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Abstract

The size of data that we generate every day across the globe is undoubtedly astonishing due to the growth 
of the Internet of Things. So, it is a common practice to unravel important hidden facts and understand the 
massive data using clustering techniques. However, non- linear relations, which are essentially unexplored 
when compared to linear correlations, are more widespread within data that is high throughput. Often, non-
linear links can model a large amount of data in a more precise fashion and highlight critical trends and 
patterns. Moreover, selecting an appropriate measure of similarity is a well-known issue since many years 
when it comes to data clustering. In this work, a non-Euclidean similarity measure is proposed, which relies on 
non-linear Jeffreys-divergence (JS). We subsequently develop c- means using the proposed JS (J-c-means). The 
various properties of the JS and J-c-means are discussed. All the analyses were carried out on a few real-life 
and synthetic databases. The obtained outcomes show that J-c-means outperforms some cutting-edge c-means 
algorithms empirically.
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I. Introduction

Machine learning considers clustering to be an important issue. 
It is normally used to reveal some existing hereditary structure 

by analyzing a set of data items or patterns. The aim of clustering is 
to split data into groups so that data in the same groups are similar 
and data items in different groups are not capable of comparison in 
the same sense. Clustering is the subject of active research for varying 
areas, including marketing [1], biology [2], libraries [3], insurance 
[4], city planning [5], and earthquake studies [6]. Common clustering 
algorithms include Gaussian Mixture models [7], hierarchical 
clustering [8], Hidden Markov models [9], self-organizing maps [10], 
and c- means clustering [11]. Hierarchical clustering constructs a 
multi- level hierarchy of groups by making a tree, which is known as 
a cluster tree. Gaussian mixture model forms groups, which would be 
considered as a mixture of multivariate normal density components. 
The self-organizing map takes the help of neural networks for learning 

the topology and data structure in the form of distribution. Hidden 
Markov models use observed data for recovering the sequence of states.

The performance of a clustering algorithm always relies upon data 
items or their features, choice of the initial cluster centers, similarity 
measures, objective function, and clustering algorithms [12]–[14]. 
In this study, the c-means algorithm is implemented on synthetic 
and real-life databases, so everything is similar except the similarity 
measure. In other words, the use of different similarity measures 
is studied because the selection of proper similarity measures is an 
important issue in clustering and it helps to find the cluster structure 
in data [15] properly. However, Euclidean distance is one of the 
widely accepted similarity measures even though a large number of 
researches are going on around the world to introduce non-linearity 
in similarity measures for data clustering [15], [16]. In recent times, 
Euclidean distance in c-means is replaced using different non-linear 
metrics. From this, some do not obey triangle inequality property 
[17]–[21]. The objective of instigating non-linearity is to detect a more 
accurate boundary between two clusters. A. Banerjee et al. initiated 
general Bregman divergence as a distance metric in the c-means to 
augment its effectiveness [17]. This method in reality unified the 
divergence measures, for which the first moment was used as cluster 
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representative ensuring a gradual depreciating of the objective 
function in the iterative relocation technique. The interested reader 
can go through [12], [22]–[27] to know the use of various divergence-
based similarity measures in clustering.

II. Clustering

This section presents the formal definition of clustering. A concise 
overview of conventional c-means is also discussed, given that the 
performance comparison is made between the conventional c-means 
and the modified one.

A. Basic Principle
The method of dividing n´dimensional m data-points or their 

features, A[= a1, a2, ..., an], in Rn into ‘c’ groups of homogeneous data-
points, G[= (G1, G2, ..., Gc )] to increase association strength within the 
cluster, is known as clustering. However, association strength will be 
low or weak between different clusters. Then

B. The C-Means Algorithm
It is certainly a well-known clustering technique because it is easy 

to implement. Sometimes, it is applied in the pre-processing step to 
finding the knowledge by analyzing data [28]. It partitions data into 
‘c’  distinct groups by reducing the entire intra-cluster variance, 
beginning with an arbitrarily selected group of the centroid from each 
group. Each centroid should effectively denote the central location of a 
group. The ideal value of ‘c’  leads to the highest separation (distance) 
and is an unknown priori. It has to be approximated from the database 
itself. The c-means intends to reduce total intra-cluster variance, or, 
the squared error function, E, which could be computed using Eq. (1).

 (1)

where |aj − gi|
2 is a similarity measure between the cluster center, gi 

and a data-object, aj .

The c-means algorithm consists of the given steps:

Step 1: Select ‘c’ initial cluster centers g1, g2, ..., gc arbitrarily from 
the m data-points A[= a1, a2, ..., an].

Step 2: Designate data-point aj , j=1, 2, ..., m to cluster center gi, i 
∈ 1, 2, ..., c iff ||aj − gi|| ≤ ||aj − gk||, k = 1, 2, ..., c, &i ≠ c. Ties are broken 
randomly.

Step 3: Find new cluster centers , by Eq. (2).

 (2)

where mi is the count of data-objects in cluster Gi.

Step 4: If  = gi∀i = 1, 2, ..., c then stop. If not, go to Step 2.

Note that if Step 4 does not terminate then the algorithm executes 
for a predetermined fixed number of epochs.

This work focuses to introduce JS, which is inherited from the 
concept of Jeffreys-divergence [29]. Several characteristics of this 
similarity measure are studied. The entire experiment set is executed 
on some synthetic and real-life benchmark databases. These simulation 
outcomes show that c-means utilizing JS performs better than a 
traditional c-means algorithm and along with c-means with various 
other divergences in certain situations. Our assertion is confirmed 
through a statistical analysis of the results obtained.

III. Jeffreys-Similarity Measure (JS) and its Properties

The definition of JS and its properties are discussed in this section.

Definition 3.1. Let Jn be a set of all positive definite matrices of size 
n × n and Jeffreys-divergence is a similarity measure defined over Jn, 
which could be computed by Eq. (3).

 (3)

where |P |=determinant of P.

Consider a real positive vector a =(a1, a2, ..., an) ∈ . Let us define a 
one-to-one function ψ :  → Jn such that ψ (a) = diag(a1, a2, ..., an). The 
definition of JS is as follows:

Definition 3.2. The JS function dJeffreys:  ×  → ℝ+∪ {0} between 
any two a, b ∈  is defined by applying Eq. (4).

 (4)

The JS measure, dJeffreys, is well-stated because ψ is a one-to-one 
function by definition. Some of the following properties are stated 
here as ∂Jeffreys divergence is defined on Jn.

Proposition 3.1. dJeffreys (a, b) = dJeffreys (b, a)

Proof: dJeffreys (a, b) = ∂Jeffreys (ψ(a), ψ(b)) = ∂Jeffreys (ψ(b), ψ(a)) = dJeffreys (b, a)

Proposition 3.2.

dJeffreys (a, b) ≥ 0 and dJeffreys (a, b) = 0 iff a = b
Proof: dJeffreys (a, b) = ∂Jeffreys (ψ(a), ψ(b)) ≥ 0 and dJeffreys(a, b) = 0 iff 

∂Jeffreys (ψ(a), ψ(b)) = 0 iff ψ(a) = ψ(b) iff a = b 

So, dJeffreys is a similarity measure on , which could be thought as 
dJeffreys (a, b) =  ∂Jeffreys (ai, bi ). Now, its time to investigate some of the 
properties of JS.

Theorem 3.1. The JS is not a Bregman divergence.

Proof: If JS was a Bregman divergence dJeffreys (a, b) would have been 
strictly convex in a. However, our objective is to prove that dJeffreys (a, b) 
is not convex in a. We know that the JS, dJeffreys, could also be expressed 
by Eq. (5).

 (5)

The expression below can be acquired if the derivative of both sides 
of Eq. (5) is taken with respect to ai. 

 = 0 when i ≠ j otherwise,

 

We have,  < 0 for the values in the range of {-∞, -1} ∪ {0, 1}. 
So, dJeffreys (a, b) is not convex in a. So, it is demonstrated that JS measure 
is not a Bregman divergence.

Theorem 3.2. dJeffreys (x ∘ a, x ∘ a) = xdJeffreys (a, b) for x ∈ , where x ∘ a 
depicts the Hadamord product between a and x.

Proof: It is known that (x ∘ a) = (x1 a1, x2 a2, ..., xn an). So,

δJeffreys (xiai, xibi) = (xiai − xibi) (log(xiai) − log(xibi)) = xi (ai − bi)

(log xi + log ai − log xi − log bi ) = xi (ai − bi)(log ai − log bi )

 δJeffreys (xiai, xibi) =  xi δ (ai, bi) implying

dJeffreys (x ∘ a, x ∘ b) = x dJeffreys (a, b)

Theorem 3.3. JS is f-divergence.

Proof: If a divergence expression can be made through the 
following

ϕ (t) = a ϕ( ), where t =  

then that divergence is known as f-divergence. The JS between  
a ∈  and b ∈   is given by
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putting 

Since, dJeffreys (a, b) can be expressed as . Thus, JS is 
f-divergence.

Remark 3.1: We may consider another imperative facet of JS. 
Fig. 1 portrays the contour plot of the norm-balls in ℝ2 everywhere 
over the point (5000,5000) for Euclidean distance (Fig. 1a) and JS (Fig. 
1b). We can also observe from Fig. 1 that the norm-ball of Euclidean 
distance is similar to concentric circles, on the other hand, JS is similar 
to some extent to askew ovals. It is further evident from Fig. 1b that 
contour lines confine together as they come near the origin i.e. (0,0). 
Thus, we conclude that the J-divergence between two points is greater 
when they come in the vicinity of the origin and it reduces when 
their distance from the origin increases. While on the contrary, the 
Euclidean distance within two points remains constant regardless of 
their location. For instance, the J-divergence and the Euclidean distance 
between (3,3) and (5,5) are 2.043 and 2.82 respectively and for points 
(1003,1003) and (1005,1005) they are 0.0079 and 2.82 respectively. At 
times, the attribute in question might prove beneficial in situations 
where the clusters have varying sizes and densities.
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Fig. 1. Contour plot of norm ball for the Euclidean distance and JS.

IV. Proposed Method

A. The C-Means with JS
Consider a given set of vector, A = {a1, a2, ..., am}, in . Our objective 

is to divide A into ‘c’ disjoint groups where, the value of ‘c’ could be 
any value between 2 and ‘m’. This problem can be formalized using 
the following form.

M : minimize ψ (W, G) =  wij dJeffrey (aj, gi), subject to the 
constraints

 (6a)

 (6b)

 (6c)

Two following heuristics steps are given in order to solve M.

Initialization:

The ‘c’ number of vectors have to pick randomly from A and called 

them as cluster centers, which are denoted as

Iterative Steps:
• Set W (z+1) = argminW ψ (W, G (z)) subject to constraints 6a and 6b are 

satisfied. In other words, each vector ai is assigned to its nearest 
cluster center.

• Set G (z+1) = argminG ψ (W (z+1), G) subject to constraint 6c is satisfied.

• Set z = z + 1 until convergence.

Criterion for stopping:

We cease iteration in cases where the cost function reduces 
experiences alteration i.e.

ψ (W (z+1), G (z)) = ψ (W (z), G (z)) or ψ (W (z+1), G (z+1)) = ψ (W (z+1), G (z)). An 
informal program code of J-c-means is given in algorithm 1.

Algorithm 1 J-c-means([A]m × n, c)

1: Input: a set of vector, A = {a1, a2, ..., am}, ai ∈ ℝn.

2: Output: a partition, M = {A1, A2, ..., Ac}, of A together with the 
     centroids g1, g2, ..., gc of each cluster.

3: Initialization: select g1, g2, ..., gc in A at random

4: while terminating condition has not been met do
5:     for i = 1 to c do
6:          Ai ← 0

7:     end for
8:     for j = 1 to m do //updating the class membership of the vectors

9:          ω (aj) ← argmini ∈ {1, 2, ..., c} dJeffreys (aj, gi )

10:        Aω(aj) 
← Aω(aj)

 ∪ {aj }

11:   end for
12:   for i = 1 to c do  //updating centroids

13:        mi ←  1 (aj ∈ Ai )

14:        gi ←   aj 1 (aj ∈ Ai )

15:   end for
16:   return M, g1, g2, ..., gc

17: end while

B. Convergence of J-C-Means Algorithm
Theorem 3.1. The J-c-means monotonically decreases the inertia 

 wij dJeffreys (aj, gi)

Proof: Let ϕ (Au) =  dJeffreys (aj, gi ), where A(u) is the recent 
group A1

(u), ..., Ac
(u) with the centre of the clusters g1

(u), ..., gc
(u)and 

assignation function ω(u), then ϕ (Au) ≥   dJeffreys   
because ω (aj) minimizes the quantity dJeffreys (aj, gi ) over all i ∈ {1, ..., c}.

ϕ (Au) ≥    dJeffreys (aj, gi 
(u+1)) because gi 

(u+1) minimizes the 
quantity dJeffreys (aj, gi ) over all aj ∈ Ai.

Therefore, ϕ (A(u)) ≥ (A(u+1)).

Corollary: The J-c-means stops after a finite amount of time.

There are only finite number of partitions . Thus, the sequence 
ϕ (A(u))u∈N has a finite number of values i.e. there exist u such that  
ϕ (A(u+1)) = ϕ (A(u)).

Remark 4.1: The above corollary does not say anything about 
how fast the J-c-means converges. There is an exponential bound . 
The time required for the above mentioned algorithm to converge 
depends on the initialization. However, some heuristic can be found 
in the literature.
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V. Experiments

A. Database Description
All the experiments are performed on some synthetic databases: 

2_blobs, 3_blobs, 5_blobs, and 10_blobs and real-word databases: Iris, 
Glass, Cleveland, Bank Note Authentication, Appendicitis, Breast 
Cancer Wisconsin, and Mammography. These real-world databases 
are acquired from the Keel Repository [30] and UCI Machine Learning 
Repository [31].

B. Cluster Validity Index
The fundamental question that requires to be responded to in 

clustering is: how good a clustering technique is. The concept of 
goodness is quantified by validity indexes. The notion of these indexes 
may be explained mathematically. We may consider c-partitions namely, 
A1, A2, ..., Ac of A, found by a clustering technique and the valuations of 
their respective validity indexes are Z1, Z2, ..., Zc. The Zh1 ≥ Zh2 ≥ ... ≥ Zhc 
will represent that Ah1 ↑ Ah2 ↑ ... ↑ Ahc , for a particular permutation h1, 
h2, ..., hc of {1, 2, ..., c}, where Ai ↑ Aj depicts that partition Ai is a better 
clustering than Aj [32]. Validity indexes can be categorized into two 
sets namely, internal validity index and external validity index. Two 
external validation indexes namely, Normalized Mutual Information 
(NMI) [33] and Adjusted Rand Index (ARI) [34] are considered in 
this work to measure the performance of the c-means algorithms by 
varying distance metrics. NMI will typically be utilized as an index that 
can compare the performance of two data-point groups. Meanwhile, 
ARI is seen as an index for cluster validation. Both metrics show the 
mismatch in terms of two data clustering of an allotted arrangement 
of data points. The highest value (1) and the lowest value (0) indicate 
no mismatch and complete mismatch respectively. Both metrics use 
the ground truth to compute the efficiency of a clustering algorithm. 
Three internal evaluation schemes, for example, the Silhouette index 
(SI) [35], Dunn index (DI) [32], and Davies Boulden Index (DBI) [32] 
are further employed in this research to explore the cohesiveness of 
the obtained clusters. These indexes estimate the similarity between a 
data point with the corresponding group called cohesion and disunion 
between different groups known as separation. The domain of SI lies 
within −1 and +1, in which a greater value illustrates that the data 
point is excellently suited with its corresponding cluster and weakly 
paired to neighboring clusters. A higher DI and lower DBI demonstrate 
a more favorable grouping.

C. Computational Protocols
Five sets of experiments were performed on the aforementioned 

databases through c-means-E: c-means with Euclidean distance [36], 
c-means-S: c-means with S-distance [37], c-means-W: Weighting in 
c-means [38], c-means-M: Minkowski weighted c-means [33], and 
c-means-P: the proposed c-means. Performance comparison: We 
consider the same arbitrarily selected centroids for all the algorithms 
while calculating ARI, NMI, SI, DI, and DBI values to make results 
consistent. The performance of a clustering algorithm does not rely on 
the better extraction of inceptive set centroids. Nevertheless, it relies 
upon the clustering technique. The exact methodology is administered 
tenfold on each database. Then Wilcoxon’s rank-sum is executed to 
determine whether two dependent data-points from populations have 
the exact distribution on the acquired values of ARI, NMI, SI, DI, and 
DBI using the above-mentioned methods.

VI. Results and Discussion

Fig. 2 shows the clustering results. Table I shows the mean ARI, 
NMI, SI, DI, and DBI values obtained by the methods presented in 
section V-C on synthetic and real-life databases. However, the first 

two i.e. ARI and NMI are external clustering validity indexes for which 
actual class labels are required to match with the predicted class labels. 
database 2_blobs consists of two clusters having the same density 
and same size. However, one is close to the origin and the other is 
away from the origin. It is evident from Table I that the suggested 
c-means-P on 2_blobs defeats other algorithms mentioned in section 
V-C because nearly all of the ARI and NMI values are close to the 
greatest value i.e. 1. Moreover, c-means-P returns a higher expected 
value of ARI and NMI values over other algorithms, which depicts 
the efficiency of c-means-P. The proposed c-means-P outperforms 
due to askew oval figures of contour norm-balls of the J-divergence 
as considered in Remark 3.1. The proposed method also works well 
for the databases 3_blobs to 5_blobs, which contain clusters having 
the same size and same density. However, some noise is introduced 
to them. Still, the performance of the proposed method is good as 
J-divergence is invariant to the Hadamard product. The performance 
of all the methods on some real-life databases is noted in Table I. These 
outcomes depict that the proposed method c-means-P is the best 
among all the methods discussed in this study. The values of three 
internal clustering evaluation indexes namely, SI, DI, and DBI for the 
same databases are included in Table I. Although, actual class labels 
are not required in this case. The received results further validate the 
efficiency of the c-means-P over other methods discussed in section 
V-C due to the values obtained by c-means-P approach nearer to ideal 
values in comparison to values generated by methods other than 
the proposed one. The non-parametric Wilcoxon’s rank-sum is also 
performed for comparing c-means-P over other methods presented in 
section V-C using the p-values achieved from ARI, NMI, SI, DI, and 
DBI. Table II reports the estimated p-values. We can very well observe 
that the generated outcomes advice that we discard the null hypothesis 
for a 5% level of significance. It may be proposed that substantial proof 
is presented using data available with us to comment that c-means-P 
algorithm surpasses other methods discussed in section V-C.

VII.  Conclusion

In this work, a similarity measure on  is presented based on 
Jeffreys-divergence. Different JS properties are also elaborated. The 
conventional c-means algorithm is altered, where Euclidean distance 
is substituted with the similarity measure introduced. A theoretical 
evaluation of the JS and c-means was also conducted by outlining the 
convergence proof. Research on complexity metrics promises to be 
an area of research with potential when it comes to field clustering. 
It should be explored in future work. We focused on the evaluation 
of multiple database properties to find information. This can be used 
to design proper clustering algorithms. JS can be used for the Fuzzy 
c-means type algorithm.
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Fig. 2. (a): Original structure of #_blobs. Result of clustering corresponding #_blobs with (b): c-means-E, (c): c-means-M (d): c-means-S (e): c-means-W and (f): 
c-means-P.
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TABLE I.: The Values of ARI, NMI, SI, DI and DBI for Synthetic and Real-life Databases

Database c-means-E c-means-S c-means-W c-means-M c-means-P

2_blobs 1.0000000 0.9760961 1.0000000 1.0000000 1.0000000
3_blobs 0.9820360 0.9582248 0.9760904 0.9701813 0.9820360
5_blobs 0.8986230 0.6279446 0.6663589 0.8941665 0.9028355
10_blobs 0.430297 0.3859427 0.4502888 0.4185428 0.4686642

Iris 1.0000000 1.0000000 1.0000000 0.9600667 1.0000000
ARI Glass 0.3008098 0.6361220 0.5476595 0.6276935 0.7149283

Cleveland 0.0162569 0.3369418 0.0465415 0.0505246 0.1416707

Bank Note Authentication 0.0485381 0.0404252 0.0485381 0.0488371 0.0491855
Appendicitis 0.4843330 0.4320631 0.4843330 0.4978654 0.5360417

Breast Cancer Wisconsin 0.4914245 0.5286179 0.4914245 0.4914245 0.5666393
Mammography 0.0905026 0.0930185 0.0905026 0.0821258 0.1275994

2_blobs 1.0000000 0.9530566 1.0000000 1.0000000 1.0000000
3_blobs 0.9541820 0.9391844 0.9362472 0.9503597 0.9666142
5_blobs 0.8883229 0.7297619 0.7692242 0.8801728 0.8883229
10_blobs 0.6232038 0.5858008 0.6035275 0.6132328 0.6336725

Iris 1.0000000 1.0000000 1.0000000 0.9404430 1.0000000
NMI Glass 0.5075728 0.6577571 0.6441501 0.6832619 0.7325871

Cleveland 0.0183458 0.1175260 0.0375054 0.0472017 0.3864150
Bank Note Authentication 0.0303241 0.0245671 0.0303241 0.0312593 0.0327895

Appendicitis 0.3999936 0.3690075 0.3809936 0.4048908 0.4401108
Breast Cancer Wisconsin 0.4671655 0.4863613 0.4671655 0.4671655 0.5163683

Mammography 0.0846832 0.0846832 0.0846832 0.0846832 0.1298267
2_blobs 0.7949160 0.7874309 0.7949160 0.7949160 0.7949160
3_blobs 0.6932280 0.6861834 0.6932280 0.6916559 0.6932280
5_blobs 0.5711057 0.4126689 0.4446950 0.5759132 0.5759364
10_blobs 0.3645875 0.2902406 0.3306109 0.3527441 0.3857648

Iris 0.5824192 0.5824192 0.5824192 0.5818419 0.5824192
SI Glass 0.2909336 0.1899170 0.3491109 0.2386990 0.3928576

Cleveland 0.2076061 -0.026441 0.2657142 0.2390776 0.2808949
Bank Note Authentication 0.4308310 0.4293403 0.4308310 0.4310046 0.4310995

Appendicitis 0.4137615 0.4127611 0.4136630 0.4086627 0.4137615
Breast Cancer Wisconsin 0.6972643 0.6741518 0.6910678 0.6972643 0.6972643

Mammography 0.1243098 0.5419065 0.5419065 0.5419065 0.5419065
2_blobs 1.9040153 1.3735754 1.3735754 1.9040153 1.9040153
3_blobs 1.7047981 1.6202096 1.7047981 1.7047981 1.7663088
5_blobs 1.2592171 0.6447496 0.6709407 1.2592171 1.2592171
10_blobs 0.9048197 0.4620280 0.8099586 0.8140677 1.2805434

Iris 2.0197395 2.0197395 2.0197395 1.9596349 2.0197395
DI Glass 0.4010836 0.2986482 0.4644115 0.5325171 0.6286726

Cleveland 0.5363801 0.5889773 0.5371508 0.5005224 0.6011315
Bank Note Authentication 1.5469099 1.5013920 1.5469099 1.5469099 1.5469099

Appendicitis 1.0011285 1.0011285 1.0011285 1.0017089 1.0011285
Breast Cancer Wisconsin 1.3494101 1.1806848 1.3494101 1.3005589 1.3494101

Mammography 1.3974134 1.3974134 1.3974134 1.1162343 1.3974134
2_blobs 0.144604 0.144604 0.144604 0.147063 0.144604
3_blobs 0.157400 0.159603 0.1565898 0.1565898 0.1565898
5_blobs 0.348582 0.122678 0.2365076 0.123528 0.1236736

10_blobs 0.1068881 0.121510 0.162423 0.109133 0.10423103
Iris 0.167358 0.16801707 0.167358 0.167373 0.167358

DBI Glass 0.532517 0.398066 0.46441156 0.271434 0.2093515
Cleveland 0.383664 2.071026 0.33105801 0.4016002 0.320763

Bank Note Authentication 0.4371350 0.436876 0.43713506 0.439077 0.436666
Appendicitis 0.516156 0.5261876 0.516156 0.516380 0.516156

Breast Cancer Wisconsin 0.268049 0.257680 0.2522018 0.2522018 0.2522018
Mammography 0.311799 0.860389 0.34720557 0.311799 0.311799
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TABLE II. P-Values Generated from ARI, NMI, SI, DI and DBI for Wilcoxon’s Rank-sum Test for Comparing J-C-Means With other Algorithms

Database c-means-E c-means-S c-means-W c-means-M

2_blobs 0.0010 1.5938E-06 0.0010 0.0010

3_blobs 1.5938E-06 1.5938E-06 1.5938E-06 1.5938E-06

5_blobs 5.3477E-06 6.1582E-06 4.0402E-06 4.7314E-06

10_blobs 0.0099 0.0059 0.0099 0.0485

Iris 0.0128 0.0088 4.0402E-06 4.0167E-04

ARI Glass 0.0046 0.01038 0.0017 0.0046

Cleveland 1.4851E-04 1.8267E-04 0.0022 0.0211

Bank Note Authentication 0.02547 6.0243E-06 4.5506E-06 0.01485

Appendicitis 0.0325 6.0243E-06 0.0165 0.03681

Breast Cancer Wisconsin 3.2899E-06 3.2899E-06 4.7314E-06 3.2899E-06

Mammography 1.5938E-06 1.5938E-06 1.5938E-06 1.5938E-06

2_blobs 1.5938E-06 1.5938E-06 1.5938E-06 1.5938E-06

3_blobs 1.5938E-06 1.5938E-06 1.5938E-06 1.5938E-06

5_blobs 5.3477E-06 6.1582E-06 4.0402E-06 4.7314E-06

10_blobs 0.04698 1.8165E-04 0.04097 0.04272

Iris 0.0146 0.03812 5.7206E-06 4.0167E-04

NMI Glass 0.0013 0.0036 0.0013 0.0013

Cleveland 1.4851E-04 1.8267E-04 0.0017 0.0058

Bank Note Authentication 1.5938E-06 6.0243E-06 1.5938E-06 0.04339

Appendicitis 0.0325 6.0243E-06 0.0125 0.0125

Breast Cancer Wisconsin 1.5938E-06 1.5938E-06 1.5938E-06 2.4282E-06

Mammography 1.5938E-06 1.5938E-06 1.5938E-06 1.5938E-06

2_blobs 1.5938E-06 1.5938E-06 1.5938E-06 1.5938E-06

3_blobs 0.00586 1.5938E-06 0.0332 0.0039

5_blobs 6.1582E-06 6.1582E-06 0.1058 4.7314E-06

10_blobs 0.01855 1.8165E-04 0.0211 0.0211

Iris 0.0474 0.008812 0.0131 0.0469

SI Glass 0.0451 1.8165E-04 0.0451 0.0451

Cleveland 1.4851E-04 1.8267E-04 0.0204 0.04725

Bank Note Authentication 2.4282E-06 0.04429 1.5938E-06 4.7682E-06

Appendicitis 1.5938E-06 0.0010 0.03681 0.0165

Breast Cancer Wisconsin 0.0010 2.1650E-06 2.1650E-06 2.1650E-06

Mammography 1.5938E-06 1.5938E-06 1.5938E-06 1.5938E-06

2_blobs 0.0010 0.0010 0.0010 0.0010

3_blobs 0.0215 0.0215 0.0215 0.0215

5_blobs 0.0014 0.045 0.0089 0.0078

10_blobs 0.0339 0.0339 0.0339 0.07539

Iris 0.02891 0.02891 0.02891 0.02891

DI Glass 0.0339 0.0339 0.0339 0.0339

Cleveland 0.03438 0.03438 0.03438 0.03438

Bank Note Authentication 0.0010 0.0010 0.0010 0.0010

Appendicitis 0.02547 0.0075 0.0125 0.0056

Breast Cancer Wisconsin 0.0020 0.0020 0.0020 0.0020

Mammography 0.0020 0.0020 0.0020 0.0020

2_blobs 1.5938E-05 1.5938E-06 1.5938E-06 1.5938E-06

3_blobs 0.0486 1.5938E-06 0.0332 0.0039

5_blobs 5.3477E-06 6.1582E-06 4.0402E-06 4.7314E-06

10_blobs 0.0450 5.8006E-06 1.8267E-06 5.7729E-06

Iris 0.0015 0.0321 9.6624E-06 2.5597E-06

DBI Glass 0.04722 1.8165E-06 0.01523 0.04772

Cleveland 1.4851E-06 1.8267E-06 0.03845 0.0199

Bank Note Authentication 2.4282E-06 0.04429 1.5938E-06 4.7682E-06

Appendicitis 1.5938E-06 0.0014 0.03681 0.0013

Breast Cancer Wisconsin 3.2899E-06 3.2899E-06 3.2899E-06 3.2899E-06

Mammography 3.2899E-06 3.2899E-06 1.5938E-06 1.5938E-06
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