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Abstract
We develop a theoretical model to measure the relative relevance of different patholo-
gies of the lethality of a disease in society. This approach allows a ranking of diseases
to be determined, which can assist in establishing priorities for vaccination campaigns
or prevention strategies. Among all possible measurements, we identify three families
of rules that satisfy a combination of relevant properties: neutrality, irrelevance, and
one of three composition concepts. One of these families includes, for instance, the
Shapley value of the associated cooperative game. The other two families also include
simple and intuitive indices. As an illustration, we measure the relative relevance of
several pathologies in lethality due to COVID-19.
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1 Introduction

The COVID-19 pandemic is exerting a substantial global impact both from a human-
itarian and economic perspective. As of February 2021, the virus has already resulted
in over two million deaths. As with many other diseases, it is crucial to determine
how preexisting conditions (e.g., other pathologies or genetic factors) influence the
evolution and end of the disease. Identifying risk factors is relevant for the design
of efficient public health systems and health services, including strategic interven-
tions that can limit the fatal outcomes of a disease. However, when several factors are
present and when these do not always occur simultaneously, the following question
reasonably arises: which factors are the most relevant to a prognosis? The ability to
quantify the relevance of a pathology in the observed mortality is a determinant in
the design of a successful strategy to combat a disease. This is especially the case
when establishing priorities between different population groups in the design of a
vaccination campaign. In the case of COVID-19, several papers have examined the
influence of preexisting comorbidities on COVID-19 mortality. For example, using
logistic regression, Nogueira et al. (2020) evaluated and ranked the risk factors for
COVID-19 mortality in Portugal. In the New York City Area, Richardson et al. (2020)
studied risk factors for the evolution of hospitalized patients with COVID-19. Bello-
Chavolla et al. (2020) used Cox proportional-hazards regression to score risk factors
of lethality in patients with COVID-19 in Mexico. Stoian et al. (2020) statistically
analyzed patterns of comorbidity, gender, and age in the mortality of patients with
COVID-19 in Romania. Therefore, it is of research interest to examine the extent to
which each risk factor contributes to COVID-19 mortality.

A major aim of epidemiological research is to measure disease occurrence in rela-
tion to specific variables, which are known as risk factors. Impact measures are used
to assess the contribution of one or several risk factors to the occurrence of incident
cases at the population level (Benichou 2007). Therefore, in a given population, the
methodological task of adequately evaluating the impact of risk factors, which are
not always present at the same time, on the final outcome of a disease is a relevant
mathematical question. The first major problem involves determining how to assess
risk factors that contribute to a particular goal. Since we can view risk factors as
collaborating to achieve a goal, one possibility is to approach the problem from the
perspective of cooperative game theory. In this case, it is first necessary to associate
a cooperative game with the problem at hand, and then to apply a solution concept.
One of the most commonly used solutions is the Shapley value (Shapley 1953). Its
widespread use is due to its relevant properties and simple interpretation (see, for
instance, Roth 1988; Algaba et al. 2019b). Another alternative is to use the theory
of distributive justice (Rawls 1971; Roemer 1996) to define indices or measures that
are closely related to the analyzed attribution problem, and which have properties that
make them relevant and suitable in the corresponding context. On many occasions,
the approaches are interrelated, studying whether the solutions provided in one of
the approaches correspond to some concept or principle of the other. Moreover, these
approaches can be also carried out in other biological systems in which several factors
are implicated in producing a desirable or non-desirable result (e.g., climate change,
genetics, or artificial and biological networks).
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The most popular measures of epidemiological risk are relative risk, the odds rate,
and attributable risk (Levin 1953). On this last concept of risk measure, we can find
different approaches from the perspective of game theory when there are several risk
factors. Cox (1985) investigated the problem of risk attribution by considering a risk
function from the set of risk factors to [0, 1]. This can be seen as the characteristic
function of a game, where the factors play the role of the players and the risk allocation
functions are defined. In turn, the author demonstrated that there exists a unique risk
allocation function that satisfies three reasonable properties in the epidemiological
context: additivity, independence of labeling, and independence of irrelevant factors.
Moreover, this risk allocation function is the Shapley value of the risk attribution
problem seen as a game. Eide and Gefeller (1995) and Gefeller (1994) introduced
sequential and average attributable fractions as measures of risk based on the results
ofCox (1985), particularly those related to the Shapley value. Land andGefeller (1997)
and Gefeller et al. (1998) provided a game theoretic justification of the results in Eide
and Gefeller (1995) by means of a set of axioms (symmetry, marginal rationality, and
internal marginal rationality) different from those used in Cox (1985). Likewise, they
used the (multifactorial) attributable risk function instead of a general risk function.
McElduff et al. (2002) and Llorca andDelgado-Rodriguez (2004) introduced a propor-
tional weighting scheme to distribute attributable risk among the different risk factors,
and Rabe and Gefeller (2006) compared this method to the one based on the Shapley
value. To finish with the problem of distributing attributable risk, Land and Gefeller
(1998, 2000) introduced a multiplicative version of the Shapley value to distribute the
attributable risk.

Cooperative games have been also applied to attribution problems arising from
biological situations, particularly from genetics. For example, Moretti et al. (2007)
introduced microarray games to analyze the relevance of genes. The authors proposed
the Shapley value of the game as a relevance index for genes based on properties
with a genetic interpretation (partnership rationality, partnership feasibility, partner-
ship monotonicity, equal splitting, null gene). Lucchetti et al. (2010) investigated the
Shapley value and the Banzhaf value (Banzhaf 1965) for microarray games by con-
sidering new relevant properties: symmetry, individual consistency, average loss, and
total loss. Moretti et al. (2010) and Cesari et al. (2018) analyzed the co-expression
networks of genes to explore the relevance of genes in terms of their relationships
with other genes, relying on centrality indices in networks and the Shapley value of
an associated game. Microarray games were also applied to study neuroblastic tumors
in Albino et al. (2008) and to detect the genes involved in autism in Esteban and Wall
(2011).

Phylogenetic trees are arborescent schemes that illustrate evolutionary relation-
ships between various species or other entities that are believed to have a common
ancestry. These schemes are useful for measuring (genetic) biodiversity. Therefore, if
we are interested in preserving biodiversity, the problem of finding adequate measures
to quantify the biological diversity of a species or genus is of great biological interest.
In one sense, this is an attribution problem where we are interested in knowing which
species are responsible for what part of the diversity. For each (unrooted) phylogenetic
tree, Haake et al. (2008) defined a game (known as a phylogenetic tree game) and pro-
posed the Shapley value of that game as a suitable measure of the diversity of species.
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Moreover, the authors characterized the Shapley value of those games by means of a
set of axioms that are considered relevant for a diversity measure: Pareto efficiency,
symmetry, additivity, and group proportionality. Redding et al. (2008) demonstrated
that the Shapley value inHaake et al. (2008) and the fair proportion index (Redding and
Mooers 2006) are highly correlated. Also, Hartmann (2013) showed that the Shapley
value and the fair proportion index become equivalent when the number of species
increases. However, Fuchs and Jin (2015) proved that the Shapley value of the (rooted)
phylogenetic tree game and the fair proportion index are, in fact, the same, and Fuchs
and Paningbatan (2020) studied the correlation between the (unrooted) Shapley value
and the fair proportion index when the β-splitting model is used to generate random
phylogenetic trees. More recently, Stahn (2020) studied the main differences between
the Shapley values of phylogenetic tree games, and Wicke and Steel (2020) examined
the combinatorial properties of phylogenetic diversity index, including the different
versions of the Shapley value.

As mentioned above, attribution problems are relevant in many other fields. For
example, Brander et al. (2011) offered an account of the importance of the attribution
problem in climate change, andBurger et al. (2020) conducted an in-depth reviewof the
attribution problem in the context of climate change, both from a technical perspective
and its legal and policy applications. A final example of attribution problems is in the
field of artificial and biological networks. In this case, the attribution problem refers
to measuring the contribution of each element of a network to a function for the
successful performance of that function. Keinan et al. (2004) used the Shapley value
for fair attribution of functional contribution in networks and provided a wide range
of potential applications of this approach.

In this paper, we approach the epidemiological problem of multifactorial risk attri-
bution, but we directly use the risk profile of individuals in the population, as in
the microarray problems in Moretti et al. (2007) and others. This is in contrast to
using attributable risk, as in Cox (1985), Eide and Gefeller (1995), or Gefeller (1994).
Moreover, instead of considering solutions for an associated game, we directly con-
sider population data to define indices for the influence of risk factors on the lethality
of a disease. Another difference compared to previous approaches is that we only
consider individuals who have a specific outcome in the development of the disease
and not all possible outcomes. Therefore, we measure the relative influence of risk
factors in a particular outcome (e.g., the lethality of a disease). In this way, we obtain
a ranking of the influence of risk factors on the outcome of interest (i.e., seeking to
identify the risk factors that have the greatest impact on the outcome of interest).

To be more precise, in our setting, a problem is determined by a set of pathologies,
a set of individuals who have passed away, and a lethality matrix, which specifies the
pathologies that led to an individual’s death. An index is a measure of the lethality rel-
evance of the pathologies as a function of the lethality matrix. Following the axiomatic
methodology in the theory of fair distribution (Rawls 1971; Roemer 1996), we inves-
tigate whether there exist indices that satisfy combinations of properties which are
suitable in this context. In particular, we focus on three axioms: neutrality, irrele-
vance, and composition. The first of these says that the mere name of the pathology
should not affect the measurement. Irrelevance states that the relevance lethality of an
irrelevant pathology is zero. Finally, composition requires that when we bring together
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data from two subgroups, the index of the total group can be determined by a suitable
composition of the indices of the subgroups. We consider three types of composi-
tion: additive composition, sized composition, and incidence composition. Additive
composition requires that the index is additive with respect to the set of individuals;
sized composition requires that the index is weighted additive with respect to the size
of the subgroups of individuals; and incidence composition requires that the index is
weighted additive with respect to the incidence of pathologies in each subgroup. The
combination of neutrality, irrelevance, and one of the composition properties give
rise to a unique family of indices for the influence of risk factors on the lethality of
a disease. In this way, we obtain three families of indices. Each of these families has
as a member a simple index that is remarkable and easy to interpret. In particular, the
family obtained with additive composition contains the equal attribution index, which
emerges as the most convenient alternative of that family since it coincides with the
Shapley value of the natural associated game. The family obtained with sized com-
position contains the share index, which measures the proportions of individuals who
died with each pathology. Finally, the family obtained with incidence composition
contains the ratio index, which measures the ratio of pathologies out of all possible
cases.

There are several problems in the literature consisting of a set of attributes and a
population whose individuals have at least one of those attributes (see Algaba et al.
2019a). Then, a game is associated with each problem, and the measure of relevance
of each attribute usually coincides with a solution concept of that cooperative game.
Efficiency is one of the basic requirements for the solution. One of these problems
is the museum pass problem (Ginsburgh and Zang 2003). Our model also presents
several particularities with respect to this problem and those related to it. First, we do
not require efficiency in the definition of the lethality influence index. The lethality
relevances do not need to add up to a given amount, and different indices may add
up differently. And second, we consider the possibility that there are individuals in
the population who do not have any of the attributes, that is, there may be individuals
who have died without any of the considered pathologies. This possibility is explicitly
excluded in Ginsburgh and Zang (2003), Bergantiños and Moreno-Ternero (2015),
and Dehez and Ginsburgh (2020). In this sense, our results, if properly applied to each
domain, can be also understood as a generalization of these papers, when we eliminate
efficiency. Indeed, one of the families of indices we characterize contains the solution
proposed by these authors for their frameworks.

Finally, to illustrate the application of our theoretical framework, we measure the
relevance of several pathologies in the lethality of COVID-19. According to the Novel
Coronavirus Pneumonia Emergency Response Epidemiology Team (see Team 2020),
themost prominent comorbidities implicated inCOVID-19mortality are hypertension,
cardiovascular disease, diabetes, and chronic respiratory disease. From their data, we
run several simulations to apply the indices we characterize.We find that the relevance
of some pathologies differs from the impact reported in their study.

The rest of the paper is organized as follows. Section 2 presents the mathematical
model we will use. In Sect. 3, we propose some simple and intuitive indices that are
suitable for measuring the relative relevance of pathologies of the lethality in society,
one of which is the equal attribution index. In Sect. 4, we present some properties
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that we consider relevant in this context. Our main results are given in Sect. 5. We
characterize the three families of rules that satisfy the properties. The equal attribution
index belongs to one of these families and we show that it coincides with the Shapley
value of an associated game. Section 6 illustrates the application of the equal attribution
index of lethality relevance to the case of COVID-19. Finally, Sect. 7 offers concluding
remarks.

2 Mathematical model of comorbidity in the lethality of a disease

Let P = {1, . . . , p} be a set of pathologies. Suppose wewant to assess their relevance
as the cause of death in a group of individuals N = {1, . . . , n}. A lethality matrix
is a matrix X ∈ {0, 1}n×p of n rows (one for each individual) and p columns (one for
each pathology), where

xia =
{
1 if i dies with pathology a,

0 otherwise.

We denote by xi · the i-th row of X , which indicates the pathologies that i has.
We also denote by x·a the a-th column of X , which indicates the individuals with
pathology a. Let DN be the domain of all possible matrices with individuals in N .

We shall also consider a variable-population generalization of the model. Then,
there is a set of potential individuals, which are indexed by the natural numbers N.
Let N be the set of finite subsets of N, with generic element N . We denote by D ≡⋃

N∈N DN the class of all possible matrices with variable population.
Although we have only mentioned pathologies in the model, it is possible to con-

sider other risk factors such as gender and age without the need to make any special
modifications to the model. Therefore, the model is sufficiently general to analyze
other types of biological problems in which the impact of different factors must be
assessed.

Lethality relevance is measured using an index. It is a mapping λ : D −→ R
p
≥0 that

assigns a vector λ(X) to each lethality matrix X ∈ DN , where λa(X) is the relevance
of pathology a ∈ P on the lethality.

Example 1 Consider the case of a group of individuals N = {1, . . . , 6} who die with
one or several pathologies in P = {diabetes, high blood pressure, bronchitis}. Data
are represented using a lethality matrix as follows:

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1
0 0 0
0 1 1
1 0 0
1 1 1
1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The first row indicates that Agent 1 died with high blood pressure and bronchitis
but was not diabetic. We observe that three out of six people had diabetes when they
passed away, the same number as thosewith high blood pressure. Also, in this example,
any individual with high blood pressure was affected by bronchitis. At this point, the
obvious question is: what is the relevance of each pathology on the lethality of this
society?

3 Lethality influence indices

This section presents several lethality influence indices that can be applied to quantify
the relevance of risk factors (preexisting pathologies) on the lethality of a disease.

The first lethality influence index, relevance, is relatively straightforward. Rele-
vance is defined as the number of individuals who died having been diagnosed with
the pathology. Just counting the number of cases (and obviating the size of the popu-
lation, for example) may not be very accurate, but it can be considered as a primary
measure in epidemiology. In fact, this indicator has been recurrent in the media during
the pandemic.

Count index. For each X ∈ DN and each a ∈ P ,

λCa (X) =
n∑

i=1

xia .

The next index states that lethality is the share of individuals who died having been
diagnosed with a pathology. The objective of this index is to measure what proportion
of the deceased individuals had a certain pathology. This kind of index can also be
considered as a primary measure in epidemiology and, in addition, it is common to
find it in epidemiological reports and studies (see, for example, Sanyaolu et al. 2020).

Share index. For each X ∈ DN and each a ∈ P ,

λS
a (X) = 1

n

n∑
i=1

xia .

The third alternative measures lethality as the share of occurrences of a pathology
out of all possible cases.While the previous index only takes into account what propor-
tion of individuals suffered from a certain pathology, this measure collects the effect
that individuals may have more than one pathology and, therefore, what it measures is
the impact on the total number of pathologies suffered by the deceased. For example,
if a certain pathology were present in all individuals, its share index would be 1, but
if all the deceased had, in addition, two other different pathologies each, this should
be taken into account when evaluating its influence on lethality because it was always
accompanied by two other pathologies. In this example, its ratio index would be 0.33,
which better captures this circumstance.
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Ratio index. For each X ∈ DN and each a ∈ P ,

λR
a (X) =

⎧⎪⎨
⎪⎩

1

‖X‖1
n∑

i=1

xia if ‖X‖1 > 0

0 if ‖X‖1 = 0

,

where ‖X‖1 = ∑
a∈P

∑n
i=1 xia .

1

The last index is also simple. It works as follows: assign to each of the deceased a
mass of 1 unit; then, split this mass among the pathologies the individual experienced;
finally, add across individuals. At this point it is legitimate to wonder why themass of 1
unit should be equally split among the different pathologies.Wemust take into account
that the mass 1 corresponds to one individual who died with several pathologies. Ex
ante, itmaynot be possible to know the primary cause of the death of such an individual,
especially if it is evaluated in conjunction with a disease that is common to all cases
(COVID-19, for instance). When it is not feasible to explore in depth the causes of
death of each single person, it is natural and convenient to assume that all pathologies
are equally responsible for the decease of that individual. Applying the same reasoning
to all individuals and combining the data, it is possible to capture the relative relevance
of each pathologies in the whole population. That is the goal of the equal attribution
index.

Equal attribution index. For each X ∈ DN and each a ∈ P ,

λE
a (X) =

∑
i∈N∗

a

xia
‖xi ·‖1 ,

where N∗
a = {i ∈ N : xia = 1}.

Example 2 Continuing with Example 1, we first illustrate the functioning of the equal
attribution index. From matrix X , we construct the following matrix:

XE =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
2

1
2

0 0 0
0 1

2
1
2

1 0 0
1
3

1
3

1
3

1
2 0 1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Each row has a mass of one unit. Individual 1, represented by the first row, has
diabetes and high blood pressure, and so the mass is split between these pathologies
by assigning a weight of 1

2 each. The procedure is applied to the rest of the population.
Finally, we sum the weights to obtain the relevance of each pathology. Thus,

λE (X) =
(
1 + 1

3
+ 1

2
,
1

2
+ 1

2
+ 1

3
,
1

2
+ 1

2
+ 1

3
+ 1

2

)
=

(
11

6
,
8

6
,
11

6

)
.

1 Since it may eventually occur that none of the individuals in the society N dies while suffering from a
pathology in P , we must also consider the case of X being a null matrix.
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From the information in X , we conclude that diabetes and bronchitis are equally
relevant in the lethality of this disease in society. Also, both diabetes and bronchitis
have a greater impact compared to high blood pressure, with the significance of high
blood pressure being 27.3% less than the other two pathologies.

For the same example, the count index is

λC (X) = (3, 3, 4) .

Aswe observe, different results are obtainedwith this index. According to the count
index, the two diseases with the same relevance are diabetes and high blood pressure.
On applying the share index, we get

λS(X) =
(
1

2
,
1

2
,
2

3

)
.

Notice that the count and share indices differ in absolute terms, but the relative
relevance of any pair of pathologies is the same in both methods. Finally, lethality
relevance according to the ratio index is

λR(X) =
(

3

10
,
3

10
,
4

10

)
.

Given a lethality matrix X ∈ D, we define the aggregate impact of the pathologies
in P as the aggregation of lethality relevances�(X) = ∑

a∈P λa(X). It isworth noting
that the aggregate impacts of different indices, as the previous example illustrates, are
different in general. Indeed, in Example 2, �E (X) = 5, �C (X) = 10, �S(X) = 5

3 ,
and �R(X) = 1.

4 Relevant properties for a lethality influence index

The first axiom is a standard principle of impartiality. It simply requires that the name
of the pathology should not be relevant for the measurement of lethality relevance.

Neutrality. For each X ∈ DN ,

λ(π(X)) = π(λ(X)),

where π(X) is a permutation of the columns of X and, since we can identify columns
with pathologies,π(λ(X)) is the same permutation applied to the vectorλ(X). Further-
more, since π can be looked at as a bijective mapping from P to P , we abuse notation
and also denote by π the permutation of the elements of the set of pathologies P ,
where π(a) is the new number (column in the matrix) associated with pathology a
when permutation π is applied.2

2 Notice that, since π is a bijective mapping, its inverse function π−1 exists and is also bijective.
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We say that a pathology is irrelevant for a lethality if it was not present in any death.
The next property says that the lethality relevance of an irrelevant pathology must be
zero.

Irrelevance. For each X ∈ DN and each a ∈ P , if xia = 0 for all i ∈ N , then
λa(X) = 0.

Suppose there are two disjoint groups of individuals N and M (e.g., two regions
of a country). Now consider a larger society resulting from combining N and M . The
question is how to recalculate the index for N ∪M from the indices for N and M . The
name of this recalculation is composition. Depending on how the composition of the
indices for N and M is undertaken, different composition properties will be generated.
Additive composition states that the relevance on the lethality of each pathology in the
large population, N ∪ M , is the sum of the relevance in N and M .

Additive composition. Let N , M ∈ N such that N ∩ M = ∅. For each X ∈ DN

and each Y ∈ DM ,

λ(X ⊕ Y ) = λ(X) + λ(Y ),

where X ⊕ Y ∈ DN∪M is the matrix resulting from stacking X above Y (by rows).
However, we could consider that population size should be taken into account when

relating the relevance of the pathologies in the larger population and the smaller ones.
Sized composition states that the relationship between the relevance on the lethality
of each pathology in the large population and the relevance in the populations N and
M must be weighted by their sizes.

Sized composition. Let N , M ∈ N such that N ∩ M = ∅. For each X ∈ DN and
each Y ∈ DM ,

(n + m)λ(X ⊕ Y ) = nλ(X) + mλ(Y ).

Finally, we could consider that the incidence of pathologies in each population
should be taken into account, and then a new composition property could be defined.
Incidence composition says that the relationship between the relevance on the lethality
of each pathology in the large population and the relevance in the populations N and
M must be weighted by the incidence of the pathologies in each population.

Incidence composition. Let N , M ∈ N such that N ∩ M = ∅. For each X ∈ DN

and each Y ∈ DM ,

‖X ⊕ Y‖1λ(X ⊕ Y ) = ‖X‖1λ(X) + ‖Y‖1λ(Y ).

Next,we explore the compatibility or incompatibility of somegroups of the previous
properties. In this regard, Proposition 1 states that the three composition requirements
are mutually excluding. More specifically, there is no lethality index, other than the
null index, that satisfies any pair of compositions.

Proposition 1 The null index, λ0(X) = 0P for all N ∈ N and for each X ∈ DN , is
the unique index that satisfies the following pairs of properties:

i) Additive composition and sized composition.
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ii) Additive composition and incidence composition.

Proof Since λ0(X) = 0 for each X ∈ D, it is obvious that it satisfies the three
composition properties.

Let us suppose that there exists a non-null index λ satisfying additive composition
and sized composition. Since this index is not null, there exists X ∈ DN such that
λ(X) �= 0P . Next we take X and any Y ∈ DM , N ∩ M = ∅, since λ satisfies additive
composition and sized composition, then

nλ(X)+mλ(Y )=(n + m)λ(X ⊕ Y )=(n + m)(λ(X)+λ(Y ))⇒mλ(X)+nλ(Y )=0P ,

but this is impossible.
Let us now suppose that there exists an index λ satisfying additive and incidence

composition. Since this index is not null, there exists X ∈ DN such that λ(X) �= 0P .
Next we take X and any Y ∈ DM so that ‖Y‖1 > 0, N ∩ M = ∅, since λ satisfies
additive and incidence composition, then

‖X‖1λ(X)+‖Y‖1λ(Y )=(‖X‖1+‖Y‖1)(λ(X)+λ(Y )) ⇒ ‖Y‖1λ(X)+‖X‖1λ(Y )=0P ,

but this is again impossible. �
Proposition 2 Constant indices, λK (X) = K , K ∈ R

P≥0 for each X ∈ D, are the
unique indices that satisfies sized composition and incidence composition.

Proof It is straightforward to prove that constant indices satisfy sized composition and
incidence composition. Let λ be an index that satisfies sized and incidence composi-
tion, then we have that

1. For each X ∈ DN and for eachY ∈ DM , so that (m‖X‖1−n‖Y‖1) �= 0, ‖Y‖1 > 0,
N ∩ M = ∅, it holds that

‖X‖1λ(X) + ‖Y‖1λ(Y ) = (‖X‖1 + ‖Y‖1)( n
n+mλ(X) + m

n+m λ(Y ))

⇒ m‖X‖1λ(X) + n‖Y‖1λ(Y ) = n‖Y‖1λ(X) + m‖X‖1λ(Y )

⇒ (m‖X‖1 − n‖Y‖1)λ(X) = (m‖X‖1 − n‖Y‖1)λ(Y ).

Therefore, λ(X) = λ(Y ).
2. For each X ∈ DN and for eachY ∈ DM , so that (m‖X‖1−n‖Y‖1) = 0, ‖Y‖1 > 0,

N ∩M = ∅, we can take Y ′ ∈ DM ′
withm′ = m, N ∩M ′ = ∅ and M ∩M ′ = ∅,

and such that ‖Y‖1 �= ‖Y ′‖1 > 0. We can now apply the previous case and obtain
that λ(X) = λ(Y ′) and λ(Y ) = λ(Y ′), therefore λ(X) = λ(Y ).

3. For each X ∈ DN with ‖X‖1 = 0 and for each Y ∈ DM with ‖Y‖1 = 0, we can
do the same as in the previous case and also obtain that λ(X) = λ(Y ).

Now, let X ∈ DN and Y ∈ DM be two lethality matrices, and let Z ∈ DQ be
a lethality matrix such that N ∩ Q = ∅ and M ∩ Q = ∅. The pairs of lethality
matrices X , Z and Y , Z will be in the conditions of one of the three cases described

123



74 Page 12 of 26 R. Martínez, J. Sánchez-Soriano

above. Therefore, we have that λ(X) = λ(Z) and λ(Y ) = λ(Z), so we conclude that
λ(X) = λ(Y ).

Therefore, if an index λ satisfies sized and incidence composition then λ(X) = K
for all X ∈ D, for some K ∈ R

P≥0. �
Proposition 1 and Proposition 2 imply that any group of compatible properties

(which do not lead to a constant index) has, at most, three requirements, namely
neutrality, irrelevance, and one of the composition. Proposition 3 shows that any of
the compositions is compatible with both neutrality and irrelevance. More precisely,
it states that there exist indices that satisfy any pair of those three requirements but
violate the third one.

Proposition 3 There are non-null indices that satisfy exactly two properties and violate
the remaining.

Proof i) The 0− 1 index satisfies neutrality and irrelevance, but it violates the three
composition properties. For each X ∈ DN and each a ∈ P ,

λ0−1
a (X) =

{
0 if a is irrelevant,

1 if a is not irrelevant.

ii) The following index satisfies neutrality and additive composition, but it violates
irrelevance. For each X ∈ DN and each a ∈ P ,

λ1a(X) = ‖X‖1.

iii) The following index satisfies irrelevance and additive composition, but it violates
neutrality. For each X ∈ DN and each a ∈ P ,

λ2a(X) =

⎧⎪⎨
⎪⎩

n∑
i=1

xia if a = 1,

0 otherwise.

iv) The following index satisfies neutrality and sized composition, but it violates irrel-
evance. For each X ∈ DN and each a ∈ P ,

λ3a(X) = 1

n
‖X‖1.

v) The following index satisfies irrelevance and sized composition, but it violates
neutrality. For each X ∈ DN and each a ∈ P ,

λ4a(X) =

⎧⎪⎨
⎪⎩
1

n

n∑
i=1

xia if a = 1,

0 otherwise.
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vi) The following index satisfies neutrality and incidence composition, but it violates
irrelevance. For each X ∈ DN and each a ∈ P ,

λ5a(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i∈N :‖xi ·‖1≥1

1

‖X‖1 if ‖X‖1 ≥ 1,

0 otherwise.

vii) The following index satisfies irrelevance and incidence composition, but it violates
neutrality. For each X ∈ DN and each a ∈ P ,

λ6a(X) =

⎧⎪⎨
⎪⎩

1

‖X‖1
n∑

i=1

xia if a = 1 and ‖X‖1 ≥ 1,

0 otherwise.

�
Finally, in the next theorem we establish which properties are satisfied by the four

lethality influence indices introduced in Sect. 3. Table 1 shows the properties satisfied
for each of these rules.

Theorem 1 The following statements hold:

i) The count index satisfies neutrality, irrelevance, additive composition, but not
sized composition and incidence composition.

ii) The share index satisfies neutrality, irrelevance, sized composition, but not addi-
tive composition and incidence composition.

iii) The ratio index satisfies neutrality, irrelevance, incidence composition, but not
additive composition and sized composition.

iv) The equal attribution index satisfies neutrality, irrelevance, additive composition,
but not sized composition and incidence composition.

Proof By using the definitions of the indices is straightforward to prove that they all
satisfy neutrality and irrelevance. Next, we prove what composition property they
satisfy and which do not.

1. It is immediate to prove that the count index satisfies additive composition. Now,
by Proposition 1 the count index does not satisfy sized composition and incidence
composition.

2. Let N , M ∈ N such that N ∩ M = ∅. For each X ∈ DN and each Y ∈ DM , we
have that

λS
a (X ⊕ Y ) = 1

n+m

(∑n
i=1 xia + ∑m

i=1 yia
) = n

n+m
1
n

∑n
i=1 xia + m

n+m
1
m

∑m
i=1 yia

= 1
n+m

(
nλS

a (X) + mλS
a (Y )

)
.

Therefore, the share index satisfies sized composition. However, by Proposition 1
it does not satisfy additive composition, and by Proposition 2 it does not satisfy
incidence composition.
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Table 1 Y means that the index fulfills the property and N means that it does not.

Neutrality Irrelevance Additive
composition

Sized com-
position

Incidence
composition

Count index Y Y Y N N

Share index Y Y N Y N

Ratio index Y Y N N Y

Equal attribution index Y Y Y N N

3. Let N , M ∈ N such that N ∩ M = ∅. For each X ∈ DN and each Y ∈ DM . We
distinguish three cases:

(a) If ‖X‖1 = 0 and ‖Y‖1 = 0, it is obvious that

‖X ⊕ Y‖1λR(X ⊕ Y ) = ‖X‖1λR(X) + ‖Y‖1λR(Y ).

(b) If ‖X‖1 = 0 and ‖Y‖1 > 0, then

‖X ⊕ Y‖1λR
a (X ⊕ Y ) = ‖Y‖1λR

a (X ⊕ Y ) = ∑m
i=1 yia = ‖Y‖1λR

a (Y )

= ‖X‖1λR
a (X) + ‖Y‖1λR

a (Y ).

(c) If ‖X‖1 > 0 and ‖Y‖1 > 0, reasoning similarly as in (4), we obtain that

‖X ⊕ Y‖1λR(X ⊕ Y ) = ‖X‖1λR(X) + ‖Y‖1λR(Y ).

Therefore, the ratio index satisfies incidence composition.However, byProposition
1 it does not satisfy additive composition, and by Proposition 2 it does not satisfy
sized composition.

4. Let N , M ∈ N such that N ∩ M = ∅. For each X ∈ DN and each Y ∈ DM , since
N ∩ M = ∅, N∗

a ∩ M∗
a = ∅, so we have that

λE
a (X ⊕ Y ) =

∑
i∈N∗

a

xia
‖xi ·‖1 +

∑
i∈M∗

a

yia
‖yi ·‖1 = λE

a (X) + λE
a (Y ).

Therefore, the equal attribution index satisfies additive composition. Now, by
Proposition 1 it does not satisfy sized composition and incidence composition.

�

5 Three families of lethality influence indices

In this section, we present our main findings. Theorem 2 and Proposition 4 constitute
a theoretical justification for the prominence of the equal attribution index in the
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measurement of lethality relevance, while Theorem 3 and 4 show characterizations of
the families of indices that contain the share index and the ratio index, respectively.We
shall observe that the only difference among the three families of indices characterized
in this section is the definition of the property of composition.

The first result characterizes the family of indices that satisfy neutrality, irrelevance,
and additive composition. It states that under these requirements, the relevance must
be a weighted sum of the lethality of the individuals.

Theorem 2 An index λ satisfies neutrality, irrelevance, and additive composition if
and only if, there exist neutral functions 3 wi : {0, 1}P → R≥0 for each i ∈ N such
that for each X ∈ DN and for each a ∈ P,

λa(X) =
n∑

i=1

wi (xi ·)xia .

Proof Let λ be an index and let wi : {0, 1}P −→ R≥0 be neutral functions such that,
for each X ∈ DN and for each a ∈ P , λa(X) = ∑n

i=1 wi (xi ·)xia . We start by showing
that this index satisfies the three properties.

• Neutrality. Let X ∈ DN , and let π be a permutation of columns of X . For each
a ∈ P ,

λa(π(X)) =
n∑

i=1

wi (π(xi ·))xiπ−1(a) =
n∑

i=1

wi (xi ·)xiπ−1(a) = λπ−1(a)(X).

Now, when we apply permutation π to the vector λ(X), its π−1(a)-th coordinate
becomes the a-th coordinate. Therefore, λ(π(X)) = π(λ(X)) holds.

• Irrelevance. Let X ∈ DN , and let a ∈ P such that xia = 0 for each i ∈ N .

λa(X) =
n∑

i=1

wi (xi ·) · 0 = 0.

• Additive composition. Let X ∈ DN and Y ∈ DM . Also, let Z = X ⊕ Y . For each
a ∈ P , we have that

λa(Z) =
∑

i∈N∪M

wi (zi ·)zia =
∑
i∈N

wi (xi ·)xia +
∑
i∈M

wi (yi ·)yia = λa(X) + λa(Y ).

Now, we prove the converse. Let λ be an index that fulfills neutrality, irrelevance,
and additive composition.

Suppose that N is a singleton (a group of just one individual N = {i}). On the one
hand, in the application of irrelevance, when the pathology a is irrelevant we know that

3 A function f : {0, 1}P −→ R≥0 is neutral if for every permutation π of the coordinates of vectors
x ∈ {0, 1}P , f (π(x)) = f (x), for all x ∈ {0, 1}P .
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λa(X) = 0, and the statement holds. On the other hand, due to neutrality, λb(X) =
λc(X) for any pair of non-irrelevant pathologies. Indeed, let π be a permutation such
that π(b) = c, π(c) = b and π(a) = a for all a �= b, c, then we have that,

λc(π(X)) = λπ−1(c)(X) = λb(X),

but since b and c are non-irrelevant and X is just a vector, π(X) = X , hence,
λc(X) = λb(X). Then, we now consider a function wi : {0, 1}P −→ R≥0 such that
for each xi · ∈ {0, 1}P with xi · �= 0P , wi (xi ·) is equal to λb(xi ·) where b is any non-
irrelevant pathology in xi ·, andwi (0P ) = 0. Since λ satisfies neutrality,wi is a neutral
function.

Now, suppose that N is such that n ≥ 2. Notice that

X = x1· ⊕ · · · ⊕ xn·,

where each xi · is a lethalitymatrixwith just one individual. Since λ satisfies additive
composition, it follows that

λ(X) = λ(x1·) + · · · + λ(xn·).

Let a ∈ P . We have already seen that λa(xi ·) = wi (xi ·)xia for any i ∈ N .
Therefore,

λa(X) =
n∑

i=1

wi (xi ·)xia . �

By inspecting Table 1we can conclude that the share and ratio indices do not belong
to the family characterized in Theorem 2. On the other hand, the count index is an
element of the family, with wi (xi ·) = 1, ∀i ∈ N. The equal attribution index also
belongs to this family, with

wi (xi ·) =
{

1
‖xi ·‖1 if ‖xi ·‖1 ≥ 1,

0 otherwise
, for each i ∈ N.4

Among the many indices that satisfy neutrality, irrelevance, and additive compo-
sition, the equal attribution index presents a distinctive particularity. Since the index
is closely related to a well-known solution of cooperative games, it can be grounded
from a game theoretic perspective. We can naturally define a cooperative game as
follows.5 The set of players is the set of pathologies P , and the value function for each
coalition Q ⊂ P is given by

4 Note that when ‖xi ·‖1 = 0, any function value is possible. However, we use wi (xi ·) = 0.
5 This approach has been used to analyze similar contexts (Moretti et al. 2007, 2010).

123



Mathematical indices for the influence of risk factors… Page 17 of 26 74

v(Q) = |{i ∈ N : xia = 1 for some a ∈ Q}| , (1)

where |T | is the cardinality of set T .
For a given cooperative game (P, v), a solution is a vector s ∈ R

p
≥0 such that∑

a∈P sa = v(P), where si represents the allocation to player i . Several authors have
proposed different solution concepts based on different notions of fairness. Among
those, the Shapley value (Shapley 1953) emerges as the most prominent (see Roth
1988; Algaba et al. 2019b). Its expression is the following. For each a ∈ P ,

Sha(v) =
∑

Q⊂P\{a}
γ (P, Q)(v(Q ∪ {a}) − v(Q)),

where γ (P, Q) = |Q|!(p−|Q|−1)!
p! .

Example 3 For the lethality matrix of Example 1, the associated value function is

v(∅) = 0, v({1}) = 3, v({1, 2}) = 5, v({1, 2, 3}) = 5,
v({2}) = 3, v({1, 3}) = 5,
v({3}) = 4, v({2, 3}) = 4.

The corresponding Shapley value is

Sha(v) =
(
11

6
,
8

6
,
11

6

)
.

As we can observe, the equal attribution index in Example 2 and the Shapley value
in Example 3 provide the same lethality relevance. The next proposition states that
they always coincide.

Proposition 4 The equal attribution index and the Shapley value of the cooperative
game with the value function given in (1) coincide.

Proof Wefirst prove that theShapley value satisfies neutrality, irrelevance, and additive
composition. It is obvious that the Shapley value satisfies neutrality and irrelevance.
Nowwe prove that the Shapley value also satisfies additive composition. Let X ∈ DN ,
Y ∈ DM , and Z = X ⊕ Y ∈ DN∪M , and let (P, vX ), (P, vY ) and (P, vZ ) be the
cooperative games associated with X ,Y , and X ⊕ Y , respectively. For each a ∈ P ,

Sha(v
Z ) =

∑
Q⊂P\{a}

γ (P, Q)
(
vZ (Q ∪ {a}) − vZ (Q)

)

=
∑

Q⊂P\{a}
γ (P, Q)

(
vX (Q ∪ {a}) + vY (Q ∪ {a}) − vX (Q) − vY (Q)

)

=
∑

Q⊂P\{a}
γ (P, Q)

(
vX (Q ∪ {a}) − vX (Q)

)
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+
∑

Q⊂P\{a}
γ (P, Q)

(
vY (Q ∪ {a}) − vY (Q)

)

= Sha(v
X ) + Sha(v

Y ).

Therefore, by Theorem 2, for each X ∈ DN , N ∈ N , Sha(vX ) = ∑n
i=1 wi (xi ·)xia ,

for some functions wi : {0, 1}P −→ R≥0, i ∈ N.
Let X ∈ DN such that N = {i} (i.e., a singleton), and let (P, vX ) be the associated

game. We distinguish two cases:

1. ‖xi ·‖1 ≥ 1. By the definition of the game, vX (P) = 1. Since the Shapley value is
efficient (Shapley 1953), it follows that

∑
a∈P Sha(vX ) = vX (P) = 1. Now we

have the following chain of equalities:

∑
a∈P

Sha(v
X ) =

∑
a∈P

wi (xi ·)xia = wi (xi ·)
∑
a∈P

xia = wi (xi ·)‖xi ·‖1 = 1.

Therefore, wi (xi ·) = 1
‖xi ·‖1 . Thus, Sha(v

X ) = xia‖xi ·‖1 = λE
a (X).

2. ‖xi ·‖1 = 0. By the definition of the game, vX (P) = 0. Now, it is obvious that for
all a ∈ P , Sha(vX ) = 0 = λE

a (X).

Therefore, the equal attribution index and the Shapley value coincide for singletons.
Let X ∈ DN such that n ≥ 2. X can be written as

X = x1· ⊕ · · · ⊕ xn·

It is known that the equal attribution index and the Shapley value coincide for each
of the singletons. Therefore, by additive composition, both coincide in general. �

Therefore, we have shown that the justification for using the equal attribution index
is twofold: first, it belongs to the family of indices that is uniquely determined by
a suitable combination of properties (Theorem 2); and second, it corresponds to the
Shapley value of the associated natural game (Proposition 4).

As pointed out above, the share and ratio indices do not belong to the family
characterized in Theorem 2. However, the following results identify the families of
indices of lethality relevance to which the share and ratio indices belong. Each family
is determined by only changing the concept of composition in use. Thus, the share
index belongs to the family of indices determined by neutrality, irrelevance, and sized
composition together, while the ratio index belongs to the family of indices determined
by neutrality, irrelevance, and incidence composition together.6

Theorem 3 An index λ satisfies neutrality, irrelevance, and sized composition if and
only if, there exist neutral functions wi : {0, 1}P → R≥0 for each i ∈ N such that for
each X ∈ DN and for each a ∈ P,

λa(X) = 1

n

n∑
i=1

wi (xi ·)xia .

6 As it is shown in Theorem 1, the share index and the ratio index fulfill the properties in Theorem 3 and
Theorem 4, respectively.
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Proof Let λ be an index and let wi : {0, 1}P −→ R≥0 be neutral functions such
that, for each X ∈ DN and for each a ∈ P , λa(X) = 1

n

∑n
i=1 wi (xi ·)xia . We start

by showing that this index satisfies the three properties. The proofs that this index
satisfies neutrality and irrelevance are analogous to the corresponding ones in Theorem
2. Regarding sized composition, let X ∈ DN and Y ∈ DM . Also, let Z = X ⊕ Y . For
each a ∈ P we have that

(n + m)λa(Z) = (n + m)
1

n + m

∑
i∈N∪M

wi (zi ·)zia

= n
1

n

∑
i∈N

wi (xi ·)xia + m
1

m

∑
i∈M

wi (yi ·)yia

= nλa(X) + mλa(Y ).

Conversely, let λ be an index that fulfills neutrality, irrelevance, and sized compo-
sition.

Suppose that N is a singleton. By irrelevance, when the pathology a is irrelevant we
know that λa(X) = 0, and the statement holds. Due to neutrality, λb(X) = λc(X) for
any pair of non-irrelevant pathologies. Therefore, there must exist wi : {0, 1}P −→
R≥0 such that λb(X) = wi (xi ·)xib for any b non-irrelevant.

Suppose next that N is such that n ≥ 2. Then, for each X ∈ DN , X = x1·⊕· · ·⊕xn·,
where each xi · is a lethality matrix with just one individual. Since λ satisfies sized
composition, it holds that

(∑
i∈N

1

)
λ(X) = 1 · λ(x1·) + · · · + 1 · λ(xn·).

Let a ∈ P . We have already seen that λa(xi ·) = wi (xi ·)xia for any i ∈ N .
Therefore,

nλa(X) =
n∑

i=1

wi (xi ·)xia .
�

Theorem 4 An index λ satisfies neutrality, irrelevance, and incidence composition if
and only if, there exist neutral functions wi : {0, 1}P → R≥0 for each i ∈ N such
that for each X ∈ DN and for each a ∈ P,

λa(X) =

⎧⎪⎨
⎪⎩

1

‖X‖1
n∑

i=1

wi (xi ·)xia if ‖X‖1 > 0,

0 if ‖X‖1 = 0.
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Proof Let λ be an index and let wi : {0, 1}P −→ R≥0 be neutral functions such that,
for each X ∈ DN and for each a ∈ P ,

λa(X) =

⎧⎪⎨
⎪⎩

1

‖X‖1
n∑

i=1

wi (xi ·)xia if ‖X‖1 > 0,

0 if ‖X‖1 = 0.

We once again start by showing that this index satisfies the three properties. The
proofs that this index satisfies neutrality and irrelevance are mutatis mutandis analo-
gous to the corresponding ones in Theorem 2. Regarding incidence composition, let
X ∈ DN and Y ∈ DM . Also, let Z = X ⊕ Y . We distinguish three cases:

• ‖X‖1 = ‖Y‖1 = 0. Therefore, it follows that ‖X ⊕ Y‖1 = 0. The result now
immediately follows since all factors are zero.

• ‖X‖1 > 0 and ‖Y‖1 = 0. In this case, ‖X ⊕ Y‖1 = ‖X‖1. For each a ∈ P , it
holds that

‖X ⊕ Y‖1λa(Z) = ‖X ⊕ Y‖ 1

‖X ⊕ Y‖
∑

i∈N∪M

wi (zi ·)zia

= ‖X‖1 1

‖X‖1
∑
i∈N

wi (xi ·)xia + 0 ·
∑
i∈M

wi (yi ·) · 0

= ‖X‖1λa(X) + 0 · 0
= ‖X‖1λa(X) + ‖Y‖1λa(Y ).

• ‖X‖1 > 0, and ‖Y‖1 > 0. For each a ∈ P , we have that

‖X ⊕ Y‖1λa(Z) = ‖X ⊕ Y‖ 1

‖X ⊕ Y‖
∑

i∈N∪M

wi (zi ·)zia

= ‖X‖1 1

‖X‖1
∑
i∈N

wi (xi ·)xia + ‖Y‖1 1

‖Y‖1
∑
i∈M

wi (yi ·)yia

= ‖X‖1λa(X) + ‖Y‖1λa(Y ).

Conversely, let λ be an index that fulfills neutrality, irrelevance, and incidence
composition.

Suppose that N is a singleton. By irrelevance, when the pathology a is irrelevant we
know that λa(X) = 0, and the statement holds. By neutrality, λb(X) = λc(X) for any
pair of non-irrelevant pathologies. Therefore, there must exist wi : {0, 1}P −→ R≥0
such that λb(X) = wi (xi ·)xib for any b non-irrelevant.

Now, suppose that N is such that n ≥ 2. Then, for each X ∈ DN , X = x1·⊕· · ·⊕xn·,
where each xi · is a lethality matrix with just one individual. Since λ satisfies incidence
composition, it holds that(∑

i∈N
‖xi ·‖1

)
λ(X) = ‖x1·‖1 · λ(x1·) + · · · + ‖xn·‖1 · λ(xn·).
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If
∑

i∈N ‖xi ·‖1 = 0, the result follows since λ satisfies irrelevance. Let us suppose
that

∑
i∈N ‖xi ·‖1 > 0, and let a ∈ P . We have already seen that λa(xi ·) = wi (xi ·)xia

for any i ∈ N . Therefore,

(∑
i∈N

‖xi ·‖1
)

λa(X) =
n∑

i=1

‖xi ·‖1wi (xi ·)xia .

Note that
∑

i∈N ‖xi ·‖1 = ‖X‖1. Now, we consider the following functions:

w′
i (xi ·) = ‖xi ·‖1wi (xi ·), for each i ∈ N ,

which are also neutral. �
At this stage, we have characterized three families of indices that contain simple and

intuitive indices. This means that based on the characteristics of the specific problem,
it is possible to select the index that is most compatible with the properties relevant to
the problem. Also, we can determine whether there is any differentiation between the
individuals of the populationwhen considering them in the calculation of the index. For
example,wi canmeasure the life expectancy of the individual, in this way, the lethality
indices would also take into account the impact on the reduction of the life span of the
deceased. Moreover, note that, by Proposition 3, Theorems 2, 3, 4 are tight, that is, all
the properties in their statements are necessary for the characterization. Finally, note
that none rules given in Proposition 3 satisfy the conclusions of the theorems since
each one fails to satisfy one of the three properties required in their statements.

6 An application to COVID-19 disease

In this section, we illustrate a possible application of the model presented in the
previous sections.

The coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe
acute respiratory syndrome coronavirus. First identified in December 2019 in Wuhan,
China, COVID-19 resulted in an ongoing pandemic with devastating effects. As of
February 2021, around 100 million cases have been reported worldwide, affecting
more than 180 countries and resulting in around 2.2 million deaths.

Many researchers have analyzed how preexisting health conditions have influenced
COVID-19mortality. One of the first studies was published by The Novel Coronavirus
Pneumonia Emergency Response Epidemiology Team. It involved a descriptive and
exploratory analysis of all cases of COVID-19 diagnosed nationwide in China in
February 2020. Among the several aspects analyzed in the study, the authors identified
hypertension, cardiovascular disease, diabetes, and chronic respiratory disease as the
main sources of comorbidity among patients who died due to COVID-19 (see Table
2).7

7 In 32.8% of deaths from COVID-19, the patient did not have a preexisting disease.
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Table 2 Comorbid conditions
reported by The Novel
Coronavirus Pneumonia
Emergency Response
Epidemiology Team

Pathology % of deaths

Hypertension (HYP) 39.7%

Cardiovascular disease (CAR) 22.7%

Diabetes (DIA) 19.7%

Chronic respiratory disease (RES) 7.9%

Table 3 Each row corresponds
to a patient in the database

Patient HYP CAR DIA RES

1 1 0 0 0

2 0 0 0 0

3 0 1 1 0

4 1 0 1 1

5 0 1 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

If a patient has died with the pathology in the column, the value is 1,
and 0 otherwise

A relevant question thatmanypublications have examined, primarily fromamedical
perspective (see, for example, Zhou et al. 2020; Guan et al. 2020; Li et al. 2020;
Nogueira et al. 2020; Richardson et al. 2020; Bello-Chavolla et al. 2020; Stoian et al.
2020, among others), relates to the impact of these four diseases on the lethality of
COVID-19.Our theoretical framework constitutes a useful tool that provides an answer
to the previous inquiry and quantifies the relative relevance of comorbid pathologies
in the lethality of COVID-19.

Let N be the set of patients who died with diagnosed COVID-19, and let P =
{HYP,CAR,DIA,RES}, the set of the the four considered pathologies. The lethality
matrix X , obtained from the microdata, identifies the preexisting diseases (other than
COVID-19 infection) (Table 3).

If themicrodata are public, computing the equal attribution index is straightforward,
and the medical implications of the results are ready to be analyzed. This is easily
achievable by a health authority with access to the information. Unfortunately, these
microdata are not publicly available. However, we can overcome the lack of data at
an individual level using simulations. Although simulation results are not as reliable
compared to the use of real data, we believe they are sufficiently valid to illustrate the
application of the theoretical model.

We can ignore the specific entries for the lethality matrix X , but we know that
the sum of the entries in the first column must coincide with the number of patient
deaths that occurred with hypertension. The same reasoning applies to the rest of the
columns/pathologies. Therefore, we proceed as follows:

1. Let N contain 50 individuals whose pathologies are distributed similarly to Table
2.8 In particular, suppose that 20 individuals died with hypertension, 11 individ-

8 Larger numbers of individuals make the simulation computationally intractable.
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Table 4 Equal attribution index
for COVID-19 Pathology λ

E
a νEa

Hypertension 14.91 0.512

Cardiovascular disease 6.48 0.222

Diabetes 5.75 0.197

Chronic respiratory disease 2.00 0.069

uals died with cardiovascular disease, 10 individuals died with diabetes, and 4
individuals died with chronic respiratory disease.

2. Let X be the set of all possible lethality matrices that are compatible with the
distribution of deaths in the previous step, that is, X ∈ X if and only if

∑
i∈N xia =

obs(a) for all a ∈ P , where obs(a) denotes the observations of pathology a.
3. Computationally generate all the matrices in X .
4. For each X ∈ X obtained in the previous step, compute the equal attribution index

λE (X).
5. Finally, average across X , obtaining λ

E
.

The results are shown in Table 4. The third column, and probably the most inter-
esting one, indicates the relative relevance of each disease in the lethality caused by
COVID-19.9 From our findings, we conclude that the relative relevance of hyperten-
sion is 51.2%. Interestingly, if we restrict ourselves to the four preexisting diseases,
only 44% of patients died with hypertension. In this way, the analysis indicates that the
impact of hypertension on deaths due to COVID-19 is significantly greater than what
might appear at first glance. On the contrary, the other pathologies are less relevant,
with 22.2% vs. 25% for cardiovascular disease, 19.7% vs. 22% for diabetes, and 6.9%
vs. 9% for chronic respiratory disease.

7 Conclusions

In 2020, the COVID-19 pandemic left the world devastated. Therefore, one of the
main objectives of this paper was to identify the preexisting pathologies that may
have contributed to COVID-19 mortality. The ability to quantify the relative relevance
of comorbidities on the lethality of COVID-19 may be crucial. In this paper, we
established a theoretical model with that purpose in mind.

In this context, we presented several alternatives to measure lethality relevance: the
count, share, ratio, and equal attribution indices. Following an axiomatic methodol-
ogy,we proposed several properties that emerge as natural requirements in this context:
neutrality, irrelevance, and three different ways of understanding the concept of com-
position, namely, additive composition, sized composition, and incidence composition.
By the combination of neutrality, irrelevance, and one of the composition properties,
we characterized three families of indices for measuring the relative relevance of the
pathologies in the lethality of a disease. Theorem 2 states that an index satisfies neu-

9 The relative relevance is calculated by normalizing λ
E
, i.e., for each a ∈ P , νEa = λ

E
a

‖λE ‖1
.
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trality, irrelevance, and additive composition if and only if it is aweighted combination
of the absence or presence of pathologies in the affected individuals. Theorem 3 states
that an index satisfies neutrality, irrelevance, and sized composition if and only if it is
an average of a weighted combination of the absence or presence of pathologies in the
affected individuals. Theorem 3 states that an index satisfies neutrality, irrelevance,
and incidence composition if and only if it is a proportion of a weighted combination
of the absence or presence of pathologies in the affected individuals.

On the other hand, the equal share index belongs to the family determined in
Theorem 2. Also, Proposition 4 shows that this index coincides with the Shapley
value of the associated cooperative game. The application of cooperative game theory
in our problem seems very natural. Indeed, we may consider that mortality occurs due
to a confluence of cooperating pathologies, from which the need follows to determine
how to allocate responsibilities for that loss of life. Therefore, it emerges as the most
convenient index of lethality relevance of the family. The share index belongs to
the family determined in Theorem 3, whereas the ratio index belongs to the family
determined in Theorem 4. These two indices are also simple and intuitive, and they
are two relevant members of their respective families of indices.

As an illustration, we applied the proposed theoretical model to quantify the rele-
vance of four pathologies on the lethality of COVID-19: hypertension, cardiovascular
disease, diabetes, and chronic respiratory disease. We found that the equal attribu-
tion index imputed more relative relevance to hypertension compared to the impact
suggested in Team (2020).

Although we justify the application of the equal attribution index, other indices
introduced in this paper may deserve deeper analysis. The count index is one such
index. It identifies the lethality relevance of a pathology with the share of deaths in
which the pathology is implicated. It seems that this is preciselywhat is done implicitly
in several medical studies, which simply state the percentage of deaths that occurred
when the underlying pathology was present.

Finally, the mathematical approach to the attribution problem adopted in this paper
can be also applied to other biological or social contexts, including those different
from epidemiology, where a similar mathematical structure may be considered.
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