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This paper deals with the description of weak B− → D0; π0 and D− → K0; π0 transition form factors in
both the space- and timelike momentum transfer regions, within a constituent-quark model. To this aim,
neutrino-meson scattering and semileptonic weak decays are formulated within the framework of point-
form relativistic quantum mechanics to end up with relativistic invariant process amplitudes from which
meson transition currents and form factors are extracted in an unambiguous way. For spacelike momentum
transfers, these form factors depend on the frame in which the WMM0 vertex is considered. On physical
grounds, such a frame dependence is expected from a pure valence-quark picture, since a complete, frame
independent description of form factors is supposed to require valence as well as nonvalence contributions.
Nonvalence contributions, the most important being the Z graphs, are, however, suppressed in the infinite-
momentum frame (q2 < 0). On the other hand, they can play a significant role in the Breit frame (q2 < 0)
and in the direct decay calculation (q2 > 0), as a comparison with the infinite-momentum-frame form
factors (analytically continued to q2 > 0) reveals. Numerical results for the analytically continued infinite-
momentum-frame form factors are found to agree very well with lattice data in the timelike momentum
transfer region, and also, the experimental value for the slope of the Fþ

B→D transition form factor at zero
recoil is reproduced satisfactorily. Furthermore, these predictions satisfy heavy-quark-symmetry con-
straints, and their q2 dependence is well approximated by a pole fit, reminiscent of a vector-meson-
dominance-like decay mechanism. We discuss how such a decay mechanism can be accommodated within
an extension of our constituent-quark model, by allowing for a nonvalence component in the meson wave
functions, and we also address the question of wrong cluster properties inherent in the formulation of
relativistic quantum mechanics employed in this article.
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I. INTRODUCTION

This paper continues previouswork inwhich semileptonic

weak B → D; π and D → K; π decays [1–4] have been

investigated within a constituent-quark model making use

of the point form of relativistic quantummechanics [5–8]. In
this paper, we studyB → D; π andD → K; π transition form
factors for space- and timelike momentum transfers, as can
be measured in neutrino scattering and semileptonic weak
decays. Relativistic invariance of our approach is guaranteed
by means of the, so-called, “Bakamjian-Thomas construc-
tion” [9]. Starting from amultichannelmass operator with an
instantaneous confining interaction between the quarks and
appropriate vertex interactions for the coupling of the differ-
ent channels, one ends up with a relativistic invariant
amplitude. The weak four-vector hadron current can then
be extracted from this amplitude in a unique way, and the
hadron transition form factors are obtained by the covariant
decomposition of this current.
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The same kind of approach has also been applied to
calculate electromagnetic form factors of π [10], ρ [11], B,
andDmesons [1] for spacelike momentum transfers. There
it turned out that, although the amplitude for electron
meson scattering was relativistic invariant, the extracted
electromagnetic hadron current did not have all the proper-
ties one would expect. It is a four-vector current, but
supposedly due to wrong cluster properties, inherent in the
Bakamjian-Thomas construction, the hadron current is not
just a function of in- and outgoing hadron momenta, but
exhibits also a slight dependence on the momenta of the in-
and outgoing electron. This spurious dependence on the
electron momenta shows up in the covariant decomposition
of the current, which requires also covariants that involve
the electron four momenta. Furthermore, a dependence of
the form factors on Mandelstam s, the invariant mass
squared of the whole electron-meson system, is observed.
This s dependence can be reinterpreted as a dependence on
the frame in which the γ�M → M subprocess is considered.
Such a frame dependence of the form factors is not just a
speciality of our approach but is rather a general property of
any attempt to calculate hadron form factors within
constituent-quark models using just a one-body current.
As we will show in the following discussion, one would
even expect it on physical grounds if one tries to extract the
form factors from a pure one-body current involving only
valence degrees-of-freedom.
Several papers address the dependence of elastic and

transition form factors of hadrons on the used frame and on
the current components from which they are extracted (see,
e.g., Refs. [12–16]). These analyses make use of front-form
dynamics, and themain conclusion is that the construction of
a frame independent covariant meson (transition) current
requires the inclusion of the, so-called, “Z-graph” contribu-
tion. This can already be seen in a simpleϕ3 field-theoretical
model by calculating the electromagnetic current and form
factor from the Feynman triangle diagram and decomposing

this (covariant) diagram into time ordered contributions, as is
graphically done in Fig. 1. The relative importance of the
different time-ordered contributions will then depend on the
reference frame in which they are calculated and also on
the formof relativistic dynamicswhich is employed.1 In front
form, e.g., only the contributions (a) and (b) survive, since a
massive particle-antiparticle pair cannot be created out of the
vacuumdue to three-momentumconservation at thevertex. It
is, in particular, conservation of the Pþ component, that is
always positive for massive particles, which forbids the
creation of massive particles out of the vacuum. In the
qþ ¼ 0 Drell-Yan-West frame, in which no momentum is
transferred in longitudinal direction, even graph (b)—this is
the one usually termed “Z graph”—becomesnegligible in the
Jþ current component, which is usually used for the
extraction of the form factors [18]. The role of Z-graph
contributions, however, increases the more momentum is
transferred in longitudinal direction (see, e.g., [14–16]). A
specialqþ ¼ 0 frame is the infinite-momentum frame (IMF),
inwhich the incoming andoutgoing hadronmoveswith large
momentum into a fixed direction and momentum is trans-
ferred transverse to this direction. It is this particular frame
which also allows us to connect front-formwith instant-form
or point-form calculations. InRef. [7], e.g., it has been shown
that the analytical expression for the electromagnetic pion
form factor, derived within the point form in the IMF, is
connectedwith the corresponding front-formexpression by a
simple change of momentum variables. Like in front form,
only graph (aÞ survives, if IMF kinematics is used to
calculate the electromagnetic current in instant or point form
[19]. The reason is simply that in all other graphs at least one

(a)

(d)

(b) (c)

FIG. 1. Decomposition of the covariant triangle diagram into time-ordered contributions. Time is running from left to right.

1An instructive example for the interplay of the two time
ordered contributions occurring in leading-order two-particle
scattering within a simple scalar model is given in Ref. [17].
There, variations of the reference frame and the form of dynamics
are considered.
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constituent has tomove into a direction opposite to the one of
the incoming particle. If the momentum of the incoming (or
outgoing) particle goes to infinity, the probability for finding
a constituent that moves in opposite direction to its parent
particle vanishes.
If one, however, is interested in form factors for timelike

momentum transfers, as measured in decay processes, the
decay kinematics requires qþ > 0. This means that also
the Z graph (b) will provide a nonvanishing contribution to
Jþ, and the resulting form factor for timelike momentum
transfers, if the calculation is done in front form
[12,14–16]. In instant and point form, all possible time
orderings are, in principle, necessary for timelike momen-
tum transfers to end up with the complete, covariant
triangle diagram. In a constituent-quark model, the direct
diagram (a) corresponds to the usual valence-quark con-
tribution, whereas the other diagrams, in particular the Z
graph (bÞ, are associated with higher Fock states. This is
graphically represented in Fig. 2 for the semileptonic B− →
D0e−ν̄e decay. The Z-graph contribution to this decay
connects the būcc̄ nonvalence Fock state of the B− with the
cū valence Fock state of the D0. Graph (c) connects the bū
valence Fock state of the B− with the cūbb̄ nonvalence
Fock state of the D0. All the remaining graphs involve
nonvalence Fock states of B− and of D0. This means that
the Z graph (b) provides presumably the most important
nonvalence contribution to the current. All other non-
valence contributions are most likely much smaller, since
they involve Fock states with an additional bb̄ pair which
have tiny probability.
But let us now have a closer look at the Z graph (b). The

quarks in the intermediate būcc̄ state are subject to a
confining interaction. In the simplest case the confining
interaction acts between c and ū to give theD0 and between
b and c̄ to give the series of B�

c resonances which can
fluctuate into W−. This leads to a vector-meson-
dominance-like picture for the decay process and

associated poles in the form factors which are located at
q2 ¼ m2

B�
c
, i.e., at unphysical values of the timelike momen-

tum transfer. Themost important pole is the one closest to the
zero-recoil point q2max ¼ ðmB −mDÞ2, where q2 reaches its
maximumvalue. It comes from theB�

c ground state. This pole
is still far away from q2max, so that one would not expect
substantial effects on the form factors. For the B → π decay,
however, the nearest pole comes from B�. It is already much
closer to the zero-recoil point, and hence, the Z-graph
contribution to the form factors gains importance as com-
pared to the valence contribution [20].
In the present paper, we will not follow the strategy to

calculate the Z-graph contribution explicitly, but we will
rather try to estimate it and see whether our estimate exhibits
a monopolelike behavior, as onewould expect from a vector-
meson-dominance-like mechanism. The idea is to derive
analytical expressions for the weak transition form factors
for spacelike momentum transfers in the IMF, where the Z
graph is suppressed, and continue these form factor expres-
sions analytically to timelike momentum transfers. Provided
the analytical continuation is done correctly, this should
already give the complete transition form factors for the
decay. We can then compare the analytic continuation of the
IMF result with the outcome of a direct decay calculation in
which just the valence contribution is taken into account.
Finally, we check, whether the differences between these two
ways to compute the decay form factors exhibit approx-
imately a monopolelike q2 dependence, which would be
typical for the missing Z-graph contribution in the direct
decay calculation.
The general relativistic framework, in particular the

point-form version of the Bakamjian-Thomas construction
and the velocity-state representation, is summarized in
Sec. II. Section III is devoted to the multichannel formu-
lation of neutrino-meson scattering, νeM → e−M0, within
our constituent-quark model, the extraction of the meson
transition current from the scattering amplitude and its

(a)

(d)

(b) (c)

FIG. 2. Possible mechanisms for the semileptonic B− → D0e−ν̄e decay within a constituent-quark model, allowing for a nonvalence
q̄QQ̄0Q0 Fock component in the initial and final state. Diagrams (a), (b), (c), and (d) are the counterparts to the corresponding time-
ordered diagrams in the ϕ3 model shown in Fig. 1.
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covariant decomposition, which leads to weak transition
form factors for spacelike momentum transfers. Using the
same model, the amplitude for the semileptonic M →
M0e−ν̄e decay is derived in Sec. IV, and the form factors
for timelike momentum transfers are extracted from the
weak transition current. Numerical studies of weak tran-
sition form factors for B− → D0, B− → π0, D− → K0, and
D− → π0 are presented in Sec. V. This starts with the
introduction of the kinematics. In the following, the frame
dependence of the form factors is studied for spacelike
momentum transfers by comparing IMF results with Breit
frame (BF) results. The difference gives already a clue of
the possible size of the Z-graph contribution for spacelike
momentum transfers in frames different from the IMF. The
spacelike form factors are then analytically continued to
timelike momentum transfers and compared with the form
factors obtained from the decay amplitude. This is first
done for BF kinematics, which is closest to the decay
kinematics, to check the analytic continuation procedure.
The comparison of the analytically continued IMF form
factors with the decay form factors will then give us an
estimate of the Z-graph contribution to the timelike form
factors in the rest frame of the decaying particle. In the
sequel, we will check whether this difference exhibits a
monopolelike behavior so that it can be ascribed to a
missing nonvalence Z-graph contribution in the decay
calculation. In Sec. VI, we consider the heavy-quark limit
and convince ourselves that the form factors tend to the
Isgur-Wise function, and that the differences between the
analytically continued IMF form factors and the decay form
factors vanish. This indicates that the Z graph is suppressed
in the heavy-quark limit, as one would expect. Section VII
contains our conclusions and an outlook.

II. GENERAL FRAMEWORK

For a proper relativistic description of the weak transition
processes we are interested in, we make use of the
Bakamjian-Thomas construction [9] and choose the point
form of relativistic dynamics [5]. The point form has the
feature that, from the ten generators of the Poncaré group,
those for the entire Lorentz subgroup are kinematic (i.e.,
these generators do not contain interactions), whereas the
four components of the four-momentum operator P̂μ are
dynamic (i.e., contain interaction terms). One main advan-
tage of using the point form is that boosts of wave functions
are simpler than in other forms of dynamics and that the
addition of angular momenta is also facilitated.
In the point-form version of the Bakamjian-Thomas

construction, the four-momentum operator is factorized
into an interaction-dependent mass operator and a free four-
velocity operator [6],

P̂μ ¼ M̂V̂μ
free ¼ ðM̂free þ M̂intÞV̂μ

free: ð1Þ

In this way, the dynamics of the system is completely
encoded in the mass operator.
Creation and annihilation of particles is described by

means of a coupled-channel framework. This means that
the mass operator M̂ acts on a direct sum of multiparticle
Hilbert spaces. The diagonal matrix elements of M̂ are the
sums of the relativistic kinetic energies of the particles in
the corresponding channel plus instantaneous interactions
between them (if present), like the quark-antiquark confine-
ment potential. The off diagonal matrix elements of M̂ are
vertex operators K̂, K̂†, which describe the absorption or
emission of particles, giving rise to the transition from one
channel to another. These vertex operators can be con-
structed starting from common field theoretical interaction-
Lagrangian densities [21].
In this framework, the most convenient representation of

the Poincaré algebra is accomplished by means of velocity
states [22]. These are multiparticle momentum states in the
rest frame,

jki; μii≡ jk1; μ1;k2; μ2;…;kn; μni; ð2Þ

with
P

n
i¼1 ki ¼ 0 and μi being the z projection of the

(canonical) spin, which are boosted to an overall four
velocity Vμ (with VμVμ ¼ 1) by means of a rotationless
(canonical) boost BcðVÞ,

jV;k1; μ1;k2; μ2;…;kn; μni
≔ ÛBcðVÞjk1; μ1;k2; μ2;…;kn; μni: ð3Þ

Our vertex operators are obtained from usual field theo-
retical Lagrangian densities. This is done by relating the
matrix elements of a vertex operator between velocity states
to the respective interaction-Lagrangian density in the
following way [21]:

hV 0;k0
i; μ

0
ijK̂jV;ki; μii

¼ NV0δ3ðV − V0Þhk0
i; μ

0
ijL̂intjki; μii: ð4Þ

The normalization factor N is determined by the normali-
zation of the velocity states. The velocity-conserving delta
function guarantees overall four-velocity conservation at the
interaction vertices and thus, the Bakamjian-Thomas-type
structure of the four-momentum operator as given in Eq. (1).
Explicit expressions for such vertex matrix elements for the
coupling of a photon orW boson can be found inRefs. [10,1],
respectively.
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III. NEUTRINO-MESON SCATTERING

A. The 1W-exchange amplitude and the weak current

To extract the weak M → M0 transition current and the
corresponding weak transition form factors for spacelike
momentum tranfers, we first calculate the invariant
1W-exchange amplitude. Without a loss of generality, let
us consider νeB− → e−D0 scattering, where the B− consists

of a heavy b and a light ū quark, whereas the D0 contains a
heavy c and a light ū quark in our constituent-quark picture.
The transition amplitude can be decomposed into the two
time-ordered graphs shown in Fig. 3.
The matrix mass operator, which is our starting point for

the calculation of the 1-W-exchange contribution to
νeB− → e−D0 scattering, reads

M̂ ¼

0
BBBBBB@

M̂conf
ūbνe K̂ūbνe→ūbWe 0 K̂ūbνe→ūcWνe

K̂†
ūbνe→ūbWe M̂conf

ūbWe K̂†
ūce→ūbWe 0

0 K̂ūce→ūbWe M̂conf
ūce K̂ūce→ūcWνe

K̂†
ūbνe→ūcWνe

0 K̂†
ūce→ūcWνe

M̂conf
ūcWνe

1
CCCCCCA
: ð5Þ

The diagonal matrix elements contain the kinetic energies
of the respective particles and an instantaneous confine-
ment potential between the quark-antiquark pair, which is
indicated by the label “conf.” The resulting mass-eigen-
value equation is then

M̂

0
BBBBB@

jΨūbνei
jΨūbWei
jΨūcei
jΨūcWνei

1
CCCCCA ¼ m

0
BBBBB@

jΨūbνei
jΨūbWei
jΨūcei
jΨūcWνei

1
CCCCCA; ð6Þ

where m is the invariant mass of the whole system. By
means of a Feshbach reduction, the channels containing the
W can be eliminated, and one ends up with an optical
potential that describes the transition between the ūbνe and
the ūce channel (for a graphical representation, see Fig. 3),

V̂ūbνe→ūce
opt ðmÞ ¼ K̂ūce→ūbWeðm− M̂conf

ūbWeÞ−1K̂†
ūbνe→ūbWe

þ K̂ūce→ūcWνeðm− M̂conf
ūcWνeÞ−1K̂†

ūbνe→ūcWνe
:

ð7Þ

Since we are only interested in the Born term for νeB− →
e−D0 scattering, we just have to consider on shell matrix
elements (m ¼ k0B þ k0νe ¼ k0D þ k0e) of V̂

ūbνe→ūce
opt between

(velocity) eigenstates jV;kB;kνe ; μνei and jV 0;kD;ke; μei
of M̂conf

ūbνe and M̂conf
ūce , respectively,

hV 0;kD;ke; μejV̂ūbνe→ūce
opt ðmÞjV;kB;kνe ; μνeios: ð8Þ

For better readability, we have suppressed all discrete
quantum numbers, which are necessary to specify the

meson states uniquely. Note that incoming and outgoing
states contain B and D mesons, rather than quarks, since
they are eigenstates of mass operators containing a con-
fining interaction between quark and antiquark. Inserting
pertinent completeness relations into Eqs. (7) and (8) gives
us an expression for the leading-order νeB− → e−D0

amplitude in terms of vertex matrix elements and the q̄Q
wave functions (for a detailed derivation, see Ref. [1]). The
resulting transition amplitude looks like the leading order
perturbative result in quantum field theory. It is essentially
the contraction of the leptonic current with a hadronic
current, multiplied with the W propagator,

FIG. 3. The two time orderings contributing to the invariant
1W-exchange amplitude for νeB− → e−D0 scattering.
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hV 0;kD;ke; μejV̂ūbνe→ūce
opt ðmÞjV;kB;kνe ; μνei ¼ V0δ3ðV − V0Þ ð2πÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk0D þ k0eÞ3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk0B þ k0νeÞ3
q

×
−e2Vcb

2 sin ϑW2

1

2
ūμeðkeÞγμð1 − γ5Þuμνe ðkνeÞ

ð−gμν þ kμWk
ν
W

m2
W
Þ

q2 −m2
W

1

2
J̃νB→DðkD;kBÞ:

ð9Þ

Here, ϑw denotes the electroweak mixing angle, e the elementary electric charge, and Vcb the CKM (Cabibbo-Kobayashi-
Maskawa) matrix element occurring at theWbc vertex. The hadronic (transition) current, containing theQq̄wave functions,
results as

J̃νB→DðkD;kBÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
k0Dk

0
B

q Z
d3k̃0̄u
2k0b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ū þ k0b
k00ū þ k00c

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃00ū þ k̃00c
k̃0ū þ k̃0b

s ffiffiffiffiffiffiffiffiffiffiffi
k̃0ūk̃

0
b

k̃00ū k̃00c

s X
μūμbμ

0
c

ūμ0cðk0
cÞγνð1 − γ5ÞuμbðkbÞΨ�

μūμ
0
c
ðk̃0̄

uÞΨμūμbðk̃ūÞ;

ð10Þ

where Ψμūμbðk̃ūÞ and Ψ�
μūμ

0
c
ðk̃0̄

uÞ are the q̄Q wave functions of the incoming and outgoing B and D meson,
respectively. Since we are dealing with velocity states, the momenta are CM (center-of-momentum) momenta satisfying
kνe þ kB ¼ kνe þ kū þ kb ¼ ke þ kD ¼ ke þ k0̄

u þ k0
c ¼ 0. These relations, combined with the spectator condition

kū ¼ k0̄
u, imply in addition that the three momentum transferred to the mesons and the heavy quarks is the same,

q ¼ kB − kD ¼ kb − k0
c. Furthermore, momenta with tilde satisfy k̃ū þ k̃b ¼ k̃0̄

u þ k̃0
c ¼ 0. They are related to the

momenta without tilde by means of canonical boosts, i.e., ki ¼ BcðvūbÞk̃i, i ¼ ū; b and k0i ¼ Bcðv0̄ucÞk̃0i, i ¼ ū; c,

where vð0Þq̄Q ¼ ðkð0Þq̄ þ kð0ÞQ Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð0Þq̄ þ kð0ÞQ Þ2

q
.

If the orbital part ψMðk̃q̄Þ of the B and D meson wave function (at rest) is a pure s wave, as we will assume for our
numerical studies, the weak B → D transition current becomes

J̃νB→DðkD;kBÞ ¼
ffiffiffiffiffiffiffiffiffiffi
k0Dk

0
B

p
4π

Z
d3k̃0̄u
2k0b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ū þ k0b
k00ū þ k00c

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃00ū þ k̃00c
k̃0ū þ k̃0b

s ffiffiffiffiffiffiffiffiffiffiffi
k̃0ūk̃

0
b

k̃00ū k̃00c

s

×
X
μbμ

0
c

ūμ0cðk0
cÞγνð1 − γ5ÞuμbðkbÞψ�

Dðjk̃0̄
ujÞψBðjk̃ūjÞ

×D
1
2

μbμ
0
c
½RWðṽb; BcðvūbÞÞR−1

W ðṽū; BcðvūbÞÞRWðṽ0̄u; Bcðv0̄ucÞÞR−1
W ðṽ0c; Bcðv0̄ucÞÞ�: ð11Þ

The spin rotation matrix D1=2 with matrix elements D
1
2

μbμ
0
c

describes how the spin orientation of the constituent quarks is
affected by boosting the mesons from rest to their respective
momenta kB and kD. The argument of the spin rotation
matrix is a series of Wigner rotations RWðv;ΛÞ ¼
B−1
c ðΛvÞΛBcðvÞ. For the practical calculation of D1=2, we

refer to Ref. [23]. It should also be noted that J̃νB→DðkD;kBÞ
still does not transform like a four vector under Lorentz
transformations, but rather by means of a Wigner rotation
[10]. The reason is that we have been using velocity states for
the derivation of the current [see Eq. (9)]. A four-vector
current is obtained by going back to the physical meson
momenta, pB ¼ BcðVÞkB and pD ¼ BcðVÞkD, by means of
a canonical boost BcðVÞ with the overall velocity V of the

electron-meson system. The resulting four-vector transition
current then reads

J̃νB→DðpD;pBÞ ¼ BcðVÞνμJ̃μB→DðkD;kBÞ: ð12Þ

It should be quite obvious, how all these considerations
generalize to weak transitions involving mesons different
from B− and D0.

B. Weak transition form factors

Having now an expression for the weak transition current
between pseudoscalar quark-antiquark bound states in
terms of constituent currents and bound-state wave func-
tions, we can calculate the current numerically and extract
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weak transition form factors. Such form factors could, in
principle, be measured in different neutrino-meson scatter-
ing processes like, e.g., νeB− → e−D0, νeB− → e−π0, or
νeD− → e−π0. The general covariant structure of a pseu-
doscalar weak transition current is determined by two
covariants that can be built with pM and pM0 , the four
momenta of the incoming and outgoing mesonsM andM0,
respectively. Each covariant is multiplied with a Lorentz
scalar, which can only depend on the momentum transfer
squared,

JνM→M0 ðpM0 ;pMÞ ¼ ðpM þ pM0 ÞνFþðq2Þ
þðpM − pM0 ÞνF−ðq2Þ: ð13Þ

An equivalent decomposition for such a current is
given by [24]

JνM→M0 ðpM0 ;pMÞ¼
m2

M−m2
M0

q2
qνF0ðq2Þ

þ
�
ðpMþpM0 Þν−m2

M−m2
M0

q2
qν
�
F1ðq2Þ:

ð14Þ

The four-momentum transfer is defined as q ¼ ðpM − pM0 Þ
and q2 ¼ qμqμ. By comparing both decompositions, it
follows immediately that

F1ðq2Þ ¼ Fþðq2Þ:

F0ðq2Þ ¼ Fþðq2Þ þ q2

m2
M −m2

M0
F−ðq2Þ: ð15Þ

Here, it is necessary to recall that the Bakamjian-Thomas
construction spoils cluster separability. As soon as a
spectator is present in a Bakamjian-Thomas type mass
operator, it affects interactions via the overall velocity-
conserving delta function. This delta function is necessary
for the factorization of the four-momentum operator into
the product of an interacting mass operator and a free four-
velocity operator [1,7,11,23]. As a consequence, the
current derived by means of our Bakamjian-Thomas type
approach depends, in one or another way, also on the
lepton momenta. For elastic scattering of an electron by a
pseudoscalar meson, it turned out that a complete covar-
iant decomposition of the (conserved) current requires one
additional spurious covariant, namely the sum of the
incoming and outgoing electron four momenta [1,10].2

In addition, the form factors are observed to be not only
functions of the four-momentum transfer squared, but they
depend also mildly on Mandelstam s, the invariant mass of
the electron-meson system. For the weak pseudoscalar
transition current, there is no current-conservation con-
dition, and thus, its covariant decomposition involves
already two covariants, the sum and the difference of
incoming and outgoing meson momenta [see Eq. (13)].
These two covariants are also sufficient for a complete
covariant decomposition of our model current. The
dependence on the lepton momenta, however, still enters
the form factors via the Mandelstam s dependence. The
general covariant decomposition of J̃νM→M0 , as given in
Eqs. (11) and (12), is thus

J̃νM→M0 ðpM0 ;pMÞ¼
�
ðpMþpM0 Þν−m2

M−m2
M0

q2
qν
�
F1ðq2;sÞ

þm2
M−m2

M0

q2
qνF0ðq2;sÞ: ð16Þ

The s dependence of the form factors may also be
interpreted as a dependence on the frame in which the
WM → M0 subprocess is considered. In our case, this
frame dependence is well under control, since we observe
that for large enough Mandelstam s it becomes negligible.
This suggests to extract the form factors in the limit
s → ∞. The corresponding kinematics corresponds to the
IMF, in which the incoming and outgoing hadron moves
with large momentum into a fixed direction and momen-
tum is transferred by the W-boson transverse to this
direction. As already mentioned in the Introduction, the
IMF has also the advantage that the nonvalence Z-graph
contribution is suppressed. As long as one works within a
valence-quark picture, it thus seems to be preferable to
work with IMF kinematics when calculating hadron form
factors. In reference frames different from the IMF, the Z
graph is likely to play a non-negligible role and a pure
valence-quark description may miss part of the physics.

IV. SEMILEPTONIC MESON DECAYS

Next, we want to describe the semileptonic meson
decay M → M0e−ν̄ within our valence-quark picture, in
order to extract the weak M → M0 transition form factors
for timelike momentum transfers. Again, the Bakamjian-
Thomas mass operator that yields the invariant amplitude
for the semileptonic weak decay of a meson M into
another meson M0 requires four channels to allow for the
two possible time orderings of the W-boson exchange.
Without loss of generality, we consider the B− → D0eν̄e
transition. The corresponding matrix mass operator has
the form,

2The occurrence of an additional covariant parallels the
spurious dependence of currents on the orientation of the
light front in the covariant light-front approach discussed in
Ref. [13].
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M̂ ¼

0
BBBBBB@

M̂conf
ūb K̂ūb→ūcW K̂ūb→ūbWeν̄e 0

K̂†
ūb→ūcW M̂conf

ūcW 0 K̂†
ūceν̄e→ūcW

K̂†
ūb→ūbWeν̄e

0 M̂conf
ūbWeν̄e K†

ūceν̄e→ūbWeν̄e

0 K̂ūceν̄e→ūcW Kūceν̄e→ūbWeν̄e M̂conf
ūceν̄e

1
CCCCCCA
: ð17Þ

The label “conf” indicates again that an instantaneous confining potential between quark and antiquark is included in the
diagonal matrix elements.
The optical potential that describes the transition from the ūb to the ūceν̄e channel is obtained by applying a Feshbach

reduction. This eliminates the ūcW and ūbWeν̄e channels. The transition potential has then two terms which correspond to
the two possible time orderings (cf. Fig. 4). It reads

V̂ūb→ūceν̄e
opt ðmÞ ¼ K̂ūceν̄e→ūcWðm −Mconf

ūcWÞ−1K̂†
ūb→ūcW þ K̂ūceν̄e→ūbWeν̄eðm − M̂conf

ūbWeν̄eÞ−1K̂†
ūb→ūbWeν̄e

: ð18Þ

The weak hadronic current and, in the sequence, the decay form factors are extracted from on-shell matrix elements of
V̂ūb→ūceν̄e
opt ðmÞ,

hv0;kD;ke; μe;kν̄e ; μν̄e jV̂ūb→ūceν̄e
opt ðmÞjkBios: ð19Þ

“On shell”meansm ¼ mB ¼ k0B ¼ k0D þ k0e þ k0ν̄e . The analytical calculation of these on shell matrix elements is explained
in some detail in Refs. [1,10,25], where also explicit expressions can be found. The final result for the invariant B → D
decay amplitude looks again like the one obtained from leading order covariant perturbation theory,

hv0;kD;ke;μe;kν̄e jV̂ūb→ūceν̄e
opt ðmÞjkB ¼ 0ios ¼ v0δ3ðv0− vÞ ð2πÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk0eþ k0ν̄e þ k0DÞ3
q ffiffiffiffiffiffiffi

k0B
3

p
×

e2

2sin2ϑw
Vcb

1

2
ūμeðkeÞγμð1− γ5Þvμν̄e ðkν̄eÞ

ð−gμνÞ
ðkeþ kν̄eÞ2−m2

W

1

2
J̃νB→DðkD;kBÞ:

ð20Þ

Assuming again that the orbital part of the B and D meson wave function (at rest) is a pure s wave, the hadron current
J̃νB→DðkD;kBÞ has the following structure:

J̃νB→Dðk0
D;kB ¼ 0Þ ¼

ffiffiffiffiffiffiffiffiffiffi
k0Bk

0
D

p
4π

Z
d3k̃0̄u
2k0b

ffiffiffiffiffiffiffiffiffiffiffi
k̃0bk̃

0
ū

k̃00c k̃00ū

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃00ū þ k̃00c
k00c þ k00ū

s X
μb;μ0c¼�1

2

ūμ0cðk0
cÞγνð1 − γ5ÞuμbðkbÞ

×D
1
2

μbμ
0
c
½RWðṽ0̄u; Bcðv0̄ucÞÞR−1

W ðṽ0c; Bcðv0̄ucÞÞ�ψ�
Dðjk̃0̄

ujÞψBðjk̃ūjÞ: ð21Þ

Since we are dealing with velocity states, the momenta in
our decay calculation are CM momenta satisfying
0¼ kB ¼kūþkb ¼keþkν̄e þkD ¼ keþkν̄e þk0̄

uþk0
c.

Furthermore, momenta with tilde satisfy k̃ū þ k̃b̄ ¼
k̃0̄
u þ k̃0̄

c ¼ 0. Primed momenta with tilde are related to
the corresponding momenta without tilde by means of a
canonical boost, i.e., k0i ¼ Bcðv0̄ucÞk̃0i, i ¼ ū; c, where
v0̄uc ¼ ðk0̄u þ k0cÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0̄u þ k0cÞ2

p
. Note that due to the decay

FIG. 4. The two time orderings contributing to the invariant
1W-exchange amplitude for B− → D0eν̄e.
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kinematics kb ¼ k̃b and kū ¼ k̃ū. Using these identities,
we observe that the expression (11) for the B → D
transition current that we extracted from the νeB− →
e−D0 scattering amplitude reduces to Eq. (21), which
we got from the B− → D0e−ν̄e decay amplitude. Finally,
a four-vector decay current J̃νB→DðpD;pBÞ with the covar-
iant structure (14) is obtained from Eq. (21) by going back
to physical particle momenta using Eq. (12).
The form factors calculated from J̃νB→DðpD;pBÞ for

timelike momentum transfers are just functions of the four-
momentum transfer squared.No dependence on the invariant
mass of the whole system is observed as was the case for
spacelike momentum transfers. This is easily understood,
because the invariant mass of the decaying system is just the
mass mB of the decaying meson, which is fixed. Apart of
rotations and Lorentz boosts of the whole system there is no
freedom left for choosing the decay kinematics such that the
four-momentum transfer is q2. But boosting or rotating the
system will not change our results for the (timelike) form
factors. This is obvious from Eq. (12), which holds for
arbitrary momenta of the decaying meson. In the spacelike
region, on the other hand, different combinations of
Mandelstam s and the scattering angle will give the same
momentum transfer q2, which leaves more freedom for
choosing the kinematics for form factor calculations. This
ambiguitymaybe considered as a drawback, but it offers also
the possibility for extracting form factors in a reference
frame, in which physical nonvalence contributions, in
particular those responsible for Z-graphs and unphysical
spurious contributions coming from violation of cluster
separability, are minimized. In the following, we will give
numerical predictions for weak transition form factors in the
space- as well as in the timelike region, and we will try to
estimate the size of the nonvalence Z-graph contributions
and nonphysical effects coming from cluster-separability
violation.

V. NUMERICAL STUDIES

Once we have an analytical expression for the weak
transition current of a heavy-light bound state in terms of
constituent currents and wave functions, we can calculate
the current numerically and obtain the corresponding form
factors, which can be compared with experiments. We will
first calculate transition form factors for spacelike momen-
tum transfers, as resulting from νeM → e−M0 scattering.
Next, we will continue these form factors analytically to
timelike momentum transfers and compare the analytic
continuation with the outcome of the decay calculation
M → M0e−ν̄e. The freedom of choosing the kinematics for
scattering gives us some control on the influence of
nonvalence Z-graph contributions and cluster-separabil-
ity-violating effects, whereas the kinematics of the decay
calculation is more or less fixed. The comparison of the
analytically continued form factors with the result from the

decay calculation can thus give us some clues on the size of
Z-graph contributions and cluster-separability-violating
effects for timelike momentum transfers.

A. Kinematics

Let us first fix the kinematics for νeM → e−M0 scatter-
ing. Since our model current J̃νM→M0 is a four vector with the
structure given by Eq. (16), form factors are neither affected
by rotations or boosts. We can thus consider νeM → e−M0
scattering in the CM frame,

P
n
i¼1 pi ¼ 0, and also fix the

scattering plane to the (1,3) plane. Unlike the physical form
factors, our model form factors exhibit a Mandelstam s
dependence which can be reinterpreted as a frame depend-
ence of the WM → M0 subprocess [10]. In order to obtain
an estimate of this frame dependence, we will consider two
extreme cases. In the first case, s has the minimal value for
reaching a particular value of q2. This corresponds to the
Breit frame. In the second case, we will consider the limit
s → ∞, corresponding to the IMF. For CM scattering in the
(1,3) plane, our kinematics are defined by

pM ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M þ p2
p

p

0

0

1
CCCCCA; pνe ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

νe þ p2
q

−p
0

0

1
CCCCCA;

pM0 ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M0 þ p02
q
p0 cos θCM

0

p0 sin θCM

1
CCCCCA; pe ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ p02p
−p0 cos θCM

0

−p0 sin θCM

1
CCCCCA;

ð22Þ
where θCM is the CM scattering angle. The kinematics can
also be expressed in terms of two Lorentz invariants,
namely Mandelstam s ¼ ðpM þ pνeÞ2 ¼ ðpM0 þ peÞ2, the
invariant mass squared of the whole system, and q2 ¼
ðpM − pM0 Þ2 ¼ ðpe − pνeÞ2 (also termed as Mandelstam t),
the four-momentum transfer squared. Neglecting the lepton
masses, one has

pM ¼ ðs −m2
MÞ

2
ffiffiffi
s

p ; pM0 ¼ ðs −m2
M0 Þ

2
ffiffiffi
s

p ;

cos θCM ¼ −
Q2

2pp0 þ 1; ð23Þ

with spacelike q2 ¼ qμqμ ≕ −Q2 < 0. This guarantees
that −1 ≤ cos θCM ≤ 1.

1. Infinite-momentum frame

The infinite-momentum frame is defined by the limit
s → ∞, Q2 ¼ −q2 ¼ const. This limit implies for the CM
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kinematics given above that the components of the current,
Eq. (14), take on the simple form,

J0ðpM0 ; pMÞ →
ffiffiffi
s

p
F1;

J1ðpM0 ; pMÞ →
ffiffiffi
s

p
F1;

J2ðpM0 ; pMÞ → 0;

J3ðpM0 ; pMÞ →
ðm2

M −m2
M0 ÞF0 − ðm2

M −m2
M0 þQ2ÞF1

Q
:

ð24Þ

Taking J0 and J3 as linear independent components, the
form factors are then given by

F1 ¼
J0ðpM0 ; pMÞffiffiffi

s
p ;

F0 ¼
ffiffiffi
s

p
QJ3ðpM0 ; pMÞ þ ðm2

M −m2
M0 −Q2ÞJ0ðpM0 ; pMÞ

ðm2
M −m2

M0 Þ ffiffiffi
s

p :

ð25Þ

2. Breit frame

What we call “Breit frame” corresponds to backward
scattering, i.e., θCM ¼ π. ForM ¼ M0, it reduces to the usual
Breit frame, which is defined by zero energy transfer. In the
BF, Mandelstam s and Q2 are related by means of Eq. (23),
and we can express Mandelstam s as function of Q2,

s ¼ 1

2

�
m2

M þm2
M0 þQ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

M þm2
M0 þQ2Þ2 − 4m2

Mm
2
M0

q �
: ð26Þ

This is the minimum value of Mandelstam s, necessary to
achieve a momentum transfer Q2. The only nonvanishing
current components for this kinematics are J0 and J1, from
which F0 and F1 can be determined uniquely using
Eq. (16).

B. Frame dependence of spacelike
transition form factors

In order to estimate the frame dependence of our form
factors, we now consider the two extreme cases of minimal

FIG. 5. Spacelike form factors for the B− → D0 transition
calculated in the IMF (solid line) and in the BF (dashed line). The
shaded area indicates the frame dependence.

FIG. 6. Spacelike form factors for the B− → π0 transition
calculated in the IMF (solid line) and in the BF (dashed line).
The shaded area indicates the frame dependence.
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s, i.e., the Breit frame, and s → ∞, the infinite-momentum
frame. Calculating the current (11) in the respective frames
with the wave functions and model parameters given in the
Appendix and applying the covariant decomposition (16)
gives the form factor results shown in Figs. 5–8. In addition
to the B− → D0 transition, we have also considered the
B− → π0, the D− → K0 and the D− → π0 transitions to get
a feeling on how the frame dependence is affected by the
heavy-quark flavors and the masses of the initial- and final-
state mesons.
What one observes are rather small differences between

the IMF and the BF predictions for the B → D and the
B → π transition form factors. The discrepancies between
the two frames become a little bit more pronounced for the
D → K and the D → π transition form factors. This has a
simple explanation: as can be seen from Eq. (26), for fixed
Q2, the value of Mandelstam s in the BF is larger for larger
mass of the decaying meson and thus closer to the infinite s
value in the IMF. With increasingQ2, s also has to increase
in the BF, and thus, the BF result tends to the IMF result for
large Q2. Another observation is that, for fixed initial-state
meson M, the discrepancies become smaller for smaller
mass of the final-state mesonM0. This indicates that effects
due to wrong cluster properties decrease, if p0, the size of

the three momentum of the final-state meson [see Eq. (22)],
increases. For large enough p0 bound-state effects, and thus
also effects coming from wrong cluster properties, become
negligible. Obviously, F0 exhibits a stronger frame depend-
ence than F1. This is also not too surprising, since F0 ¼
F1 þ F− [see Eqs. (13) and (15)]. In addition, there seems
to be a stronger frame dependence in the small form factor
F− than in the large form factor F1 ¼ Fþ.
These observations are in line with foregoing work

[1,7,10,11] and suggest that the frame dependence of the
form factors and hence, the influence of the Z-graph and
unwanted effects coming from wrong cluster properties of
our approach tend to diminish with increasing value of
Mandelstam s. It occurs thus to be preferable to use IMF
kinematics for the extraction of the transition form factors.
A further advantage of the IMF is that a valence-quark
approach catches more of the physics in the IMF than in
any other reference frame. The comparison of the IMF with
the BF results may thus also give us a hint on the size of
Z-graph contributions in reference frames different from
the IMF. Since physical form factors should not depend on
the chosen reference frame, we consider the results
obtained with IMF kinematics as the more complete one.

FIG. 7. Spacelike form factors for the D− → K0 transition
calculated in the IMF (solid line) and in the BF (dashed line). The
shaded area indicates the frame dependence.

FIG. 8. Spacelike form factors for the D− → π0 transition
calculated in the IMF (solid line) and in the BF (dashed line).
The shaded area indicates the frame dependence.
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C. Timelike transition form factors—analytic
continuation of BF results

Lepton-meson scattering amplitudes (and hence also
transition currents and form factors) are meromorphic
functions of Mandelstam s and t (¼ q2 ¼ qμqμ). It is
therefore possible to continue them analytically from
q2 ≤ 0 to q2 ≥ 0. This amounts to replace Q by iQ in
the analytical expressions for the transition current and the
form factors, i.e., Eqs. (11) and (16), respectively. Due to
the reasons just mentioned, it seems to be preferable to
perform the analytic continuation with IMF kinematics as
starting point.
Nevertheless, it is also instructive to have a look at

analytic continuation starting from BF kinematics. This
frame is energetically closest to the decay kinematics, for
which the invariant mass squared of the decaying system is
s ¼ m2

B ¼ const. Analytic continuation of the BF results is
thus expected to resemble the outcome of the direct decay
calculation and, if this is the case, give us some confidence
in the reliability of the analytic continuation procedure. A
comparison of the analytic continuation Q → iQ of the BF

results with the direct decay calculation, as outlined in
Sec. IV, is shown in Fig. 9 for the B → D and B → π
transitions in the physically allowed range 0 ≤ q2 ≤ q2max ¼
ðmM −mM0 Þ2. We observe that the predictions from analytic
continuation and the direct decay calculation agree at q2 ¼ 0
for both transitions. The agreement extends approximately
up to q2 ≈ 8 GeV2, where the differences start to increase
with increasing q2 and become significant towards the zero-
recoil point q2max ¼ ðmB −mDðπÞÞ2. This behavior is easily
understood: the direct decay calculation is done at fixed
s ¼ m2

B. In the analytically continued BF calculation, how-
ever, s decreases with increasingQ2 [see Eq. (26)] from s ¼
m2

B to s ¼ mBmD (or s ¼ mBmπ). This means that the form
factors obtained by analytic continuation and by the direct
decay calculation are calculated for the same q2 value, but for
different values of Mandelstam s. The physical form factors
should, of course, be independent of s and thus independent
of the frame in which theWMM0 vertex is considered, but as
already mentioned before, our model results exhibit an s
dependence, which can have its origin in a missing Z-graph
contribution and inwrong cluster properties.With increasing
q2 the BF kinematics differs more and more from the decay

FIG. 9. The form factor F1 for the B → D (upper panel) and
B → π (lower panel) transition for timelike momentum transfers
q2 ≥ 0. The solid line corresponds to the analytic continuation of
the BF results, the dashed line is the outcome of the direct decay
calculation [cf. Eq. (21)].

FIG. 10. The form factors F1 and F0 for the B → D transition
for timelike momentum transfers q2 ≥ 0. The solid line corre-
sponds to the analytic continuation of the IMF results, the dashed
line is the outcome of the direct decay calculation [cf. Eq. (21)].
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kinematics with s ¼ m2
B fixed and, consequently, the s

dependence leads then to the observed discrepancies
between the analytic continuation of the BF results and
the direct decay calculation.

D. Timelike transition form factors—analytic
continuation of IMF results

Since cluster-separability-violating effects tend to be
minimized in the IMF (i.e., for s → ∞) and nonvalence
Z-graph contributions are suppressed, it seems to be
preferable to start with form factor expressions calculated
in the IMF and apply analytic continuation to those
expressions. In the IMF, furthermore, s is fixed so that
the analytic continuation procedure is less delicate. The
comparison of the analytically continued IMF results with
the direct decay calculation, performed in the rest frame of
the decaying particle (s ¼ m2

B), will give us then an
estimate of the size of cluster-separability-violating effects
and the size of nonvalence Z-graph contributions in the rest
frame of the decaying particle.
In Figs. 10–13, the analytic continuation of the IMF

results for F0 and F1 is compared with the direct decay
calculation for various heavy-light transitions. What one
observes is, that the differences between the analytic
continuation and the direct decay calculation increase with

increasing q2 and are, in general, smaller for F0 than for F1.
The differences become also larger, when the mass of the
outgoing or decaying meson becomes smaller. For the B →
π andD → π transitions, a strong increase of the IMF result
near the zero-recoil point q2max ¼ ðmBðDÞ −mπÞ2 can be
observed for F1 which resembles a polelike behavior. One
can find several constituent-quark-model calculations for
the transition-form factors considered in this paper in the
literature. The outcome of these calculations resembles
very strongly our IMF results. In order to show the
variations between different, more recent model predic-
tions, we have summarized numerical form factor values at
zero momentum transfer in Table I.
Since we are not aware of experimental data away from

the zero-recoil point to which we could compare our
predictions, we make a comparison with lattice data which
are given in Ref. [39] for different values of q2. This is done
in Table II. In most cases, our predictions are within the
statistical errors given for the lattice data. Actually, the
uncertainties in lattice calculations seem to be a little bit
larger, as can be seen from Fig. 7 of Ref. [40], where
different lattice calculations, including Ref. [39], are
compared for the B → π transition form factors. For a
comprehensive and actual discussion of the problems
connected with the determination of weak B and D

FIG. 11. Same as in Fig. 10 but for the B → π transition. FIG. 12. Same as in Fig. 10 but for D → K transition.
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transition form factors on the lattice, we refer to the FLAG
Review 2019 [41].
The agreement with other model calculations and with

lattice data gives us some confidence that analytic con-
tinuation of our spacelike transition form factors, calculated
in the IMF, is an appropriate procedure to end up with a
physically sensible model for the transition form factors in
the timelike domain. It still remains to be seen, whether the
difference between the analytically continued IMF result
and the direct decay calculation can be mainly attributed to
a missing nonvalence Z-graph contribution in the direct
decay calculation, as often asserted. This question will be
dealt with in the sequel.

E. Z graph and meson pole

As already discussed in the introduction, the Z-graph
contribution is well approximated by a vector-meson-
dominancelike decay mechanism. As a consequence, the
form factors exhibit a pole at an unphysical value of q2 > 0,
which should be observable as an enhancement of the form
factors near the zero-recoil point q2max. Due to the confining

FIG. 13. Same as in Fig. 10 but for D → π transition.

TABLE I. Form factors at zero momentum transfer, F1ð0Þ ¼ F0ð0Þ, for B → D, π and D → K, π transitions, as
predicted by our model, in comparison with other constituent-quark-model results.

Transition This work
Zhang

et al. [26]
Choi
[27,28]

Faustov
et al. [29–32]

Verma
[33]

Cheng
et al. [34]

Ivanov
et al. [35–37]

Wu
et al. [38]

B → D 0.70 0.67 0.6969 0.63 0.67(1) 0.67 0.78
B → π 0.26 0.25 0.217 0.25 0.25 0.28 0.285þ0.016

−0.015
D → K 0.75 0.79 0.744−ð22Þþð23Þ

0.716 0.79(1) 0.78 0.77� 0.11 0.661þ0.067
−0.066

D → π 0.64 0.66 0.613−ð21Þþð22Þ
0.640 0.66(1) 0.67 0.63� 0.09 0.635þ0.060

−0.057

TABLE II. Numerical values for F1 and F0 obtained by
analytic continuation of the IMF results in comparison with
lattice data [39].

B → π

q2 Lattice [39] IMF (this work)

13.6 F1 ¼ 0.70ð9Þþ:10
−:03 F1 ¼ 0.71

F0 ¼ 0.46ð7Þþ:05
−:08 F0 ¼ 0.42

15.0 F1 ¼ 0.79ð10Þþ:10
−:04 F1 ¼ 0.82

F0 ¼ 0.49ð7Þþ:06
−:08 F0 ¼ 0.44

17.9 F1 ¼ 1.05ð11Þþ:10
−:06 F1 ¼ 1.15

F0 ¼ 0.59ð6Þþ:04
−:10 F0 ¼ 0.51

20.7 F1 ¼ 1.53ð17Þþ:08
−:11 F1 ¼ 1.75

F0 ¼ 0.71ð6Þþ:03
−:10 F0 ¼ 0.59

D → π

q2 Lattice [39] IMF (this work)

0.47 F1 ¼ 0.67ð6Þþ:01
−:00 F1 ¼ 0.74

F0 ¼ 0.62ð6Þþ:02
−:00 F0 ¼ 0.67

0.97 F1 ¼ 0.81ð7Þþ:02
−:00 F1 ¼ 0.88

F0 ¼ 0.70ð6Þþ:01
−:00 F0 ¼ 0.71

1.48 F1 ¼ 1.03ð9Þþ:01
−:00 F1 ¼ 1.07

F0 ¼ 0.80ð6Þþ:01
−:00 F0 ¼ 0.75

D → K

q2 Lattice [39] IMF (this work)

0.19 F1 ¼ 0.70ð5Þð0Þ F1 ¼ 0.79
F0 ¼ 0.68ð4Þð0Þ F0 ¼ 0.76

0.69 F1 ¼ 0.84ð5Þð0Þ F1 ¼ 0.91
F0 ¼ 0.76ð4Þð0Þ F0 ¼ 0.79

1.7 F1 ¼ 1.29ð7Þð0Þ F1 ¼ 1.27
F0 ¼ 0.96ð4Þð0Þ F0 ¼ 0.84
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forces, the nonvalence degrees of freedom have to recom-
bine with the valence Qq̄ pair to color singlet hadrons. In
the simplest case, they recombine to the outgoing meson
M0 and a vector-meson M� which fluctuates into a W that
decays in the sequel into eν̄e. This is depicted in Fig. 14 for
the B− → D0e−ν̄e decay.
In the literature, themeson-pole contribution is included in

different ways. In Ref. [20], the valence contribution and the
B̄0� pole contribution to the B̄0 → πþe−ν̄e decay are calcu-
lated within a nonrelativistic constituent-quark model.
Thereby, the B̄0B̄0�πþ transition is modeled by means of
a quark-pair-creation mechanism [42] leading to a soft form
factor at the B̄0�B̄0π vertex that suppresses the B̄0� pole
contribution away from the zero-recoil point. Reference [43]
uses relativistic front-form dynamics to analyze the B̄0 →
πþe−ν̄e decay. The valence contribution is described by
means of a constituent-quark model, whereas the B�-pole
contribution is treated on hadron level with a phenomeno-
logical form factor at the B�Bπ vertex. In this paper, also
renormalization of the valence Fock state due to the presence
of theB�D nonvalence component is taken into account. The
authors found that the valence contribution to the form factor
F1 in the low q2 ¼ 0 regime is well approximated by a
function of the form,

Fpole
1 ðq2Þ ¼ F1ð0Þ�

1 − q2

m2
pole

�
α
; ð27Þ

with α ¼ 1.6 amd mpole ¼ 5.32 GeV. Towards the zero-
recoil point, the valence contribution to F1 starts to decrease
and deviates from this parametrization. Near zero recoil, the
nonvalence B� pole contribution begins to dominate. The
combined valence and Z-graphs results are also reasonably
well approximated in the whole range 0 ≤ q2 ≤ q2max by
means of Eq. (27) with parameters α ¼ 2.0 and mpole ¼
5.6–5.8 GeV, depending on the strength of the B�Bπ
coupling.
Following Ref. [43], we have also tried to parametrize our

IMF results by means of Eq. (27). But we have rather fixed
the pole mass to the lightest vector-meson massM� and left
the power α as a free parameter. The outcome of our attempt
is shown in Fig. 15 for the B− → D0 and the D− → K0

transitions. With parameters αB→D ¼ 1.55 and αD→K ¼
1.09, we find that our analytically continued IMF results
follow Eq. (27) surprisingly well in the plotted kinematic
range. The closer the pole is to the zero-recoil point, themore
the form factor F1 tends to exhibit a monopolelike behavior
as one would expect from a meson-pole contribution. The
masses of the incoming- and outgoing pseudoscalar mesons
for various decays are given in Table III together with the
corresponding intermediate-state vector meson masses and
the distance of the pole from the zero-recoil point. Looking at
this table, it is obvious that the B− → D0 decay form factor
deviatesmore fromapuremonopole behavior than theD− →
K0 decay form factor. One must also keep in mind that we
parametrize the whole form factor and not just the pole
contribution and that the valence contribution gains impor-
tancewith increasing vector-mesonmass. It is, however, very
remarkable that the analytic continuation of the IMF results
provides an enhancement of the timelike form factors near
zero recoil which resembles the q2 behavior of a vector-
meson-dominated decay mechanism, although we started
with pure valence degrees-of-freedom and no additional
dynamical inputwas explicitly introducedduring the analytic
continuation procedure. How this can happen and whether
the analytically continued IMF result for the form factors can
really be understood as the sum of a direct decay and a decay

FIG. 14. Approximation of the nonvalence Z-graph contribu-
tion to the B− → D0e−ν̄e decay by means of a vector-meson-
dominancelike mechanism.

FIG. 15. Transition form factor F1 for space- and timelike momentum transfers obtained by analytic continuation of the IMF result
(thick, blue line) and pole fit (thin, red line) with αB→D ¼ 1.55, mpole ¼ mB�

c
≈mBc

¼ 6.274 GeV (left) and αD→K ¼ 1.09,
mD�

s
¼ 2.112 GeV. The dashed, vertical lines indicate the position of q2max and m2

pole.
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via an intermediate vector-meson (cf. Fig. 14), calculated in
the rest frame of the decaying particle, requires some
additional modeling of the M�MM0 vertex and will be the
subject of future investigations.

VI. THE HEAVY-QUARK LIMIT

In this section, we want to verify, that the analytic
continuation of the IMF form factors to q2 ≥ 0 obeys the
heavy-quark-symmetry requirements in the heavy-quark
limit. Heavy-quark symmetry implies that the dynamics of
the heavy-light meson becomes independent of the flavor
and the spin of the heavy quarks as the heavy-quark masses
go to infinity [44]. As one consequence, electromagnetic
and weak hadron form factors (multiplied with appropriate
kinematical factors) approach a universal function, the
Isgur-Wise function [45]. In Refs. [1,25], it has already
been demonstrated that the electromagnetic and weak-
decay form factors of heavy-light pseudoscalar and vector
mesons, calculated within our (pure valence-quark)
approach, satisfy the heavy-quark-symmetry constraints.
Interestingly, the heavy-quark limit removes the frame
dependence of the form factors for spacelike momentum
transfers, indicating that Z-graph contributions are sup-
pressed in the heavy-quark limit. This is what one would
expect on physical grounds, since the probability for a
higher Fock state containing an infinitely heavy quark-
antiquark pair is strongly suppressed as compared to the
valence Fock state. If this is the case, our analytically

continued IF result and the result from the direct decay
calculation should also agree in the heavy-quark limit and
coincide with the Isgur-Wise function. This is what we are
going to show now.
In order to perform the heavy-quark limit, the momen-

tum transfer squared, q2 ¼ ðpM − pM0 Þ2, is first expressed
in terms of

vM · vM0 ¼ pM · pM0

mMmM0
¼ m2

M þm2
M0

2mMmM0
−

q2

2mMmM0
; ð28Þ

the product of the meson four velocities. The heavy-quark
limit mQ;mQ0 → ∞ is then taken in such a way that vM ·
vM0 stays constant and both, the binding energy and the
light-quark mass mq, are neglected, i.e.,

mQð0Þ ¼ mMð0Þ ;
mq

mQð0Þ
¼ 0: ð29Þ

For a general discussion of the heavy-quark limit, we refer
to the review article [44]. Technical details on how the
heavy-quark limit is performed within our approach can be
found in Refs. [1,25]. In the following, we will focus on the
B− → D0 transition. As a consequence of heavy-quark
symmetry, both transition form factors, multiplied with
appropriate kinematical factors, tend to one universal
function, the Isgur-Wise function,

R

�
1 −

q2ðvB · vDÞ
ðmb þmDÞ2

�
−1
F0ðq2ðvB · vDÞÞ ⟶

mb;mc→∞
ξðvB · vDÞ;

FDðvB · vDÞ ≔ RF1ðq2ðvB · vDÞÞ ⟶
mb;mc→∞

ξðvB · vDÞ withR ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p
mB þmD

: ð30Þ

For physical quark and meson masses, deviations of these
(rescaled) form factors from the Isgur-Wise function
indicate the amount of heavy-quark-symmetry breaking.
Figure 16 shows the Isgur-Wise function as resulting in the
heavy-quark limit from the B− → D0 decay form factors
according to Eq. (30). As it turns out, it does not matter,
whether one takes the form factors obtained from the direct
decay calculation or the analytically continued IMF form

factors. This implies that the Isgur-Wise function is
determined by the valence contribution and that cluster-
separability violating effects vanish in the heavy-quark
limit. How the rescaled form factors tend to the Isgur-Wise
function in the heavy-quark limit is also shown in Fig. 16
for both the analytically continued IMF form factors and
the form factors from the decay calculation. On the upper
panel, these form factors are plotted for physical quark and

TABLE III. Meson and pole masses.

Transition Initial meson Final meson Meson pole m2
M� − q2max

B− → D0 mB− ¼ 5.2793 GeV mD0 ¼ 1.869 GeV mB�
c
≈ 6.274 GeV 27.73 Gev2

B̄0 → πþ mB̄0 ¼ 5.2797 GeV mπþ ¼ 0.1396 GeV mB� ¼ 5.325 GeV 1.935 GeV2

B̄0
S → Kþ mB̄0

S
¼ 5.367 GeV mKþ ¼ 0.4937 GeV mB� ¼ 5.325 GeV 4.607 Gev2

D̄0 → Kþ mD̄0 ¼ 1.864 GeV mKþ ¼ 0.4937 GeV mD�
s
¼ 2.112 GeV 2.583 GeV2

D− → π0 mD− ¼ 1.869 GeV mπ0 ¼ 0.135 GeV mD� ¼ 2.010 GeV 1.033 GeV2
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meson masses; on the lower panel, these masses have been
multiplied with a factor of 6. For the upscaled masses, one
can already see that all form factors tend to the Isgur-Wise
function, which means that heavy-quark symmetry is nearly
restored. For physical masses of the heavy quarks, the
situation is somewhat different. The scaled form factors
F0 and F1, as resulting from the analytic continuation, are
nearly identical and coincide approximately with the Isgur-
Wise function, if they are normalized to 1 at vB · vD ¼ 1.
This suggests that heavy-quark symmetry already holds
approximately for physical quark masses and breaking
effects just affect the normalization. On the other hand,
for physical quark masses, the scaled form factorsF0 andF1

from the direct decay calculation still differ from each other.
Provided that the frame dependence of form factors can be
mainly attributed to missing Z-graph contributions, this
means that their inclusion is also necessary to recognize
approximate heavy-quark symmetry for physical quark
masses.
In order to give a comparison with experimental data, we

consider the slope of F1 as a function for vM · vM0 at zero

recoil. To be precise, the quantity we are interested in is
defined as

ρ2D ≔ −
F0
1ðvM · vM0 ¼ 1Þ

F1ðvM · vM0 ¼ 1Þ ; ð31Þ

with F0
1 meaning differentiation with respect to vM · vM0 .

For the B → D decay, the experimental value provided by
the heavy-flavor averaging group [46] is ρ2D ¼ 1.131�
0.033. In [1,25], the direct decay calculation involving only
valence degrees of freedom gave a value of ρ2D ¼ 0.55 for

physical quark masses and ρ2D ⟶
mQ;mQ0→∞

− ξ0ð1Þ ¼ 1.24 in
the heavy-quark limit. We confirm this finding. On the
other hand, our analytically continued IMF form factor (for
physical quark masses) has a value of ρ2D ¼ 1.07, much
closer to the experiment than the direct decay calculation.
This is a further support of the argument that the physically
most complete description of theM → M0 transition within
a pure valence-quark picture is achieved in the IMF or,
more generally, in a qþ ¼ 0 frame, if the calculation is done
in front form. An equivalent description in other frames can
most probably be achieved by adding the nonvalence Z-
graph contribution to the valence contribution.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated weak B → D; π and
D → K; π transition form factors for space- and timelike
momentum transfers, as can be measured in neutrino
scattering and semileptonic weak decays. We have used
the point form of relativistic quantum mechanics in con-
nection with the Bakamjian-Thomas construction to
describe these systems in a relativistic invariant way by
means of a constituent-quark model. The weak hadron
transition current can then be extracted in a unique way
from the invariant scattering or decay amplitude, which is
calculated perturbatively in leading order of the weak
coupling, starting from a multichannel mass operator. A
covariant decomposition of this four-vector current yields
the transition form factors.
For spacelike momentum transfers q2 < 0, these tran-

sition form factors were found to exhibit, in addition to the
expected q2 dependence, a dependence on the invariant
mass squared s of the scattering system. The same
observation was already made in previous work on electro-
magnetic form factors [1,10,11], where it was suspected
that the origin of this s dependence are wrong cluster-
separability properties inherent in the Bakamjian-Thomas
construction. This s dependence can be reinterpreted as a
dependence on the frame in which the WMM0 vertex is
considered. Such a frame dependence is a common
phenomenon and occurs, independent of the chosen form
of relativistic dynamics, in any attempt to model a bound
state current solely by means of valence Fock states using a
one-body current. It is a common belief, which is supported

FIG. 16. B− → D0 transition form factors as a function of v · v0,
multiplied by appropriate kinematical factors [see Eq. (30)], in
comparison with the Isgur-Wise function (green solid line).
Upper panel: physical quark and meson masses. Lower panel:
heavy quark masses are multiplied by a factor of 6 and the meson
masses are taken to be equal to the heavy-quark masses.
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by the analysis of the triangle diagram in a simple ϕ3

model, that this frame dependence can be cured by
including a Z-graph contribution. Such a contribution
requires, however, a nonvalence component in the decaying
meson. Fortunately, the nonvalence component is sup-
pressed in the infinite-momentum frame which corresponds
in our approach to the limit s → ∞. It is thus often asserted
that the pure valence-quark picture provides already a
physically satisfactory description of form factors, if these
are calculated in the IMF. In any other frame, the Z graph
can provide a non-negligible contribution to the form
factors and should therefore be taken into account. If a
missing Z-graph contribution is indeed responsible for the
frame dependence of the form factors, its size in a particular
frame will be approximately the difference between the
form factors calculated in this frame and in the IMF. Our
numerical comparison of transition form factors F0 and F1

calculated in the Breit frame (i.e., s minimal) with those
calculated in the IMF (i.e., s → ∞) showed that the
differences are marginal for B− → D0; π0 transitions,
whereas they can amount to about 10% for D− → K0; π0

transitions.
The importance of the Z-graph contribution to the form

factors is supposed to increase for timelike momentum
transfers q2 > 0. The annihilation process of the emitted
quark-antiquark system into a W is dominated by inter-
mediate vector-meson states, which allows us to approxi-
mate the Z-graph contribution by a vector-meson-
dominance-like decay mechanism. The closer the pole of
the lightest vector meson is to the physical region, the more
important becomes the Z graph as compared to the pure
valence contribution. But in contrast to scattering, the
decay kinematics does not allow for a frame in which
the Z graph is suppressed. The invariant mass of the whole
system is fixed to the rest mass of the decaying particle. In
order to estimate the Z-graph contribution for timelike
momentum transfers, we have thus used the property that
the form factors are meromorphic functions of q2, which
can be analytically continued from q2 < 0 to q2 > 0. Under
the assumption that the pure valence-quark picture provides
already a physically satisfactory description of the form
factors in the IMF, proper analytic continuation should also
give a reasonably complete account of the form factors at
timelike momentum transfers. If this is the case, the
difference between the analytically continued IMF form
factors and the form factors obtained from the direct decay
calculation provides again an estimate for the size of the
Z-graph contribution in the timelike domain. As suspected,
these differences are already noticeable for the B− → D0

decay and become really appreciable for the B− → π0 and
D− → K0; π0 decays.
For our numerical studies, we have used a harmonic-

oscillator form for the quark-antiquark meson wave func-
tions with the oscillator parameters taken from Ref. [12],
where these were fitted to reproduce the known meson

decay constants. With this parametrization of the meson
wave functions, the analytic continuation of the IMF form
factors gave quite reasonable results in the timelike region,
which are in good agreement with existing lattice data [40].
Furthermore, we have also verified that the constraints put
on the form factors by heavy-quark symmetry are satisfied
within our approach. In the heavy-quark limit, all form
factors, written as functions of vM · vM0 and multiplied with
appropriate kinematical factors, tend to one universal func-
tion, the Isgur-Wise function. The heavy-quark limit elim-
inates any frame dependence so that it even does not matter,
whether the heavy-quark limit is applied to the analytically
continued IMF form factors or those from the direct decay
calculation. Since the Z graph vanishes in the heavy-quark
limit, this is a further indication that the difference between
the IMF result and the direct decay calculation can bemainly
ascribed to a missing Z-graph contribution in the decay
calculation.We have also observed that approximate validity
of heavy-quark symmetry holds already for physical masses
of the heavy quarks in case of the IMF form factors. This
allowed us to calculate ξ0ð1Þ, i.e., the slope of the Isgur-Wise
function at zero recoil, for physical quark masses. For the
B → D transition, our prediction agrees very well with the
experimentally determined value. For the form factors
resulting from the direct decay calculation, one has to go
far beyond the physical quark masses in order to recover
heavy quark symmetry. This means that the Z graph could
also be important to unveil heavy-quark-symmetry proper-
ties already for physical quark and meson masses.
In this paper, we have only tried to estimate the size of

the Z-graph contribution indirectly. We have argued that the
valence-quark picture gives a nearly complete description
of the form factors in the IMF, since the Z graph is
suppressed in the IMF. If one goes to another frame, the
observed deviation from the IMF result was then attributed
to the missing Z graph. This assumption was supported by
the observation that F1ðq2Þ for the B− → D0 andD− → K0

decays is well approximated by a pole fit with the pole mass
taken as the mass of the lightest intermediate vector meson
and the power approaching a monopole behavior with
decreasing vector-meson mass. Furthermore, the difference
between the IMF result and the direct decay calculation
vanishes in the heavy-quark limit, as one would expect
from the Z graph. But for a definite answer to the question,
whether the IMF result provides indeed a complete physical
picture and whether the frame dependence of the form
factors, calculated within a pure valence-quark picture, can
be cured by including a nonvalence Z-graph contribution,
the Z graph has to be calculated explicitly. This would
require some additional modeling, allowing for a non-
valence component in the decaying meson.
The simplest way to model the dominant pole contri-

bution, e.g., in the B− → D0 decay, within a constituent-
quark model is to assume that the physical jB−i state is a
superposition of the valence Fock state jB−ival and a
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nonvalence jD0B�
ci state, i.e., jB−i ¼ jB−ival þ jD0B�

ci.
Such a model for the B− could, in principle, be accom-
modated within an extended constituent quark model,
which allows for the coupling of the valence bū channel
to the nonvalence cūbc̄ channel. For instantaneous con-
fining forces between the quarks, the corresponding mass
eigenvalue problem can then be rewritten as a mass
eigenvalue problem for purely hadronic degrees of freedom
with the quark substructure just entering the strong inter-
action vertices [47]. After an appropriate truncation of
the sum over intermediate states, one will end up with the
simple picture of B− being the sum of a bare B− (i.e., the
valence contribution) and a nonvalence D0B�

c state. This
way of including nonvalence contributions has already
been pursued for the (nonperturbative) calculation of
hadron decay widths [47,48] and pion-cloud effects in
electromagnetic baryon form factors [49,50]. The new
piece in our case would be a vertex that provides the
transition from the bū channel to the cūbc̄ channel or,
rephrased in terms of hadronic degrees of freedom, the
B�
cB−D0 vertex, which has to be expressed in terms of

quark degrees-of-freedom. Since a cc̄ pair has to be created,
a possible candidate for the vertex interaction would, e.g.,
be a 3P0 model [51], in which a quark-antiquark pair is
created out of the vacuum. Decays with a π or K in the final
state could be described even simpler within a chiral
constituent-quark model [52] with the elementary degrees
of freedom being constituent quarks and the octet of the
lightest pseudoscalar mesons, which couple directly to the
constituent quarks. How the substructure of the M�MM0

vertex would then look like in either the 3P0 model, or the
chiral constituent-quark model, is graphically represented
in Fig. 17 for the B�

cB−
valD

0 and the B�B−
valπ

0 vertex,
respectively. After having determined the M�MM0 vertex
from its quark substructure one only has to solve a two-
channel mass eigenvalue problem in which the valence
component jMvali is coupled to the nonvalence component
jM0M�i. This gives the mass of the decaying meson jMi,
the probability of the valence component and the (two-
particle) wave function of the nonvalence component. With
these ingredients, the Z-graph contribution to the weak
transition form factors, in particular its relative importance
as compared to the pure valence contribution, is determined
uniquely from an underlying (extended) constituent-quark
model. This kind of strategy has already been pursued

within a front form approach in Ref. [43], but there the
M�MM0 vertex has not been determined from an underlying
quark model, but rather parametrized in a purely phenom-
enological way. The explicit calculation of the Z-graph
contribution to meson transition form factors in a way
consistent with the underlying constituent-quark model, as
we have just sketched, will be the subject of future work.
At the very end of the paper, we still want to comment on

the violation of cluster separability within our approach.
Mass operators with good cluster properties could, in
principle, be constructed from our mass operators (5)
and (17) by applying a series of unitary transformations
[53]. Formally, it is known how to construct these unitary
transformations [54,55], but the technical difficulties
become tremendous when going beyond three-body sys-
tems and, in particular, for coupled-channel problems [6].
To our knowledge, matrix elements of these unitary trans-
formations have only been worked out explicitly for a
three-body system consisting of distinguishable scalar
particles [8], but we are not aware of any numerical studies
that explicitly show how observables of a physical system
change, when these unitary operators are applied [56].
These unitary transformations introduce many-body forces
and will add an effective many-body current to the one-
body meson transition current we have used up till now. We
have thus two sources for deviations of our model form
factors from the frame independent physical form factors
one wants to end up with: wrong cluster properties of the
mass operator and a missing Z-graph contribution. The
latter vanishes in the IMF and investigations on electro-
magnetic form factors have shown that the effect of wrong
cluster properties is also minimized in the IMF [7,11]. In
this sense, form factors calculated in the IMF should be
closest to the physical form factors we want to understand.
Differences between form factors calculated in the IMF and
any other frame receive, in principle, contributions from the
Z graph and from cluster-separability violating effects. In
the course of this paper, we have assumed that these
differences are dominated by the Z-graph contribution,
in order to estimate its size. This assumption is supported
by the polelike form factor behavior in the timelike region.
But actually one should disentangle both contributions. To
this aim, it is at least necessary to determine the Z-graph
contribution explicitly. If the frame dependence of the
form factors, consisting of valence and Z-graph con-
tribution, should then be negligible, it is most likely that

FIG. 17. Quark substructure of M�MM0 vertex in the 3P0 model (left) and the chiral constituent-quark model (right). Blobs represent
quark-antiquark wave functions for the respective mesons.
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cluster-separability-violating effects play a minor role like,
e.g., asserted for nuclear systems [56]. If this is not the case,
it would be unavoidable to eliminate cluster-separability-
violating effects by starting from mass operators with
correct cluster properties.

ACKNOWLEDGMENTS

M. G.R has been supported by the Spanish MINECO’s
Juan de la Cierva-Incorporación programme, Grant
Agreement No. IJCI-2017-31531, Junta de Andalucía
FQM-225, and Project No. PID2020–114767 GB-I00
funded by MCIN/AEI/10.13039/501100011033.

APPENDIX: BOUND-STATE WAVE FUNCTION
AND MODEL PARAMETERS

To calculate the bound-state currents, cf. Eq. (21) and
Eq. (10), we use a simple harmonic-oscillator meson wave
function,

ψαðκÞ ¼
2

π
1
4a

3
2
α

e
− κ2

2a2α ; ðA1Þ

where the subscript α distinguishes the different mesons.We
adopt the harmonic-oscillator parameters aα and the quark
constituent masses from Ref. [12], where these parameters
were fitted to reproduced meson decay constants. They are
collected in Table IV.
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