,
nd the product with the product density. In the non-weighted Riemannian case Duzaar and Steffen [9]
roved that in M × R isoperimetric sets of large volume are of the form M × [a, b], where a, b ∈ R. For
igher dimensional Euclidean factors the problem was considered in [26], where the authors proved that the
soperimetric solutions of large volume in the Riemannian product M × Rk are of the form M × B(x, r),
here B(x, r) is an Euclidean ball, see also [13].
For more results about variational problems in cylinders the reader is referred to [11] and the references

n [28].

. Existence of isoperimetric regions in M

In this section we prove the existence of isoperimetric sets, for any volume, in a manifold with density
M, g,Ψ) such that Isom(M, g,Ψ) acts cocompactly. The scheme of proof devised by Galli and Ritoré in [12]
pplies to our situation, provided we are able to show that

• There exists r0 > 0 such that a relative isoperimetric inequality holds in all balls B(p, r), with p ∈ M ,
0 < r ⩽ r0, with a uniform constant.

• The manifold is doubling. This means the existence of r0 > 0 and a uniform constant CD > 0 such that
volΨ (B(p, 2r)) ⩽ CDvolΨ (B(p, r)) for all p ∈ M and 0 < r ⩽ r0.

• A deformation result for finite perimeter sets, see Theorem 2.5, holds in (M, g,Ψ).

ssuming these results hold in (M, g,Ψ), and using the well-known techniques in [12] we have the following
esult.

heorem 2.1. In a manifold with density (M, g,Ψ) such that Isom(M, g,Ψ) acts cocompactly, isoperimetric
ets exist for any given volume.

To prove the required ingredients needed for Theorem 2.1 we start with a preliminary result. We recall
hat the convexity radius conv(K) of a subset K of a Riemannian manifold M is the infimum of positive
umbers r such that the geodesic open ball B(p, r) is convex for every p ∈ K. We call d the Riemannian
istance in (M, g).

emma 2.2. Let (M, g) be a Riemannian manifold, and K ⊂ M a compact subset. Let r0 = conv(K). Then
here exist functions λ, Λ : [0, r0] → R such that 1 + λ, 1 + Λ are positive, limr→0 λ(r) = limr→0 Λ(r) = 0,
nd

(1 + λ(r)) |x − y| ⩽ d(expp(x), expp(y)) ⩽ (1 + Λ(r)) |x − y|, (2.1)
for any p ∈ K and x, y ∈ B(0, r0) ⊂ TpM .

Proof. Given p ∈ K, consider a compact coordinate neighborhood U around p with a global orthonormal
basis defined on U . Given q ∈ U , let gq

ij be the components of the Riemann tensor in the coordinate
neighborhood defined by the exponential map expq : B(0, r0) ⊂ TqM → B(q, r0) and the global orthonormal
basis. The functions gq

ij depend smoothly on q. We define

αU (r) := min
q∈U

{( n∑
i,j=1

gq
ij(z) vivj

) 1
2

: |z| ⩽ r < r0,

n∑
i=1

v2
i = 1

}
,

βU (r) := max
q∈U

{( n∑
gq

ij(z) vivj

) 1
2

: |z| ⩽ r < r0,

n∑
v2

i = 1
}

.

(2.2)
i,j=1 i=1

3
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t is easy to check that αU (r) is decreasing, βU (r) is increasing, and that

lim
r→0

αU (r) = lim
r→0

βU (r) = 1.

Given q ∈ U , we take x, y ∈ B(0, r0). To compute the distance d between the points expq(x), expq(y), it
s enough to consider curves inside the convex ball B(0, r). Let γ : I → B(0, r0) be a curve joining x and y.
hen

d(expq(x), expq(y)) = L(expq ◦γ) =
∫

I

( n∑
i,j=1

gq
ij(γ(t)) γ′

i(t)γ′
j(t)

) 1
2
dt. (2.3)

bserve that

αU (r)
( n∑

i=1
γ′

i(t)2
)1/2

⩽
n∑

i,j=1
gq

ij(γ(t)) γ′
i(t)γ′

j(t) ⩽ βU (r)
( n∑

i=1
γ′

i(t)2
)1/2

. (2.4)

he left quantity is larger than or equal to αU (r) |x − y|. Since γ is an arbitrary curve joining x and y, this
mplies αU (r) |x − y| ⩽ d(expq(x), expq(y)). On the other hand,

d(expq(x), expq(y)) ⩽ L(expq ◦γ) ⩽ βU (r) |x − y|,

o we have
αU (r) ⩽

d(expq(x), expq(y))
|x − y|

⩽ βU (r). (2.5)

he result follows by covering the compact set K by a finite number of coordinate neighborhoods U , and
aking α(r) as the minimum of the αU (r) and β(r) as the maximum of the βU (r). Setting λ(r) = α(r) − 1,
(r) = β(r) − 1 the result follows. □

Using Lemma 2.2 we obtain as corollaries the existence of a uniform relative isoperimetric inequality and
the existence of a doubling constant.

Theorem 2.3 (Relative Isoperimetric Inequality in (M, g,Ψ)). Let (M, g,Ψ) be an n-dimensional manifold
with density and K ⊂ M a compact subset. Let r0 > 0 be the radius obtained in Lemma 2.2. Then for all
p ∈ K and E ⊂ B(p, r) with 0 < r ⩽ r0, there exists a positive constant C > 0 not depending on p, such that

PΨ (E, B(p, r)) ⩾ C · min
{

volΨ (E), volΨ (B(p, r) \ E)
}(n−1)/n

. (2.6)

In particular, (2.6) holds in the whole manifold if Isom(M, g,Ψ) acts cocompactly on M , see Lemma 3.5
in [12].

Proof. By Lemma 2.2, for 0 < r ⩽ r0, the exponential map f = expp : B(0, r) → B(p, r) is a
diffeomorphism. Let F = f−1(E). Then

volΨ (f(F )) = volΨ (E) =
∫

E

eΨdHn, (2.7)

where Hn is the n-dimensional Hausdorff measure in (M, g). Consider positive function constants a, b > 0
so that a ⩽ eΨ ⩽ b in B(p, r0) for all p ∈ K. So we have

a · Hn(E) = a

∫
E

dHn ⩽
∫

E

eΨdHn ⩽ b

∫
E

dHn = b · Hn(E). (2.8)

s f is Lipschitz, Lemma 2.2 in dimension n implies

a(1 + λ(r))nHn
0 (F ) ⩽ a · Hn(E) ⩽ volΨ (E) ⩽ b · Hn(E) ⩽ b(1 + Λ(r))nHn

0 (F ), (2.9)

where Hn is the n-dimensional Hausdorff measure with respect to the Euclidean metric.
0

4
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On the other hand, by § 2 in [23],

PΨ (E, B(r, p)) =
∫

∂⋆E∩B(p,r)
eΨdHn−1,

where ∂⋆E is the reduced boundary of E. And therefore,

PΨ (E, B(p, r)) ⩽ bHn−1(∂⋆E ∩ B(p, r))
⩽ b(1 + Λ(r))n−1Hn−1

0 (∂⋆F ∩ B(0, r))
= b(1 + Λ(r))n−1P0(F, B(0, r)),

here P0 is the Euclidean perimeter. By a similar computation we obtain

PΨ (E, B(p, r)) ⩾ a(1 + λ(r))n−1P0(F, B(0, r)).

hen
a(1 + λ(r))n−1P0(F, B(0, r)) ⩽ PΨ (E, B(p, r)) ⩽ b(1 + Λ(r))n−1P0(F, B(0, r)).

bserve that

PΨ (E,B(p, r)) ⩾ a(1 + λ(r))n−1P0(F, B(0, r))

⩾ a(1 + λ(r))n−1 · C0 · min
{

Hn(F ), Hn(B(0, r) \ F )
}(n−1)/n

⩾ a(1 + λ(r))n−1 · C0 · min
{

volΨ (E)
(b(1 + Λ(r)))n

,
volΨ (B(p, r) \ E)

(b(1 + Λ(r)))n

} n−1
n

,

here C0 is the constant in the relative isoperimetric (Poincaré) inequality in Euclidean balls. Thus,

PΨ (E, B(p, r)) ⩾ a(1 + λ(r))n−1

b(1 + Λ(r))n−1 · C0 · min
{

volΨ (E), volΨ (B(p, r) \ E)
} n−1

n . □

In the following result we prove that (M, g,Ψ) is a doubling metric space.

Theorem 2.4 (Doubling Property). Let (M, g,Ψ) be an n-dimensional manifold with density and K ⊂ M a
ompact subset. Let r0 > 0 be the radius obtained in Lemma 2.2. Then there exists a constant CD > 0, only
epending on K, such that for all x0 ∈ K and 0 < r ⩽ r0/2 we have

volΨ (B (x0, 2r)) ⩽ CDvolΨ (B (x0, r)). (2.10)

In particular, (2.10) holds in the whole manifold if Isom(M, g,Ψ) acts cocompactly on M .

roof. From Eq. (2.9) we know that, for r0, 0 < r < r0, we must have

AHn
0 (F ) ⩽ volΨ (E) ⩽ BHn

0 (F ) ,

where A = a (1 + λ (r))n, B = b (1 + Λ (r))n and expx0 (F ) = E for all x0 ∈ M .

In particular,
AHn

0 (B (0, 2r)) ⩽ volΨ (B (x0, 2r)) ⩽ BHn
0 (B (0, 2r))

and
AHn

0 (B (0, r)) ⩽ volΨ (B (x0, r)) ⩽ BHn
0 (B (0, r)) .

Thus
volΨ (B (x0, 2r))
volΨ (B (x0, r)) ⩽

BHn
0 (B (0, 2r))

AHn
0 (B (0, r)) ⩽

B

A

Hn
0 (B (0, 1)) · (2r)n

Hn
0 (B (0, 1)) · (r)n = 2n B

A
.

herefore, volΨ (B (x0, 2r)) ⩽ CDvolΨ (B (x0, r)) with CD = 2nsup
K

B
A . Note that CD is finite by Lemma 2.2

nd strictly positive by Eq. (2.1). □
5
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heorem 2.5 (Deformation of Finite Perimeter Sets). Let E ⊂ M be a set of locally finite weighted
perimeter. Assume that PΨ (E, B(p, r)) > 0 for some p ∈ M and r > 0. Then there exists a deformation
{Et}t∈(−δ,δ) of E, with E0 = E, by sets of locally finite perimeter, and a constant C = C(p, r, δ) such that

(1) volΨ (Et) = volΨ (E) + t,
(2) E△Et ⊂ B (p, r),
(3) |PΨ (E) − PΨ (Et)| ⩽ C |volΨ (E) − volΨ (Et)| ⩽ C |volΨ (E△Et)|.

Proof. Since E is a set of locally finite perimeter and PΨ (E, B (p, r)) > 0 there exists a vector field X,
with ∥X∥ ⩽ 1, such that X ∈ X∞

0 (B (p, r)) and
∫

E
divΨ (X) dM > 0. Let {φs}s∈R be the flow associated to

X. Since the map
s ↦→ volΨ (φs(E))

is differentiable and its derivative at s = 0 is
∫

E
divΨ (X)dM > 0, we can apply the inverse function theorem

to find δ > 0 and a function g : (−δ, δ) → R such that g(0) = 0 and volΨ (φg(t)(E)) = volΨ (E) + t. Let
Et = φg(t) (E). This proves (1). If necessary we can reduce δ so that, for |t| ⩽ δ we have

⏐⏐volΨ (Et ∩ B(p, r)) − volΨ (E ∩ B(p, r))
⏐⏐ ⩾ ⏐⏐⏐⏐ t

2

(∫
E∩B(p,r)

divΨ X dM

)−1⏐⏐⏐⏐. (2.11)

As φt(q) = q for all q ̸∈ B(p, r) and t ∈ R we trivially have E△Et ⊂ B(p, r) for all t ∈ R. This proves
2).

To prove (3) note that, for all t ∈ (−δ, δ), we have

PΨ (Et, B(p, r)) = PΨ (φg(t)(E), B(p, r)) =
∫

∂⋆φg(t)(E)∩B(p,r)
eΨdHn

=
∫

∂⋆E∩B(p,r)

(eΨ ◦ φt)
eΨ

eΨ |Jac(φg(t))|dHn.

Hence we have

|PΨ (Et, B(p, r)) − PΨ (E, B(p, r))| =

=
⏐⏐⏐⏐ ∫

∂⋆E∩B(p,r)

(eΨ ◦ φg(t))
eΨ

eΨ |Jac(φg(t))|dHn −
∫

∂⋆E∩B(p,r)
eΨdHn

⏐⏐⏐⏐
=

⏐⏐⏐⏐ ∫
∂⋆E∩B(p,r)

( (eΨ ◦ φg(t))
eΨ

|Jac(φg(t))| − 1
)

eΨdHn

⏐⏐⏐⏐
⩽ sup

t∈(−δ,δ)
q∈B(p,r)

⏐⏐⏐⏐eΨ ◦ φg(t)(q)
eΨ (q) |Jac(φg(t))(q)| − 1

⏐⏐⏐⏐ PΨ (E, B(p, r)).

Taking into account (2.11) we have, for t ∈ (−δ, δ)\{0},

|PΨ (Et, B(p, r)) − PΨ (E, B(p, r))|
|volΨ (Et ∩ B(p, r)) − volΨ (E ∩ B(p, r))| ⩽

2h(t, p, r, δ) · PΨ (E, B(p, r))⏐⏐⏐⏐⏐
(∫

E∩B(p,r) divΨ X dM

)−1
⏐⏐⏐⏐⏐

< C,

where

h(t, p, r, δ) = 1
|t|

sup
q∈B(p,r)

⏐⏐⏐⏐⏐eΨ ◦ φg(t)(q)
eΨ (q) | Jac(φg(t))(q)| − 1

⏐⏐⏐⏐⏐

t∈(−δ,δ)\{0}

6
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nd C is a positive constant which depends on p, r and δ. Note that (3) is trivially true for t = 0 and any
onstant C. So we have

|PΨ (Et, B(p, r)) − PΨ (E, B(p, r))| ⩽ C |volΨ (Et ∩ B(p, r)) − volΨ (E ∩ B(p, r))| ,

nd this fact together with (2) implies the inequality of the left side of (3). Note that (3) is trivially true for
= 0 and any constant C.

On the other hand, for any positive measure µ we have⏐⏐µ(E) − µ(E′)
⏐⏐ ⩽ µ(E△E′).

his completes the proof of (3). □

To conclude this section, we sketch the proof of Theorem 2.1. Since this proof has become standard
fter [12], we include some basic guidelines for reader’s convenience.

roof of Theorem 2.1. Using the relative isoperimetric inequality (2.6), the doubling property (2.10) and
he hypothesis that Isom(M, g,Ψ) acts cocompactly on M , an isoperimetric inequality for small volumes can
e obtained in a standard way, see Lemma 3.10 in [12]. Combining the latter with the deformation property
f finite perimeter sets proven in Theorem 2.5, and using again that Isom(M, g,Ψ) acts cocompactly, we
an prove that the isoperimetric solutions are bounded, see Lemma 4.6 in [12]. The Structure Theorem for
inimizing sequences of sets of positive volume v > 0, see Proposition 5.1 in [12], works also in our case
ithout modification. From them the Concentration Lemma 6.2 in [12], and the Existence Theorem 6.1

n [12] work without relevant modifications. □

. Isoperimetric regions in M × R

In this section we prove existence of isoperimetric regions in a cylinder with density for large volumes.
e shall need the following preliminary results in the proof of Theorem 3.3.

emma 3.1. Let (M, g,Ψ) be a compact manifold with density. Then there exist constants c1, c2 > 0, only
epending on M , such that, for any set E ⊂ M of finite perimeter with volΨ (E) ⩽ volΨ (M)/2 we have

(1) PΨ (E) ⩾ c1volΨ (E), and
(2) PΨ (E) ⩾ c2volΨ (E)(n−1)/n.

roof. It follows easily since the isoperimetric profile of (M, g,Ψ) is strictly positive and asymptotic to
he function t ↦→ t(n−1)/n for t > 0 small. □

We say that E ⊂ N = M ×R is a normalized set if the intersection Ep = E ∩ ({p}×R) is either empty or
vertical segment centered at (p, 0) for all p ∈ M . Notice that a normalized set is invariant by the reflection
: M × R → M × R defined by σ(p, t) = (p, −t), an isometry of (M × R, g × g0) preserving the weighted

olume. Given any set E ⊂ N , we denote by E∗ the projection of E over M . From now on we denote (Et)∗

by E∗
t to simplify the notation. Notice that for normalized sets one has E∗

t ⊂ E∗
s whenever |s| ⩽ |t|. We

denote by P and vol the perimeter and volume in the manifold with density (M × R, g × g0,Ψ × 1).

Lemma 3.2. If E ⊂ N is a normalized isoperimetric region and volΨ (M \ E∗) > 0 then there exists a
onstant c > 0 independent of vol(E) such that
P (E) ⩾ cvol(E). (3.1)
7
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roof. For every t ∈ R we define Mt = M ×{t} and Et = E ∩Mt. As E is normalized we can choose τ ⩾ 0
o that volΨ (E∗

t ) ⩽ volΨ (M)/2 for all t ⩾ τ and volΨ (E∗
t ) > volΨ (M)/2 for all t ∈ [0, τ) if τ > 0.

Let us consider first the case τ > 0.
We apply the coarea formula and Lemma 3.1 (1) to obtain

P (E) ⩾ P (E, M × [τ, ∞)) ⩾
∫ ∞

τ

PΨ (E∗
s )ds

⩾ c1

∫ ∞

τ

volΨ (E∗
s )ds

= c1vol(E ∩ (M × [τ, ∞))).

(3.2)

On the other hand, for t ∈ [0, τ) we have

volΨ (M \ E∗
t ) ⩾ P (E, M × (0, t)), (3.3)

since otherwise

volΨ (M) = volΨ (M \ E∗
t ) + volΨ (E∗

t )
< P (E, M × (0, t)) + P (E, M × (t, ∞))
⩽ P (E)/2.

This is a contradiction since comparison of E with a slab M × [a, b] of the same volume implies that
P (E) ⩽ P (M × [a, b]) = 2volΨ (M). This proves (3.3). Calling y(t) = volΨ (M \ E∗

t ), using the coarea
ormula and Lemma 3.1(2), we may rewrite the inequality (3.3) as

y(t) ⩾ c2

∫ t

0
y(s)(n−1)/nds.

s y(t) > 0 for all t ∈ [0, τ) we have
y(t) ⩾

(
c2
n

)n
tn.

n particular, taking limits when t → τ− and using that y(t) is non-decreasing

volΨ (M) ⩾ volΨ (M \ E∗
τ ) = y(τ) ⩾

(
c2
n

)n
τn.

Hence
τ ⩽

nvolΨ (M)1/n

c2
nd so

volΨ (E ∩ (M × (0, τ))) =
∫ τ

0
volΨ (E∗

s )ds ⩽ volΨ (E∗
0 )τ

⩽ volΨ (E∗
0 )nvolΨ (M)1/n

c2

⩽
nvolΨ (M)1/n

c2

P (E)
2 .

(3.4)

he last inequality follows 2volΨ (E∗
0 ) ⩽ P (E), which holds since E is normalized and so P (E) is the sum

f a lateral area that projects to some set of weighted measure zero on M and the area of the graphs of two
C1 functions u and −u over some set Ω ⊂ M of full measure in E∗. So we have

volΨ (E∗) = volΨ (Ω) =
∫
Ω

eΨdM ⩽
∫
Ω

eΨ
√

1 + |∇u|2dM ⩽
P (E)

2 .

ence (3.1) follows from (3.2) and (3.4).
It remains to consider the case τ = 0. In this case, Eq. (3.2) alone implies the linear isoperimetric

nequality (3.1) since vol (E ∩ (M × [0, +∞))) = 1 vol (E) as E is normalized. □
Ψ 2 Ψ

8



K. Castro Nonlinear Analysis 217 (2022) 112726

T
i

P
i

f

s

w
G

S
i
s

P

H
B

heorem 3.3. Let (M, g,Ψ) be a compact manifold with density. For large volumes, isoperimetric regions
n the cylinder (M ×R, g × g0,Ψ × 1) are slabs of the form M × [a, b], where [a, b] ⊂ R is a bounded interval.

roof. Existence of isoperimetric regions in N = M × R is guaranteed by Theorem 2.1. If E is an
soperimetric region in N , comparison with slabs implies

P (E) ⩽ 2volΨ (M), (3.5)

or all volumes v > 0.
We take an isoperimetric set E ⊂ M . Let sym(E) be its Steiner symmetrization with respect to M ×{0},

ee [16, § 14.1]. As

vol(E) =
∫

M

{∫
Ep

eΨ×1dt

}
dM =

∫
M

eΨ(p)|Ep|dM(p) = vol(sym(E)),

where |Ep| is the 1-dimensional Lebesgue measure of Ep, the volume is preserved when we pass to the Steiner
symmetrization of E. To see that

P (sym(E)) ⩽ P (E) (3.6)

e consider a function u : Ω ⊂ M → R and the graph G(u) of u and we observe that the weighted area of
(u) is given by

areaΨ (G(u)) =
∫
Ω

eΨ
√

1 + |∇u|2dM.

o we can reason as in the proof of the Euclidean case to verify (3.6), see again [16, § 14.1]. Equality holds
f and only if E = sym(E). If E is an isoperimetric region then also sym(E) is isoperimetric and, moreover,
ym(E)∗ = E∗. So from now on we assume that E is normalized replacing E by sym(E) if necessary.

If volΨ (M \ E∗) > 0 then Lemma 3.2 provides a constant c > 0 independent of vol(E) so that
(E) ⩾ cvol(E). But this in contradiction to (3.5), since by hypothesis we are working with large volumes.
ence volΨ (M \E∗) = 0 and E∗ = M and E is the region between the graphs of two functions u, v : M → R.
y regularity of isoperimetric regions, ∇u, ∇v are defined a.e. on M and

P (E) =
∫

M

eΨ
√

1 + |∇u|2dM +
∫

M

eΨ
√

1 + |∇v|2dM

⩾ 2
∫

M

eΨdM = 2volΨ (M).

Since P (E) ⩽ 2volΨ (M) we should have equality in the above inequality, that implies ∇u = ∇v = 0 and so
E is a slab. This completes the proof of the theorem. □

Remark 3.4. Note that Theorem 3.3 does not hold when there is a non-trivial density in the vertical factor.
For example, in (Sn × R, g × g0, 1 × e−t2/2) the only isoperimetric regions are of the type Sn × (−∞, a) or
Sn × (a, ∞). See Example 4.6 in [28].
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