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We discuss the possibility of unifying in a simple and economical manner the Yukawa couplings of third 
generation fermions in a non-supersymmetric SO(10) model with an intermediate symmetry breaking, 
focusing on two possible patterns with intermediate Pati-Salam and minimal left-right groups. For this 
purpose, we assume a minimal Yukawa sector at high energy, starting with two Higgs bi-doublets at 
the intermediate scale which then simply reduce to a two Higgs doublet model at the electroweak 
scale. We first enforce gauge coupling unification at the two-loop level by including the threshold 
corrections in the renormalization group running which are generated by the heavy fields that appear at 
the intermediate symmetry breaking scale. We then study the running of the Yukawa couplings of the top 
quark, bottom quark and tau lepton at two-loops in these two breaking schemes, when the appropriate 
matching conditions are imposed. We find that the unification of the third family Yukawa couplings can 
be achieved while retaining a viable spectrum, provided that the ratio of the vacuum expectation values 
of the two Higgs doublet fields is large, tanβ ≈ 60.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The paradigm of grand unification [1,2] is at the heart of par-
ticle physics as it exploits the power of symmetries to unify in a 
most elegant way the electromagnetic, weak and strong interac-
tions of the Standard Model (SM) into a single force [3]. Grand 
unified theories (GUTs) provide natural solutions to theoretical 
questions such as charge quantization and anomaly cancellation, in 
addition to the explanation of the existence of three separate gauge 
symmetry groups. GUTs can also successfully address most, if not 
all, of the important issues that call for beyond the SM physics. 
This is particularly the case for the problems of neutrino masses 
and mixing, the baryon asymmetry in the universe and the na-
ture of the dark matter. Hence, leaving aside the issue of natural-
ness and the large hierarchy between the weak and Planck scales 
that induces quadratic “divergences” to the observed Higgs boson 
mass (for which one can, for instance, adopt an anthropic point 
of view just as in the case of the cosmological constant), non-
supersymmetric GUTs can be viewed as the royal path to physics 
beyond the SM.
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Unification in the context of SO(10) [4] is particularly interest-
ing as this symmetry group possesses a representation of dimen-
sion 16 in which, for each generation, one can accommodate the 
15 chiral fermions of the SM and an additional Majorana neutrino. 
If the mass of this new state is very large, somewhere at a scale of 
1010 GeV, the see-saw mechanism [5] could explain the present 
pattern in the neutrino sector, the baryon asymmetry could be 
achieved through leptogenesis [6] and a suitable axion [7] could 
account for dark matter; see Refs. [8–10] for reviews. This inter-
mediate scale can naturally be present in SO(10) as the group is of 
rank five, i.e., larger than the rank of the SM group by one unit, so 
that the symmetry breaking may occur in three steps, one at the 
GUT scale MU , one at this intermediate scale MI and a last one 
at the electroweak scale. This solves one of the main drawbacks of 
non-supersymmetric GUTs, namely, the failure of the gauge cou-
plings to unify at the high energy scale. Indeed, threshold effects 
[11] are generated by the contributions of the scalar multiplets 
that break the intermediate symmetry down to the SM group at 
the energy MI , and these modify the renormalization group evolu-
tion of the three coupling constants such that they finally intersect 
at the scale MU [12,13]. Hence, gauge coupling unification can also 
be realized without the need of supersymmetry, which was one of 
its main attractive points [14].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Another argument in favor of supersymmetry was the possi-
bility of also unifying the Yukawa couplings of third generation 
fermions [15]. Indeed, in the minimal supersymmetric extension 
of the SM, the MSSM, two-Higgs doublets fields are required in 
order to generate separately masses for the isospin up- and down-
type fermions and, in constrained scenarios with universal “soft” 
SUSY–breaking parameters, these Yukawa couplings can be unified 
at the GUT scale. This occurs at large values of the ratio of the 
vacuum expectation values of the two Higgs fields, tan β = vu/vd , 
which induces the proper hierarchy for the starting top and bot-
tom quark masses, tan β ≈ mt/mb ≈ 60.

In this letter, we show that the unification of the Yukawa cou-
plings of third generation fermions can also be achieved in a 
rather simple and most economical way in a non-supersymmetric 
SO(10) scenario taking as examples two of the most interesting 
and widely discussed intermediate breaking patterns: the Pati-
Salam [2] and the minimal left-right symmetric [16] groups. As 
a matter of fact, and in contrast to most earlier studies, only two 
Higgs bi-doublet fields will be necessary to describe the Yukawa 
interactions of standard fermions above the scale at which the in-
termediate breaking occurs, and this spectrum then reduces to two 
Higgs doublets only below this intermediate scale and down to the 
electroweak scale. Hence, one would have an effective two Higgs 
doublet model (2HDM) of type II [17] at low energies, just as in 
the MSSM, with vacuum expectation values such that the param-
eter tanβ is large as to obtain the correct hierarchy for the top 
and bottom quark masses. Using this minimal scalar sector, it is 
possible to make that the renormalization group running of third 
generation Yukawa couplings in these two breaking schemes, with 
suitable matching conditions at the intermediate scale for which 
gauge coupling unification occurs, leads to Yukawa coupling uni-
fication at the GUT scale. This can be achieved while reproducing 
the third family fermion and electroweak gauge boson masses and 
preserving some important features such as ensuring the stability 
of the electroweak vacuum up to the intermediate scale and keep-
ing the Yukawa couplings perturbative at all scales.

The paper is organized as follows. In the next section, we intro-
duce our theoretical framework and discuss the breaking of SO(10) 
with intermediate steps. In section 3, we discuss the known issue 
of gauge couplings unification in SO(10) when threshold correc-
tions are added at an intermediate scale but with a new ingredient, 
namely, the presence of an additional Higgs doublet field at low 
energies. In section 4, we study the running of the third genera-
tion Yukawa couplings and show that they can reach a common 
value at the same scale that allows for gauge coupling unification, 
while keeping a viable low energy spectrum. Our conclusions are 
given in section 5.

2. Theoretical framework

The SO(10) group has many attractive features [8–10] and most 
of them follow from the fact that it possesses a fundamental rep-
resentation of dimension-16 in which, for each generation, the 15 
SM chiral fermions as well as one right-handed neutrino can be 
embedded. In this case, the Yukawa couplings of the scalar bosons 
to pairs of these fermions belong to the direct product of 16 ⊗ 16, 
which can be decomposed into

16F ⊗ 16F = 10 + 120 + 126 . (1)

Thus, the most general Yukawa interaction which is SO(10) invari-
ant is given by

−LY = 16F(Y1010H + Y126126H + Y120120H)16F . (2)

The special case with only the first two Yukawa terms with the 
10H and 126H representations, leading to the so-called minimal 
2

SO(10) model, has been thoroughly discussed, see e.g. Refs. [9,18]. 
The extended SO(10) model including the 120H representation has 
been also explored [19,20]. The first model usually requires an ex-
tra U(1) symmetry to complexify the 10H representation to achieve 
the required splitting in the fermionic spectrum, otherwise the ra-
tio mt/mb would be fixed to unity at the GUT scale [9]. In turn, 
in the latter scenario, it has been shown that a realistic fermion 
spectrum can be achieved with or without introducing such an ex-
tra U(1) symmetry [20].

In this work, we will restrict to the minimal and most studied 
SO(10) scenario in which only the 10H and 126H representations 
are kept, but without an extra U(1) symmetry to complexify the 
10H representation. This will constrain the parameter space, mak-
ing the model more predictive, while allowing the possibility of 
neutrino mass generation via a seesaw mechanism and being con-
sistent with present data [9,18].

The breaking of SO(10) to the SM gauge group GSM ≡ G321 =
SU(3)C × SU(2)L × U(1)Y can be triggered in several ways, but we 
will be only interested in two patterns that involve one intermedi-
ate gauge group at a high scale MI : the Pati-Salam (PS) group [2]
G422 = SU(4)C × SU(2)L × SU(2)R and the minimal left-right (LR) 
symmetry group [16] G3221 = SU(3)C × SU(2)L × SU(2)R × U(1)B−L. 
To achieve the desired symmetry-breaking in these two scenarios, 
one would necessarily need to introduce scalar multiplets that ac-
quire vacuum expectation values (vevs) at the corresponding high 
scales.

For the Pati-Salam scenario, the breaking chain from SO(10) to 
the SM gauge group is e.g. achieved by the (15,1,1) component 
of the scalar representation 210H which acquires a vev at the GUT 
scale MU , and by the 126H that acquires a vev at the intermediate 
scale MI . In turn, in the minimal left-right scenario, the symmetry 
should be broken first by the 45H which acquires a vev at the GUT 
scale and then by the 126H that acquires it at the intermediate 
scale [20]. One thus has

PS : SO(10)|MU

〈210H〉−−−−→ G422|MI

〈126H〉−−−−→ G321|M Z

〈10H〉−−−→ G31 ; (3)

LR : SO(10)|MU

〈45H〉−−−→ G3221|MI

〈126H〉−−−−→ G321|M Z

〈10H〉−−−→ G31 . (4)

According to the extended survival hypothesis [21], all the 
scalar fields that do not participate in the symmetry breaking pat-
terns above by acquiring vevs will have masses of the order of 
the high scales MU and MI . In these two breaking chains, the 
scalar content that acquires vevs at the intermediate scale MI or 
at the electroweak scale M Z consists of, respectively, the 126H
and 10H representations. More specifically, of the SO(10) scalar 
representations that can be decomposed under the intermediate 
gauge groups, only certain scalar fields from 10H and 126H have 
masses below the GUT scale and will contribute to the renormal-
ization group equations (RGEs) between the two scales MI and 
MU . These are, in the PS scenario, (1,2,2) (�10) from 10H and 
(15,2,2) ⊕ (10,1,3) (�126 ⊕ �R ) from 126H and, in the minimal 
LR scenario, (1,2,2,0) from 10H and the (1,2,2,0) ⊕ (1,1,3,2)

from 126H . We will thus only consider this restricted set of scalar 
fields between the GUT and intermediate scales.1

At low energies, among the two Higgs bi-doublets that we had 
at a high energy scale, only two Higgs doublets survive and de-
velop vevs at the electroweak scale. Thus, in our study, we will 
have in fact a model with two Higgs doublet fields Hu and Hd

1 This in contrast to most studies which are done in this context as, generally, 
a very complicated scalar sector of the SO(10) group is needed to fit the low en-
ergy spectrum, in particular the fermion (including the light and sometimes even 
the heavy neutrino sector) masses and mixings, by adjusting the numerous input 
parameters that are available.
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that couple separately to isospin + 1
2 and − 1

2 fermions and acquire 
vevs vu and vd

〈Hu〉 = 1√
2

(
0

vu

)
, 〈Hd〉 = 1√

2

(
0

vd

)
, (5)

to give masses to the W , Z bosons implying the relation 
√

v2
u + v2

d

= vSM 
 246 GeV; we then define the ratio of these two vevs to be 
tan β = vu/vd . The most general renormalizable scalar potential of 
this two Higgs doublet model can be found in Ref. [17] to which 
we refer for all details. The Yukawa interactions of the fermions 
are those of a type-II 2HDM with a Lagrangian given by

−L2HDM
Y = Yu Q̄ L Hu uR + Yd Q̄ L Hd dR + Ye L̄L Hd eR + h.c. , (6)

with Q L/LL the quark/lepton left-handed doublets and f R the 
right-handed singlets. In our study, only the third generation of 
fermions will be considered and the small Yukawa couplings of 
the first two generations will be neglected.

At the intermediate scale MI , the minimal Yukawa interaction 
Lagrangian is obtained when only two Higgs bi-doublets couple to 
fermions. One of them should be from the 126H which also has a 
triplet field that breaks the left-right symmetry. The other can be 
chosen to be the 10H . Starting from eq. (2), the Yukawa Lagrangian 
for fermions at the intermediate scale MI can be written in the 
considered two schemes as

−LP S
Y = F̄ L(Y P S

10 �10 + Y P S
126�126)F R + F T

R Y P S
R C�R F R + h.c. , (7)

−LLR
Y = Q̄ L(Y LR

10,q�10 + Y LR
126,q�126)Q R

+ L̄L(Y LR
10,l�10 + Y LR

126,l�126)LR

+ 1

2
LT

R Y LR
R iσ2�R LR + h.c. , (8)

where F L,R are generic left or right-handed quark/lepton fields and 
σ2 a Pauli matrix. In both cases, we have assumed that terms like 
F̄ T

L φ̃F R with φ = � or � and φ̃ = σ T
2 φ∗σ2 are forbidden by suit-

ably chosen U(1)Y charges [22]. Below the intermediate scale, the 
PS and LR models include, besides the triplet field �R that gives 
masses to the heavy neutrino species, four Higgs doublets: two 
doublets φ1 and φ3 with opposite hypercharge from the (1, 2, 2)

representation and the doublets φ2 and φ4 again with opposite hy-
percharge from (15, 2, 2). The fields φ1 and φ2 couple to up-type 
quarks and heavy neutrinos, while φ3 and φ4 couple to down-type 
quarks and the light leptons.

While the triplet fields acquire a very large vev, 〈�R〉 = v R ∼
O(MI ), the bi-doublet fields acquire vevs of the order of the elec-
troweak scale which implies that 

∑4
i=1 v2

i = v2
SM. This ensures 

that the right-handed gauge bosons are very heavy, MW R , M Z R ≈
gv R , while the SU(2)L W and Z bosons have weak scale masses, 
MW , M Z ≈ gvSM. In fact, only two linear combinations of the four 
scalar doublet fields φ1 · · ·φ4 will have weak scale masses, while 
the two other field combinations will have masses close to the 
very high scale. One has thus to tune the scalar potentials of the 
two scenarios to achieve this situation and discussions about the 
constraints to which it leads can be found in Refs. [23,24] for in-
stance. The two fields with weak scale masses will be ultimately 
identified with the doublets Hu and Hd of our low energy 2HDM. 
At the intermediate scale MI , these fields should match the �10
and �126 fields, the interactions of which have been given in 
eqs. (7), (8) as will be discussed shortly.

3. Gauge coupling unification

Assuming the 2HDM structure at low energies and the two 
breaking patterns of SO(10) down to the SM group with the in-
termediate scale MI discussed previously, namely PS and LR, we 
3

study the renormalization group running of the three SM gauge 
couplings αi = g2

i /(4π). We closely follow Ref. [13] in which the 
standard case with only one electroweak Higgs doublet was stud-
ied. The analytical expressions for the gauge coupling RGEs at the 
two loop level, including the relevant β functions can be found, 
e.g., in Ref. [26] where the dependence of the number of Higgs 
doublets is explicitly given. Naively, the more intermediate scale 
scalar particles are included in the running of the couplings, the 
lower would be the resulting unification scale.

At the intermediate scale, threshold effects [11] due to all the 
particles that have masses in the vicinity of MI , and in particular 
all the scalar fields that develop vevs at this scale, will be active. 
These higher order corrections will modify the matching condi-
tions of the gauge couplings at the scale of symmetry breaking, 
depending on the particle content. For a symmetry breaking from 
a group G to a subgroup H at the scale μ, the matching conditions 
with the threshold corrections take the form

α−1
i,H(μ) = α−1

i,G(μ) − λGi,H/(12π) , (9)

where i = 1, 2, 3, ... refers to the particular gauge coupling αi and 
λGi,H are usually weighted by the parameters ηi = ln(Mi/μ) with 
Mi being the masses of the heavy particles integrated out at the 
low energy. The complete expressions for the one-loop threshold 
corrections λGi,H are given in Ref. [13] (see Tables IV and VI of their 
Appendices B and C, respectively). As a result, the intermediate and 
the unification scales MI and MU could be shifted by an order of 
magnitude or more even when only small threshold corrections are 
included. In the following, we show an explicit example of gauge 
coupling unification in the PS and LR breaking chains when these 
thresholds are included.

We start with the following initial conditions for the SM gauge 
couplings calculated in the MS renormalization scheme with two-
loop accuracy and first evaluated at the electroweak scale that we 
take to be the Z boson, mass M Z = 91.2 GeV [27],

[gY (M Z ), g2(M Z ), g3(M Z )] = [0.3574,0.6517,1.2182] , (10)

where gY should be normalized with the usual GUT condition 
leading to α1/αY = 5/3. Using the two-loop RGEs in the case in 
which two Higgs doublets are present at low energies and in-
cluding the relevant threshold corrections following Ref. [13], we 
determine the point at which the couplings intersect when appro-
priately adjusting the intermediate scale MI . In the two symmetry 
breaking chains that we consider, the tree-level matching condi-
tions that determine the gauge couplings of the intermediate scale 
models from the low energy ones read

PS : α−1
4 (MI ) = α−1

3 (MI ) , α−1
2L (MI ) = α−1

2 (MI ) ,

α−1
2R (MI ) = 5

3
α−1

Y (MI ) − 2

3
α−1

3 (MI ) ,

LR : α−1
3 (MI ) = α−1

3 (MI ) , α−1
2L (MI ) = α−1

2 (MI ) ,

α−1
B−L(MI ) = κα−1

2R (MI ) = κ

(
2κ + 3

5

)−1

α−1
Y (MI ) , (11)

where in LR we assume α−1
B−L(MI ) = κα−1

2R (MI ) as we are match-
ing three couplings to four; this normalization factor κ of O(1) is 
to be solved with the scales MI and MU .

Note that in eq. (10), we have ignored, for simplicity, the exper-
imental errors on the couplings constants (as well as the theoret-
ical uncertainties) and kept only the central values. These errors, 
the largest of which being the one that affects the strong coupling 
constant α3 which is at the percent level, will generate an uncer-
tainty on the derived GUT an intermediate scales of the order of 
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Fig. 1. The evolution of the inverse of the gauge coupling constants αi = g2
i /(4π) as a function of the energy scale μ in the 2HDM+G422 Pati-Salam model (left) and 

2HDM+G3221 minimal LR model (right) at the one-loop (dashed lines) and two-loop (solid lines) orders. The GUT and intermediate scales MU and MI are indicated and the 
threshold effects are included. The red bands reveal the effects of the experimental uncertainties in the measurement of the couplings.
a few percent only and, hence, do not affect our discussion in a 
significant way as will be shown shortly.

In our analysis, the RGEs of the gauge couplings are solved 
up to two loop order with the help of the program SARAH [29], 
and the inclusion of the thresholds corrections is performed by 
randomly sampling parameters ηi = ln(Mi/μ) within the range of 
ηi ∈ [−1, 1]. We then impose the tree-level matching conditions of 
the gauge couplings at the intermediate scale as in eq. (11) when 
the one-loop threshold corrections are included as in eq. (9), and 
determine the values of the two scales MI and MU for each sam-
pling parameter set. More precisely, we take at least 10,000 points 
for the parameters ηi within the range of ηi ∈ [−1, 1] and deter-
mine the sets of all scales that allow for gauge coupling unification.

In the two intermediate SO(10) scenarios that we consider, 
gauge coupling unification with the inclusion of threshold correc-
tions can, for instance, be achieved for the following values of the 
unification and intermediate scales

PS : MU = 7.5 × 1015 GeV and MI = 6.6 × 1010 GeV ,

LR : MU = 3.9 × 1015 GeV and MI = 6.0 × 109 GeV . (12)

The evolution of the inverse of the coupling constants α−1
i

from the scale MU down to MI and then down to M Z is shown 
in Fig. 1 as a function of the energy scale in the two breaking 
patterns PS (left panel) and LR (right panel) when the two-loop 
(solid lines) and one-loop (dashed lines) RGEs are used and the 
threshold effects are included at the intermediate scale. While the 
three couplings are clearly different at the scale MI of the order 
of a few times 1010 GeV (as required to reproduce neutrino phe-
nomenology), the slope is significantly modified at this energy by 
the additional contributions so that the couplings meet at a scale 
MU of the order of a few times 1015 GeV (which is high enough 
to prevent fast proton decay). Both the two-loop corrections and 
the threshold corrections have a noticeable impact and make the 
intermediate scale lower. The small impact of the experimental er-
rors on the couplings is illustrated by the narrow red bands at the 
scales MI and MU .

4. Yukawa coupling unification

We now turn to the Yukawa sector of the theory. As already 
mentioned, we will ignore the very small Yukawa couplings of the 
first and second generation fermions2 and consider only those of 

2 As in the supersymmetric case, fermions with masses below a few GeV cannot 
be realistically described in our approach as it will be plagued by strong interaction 
uncertainties when running the RGEs down to the fermion mass scale.
4

the top quark, the bottom quark and the tau lepton, neglecting 
all possible mixings. Below the intermediate scale MI , the Yukawa 
interactions of these fermions are those of a type-II 2HDM with 
a Lagrangian given by eq. (6). It leads to the following relations 
between the fermion masses and the Yukawa couplings

mt = 1√
2

Yt vu , mb = 1√
2

Yb vd , mτ = 1√
2

Yτ vd . (13)

In the region between the intermediate scale and the GUT scale, 
we assume the Yukawa structure of eqs. (7) and (8) for the PS 
and minimal LR breaking patterns, respectively. With a real 10H

representation with its vevs denoted by vu
10 = vd ∗

10 = v10 and by 
adopting a phase convention in which v10 is real (this can be done 
via, e.g., an SU(2) rotation) [20], and denoting by vu,d

126 the vevs of 
the �126 field, the fermion masses for the two considered breaking 
chains will be given by

mt = v10Y P S
10 + vu

126Y P S
126√

2
, mb = v10Y P S

10 + vd
126Y P S

126√
2

,

mτ = v10Y P S
10 − 3vd

126Y P S
126√

2
,

mt = v10Y LR
10,q + vu

126Y LR
126,q√

2
, mb = v10Y LR

10,q + vd
126Y LR

126,q√
2

,

mτ = v10Y LR
10,l + vd

126Y LR
126,l√

2
. (14)

Finally, above the GUT scale MU , the third generation Yukawa 
couplings are unified as in eq. (2) and are given by

mt = v10Y10 + vu
126Y126 , mb = v10Y10 + vd

126Y126 ,

mτ = v10Y10 − 3vd
126Y126, (15)

(with the additional masses for neutrinos MνD = v10Y10 −
3vu

126Y126 and MνR = v R Y126). The normalization factors can be 
absorbed into the redefinition of the Yukawa couplings at the GUT 
scale. The factors of 3 and the relative signs between the various 
terms are due to the Clebsh-Gordan coefficients coming from the 
vev of the traceless adjoint 15 of SU(4) in (2,2,15).

As the evolution of the couplings near the scale MI should be 
affected by threshold corrections, one should expect a significant 
discontinuity of the Yukawa couplings when the contributions of 
the numerous scalar and vector fields are included in the RGEs. 
Nevertheless, as these Yukawa couplings are directly related to the 
masses of the fermions, one can simply assume that the physical 
fermion masses are continuous at the scale MI [25] when these 
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threshold corrections are included. This means that the masses 
calculated in the low-energy 2HDM should coincide with those 
obtained from the intermediate left-right or Pati–Salam models 
or the unified SO(10) model, up to their running. One can then 
consider this relation as the matching conditions for the Yukawa 
couplings at the intermediate and the GUT scales. For example, at 
the scale MI , equating eqs. (13)–(14) for the PS and LR breaking 
chains leads to3

Yt(MI ) = Y P S
10 (MI )

v10

vu
+ Y P S

126(MI )
vu

126

vu

or Y LR
10,q(MI )

v10

vu
+ Y LR

126,q(MI )
vu

126

vu
,

Yb(MI ) = Y P S
10 (MI )

v10

vd
+ Y P S

126(MI )
vd

126

vd

or Y LR
10,q(MI )

v10

vd
+ Y P S

126,q(MI )
vd

126

vd
,

Yτ (MI ) = Y P S
10 (MI )

v10

vd
− 3Y P S

126(MI )
vd

126

vd

or Y LR
10,l(MI )

v10

vd
+ Y LR

126,l(MI )
vd

126

vd
. (16)

As for the matching conditions at the GUT scale, one has 
to carefully take the Clebsh-Gordan factors into account for the 
Yukawa interactions when the field representations are embedded 
into the SO(10) group [22,30]. One can then enforce Yukawa cou-
pling unification by requiring the matching conditions at the GUT 
scale to be

Y f (MU ) ≡ Y P S
10 (MU ) = 1

4
Y P S

126(MU ) , (17)

Y f (MU ) ≡ Y LR
10,q(MU ) = 1

4
Y LR

126,q(MU ) = Y LR
10,l(MU )

= − 1

12
Y LR

126,l(MU ) , (18)

where the unified Yukawa coupling Y f (MU ) is taken to be a free 
parameter of SO(10).

One has then to fit these parameters with the actual observ-
ables, namely the top, bottom and tau masses using the relations 
in eq. (13) at the low energy scale, chosen again to be M Z = 91.2
GeV. We use the following input MS running fermion masses in 
the SM [27,28] (we again ignore the related experimental uncer-
tainties for now),

[mt(M Z ),mb(M Z ),mτ (M Z )] = [168.3,2.87,1.73] GeV , (19)

and we then turn them into the corresponding input masses in 
the 2HDM by using the appropriate RGEs in the evolution from 
the scale of the fermion masses to M Z .

In the PS model, the colored-quarks and leptons are charged 
under the same local SU(4) symmetry so that all fermions can be 
unified into the same representation F L,R . When these fermions 
couple to the Higgs fields 10H , one cannot distinguish the bottom 
quark from the tau lepton and one should have mb = mτ if the vev 
vd

126 is small, vd
126/vd � 1, as can be seen from eq. (14). If this 

mass equality is still valid slightly below the intermediate scale, we 
should then have Yb(MI ) = Yτ (MI ) in our low energy 2HDM by 
virtue of eqs. (16) and (13). The scale at which the bottom and tau 

3 For this exploratory work, we simply follow Ref. [25] and ignore the small run-
ning of the vevs. This issue, together with other refinements, will be postponed to 
a forthcoming publication.
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Yukawa couplings are equal, that we denote by Mbτ , is simply de-
termined (within some accuracy) by the point at which the curves 
for their RG running from the weak scale M Z upwards intersect, 
which critically depends on the value of the parameter tan β . In or-
der to use the matching conditions given by the equations above, 
the scale for b-τ unification should be identical to the interme-
diate PS breaking scale, Mbτ = MI , and this can be achieved by 
selecting the appropriate value of tan β .

The RGEs for the Yukawa couplings from MU to the interme-
diate scale MI and from MI to the electroweak scale M Z up to 
the two-loop level have been given in Ref. [31] in the standard 
case with one electroweak Higgs doublet only. In our case, we also 
include the additional contributions of the extra Higgs doublet at 
the low scale. We solve the system using again the program SARAH 
[29].

In the PS model, the running of the third generation Yukawa 
couplings from the low to the high energy scales are shown in 
the left panel of Fig. 2, for the specific case where the input value 
tan β = 58 is chosen. One can see that, indeed, the curves for Yb
and Yτ intersect at an energy scale Mbτ 
 7 × 1010 GeV, which is 
very close to the intermediate scale for which the gauge couplings 
unify in the PS scheme.

The right panel of the figure shows the dependence of the 
bottom-tau unification scale Mbτ on the ratio of vevs tan β and, 
as can be seen, intermediate scale values between MI = 109 GeV 
and MI = 1011 GeV would imply high values of tan β , in the range 
tan β ≈ 50 − 60. Note that the value of tan β cannot be arbitrarily 
high, tan β <∼ 70 in the specific cases we are discussing here, in 
order to avoid that the Yukawa couplings run to non-perturbative 
values at these scales.

In the minimal LR model, the discussion above does not hold 
and the bottom and tau Yukawa couplings do not unify at the in-
termediate scale. Nevertheless, one should have close if not equal 
values for the Yukawa terms Y LR

10,q and Y LR
10,l such that they can run 

to a common value at the scale MU where, according to eq. (18), 
one has Y LR

10,q = Y LR
10,l .

We come now to the unification of all Yukawa couplings. With 
the four Yukawa couplings, the randomly chosen one Y f (MU ) and 
the three weak scale ones Yt , Yb, Yτ , the scales MU and MI to be 
determined from gauge coupling unification, five parameters are 
needed to entirely describe our Yukawa sector: the 2HDM vevs 
vu, vd at M Z and the vevs vu

126, v
d
126 and v10 of the bi-doublets at 

the scale MI . Nevertheless, we have many constraints at hand as, 
besides the matching relations given in eqs. (16-18), one needs to 
reproduce the experimental values of the standard particle masses.

Indeed, at both the scales M Z and MI , the correct W , Z masses 
should be reproduced, giving 

√
v2

u + v2
d = vSM = 246 GeV = v2

10 +
v2

126 + v2
126d [24]. One needs also to reproduce the heavy fermion 

masses at the weak scale M Z , eq. (19), using the relations of 
eq. (13). We will assume that there is an uncertainty of the or-
der of 2% in reproducing all these particle masses. This uncer-
tainty, which is sufficiently small for our purpose (and allows us 
to have some solutions for the coupled RGE’s), is introduced not 
only because of the experimental errors (e.g. on α3 and the top 
and bottom masses) but also the theoretical ones from various 
sources such as the higher order effects in the RGEs, the higher 
order threshold corrections, the possible running of the vev’s, etc.

For completeness, we make sure in addition that the elec-
troweak vacuum remains stable up to the intermediate scale MI ≈
1010 GeV for the chosen top quark and SM-like Higgs boson 
masses. To do so, we use the necessary and sufficient conditions 
of Refs. [17,32] on the 2HDM quartic scalar couplings to ensure 
the scalar potential to be bounded from below, with the input 
values for the relevant weak scale parameters given in Ref. [33]. 
As an additional and final constraint, we force the three Yukawa 
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Fig. 2. An example of the running of third generation fermion Yukawa couplings from the weak to the high scales for the value tanβ = 58 for which the bottom and tau 
couplings unify at a scale Mbτ = 6.6 × 1010 (left) and the dependence of this unification scale Mbτ on the value of tanβ (right).
Fig. 3. The renormalization group running of the Yukawa couplings at two-loop in 
the 2HDM+G422 model (top) and 2HDM+G3221 model (bottom) including match-
ing conditions and threshold effects at an intermediate scale MI for a parameter 
set that is compatible with the observed top, bottom, tau as well as gauge boson 
masses.

couplings to remain perturbative at all scales by imposing the con-
ditions Y 2

i (μ)/(4π) ≤ 1.
We then scan this constrained parameter space in order to find 

a viable solution to the system of equations. Our main results are 
displayed in Fig. 3 and in Table 1.

Fig. 3 shows the evolution of the three Yukawa couplings as a 
function of the energy scale in the PS (upper panel) and LR (lower 
panel) scenarios and it can be seen that all of them reach a com-
mon value, Y f (MU ) ≈ 0.1, at the same GUT scale MU that leads to 
gauge coupling unification eq. (12). At the intermediate scale MI

that is also required by gauge coupling unification, eq. (12), one 
notices the discontinuity for the Yukawa couplings which is due to 
the matching conditions.

Finally, in Table 1, we show examples of points in the 2HDM+PS 
and 2HDM+LR model parameter spaces that satisfy all the criteria 
discussed above and list the sets of values for the three fermion 
6

couplings and all the relevant vevs which lead to Yukawa coupling 
unification, with the GUT and intermediate scales that allow for 
gauge coupling unification, eqs. (12), and with all constraints im-
plemented.

One can see that in both the PS and LR breaking schemes, 
one obtains approximately the same unified Yukawa coupling 
Y f (MU ) =O(0.1). One can also see that the relations 

∑
i v2

i = v2
SM

are fulfilled at the relevant scales and that all Yukawa couplings 
are such that their squares are smaller than 4π even at MI .

In both cases, the obtained values of the input 2HDM parameter 
tan β = vu/vd at the electroweak scale are large but still reason-
able, approximately tanβ = 58 and tan β = 70 for the PS and LR 
models respectively, as they ensure that the bottom quark Yukawa 
coupling remains perturbative at all energy scales before MU , and 
gives the correct hierarchy of quark masses at the electroweak 
scale, tan β ≈ mt/mb .

Hence, Yukawa coupling unification can also be achieved in a 
simple manner in a non-supersymmetric SO(10) scenario. One can 
arrange to achieve it for lower values of tanβ than above, at a min-
imal cost and without affecting the simplicity of the approach, by 
complexifying the 10H representation. One still makes use of two 
Higgs bi-doublets above the scale MI but there are four non-zero 
vevs instead of three as vu

10 �= vd
10. This additional input can be ad-

justed to have more adequate solutions to the system of Yukawa 
coupling RGEs. This possibility, as well as other interesting exten-
sions of the simple scheme proposed here, will be addressed in a 
forthcoming publication.

5. Conclusions

We have analyzed the possibility of unifying the Yukawa cou-
plings of third generation fermions in the context of a non-
supersymmetric SO(10) scenario with intermediate breaking, fo-
cusing on the Pati-Salam and minimal left-right breaking chains. 
The framework that we adopt is rather simple as the relevant 
scalar sector of the theory consists of only two Higgs bi-doublets 
at the intermediate breaking scale, MI =O(1010) GeV, reducing to 
a two Higgs doublet model of type II at the electroweak scale.

We first discussed gauge coupling unification which can indeed 
be achieved at a GUT scale close to MU ≈ 1016 GeV, by including 
the threshold effects of the scalar multiplets that appear at the 
intermediate scale. This is somehow expected as the contribution 
of the additional electroweak Higgs doublet (and all scalar fields 
in general) does not significantly modify the running of the gauge 
coupling constants.

We have then studied the renormalization group running of the 
Yukawa couplings of the top and bottom quarks and the tau lep-
ton in the Pati-Salam and minimal left-right SO(10) scenarios, with 
the proper matching conditions at the unification, intermediate 
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Table 1
A set of the third generation fermion Yukawa couplings at the scales M Z , MI and MU , and the relevant vevs at the weak and intermediate scales, which fit all observables 
within 2% accuracy at the two-loop level and lead to both gauge coupling and Yukawa coupling unification in SO(10) with PS and LR intermediate breaking.

Scale M Z MI MU M Z MI

Yt Yb Yτ Yt Yb Yτ Y f vd vu v10 vu
126 vd

126

PS 0.97 1.09 0.58 0.55 0.76 0.75 0.10 4.21 246.2 23.4 244.7 0.004
LR 0.97 1.44 0.68 0.62 2.76 2.01 0.14 3.50 246.2 53.2 241.0 0.079
and electroweak scales. We have performed a scan of the parame-
ter space of the two models, imposing that the phenomenology at 
low energy and, in particular the third generation fermion and the 
electroweak gauge boson masses, is correctly reproduced within 2% 
accuracy. We find that the unification of the Yukawa couplings of 
third generation can be indeed realized in regions of the parame-
ter space in which the ratio of the two electroweak Higgs doublet 
vevs is large, tan β ≈ 60.

Hence, similarly to the well known and widely studied super-
symmetric case, not only gauge but also Yukawa coupling unifica-
tion can be achieved in SO(10) while using a rather simple Higgs 
sector and retaining a viable particle spectrum at the weak scale.

An interesting feature of this possibility is that while most of 
the ingredients of the conventional SO(10) model are expected to 
be at a too high scale, O(1010) GeV, to be probed effectively in 
collider experiments, our scenario requires a second Higgs doublet 
at low energies. The model thus predicts additional Higgs particles 
with weak scale masses which could be searched for and even-
tually be observed at the Large Hadron Collider or at the next 
generation of high-energy colliders.
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