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Abstract—The detection of critical infrastructures in large
territories represented by aerial and satellite images is of high
importance in several fields such as in security, anomaly detection,
land use planning, and land use change detection. However, the
detection of such infrastructures is complex as they have highly
variable shapes and sizes, i.e., some infrastructures, such as elec-
trical substations, are too small while others, such as airports, are
too large. Besides, airports can have a surface area either small or
too large with completely different shapes, which makes its correct
detection challenging. As far as we know, these limitations have
not been tackled yet in previous works. This article presents 1) a
smart critical infrastructure (CI) dataset, named CI-dataset, orga-
nized into two scales, small and large scales critical infrastructures
and 2) a two-level resolution-independent critical infrastructure
detection (DetDSCI) methodology that first determines the spatial
resolution of the input image using a classification model, then
analyses the image using the appropriate detector for that spatial
resolution. The present study targets two representative classes,
airports and electrical substations. Our experiments show that
DetDSCI methodology achieves up to 37.53% F1 improvement
with respect to Faster R-CNN, one of the most influential detection
models.

Index Terms—Convolutional neuronal networks, detection,
ortho-images, remote sensing images.

I. INTRODUCTION

CRITICAL infrastructures are a type of human land use
that are essential for the functioning of a society and

economy [26], [31], [33]. Any threat to these facilities can
cause severe problems. Examples of critical infrastructures in-
clude airports, electrical substations, and harbors among others.
The detection of this type of infrastructures in high resolution
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ortho-images is of paramount importance in several fields such
as security, land use planning, and change detection [5], [14],
[23], [34].

Currently, deep CNNs have been largely used in the classi-
fication of high resolution ortho-images [6], [12], [33] as they
achieve good accuracies specially in distinguishing objects of
similar scales in images of the same size and same spatial
resolution. Nevertheless, the detection of critical infrastructures
with dissimilar sizes and scales, e.g., electrical substations that
cover a surface area of the order of hundreds m2 versus airports
that can cover up to hundreds km2, is still challenging. Besides,
unlike bridges or motorways, infrastructures such as airports and
electrical substations have large intraclass and interclass scale
variations. Each airport has a completely different structure and
shape when seen from space.

Detection task is addressed using remote sensing data and
deep convolutional neural networks (CNNs). Remote sensing
data are high resolution ortho-images that can be obtained
from unmanned aerial vehicle (captured at height < 30 km and
covers from 0,1 to 100km2), planes (at height < 30 km and
covers from 10 to 100km2) or satellites (> 150 km 10–1000
Km2) [30]. Obtaining large amounts of this type of data are
expensive. Fortunately, few sources, such as Google Earth1 and
Bing Maps,2 allow to download aerial and satellite images freely
for the academic community. Nevertheless, most existing land
use datasets are prepared only for training classification models,
do not include neither annotations for training detection models
nor information about the scale or zoom level of the images. As
far as we know, none of the public databases prepared for training
detection models provide images of some critical infrastructures
like electrical substations.

This article presents two-level deep learning detection for dif-
ferent scale critical infrastructures (DetDSCI) methodology in
ortho-images. We reformulate the problem of detecting critical
infrastructures in ortho-images into two subproblems, the detec-
tion of small and large scale critical infrastructures. DetDSCI
methodology consists of two stages as follows:

1[Online]. Available: Google Earth: https://earth.google.com/web
2Bing Maps: https://www.bing.com/maps
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1) The first stage is based on a spatial resolution classification
model that analyses the 2000× 2000 pixels input image to
estimate its zoom level and hence determine the detector
to be used in the next stage.

2) The second stage includes two expert detectors, one of
them for small and the other for large critical infrastruc-
tures. Once the zoom level of the input image is determined
by the first stage, the selected detector will analyze that
input image according to its spatial resolution. Middle
scale infrastructures can be detected by both detectors.

Addressing the detection of too small and too large scale
critical infrastructures in remote sensing images independently
on the spatial resolution can offer better performance. Our study
targets two representative critical infrastructures, namely air-
ports and electrical substations. As there are no public detection
datasets that include both categories of critical infrastructures,
we carefully built a specialized dataset, critical infrastructures
dataset (CI-dataset). CI-dataset is organized into two subsets,
small scale critical infrastructure (CI-SS) dataset with electrical
substation class and large scale critical infrastructure (CI-LS)
dataset with airport class.

The main contributions of this article can be summarized as
follows:

1) Unlike the traditional process adopted to build most
datasets, we followed a dynamic process to construct the
high quality CI-dataset organised into two scales, CI-SS
for small scale critical infrastructures and CI-LS for large
scale critical infrastructures. This process can be used
to include more types of infrastructures. CI-dataset is
available through this link.3

2) We present DetDSCI methodology, a two-stages deep
learning detection for dissimilar scale critical infrastruc-
tures in ortho-images. DetDSCI methodology first de-
termines the spatial resolution of the input image then
analyses it according to its spatial resolution using the
appropriate expert detector. This methodology overcomes
the baseline detectors trained on our high quality dataset.
Code of DetDSCI methodology is available through this
link.4

The rest of this article is organized as follows. First, a com-
prehensive review of related works is provided in Section II. Our
DetDSCI methodology is presented in Section III. The dynamic
process of building our CI-dataset is provided in Section IV.
The experimental analysis carried out for the construction of
CI-dataset and the evaluation of DetDSCI methodology are
given in Section V. Finally, Section VI concludes this article.

II. RELATED WORKS

Related works that apply deep learning on remote sensing data
can be broadly divided into two types, top-down and bottom-up
works:

3[Online]. Available: CI-dataset: https://dasci.es/transferencia/open-data/ci-
dataset/

4DetDSCI methodology: https://github.com/FPerezHernandez92/DetDSCI-
Methodology

1) Top–down works, first build a large dataset with an im-
portant number of object-classes, mainly objects that can
be recognized from remote sensing images, e.g., vehi-
cles or soccer stadiums. Then, the studies analyze these
images using a deep learning classification or detection
models [6], [7], [10], [12], [19], [20], [28], [29], [33].

2) Bottom-up works focus on solving a specific problem that
involves one or few object classes, e.g., airports [3], [4],
[21], [32], [35], trees [2], [13], [15], [27], clouds [17], and
whales [16]. Besides, some works [8], [9], [17], [24], [36]
focus on designing new methods to further improve the
detection, in general, in satellite images.

Our work belongs to the second category as our final objective
is to build a good detector of two specific critical infrastructures,
namely, airports and electrical substations. This section provides
a brief summary of the current general datasets that include
some critical infrastructures, the so-called top–down works (see
Section II-A) then reviews the deep learning approaches used in
bottom-up works (see Section II-B).

A. Top–Down Works

Most databases provided by top–down works are multiclass
datasets that include some critical infrastructures, annotated for
the task of image classification, which limits their usefulness.
See summary in Table I where only a few datasets are prepared
for the task of detection.

For example, in [33], the authors created LULC dataset or-
ganized into 21 classes. Each class contains 100 images of size
256× 256 pixels. The authors in [6] provide a dataset named
NWPU-RESISC45. This dataset is composed of 31.500 images
of 256× 256 pixels, in 45 classes with 700 images in each
class. NWPU-RESISC45 includes images with a large varia-
tion in translation, spatial resolution, viewpoint, object pose,
illumination, background, and occlusion. Besides, it has high
within-class diversity and between-class similarity. Functional
Map of the World (fMoW) [12] is a dataset containing a total
of 523.846 images with a spatial resolution of 0.31 and 1.60
meters per pixel. It includes 62 classes with 132.716 instances
from OpenStreetMap. These datasets are prepared for the image
classification task and hence they are not useful for the detection
task.

Examples of datasets prepared for the task of object detection
are NWPU VHR-10, xView, DIOR, and DOTA. NWPU VHR-10
dataset [7] is organized into 10 classes, each class contains 800
images of width 1000 pixels. It contains mainly small scale
objects such as airplane, ship, storage tank, baseball diamond,
tennis court, basketball court, ground track field, harbor, bridge,
and vehicle. Authors on [19] presented xView dataset for de-
tecting 60 object-classes with over 1 million instances. These
classes are focused on vehicles and small scale objects and the
images have a width of 3000 pixels. DIOR, a new dataset was
published on [20], where 23 463 images and 192 472 instances
covered 20 object classes. DIOR dataset has a large range of
object size variations and is focused on detection with a width
on the images of 800 pixels. DOTA dataset [29] is composed
of 15 classes of small scale objects with 2.806 images from

https://dasci.es/transferencia/open-data/ci-dataset/
https://dasci.es/transferencia/open-data/ci-dataset/
https://github.com/FPerezHernandez92/DetDSCI-Methodology
https://github.com/FPerezHernandez92/DetDSCI-Methodology
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TABLE I
CHARACTERISTICS OF GENERAL DATASETS THAT INCLUDE SOME CRITICAL INFRASTRUCTURES

Google Earth, where the total instances are 188.282. The size of
the images is between 800 and 4.000 pixels, and they are labeled
with oriented bounding boxes. Although the last four datasets
are prepared for the task of object detection, they do not focus
on any specific problem as they are all types of visible objects
from space. In addition, none of these datasets includes electrical
substations and only DIOR includes the airport category.

B. Bottom-Up Works

A large number of bottom-up works focus on improving the
detection of airports. In [35], the authors propose a method
using CNNs for airport detection on optical satellite images. The
proposed method consists mainly of three steps, namely, region
proposal, CNN identification, and localization optimization. The
model was tested on an image data set, including 170 different
airports and 30 nonairports. All the tested optical satellite images
were collected from Google Earth with a resolution of 8m × 8m
and a size of about 3000× 3000 pixels. The method proposed
in [3] first detects various regions on RSIs, then uses these
candidate regions to train a CNN architecture. The sizes of the
airport images were 3000× 2000 pixels with a resolution of 1 m.
A total of 92 images were collected. In [4], the authors developed
a hard example mining and weight-balanced strategy to construct
a novel end-to-end CNN for airport detection. They designed
a hard example mining layer to automatically select hard ex-
amples by their losses and implement a new weight-balanced
loss function to optimise CNN. The authors in [32] proposed an
end-to-end airport detection method based on CNNs. Addition-
ally, a cross-optimization strategy has been employed to achieve
convolution layer sharing between the cascade region proposal
networks and the subsequent multithreshold detection networks,
and this approach significantly decreased the detection time.
Once the airport is detected, they use an airplane detector to
obtain these instances. To address the insufficiency of traditional
models in detecting airports under complicated backgrounds
from remote sensing images, authors in [21] proposed an end-to-
end remote sensing airport hierarchical expression and detection
model based on deep transferable CNNs.

In addition, several studies focus on improving the detection
of general objects in remote sensing images. For example,
in [36], the authors provided a remote sensing dataset called
HRRSD and designed a CNN called HRCNN based on de-
formable proposal technique for improving the detection of

TABLE II
CORRESPONDENCE BETWEEN SPATIAL RESOLUTION AND ZOOM LEVEL

these classes. In [8], the authors first, applied a dual attention
feature enhancement (DAFE) module to selectively emphasise
informative features from multiple resolutions. Then, introduced
a context feature enhancement (CFE) module to fully leverage
the abundant information emerged in remote sensing objects.
The authors in [9] proposed a discriminate CNN (D-CNN) to
classify remote sensing scenes. They demonstrated that D-CNN
maps the images of the same scene close to each other, while
images of different scenes are mapped very far from each other.
In [24], the authors presented the GACL Net to improve the
detection of small-scale objects in remote sensing images. The
model uses the global features to guide the channel attention
of the local convolutional features, and the axis-concentrated
prediction process takes the single-axis pooling process to avoid
coordinate prediction disturbance. The authors in [17] developed
a CNN specially designed for cloud detection in optical remote
sensing images.

III. DETDSCI METHODOLOGY: TWO-LEVEL DEEP LEARNING

DETECTION FOR DIFFERENT SCALE CRITICAL

INFRASTRUCTURE METHODOLOGY IN ORTHO-IMAGES

This section presents DetDSCI methodology, which aims at
addressing the detection of airports and electrical substations
of very dissimilar sizes and shapes in large areas represented
by satellite images, see illustration in Fig. 1. We define two
broad ranges of spatial resolutions also called zoom levels,
see correspondence between zoom level and spatial resolution
in Table II. The first range includes zoom levels in [14,17]
and the second range includes zoom levels in [18,23]. These
intervals have been selected experimentally as described in the
next section.
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Fig. 1. DetDSCI methodology detection applied to the island of Menorca
(Spain). (a) A sliding window processing approach. (b) Obtained 2000× 2000
pixels crops. (c) DetDSCI methodology applied to each crop. (d) Output image
with detection results.

Fig. 2. DetDSCI methodology.

To reduce the number of FP due to the differences in different
zoom levels, DetDSCI methodology first distinguishes between
the two zoom level ranges and then applies the corresponding
detector according to the spatial resolution of each input image.
In particular, DetDSCI is actually a two stages pipeline as
illustrated in Fig. 2. The first stage determines whether the
input image belongs to the first or second zoom levels interval.
Depending on the selected zoom level interval, the second stage

Fig. 3. Four images of El Hierro airport (latitude: 27.81402oN, longitude:
-17.88518oW, Canary Islands, Spain) with zoom levels 14(a), 15(b), 16(c) and
17(d), obtained from Google Maps.

analyses that image using the specialised detector on that specific
group of critical infrastructures.

The next code summarizes the DetDSCI methodology:

DetDSCI(image):
zoom_level_image = ZoomLevelClassi-

fier(image)
if zoom_level_image <= 17:

class = LargeScaleDetec-
tor(image)

elif zoom_level_image >= 18:
class = SmallScaleDetec-

tor(image)
return class

A. Stage 1: Estimating the Spatial Resolution of the Input
Image

To distinguish between too large and too small critical infras-
tructures, we consider two zoom levels intervals, [14,17] and
[18,23]. Too large infrastructures can be visually recognised in
2000× 2000 pixels images of zoom levels 14, 15, 16, and 17.
See an example in Fig. 3. While, too small scale infrastructures
can be visually recognised in 2000× 2000 pixels images of
zoom levels 18, 19, 20, 21, 22, and 23. See an example in Fig. 4.
Medium size infrastructure, such as bridges, can be included in
both small and large groups.

In Figs. 3 and 4, we found out that electrical substations
are difficult to recognize by the human eye in zoom level 18
and airports are difficult to recognize in zoom level 14. This is
because the provided number of pixels with these zoom levels do
not give enough information about the target objects. In parallel,
some 2000× 2000 pixel images cannot contain the entire airport
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Fig. 4. Six images of Guadix electrical substation (latitude: 37.30853oN,
longitude: -3.12997oW, Granada, Spain) with zoom levels 18(a), 19(b), 20(c),
21(d), 22(e) and 23(f), obtained from Google Maps.

Fig. 5. Examples of the classes considered by the large infrastructure detection
model, left to right: airport (a), bridges (b), harbor (c), industrial area (d),
motorway (e), and train station(f).

at zoom level 17. Similarly, some 2000× 2000 pixel images
cannot contain the entire electrical substation in zoom level 23.
In spite of all this, including these zoom levels in the training
dataset improves the robustness of the detector as it can be seen
in Section V-B1.

The first stage of DetDSCI distinguishes between these two
intervals, large [14,17] and small [18,23] zoom levels interval.
This stage is based on a binary classification model that analyses
the input image to determine its zoom level interval and hence
determines the most appropriate detector to be used in the second
stage.

B. Stage 2: Detection of Critical Infrastructures

The zoom level interval estimated in the first stage will be
used to guide the selection of the detector in the second stage. In
particular, this stage is based on following two detection models.

1) The first detection model is applied to large scale infras-
tructures. It considers six infrastructure classes, namely
airport, bridge, harbor, industrial area, motorway, and train
station. Fig. 5 shows examples of these classes.

2) The second detection model is applied to small scale
infrastructures. It considers six classes, namely electrical
substation, bridge, plane, harbor, storage tank, and heli-
copter. Fig. 6 shows examples of these classes.

Fig. 6. Examples of the classes considered in the small infrastructure detection
model, left to right: electrical substation (a), bridge (b), plane (c), harbor (d),
storage tanks (e), and helicopter (f).

It is worth mentioning that the inclusion of new classes in
both detectors was based on the preliminary experimental study
explained in the next section.

IV. CI-DATASET CONSTRUCTION GUIDED BY THE

PERFORMANCE OF FASTER R-CNN

It is well known that building good quality models requires
good quality datasets, also called smart data [25]. The concept
of smart data includes all preprocessing methods that improve
value and veracity of data. In the context of object detection,
usually training datasets are first built then analyzed using
machine learning models. This classical procedure is suitable
only when the involved objects are of similar sizes and can be
correctly identified at the same spatial resolution.

To overcome these limitations, we built the critical infrastruc-
tures dataset, CI-dataset, guided by the performance of one of
the most robust detectors, namely Faster R-CNN. We organized
CI-dataset into two subsets, one for small scale, CI-SS, and the
other one for large scale, CI-LS critical infrastructures. The
construction process of both subsets is dynamic and guided
by the performance of Faster R-CNN detection model on the
electrical substation class for CI-SS and the airport class for
CI-LS. This section describes the construction process used to
obtain the final high-quality CI-dataset for detecting electrical
substations and airports.

The dynamic process guided by the detection model is based
on three main steps:

1) Step 1: Constructing the initial set for each target class:
First, we selected the combination of zoom levels at which
the airports and the electrical substations can be recog-
nized by the human eye. Then, we downloaded images
for each one of these two classes with different zoom
levels. Afterward, we selected the most suitable zoom
levels combination guided by the performance of Faster
R-CNN.

2) Step 2: Extending the dataset with more object classes: We
analyzed all the object classes that can be confused with
the target class and hence can cause false positives (FP).
All these potential FP are obtained from public datasets
and included in our CI-dataset. Then the performance of
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TABLE III
NAMES OF THE TRAINING AND TEST SUBSETS OF THE CI-DATASET AND THE

CORRESPONDING DETECTION MODEL CREATED AT EACH STEP OF THE

PROCESS

the model is analyzed to select the final object classes to
be included.

3) Step 3: Further increasing the size of the training set: We
increased the number of instances of the final classes in
the training set using new images from Google Maps.

For simplicity, we named the three different versions of the
training, test datasets and detection model according to the
construction step as described in Table III. At the end of this
process, we obtained the final CI training and test datasets.

A. Step 1: Constructing the Initial Set for Each Target Class

The first process is to carefully select the zoom levels at which
the considered objects fit in a 2000× 2000 pixels image and can
be recognised by the human eye. Ortho-images of this size can
capture small scale critical infrastructures within 18–23 zoom
levels (see Fig. 6) and large scale critical infrastructures within
14–17 zoom levels (see Fig. 5). For building CI-dataset, we used
two services to visualize then download images from Google
Maps, namely, SAS Planet5 and Google Maps API.6

Although all selected zoom levels provide useful information
for training the detection model, the lowest, 14 and 18, and
highest zoom levels, 17 and 22 and 23, require specific manual
preprocessing to fit 2000× 2000 pixels7 so that they can be
used for training the detection model. For the test process, no
preprocessing is applied and zoom levels 14 and 17 for large
scale [see Fig. 7(a)] and 18, 22, and 23 for small scale [see
Fig. 7(b)] infrastructures are discarded. That is, we consider
zoom levels in [19,21] for the electrical substation and in [15,16]
for the airport class, in the test set. Once the zoom levels are
selected for the training process, the images of the target class
are downloaded to build subsets CI-SS and CI-LS.

Finally, once the target class dataset is constructed, we ana-
lyzed all the combinations of zoom levels to determine, which
one improves the learning process of the detection models.
Guided by the performance of the Faster R-CNN on the target
class, we discarded the zoom levels that did not help in the
learning process of the detector.

5[Online]. Available: SAS Planet: //www.sasgis.org/
6Google Maps API: //https://cloud.google.com/maps-platform
7Preprocessing includes fusing multiple tiles, cropping a tile and/or resizing

the obtained image to 2000× 2000 pixels. Notice that this size corresponds to
the the input layer of the detection model.

Fig. 7. Zoom levels discarded for the test. a) Large scale discard 14 for having
the objects too far away and 17 for occupying more of the image. b) Small scale
discard 18 for having the objects too far away and 22 and 23 for occupying more
of the image.

TABLE IV
NUMBER OF INSTANCES IN THE ELECTRICAL SUBSTATION CLASS, A)

CI-SS_TRAIN_ALPHA, B) CI-SS_TEST_ALPHA

Small Scale: The initial CI-SS dataset, CI-SS_train_alpha,
is built using the electrical substation images with zoom lev-
els from 18 to 23. We downloaded 550 images with different
zoom levels, as shown in Table IV(a). For building the test set,
CI-SS_test_alpha, we downloaded 75 images of the electrical
substation class with zoom levels from 19 to 21, as shown in
Table IV(b).

Large Scale: The initial version of CI-LS dataset, CI-
LS_train_alpha, is built using only airport images with zoom
levels from 14 to 17. We downloaded 160 images of airports
from Spain and 80 airports from France, as shown in Table V(a).
To build the initial test set, CI-LS_test_alpha, we downloaded
32 images of Spanish airports with two zoom levels 15 and 16,
as shown in Table V(b).

B. Step 2: Extending the Dataset With More Object Classes

After a careful analysis of the FP committed by the detection
model when trained on the initial dataset, we determined all
potential object classes that make the detector confuse the target
class with other different objects. At this stage, we analyzed the
impact of each one of these potential FP on the learning of the
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TABLE V
NUMBER OF INSTANCES IN THE AIRPORT CLASS, A) CI-LS_TRAIN_ALPHA,

B) CI-LS_TEST_ALPHA

TABLE VI
NUMBER OF INSTANCES IN THE SMALL SCALE CRITICAL INFRASTRUCTURES,

CI-SS_TRAIN_BETA

detector and extended the dataset with more object classes from
public datasets and sources. If the performance improves, that
potential FP class is maintained in the dataset, otherwise it is
eliminated from the dataset.

For small scale infrastructure, the DOTA dataset will be
added since their objects are of similar scales. For large scale
infrastructures, the DIOR dataset will be used as it contains
infrastructures of similar sizes. For both small and large scale
datasets, we also included a large number of images of the same
classes downloaded from Google Maps and annotated manually
for detection.

Small Scale: We included in CI-SS_train_beta all DOTA
classes listed in Table VI, in addition to a large number of
images downloaded from Google Maps. Then, we eliminated
each DOTA class one by one and evaluated its impact on the
detector performance.

In addition, as we found that the most relevant new classes are
bridge, harbor, storage tank, plane, and helicopter, the detector
is trained to discriminate these classes too. For building CI-
SS_test_stable, we included 132 images of the five new classes,
as summarized in Table VII.

Large Scale: After analyzing the FP with Faster R-CNN,
we included three object classes from DIOR dataset together
with a large number of images of the same classes downloaded
form Google Maps into CI-LS_train_beta, namely train station,
bridge and harbor, and built the motorway and industrial area

TABLE VII
NUMBER OF INSTANCES IN THE FINAL TEST VERSION OF SMALL SCALE

CRITICAL INFRASTRUCTURES, CI-SS_TEST_STABLE DATASET

TABLE VIII
NUMBER OF INSTANCES IN THE LARGE SCALE CRITICAL INFRASTRUCTURES,

CI-LS_TRAIN_BETA DATASET

TABLE IX
NUMBER OF INSTANCES IN THE FINAL TEST VERSION OF LARGE SCALE

CRITICAL INFRASTRUCTURES, CI-LS_TEST_STABLE DATASET

class (see Table VIII). We built a test set, CI-LS_test_stable, by
including 114 new images of the five classes as it can be seen in
Table IX.

C. Step 3: Further Increasing the Size of the Training Set

In this stage, we further increase the number of all the new
object classes added to both training subsets using new images
from Google Maps.

Small Scale: As the CI-SS_Det_beta trained model confuses
electrical substation with several elements from urban areas, we
included urban areas as context in the new training images in the
rest of the classes. Namely, we downloaded a total of 1173 new
images. The characteristics of the resulting CI-SS_train_stable
are shown in Table X.

Large Scale: We further increased the size of CI-
LS_train_beta dataset by including 768 new images. The char-
acteristics of the resulting CI-LS_train_stable are shown in
Table XI.

V. EXPERIMENTAL STUDY

This section provides all the performed experimental analysis
to obtain CI-dataset and the evaluation of DetDSCI method-
ology. Section V-A summaries the experimental setup for the
analysis. Section V-B provides all the detection model results
obtained during the CI-dataset construction process. Finally,
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TABLE X
NUMBER OF INSTANCES IN THE FINAL TRAIN SMALL SCALE CRITICAL

INFRASTRUCTURES, CI-SS_TRAIN_STABLE DATASET

TABLE XI
NUMBER OF INSTANCES IN THE FINAL TRAIN LARGE SCALE CRITICAL

INFRASTRUCTURES, CI-LS_TRAIN_STABLE DATASET

Section V-C provides the analysis and comparison of the pro-
posed DetDSCI methodology.

A. Experimental Setup

The dynamic construction of the dataset requires the use of
a good detection model. After a careful experimental analysis,
we found that Faster R-CNN is the most suitable for this study
as it achieves a good speed accuracy trade-off [18].

For training the detection models, the images were resized
to 2000× 2000 pixels image, which represents the required
size of the input layer of modern detectors. A careful selection
of the zoom level is necessary so that the entire object can fit in
the image.

In the experiments carried out in the next sections, we used
Keras [11] as a deep learning framework for classification and
TensorFlow [1] as a deep learning framework for detection.

For evaluating and comparing the performance we will use
these metrics: Precision, Recall, and F1( (1)).

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2× Precision × Recall
Precision + Recall

(1)

where the number of true positives (TP), FP, and false nega-
tives (FN) is computed for each class.

TABLE XII
DA TECHNIQUES BY MODEL

TABLE XIII
CONFIGURATION OF FE FOR DIFFERENT MODELS

The detection performance is evaluated in terms of mAP [ (2)]
and mAR [ (3)] standard metrics for object detection tasks [22]
given 100 output regions.

mAP =

∑K
i=1 APi

K
APi =

1

10

∑
r∈[0.5,...,0.95]

∫ 1

0

p(r)dr

(2)

mAR =

∑K
i=1 ARi

K
ARi = 2

∫ 1

0.5

recall(o)do (3)

where given K categories of elements, p represents the
precision and r recall defines the area under the interpolated
precision-recall curve for each class i. Whereas o is intersection
over union (IoU) in recall(o) is the corresponding recall under
the recall-IoU curve for each class i.

The performance of the detection models can be improved
with the use of several optimization techniques, namely data
augmentation (DA) and analyzing different feature extractors
(FE). The eight DA techniques used to this task are listed in
Table XII and their impact will be study on the performance of
each detector.

Besides, we consider six FE listed in Table XIII and train
the models with or without the best DA techniques. We will
analyze the impact of all these factors on the performance of
each detection model.

B. Experimental Study for the Construction of the CI-Dataset

Section IV provided a detailed description of the construction
process of CI-dataset. This section provides the experimental
results of the detection model at each stage of that process.
The performance obtained in steps 1, 2, and 3 are, respectively,
analyzed in Sections V-B1, V-B2, and V-B3. Finally, the exper-
imental analysis of the use of DA techniques and different FE is
provided in Section V-B4.
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TABLE XIV
PERFORMANCE (%) OF CI-SS_DET_ALPHA WHEN TRAINED ON DIFFERENT

ZOOM LEVEL COMBINATIONS OF CI-SS_TRAIN_ALPHA AND TESTED ON

CI-SS_TEST_ALPHA DATASET

TABLE XV
PERFORMANCE (%) OF CI-LS_DET_ALPHA WHEN TRAINED ON DIFFERENT

ZOOM LEVEL COMBINATIONS OF CI-LS_TRAIN_ALPHA AND TESTED ON

CI-LS_TEST_ALPHA DATASET

TABLE XVI
IMPACT OF ELIMINATING EACH INDIVIDUAL DOTA’S CLASS FROM THE

CI-SS_TRAIN_BETA ON THE DETECTION PERFORMANCE (%)

TABLE XVII
PERFORMANCE (%) OF CI-LS_DET_BETA WHEN TRAINED ON

CI-LS_TRAIN_BETA AND TESTED ON CI-LS_TEST_STABLE

TABLE XVIII
PERFORMANCE (%) OF CI-SS_DET_STABLE AND CI-SS_DET_BETA ON

CI-SS_TEST_STABLE AND CI-SS_DET_ALPHA WHEN TRAINED AND TESTED

ONLY ON THE ELECTRICAL SUBSTATION CLASS

TABLE XIX
TP, FP, FN, RECALL (%), PRECISION (%) AND F1 (%) IN CI-SS_TEST_STABLE

CI-SS_Det_stable is trained on CI-SS_train_stable and CI-SS_Det_beta is trained
on CI-SS_train_beta. For comparison purposes, CI-SS_Det_alpha is trained only on
airports.

TABLE XX
PERFORMANCE (%) OF CI-LS_DET_STABLE AND CI-LS_DET_BETA TESTED

ON CI-LS_TEST_STABLE AND CI-LS_DET_ALPHA TRAINED AND TESTED

ONLY ON THE AIRPORT CLASS

TABLE XXI
COMPARISON OF TP, FP, FN, TN, PRECISION (%), RECALL (%) AND F1 (%) OF

CI-LS_DET_STABLE TRAINED ON CI-LS_TRAIN_STABLE AND TESTED ON

CI-LS_TEST_STABLE WITH CI-LS_DET_BETA AND CI-LS_DET_ALPHA

CI-LS_Det_alpha is trained and tested only on the airport class.
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TABLE XXII
RESULTS (%) OF THE DIFFERENT MODELS WITH A DA TECHNIQUE IN

CI-SS_TRAIN_STABLE AND CI-SS_TEST_STABLE

TABLE XXIII
RESULTS (%) OF DIFFERENT FE WITH OR WITHOUT DA TECHNIQUES IN

CI-SS_TRAIN_STABLE AND CI-SS_TEST_STABLE

TABLE XXIV
RESULTS (%) OF THE DIFFERENT MODELS WITH A DA TECHNIQUE IN

CI-LS_TRAIN_STABLE AND CI-LS_TEST_STABLE

1) Analysis of Step 1: Construction of the Target Class
Dataset: Once the initial CI-dataset of the target class is con-
structed, we analyzed all the combinations of zoom levels to
determine, which one improves the learning process of the
detection models. Although the initial number of training images
is not too large, the models are learning correctly how to distin-
guish between the different classes. Guided by the performance
of the detection model on the target class, we discarded the zoom
levels that did not help in the learning process of the detector.

TABLE XXV
RESULTS (%) OF DIFFERENT FE WITH OR WITHOUT DA TECHNIQUES IN

CI-LS_TRAIN_STABLE AND CI-LS_TEST_STABLE

TABLE XXVI
NUMBER OF IMAGES BY ZOOM LEVEL USED FOR TRAINING AND EVALUATE

THE CLASSIFIERS

TABLE XXVII
CONFUSION MATRIX FOR THE CLASSIFIER BY ZOOM LEVEL INDIVIDUALLY

TABLE XXVIII
CONFUSION MATRIX FOR THE CLASSIFIER BY ZOOM LEVEL BY GROUP

Small Scale: The performance of the first detector, CI-
SS_Det_alpha, trained on different zoom level combinations
shows similar results as it can be seen from Table XIV. We
selected the combination that provides the highest number of
images, which is the one that includes all the zoom levels, 18,
19, 20, 21, 22, and 23.

Large Scale: The performance of the detection model, CI-
LS_Det_alpha, in different zoom level combinations shows that
the best and most stable results are obtained by the combination
of these zoom levels, 14, 15, 16, and 17, as it can be seen in
Table XV.

2) Analysis of Step 2: Extending the Number of Classes:
Once the CI-dataset is extended with new classes from public
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TABLE XXIX
PERFORMANCE (%) COMPARISON BETWEEN DETDSCI METHODOLOGY,

BASE_DET, CI-LS_DET_STABLE AND CI-SS_DET_STABLE WHEN TESTED ON

THE FUSION OF CI-SS_TEST_STABLE AND CI-LS_TEST_STABLE

datasets, we analyzed whether the new classes improve the
performance of the detection models.

Small Scale: First, we trained the model on all DOTA classes
and our built electrical substation class. Then, we analyzed the
impact of each DOTA’s class on the detection model by elimi-
nating that class from the training dataset. As it can be seen from
Table XVI, eliminating the three DOTA classes, small vehicle,
large vehicle, and ship, improves the F1 of CI-SS_Det_beta
detection model. This is due to the fact that the images of these
objects provide very few information about their features, i.e.,
they are represented using very few pixels.

Therefore, the final dataset CI-SS_train_stable contains 13
classes, tennis court, baseball diamond, ground track field, bas-
ketball court, soccer-ball field, roundabout, and swimming pool
in addition to bridge, harbor, storage tank, helicopter, plane, and
electrical substation.

Large Scale: The results of the detection model,
CI-LS_Det_beta, trained on CI-LS_train_beta, are shown in
Table XVII. As it can be observed from this table, including
some DIOR classes increases the mAP of the detection model
on the airport class to 85.73%.

3) Analysis of Step 3: Increasing the Size of the Dataset:
Once the final classes are determined, new images are included
to further improve the performance of the models.

Small Scale: A comparison between CI-SS_Det_beta and the
new CI-SS_Det_stable, trained on the CI-SS_train_stable (see
Table X), tested on the CI-SS_test_stable (see Table VII) dataset,
is shown in Table XVIII. The performance of CI-SS_Det_alpha
trained and tested only on the electrical substation is included
in the table as reference as well. These results show clearly that
the performance of CI-SS_Det_stable improves when increasing
the size of the training dataset.

For a further analysis, we observed the TP, FP, FN, Precision,
Recall, and F1 as shown in Table XIX. As it can be observed,
CI-SS_Det_stable reduces substantially the number of FP and
achieves the best F1 value. Therefore, the CI-SS_Det_stable
model will be used in the rest of this article as it provides the
highest performance on our target class, electrical substation.

Large Scale: A comparison between CI-LS_Det_beta and
the new CI-LS_Det_stable, trained on CI-LS_train_stable (see
Table XI), tested on CI-LS_test_stable (see Table IX) dataset,
is shown in Table XX. The mAP of CI-LS_Det_alpha trained
and tested only on the airport class is included in the ta-
ble as reference as well. As it can be seen from these re-
sults, CI-LS_Det_stable shows very similar mAP on airports

than CI-LS_Det_beta but much better mAP on the rest of
potential FP.

A comparison with CI-LS_Det_stable trained on CI-
LS_train_stable and tested on CI-LS_test_stable is provided
in Table XXI. In general, CI-LS_Det_stable provides the
highest F1.

4) Analysis of the Improvement of the Detection Models: The
selection of the right DA techniques and FE can surely further
improve the performance of the detection model. We consider
eight DA techniques listed in Table XII and study their impact
on the performance of each detector. Besides we consider six
FE listed in Table XIII and train the models with or without the
best DA techniques. We analyze the impact of all these factors
on the performance of each detection model.

Small Scale: Table XXII shows the performance of
CI-SS_Det_stable when applying individually different DA
techniques on CI-SS_train_stable. As it can be observed from
this table, applying DA8, random distort color, achieves the best
results in this model.

Table XXIII shows the impact of the different FE and DA on
the performance of CI-SS_Det_stable. As it can be seen, the best
mAP is obtained when using Faster R-CNN ResNet101 V1 with
FE2 and DA techniques. This detection model will be the new
CI-SS_Det_stable.

Large Scale: Table XXIV shows the performance of
CI-LS_Det_stable when applying different DA techniques on
CI-LS_train_stable. These results show that applying DA3, ran-
dom rgb to gray, achieves the best detection results.

Table XXV shows the impact of the different FE and DA on
CI-LS_Det_stable. As it can be seen the best performance is
obtained with Faster R-CNN Inception ResNet V2 with FE5
and without DA techniques. This model will be the new CI-
LS_Det_stable in the rest of this article.

C. Experimental Study of DetDSCI Methodology

Once CI-dataset is constructed and the final models are trained
on the small and the large scale critical infrastructures, we
develop the zoom level classifier for the DetDSCI methodology.
The construction of the zoom level classifier is presented in
Section V-C1 and the analysis of DetDSCI methodology is
shown in Section V-C2.

1) Construction of the Zoom Level Classifier: In the first
stage of DetDSCI methodology, a zoom level classifier analyses
the input image and determines the scale of this input. This stage
can be addressed either by identifying the specific zoom level
of each input image or by identifying intervals of zoom levels.

In particular, we developed and analyzed two classification
models, the first one was trained on 10 zoom level classes, from
14 to 23, and the second classification model was trained on two
zoom level intervals, interval [14,17] and [18,23]. Table XXVI
shows the number of images used to train and test these two clas-
sification models. The images used were selected from datasets
CI-SS_train_stable, CI-SS_test_stable, CI-LS_train_stable, and
CI-LS_test_stable.
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Fig. 8. Examples of detection obtained by the baseline model, Base_Det (left), and DetDSCI methodology (right).
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The confusion matrix for the classification by individual
zoom level is shown in Table XXVII. The overall accuracy of
this model is 68.31%, which is very low.

The confusion matrix for the classification by interval is
shown in Table XXVIII. This model obtains an accuracy of
96.83%, which is substantially higher than the classification by
individual zoom level. Therefore, we selected this classifier to
be included in our DetDSCI methodology.

2) Analysis of DetDSCI Methodology: In this section, we
analyze and compare the performance of DetDSCI methodol-
ogy against the baseline detectors CI-LS_Det_stable and CI-
SS_Det_stable and a baseline detector, Base_Det, trained on all
the data and zoom levels.

The characteristic of each model is
1) Base_Det: is a Faster R-CNN ResNet 101 V1 trained on

small and large scale classes from CI-SS_train_stable and
CI-LS_train_stable without any separation.

2) CI-LS_Det_stable: is a Faster R-CNN Inception ResNet
V2 trained on the CI-LS_train_stable dataset.

3) CI-SS_Det_stable: is a Faster R-CNN ResNet 101 V1 with
DA techniques trained on the CI-SS_train_stable dataset.

4) DetDSCI Methodology: is the methodology by which
each input image is classified by the zoom level classifier
and based on the output of this classifier, the detector
to be used is selected between CI-LS_Det_stable or CI-
SS_Det_stable.

We tested the four models on the images of the target classes,
electrical substation from CI-SS_test_stable and airport from
CI-LS_test_stable. The results in terms of TP, FP, FN, Precision,
Recall, and F1 are shown in Table XXIX.

As it can clearly seen from this table, DetDSCI methodology
overcomes Base_Det, CI-SS_Det_stable and CI-LS_Det_stable
in all the aspects by achieving the highest performance. In
particular, DetDSCI methodology achieves an improvement in
F1 of up to 37.53%. Therefore, it can be concluded that the di-
vision between small and large scales gives better results. Fig. 8
illustrates the results of the detections obtained by Base_Det and
DetDSCI methodology detections.

The inference time of the small scale detector, Faster R-CNN
ResNet101 V1, on a NVIDIA Tesla V100 32 GB GPU is 0.076 s,
while the large scale detector, Faster R-CNN Inception ResNet
V2, takes 0.095 seconds. The ResNet-50 classifier executes
in 0.0029 s. In total, the DetDSCI methodology process takes
0.0979 seconds in analyzing an input image.

VI. CONCLUSION

The detection of critical infrastructures in satellite images is a
very challenging task due to the large scale and different shapes,
some infrastructures are too small, e.g., electrical substations,
while others are too large, i.e., airports. This work addressed
this problem by building the high quality dataset, CI-dataset,
organised into two subsets, CI-SS and CI-LS and using DetDSCI
methodology. The construction process of CI-SS and CI-LS
was guided by the performance of the detectors on electrical
substations and airports, respectively.

DetDSCI methodology is a two-stage based approach that first
identifies the zoom level of the input image using a classifier
and then analyses that image with the corresponding detec-
tion model, CI-LS_Det_stable or CI-SS_Det_stable. DetDSCI
methodology achieves the highest performance with respect to
the baseline detectors not only in the target objects, but also in
the rest of infrastructure classes included in the dataset.

As conclusions, the proposed datasets and methodology are
the best solution for addressing the problem of different and dis-
similar scale critical infrastructures detection in remote sensing
images. This approach can be easily extended to more critical
infrastructures.

As a future work, we will extend the dataset and methodology
to more critical infrastructures and design a strategy to group sets
of classes according to their zoom level and shared features, with
the objective to achieve more robust detection models.
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Big Data Preprocessing. Cham, Switzerland: Springer, 2020.

[26] B. Oshri et al., “Infrastructure quality assessment in africa using satellite
imagery and deep learning,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2018, pp. 616–625.

[27] A. Safonova, E. Guirado, Y. Maglinets, D. Alcaraz-Segura, and S. Tabik,
“Olive tree biovolume from UAV multi-resolution image segmentation
with mask R-CNN,” Sensors, vol. 21, no. 5, 2021, Art. no. 1619.

[28] X. Sun, B. Wang, Z. Wang, H. Li, H. Li, and K. Fu, “Research progress on
few-shot learning for remote sensing image interpretation,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 2387–2402, 2021,
doi: 10.1109/JSTARS.2021.3052869.

[29] G.-S. Xia et al., “Dota: A large-scale dataset for object detection in
aerial images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 3974–3983.

[30] T.-Z. Xiang, G.-S. Xia, and L. Zhang, “ Mini-UAV-based remote sensing:
Techniques, applications and prospectives,” 2018, arXiv:1812.07770.

[31] Z. Xiao, Y. Gong, Y. Long, D. Li, X. Wang, and H. Liu, “Airport detection
based on a multiscale fusion feature for optical remote sensing images,”
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 9, pp. 1469–1473, Sep. 2017.

[32] Y. Xu, M. Zhu, S. Li, H. Feng, S. Ma, and J. Che, “End-to-end airport
detection in remote sensing images combining cascade region proposal
networks and multi-threshold detection networks,” Remote Sens., vol. 10,
no. 10, 2018, Art. no. 1516.

[33] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions
for land-use classification,” in Proc. 18th SIGSPATIAL Int. Conf. Adv.
geographic Inf. Syst., 2010, pp. 270–279.

[34] C. Zhang et al., “Joint deep learning for land cover and land use classifi-
cation,” Remote Sens. Environ., vol. 221, pp. 173–187, 2019.

[35] P. Zhang, X. Niu, Y. Dou, and F. Xia, “Airport detection on optical satellite
images using deep convolutional neural networks,” IEEE Geosci. Remote
Sens. Lett., vol. 14, no. 8, pp 1183–1187, Aug. 2017.

[36] Y. Zhang, Y. Yuan, Y. Feng, and X. Lu, “Hierarchical and robust con-
volutional neural network for very high-resolution remote sensing object
detection,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 8, pp 5535–
5548, Aug. 2019.

Francisco Pérez-Hernández received the M.Sc. de-
gree in computer science from the University of
Granada, Granada, Spain, in 2016, where he is cur-
rently working toward the Ph.D. degree with the
Department of Computer Science and Artificial In-
telligence.

His research interests include object detection and
classification with deep learning in different fields.

José Rodríguez-Ortega was born in Granada, An-
dalusia, Spain in 1998. He received the B.S degree
in computer science from the University of Granada,
Granada, Spain, in 2020, He is currently studying
and the second B.S degree in mathematics from the
National University of Distance Education (UNED).
He is currently working toward the M.S degree in data
science with the University of Granada.

In 2020, he did an internship as a Software En-
gineer and started as a Research Assistant with the
Soft Computing and Intelligent Information Systems

research group with the University of Granada. His research interests include
deep learning for computer vision and artificial intelligent.

Yassir Benhammou received the computer science
engineering degree from The National School of
Applied Sciences of Tetouan, AbdelMalek Essaâdi
University of Tetouan, Tetouan, Morocco, in 2016.
He is currently working toward the Ph.D. degree in
a co-tutelle thesis between The National School of
Applied Sciences of Berrechid, Hassan 1st Univer-
sity of Settat, Settat, Morocco, and The Andalusian
Research Institute in Data Science and Computational
Intelligence, University of Granada, Granada, Spain.

His research interests include deep learning for
remote sensing and healthcare, data preprocessing, and machine learning.

Francisco Herrera (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees in mathematics from the
University of Granada, Granada, Spain, in 1988 and
1991, respectively.

He is currently a Professor with the Department of
Computer Science and Artificial Intelligence, Univer-
sity of Granada, and the Director of the Andalusian
Research Institute in Data Science and Computational
Intelligence. He is also an Academician with the
Royal Academy of Engineering, Madrid, Spain. He
has been the Supervisor of 51 Ph.D. students. He has

authored or coauthored more than 500 journal papers, receiving more than 86
000 citations (Scholar Google, H-index 144). His current research interests
include among others, Computational Intelligence (including fuzzy modeling,
computing with words, evolutionary algorithms and deep learning), information
fusion and decision making, and data science (including data preprocessing,
prediction, nonstandard classification problems, and Big Data).

Dr. Herrera has been nominated as a highly cited researcher by Clarivate
Analytics (in the fields of computer science and engineering, respectively,
from 2014 to present). He currently acts as an Editor-in-Chief of Information
Fusion (Elsevier). He acts as Editorial Member of a dozen of journals. He was
the recipient of the several honors and awards, among others: ECCAI Fellow
2009, IFSA Fellow 2013, 2010 Spanish National Award on Computer Science
ARITMEL to the “Spanish Engineer on Computer Science,” the International
Cajastur “Mamdani” Prize for Soft Computing (Fourth Edition, 2010), the IEEE
TRANSACTIONS ON FUZZY SYSTEM Outstanding 2008 and 2012 Papers, the
2011 Lotfi A. Zadeh Prize Best Paper Award (IFSA Association), the 2013
AEPIA Award to a scientific career in Artificial Intelligence, the 2014 XV
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